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 The connections between the interaction formulas of Breit (1) and Møller (2) and those of quantum 

electrodynamics will be discussed. It will be shown that the Breit formula can be derived from Møller’s (§ 1) and 

from quantum electrodynamics (§ 2), and that Møller’s formula also follows from the latter (§ 3). 

 

 

 Introduction. – Two Ansätze exist for the interaction of two electrons, namely, those of Breit 

(1) and Møller (2), which seem to start from entirely-different places. It would seem desirable to 

investigate the relationships between the two Ansätze and their relationships to quantum 

electrodynamics. Breit derived his differential equation directly from quantum electrodynamics, 

and Rosenfeld (3) showed that the formulas from quantum electrodynamics that were required for 

Breit’s derivation were obtained by the Heisenberg (4) correspondence process that Møller had 

applied. We will obtain Breit’s formula directly from Møller’s, and for its derivation from quantum 

electrodynamics, we will choose a form that is completely analogous to our derivation of Møller’s, 

such that the various approximation processes will become more comparable. 

 As is known, one can derive Coulomb’s interaction energy between two electrons from 

quantum electrodynamics precisely when one considers only the coupling of longitudinal waves 

of the electromagnetic fields with the electrons (5). Any deviation from Coulomb’s law must then 

come about as a result of their interaction with transversal waves, which we will refer to briefly 

as the radiation field in what follows. Now, in the first approximation, the coupling between matter 

and the radiation field will create only those transitions for which the quantum state of the electrons 

will change, and a light quantum will be absorbed or emitted. However, we will be interested in 

the matrix elements of the interaction energy of the electrons that correspond to a change in the 

quantum state of the electrons alone without altering the state of the radiation field, in which we 

can assume, in particular, that no radiation is present in the initial state, as well as the final one. 

 
 (1) G. Breit, Phys. Rev. 34 (1929), pp. 553; ibid. 39 (1932), pp. 616.  

 (2) C. Møller, Zeit. Phys. 70 (1931), pp. 686.  

 (3) L. Rosenfeld, ibidem 73 (1931), pp. 253.  

 (4) W. Heisenberg, Ann. Phys. (Leipzig) 9 (1931), pp. 338.  

 (5) E. Fermi, Rev Mod. Phys. 4 (1932), pp. 87, cited as loc. cit. in what follows.  
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One will obviously first get such transitions of the electrons alone by a double process, in which a 

quantum is initially emitted and then the same quantum is reabsorbed. 

 The derivations of the Breit and Møller formulas from quantum electrodynamics differ 

essentially in only the following way: In the first case, one has already added the Coulomb 

interaction energy of the electrons to the “unperturbed Hamiltonian function,” so the perturbation 

is merely the interaction of the electrons with the transverse waves of the electromagnetic field. 

Now, the calculation will be performed in only the non-relativistic approximation, i.e., only up to 

terms of order 2 2/v c . In addition, all of the transitions of the material part of the system that are 

coupled with a permanent emission of radiation will be neglected. Naturally, one can treat the latter 

with the ordinary theory of radiation. 

 By contrast, in Møller’s theory, the Coulomb energy is one part of the perturbation and enteron 

along with the interaction with the radiation field on an equal basis, since the two interactions will, 

in fact, have the same order of magnitude in the extreme relativistic case. In the zeroth-order 

approximation, the electrons move independently of each other. Møller’s theory will be developed 

in a relativistically-exact manner, and in order to do that, we develops it in powers of e and neglects 

terms of order higher than 
2e . When one then derives the Breit interaction from Møller’s theory, 

that will only justify the fact that one is treating the Coulomb interaction in the first approximation, 

but when one starts from quantum electrodynamics, the Coulomb force will be considered in the 

unperturbed system such that its effect can be treated exactly. Note that no radiation occurs in the 

Møller (viz., second) approximation, and that such a thing will first come about only when one 

considers the radiation interaction in the third approximation, so when one excludes the possibility 

that the electrons will have negative energy in the final state. 

 

 

 § 1. Deriving Breit’s interaction energy from Møller’s theory. – According to Møller, in 

order to calculate the interaction of two electrons, one must construct the retarded potentials that 

are created by the charge distribution of the first electron, and they must be considered to be a 

perturbation that acts upon the second electron. We would like to calculate the matrix element of 

the interaction energy that corresponds to a transition of the first electron from the state (1) n1 to 

the state 1n , and the second electron from n2 to 2n , under which the total energy in the initial and 

final state should be equal to: 

E1 + E2 = 1 2E E + .          (1) 

 

The transition n1 → 1n  corresponds to the charge distribution: 

 

1 1 1( , )n n t  r = 1 12 ( ) /

1 1 1 1 1( ) ( )
i E E t h

e u u e
  − r r ,          (2) 

 

 
 (1) In this derivation, we shall not consider the Coulomb energy in the unperturbed problem since it is included in 

the Møller interaction. We can then speak of the quantum states of the individual electrons. 
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in which u1 and 1u  are the Dirac eigenfunctions of the first electron in the initial and final state 

and e1 is its charge. When one considers the retardation at the location r2 at time t, the charge 

distribution (2) will generate the scalar potential: 

 

 
1 1 2( , )n n t  r  = 

( )
1 1 1 2 1

1

2 1

, | | / )

| |

n n t c
d




 − −

−
r r r

r r
 

 = 1 1 1 1 2 12 ( ) / 2 ( ) | | /1 1 1 1
1 1

2 1

( ( ) ( ))

| |

i E E t h i E E hcu u
e e e d

  


 − − −

−
r rr r

r r
.  (3) 

 

One correspondingly gets the vector potential in the form: 

 

1 1 2( , )n n tA r  = − 1 1 1 1 2 12 ( ) / 2 ( ) | | /1 1 1 1 1
1 1

2 1

( ( ) ( ))

| |

i E E t h i E E hcu u
e e e d

  


 − − −

−
 r rr r

r r
 .   (4) 

 

1x
 , 

1y , 
1z

 , 1 are the Dirac operators of the first electron. 1 is the vector with the components 

1x
 , 

1y , 
1z

 . 

  Now, the Breit formula for the interaction energy that we wish to derive is exact only up to 

terms of order 
21/ c , inclusive. That suggests that we might develop the exponential functions in 

(3), (4), which represent the retardation of the potential in powers of 1 / c : 

 

 
1 1 2( , )n n t  r   

= 1 1

2
2 ( ) / 2

1 1 1 1 1 1 1 1 1 2 1 12 2

2 1

1 2 2
( ( ) ( )) ( ) ( ) | |

| |

i E E t h i i
e e u u E E E E d

hc h c

  


 −   
  + − − − − 

− 
 r r r r

r r
, (5) 

 

and correspondingly for A. The second term in the square bracket in (5) will vanish: That is 

because either the states n1 and 1n  are identical, so E1 − 1E   = 0, or they are different from each 

other, in which case, the volume integral will vanish due to the orthogonality of the eigenfunctions. 

Now, the perturbation energy that acts upon the second electron is: 

 
1

1 2( , )n

nV t

r  = 

1 1 1 12 2 2 2 2( , ) ( ( , ))n n n ne t e t  + r U r . 

 

We form its matrix element, which corresponds to the transition n2 → 2n  of the second electron: 

 

 1 2

1 2

n n

n nV
 

 = 1 2 1 22 ( ) /

1 2 1 1 2 2( ) ( )
i E E E E t h

e e e u u
  + − −    r r  

 
2

2 1 2
1 1 2 1 2 2 1 1 1 22 2

2 1 2 1

( )1 2
( ) | | ( ) ( )

| | | |
E E u u d d

h c

 
 

 
− − − − 

− − 
r r r r

r r r r
.  (6) 

 



Bethe and Fermi – On the interaction of two electrons.  4 

 

The first term in the bracket here is the ordinary Coulomb potential, while the second one comes 

from the retarding of the scalar potential, and the third one reflects the influence of the (unretarded) 

vector potential: Since the  operators themselves have order of magnitude v/c, we need do not 

need to consider the retardation of the vector potential in our approximation. The first and third 

terms are symmetric in the two electrons, while the second one is not, which is based upon the 

asymmetry of Møller’s method. However, since the total energy should be the same in the initial 

and final state (1), we can symmetrize the term by writing – 1 1 2 2( ) ( )E E E E − −  in place of 

2

2 2( )E E− . With that, (6) will become the matrix element of: 

 

V =  
2

1 2 1 2
1 2 2 1 2 1 2 1 1 1 2 1 2 1 1 22 2

2 1

1 ( ) 2
( | | | ) ( | | | | )

| |

e e
e e H H H H H H

h c

  −
+ − − − − − − −

−
r r r r r r r r

r r
,     (7) 

 

in which H1 and H2 are the unperturbed Hamiltonian functions of the two electrons in the absence 

of interaction, so: 

H1 = − e1 0 (r1) – 
2

hc

i
(1, grad1) − e1 (1, A0 (r1)) − 2

1 1m c  .  (8) 

 

0 and A0 are the scalar and vector potentials of any external static field in which the two electrons 

move. All components of H1 commute with | r2 – r1 |, except for the gradient, so: 

 

1 2 1 2 1 1| | | |H H− − −r r r r  = − 1 2
1

1 2

,
2 | |

h c

i




 −
 

− 

r r

r r
 = F , 

and 

H2 F – F H2 = + 
2 2

1 2 1 1 2 2 1 2

2 3

1 2 1 2

( ) ( , )( , )

4 | | | |

h c    



 − −
− 

− − 

r r r r

r r r r
 .   (9) 

 

If one substitutes that in (7) then one will get precisely the Breit formula for the interaction energy: 

 

V = 1 2 1 1 2 2 1 21
1 22 2

1 2 1 2

( , )( , )1
1 ( )

| | 2 | |

e e  
 

 − −
− − 

− − 

r r r r

r r r r
.         (10) 

 

 

 § 2. Deriving the Breit law of interaction from quantum electrodynamics. – We take our 

starting point for this derivation to be the Hamiltonian function of the system composed of the 

electrons and the electromagnetic field in the form [loc. cit. (166)] that one obtains when one 

eliminates the coordinates from the scalar potential and the longitudinal components of the vector 

potential with the help of the continuity equation. The Hamiltonian function will already include 

the Coulomb interaction of the particles in that form.  When one observes [loc. cit. (167)], the 

Hamiltonian function can be written in the form: 
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R = ( )2 2 2 2 21
2

,

8
2 ( ) ( ) sin

i j

s s s i i i i i i s s si

s i j i i i sij

e e
p q c p m c c e A q

r


    



+ + − − + 


     .    (11) 

 

The notations in that formula are the same as the ones in loc. cit.. However, the radiation 

components qs are enumerated with a single index s, and not with two s1 and s2. The Coulomb 

interaction of the electrons is written out explicitly, while the infinitely-large constant electrostatic 

self-energy is ignored. 

 In order to derive the Breit formula, we must consider the Coulomb force in the unperturbed 

system. We then consider the unperturbed Hamiltonian function to be the sum of the energy of 

radiation: 

Hs = ( )2 2 2 21
2

2s s s

s

p q +            (12) 

and the energy of the material particles: 

 

HM = 
2( )

i j

i i i i

i i i j ij

e e
c p m c

r
 



− − +   .       (13) 

 

We regard the coupling energy of the particles and the field to be: 

 

H = 
,

8
( ) sini i s s si

i s

c e A q


 

 .            (14) 

 

The states of the unperturbed system are characterized by a quantum number ni that determines 

the state of the material particle of the system with the Hamiltonian function HM, and the quantum 

numbers n1, n2, …, ns, … of the radiating oscillators. Let the corresponding probability amplitudes 

be: 

1 2 snn n na               (15) 

 

The a vary in time as a result of the effect of the coupling energy (14), which corresponds to the 

known equations: 

1 2 sn n n na      = − 1 2 1 1

1 2 1 2

1 2

2 ( ) /2
n n n ni E E t hnn n

n n n nn n

nn n

i
H a e

h

   −

   .  (16) 

 

As is known, the only non-zero matrix elements of H are the following ones: 

 

1 2

1 2 1
s

s

nn n n

n n n nH  
 = 

2

1,8
( )

8 ,

s

n n

s s

nh
c Q s

n



 


 +


 

   (17) 

 

in which ( )n nQ s  represents the matrix element n n  of the quantity: 
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Q (s) = ( ) sini i s si

i

e A   .             (18) 

 

 We would now like to assume that the material system is found in the state n to begin with, and 

no radiating oscillator has been excited. We will then have: 

 

| an 0 0 … 0 … | = 1 . 

 

We would like to see how a probability amplitude for the state n 0 0…0… arises from the effect 

of the perturbation. Now, the perturbation matrix (17) has no element that would couple the two 

states n 0 0 0… and n 0 0 0… directly. Such a transition can occur only indirectly by the detour 

through an intermediate term. From (17), the states m 0 0… 1s … will come into question as such 

things since they combine with the initial and final states. Upon applying (16) to the transition n 0 

0 0… → m 0 0… 1s …: 

 

in which:       

2 ( )00 0

0 1 00 1 00 0

2
,

.

mn s

s s

i tn

m m n

m n
mn

i
a H a e

h

E E

h

  



+ 
= − 



−
=


        (19) 

 

Since an 0 0…0… is practically constant, we can integrate and find: 

 

0 1sma  = − 

00 0

00 1 2 ( )

00 0
( )

s mn s

n

m i t

n

mn s

H
a e

h

  

 

+

+
.    (20) 

 

We must now apply equation (16) to the transition m 0…1s… → n 0 0…0… We find that: 

 

 
0 0na   = − 

00 1 2 ( )

00 0 00 1

,

2
s n m s

s

m i t

n m

m s

i
H a e

h

  
 −

  

= − 

10

1 0 2

0

,

2 1
s

s n n

mn

m n i t

n

m s mn s

H Hi
a e

h h

 

 



 
−  
 + 

 .   (21) 

We can regard the quantity: 

n nK   = − 

10

1 0

,

1
s

s

mn

m n

m s mn s

H H

h  



+
     (22) 

 

as a matrix element that mediates the transition between the states n 0…0… → n 0 0…0… 

directly. The corresponding quantities K represent the correction that we must make to the 

Coulomb interaction in order to include the retardation in our calculation of the potential. 

 With the help of (17), we will find from (22) that: 
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n nK   = − 
2

,

( ) ( )

( )

n m mn

m s s s mn

Q s Q sc

   


 +
 .    (23) 

 

We must now express the quantities K as functions of the coordinates and momenta of the particle. 

That is easy to do when we neglect mn in comparison to s in the denominator of (23) as a first 

approximation. (Observe that the ratio mn / s has order of magnitude v / c.) We will then get: 

 
2

2

2
2

2

1
( ) ( )

1
[ ( )] .

n n n m mn

s s

n m

s s

c
K Q s Q s

c
Q s

 

 

 




= − 

 

= −
 





   (24) 

We then have: 

K = − 
2

2

2

1
( )

s s

c
Q s

 
 .     (25) 

 

All that remains is to perform the summation over s in order for us to prove that the quantity K that 

we have found is identical to the Breit interaction function. 

 We substitute the expression (18) for Q (s) in (25) and find that: 

 

K = − 
2

2
,

1
( )( ) sin sini j i s j s si sj

i j s s

c
e e A A 

 
 


  .  (26) 

 

The sum over s will be transformed into an integral in a known way by replacing 
s

  with 

2

3

0

8
s sd

c


 



  and taking the mean of the expression: 

( )( )sin sini s j s si sjA A     

 

over all phases and all directions of propagation and polarization. We then find that: 

 

K = − 
, 0

8
( ) ( )sin sini j i s j s si sj s

i j

e e A A d
c

  


     .   (27) 

 

Taking the mean can now be performed with no further analysis. After a calculation that will 

involve no insurmountable difficulties, when we observe (147) in loc. cit., we will find that: 

 

 ( ) ( )sin sini s j s si sjA A     = 
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= 
2 3 2 2 3

( ) ( ) ( )sin cos sin sin cos sin
3 3

4 4 4

i j i ij j ij

ij

r r

r

        

    

   
+ − − + −   

   
,  (28) 

in which: 

 = 
2 ij

s

r

c


 .      (29) 

 

We then find from (27) that when we introduce  in place of s as the integration variable: 

 

 K = −  2 3
, 0

sin cos sin
( )

i j

i j

i j ij

e e
d

r

  
  

   


 

+ − 
 

   

− 
2 2 3

0

( ) ( ) sin cos sin
3 3

4

i ij j ij

ij

r r
d

r

    


 

  
 + −  
  
  .   (30) 

 

The two integrals have the values +  / 4 and –  / 4. We then find that: 

 

K = − 
2

,

( ) ( )
( )

4

i j i ij j ij

i j

i j ij ij

e e r r

r r

 
 

  
+ 

  
 .    (31) 

 

That formula included an infinitely-large constant self-energy for the electrons (1). If we overlook 

that constant then we will find that the expression for the interaction of two electrons is: 

 

− 
2

( ) ( )
( )

2

i j i ij j ij

i j

ij ij

e e r r

r r

 
 

  
+ 

  

,           (32) 

 

which is identical to the Breit interaction. 

 

 

 § 3. Deriving the Møller formula from quantum electrodynamics. – We shall once more 

take our starting point to be the Hamiltonian function (11) and restrict ourselves to the case of two 

particles 1 and 2. However, this time we shall regard the Coulomb energy e1 e2 / r12 as the 

perturbation, such that the unperturbed Hamiltonian function will be: 

 

H0 = ( )
2

2 2 2 2 21
2

1

2 [ ( ) ]s s s i i i

s i

p q c p mc   
=

+ + − −   .  (33) 

 

 
 (1) It will cancel the electrostatic self-energy precisely. However, one must not think that the difficulties associated 

with infinite self-energies would be eliminated in that way. One will once more find an infinitely-large self-energy for 

a free electron when one calculates the diagonal elements of (23) and in so doing, one does not neglect mn, and one 

also considers negative-energy states to be intermediate states m. 
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That transition can be produced, on the one hand, in the direct manner by the Coulomb interaction 

or on the other hand by the mechanism that we discussed in the previous section, namely, through 

the detour of an intermediate state: 

 

m1 m2 0 … 1s …     (35) 

 

The first process corresponds to the matrix elements: 

 
1 2

1 2

1 2

12

n n

n n

e e

r

 

 
 
 

,      (36) 

 

and from (23), the second process corresponds to: 

 

1 2

1 2

n n

n nK
 

= − 
1 2 1 2

1 2 1 2

1 2 1 1 2 2

2

, ,

( ) ( )

( )

n n m m

m m n n

m m s s s m n m n

Q s Q sc

    

 

 + +
 .    (37) 

 

It is reasonable to restrict oneself to the first approximation in the first case and go up to the second 

in the second case since (36) and (37) are both proportional to e1 e2 . 

 We would now like to calculate the matrix element (37). We first remark that Q (s) [cf., (18)] 

consists of two summands Q (1 s) and Q (2 s), each of which depends upon only the coordinates 

of one electron. Since the unperturbed eigenfunctions are products of eigenfunctions of the 

individual electrons, the matrix elements of Q (s) can correspond to only those transitions that 

happen to a single electron. In that way, the sum over m1 m2 will reduce to two terms m1 m2 = 1 2n n  

and m1 m2 = 1 2n n . (37) will then become: 

 

1 2

1 2

n n

n nK
 

= − 1 1 2 2

1 2 1 1 2 2

2

, ,

(1 ) (2 ) 1 1n n n n

m m s s s n n s n n

Q s Q sc

     

 

 

 
+ 

  + + 
  .  (38) 

 

Q (1 s) has the form [cf., (18) and loc. cit. (147)]: 

 

Q (1 s) = 1 12 ( ) / 2 ( ) /1
1( )

2
s s s s s si c i i c i

s

e
A e e

i

        + − − − 
r r

.          (39) 

 

We write the eigenfunctions of the states n1 and 1n  in the form: 

 

u1 = 1 12 ( )/1 i ha
e 



p r ,  1u  = 1 12 ( )/1 i ha
e  



p r ,           (40) 

 

in which the a represent four-component constants that are normalized to unity. 
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 The matrix elements of Q (1 s) will then be non-zero only when: 

 

s
s

h

c


  = 1 1( ) −p p .          (41) 

Their values in this case are: 

1
1 1 1( , )

2
si

s

e
a a A e

i

 .          (42) 

 

We get a corresponding expression for Q (2 s). Now, since one has to take a mean over the phases 

s, the only terms that will yield non-zero contributions are the ones for which the signs in Q (1 s) 

and Q (2 s) are opposite. One then has: 

 

p1 − 1
p  = − (p2 − 2

p ) = s
s

h

c


  , s = 

c

h
| p1 − 1

p  | ,   (43) 

 

1 2

1 2

n n

n nK
 

= − 
2

1 1 1 2 2 21 2

1 1 2 21 1
1 1 1 1

( , ) ( , ) 1 1

( ) ( )4 | |
| | | |

s s

s

a a A a a Ae e h

E E E E

c c

 



 
  

+  − − −   − + − +
 


p p

p p p p

 .   (44) 

 

Due to (43), the sum over s consists of only four terms that correspond to the doubled sign in (43) 

and two mutually-perpendicular directions of polarization. When we sum over s, we can then take 

the mean over all directions of the unit vector As that are perpendicular to p – p and multiply by 

4. If we do that and further observe that due to the law of energy: 

 

E1 − 1E   = 2E   − E2 , 

then we will find that: 

 

1 2

1 2

n n

n nK
 

= − 
2

1 2 1 1 1 1 1 2 2 2 1 1
1 1 1 2 2 2 22

1 1 2 1 1
1 1

( , )( , ) 1
( , )

( )
( )

e e h a a a a
a a a a

E E

c

 
 



    − −
  −  

 − −   − +  
 

p p p p

p p
p p

.  (45) 

 

We must still add the matrix element (36) to (45). According to Møller, it has the value: 

 
1 2

1 2

1 2

12

n n

n n

e e

r

 

 
 
 

 = 
2

1 2 1 1 2 2

2

1 1

( ) ( )

( )

e e h a a a a



 

 −p p
.     (46) 

The sum is: 
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1 2

1 2 1 2

1 2 1 2

1 2

1 2

12

2

1 2 1 1 2 2 1 1 1 2 2 2

2

2 1 1
1 1

2

1 1
2 1 1 2 2 1 1 1 1 1 2 2 2 1

1 2

1 1

( ) ( ) ( ) ( )

( )

( ) ( ) ( , ) ( ,

| |

n n

n n n n

n n n n

n n

e e
H K

r

e e h a a a a a a a a

E E

c

E E
a a a a a a a a

e e h c

 



 



 

     
= +  

 

   −
= 

 − 
− −  

 

− 
     − + − − 

 + 
 −

p p

p p p p

p p

1

2

2 1 1
1 1

)

.

( )
E E

c


















 − 
− −   

  
p p

 (47) 

 

The first summand on the right-hand side is precisely the Møller interaction energy. We must then 

prove that the second summand will vanish. We next write that summand in a symmetric form by 

using the energy and impulse theorem: 

 

Factor  1 1 2 2
1 1 2 2 1 1 1 1 1 2 2 2 2 2( ) ( ) ( , ) ( , )

E E E E
a a a a a a a a

c c
 

 − − 
     + − − − 

 
p p p p . 

 

In order to prove that this vanishes, it suffices to show that one has: 

 

1 1 1 1( )E E a a −  = − 1 1 1 1 1( , )c a a −p p ,     (49) 

 

and a corresponding equation for the second particle. However, (49) follows immediately from the 

Dirac equation: 

E1 a1 = − c (p1 1 a1) − 2

1 1 1m c a ,              (50) 

 

and the corresponding equation for 1a . 

 Furthermore, one easily convinces oneself that the Møller formula can be derived in precisely 

the same way when one of the particles is bound. 

 It is satisfying that no radiation will be emitted in our approximation. One can imagine that it 

is possible for processes to exist in which the two electrons change their states, and two quanta are 

emitted. However, in such processes, one must satisfy the law of impulse twice (viz., the impulse 

of one quantum must be equal to the change in impulse of one electron, and the same thing must 

be true for the other quantum and the other electron) and the law of energy once. However, that is 

impossible as long as the no electron has a negative energy in the final state. 

 



Bethe and Fermi – On the interaction of two electrons.  12 

 

 One of us (H. Bethe) would like to thank the Rockefeller Foundation for having granted us a 

stipend that made it possible for him to travel to Rome. 

 

 Rome, Institute for theoretical physics. 

 

_____________ 

 


