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On the conservation laws of electrodynamics
By
Erich Bessel-Hagen in Gottingen.

Translated by D. H. Delphenich

On the occasion of a colloquium that Herr Geheirar&lein convened in the Winter
semester of 1920 on mathematical problems in the retatittseories of physics, he
expressed the desire to apply the theorems on invaraigtional problems?'] that
Emmy Noether posed about two years ago to Maxwell'stemsa The content of those
theorems can be stated briefly by saying that the inwegiaf a variational problem
under a continuous transformation group will imply a numbgrelations that are
fulfilled identically by means of the differential equais of the problem and are
represented by first integrals of those equations indke ofoneindependent variable.
In the case of a finite group, those relations havefaha of the physicist’'s so-called
“conservation laws.”

Now, it is generally known that Maxwell's equatiome &variant under a finite ten-
parameter group, namely, the so-called Lorentz group, wbatsists of the real
“motions” of four-dimensionak, y, z, t-space, whose metric is based upon the part of the

form:
X+ +Z-ct?=0

that lies at infinity. In the year 1909, H. Batemancdiered {) that Maxwell's
equations are invariant under a much more comprehensive gfouwansformations,
namely, the group of all of them that leave the equation

d +dy* +dZ -c*d =0

unchanged and do not change the sense of the direatidins four-dimensional figures
(). If one writesxy, X2, Xs, X4, instead ofx, y, z, ict then except for the reality of the
parameters that group will coincide with the largest sulggrthat is contained in the
fifteen-parameter group of transformations by recipraedli, namely, the so-called

() Géttingen Nachrichten (1918), pp. 238, seq. in what follows, it will be denoted briefly by E.
Noether. See also Felix KleiGesammelte mathematische AbhandlungieBerlin, 1921, pp. 585.

() Proc. London Math. Soc. (8)(1909), pp. 228t seq. In the same volume of that journal, as well as
in the preceding one, one will find more investigasiai Bateman and Cunningham into the meaning of
our &35 for physics. See also F. Klei@es. math. AbhandL, pp. 552.

() Bateman called them “spherical wave transformation
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conformal group ) in R« . Now since, as J. L. Larmor has remarkdd Kaxwell's
equations can be obtained from a variational problem, iand & is also invariant under
the aforementioned;s, as will be shown below, the theorems of E. Noethest yield

fifteen linearly-independent electrodynamical conservaaws. The goal of the present
note is to actually show that.

The first seven of them [cf., formulas (27, & , and )] are nothing but the well-
known theorems in the conservation of energy, impudsel angular impulse®) |
therefore should not need to go any further into tinéarpretation. The following three
(27 k) define a precise analogue of the second center-of-thassems in classical
mechanics, and to my knowledge, they were obtained e first time for
electrodynamicalphenomena by A. Einsteirf)(by formal integration of Maxwell's
equations. Einstein assertéoc( cit) their validity only in the first approximation, since
the adaptation of dynamics to the relativity theoryheftorentz group was still unknown
to him at the time. G. Herglot?)(exhibited the corresponding formulas for the
mechanics of continum the sense of relativity theory (and in precisely shene way
that will come about here), and also interpreted tleepressly as the center-of-mass
theorems. The five remaining formulas (27 ¢, dnd d) are new, to my knowledge.
Only the future can decide the extent to which they caof Iservice for the purposes of
physics.

8 1.
E. Noether's theorems.

I will next present the two theorems of E. Noetlarg indeed in a somewhat more
general context than they were given in the cited ndtevould like to thank Emmy
Noether herself for verbally communicating them to met us assume that an integral
in given:

: ou d%u
(1) Ix—.[---'[f(x,u,&,ﬁ,---j dx,

which is extended over an arbitrary real domain of th@bkesx;, X, ..., X, . In this
integral,u, du/ dx, 0°u/ 0%, ... are abbreviations fqr real functions of they, Xz, ..., X,

and their partial derivatives)( while dx briefly stands fordx dx ... dx, . Under a
single-valued and uniquely-invertible transformation ofafales:

(") More details on the conformal group can be found irLi§.and G. ScheffersGeometrie der
Beruhrungstransformationeheipzig, 18961, chap. 10, 88 1 and 2, pp. 441 seq.

() Aether and mattetCambridge, 1909, § 50, pp. 88,seq. See also F. KleirSeminarvortrage iiber
die Enwicklun der Mathematik in neunzehnten Jahrhunpderap. X, v. Il § 4 (1917). (These
contributions have been worked out in transcripts of maogeuniversity mathematical institutes.)

©) See, perhaps, M. v. LauBie Relativitatstheoriel, 4" ed., Braunschweig, 1921, § 15 b-e.

() Ann. Phys. (Leipzig) (420 (1906), pp. 627t seq.

() Ann. Phys. (Leipzig) (436 (1911), pp. 493t seq. Cf. esp., formulas (960n pp. 513.

() On the admissibility of complex numbers, cf., E. Neet pp. 237, footnote 3.
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y = A.(X u,a_u,...j [i=1,2;-,n],
o0X

ou
ox

2)
v,(y) = Bp(x u j [0=1,2;-- u],

and its extension to a transformation of the deriesidw / dy, 0°v / dy?, ..., (1) will go

to:
_ - ov 0°v
= [T gy o

in which the integral is taken over tigglomain that corresponds to tk@omain in (1).
In particular, if the functionf is identical with the functiorf then| is said to be

invariant under the transformation (2).
We now consider a continuous group of transformati@ysand assume that the

parameters , &, ..., &, are chosen in such a way that the identity transitom
corresponds to the values= 0 [the functiong(x) = 0, dp(x) / 0x = 0, ..., resp.] in the
case of a finite groug; [the arbitrary functionp™(x), p®(x), ..., p®(x), resp., in the

case of an infinite grouP.,]. The transformation formulas (2) then take on trenf

3 { Y =X HAX+ [i=1,2,..,1],

V,(Y)=U,+Au +- [p=12,...,4],

and we assume that it is permissible to assume lteaix , Au, are in linear thes [p,
resp.] and their derivative$). If we truncate the right-hand side of (3) aftersthénear
terms then, according to Lie, the resulting transfdiona are known to be infinitesimal.
The invariance of the integrdlunder an infinitesimal transformation correspondingly
means thatf differs fromf only by terms that have at least second order iz fpedp /

ox, ..., resp.].
Let us understand a divergence to mean an expressionfofrine

Div A= a_Al+a_A2+...+aA1

0% 0% 0%,

in which A; are functions ok, u, du / 0%, ... The differentiations with respect xoare
taken to be total differentiations; i.e., when tlnedu / 0x, ... are considered to be
functions ofx.

| shall now calll “invariant up to a divergence” under an infinitesimal tfarmaation
when:
(4) f =f + Div C + higher terms,

(*% Cf., E. Noether, pp. 244 at the bottom and pp. 246nhéew of § 4.
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in which the expressio@ is linear in the&[p, du/ 9x, ..., resp.]. The case in whi¢his
identically zero is occasionally included in this mannérspeaking ). In the
introduction of this concept lies the generalization of nimNoether’'s original
publication that was mentioned at the beginning of thegpapa.

Moreover, we can express the theorems of Emmy Noathllows:

If the integral | is invariant over the infinitesimal transformationadinite group®,

up to a divergence then there will be precisginearly-independent connections
between the Lagrangian expressions and divergences.

Namely, one sets:

®) B=vi () —u ) =du - YO0

DX, |

7 0X)
and defineg\,, ..., A, by the identity:

Dy, du = & + Div A

in which the¢ means the Lagrangian expressions of the fundtiamdB,, ..., B, are
defined by the equations:
(6) Bi=Ci+A —fAx.

One then splitgu andB according to the individua :

A= oVu+...+50Pu,

and the desired divergence relations will 1 (
(7) >, 6®u = Div BY, ey D44,0¥y = DivBY.

Conversely, if it is known from the Lagrangian expr@ssithat for suitable functions
au and B there exist preciselyp linearly-independent relations (7) then one can exhibit
(*% plinearly-independent infinitesimal transformations undercwhis invariant up to a
divergence. Since the splitting Bfinto C andA —f Ax is possible in many ways, one can
also arrive at many systems of such infinitesimal tansdtions. One easily convinces
oneself of the validity of the remark that the afoeationed splitting can be performed if
and only if the resulting transformations are freedof/ dx, 0°u / 9%, ... when the

(*)) Whereas complete invariance under an infinitesimmahsformation T will imply complete
invariance under a one-parameter group that is genetgted with no further assumptions, the
corresponding statement about the invariance up to a die@enot the case, in general. For that reason,
the definition of the concept must necessarily be linkigd the infinitesimal transformations.

(*3 Cf., E. Noether, § 2, pp. 242.

(*®) As E. Noether did in § 2, pp. 242.
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functionsdu are free 0B / 3, 3%u /0, ..., and either likewise free of tidel / dx or
linearly-dependent in a very special wa$).( If that condition is fulfilled then it can be
proved that the infinitesimal transformation to which one arrives gate precisely @
parameter group.

For the sake of later applications, | shall pointtbatexpression foB; in the case for
whichf depends upon only the first derivativis/ 0x:

of of odu
8 Bi=C - AX + > AX —k—é_if ,
(®) Zk:aauk s ; 4 k aauk ax/] /

0x 0x%

0 whenA #i .
o = )
1 whenA 3

The second theorem relates to an infinite continuouspg®a, and says that:

The invariance of | up to a divergence under the infinitesimal transfansadf .,

has the existence @f linearly-independent dependencies betweenygthend their total
derivatives with respect to x, and that conversely the existehge such linearly-
independent dependencies will imply the invariance of | up to a divergemsy a
certain set ofp infinitesimal transformation witlp arbitrary functions.

In order to exhibit the aforementioned dependenciesywites down equation (5) in
the developed form:

( )

: ++ B (xu.. )7(”}

A=1

9 A= Zp:{aﬁm(x, u...) g (9+ B (x u.. )
The dependencies then read simpfy: (

(10 > {(a‘“w) (5D )+---+ (- 1) ¢”>¢z )} =12 ..4.

% Namely:
& =a (o u)+ 380U
p) 0x,
One can then arrive at:

M=-AKW Aduzaku, G=AEigru).

(*®) E. Noether, § 2, pp. 243.
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§ 2.
Application to the n-body problem.

The derivation of the ten known integrals of thbody problem will serve as a first
example of how convenient it is to apply E. Noethénsorems. Although the basic
ideas, like the detailed implementation, will requirething new 19, | would like to
carry out the brief calculations completely by a forar@alogy with the electrodynamical
conservation laws that will be presented later. Tliergintial equations of the-body
problem are obtained by the variational problem:

JILdt=O,

in which the lines might suggest that the variation iggpered with fixed limits. The
Lagrangian functioi. has the following meaning in this:

u=-E0 M 1<i<ksn,

Mk = \/(Xil_ >§<1)2 +()$2_ )ﬁ2)2+( X3~ %3)2 1
K = gravitational constant,

and thexy are determined as functions by the variational problem. Here, one is
therefore dealing with aimpleintegral, where enters in place of the quantity that was
previously denoted by, and theq enter in place of what was previously

It is known that the equations of motion of thody problem are invariant under a
finite, ten-parameter group, namely, the so-calt&hlilei-Newton group.” This
invariance manifests itself in the variational desb in such a way thdt is invariant
under the infinitesimal transformations of the grpim part completely and in part up to a
divergence. In fact, that invariance reads:

(*°) F. Engel [Gétt. Nachr. (1916), pp. 27&, sed. also treated this question by Lie’s method, but
without the use of the advantageous fact that the difiateequations arose from a variational problem.
(A comparison will show the advantage of the variatiotielorem quite clearly.) For the historical
development of our understanding of the meaning of thentegrals and their connection to the equations
of motion, confer the relevant places in JacoWislesungen tber Dynamit897, pp. 110t seq. as well
as the interesting note of J. R. Schutz in Gé6tt. Ng&ie97), pp. 110et seqand the summary presentation
of F. Klein in Die Entwicklung der Mathematik in neunzehnten Jahrhundisgp. 10, A, 8 2 and C, § 4,
1917.
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(11) a) At=r, Axy = 0,

b) At=0, DX = ak

O M=0, A=Y Fux [ﬁkk_ j

— f k — .
p=1 koo ﬁkp ﬁpk

d At=0, DX = ke t k=1, 2, 3],

and one sees with no effort tifdt = O for a), b), c), while for d), one will have:
L= ) d C C
AL = — =—C =DivC.
[sz j dt

Moreover, formulas (5) and (8) imply that:

i = DX — X, A,

B:C—Zim % Ax +At(T+U),

i=1 k=1

and E. Noether’s divergence relations will assumedha:f

12 &) -Y>xp = (T+U),
D Y == 23 my, k=1,2,3]

c) i‘,(m%—wﬂ) =—%im(>&, =% %) (1) (23) 31 (1 ?2)

) D = %{Zm m—tﬁmm} k=1,2,3]

i=1

So far, we are dealing with only purdiyrmal identities that can be subsequently
verified directly quite easily when one sets:

d, .
2 — 5 (%)= (M ).

Vi iv

_ oL d[aLj zr/(m )

Up till now, no use has been made of the demaadd.fuL dt= 0. However, if we

now consider thalifferential equation®f the n-body problem then we will have to set
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the Lagrangian expression$ equal to zero, and equations (12), whose left-hand sides
will then vanish, will yield the ten known first intedsaf the problem, namely:

(12a) is the law of energy,

(12b) are the three first center-of-mass laws (addled laws of impulse),
(12 c) are the three area laws, and

(12 d) are the three second center-of-mass laws.

The form that the latter assume deviates somewbat fhat is customary; in order
to arrive at the latter, one must only observe fiwah (12b), one will haveZm X =Cq,

from which, it will follow that:

(13) Zn:m % =Cct+C [k=1,2,3] ¢, G =constants).

i=1

However, only the form (12 d) will meaningful for us beausst of all, it shows that
the second center-of-mass laws are arranged compietitly sequence of the remaining
conservation laws, and secondly, it gives us the &eut interpretation of the analogous
electrodynamical relations (28).

8 3.
Overview of the notations that will be used in what follows

Before getting into a treatment of the electrodynaheguations, | shall first give an
overview of the notations that will be used in thdolwing. In general, | shall use the
symbolism that M. v. Laue used in his bobDle RelativitatstheorieBd. I, and | also
follow v. Laue in his symbolism for three-dimensionatl daur-dimensional vector and
tensor calculus (even if it is rather ugly), such the reader can refer to v. Laue for any
symbol that is perhaps unknown to him. The systemmedsurement is the Lorentzian
one {) in CGS units.

(") See Encycl. d. math. Wissenschafeart. 13, 7d.
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Table of notations ¢?)

In four-dimensional notation

In three-dimensional notation

X1, X2, X3, X4

Electromagnetic six-vector tensor:

f:fos fa1, f12; f1a, f14, faa
fik = — fii

The six-vector that is dual to it:

*

f: flg :f34, flg :f42, fla :f23

f2D3 =f14, fza =fa1, f3a =f1
Four-potential:

¢: ¢l! ¢21 ¢31 ¢4
Analogue of the Lagrangian function:

= 2
2152 flk

i<k<4

Electromagnetic energy-impulse teng

4
Sk =S = z fir T O
A=l

{

0 wheni #k
1 wheni =k

Ak

Tt =

Ps=

X, Y,z ict

Vector from the coordinate origin to a
fixed spatial point, but not to a
moving particle

D, Dy, Dz, —1E, —1&, -1 &
3(9°-¢9)
i
Pexx pexy Pex: EG ex
i
peyx peyy peyz EG ey
i
Pezx pezy P ez EG ez
I_Gex I_Gey I_Gez _We
Cc Cc Cc

Maxwellian stress densities

(*®) Not all quantities are listed by juxtaposition in bothuoms, in order to not lead to confusion by
further increasing the list symbols with ones that mat be used.
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In four-dimensional notation

In three-dimensional notation

10

Density of four-current:

P1, P2, Ps3, Pa

Density of electric four-force:

Fi,F2,F3, Fa

F = z fi B

k

Mechanical energy-impulse tensor:

Rik = R

Ge

We

Om

c [&, ] = Poynting vector of
electromagnetic energy-flux
= 1(¢? + % = density of

electromagnetic field energy

Pd Py PY:
c c c

Spatial density of electric charge

Velocity vector of electric charge
(its material carrier, resp.)

Density of the force that the field
exerts on the charges

S=p(€+%[q,5’)1)

Power density of that force:

F q)=p(€q)

Density of mechanical impulse

_ kg
2
19

C2

Mass density

Kinetic energy density of the
moving matter
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Four-dimensional notation Three-dimensional notation

Ko

2
1_%
Cc

K

Gm= =q Wy = Density of the energy-flux that
is mediated by the motion of the matter

Total energy-impulse tensor:

Tik = Twi = Rk + Sk

p= Pe + [[gm, q]] = Total stress tensor
g= ge + gm = Total impulse density

&= G+ 6= Total energy-flux

W= W, +W, = Total energy density

§ 4.
The invariance of Maxwell's equations under the conformal gup.
Of the two systems of Maxwell's equations for fiee ether:
(14) l. Aivf =0, Il. Aivf=0,
the first one will be satisfied identically by tA@satz:
(15) f=PRot ¢@.

If one introduces this into Il then the left-handes of Il will become precisely the
Lagrangian expressiog for the variational problem:

S[[[] Adx dx dx dy=0,
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in which x, X2, X3, X4 are considered to be independent variables,gand., ¢;, ¢, are
the desired functions of them, and the variation is pewd with fixed boundary and
fixed boundary values for the, which is suggested by horizontal lines. Now, the
integral that appears here will remain unchanged wimensobjects the;, ..., X4to an
arbitrary transformation of the 15-parameter conforgnalip ofR, and at the same time
transforms the componenis , ¢, @3, @4 of the four-potential contragrediently to the
differentialsdx, dx, dxs, dx;. Since we are dealing with only purely formal operations
here, we do not need to concern ourselves with thiyremnditions on the group
parameters (which are necessary from the standpoititegphysicists). One sees that
aforementioned invariance easily when one keeps in menthtt that the quantitidg =

99 _9¢
0x 0%
expression that arises from the expression:

are converted contragrediently to the quantitigsdx and calculates the

[Z f”fj dxy dxe dxs dxg
ik

by an arbitrary linear transformation of the One then finds that it will keep the same
form in the new variables:

[Z f_ifjdx d, d dx
ik

that it had in the old ones if and only if the transfdromtakes the equatioE d¥’=0

to the corresponding onEdTg2 = 0. However, the totality of these transformatiaoss i

precisely the conformal group.
Along with this finite continuous group, the variationablpem also obviously
admits an infinite group that includes the first derivegiof the arbitrary function:

- op .
L =X, L =@+ — =1, 2, 3,4],
X =X g =0 ox [ ]
since [cf., (15)] the rotation of a gradient will vanidikntically.
8§ 5.

Presentation of the formal identities.

On the basis of E. Noether’s theorems, 15 linearlygaddent linear couplings of the
Lagrangian expressions:
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g5 0 (04 04

must be identical to divergences now, and in additiae@endency between tlye and
their first derivatives must be fulfilled identically.
One system of fifteen linearly-independent infinitesitnahsformations of oub1s is

the following one ¥):

17) a) A=k,
b) A=Y A%, [ﬁkkz_ﬂ j
c) D=y,
d)  Aa=2¢) e,x - % k=1,2,34].

Of those transformations, the ones in a) for whieh4 correspond to the transformations
(11 a) of the Galilei-Newton group, while the othiree (17 a) refer to the spatial
translations (11 b); the “spatial rotations” of ([)/that belong to the parametéts, 51,
[i2, correspond to the rotations (11 c) of the GaNeivton group, while the remaining
three “temporal rotations” that belong £, (4, £34 correspond to the introduction of a
anothert-axis in a different direction for fixed y, z-space into the Galilei-Newton group
(11 d). Formulas (17 c) and (17 d) correspondhéocomposition of two transformations
by reciprocal radii. The transformation g@fthat is contragredient to the transformation
of thedx is given simply by the formula:

(18) Ape== o8x,

@ k=1, 2, 3, 4],
70X, /

and the infinitesimal transformation of the infeitontinuous group is given by:

Ax = 0, A@:ﬁ.
0%,

We next consider the dependency that correspanttetlast one. From (5), we will
have:

(%) See, e.g., S. Lie and F. EngEheorie der Transformationsgrupp&nLeipzig, 1893, pp. 281, 234,
347-351.
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and then a comparison of (9) and (10) will yield:
(19) 2y,
T OX

In order to exhibit the divergence relations, we uséo(8pnstruct:

Z f AP, +ZAX {Z fh =~ @,/\}

and on the basis of the definition of the electromagrestergy-impulse tensd that
will go to:

(20) Bi = _Z fi AP, +ZAX/1 {_SM +Z fc %}

Now, if we were to substitute the expressions in foasnlL7) and (18) fox, Ag then
we would arrive at divergence relations that would be ieng and not very intuitive to
understand %), and above all, they would suffer from the esséffigav that the four-
potential component# in them, which are only mathematical tools here ance hav
autonomous real physical meaning, appear explicitly and migtio the couplingi ,
which are the only things that are physical meaningful. @&l@w that flaw can be
remedied by a gimmick. One can isolate finite groups withe infinite continuous
group in many ways when one takes the fungbido be not just arbitrary, but dependent
upon only finitely-many parameters. Now, if we add theressiondp / dxx to the
transformation (18) whep has been specialized in a suitable way then we \wiil g
precisely those infinitesimal transformations thadléa divergence relations in which
the ¢ will appear only in the combinatiofig. How we must specialize will be shown
in the course of calculations.

If we accordingly substitute the expressionZg :

(21) Z % ¢A

in (20) then we will get:

Xk

o =330, 2Py s

0%,

(*® As an example, | shall give the formula that flows frd d):

d 09, 09, d )
z 2f.kz “2xxN\+Y f|2 +2 XY Ly AY
iax{ X @ —2% % T{ (X4 - x4 H2x g<axs ox, xs}} axk( &]

=—zw{z(xk¢ x¢k)+zxz4"z "“"z } prx¢  k=1234]
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0
= f, — - - S AXx,
St Zo-p)-T 501
and we now see that the correct specializatignisf

p :z¢a Ax, .
y

From (5) and (21), we will now have:

5¢i:zquXw

A

such that the divergence relations will assume tha:for

(22) 2, B, = ZG%[ZSA A&j-

If we now insert the expressions (17) then we will get:

(23) a) Zaixism = Zéﬂ. fi) [1=1,2,3,4]

b) iza%(x,,sm ~%$)= Toi05 0% 1)
(V) = (L, 2), (L 3), (L 4), (2. 4), (3, 4)],

o rafpeln

d) Zi{ZvaxpSpi “S2 %} =2 {ZX@Xp L2 XE}

P P
[A=1,2,3, 4.

§ 6.

Introduction of the physical Ansatze.

15

Up to this point, we have been dealing with onlygly formal identities that can be
verified by way of the replacements of (16) anduakies of thes, as functions of the
that follow from the table on pages 9-11. Only nbavwe introduce the physical Ansatz
when we set the Lagrangian expressign®r the free ether in (14 Il) equal to zero and
do the same thing for the components of the fourecti P, for the region that is filled
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with ponderable matter”). Furthermore, physical laws that one cares to refeas
“conservation laws” will follow from the identities (1@)nd (23) in that way. However,
in order to highlight the physical content completelyh& absence of ponderable matter,
we cannot restrict ourselves to the phenomena in theaieagnetic field that the Ansatz
¢ = P will imply by itself, but we must consider the irdetion of the field and
ponderable masses that is given by the expressionddotin-force:

Fk: kaie.

This force density (power density, resp.) is, in its owht, related to the impulse and
energy densities of the moving mass by relativistic dyosmi

_ 90 o
§ =—2 +oio [[gn. dl

ow .
™ + divg W,
ot q W

S q) =

or, when written four-dimensionally:

0
Fr=>) —R .
K z ox R
With that, the conservation laws will take on thenfor

(24) a) Z%Tﬁi =0 [=1,2,3,4,

b) z% T =% T) =0  [@W)=(12), ..., (34,

d) Z%{ZXAZXpri _-I;z'zp: )é}: ZXAZ R [1=1,223,4]

in which we have writte®); + Ry = T and made use of the symmeRy =R .

(*Y) For the sake of simplicity, | shall restrict mysétf the fundamental equations of the theory of
electrons; i.e., to the limiting cagse= 1, /=1, 0= 0 of the equations for ponderable matter.
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§7.
The physical interpretation of the results.
In order to ascertain the physical meaning of the [@4% we must unavoidably split
them into their spatial and temporal parts, although tmeutiful symmetry of the

formulas will be spoiled most cruelly in that way. wé writeK as an abbreviation for
the sum>, R; then rewriting them in three-dimensional vector wsial €% will give:

(25) a) %g+binp:0,
&) iW+div6:0
ot ’
) e g)+oiv[exp]=0 @)
ot ’
0) %{(rg)—wwdiv{[r,p]]—et}:K,

d) %{t(tg)ﬂt, [, pll = 2 tW+ @ 2 )

+0io {[[r, [v, pII] + [v % [t x p] = 2 [t x S]] + ¢t p} = 2¢ K,
0

d) a{Zt(rg)—‘(’:—‘z’(rz +c2t2)}+ div {2t [r, p — g (¢ + c* )} = 2t K.

The following so-called continuity equation for etiacity, which follows from (19), must
be added to these equations:

(26) div ) + %_ft’ -0,

(* The indexr corresponds to the spatial components, while the irdmxresponds to the temporal
ones. [Trans.: From the Germars rAumlichen z = zeitlichen)]
(*®) Since v. Laue already employed the symbop] for the vector with the&-componenk p +y py +

Z p, | have allowed myself to use the symhok [p] for the tensor:

YPzx~ZPyx YPzy~ ZByy YPzz ZDPy

ZPxx = XPzx  ZPxy~ XBxy ZBz XPz

XPyx = Y Pxx XPyy~™ ¥YPxy XPyz7 ¥Px
here. Moreover, one has piv p] = div [v X p].
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One often converts equations (25) from the differetiahe integral form when one
integrates them over a three-dimensional piece of spdueh will convert the integral
of the divergence terms into outer surface integralee Wwiuld like to assume that we
have a closed system of masses and charges thafili#geapoints before us, and that the
components of the energy-impulse tensor drop off so quiklone goes away from
them that we can neglect the outer surface integi@mparison to the space integral for
a sufficiently large domain of integratidh that includes masses and charges inside it.
Formulas (253, (25 g), and (25 B will then imply the conservation of impulse, energy,
and angular impulse for our total system:

(27) a) j j j gdr =& = constant vector,
B
&) jjjw dr =E = constant,
B

b) j j j [t,g]dr = £ = constant vector.

By contrast, formula (25 owill initially assume the form:

(28) %{jgtz_!dr-tmgdr}: 0

whose perfectly-intuitive analogy with the secomahter-of-mass theorem (12 d) for the
n-body problem we recognize directly. From the dpmint of the theory of relativity,
one must indeed consider mass and energy to bicalemand in fact, a masa must be
regarded as energy with a magnitudé. Conversely, it is permissible to regard any
energy with a density diV as equivalent to a mass density of magnitatec’ = k. In
that way, the electromagnetic field in the freeeetWill also take on a “center of mass,”

and:
[+ dr= [[[ckdr
B c B

will be the radius vector from the coordinate ari¢gp the common center of mass of the
electromagnetic field and ponderable matter, migiipby the total mas& / ¢, so it will

correspond completely to the quant@m % that appears in (12 d), while the terms in

(28) and (12 d) that are multiplied byoth mean the total impulse of the system. It wil
then follow from formula (28), in conjunction wi{R7 ), that:

(27 k) Jﬂthdr = +6t (€1 = constant vector)
c
B

which is once more in complete analogy with (13),:i
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The common center of mass of the electromagnetic field and the pondeeditde
moves in a uniform, rectilinear way.

Due to the appearance of the quarkifythe five remaining laws will no longer have
the form of pure conservation lawd/(dt of space integral = outer surface integral) when
moving bodies are present in the domain of integraticeretore, the integration over
time cannot be performed explicitly. Nonetheless,laélwes naturally do take on a well-
defined physical sense. However, in order to make ieeé&si us to understand it, we
would like to restrict ourselves to the case in whichaneedealing with only phenomena
in the free ether, and no ponderable mass moves thtbedield. We will then hav& =
0, and we will again get pure conservation laws, whicltarewrite in the forms:

(27) c) jjj(tge)dr:cl+Eet,

d) [[[{x(ra) Hels o} dr=+ P 1t +C € L

d) || edr=c+ P Cit+EE
s C

C., G, = constants, £= constant vector.

The easiest to understand of these equation$. is-dom the relatioMV, / ¢ = “mass
density” of the electromagnetic field, the left-daside of d) means one-half the sum of
the principal moments of inertia of the “electromatic mass” of the field relative to the
coordinate origin, such that we can say:

The sum of the electromagnetic principal momentsestia of the field relative to an
arbitrary fixed point is a quadratic function ofrte, and the coefficient of the square of
time is twice the total energy of the field.

By contrast, equations (27 c¢) ang deem to have no immediate analogues in
mechanics. One must probably introduce the intetgan the left-hand sides as new
guantities in physics. The dimension efge) is that of the density of a quantity of

action, and the dimension of {x ge) + [v [tv ge]} is that of a moment of an action

density.

| would not like to conclude without expressing Bgypreciation to Fraulein Emmy
Noether and Herrn Prof. Paul Hertz for their kinterest, which was a source of support
to me throughout the course of this work.
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