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On the characteristics of partial differential equations
By JULES BEUDON

Translated by D. H. Delphenich

In a note that was presented to 'Académie des Saieficel rapidly indicated an
extension of the notion of characteristic to partidflerential equations of order higher
than one and to more than two independent variablese, Hpropose to give the proof
of the facts that were announced; however, beforethalo | will point out a terminology
that will be of great utility ).

If zis an analytic function af variablesx, ..., X, then one will have relations of the
form:

(a) d ’z__. Zn: 0"z dx (+ ... +an =K
Q. - Q. 8 1 n— .
axlla)qn = axll...a)g"'ﬂ...a)ﬁn
. i 0z .
One can consider the quantitigs ..., X,, z W(k varies from O t@) to be
)(11... n

independent variables. One calls any system of valudsatieaattributed to those
symbols arelement of order p in #i 1-dimensional space.

Two infinitely-close elements that verify those relas are said to benited.

Any system of equations in the coordinates of an elerhantverifies equationsa)
defines a multiplicityM P. In each of those systems, there are some nedahietween just
X1, ..., %, Z that define a point-like multiplicity that one callesupportof M .

There are multiplicitiesV P such that each point of the support corresponds to just
one element of ordgy. If q is the number of dimensions of the support then we chihl

themmultiplicities M ;.

1. — First consider a partial differential equation thatinear with respect to the
second-order derivatives; let:

L& 0z 0°z
1 +¢9=0=0, = —, Pik = :
(1) ;;Ak Pt @ p ox k o% O

() J. BEUDON, “Sur les singularités des équations aux éésivpartielles,” Comptes rendus des
séanced?24 (29 March 1897).

() For more details, see J. BEUDON, “Sur les systédéguations aux dérivées partielles dont les
caracteréristiques dépendent d’un nombre fini de paraniéres de I'E. N. S. Supp., 1896.
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in which theAx and ¢ are given functions of they, ..., X,, z pi1, ..., pn for such an
equation.

From the general theorems of Cauchy on the existencetegrals of differential
systems, one knows that any analytic integral of élaiation can be defined by giving a

multiplicity M., that it must contain. The following equations:

2) 92 pap, 2 =12 ..n-1),
0X, 0X,

in whichz x, , andp, are arbitrary functions o, ..., X.-1, represent a multiplicityvi . , .

In order to calculate the second derivatives as imeofxy, ..., X.-1, one mst make
use of the formulas:

op 0 =1,2,..n
3) N e (‘_’ - j
0X, 0X, i=1,2,...n-1

from which, one will deduce that:

ap, 0x,
(4) pﬂ’l = T — pnn ’
axp axp
d
5) = 2P 0% 0, ) 0%, 0%,

ox 0x 0%, ox0x

Upon substituting this into the proposed equation (1), ondimally get:

DR TN

p=1i=1 p=1

n-1 n-1 0
+ ZZApI(&_a_Xnapnj ZA); aIon_+_¢ 0.

0x 0% 0%, | o=

In order for indeterminacy to exist, one must have:

n-1 n-1 axn axn ax1
6 +
©) p1 i1 A ox 0x, pzlpbn A=

n-1 n-1 ap axnap ap
7 Al —L-—2—n "+ 0.
® Rl
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| shall call the multiplicitiesM® , that are defined by equations (2), (6), and (7)

singular multiplicities. It is easy to see their degree of generality, whiteaiaing quite
general. Indeed, if one choosgsarbitrarily as a function of; , ..., X,-1 then equation
(6) will permit one to obtaimp,, and as a resulp, ..., pr-1 . Upon replacing those
symbols with their values in equation (7), one will havénear, second-order partial
differential equation that defines

If one knows an integral surface of equation (1) then dupports of the singular
multiplicities that are placed on that integral surfaglk be defined by the first-order
partial differential equation (6), and the orientatiohshe first-order elements of those
singular multiplicities will be defined by equation (7). ése can easily see, those two
equations have the same characteristics.

We shall next see that those characteristics hasat gnportance.

2. — | shall now perform a change of variables that leayves., x,-1 unaltered, but is
such thatx, will become a function 0%, ..., X,-1, and the new variabhke | will get
formulas (2), (3), and:

©) 0z _ 0Py 0%, _ 0P, 0%, (pzl,Z,...,n j
oy o0x o0y dy 0Xx i=1,2,...n-1

| deduce the relations:

(10) Oy _ 0Py 0%, 0y, 0%, 0%, 0PI %0 X
ay ox 0y 0x, 0x 0y 0y 0ydx

from that.

Under those conditiong, X, p1, ..., pn Will be functions ofxy, Xo, ..., Xp-1, andy. |
shall determine the change of variables in such a vathbse functions will represent a

singular multiplicity M, for any value that is attributed o Suppose that one has a

singular multiplicity fory = yo ; equation (1) will then be verified. | would like toiter
down that the derivative of its left-hand side with respey is zero.
To simplify notations, | will set:

d66+2”:6

dx  ox 9z &g P

Upon taking equations (9) and (10) into account, | will have:

_ 0P| 7% 5 9% 0%, 9%,
(ZpZ " 0x 0x, pzlp”“ ”\”J

axn n-1 n-1 appn axn apn ppn n-1 n-1 d/% d¢
+ N A | =2 —=Th - Hn
{ p'{ax 0% 0%, pz-lp” "2 Py dx |’
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The coefficient oBpn, / dy is zero by hypothesis, and sindg / dy is not identically
zero, one will have:

_S% A | 9P _ 9%, 0P, 0P, Ny, A, 09
11 0= A mm__"n nn —hngy +_
- Zp p'(ax 0 0&} psz 0%, Zan ox 0%

3. — | say that equation (11) represents the conditionrthestt be verified by the
orientation of the second-order elements of any intedpat! contains the multiplicity

M*, on that singular multiplicity. In order to prove tfiact, | shall seek to calculate the
values of the third-order derivatives, but first, | slatloduce the notation:

d Jd 0 50 .
—=—+F—DpD +) —0n =1,2,..nh=-1).
dx, 0x. 0z P ;ap B ( )

J J

When the proposed equation is differentiated with reégpegthat will give:

(12) PIILLIED 3 I Rca PRL A

o, ox, ik=012,.n
13 K = i + P, —
(13) TP PGy [ j=1,2...n-1

on the multiplicity M, , so those relations will permit one to calculateodlthe pi; as
functions ofpnnn ; UpoON substituting that into equation (12), one will get:

i

0By _0% | 0B _ 0% ORn_ 0% | g5 0A 49
+ ZA”l:aX X‘ [ a pnnn axj:|+ Am{ax pnnn j+zz pik+

The coefficient opnnn in this equation is precisely the left-hand side of eéqoab).
It is zero, since we are on a singular multiplicky} .. The coefficient 0bx, / dx; is the

left-hand side of equation (11), which we assume to bBeder What will finally remain
is:

n-1 n-1 aﬁ-*_n—l %_*_ n 6_/%(_*_%:0
2.2 o ;AWX, ;k;nkax dx
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That equation is verified, since the second-order elggnéhat one infers from
formulas (2) and (3) will satisfy the proposed equatiomtidally when one places
oneself upon a singular multiplicity. We have theraklthed that if the orientations of
the chosen second-order elements on the singularpiaiti verify equation (11) then
the calculation of the third-order derivatives will bedeterminate.

4. — Equations (2), (3), (6), (7), and (11) define a family oftiplicities M’ , that |
shall call singular multiplicities. If one includes formulas (13) then one will get an
infinitude of multiplicities M >, that verify the proposed equations and its derived ones.

However, they are not all located on mdimensional integral multiplicity. In order to
find the conditions under which that situation will praseself, | shall make a change of
variables that is analogous to the one that was engloyro.2; i.e., such that one will

be dealing with singular multiplicitiesM?, for anyy, sincex,, z pi, Pk , Pk are

functions ofxy, ..., X,-1 , and the new variabie
| must append the formulas:

op,, X p,, X
P = 0 and ol — _n
an pﬂk ppln 9

Under those conditions, one will have:

oo GCD 0%, _

0x; 6>g] ox

because the multiplicitiet* , verify equations (12) identically. In order for thatlie
true for anyy, one must have:

O’ 0x, 9°® 0P 9°%, _
0y 0%, 6)36)56y 6)§6x6y

Now, 0® / 0x, is verified identically, so it will then suffice thahe should have:

9°®d _
0y 0%,

This is what one obtains when one takes the integsabdnditions into account:

(14) niniAk [apknn _%apnnnj Z An apnnn_'_nii dAk ZZ d?(: O’

i=1 k=1 0x; 0% 0% i=1 i=1 k=1 i=1k=1

in which one sets:
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df _ of  of N of
e DTSR YT

t— P
dx1 axn aZ i=1 ap i=1 k=1

When equation (14) is combined with equations (13), thatewress the condition
for the multiplicitiesM >, to be contained in-dimensional integral multiplicities. One
can verify that by noting that the fourth-order elemeants indeterminate. We thus
obtain thesingular multiplicitiesM 2|

Upon proceeding in that way, step-by-step, one will proeeettistence o$ingular
multiplicities M ”, for all values of the ordegp. One will also see that once a singular

multiplicity M, has been chosen, the set of multiplicites;" that correspond to it

will depend upon an arbitrary function ot 2 arguments.

We shall prove a little later that those singulartiplicities indeed contain integral
multiplicities; i.e., that the preceding conditionsttive have recognized to be necessary
will be, in fact, sufficient, as well.

5. — I shall now envision a nonlinear second-order partiéreéntial equation. For
the sake of simplicity, | shall suppose that it isawadil in the symbols that enter into it;
let that equation be:

(15) f(Xl,...,Xn,Z, pi,pik)zo

The degree of generality is defined in the same manneisafr linear equations — i.e.,
by formulas (2). In order to calculate the second-odbivatives, we make use of
formulas (3). In order for there to be indetermindicig necessary that:

o of 0x, 0%, of 6)§1
16 =0.
(16) Zlgapp. 0x 0x, zapm 0 X 6pn

However, that condition, which is necessary, is mgdéw sufficient. If equation (16) no
longer includegn, then the discussion will proceed as it did for linequations; we then
suppose that this is not true.

Equations (2), (3), (15), and (16) define a family of muittipes M?,. However,
those multiplicities are not all placed on thelimensional integral multiplicities of the
proposed equation. In order to recognize the cases in whatwill be true, we again
make use of the change of variables that has provedl|usefus, and after some
calculations that I shall omit, we will find that omaust have:

n-1 n-1

of of P, Ox dp. ). & of ap
17 - |+ e % ZFhn 14N ZFin—
(7 Zappp”“ X 62 ;,Z;‘ag,{ax axa%J ;aga%

Equations (2), (3), (15), (16), and (17) define a family oftiplidities that | shall call
the singular multiplicitiesM 2, . One verifies indeterminacy in entirely the same manne
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as above in the calculation of the third-order derivatiged one will prove the existence
of singular multiplicitiesM ?, for all values op.

If a singular multiplicityM P, is given then the singular multiplicities that copesd
to it will depend upon an arbitrary functionof 2 arguments.

6. — It now remains for me to establish that if one igegia singular multiplicity
M?., then there will indeed be an infinitude mflimensional integral multiplicities that

contain it ). | can always perform a change of variables suahttre support of that
singular multiplicity has the equations:

z=0, X = 0.
One will then have, in turn:
p]_:O, veny pn_]_:O, Pn :f(Xl, ...,Xn_l),
_ . _of _

Pei =0 i1=1,2,...n-1), pni—&, Pon =@ (X1, ..., Xn-1),
and if one sets:

2

Z=7 + X f +X”—¢

z

then one will come down to:
z=0, Xn =0, pi =0, pk =0 (,k=1,2,...n).

Since one is dealing with a singular multiplicity, eqoiasi (16) and (17) must be verified,
as well as the equations that are obtained by diffetamgi the proposed equations with
respect tog, ..., X-1 . One will then have:

of _q of _

0y 0x

for the preceding values of the arguments. One canpiiethe proposed equation into
the form:

n-2 n-2 n-2 1
(18) Prv1 = GPLt Pt DD A Pt DB RN Rt
i=1 k=1 i=1 =

the unwritten terms have higher degree. Upon replagingwith x,-1 + A X,, one can
make the term irp,-1 -1 disappear. Before going further, | would like to prove th
following theorem:

() For that proof, | was inspired by the method that weiated by Goursategons sur les équations
aux dérivées partielles du second ordop. 188.
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If one is given the equation:

pnn—l:F(Xl, '--lxnlpll ---1plapnla ---,pnn—2, pik,pnn),

such thatF / dpn, andoF / 0pn-1n-1 are zero for the following values:

X1:Xf, ceeny Xn:xf,
ZO:wl(Xfi"w)ﬂqo_z)a pioz [%j (i:]., 2, ...,n—2),
% ),

0 — 0 0 — 0
pn—ln—l_ wS ) pnn_ ¢3

then it will admit an integral that is holomorphic a neighborhood of x= X, ..., X, =
x. that reduces to:

W=¢h (Xt ooy Xn2) + Kot = X)) @b Kty ooy Xa2) + ... fOrxa =%,

D= (X, ey Xn2) + (6 = XC) B2 (X1, vy Xa2) + .. for xo-1 = x°,

One can, without inconvenience, suppose that all ofrti@ligivens are zero. In
order to that, it will suffice to set:

X=X +X,
Z=Z Y (X, oo Xom2) + O = X)) ot o K= XC) o

It results from this that if one calculates the valoéthe successive derivatives for
=0, ...,xn = 0, step-by-step, then one will have, by hypothesis:

pi(j)k =0, pr?nn,.“,nijk,.“ =0, pr?—ln—l,.“,n—lijk,“: 0 @.j,k ....<n=2).
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The proposed equation then gives all ofghey k... by differentiating with respect to
X1, ..., X2 . The absence of terms of degree on@,inand pr-1n-1 permits one to
calculate the terms innn-1, Pan-1n-1 UNambiguously, and as a result, the terms in
Prnn-Lii....» Pan-1n-1iik.... » @S well, and so on.

In order to prove the convergence of the developmentdbizsned, | shall employ
the method of majorizing functions and consider th@walhg auxiliary equation:

(19) Pt

M

n-2 n-2
(1_X1+~-+>$+Z+ R+ + RJ 1_;9“ 1 ;p”‘“ (1_ n,+ prlﬁj

0 R || R R

M (14,@)
R

p andR are the radii of the circles of convergenceRdior the corresponding symbols,
andM is the maximum modulus df. The right-hand side is obviously a majorizing

function forF. It will then suffice to establish the convergeror that equation; for that
reason, | shall set:

X+ ... X2 = U, Xn-1 + Xn = V.

Equations (18) will become:

ov?
= M
0z .0z 0%z
l_(n—2)u+2v+z+(n—2)%+26—v - (n—l)na? 1_(n—2) 922 1_2@
0 R R owyv RO ¥
2 0%z
-M|1+—— |,
i
or rather:

%z [(n-Dna*z 2(n-2) 9%z (4M a 922,
—=M + + +=|| —1 +
Py { 2R a¢ R aw\J R 2%
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in which the unwritten terms are either of order kEss 2 or of degree greater than 1 if
they are of order equal to or greater than 2, resp. dduadtion admits a holomorphic
integral such that andoz / ov reduce to 0 fov = 0. One will have:

9z _

ouX
ak+lz
oukov

0
for u=0, v=0 forany,

0

. 0¥z
moreover, SO one can unambiguously calculate the vafugsEgZa—, then the value of
u oV

3
%, and so on, which is easy to recognaeg all of the coefficients that one obtains
will be positive. It results immediately that the development tkagjiven by equation
(19) is convergent, along with the one that is provided éyptbposed equation.
| shall now return to equation (18), which is the prinkcgigect of that paragraph; the
application of the preceding theorem is immediate. r& eea holomorphic integral that

reduces to zero fog, = 0 and to:

X Pt X Bt
for xp-1 = 0, in whichgs, @4, ... are arbitrary functions o, X, ..., X-2 . One sees that:

pi?j.k,.“: 0 for X1=0,..,%=0,

0 —
pn—ln—l,“ n-Lik,.. T O’

and since one has, on the other hand:

i:O for z=0,%=0,p;=0,pk =0,
ox
one will deduce that:
pr?n—l,ijk,.“ =0.

It will then result that when that holomorphic integsatieveloped in powers a&f, it
will contain only terms of degree threelhere is then an infinitude of integrals that

contain the singular multiplicityM 2, .

The arbitrary function®s, @4, ... correspond precisely to the arbitrary functions that
enter into the definition of the singular multiplies M2, M *

n-1? n-17 ***
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CONCLUSIONS
If one is given the second-order partial differentigliation:
f (X1, ..o, Xy Z P2y -+ Prs Pi) = 0

then an integral of that equation is generally defined byultiplicity M* , ; there will be
an exception when the multiplicity is singular; iiethe equations:

0z 0 op d i=1,2,...n-1
pp 2, Popp X ( - j
- p=12...n

n-ln-l of axnaxq 1 of a)%

12 0p 0% 0%, 5m0p 0% 6pn

n-1 n-1 a n-1 n
z of | 0Py _ OX, 0Py, +z of apm+Z of ppn+ﬂ pn+i=0,
=0p, 0% 250p 0z 0X

=i op (0% 0% 0%,
f=0
are verified.
One then obtains a singular multiplicityl 2, that is contained in an infinitude of
integrals.
Any order p will correspond to singular multiplicities P, that enjoy the same
property.

Any singular multiplicity M ", corresponds to an infinitude of singular multiplicities
M P! that depend upon a first-order partial differential equatiAs a result, if two

singular multiplicitiesM P, correspond to the same singular multiplich4®7', and if
they have an element of orgem common at a point then the same thing will be &ile
along a curve that passes through that point.



