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CHAPTER IV

Fundamental formulas from the theory of surfaces

Translated by D. H. Delphenich
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derivatives ofx, y, z and the first derivatives of, Y, Z. — Equation of Gauss and Mainardi-Codazzi
between the coefficients, F, G, D, D', D" of the two fundamental forms. — Existence and uniqueness
of the surfaces that correspond to two given fundamenrtalsf for which the equations of Gauss and
Codazzi are satisfied. — Lines of curvature. — Radii rsft fturvature of lines that are traced on a
surface. — Meunier’'s theorem. — Euler’'s formula. — Dupidicatrix. — Total curvature and mean
curvature. — Conjugate systems. — Asymptotic lines. -<ulating of differential parameters. —
Elements of a surface in Cartesian coordinates.

The two fundamental quadratic form% — Formulas that give the second

§ 54.
The second fundamental quadratic form.

We saw just one differential form intervene in theperties that were studied in the
preceding chapter, and it gave the line element of tHacgir

f=d< =E df + 2F du dv+ G dV,

namely, thefirst fundamental form.However, when one studies the properties that are
inherent to the actual form that the surface has in spasecond fundamental form will
intervene, in addition to the preceding one, and asshi#dl soon seeThe theory of
surfaces, when considered from our viewpoint, reduces essentide tstudy of two
simultaneous quadratic differential forms.

In order to introduce the second differential fornt tlvas just mentioned, we begin
by fixing the cosines of the positive direction of thermal to the surface, which shall
always be denoted by:

XY, Z



Chapter IV. — Fundamental formulas from the theoryofeses. 2

As in § 42, we establish that the positive face of thgeianplane is the one on which
the positive direction of the tangent to the linkes to the left of that of the line(*).

The positive direction of the normal will be the aveund which the positive face of
the tangent plane revolves. From known formulaaraiytical geometry, one will then
have:

1y 10 Loz 1o
o 1 JEOou JEdu yo 1 JEOou JEdu
Csinw| 1 9y 1 0z Csinw| 1 0z 1 9x/
JGov [Gov JGov [Gov

1 ox 1 oy

. 1 F%ﬁau
Csinw| 1 ax 1 ay|

Joov Joov

in which wis the angle between the coordinate lines that wefieed in § 41. It will
then result from (§ of that § (pp. 88) that:

oy oz oz ox
1 ou du 1 ou Ju
1) X=———nu , Y= —— ,
. JEG-F*|0y 0z J EG-F*| 0z 0X
ov ov ov ov

ox oy

7= 1 ou Ju

JEG-F?|0x dy|

ov ov

The second differential form that one introduces letl
@ =—- (dx dX+dy dY+dz d3,

for which one always adopts the notation (

2) ¢ =-2. dx dX=D di + 2D’ du dv+ D" d\2.

() We always agree upon the convention that the posiineetion Oy lies to the left ofOx on the
positive face of they-plane.

() Here and in what follows, the summation symbalenotes a sum of three terms that can be deduced
from the first one by changing X intoy, Y, z Z, resp.
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One observes immediately the various forms thattedficientsD, D', D" of ¢ can
take. If one differentiates the identities:

0x
X— =0, X— =
2 2. X5
with respect tay, vthen some other ones will follow:

0°x X aX
X—=-)y — —
2 au2 ou ov’
_ OX 0X_ 0X0X
Z 6u6v Z6v6u Zauav

Zxﬂ_ 0X 0Xx

o “~avov
One will then have:
0°X 0x 0 X
D= X_:— _—
Z u? ou du
0X0X ox0 X
3 D' = -
3) Z 6u6v Zauav Z:avau
D=y x 3% - 520X
ov? ov ov

From (1), one can also writ€s D', D" in the form of determinants:

0°x 0%y 0°z °x 0%y 0°z
ou? ou? ou? oudv 0udv 0w V|
@ po__ L |zl 1 | oy o
JEG-F?|0u du du JEG-F2| ou 0du du
ox dy 0z ox oy 0z
ov o0v 0v v ov oV
0°x 0°y 0°z
N OV OV
pr=__1 |9X 0y 0z
EG-F2|0u du du
ox 0y 0z
v v v

The two quadratic differential forms:
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f = Ydé =Edf+2F dudv+ G dv,
¢ =—2.dx dX =D dif + 2D’ du dv+ D" dv?

are called the first and second fundamental forms of the surface S.
It is clear that when one switches the variahles they will be transformed into new
fundamental forms.
§ 55.
Fundamental equations.
In this paragraph, we shall establish thedamental equationsf our theory. First,

let us make the following observation:Af B, C are three arbitrary functions ofv then
we can determine three unknown coefficiemtg, yin such a manner that we will have:

0Xx 0Xx
A=a—+[—+yX,
ou Pt
(@ B=aﬂ+ﬁﬂ+w,
ou ov
0z 0z
C=a—+pB—+YyZ,
ou Pt
so the determinant:
o 0x
ou ov
ox oy >
= 22VY|=,EG-F
du du
oz 0z,
odu ov

will not be zero.
Having said that, recall for the moment the index nataamd take:

U = Uy, V = Uy,
E =ay;, F =a, G =ay,
D= b]_]_, D' = b]_z, D" = b22 .
Since:
0X 0X
° ou, oy,

it will then follow that:
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If one sets:
2 2 2
:ax,B:ay,C:az
ou, ou ou, 0u ou, 0u
. . . .- ox oy o0z . .
in (@) then if one first multiplies by— ,—,—, in sequence, then multiplies by
ou, du, Ou,

ox o0y o0z

— ,——,—, and finally multiplies by, Y, Z, and then sums, the result will be:
ou, du, odu,

rs
sa-as "]
rs
aarvas ]

y="0bs,
SO:

and therefore:

9°x _ [rs| ax [rs]| ax
- —+ —+ brs Xa
ou, ou 1oy 2 0du,
or, more briefly, with the notation of the secomyariant derivative (8 32).

Xrs = brs X

When written in this way in the old notation, omall get the first group of

fundamental equations:
2
B: 11 %+ 1 2(-}- DX,
ou? 1/0u |2]|0v
2 12 12
) X _ o, 9x, D'X,
ouov 1|0u 2|0v

2
9 x_{Z 2}%+{2 2}%+D"X,

o2 | 1fou | 2(av

in which we have omitted the expressionsyfoz, which are perfectly to similar to these
and are deduced from them by changtigto Y, Z, respectively.
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The second group of fundamental formulas will be the dhat express the first

partial derivatives oX, Y, Z in terms of?, ? , X, etc. If one sets:
u ov
acX gl
ou ou ou
acX gl
vV ov ov

in (a) in sequence then one will find that the formulas in toesre:

90X _ FD'-GDox,  FD-EDdx
ou EG-F*0du EG- P ov
OX _ FD'-GD ox, FD-ED 0x
ov EG-F* du EG-F 0v

(1)

in which we have again suppressed the analogous equatiofyZfor
As one sees, the coefficients of the right-handssaeddormulas (1), (II) are composed
of nothing but the coefficients of the two fundamensaifsf, ¢ (*).

§ 56.

Equations of Gauss and Codazzi.

The six coefficients:
E, F, G D, D', D",

of the two fundamental forms are not mutually indepetdaut rather they are coupled
by three important relations that we shall now esthblisFor that, we write the
integrability conditions of the system (I):

i a_ZX _i 62X =0
oviou?) ouldudv '

o (%) o o2 ) _
il A =0,
oul 0v? | ovloudv

() In particular, one must always recall that the Chffist symbols {rts} that appear in (I) are

constructedrom the first fundamental form f
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3 (e -2l o
i e a5 (Tl

(b)

It is clear that if one makes use of the fundamdatanulas (1), (I1) in this then the
left-hand sides ofl) can be put into the forms:

0Xx

a— +pf —+ Y X
au u
= 4B —+VX
au
identically, while the equations:
a%+,8—+ X =0, a%+,8—+;/x =0,
6u ou
_ , 0y ,ay _
—+[3—+yY—O, a—+p[F—=+yY=0,
ou ov
a%+[3—+yz 0, a’%ﬂé”a—zﬂ/Z:O
ou ou ov

must also persist, and one will get the integrabilitydutions:

a =0, L =0, y =0,
a’ =0, £ =0, y =0.

The four conditions:
a=0, =0, a'=0, (=0

can be written in terms of the four Christoffel ineBo(8 34, page. 72) as:

%_I;ZE = {12, 12},
%_D'z = {11, 21},
%_D'z = {22, 12},
%:[F);G = {21, 21}.

If one letsK denote the curvature of the first fundamental form tiey will give
uniquely [8 37, formula (1V)]:
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DD"-D"
[ — —— =K
() EG-F°

In words, that saysthe quotient of the discriminants of the two fundamental fgrrhss
equal to the curvature K of the first fundamental form f.
As for the other two conditions, viz.:

y=0, y=0,

when they are developed they will become:

9 oo [12ly (14, 1130y [ pog,

ov du 1 1 2 2
63_6_D+ 22 D+ 22 + 1 D'+ ! D"=0,

ou odv 1 2 1 2
and according to 8§ 38 (page 81), they express the idethéhttlinear covariant fornff,
@) that is constructed from the second fundamental fgnmth respect to the first one f
is identically zero.

Equation (Ill) was given by Gauss in lidésquisitionesetc, where he already found
all of its elements by deducing them from (IV). Thée @se is more commonly referred
to by the name of th€odazzi formulasince it is precisely equivalent to the equations
that were given by that geometéy; (it was, however, given for the very first time in
another form byMainardi (1856) ¢).

One can given another useful form to formulas (IVewlone observes that if one
avails oneself of formulas (20), § 31:

alog\/F :{11}+{12},

(V)

1 2
dlog EG-F* _ (22 12,
ov 2 1]

that result is, in fact, equivalent to the follogisystem:

() Annali di mat.2 (1868), pp. 273.
() Giornale dell'lstituto Lombardo, t. IX, pp. 395.
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9 D 9 D’ +{2 2} D _2{12} D’
ov| JEG-F? ) Oul | EG-F 2] EG-F 2} EG- P
(v’ }

oy b |9 D +{22}L_2{12}L
ou| | EG-F? ) 0V | EG-F 1]JEG- P 1) EG- F

The relations (lIl), (IV) that exist between theefficients of the two fundamental
forms give the necessary and sufficient conditihrag must be satisfied. We state that
property in the more precise form as the followimgdamental theorem:

If one is given two quadratic differential forms:

f =Edf +2F dudv+ G dV,
¢ =D dui + 2D' du dv+ D" dV4,

the first of which is definite, then for there to exist a surthaeé admits these forms as its
first and second fundamental forms, it is necessary and sufficienththagtlationg(lIl),

(IV) must be verified If those conditions are verified then the corresponding surface will
be unique and determinate, up to motions in space.

From the proof of that theorem, which we will ngarry out, the terms “fundamental
forms” that are given t§ ¢ will be justified, and we intend that all of theoperties that
are inherent to the form of the surface can depgrah only the six coefficients of the
fundamental forms. In analogy with the name ofrfirsic equation” for a curve (chap. I,
§ 8), one can say, in summation, that the equations

f =Edf +2F dudv+ G dV,
¢ =D dui + 2D' du dv+ D" dv

are thentrinsic equationdor the surface.

§ 57.
Integration of the intrinsic equations.

From the invariant character of the fundamentalagigns (lll), (IV), one can,
moreover, conveniently introduce the independemiaiées u, v into the proof of the
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stated theorem, and then, utilizing the result in 8 3&jrae that the variablesv reduce
them simultaneously to:
F=0, D =0.
As we saw in the cited number, except for the cagéhioh the proportions:

D:D:D"=E:F:G

are valid (which are true only in the case of a sphefmablanar) surface'), as one
easily sees], these new variables will be completely determinate. When one equates

() And indeed, one will have:
D=AE, D'=AF, D'=AG

in that case. However, if substitutes that in (IV), le/necalling (8 38) that one has:
oo Lo = L
— - E+ - F+ G =0,
ov ou 1 1 2 2
o
— - E+ - F+ G =0
ou ov 1 2 1 2

identically, then it will result that:

04 0/
E—F— =0,
ov ou
04 04
F—G— =0,
ov ou
and therefore:
A = constant.
If one takes:
A= —% (R constant)
then (11), page. 117, will give:
ou 0X oy aY 0z 0z
7:R7' 7:R7' 7:R7'
0X ou ou Jdu ou ou
0x 0X oy aY 0z 0z
7:R7' 7:R7' 7:R7’
ov ov ov ov ov ov
which will give:
X =RX+ a, y=RY+Db, z=RZ+c

when they are integrated, wighb, c, and therefore:
x-3°+y-D°+@2-9°=FR,

which is the equation of a sphere of radiusIn the casel = 0, it then results thaX, Y, Z are constants;
i.e., the surface is a plane. In fact, with no lafsgenerality, one can then suppose that:

X=0, Y=0, Z=1,



Chapter IV. — Fundamental formulas from the theoryofeses. 11

them to constants, that will give what one callslthes of curvatureof the surface (cf., 8
60).

When one replaces the symbols in the last of thdadmental equations (1), (IY
with their actual values [Tablé\), page 92] and takes the value Kothat was given in
(18) on page 93, those equations will become:

DD 1 0JG 1 0JE
JEG au{ﬁ auj GV{\/E GVJ
ek

For the surface whose existence and uniqueness we w&aldoliprove [under the
hypothesis that (V) are verified], consider a tri-eaxgjular trihnedron at any point, which
one calls theprincipal trinedron that is composed of the positive directions of the
tangent to the lin@, the tangent to the ling and the normal to the surface. X (Y1,

Z1), (X2, Y2, Z2), (X3, Y3, Z3) denote the cosines of those three directions, resphgt
then we will have:

_ 1 ox _ 1 oy _ 1 oz

T T Ea’ AT Eou

_ 1 ox v, =L 1 oy z =1 1 0z

\/_av \/_av \/_Gav
X, = X, Y,= Y, Z=Z

From the fundamental formulas (1), (I1), page 116-117, eace the Christoffel
symbols with their present effective values, and deduedotlowing formulas:

X, __ 1 aJ_ «
ou /G ov ot ﬁ ¥
X, _ 1 af

ov JE du ol

and from (1) on page 113, it will then result that:

i.e.,z= constant.
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X, _ 1 aJ_

ou /G ov "o
X, __ 1 af X
ov JE du ut \/E ¥

X _ D
au \/E v
X, D'

YN

The unknown function¥;, X,, X3 must then satisfy the three homogeneous linear
equations in total differentials:

B

(4) dx, :%EXd+{ f*agu_xi 7 }
dx, = \/_Xidu—\/D_dev

(Y1, Y2, Y3), (Z1, Z», Z3) must also satisfy system (4).
Now, the system (4) is aaonlimited integrablesystem, since the integrability
conditions will reduce to precisely three relati¢W3 that one assumes to be satisfied.

§ 58.
Existence and uniqueness.

We now appeal to the known theorem that thereysveists an integral system for
an unlimited integrable system of total differehtguations such that for the initial
values:

U = Up, V=Vo

the variables will reduce to arbitrarily-given iait values, which can easily lead to the
conclusion of our proof. For that, it is furthenwenient to observe that X{, X, X3),

(X;, X,, X;) are two (distinct or coincident) integral systeafequations (4) then due
to the special form of those equations, one must:ha
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X, X[+ X, X,+ X, X, = constant,

since the total differential of the left-hand side prowebe zero identically as a result of
equations (4) and the analogous onesXor X,, X,.

Having said that, let{;, Xz, X3), (Y1, Y2, Y3), (Z1, Z», Zs) be three integral systems of
(4) that reduce to the nine coefficients of an orthogsubstitution:

(0) (0) (0)
xl XZ X3
Yl(O) YZ(O) Y3(0)
Z]FO) ZéO) ZéO)

foru=up, v=Vvo. It results from the preceding observation thatfoyr values ofi, v:

X1 X2 X3
Y1 Y, Y3
Z; Z; Z3

will be the coefficients of an orthogonal substatiin particular, one will have:

X{+Y7+ 27 =1,
X1 Xo+Y1Yo+2172,=0, etc.

Now, from (4) itself, the three expressions:

\/ExldU‘F\/EdeV, \/EYldU‘F\/EdeV, \/Ezldu+\/622dv

will be exact differentials, and if one takes:

x=] (JEXidu+ JGXedv),  y=](JEYidu+ G Yz,
z:,[(\/Ezldu+\/EZZdv),

in which one regards, y, z as the current coordinates of a point on a surface, dhe
will verify that this surface has the two assigned fofomsts fundamental forms.

Finally, as for the part of the fundamental theotkat refers to uniqueness, that will
result from either the linear form of (4) or by repegtthe argument that was made
already for the curve in § 8.

Observation:In the proof of the stated theorem, one refers, sfamplicity, to a
particular system of line coordinates (viz., the lineswfature). However, one should
observe that one can also choose the independenblearta be completely general and
introduce a principal trihedron that is, e.g., the one ilvabmposed of the bisectors to
the tangents to the line coordinates and the normaiyap@int of the surface. The nine
cosines of those three directions will again definenaal system of total differential
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equations, and like system (4), it will be unlimited intédgay virtue of the fundamental
equations (Ill), (IV). Moreover, as in 8 9, one can redtice problem of the
determination of the surface to the integration of @o¢al differential) equation of
Ricatti type, from which, it results that:

In order to actually find the surface that corresponds to two given fundanfented,
one must integrate an equation of Ricatti type.

8 59,
Lines of curvature.

If one considers an arbitrary liheon a surfac&, and one follows the normals to the
surface along it, then that will generally defin@e@n-developable ruledurface. In the
particular case in which the ruled surface is developahle., the normals t& alongL
are the tangents to a curve in space (or pass throwghbfats points) — the line will be
called aline of curvatureof the surface.

Observe immediately that according to that definitiamy line that is traced on a
plane or sphere will be considered to be a line of curgasince the ruled surface of the
corresponding normals is a cylinder or a cone.

For any other surface, as we shall now prove, thastseonly a simple infinitude of
lines of curvature that form a doubly orthogonal systeifine$ that are always real.

In the first place, we shall note some propertielines of curvature that follow from
their definition itself and theorem#), (B) on the evolute that were given in § 18 (page.
38).

If the intersection C of two surfaces is a line of curvature foh lmbtthem then the
angle by which the surfaces intersect along C will be constant. Calyeif two
surfaces meet at a constant angle and their intersection is theflowevature for one of
the surfaces then that will also be true for the other one.

Furthermore, since any line on a plane or a spherbns af curvature, one will have
as a corollary:

If a plane or a sphere cuts a surface S along a line of curvature théhcut S at a
constant angle. Conversely, if a plane or a sphere cuts S at a constanttaglihe
intersection will be a line of curvature on S.

Hence, e.g., the meridians and parallels on a sudacevolution will be lines of
curvature.

We look for the analytic conditions that will chaterize a line of curvaturke. u, v;
X, ¥,z X, Y, Z are regarded as functions of just one variables alpegit, the arc length
alongL. If M = (X, Y, 2) is a point ofL, andM1 = (x4, Y1, z1) is the contact point of the
normal toM along the edge of regressi@a of the developable that is generated by the
normals toSalongL then we will have:
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in whichr denotes the algebraic value of the

mulas from the theoryuofeges. 15

Z1=2-12

line segraM (in whichr will then be

positive or negative according to whether the directiom M; to M coincides with the
positive direction of the normal or its opposite).

If one differentiates (5) with respects@nd

observes that:

dx dz dz
ds’ ds’ ds

are proportional t, Y, Z, by hypothesis, then

one will have:

AX:%—r%— Q’,
ds ds ds
AY:ﬂ—rd_Y— ir,
ds ds ds
hz=02_ 92 5 &t
ds ds ds

If one multiplies these b, Y, Z in succession and then sums then the result will be:

s
ds
o)
dx_ dX dy_ dvy dz_ dZ
ds ds’ ds ds ds ds’

or: When one moves along the line of curvature L, the proportions:

(6)

must remain valid.

dx dy:dz=dX:dY:dz

Conversely, if the proportions (6) are valid aldngandr denotes the common value

of the three ratios:

then one will see immediately that (5) defines a cuyevhose tangents will be the

normals toS along L.
curvature.

We exclude the case in which the cuBiere
have simply:

Hence: The proportion(6) is characteristic of the lines of

duces to a point from this; one will then

dX1 = dyl = d21 = 0,

sodr = 0; i.e.,r = constant.
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§ 60.
Lines of curvature in curvilinear coordinates.
We now transform the equations:
dx=rdX dy=rdy, dz=rdZz

which are characteristic of a line of curvature, intovitimear coordinates. For that, we
write:

%du+% dv=r a_x du+a—x d\a,

ou ov Ju ov

ﬂdu+a—y dv= r(a—Y du+a—Y d\a,

ou ov Ju ov

92 4u+ 9% gy= r(a_z du+ 22 d\a,

ou ov Ju ov
which can be replaced with the equivalent systeat tme will obtain upon first
multiplying by % ﬂ % resp., then bya—x, ﬂ % resp., and finally by, Y, Z,

du OJu OJu ov ov ov

resp., and summing them.
One will obtain an identity the last time, andritimd the equations (cf., 8 54):

@) { Edu+ Fdv=— ( Ddu+ D dy,

Fdu+ Gdv=- (D dut D dy.

If one eliminates from these two then one will obtain:

(8) =

Edu+Fdv Fdw Gd
Ddu+Ddv Ddw D d

as the differential equation for the lines of cuuva.
The determinant that was just written is precisbé/Jacobian of the two fundamental
forms. If one therefore excludes the case:

D:D:D"=E:F:G,

in which the surface is a sphere or a plaiednd recalls the results of § 39, page 83,
then one will have the theorem:

() Itis easy to add a simple geometric proof of this fadhe analytical proof that was given in the
footnote in 8 57. In the case of the proportion:
D:D':D"=E:F:G,
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There exists a doubly-orthogonal system of lines of curvature on amageuinfat are
always real. One will have indeterminacy only for the sphere angléme, for which
any line will be a line of curvature.

Two lines of curvaturés, L, pass through any poiM of the surfacé that will meet
at a right angle there. The normahMtouches the edge of regression of the developable,
which is generated by the normalsS@longL, at a point that shall be denoted My.
That point is called theenter of curvatureof the surface aM relative to the line of
curvaturelL,. Similarly, one has a second center of curvaMseelative toL, on the
normal atM, and the segment§{(

bear the names g@irincipal radii of curvatureof the surface aMm for a reason that we
shall now see.

If we eliminate the ratialu : dv from our equations (7) then we will obviously get the
following result:

The principal radii of curvaturesf r, of the surface at any point are given at any
point by the roots of the second-degree equation in r:

(9) OD'-DAr*+(ED' +GD-XD)r+EG-F*=0.

861.
Curvature of the normal sections.

We now pass on to the examination of the relatibas éxist between the radii of
(first) curvature of the infinitude of lines that areced on a surface through the same
point M.

Let C be one such curve, along whichy; X, y, z are functions of the arc lengstof
C. Keep the notations of chap. | 16y so one will have, first of all, the direction aoss
of its tangent:
(10) _ 0X du+6xdv _6y$1+6y dv 0z du+az dv

= ——+—=—, p=ZL—+2 = gy= =+
duds ovds uds avds T 9uds ovds

any line that is traced on the surf&will be, from (8), a line of curvature. It will thefollow that if M,
M’ are two arbitrary points @then the normals &, M’ will lie in a plane. Indeed, one can pass a plane
through the normals @1 and M’ that cutsS along the curveC. The normals t& along C form a
developable — i.e., they are tangents to an evolu@-ofind since the normal &t lies in the plane &t,
any other normal alon@ (in particular, the one &fl') will lie in that plane. Therefore, all of the maals
to Sintersect pair-wise, and thus they cannot lie in agtaat passes through the same pointf O is at
a finite distance theB8 will consequently be a sphere (whose center @) awhile if O is at infinity thenS
will be a plane.
() Recall thatry, r, are regarded as positive or negative according to whitteadirection fromM; to
M (or fromM; to M) coincides with the positive direction of the normaitsropposite, respectively.
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If one letso denote the angle from O twthat is defined by the positive directions of
the principal normal tX and the normal to the surface then, from Frenetsdila, one
will have:

Z X da _ coso

ds P

so, from (10):

coso _ Ddw’+2D dudw D dv
o ds’ ’

or:
cosoc _ Ddu*+2D dudw D dv

11 = .
(1) 0 Edu +2Fdudw Gd¥

One can pass a plane through the normal to tHacseuatM and the tangent tG at
M; it will produce a sectioh of the surface that is called thermal section tangertb C.
The first curvature 1R of ' at M will be given by the same formula (11), in whicheo
sets:
coso=zx1

according to whether the concavity bf rises up towards the positive or negative
direction of the normal, respectively. At the sathe formula:

p=tRcoso
will result; i.e., Meunier’s theorem:

The radius of first curvature of a curve C thatreced on a surface S is equal at any
point M to the radius of curvature of the normattsen that is tangent to the curve C at
M, multiplied by the cosine of the angle that thi@np of the section makes with the
osculating plane of the curve.

We can thus limit our studies to a study of norsagtions.
Formula (11) will become:

1_, Ddw? +2D dudw O d¥
R ~ Ed@+2Fdudw Gd¥ '’

in which the choice of upper or lower sign is lidkeith the situation that was described
above. With that choice (according to the conwentihat was made in the theory of
curves of always giving the first curvature a pesitvalue), the actual sign of the right-
hand side will prove to be positive in any case.

However, since all along the lengkh (for the infinitude of normal sections) one
contacts the same line hereviz., the normal aM (on which one has already established
a positive signy- it is better to also attribute a signRo Moreover, we agree to CouRt
as positive when the direction that goes from #r@er of curvature of the normal section
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to the footM of the normal coincides with its positive sense arghtiee in the contrary
case. (Cf., the preceding numbewWith this new conventigone will certainly have:

__ Ddw+2D dudw D d¥

1
12 =
(12) R Ed# +2F dudw Gd¥

in any case.
8 62.
Euler's formula.
We now assume that the coordinate lines are linesreéture and if4, ro denote the
guantities that were introduced in 8 60 then as we move dle line of curvaturae, we

will have:
dx=ridX dy=r;dY, dz=r;dZ

and alongy:
dx=r,dX  dy=r,dY, dz=r,dZ;
i.e. &)
ox _ 0X dy _0Y dz_ 0Z
ST T oS
(13) ou ou odu ou Ju “du
ox _ odX dy __0Y dz_ 0Z
> a0 PO ERe PYPaLE R
ov ov ov " 0v ov "0V
Sso:
(14) D:—E, D' =0, D":—E,
r2 rl
so, from (12):
Ear+Cav

1 = %: E(@jz+9(i\/j2
R EdU@+Gdv r\ds) rlds)

If @denotes the angle that the normal section consideag@swith the lines then
that will give Euler’s formula:

(15) 1_ co§€+ sirt@
R r, r

Meanwhile it results from this thati, r, are the radii of curvature of the normal
sections that are tangent to the lines of curvatuiidose sections are callgdincipal
sectionsandry, r, are then called therincipal radii of curvature as we said above. The

() These are the formulas that are commonly referrégt the name of Rodrigues’s formulas.
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centers of curvature of the principal sections are W points M1, M, that were
considered at the end of § 60, which one callscdrgers of curvature of the surfaaé
M.

We now examine how the radius of curvat®ef the normal section varies when
one rotates the plane of the section. In order agine the manner of variation that one
obtains more clearly, we make use of the followingsaterations:

1. Suppose that;, r, have the same sign (e.g., positive) at the point under
consideration. Establish a system of orthogonal €amneaxesf, 77 in the tangent plane
to M that coincide with the tangents to lines of curvatyre respectively, and consider
the ellipse that has the equation:

(16) E_2+/7_2 =1.

A semi-diameter of that ellipse, when it is inclinedamgle & on then-axis (tangent
tov) has a lengtlw that is given by the formula:

1 _cosé sitd
- = + ’
I r

so one will have, from (15):

/=R

Therefore:The square of any semi-diameter of the elli{i$®) is equal to the radius
of curvature of the normal section whose plane goes through that diameter.

For that reason, the ellipse (16) is calleditikcatrix ellipse.

One should note that ifi = r, then the indicatrix ellipse becomes a circle alhdfa
the normal sections througW will have the same radius of curvature. The pdinis
then called aircular or umbilic point, and the only surface that is circular agrg\point
is the sphere®).

2. Now, letrq, ro have contrary signs, and to fix ideas, supposertha positive and
r, is negative. Consider the two conjugate hypesbmldhe tangent plane:

(17)

and one will have the geometric representatiorhaf system of two hyperbolas, which
will, in fact, be provided by the ellipse (16).

() In fact, one will then have:
D:D':D"=E:F:G.
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In the first case, the ellipse (16) [and the systemvofhyperbolas (17), in the second
one] constitutes what one calls theapin indicatrix after the name of the geometer that
first gave the geometric interpretation above for Esiformula.

One should observe that, while in the first case stirface in the vicinity d¥l all lies
on part of the tangent plane (the normal sectionsotdte around the same part of the
normal to its concavity), in the second case, theasanill lie on one side or the other of
the tangent plané)( and it is precisely the planes of those normai®es that will meet
the first hyperbola (17) at real points and will all retatound part of its concavity, while
the remaining ones (whose planes meet the conjugate bygpattreal points) will rotate
around the contrary part. The passage from one tothiez type of section will be valid
when the normal plane passes through one or the otyraptse of the hyperbola (17),
and then one will have:

pulle
1]
o

for the corresponding section, which points tardlectionin the corresponding section.
These two special directions that emanate f\dnm the tangent plane at that point then
take on the name @fsymptotic directions.They divide the surface in the neighborhood
of M into four sectors that pass from one part of the tainglane to the other.

8 63.
Mean curvature and total curvature.

The way in which a surfacgis curves in the neighborhood of one of its poMits
depends essentially upon the values ofpghiecipal radii of curvature 1, rp, as we will
now see. Instead af, rp, one can define that manner of curvature by giving two
combinations of4, r, whose values can be inferred inversely from those,at. The
most important functions ofi, r, that come under consideration are the products and
sums of the two principal curvaturesh,/1 /r, . One denotes them by:

() One will arrive at the same result more brieflyfabws:

Consider the tangent plane at the paint/ of the surface and calculate the distatite the infinitely-
close point ¢ + h, v + k) (in which h, k are regarded as first-order infinitesimals) of thainpl one will
find:

d=3(D N +2D hk+D" i)+,
in which 77 is a third-order infinitesimal. The sign 8then depends upon that of:
(a) D h+ 2D' h k+ D" &
Now, if D D" = D'>> 0 —i.e., if the point is elliptic — then the formm) (ill be definite, anddwill always

keep the same sign; B D" — D'? < 0 (viz., hyperbolic point) then the forn@)( and therefore, will
assume positive and negative values.
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1
+—.
r2
The first one bears the nametofal (or Gaussiangurvature for the surface, while
the second one bears the namenuwdan curvature. If one recalls that in arbitrary

curvilinear coordinates the principal radii of cature are the roots of the second-degree
equation (9), page 17, then one will indeed getydeeral values df andH:

"_ 12
K = DD D2 |
2FD'-ED"-GD
H = ,
EG- F*

in wlhich the right-hand sides aabsolute invariant®f the two fundamental forms (cf., 8
39)().

However, from the results of § 56, one will funtiiave the most important theorem:
The total curvature of a surface is equal to thevature of the first fundamental form.

That property of the Gaussian curvature (viz.,t thadepends upon only the
coefficients of the form that represents the linement) is the one that gives the
paramount importance to that curvature in geomejalications (as we will see later in
the chapter on its applications). For that reasois often endowed with simply the
name ofcurvature.

The curvatur& is positive at the points of the elliptic indidatand negative at those
of the hyperbolic indicatrix. The former are cdl@liptic points of the surface, and the
latter are calledhyperbolicpoints.

In general, there will exist a region of ellipgoints and a region of hyperbolic points
on a surface that are bounded by a lin@arfbolic points, at which the curvatut€ is
zero.

As a complement to these observations, we shallepthe theoremA surface that
has zero curvature at all of its points will be @veélopable surface.

The fact that developables all have zero curvateseilts immediately from the
observation that, from the theorems on the evoditéhe curve (8 18), the lines of
curvature of a developable are the generatorssobithogonal trajectories; the two
principal curvatures that relate to the generadogsalways zero.

Conversely, if the surfacghas zero curvatut€ then one will have:

D D" _D12 — 0’

and if one takes the coordinate lines to be lines of curvature then one will have:

() This corresponds to the fact that total and mean turevaf a surface have a significance that is
entirely independent of the chosen curvilinear coordiatethe surface.
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so one will also have the vanishing of eitBeor D”. One then sets:
D=0,D' =0.
From the fundamental formulas (1), page 6, one \wélt have:

a_x: O, a_Y: O, a_Z: O,
ou Ju Ju

i.e., X, Y, Z will be functions of only. However, from the formulas:

16x 16yY 162

F&u \/76u \/TE u

1 axax 1 6y6Y 1 0z0 Z_

\/76u6u \/76u6u \/Tiauau =0,

the second of which implies th@t = 0, it will result that the direction cosines:

1ox 13y 1
JEOu' JEou' JEdu

of the tangent to the line of curvatwrare functions of only, and thus constant along
any individual linev. The lines of curvature are then straight, and from the theorem
that was stated on the evolugwill then be developable.

8 64.
Conjugate tangents.

Two tangents to a surface that emanate from orts pbintsM are called (by Dupin)
conjugatewhen they are conjugate with respect to the indicatrix.

Referu, v to the lines of curvature, and 16t 8" denote the inclinations of the two
conjugate tangents with respect to the iind=rom their definitions, one will have:

tanftan@’ = _h
r2

On the other hand, if the symbdl denotes the increments of the curvilinear
coordinates along the first direction, addenotes the ones along the conjugate direction
then one will have:

tan@= E dv, tan@’ = G 5\/

du 5u
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and therefore:
E G

(19) —dudu+ —=dvdv=0.
r2 rl

Considering the conjugate directions on the surfaceaisil lead one to the following
observation: LeC be an arbitrary curve that is traced on the sur&eehich is referred
to an arbitrary system of curvilinear coordinatesvj. The tangent planes ®alongC
envelop a developable that circumscrilgeslongC. We prove thathe tangent to C at
any point of that curve is the generator of the developable that is goriled by the
conjugate tangentg).

Hence, write down the equation of the tangent plargsataa pointX, y, 2 of C:

(20) €= X+(n-YY+((-23Z=0,

in which ¢, n7, { denote the current coordinates. Displacey,(2) alongC, wherex, y, z,
as well asX, Y, Z, are functions of the arc lengsnlongC, and differentiate (20) with
respect te. The equation that results from this:

dx dy dz _
(21) @_)OEHO_”EHZ_Z)E_O’

which is associated with (20), gives the gener&@oof the indicated developable that
emanates fromx( y, z). Let the symbold denote the increases Xy, z when one
displaces it on the surface in the directénhand observe that the direction cosinesof
are proportional to:

ydZ_pdv o dX g dz o dy | dX
ds ds ds ds ds ds

as are, oy, oz. One will get:
X dX+ oy dY+ oz dZ= 0,
or, if expresses, y, z, X, Y, Z in terms ofu, v:
(22) Dduas+D' (duov+dvdv) +D" dvov=0.
If one takes the lines, v to be the lines of curvature then, from (14), this last
equation will coincide precisely with (19), and will prae state property.
Observe that (22), which expresses the idea that thingsvelements that correspond

to the increased, J are conjugate, is constructed from the second fundainfemtn in
the same way that the orthogonality condition (1142 8page 91:

() It follows from this, in particular, tha®n the circumscribed developable to a surface S along a line
of curvature C, the curve C will be the orthogonal trajectory ofgbmerator. That is a characteristic
property of the lines of curvature, which can also seefine them.
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Eduau+F (duov+dvdu) +Gdvov=0

is constructed from the coefficients of the first fumeatal form.

A double system of lines that is traced on a surfacalled aconjugate systerwhen
the directions of the lines of the two systems thass through any point of it are
conjugate.

It is clear that one of the two systems can be talbitrarily, and if its equation,
when solved for the arbitrary constant, is:

¢ (Uu,v)=c

then the lines of the conjugate system will be the lihasare integrals of the first-order
differential equation (cf., § 42):

(Da—p—D’a—pjdu+( D’%— D'%j dv=0.
ov oJu ov Jdu

In particular, observe thatthe necessary and sufficient condition for the doate
lines u, v to form a conjugate system is that ounstinave D= 0.

The double system of the lines of curvature is collebtian orthogonal conjugate
system, and it is the only one that is endowed witkdhwo properties.

8 65.
Asymptotic lines.

A line that is traced on a surface is caleymptoticwhen the tangent to the line
coincides with its own conjugate at any of its pointg. follows from (22) that the
condition:

(23) D du + 2D’ du dv+D" d¥ =0

must be satisfied along an asymptote, and converselyiné @f the surface satisfies the
differential equation (23) then it will be an asymptoteke the lines of curvature, the
asymptotes, which have (23) for their differential equatidefine a double system
(which is not orthogonal, in general), and the direiof the two asymptotes that pass
through any point of the surface will coincide with theymptotes of the Dupin
indicatrix.

Naturally, the asymptotes will be real only wH2mD" —D'? < 0 (i.e., in the region of
hyperbolic points) and imaginary in the region of ellippoints. It is only for the
developables (§ 63) that it can happen that the two sysbérasymptotic lines will
coincide (with the generators of the developable).

Thus, observe that one will get the following theorénom the definition of
asymptotic lines itself:
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The osculating plane of an asymptotic line A at any of its points euicicles with
the tangent plane to the surface. Conversely, if a line A has that prdpen it will be
an asymptote.

In fact, the circumscribed developable to the surfémegathe asymptoté will have
the tangent t@\ for its generator, which is the edge of regression.

Conversely, if the circumscribed developable to the sarédongA has that line for
its edge of regression then it will be an asymptote.

The property that was just observed also follows imntelyiaand analytically from
formula (11), page 18, since it results that if one Dad? + 2D' du dv+ D" dv* = 0

, Ccoso :
along a curve then one will also have—= 0, and therefore either cas=0or 1 /p=
P

0; i.e., either the osculating plane of the linencmles with the tangent plane to the
surface or the line is straight. However, in thtdr case, the osculating plane will be
indeterminate, so one can also regard it as cantidith the tangent plane.

8§ 66.
Properties of conjugate systems.

Following Darboux {), we now proceed to give some important propertés
conjugate systems and asymptotic lines.

Suppose that the formulas:

x=x(uvVv), y=yUvVv), z=z(u,V)

define a surface that is referred to a conjugastesy (1, v). The equation that one
connects with the fundamental equations (1) of § f#ge 5 will then b®' = 0, which

gives the theorem:

The Cartesian coordinates x, y, z of a point that moves on the sarfaselutions of
the same Laplace equation, which takes the form:

2
0@ :a%+b% a= 12 b= 12 |
Juov ou ov 1 2

Conversely, one has the theordfmx(u, v), y(u, V), z(u, v) are solutions of the same
Laplace equatiori24) then the linegu, v) on the surface:

(24)

x=x(uv), y=y(uv), z=z(uV)

will indicate a conjugate system

(*) V.1, pp.127gt seq.
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Moreover, one will then have, in fact:

9°x 0%y 0%z
Jugdv dudv 0wV
x dy 0z |_,
du du du ’
ox o0y 0z
v ov v

ie.,D'=0.
Now, suppose that the linesv are asymptotes. In such a case, one will have, from
(23):
D=0,D"=0,

and equations (I), 8 55 will give the theorem:

The coordinates x, y, z of a point that moves on a surface, when expEEss
functions of the parameters u, v of the asymptotic lines, simultdpesatssfy two

equations of the form:
9°0 08 _od 11 1
_:a_+ ~ a: ) = L]
ou*>  ou p ov { 1} o { ZJ}

a_ze:y%+5% y= 22 o= 1
o> “ou v’ 1]’ 1"

Conversely, if two simultaneous equations (25) iadiree common linearly-
independent solutions y, z (%) then the formulas:

(25)

Xx=x(uVv), y=y(vVv), z=z(uV)

will define a surface that is referred to its asyotip lines.
This property can serve to give the analytic pafdhe theorem:

Projezctive transformations preserve the conjugatgteans and asymptotic lines of a
surface(?).

A projective transformation is given by the formastl

) y,:

cq_lm
NL
1]

SN
SRS

() The system (25) must then constitute an unlimited iat#grsystem.

() Geometrically, this results immediately from thaetfthat the circumscribed developable to a surface
along a curve will change into the circumscribed devel@pabl a transformed surface along the
transformed curved under a projective transformation.
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in which a, £, yare complete linear expressionsjry, z, and will therefore be solutions
of (24) if (u, v) is a conjugate system or of the system (25), i are asymptotic.
However, if one sets:

6=

(ST

then (24) will be transformed in an analogous equatioréfoand similarly, the system
(25) will be transformed into a system of the samenfowhich proves that asserted
property. In the next chapter, which treats tangentiatdinates, one will similarly see
that the dualistic — or spatial reciprocal — transforamtialso possess that property (see 8
82).

One also has systems of lines of curvature for tingugate systemsu(v). One can
then ask what special properties belong to equation (2dxthaz satisfy. In that case,
one can see, with Darboux, that:

X+ + 2

will also be a solution of (24). In fact, set:

p=X+y+7,

so it will result from (I), 8 55 that:
62_'0_ 12 6_,0_ 12 6_,0 =2F
ouov | 1]du |2]av ’
and theno will be a solution of (24) i&and only ifF = 0.
With that observation, Darboux gave an elegant prot@theoremThe inversion

by reciprocal radius vectors preserves the lines of curvatdrbe known formulas for
that inversion are, in their simplest form:

= R?x L Ry B R?z
X+ Y+ 72 XX+ Y+ 7 X+ y+ 7
Now, since:
p=X+y +7

is a solution of (24) in the present case, the tramgfton:

_ R
0

el

will change (24) into an equation of the same type thabaolsly is satisfied by:

X,y Z,



Chapter IV. — Fundamental formulas from the theoryofeses. 29

and alsa¢? +y’? + 72 =R/ p, since@= R is a solution of (24)J. From the preceding
observation, the linesu(v) will also be lines of curvature on the surfé&ehat is the
locus of the pointx, y’, Z).
8 67.
Particular cases.
We shall give some applications of the results optleeeding number.
1. Consider the equatiof)

0% _
Juov

whose general integral is the sum of two arbitrary fonst one of which isl, and the
other of which iss. Consequently, take:

(26) x=fi(W+1(v), y=h+g(V), z=fU-+4¢V)

on a surface for which the lineg, {/) define a conjugate system. That surface is called a
surface of translatiobecause it is generated by the translatory moticn @frve whose
points describe just as many congruence curves by translaiofact, it is enough to
give a translatory motion to the curve:

x =f; (u), y =1, (u), z="1;3(u),

in which each of its points describes a curve thabimgyment to the curve:

X= ¢ (V), y=¢2(v), z= @3 (V).

It is clear that there are two ways of generatirag Hurface; viz., it will arise from
translating a curva or a curvev.

One can, with Lie, consider the surface of trangtatibat is generated in the
following way. Take the two curves:

X = 21 (u), y = 25 (u), z = 23 (u),
X=201(V), y=2¢2(v), z2=2¢5(v) .

The surface is the locus of points between all osdgments that connect a point of
the first curve with a point of the second one.

One observes that the differential equation of thgmgtotes for the surface of
translation is given by:

() DARBOUX, v. |, page 208.
() DARBOUX, v. |, page 98et seq.
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AORNORIO) AR AR AC)
) ) f| dé+| £ f fY|d?=0,
AR AR AC) B.v) #,(v) 4,09

and if one supposes in particular that:
f, =0, $1=0

then the variables will separate; i.&he asymptotes of a surface of translation whose
generating curves are in perpendicular planes are obtained by quadratures.

2. In the second place, consider the equation (

%0 38 3@

(27) U= " v "au

One sees immediately that:
f=AU-39"(v-3g"

will be a solution, no matter what the constalta are. Then take:
X=AUu-3"(v-2a", y=Bu-b"(v-b", z=C(u-9"(v-9"

and get a surface on which the lingw trace out a conjugate system. One finds that the
differential equation of the asymptotes of that surface

m(m-1) du _ n(n-1) dv
u-a(u-B(u-9 (v-a(v-B(v-9°

which is integrated by quadrature with elliptic ¢tions.
If m=nthen the equation of the surface will be:

X1/m y1/m E1/m _
(Zj (b—d+(gj (C—a)+(cj (@a-b=@-bB(b-9(@-09,

and the integral of the asymptotes will be algebmau, v.
In particular, consider the case of:

— -1
m=n=1,

and observe that + v is then an integral of (27). One sees that iftakes:

() DARBOUX, v. |, pp. 242.
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A>+B2+C?=0

then the linesu, v will be precisely the lines of curvature of the secongkele surface,
sincex? + y? + Z is a solution of (27). Therefore, for the ellipsoid:

X—+—+i =1, &>pB%>)3
a 14

it is enough to take:

2= a@+u)a’+y V= BB +UB+Y) Ly U +Y)
(@ -B*)a*-y?)’ (B-y)B*-a?)’ V' -a’y*-B

in whichu varies between %2 and —32, andv varies between 82 and —c?, and all of
the points of the ellipsoid will be real (in ellipitoordinates).

8 68.
Lines and principal radii of curvature in Cartesian coordinates.
One must often apply the general formulas of tlesgnt chapter to the case in which

the equation of the surface is given only in therfa = z(x, y) in Cartesian orthogonal
coordinates. With the Monge notation, set:

_ 0z _ 0z _ 0z _ 9’z
-—, r - 5 S - ) t - 1
ay ox* oxoy ox*

q

o©
1

QJ|QJ

><_N

if we intend thau =X, v =y then the coefficientg, F, G of the line element will be:
(a) E=1+p> F=pgq G=1+¢f

It then results that the direction cosines ofrtbemal will be:

B

X = _—p Y = _—q Z= ;
’1+p2+q2 ’1+p2+q2 ’1+p2+q2
The coefficientd, D’, D" of the second fundamental form will then be:

U

» D

- r — S_ ’:—t
D_\/1+p2+q2’ Ji+p?+qt 0 Ji+pP+qt

The mean curvaturél and the total curvatur& are consequently given by the
formulas:



Chapter IV. — Fundamental formulas from the theoryofeses. 32

H = 2Pgs— 1+ Pt [+ d)r

(@ (1+ p2 + q2)3/2

_ort-s?
@ T
Finally, note that the differential equation oé tasymptotic lines will be:
6 r dx@ + 2s dx dy+ t dy? = 0,

and that of the lines of curvature will be:

(€) {1 +p)s—par d¢+{(1+p’) t— (1 +’) r} dx dy+ {pqt— (1 +q) 5} dy’ = 0.

8 69.
Calculating the differential parameters.

We conclude this chapter by giving the very impottexpressions for the differential
parameters of, y, z, X, Y, Z, and two functions of them:

p=(0C+y+7), W=Xx+Yy+Zz

the first of which represents one-half the squédréhe distance from the origin to the
point (, y, 2 of the surface, and the second of which represt@ distance from the
origin to the tangent plane.

For these calculations, we give some invariantperies of the differential
parameters that refer (when it is appropriateh#lines of curvature as coordinate lines,
and recall that the determinant:

1 ox 1 0y 1 0z

JEou JEou JEau

1 ox 10y 1 0z

JGov JGov JGav
X

Y Z

is the determinant of an orthogonal substitutior appeal to the formulas:

in that case.
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If one lets:
1(0gY 1(0¢\ 10p0w 1040
D@ = _(_¢j +_(_¢j , A (@, @) = 1990y 1099y
E\ du Glov Edudu Gadvov
then one will find:
(28) Aix=1-X?2 MAy=1-Y?3 Nz=1-2Z72
(29) O (% y) == XY, 0 (x, 2 =—XZ Oy,2=-YZ
One will then have:
2 2
MX = iz_l(%j +_:|2._1(6_Xj ,
r, E\du - Glov
and analogous expressions fqlY, A;Z, so:
1 1
(30) AMX+MY+NAZ = —2+—2.

rl r2
In order to calculat@é;x, one can refer to the general formula (8 32, Qe

— Gx,+Ex,—2FX,
EG-F?

JAVD 4

in which thexs are the second covariant derivatives xofvith respect to the first
fundamental form; however, according to the forrafly 8 55 (page 5), one has:

X11 = DX, X12=D" X, Xoo = D" X,

SO:
px= GDFED -2FD
EG-F
or (8 55):
(A) Aﬂ:—HX:—(£+in.
rl r2

This important formula (of Beltrami) proves thair fa surface with zero mean
curvature (viz., a minimal surface), the sectidra bne makes with a system of parallel
planes will belong to an isothermal system.

Another formula, which has great importance foe theory of applicability, is
obtained by the constructing the differential pagtan (8 32, page 68):
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_ XX~ Xiz
DppX = ==*£——=<£
7 EG-F?
which gives:
(B) Doox=(1-A1X) K,

from the formulas that were just recalled and from (28).

This is a second-order partial differential equationxf@which is also satisfied foy
andz), whose coefficients are defined by only those of itis¢ fundamental form.

An equation of this nature will also be satisfied by:

p= (< 4y +7),
and indeed, one will find, in the first place (when reddro the lines of curvature):
Np=2p-W?2.
Thus, if one observes that the second covariant dieegaofp are:
p1=E+DW, pr2=F+D W, Pr2=G+D"W

then one have directly:
Mop =2 -W (LLEJ,
rl r2
1 1

Dppp=1-W (—+_j +W?2K,
rl r2

and if one eliminate®V, W ? from the expression fakip, Azp, Azz0 then one will obtain
the desired formula:

© Do0 = Doop =1 +K (A0~ 20).



