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 On the occasion of a colloquium that Herr Geheimrat F. Klein convened in the Winter 
semester of 1920 on mathematical problems in the relativistic theories of physics, he 
expressed the desire to apply the theorems on invariant variational problems (1) that 
Emmy Noether posed about two years ago to Maxwell’s equations.  The content of those 
theorems can be stated briefly by saying that the invariance of a variational problem 
under a continuous transformation group will imply a number of relations that are 
fulfilled identically by means of the differential equations of the problem and are 
represented by first integrals of those equations in the case of one independent variable.  
In the case of a finite group, those relations have the form of the physicist’s so-called 
“conservation laws.” 
 Now, it is generally known that Maxwell’s equations are invariant under a finite ten-
parameter group, namely, the so-called Lorentz group, which consists of the real 
“motions” of four-dimensional x, y, z, t-space, whose metric is based upon the part of the 
form: 

x2 + y2 + z2 – c2 t2 = 0 
 
that lies at infinity.  In the year 1909, H. Bateman discovered (2) that Maxwell’s 
equations are invariant under a much more comprehensive group of transformations, 
namely, the group of all of them that leave the equation: 
 

dx2 + dy2 + dz2 – c2 dt2 = 0 
 

unchanged and do not change the sense of the directions in the four-dimensional figures 
(3).  If one writes x1, x2, x3, x4, instead of x, y, z, ict then except for the reality of the 
parameters that group will coincide with the largest subgroup that is contained in the 
fifteen-parameter group of transformations by reciprocal radii, namely, the so-called 

                                                
 (1) Göttingen Nachrichten (1918), pp. 235, et seq., in what follows, it will be denoted briefly by E. 
Noether.  See also Felix Klein, Gesammelte mathematische Abhandlungen, 1, Berlin, 1921, pp. 585. 
 (2) Proc. London Math. Soc. (2) 8 (1909), pp. 228, et seq.  In the same volume of that journal, as well as 
in the preceding one, one will find more investigations of Bateman and Cunningham into the meaning of 
our G15 for physics.  See also F. Klein, Ges. math. Abhandl. 1, pp. 552. 
 (3) Bateman called them “spherical wave transformations.”  
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conformal group (4) in R4 .  Now since, as J. L. Larmor has remarked (5), Maxwell’s 
equations can be obtained from a variational problem, and since it is also invariant under 
the aforementioned G15 , as will be shown below, the theorems of E. Noether must yield 

fifteen linearly-independent electrodynamical conservation laws.  The goal of the present 
note is to actually show that. 
 The first seven of them [cf., formulas (27 ar , az , and br)] are nothing but the well-
known theorems in the conservation of energy, impulse, and angular impulse (6); I 
therefore should not need to go any further into their interpretation.  The following three 
(27 bz) define a precise analogue of the second center-of-mass theorems in classical 
mechanics, and to my knowledge, they were obtained for the first time for 
electrodynamical phenomena by A. Einstein (7) by formal integration of Maxwell’s 
equations.  Einstein asserted (loc. cit.) their validity only in the first approximation, since 
the adaptation of dynamics to the relativity theory of the Lorentz group was still unknown 
to him at the time.  G. Herglotz (8) exhibited the corresponding formulas for the 
mechanics of continua in the sense of relativity theory (and in precisely the same way 
that will come about here), and also interpreted them expressly as the center-of-mass 
theorems.  The five remaining formulas (27 c, dr , and dz) are new, to my knowledge.  
Only the future can decide the extent to which they can be of service for the purposes of 
physics. 
 
 

§ 1. 
 

E. Noether’s theorems. 
 

 I will next present the two theorems of E. Noether, and indeed in a somewhat more 
general context than they were given in the cited note.  I would like to thank Emmy 
Noether herself for verbally communicating them to me.  Let us assume that an integral 
in given: 

(1)     Ix = 
2

2, , , ,
u u

f x u dx
x x

 ∂ ∂
 ∂ ∂ 

∫ ∫⋯ ⋯ , 

 
which is extended over an arbitrary real domain of the variables x1, x2, …, xn .  In this 
integral, u, ∂u / ∂x, ∂2u / ∂x2, … are abbreviations for µ real functions of the x1, x2, …, xn , 
and their partial derivatives (9), while dx briefly stands for dx1 dx2 … dxn .  Under a 
single-valued and uniquely-invertible transformation of variables: 
 

                                                
 (4) More details on the conformal group can be found in S. Lie and G. Scheffers, Geometrie der 
Berührungstransformationen, Leipzig, 1896, 1, chap. 10, §§ 1 and 2, pp. 441, et seq.  
 (5) Aether and matter, Cambridge, 1909, § 50, pp. 83, et seq.  See also F. Klein, Seminarvorträge über 
die Enwicklun der Mathematik in neunzehnten Jahrhundert, chap. X, v. II, § 4 (1917).  (These 
contributions have been worked out in transcripts of numerous university mathematical institutes.) 
 (6) See, perhaps, M. v. Laue, Die Relativitätstheorie, 1, 4th ed., Braunschweig, 1921, § 15 b-e. 
 (7) Ann. Phys. (Leipzig) (4) 20 (1906), pp. 627, et seq.  
 (8) Ann. Phys. (Leipzig) (4) 36 (1911), pp. 493, et seq.  Cf. esp., formulas (96′) on pp. 513. 
 (9) On the admissibility of complex numbers, cf., E. Noether, pp. 237, footnote 3. 
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(2)    

, , , [ 1,2, , ],

( ) , , , [ 1,2, , ],

i i

u
y A x u i n

x

u
v y B x u

xρ ρ ρ µ

 ∂ = =  ∂  


∂  = =  ∂ 

⋯ ⋯

⋯ ⋯

 

 
and its extension to a transformation of the derivatives ∂v / ∂y, ∂2v / ∂y2, …, (1) will go 
to: 

Iy = 
2

2, , , ,
v v

f y v dy
y y

 ∂ ∂
 ∂ ∂ 

∫ ∫⋯ ⋯ , 

 
in which the integral is taken over the y-domain that corresponds to the x-domain in (1).  
In particular, if the function f  is identical with the function f then I is said to be 
invariant under the transformation (2). 
 We now consider a continuous group of transformations (2) and assume that the 
parameters ε1 , ε2 , …, εn , are chosen in such a way that the identity transformation 
corresponds to the values ε = 0 [the functions p(x) ≡ 0, ∂p(x) / ∂x ≡ 0, …, resp.] in the 
case of a finite group Gr [the arbitrary functions p(1)(x), p(2)(x), …, p(ρ)(x), resp., in the 

case of an infinite group G∞ρ].  The transformation formulas (2) then take on the form: 

 

(3)    
[ 1,2, , ],

( ) [ 1,2, , ],
i i iy x x i n

v y u uρ ρ ρ ρ µ
= + ∆ + =

 = + ∆ + =

⋯ …

⋯ …
 

 
and we assume that it is permissible to assume that the ∆xi , ∆uρ are in linear the ε [p, 
resp.] and their derivatives (10).  If we truncate the right-hand side of (3) after these linear 
terms then, according to Lie, the resulting transformations are known to be infinitesimal.  
The invariance of the integral I under an infinitesimal transformation correspondingly 
means that f  differs from f only by terms that have at least second order in the ε [p, ∂p / 

∂x, …, resp.]. 
 Let us understand a divergence to mean an expression of the form: 
 

Div A = 1 2

1 2

n

n

AA A

x x x

∂∂ ∂+ + +
∂ ∂ ∂

⋯ , 

 
in which Ai are functions of x, u, ∂u / ∂x, …  The differentiations with respect to x are 
taken to be total differentiations; i.e., when the u, ∂u / ∂x, … are considered to be 
functions of x. 
 I shall now call I “invariant up to a divergence” under an infinitesimal transformation 
when: 
(4)     f = f + Div C + higher terms, 

                                                
 (10) Cf., E. Noether, pp. 244 at the bottom and pp. 246, beginning of § 4. 
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in which the expression C is linear in the ε [p, ∂u / ∂x, …, resp.].  The case in which C is 
identically zero is occasionally included in this manner of speaking (11).  In the 
introduction of this concept lies the generalization of Emmy Noether’s original 
publication that was mentioned at the beginning of the paragraph. 
 Moreover, we can express the theorems of Emmy Noether as follows: 
 
 If the integral I is invariant over the infinitesimal transformation of a finite group Gρ 

up to a divergence then there will be precisely ρ linearly-independent connections 
between the Lagrangian expressions and divergences. 
 
 Namely, one sets: 

(5)     δui = vi (x) – ui (x) = ∆ui − iu
x

x λ
λ λ

∂ ∆
∂∑ , 

 
and defines A1, …, An by the identity: 
 
 i iuψ δ∑ = δf + Div A, 

 
in which the ψi means the Lagrangian expressions of the function f, and B1, …, Bn are 
defined by the equations: 
(6)     Bi = Ci + Ai – f ∆xi . 
 
One then splits δu and B according to the individual ε : 
 
 δui = ε1 δ (1) ui + … + ερ δ (ρ) ui , 
  Bi = ε1

(1)
iB       + … + ( )i

iB ρ
ρε , 

 
and the desired divergence relations will be (12): 
 
(7)   (1)

i iuψ δ∑ = Div B(1),  …, ( )
i iuρψ δ∑ = Div B(ρ). 

 
 Conversely, if it is known from the Lagrangian expressions that for suitable functions 
δu and B there exist precisely ρ linearly-independent relations (7) then one can exhibit 
(13) ρ linearly-independent infinitesimal transformations under which I is invariant up to a 
divergence.  Since the splitting of B into C and A – f ∆x is possible in many ways, one can 
also arrive at many systems of such infinitesimal transformations.  One easily convinces 
oneself of the validity of the remark that the aforementioned splitting can be performed if 
and only if the resulting transformations are free of ∂u / ∂x, ∂2u / ∂x2, … when the 
                                                
 (11) Whereas complete invariance under an infinitesimal transformation T will imply complete 
invariance under a one-parameter group that is generated by T with no further assumptions, the 
corresponding statement about the invariance up to a divergence is not the case, in general.  For that reason, 
the definition of the concept must necessarily be linked with the infinitesimal transformations. 
 (12) Cf., E. Noether, § 2, pp. 242.  
 (13) As E. Noether did in § 2, pp. 242. 
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functions δu are free of ∂2u / ∂x2, ∂3u / ∂x3, …, and either likewise free of the ∂u / ∂x or 
linearly-dependent in a very special way (14).  If that condition is fulfilled then it can be 
proved that the ρ infinitesimal transformation to which one arrives generate precisely a ρ-
parameter group. 
 For the sake of later applications, I shall point out the expression for Bi in the case for 
which f depends upon only the first derivatives ∂u / ∂x: 
 

(8)    Bi = Ci − k
i i

k kk k

i i

uf f
x x f

u u x
x x

λ λ
λ λ

δ

 
 ∂∂ ∂
 ∆ + ∆ −∂ ∂ ∂ ∂ ∂ ∂ ∂ 

∑ ∑ ∑ ,  

 

δλi = 
0 when ,

1 when = .

i

i

λ
λ

≠



 

 
 The second theorem relates to an infinite continuous group G∞ρ and says that: 

 
 The invariance of I up to a divergence under the infinitesimal transformations of G∞ρ 

has the existence of ρ linearly-independent dependencies between the ψi and their total 
derivatives with respect to x, and that conversely the existence of ρ such linearly-
independent dependencies will imply the invariance of I up to a divergence under a 
certain set of ρ infinitesimal transformation with ρ arbitrary functions. 
 
 In order to exhibit the aforementioned dependencies, one writes down equation (5) in 
the developed form: 
 

(9)  δui = 
( ) ( )

( ) ( ) ( ) ( )

1

( , , ) ( ) ( , , ) ( , , )i i i

p p
a x u p x b x u c x u

x x

λ σ λρ
λ λ λ λ

σ
λ=

 ∂ ∂+ + + ∂ ∂ 
∑ … … ⋯ … . 

 
The dependencies then read simply (15): 
 

(10) ( ) ( ) ( )( ) ( ) ( 1) ( )i i i i i i
i

a b c
x x

σ
λ λ ν λ

σψ ψ ψ ∂ ∂− + + − ∂ ∂ 
∑ ⋯ = 0 [λ = 1, 2, …, ρ]. 

 
 

                                                
 (14) Namely: 

δui = αi (x, u) + ( , ) iu

x
x uλ

λλ
β ∂

∑
∂

. 

One can then arrive at: 

∆xi = − βi (x, u), ∆ui = αi (x, u), Ci = i iA B

f

−
+ βi (x, u). 

 (15) E. Noether, § 2, pp. 243.  
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§ 2. 
 

Application to the n-body problem. 
 
 The derivation of the ten known integrals of the n-body problem will serve as a first 
example of how convenient it is to apply E. Noether’s theorems.  Although the basic 
ideas, like the detailed implementation, will require nothing new (16), I would like to 
carry out the brief calculations completely by a formal analogy with the electrodynamical 
conservation laws that will be presented later.  The differential equations of the n-body 
problem are obtained by the variational problem: 
 

_

L dtδ
−
∫ = 0, 

 
in which the lines might suggest that the variation is performed with fixed limits.  The 
Lagrangian function L has the following meaning in this: 
 
 L = T – U, 

 T = 2 2 21
1 2 32

1

( )
n

i i i i
i

m x x x
=

+ +∑ ɺ ɺ ɺ , 

 

 U = − i k

ik

m m

r

κ
∑ ,  1 ≤ i < k ≤ n, 

 

 r ik = 2 2 2
1 1 2 2 3 3( ) ( ) ( )i k i k i kx x x x x x− + − + − , 

 
 κ = gravitational constant, 
 
and the xik are determined as functions of t by the variational problem.  Here, one is 
therefore dealing with a simple integral, where t enters in place of the quantity that was 
previously denoted by x, and the xik enter in place of what was previously u. 
 It is known that the equations of motion of the n-body problem are invariant under a 
finite, ten-parameter group, namely, the so-called “Galilei-Newton group.”  This 
invariance manifests itself in the variational problem in such a way that L is invariant 
under the infinitesimal transformations of the group, in part completely and in part up to a 
divergence.  In fact, that invariance reads: 

                                                
 (16) F. Engel [Gött. Nachr. (1916), pp. 270, et seq.] also treated this question by Lie’s method, but 
without the use of the advantageous fact that the differential equations arose from a variational problem.  
(A comparison will show the advantage of the variational theorem quite clearly.)  For the historical 
development of our understanding of the meaning of the ten integrals and their connection to the equations 
of motion, confer the relevant places in Jacobi’s Vorlesungen über Dynamik, 1897, pp. 110, et seq., as well 
as the interesting note of J. R. Schutz in Gött. Nachr. (1897), pp. 110, et seq. and the summary presentation 
of F. Klein in Die Entwicklung der Mathematik in neunzehnten Jahrhundert, chap. 10, A, § 2 and C, § 4, 
1917. 
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(11) a) ∆t = τ, ∆xik = 0, 
  b) ∆t = 0, ∆xik = αk , 

  c) ∆t = 0, ∆xik = 
3

1
k ixρ ρ

ρ
β

=
∑  

0,kk

k kρ ρ

β
β β

= 
 = − 

, 

  d) ∆t = 0, ∆xik = γk t  [k = 1, 2, 3], 
 
and one sees with no effort that ∆L = 0 for a), b), c), while for d), one will have: 
 

∆L = 
3

1 1

n

i k ik
i k

d
m x

dt
γ

= =

 
 
 
∑∑ = 

d
C

dt
 = Div C. 

 
Moreover, formulas (5) and (8) imply that: 
 
 δxik = ∆xik − ikxɺ ∆t, 

 B = C − 
3

1 1

n

i ik ik
i k

m x x
= =

∆∑∑ ɺ  + ∆t (T + U), 

 
and E. Noether’s divergence relations will assume the form: 
 

(12) a) −
3

1 1

n

ik ik
i k

x ψ
= =
∑∑ ɺ  = 

d

dt
(T + U), 

 

 b) 
1

n

ik
i

ψ
=
∑  = − 

1

n

i ik
i

d
m x

dt =
∑ ɺ  [k = 1, 2, 3], 

 

 c) 
1

( )
n

i i i i
i

x xµ ν ν µψ ψ
=

−∑  = −
1

( )
n

i i i i i
i

d
m x x x x

dt µ ν ν µ
=

−∑ ɺ ɺ  [(µ, v), (2, 3), (3, 1), (1, 2)], 

 

 d) 
1

n

ik
i

tψ
=
∑  =    

1 1

)
n n

i ik i ik
i i

d
m x t m x

dt = =

 − 
 
∑ ∑ ɺ  [k = 1, 2, 3]. 

 
 So far, we are dealing with only purely formal identities that can be subsequently 
verified directly quite easily when one sets: 
 

ψik = 
ik ik

L d L

x dt x

 ∂ ∂−  ∂ ∂ ɺ
 = 

31
( ) ( )

n

i
k ik i ik

ii

m m d
x x m x

r dt
ν

νν
νν

κ
=
≠

− −′Σ ɺ . 

 

 Up till now, no use has been made of the demand that 
_

L dtδ
−
∫ = 0.  However, if we 

now consider the differential equations of the n-body problem then we will have to set 
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the Lagrangian expressions ψi equal to zero, and equations (12), whose left-hand sides 
will then vanish, will yield the ten known first integrals of the problem, namely: 
 

(12a) is the law of energy, 
(12b) are the three first center-of-mass laws (also called laws of impulse), 
(12 c) are the three area laws, and 
(12 d) are the three second center-of-mass laws. 

 
 The form that the latter assume deviates somewhat from what is customary; in order 
to arrive at the latter, one must only observe that from (12b), one will have i ik

i

m x∑ ɺ = ck , 

from which, it will follow that: 
 

(13)  
1

n

i ik
i

m x
=
∑ = ck t + kc′   [k = 1, 2, 3] (ck , kc′ = constants). 

 
However, only the form (12 d) will meaningful for us because, first of all, it shows that 
the second center-of-mass laws are arranged completely in the sequence of the remaining 
conservation laws, and secondly, it gives us the key to our interpretation of the analogous 
electrodynamical relations (28). 
 
 

§ 3. 
 

Overview of the notations that will be used in what follows. 
 
 Before getting into a treatment of the electrodynamical equations, I shall first give an 
overview of the notations that will be used in the following.  In general, I shall use the 
symbolism that M. v. Laue used in his book Die Relativitätstheorie, Bd. I, and I also 
follow v. Laue in his symbolism for three-dimensional and four-dimensional vector and 
tensor calculus (even if it is rather ugly), such that the reader can refer to v. Laue for any 
symbol that is perhaps unknown to him.  The system of measurement is the Lorentzian 
one (17) in CGS units. 

                                                
 (17) See Encycl. d. math. Wissenschaften 5, art. 13, 7d.  
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Table of notations (18) 
 

 

In four-dimensional notation 
 

In three-dimensional notation 

 

x1, x2, x3, x4 
 

x, y, z, i ct 
 

Electromagnetic six-vector tensor: 
 

r =  
 

Vector from the coordinate origin to a  
fixed spatial point, but not to a  
moving particle 

f : f23, f31, f12 ;  f14, f14, f34  
 

fik = − fki 
 

 
 

Hx , Hy , Hz ;    − i Ex , − i Ey , − i Ez 

The six-vector that is dual to it:   
 

          f *: 12f ∗  = f34 , 13f ∗  = f42 , 14f ∗  = f23 

               23f ∗  = f14 , 24f ∗  = f31 , 34f ∗  = f12 

  

Four-potential:   
 

ϕ : ϕ1 , ϕ2 , ϕ3 , ϕ4 
  

 
Analogue of the Lagrangian function: 

  

 

Λ =
4 4

2

1 1

1

4 ik
i k

f
= =
∑∑ = 2

1 4

1

2 ik
i k

f
≤ < ≤
∑  

 
 

 
1
2 (H2 – E2) 

 
 

Electromagnetic energy-impulse tensor: 
  

 

Sik = Ski = 
4

1
i k ikf fλ λ

λ
δ

=
+ Λ∑  

 

δik = 
0 when  

1 when 

i k

i k

≠
 =

 

 

 
 

exx exy exz ex

eyx eyy eyz ey

ezx ezy ezz ez

ex ey ez e

i
p p p

c
i

p p p
c
i

p p p
c

i i i
W

c c c

 
 
 
 
 
 
 
 
 
 −
 

S

S

S

S S S

 

  

pε = 
 

Maxwellian stress densities 
 
 
 
 
 

                                                
 (18) Not all quantities are listed by juxtaposition in both columns, in order to not lead to confusion by 
further increasing the list symbols with ones that will not be used. 
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In four-dimensional notation 
 

In three-dimensional notation 
 

  

Se = 
 

c [E, H] = Poynting vector of  

electromagnetic energy-flux 
  

We =  
 

= 1
2 (E2 + H2) = density of  

electromagnetic field energy 
Density of four-current:   
 

P1, P2, P3, P4  
 

x

c

ρ q
, y

c

ρ q
, z

c

ρ q
, i ρ 

  

ρ = 
 

Spatial density of electric charge 

  

q =  
 

Velocity vector of electric charge  
(its material carrier, resp.) 

 

Density of electric four-force: 
  

Density of the force that the field  
exerts on the charges  

 

F1 , F2 , F3 , F4 
  

F = ρ (E + 
1

c
[q, H]) 

 

Fi = ik k
k

f P∑  
  

Power density of that force: 

  (F q) = ρ (E q) 
 

Mechanical energy-impulse tensor: 
  

 

Rik = Rki 
  

[ , ]m m

m m

ic

i
W

c

 
 
 − 
 

[ ]g q g

S
 

  

gm =  
 

Density of mechanical impulse 
   

= 0

2

21

k

c
−

q

q
 

  

k0 =  
 

Mass density 
  

Wm =  
 

Kinetic energy density of the  
moving matter 
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Four-dimensional notation 
 

 

Three-dimensional notation 

   

0

2

21

k

c
−

q

q
 

  

Sm = 
 

= q Wm = Density of the energy-flux that 

is mediated by the motion of the matter 
 

Total energy-impulse tensor:  
  

 

Tik = Tki = Rik + Sik 
  

ic

i
W

c

 
 
 − 
 

p g

S
 

  

p = 
 

pe + [[gm , q]] = Total stress tensor 

  

g = 
 

ge + gm = Total impulse density 

  

S =  
 

Se + Sm = Total energy-flux 

  

W = 
 

We + Wm = Total energy density 
 
 

§ 4. 
 

The invariance of Maxwell’s equations under the conformal group. 
 

 Of the two systems of Maxwell’s equations for the free ether: 
 
(14)   I. ∆iv f * = 0, II. ∆iv f = 0, 
 
the first one will be satisfied identically by the Ansatz: 
 
(15)     f = Rot ϕ . 

 
If one introduces this into II then the left-hand side of II will become precisely the 
Lagrangian expression ψi for the variational problem: 
 

_______

1 2 3 4dx dx dx dxδ
−−−−−−

Λ∫∫∫ ∫ = 0, 
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in which x1, x2, x3, x4 are considered to be independent variables, and ϕ1 , ϕ2 , ϕ3 , ϕ4 are 
the desired functions of them, and the variation is performed with fixed boundary and 
fixed boundary values for the ϕ, which is suggested by horizontal lines.  Now, the 
integral that appears here will remain unchanged when one subjects the x1, …, x4 to an 
arbitrary transformation of the 15-parameter conformal group of R4 and at the same time 
transforms the components ϕ1 , ϕ2 , ϕ3 , ϕ4 of the four-potential contragrediently to the 
differentials dx1, dx2, dx3, dx4 .  Since we are dealing with only purely formal operations 
here, we do not need to concern ourselves with the reality conditions on the group 
parameters (which are necessary from the standpoint of the physicists).  One sees that 
aforementioned invariance easily when one keeps in mind the fact that the quantities fik = 

k i

i kx x

ϕ ϕ∂ ∂−
∂ ∂

 are converted contragrediently to the quantities dxi dxk and calculates the 

expression that arises from the expression: 
 

2

,
ik

i k

f
 
 
 
∑  dx1 dx2 dx3 dx4 

 
by an arbitrary linear transformation of the dx.  One then finds that it will keep the same 
form in the new variables: 

2
1 2 3 4

,
ik

i k

f dx dx dx dx
 
 
 
∑  

 
that it had in the old ones if and only if the transformation takes the equation 2

i
i

dx∑ = 0 

to the corresponding one 2
i

i

dx∑ = 0.  However, the totality of these transformations is 

precisely the conformal group. 
 Along with this finite continuous group, the variational problem also obviously 
admits an infinite group that includes the first derivatives of the arbitrary function: 
 

ix  = xi , iϕ  = ϕi + 
i

p

x

∂
∂

   [i = 1, 2, 3, 4], 

 
since [cf., (15)] the rotation of a gradient will vanish identically. 
 
 

§ 5. 
 

Presentation of the formal identities. 
 

 On the basis of E. Noether’s theorems, 15 linearly-independent linear couplings of the 
Lagrangian expressions: 
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(16)    ψi = ik

k k

f

x

∂
∂∑ = k i

k k i kx x x

ϕ ϕ ∂ ∂∂ − ∂ ∂ ∂ 
∑  

 
must be identical to divergences now, and in addition, a dependency between the ψi and 
their first derivatives must be fulfilled identically. 
 One system of fifteen linearly-independent infinitesimal transformations of our G15 is 

the following one (19): 
 
(17) a) ∆xk = αk , 
 

  b) ∆xk = k xρ ρ
ρ

β∑   
0kk

k kρ ρ

β
β β

= 
 = − 

, 

 
  c) ∆xk = γ xk , 
 
  d) ∆xk = 22 k kx x xρ ρ ρ

ρ ρ
ε ε−∑ ∑   [k = 1, 2, 3, 4]. 

 
Of those transformations, the ones in a) for which k = 4 correspond to the transformations 
(11 a) of the Galilei-Newton group, while the other three (17 a) refer to the spatial 
translations (11 b); the “spatial rotations” of (17 b) that belong to the parameters β23, β31, 
β12, correspond to the rotations (11 c) of the Galilei-Newton group, while the remaining 
three “temporal rotations” that belong to β14, β24, β34 correspond to the introduction of a 
another t-axis in a different direction for fixed x, y, z-space into the Galilei-Newton group 
(11 d).  Formulas (17 c) and (17 d) correspond to the composition of two transformations 
by reciprocal radii.  The transformation of ϕ that is contragredient to the transformation 
of the dx is given simply by the formula: 
 

(18)   ∆ϕk = − 
k

x

x
λ

λ
λ

ϕ∂∆
∂∑   [k = 1, 2, 3, 4], 

 
and the infinitesimal transformation of the infinite continuous group is given by: 
 

∆xk = 0, ∆ϕk = 
k

p

x

∂
∂

. 

 
 We next consider the dependency that corresponds to the last one.  From (5), we will 
have: 

δϕk = 
k

p

x

∂
∂

, 

                                                
 (19) See, e.g., S. Lie and F. Engel, Theorie der Transformationsgruppen 3, Leipzig, 1893, pp. 281, 234, 
347-351. 



E. Bessel-Hagen – On the conservation laws of electrodynamics 14 

and then a comparison of (9) and (10) will yield: 
 

(19)    i
i ix

ψ∂
∂∑ = 0. 

 
 In order to exhibit the divergence relations, we use (8) to construct: 
 

Bi = − k
ik k k ik i

k k

f x f
x λ

λ λ

ϕϕ δ
 ∂∆ + ∆ − Λ ∂ 

∑ ∑ ∑ , 

 
and on the basis of the definition of the electromagnetic energy-impulse tensor Sik that 
will go to: 

(20)  Bi = − k
ik k i ik

k k

f x S f
xλ λ

λ λ

ϕϕ
 ∂∆ + ∆ − + ∂ 

∑ ∑ ∑ . 

 
Now, if we were to substitute the expressions in formulas (17) and (18) for ∆x, ∆ϕ then 
we would arrive at divergence relations that would be very long and not very intuitive to 
understand (20), and above all, they would suffer from the essential flaw that the four-
potential components ϕ in them, which are only mathematical tools here and have no 
autonomous real physical meaning, appear explicitly and not only in the couplings fik , 
which are the only things that are physical meaningful.  However, that flaw can be 
remedied by a gimmick.  One can isolate finite groups within the infinite continuous 
group in many ways when one takes the function p to be not just arbitrary, but dependent 
upon only finitely-many parameters.  Now, if we add the expression ∂p / ∂xk to the 
transformation (18) when p has been specialized in a suitable way then we will get 
precisely those infinitesimal transformations that lead to divergence relations in which 
the ϕ will appear only in the combinations fik .  How we must specialize p will be shown 
in the course of calculations. 
 If we accordingly substitute the expression for ∆ϕk : 
 

(21)    − 
k k

x p

x x
λ

λ
λ

ϕ∂∆ ∂+
∂ ∂∑  

in (20) then we will get: 
 

 Bi  = ik i
k k k k

x p
f x S x

x x x
λ λ

λ λ λ λ
λ λ λ

ϕϕ
 ∂∆ ∂∂− + ∆ − ∆ ∂ ∂ ∂ 

∑ ∑ ∑ ∑  

                                                
 (20) As an example, I shall give the formula that flows from (17 d): 

2 22 2( ) 22 r r
ik r r i k ir k r r k k s s s

i s ki r r s s sk

f x x x f x x x x
x x x

x x
x

ϕ ϕϕ ϕ ϕ
   ∂ ∂ ∂   ∑ − + − + Λ∑ ∑ ∑ ∑ ∑    ∂ ∂ ∂      

∂
− Λ+

∂
 

= − 22( ) 2 2i
i k r r k k s s

s

i
k

ki s s
r r

r
x x x x

x x
x x

ϕψ ϕϕ ϕ ψ ϕ
 ∂ ∂ 

∑ − + −∑ ∑ ∂ ∂  
− ∑  [k = 1, 2, 3, 4]. 
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  = ik i
k k

f p S x
x λ λ λ

λ λ
ϕ∂  − − ∆ ∂  

∑ ∑ ∑ , 

 
and we now see that the correct specialization of p is: 
 

p = xλ λ
λ

ϕ ∆∑ . 

From (5) and (21), we will now have: 
 

δϕi = if xλ λ
λ

∆∑ , 

 
such that the divergence relations will assume the form: 
 

(22)  i i
i

f xλ λ
λ

ψ ∆∑∑ = i
i i

S x
x λ λ

λ

∂  ∆ ∂  
∑ ∑ . 

 
If we now insert the expressions (17) then we will get: 
 

(23) a) i
i i

S
x λ
∂

∂∑  = i i
i

f λψ∑   [λ = 1, 2, 3, 4], 

 

 b) ( )i i
i i

x S x S
x µ ν ν µ
∂ −

∂∑ = ( )i i i
i

x f x fµ λ ν µψ −∑  

[(µ, v) = (1, 2), (1, 3), (1, 4), (2, 4), (3, 4)], 
 

 c) i
i i

x S
x ρ ρ

ρ

 ∂
 ∂  

∑ ∑ = i i
i

x fρ ρ
ρ

ψ
 
 
 

∑ ∑ , 

 

 d) 22 i i
i i

x x S S x
x λ ρ ρ λ ρ

ρ ρ

 ∂ − ∂  
∑ ∑ ∑  = 22i i i

i

x x f f xλ ρ ρ λ ρ
ρ ρ

ψ
 

− 
 

∑ ∑ ∑  

[λ = 1, 2, 3, 4]. 
 
 

§ 6. 
 

Introduction of the physical Ansätze. 
 

 Up to this point, we have been dealing with only purely formal identities that can be 
verified by way of the replacements of (16) and the values of the Sik as functions of the ϕ 
that follow from the table on pages 9-11.  Only now do we introduce the physical Ansatz 
when we set the Lagrangian expressions ψi for the free ether in (14 II) equal to zero and 
do the same thing for the components of the four-current Pi for the region that is filled 



E. Bessel-Hagen – On the conservation laws of electrodynamics 16 

with ponderable matter (21).  Furthermore, physical laws that one cares to refer to as 
“conservation laws” will follow from the identities (19) and (23) in that way.  However, 
in order to highlight the physical content completely, in the absence of ponderable matter, 
we cannot restrict ourselves to the phenomena in the electromagnetic field that the Ansatz 
ψi = Pi will imply by itself, but we must consider the interaction of the field and 
ponderable masses that is given by the expression for the four-force: 
 

Fk = ki i
i

f P∑ . 

 
This force density (power density, resp.) is, in its own right, related to the impulse and 
energy densities of the moving mass by relativistic dynamics: 
 

 F  = m

t

∂
∂
g

 + div [[gm , q]], 

 

 (F q) = mW

t

∂
∂

 + div q Wm , 

 
or, when written four-dimensionally: 

Fk = ki
i i

R
x

∂
∂∑ . 

 
With that, the conservation laws will take on the form: 
 

(24) a) i
i i

T
x λ
∂

∂∑ = 0 [λ = 1, 2, 3, 4], 

 

 b) 
i ix

∂
∂∑  (xµ Tν i – xν Tµ i) = 0 [(µ, v) = (1, 2), …, (3, 4)], 

 

 c) i
i i

x T
x ρ ρ

ρ

 ∂
 ∂  

∑ ∑ = ii
i

R∑ , 

 

 d) 22 i i
i i

x x T T x
x λ ρ ρ ρ ρ

ρ ρ

 ∂ − ∂  
∑ ∑ ∑ = 2 ii

i

x Rλ∑  [λ = 1, 2, 3, 4], 

 
in which we have written Sλi + Rλi = Tλi and made use of the symmetry Rik = Rki . 
 
 

                                                
 (21) For the sake of simplicity, I shall restrict myself to the fundamental equations of the theory of 
electrons; i.e., to the limiting case ε = 1, µ = 1, σ = 0 of the equations for ponderable matter. 
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§ 7. 
 

The physical interpretation of the results. 
 

 In order to ascertain the physical meaning of the laws (24), we must unavoidably split 
them into their spatial and temporal parts, although the beautiful symmetry of the 
formulas will be spoiled most cruelly in that way.  If we write K as an abbreviation for 
the sum ∑ Rii then rewriting them in three-dimensional vector analysis (22) will give: 
 

(25) ar) 
t

∂
∂
g + div p = 0, 

 

  az) 
t

∂
∂

W + div S = 0, 

 

  br) 
t

∂
∂

[r, g] + div [r × p] = 0  (23), 

 

 c) 
t

∂
∂

{( r g) – W t} + div {[ r, p]] – S t} = K, 

 

 dr) 
t

∂
∂

{ r (r g) + [r, [r, p]] – 2r t W + c2 t2 g} 

  + div { [[r, [r, p]] ] + [r × [r × p] – 2t [[r × S]] + c2 t2 p} = 2r K, 

 

 dz) 
2 2 2

22 ( ) ( )
W

t c t
t c

∂  − + ∂  
r g r + div {2t [r, p] – g (r2 + c2 t2)} = 2t K. 

 
The following so-called continuity equation for electricity, which follows from (19), must 
be added to these equations: 

(26)    div (ρ q) + 
t

ρ∂
∂

 = 0. 

 

                                                
 (22) The index r corresponds to the spatial components, while the index z corresponds to the temporal 
ones.  [Trans.: From the German: r = räumlichen, z = zeitlichen.] 
 (23) Since v. Laue already employed the symbol [r, p] for the vector with the x-component x pxx + y pyy + 

z pzz , I have allowed myself to use the symbol [r × p] for the tensor: 

y p z p y p z p y p z pzx yx zy yy zz yz

z p x p z p x p z p x pxx zx xy xy xz zz

x p y p x p y p x p y pyx xx yy xy yz xz

− − −

− − −

− − −

 
 
 
 
 

 

here.  Moreover, one has [r, div p] = div [r × p]. 
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 One often converts equations (25) from the differential to the integral form when one 
integrates them over a three-dimensional piece of space, which will convert the integral 
of the divergence terms into outer surface integrals.  We would like to assume that we 
have a closed system of masses and charges that lie at finite points before us, and that the 
components of the energy-impulse tensor drop off so quickly as one goes away from 
them that we can neglect the outer surface integral in comparison to the space integral for 
a sufficiently large domain of integration B that includes masses and charges inside it.  
Formulas (25 ar), (25 az), and (25 br) will then imply the conservation of impulse, energy, 
and angular impulse for our total system: 
 

(27) ar) 
B

dτ∫∫∫ g  = G = constant vector, 

 

  az) 
B

W dτ∫∫∫  = E = constant, 

 

  br) [ , ]
B

dτ∫∫∫ r g  = L = constant vector. 

 
By contrast, formula (25 bz) will initially assume the form: 
 

(28)   
2

B

W
d t d

t c
τ τ

 ∂ − ∂  
∫∫∫ ∫∫∫r g = 0, 

 
whose perfectly-intuitive analogy with the second center-of-mass theorem (12 d) for the 
n-body problem we recognize directly.  From the standpoint of the theory of relativity, 
one must indeed consider mass and energy to be identical, and in fact, a mass m must be 
regarded as energy with a magnitude mc2.  Conversely, it is permissible to regard any 
energy with a density of W as equivalent to a mass density of magnitude W / c2 = k.  In 
that way, the electromagnetic field in the free ether will also take on a “center of mass,” 
and: 

2
B

W
d

c
τ∫∫∫ r = 

B

k dτ∫∫∫ r  

 
will be the radius vector from the coordinate origin to the common center of mass of the 
electromagnetic field and ponderable matter, multiplied by the total mass E / c2, so it will 
correspond completely to the quantity i ik

i

m x∑  that appears in (12 d), while the terms in 

(28) and (12 d) that are multiplied by t both mean the total impulse of the system.  It will 
then follow from formula (28), in conjunction with (27 ar), that: 
 

(27 bz)   
2

B

W
d

c
τ∫∫∫ r = C1 + G t  (C1 = constant vector) 

 
which is once more in complete analogy with (13); i.e.: 
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 The common center of mass of the electromagnetic field and the ponderable matter 
moves in a uniform, rectilinear way. 
 
 Due to the appearance of the quantity K, the five remaining laws will no longer have 
the form of pure conservation laws (∂ / ∂t of space integral = outer surface integral) when 
moving bodies are present in the domain of integration; therefore, the integration over 
time cannot be performed explicitly.  Nonetheless, the laws naturally do take on a well-
defined physical sense.  However, in order to make it easier for us to understand it, we 
would like to restrict ourselves to the case in which we are dealing with only phenomena 
in the free ether, and no ponderable mass moves through the field.  We will then have K = 
0, and we will again get pure conservation laws, which we can write in the forms: 
 

(27) c) ( )e

B

dτ∫∫∫ r g = C1 + Ee t, 

 

  dr) { ( ) [ ,[ , ]}e e

B

dτ+∫∫∫ r r g r r g = C2 + 2c2 C1 t + c2 Ee t
2, 

 

  dz) 2
e

B

W
d

c
τ∫∫∫ r = C2 + 2c2 C1 t + Ee t

2, 

 
C1 , C2 = constants,  C2 = constant vector. 

 
 The easiest to understand of these equations is dz).  From the relation We / c

2 = “mass 
density” of the electromagnetic field, the left-hand side of dz) means one-half the sum of 
the principal moments of inertia of the “electromagnetic mass” of the field relative to the 
coordinate origin, such that we can say: 
 
 The sum of the electromagnetic principal moments of inertia of the field relative to an 
arbitrary fixed point is a quadratic function of time, and the coefficient of the square of 
time is twice the total energy of the field. 
 
 By contrast, equations (27 c) and dr) seem to have no immediate analogues in 
mechanics.  One must probably introduce the integrands on the left-hand sides as new 
quantities in physics.  The dimension of (r ge) is that of the density of a quantity of 

action, and the dimension of {r (r ge) + [r [r ge]]} is that of a moment of an action 

density. 
 I would not like to conclude without expressing my appreciation to Fräulein Emmy 
Noether and Herrn Prof. Paul Hertz for their kind interest, which was a source of support 
to me throughout the course of this work. 
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