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If an arbitrary cause determines a change of form maégerial line with double
curvature, whose length one imagines to be divided mfboitely-small pieces, then that
change can be referred to three distinct types o@trans for each of its points:

1. An extension or contraction of the element efe¢brve in the sense of its length.

2. An increase or decrease in the contingency angle ith formed by two
consecutive infinitely-small elements, oflexureof the curve.

3. An increase or decrease of the contingency angle ishaefined by two
consecutive osculating planes, when referred to #raegoint, and that can be called a
torsion.

If the material ilastic(i.e., if it opposes the changes in form that thedsrtend to
impose upon it) then one can always consider that aesistat each point to be produced
by three types of forces that oppose the three typesraitions that we just spoke of.
The force that is contrary to extension, or the itwanal contraction of the elements of
the curve, is calledension The one that resists the opening up or reduction of the
contingency angle is commonly called thlasticity of the angle of the curve, or more
simply, the elasticity of the curve, because ihis only one besides tension that has been
considered up to now. The third force tends to preventdhéngency angle between
two consecutive osculating planes from changing. Thhat kind of elasticity is exerted
by means of the torsion of the element of the curvieat Type of force develops mainly
in curves of double curvature, and up to the present geometendadave neglected its
consideration entirely. While addressing the problemweashall treat herd,agrange
arrived at some equations, which are undoubtedly exaatufees that are endowed with
only the first two types of elasticity, or for plarnairves that are subjected to forces that
are situated in their plane, but which are hardly comre for the general problem of
elastic curves of double curvature. Imagine, for exanagptagetallic filament that is bent
into the form of a helix, like the springs that are chfleil springs. If a force acts in such
a manner that it brings the two extremities of tt@l closer together or further apart then
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one will see well enough that the change in form thaxperiences will take place
everywhere at the expense of torsion in the metidtiment.

The three kinds of geometric elements that | jusisdered to be variable for an
elastic curve will be constant for a stiff curve, andmgeters know that it will result that
the indefinite equations that these two problems providst mresent themselves in
absolutely the same form, or they must be capable n§lmminverted into the same form,
and they must differ only by their objective; i.e., by tthengs that they wish to
determine. It is very singular that the authoMgcanique analytiguevho insisted upon
pointing that out on several occasions, neglectecppsication to the problem of elastic
curves with double curvature. He was led to consider yjhe of torsion forces that
present themselves naturally in that context, moreomMer had yet another advantage in
his expression for the stiffness: He could avoid thee®rthat are produced by the
indeterminates thatagrange employed as multipliers for the variations of certa
differential functions that must be constant alonggal rcurve that is invariable in form.
Upon examining what those forces are, one will seetttaiof them are infinite, one of
first order and the other of second order. The reasothét extraordinary circumstance
is found in the function that these forces are intdrtdefulfill. That is what one will see
sufficiently well in the course of this papetagrangedid not look for the particular
geometric significance of each of the three diffaemuantities that must be invariable,
so he did not seem to recognize the inconvenience sipatkke of.

In order to invest a little clarity in a very delicaebject of analytical mechanics, |
shall begin by treating the questions of equilibrium of sgverces that act on polygons
whose sides are straight and rigid rods. Here, | mesligirthat the type of coupling that
| shall suppose for those rods hardly seems naturalwaild reading that part of my
work, one must not forget that it is quite preliminand that it will be explained by what
follows it. One must further recall that this paperaispve all, intended to complete and
clarify some chapters inagrange’sbeautiful work, and that all of the details that oar c
might desire while reading it have been omitted, becdgseare presented Mécanique
analytique.

Having thus been led to consider some new elements tutkies and polygons that
are constructed in an arbitrary manner in space, ondingdlsome new expressions and
some new formulas that relate to their geometry irpaper.

1. — Take several points in space that are denoted by thbensrt, 2, 3, ..., and

suppose that those points are joined by libs 23, 34, ..., which form a continuous
chain. Represent those successive lines, By, a’, ..., and the orthogonal coordinates of
the first point byx, y, z; those of the second one atgy', Z, those of third byx”, y", 7,
... One knows that:

a2 =AC + Ay + A7,

a?=AxX? + Ay? + AZ?

in whichAx represents the differenge— x andAx? represents it square.
The coordinates of the points 2, 3, 4 relativéhefirst one, which is taken to be the
origin, are:
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! Al

X=X X' =% X"=X ...,
Y=Y Y-y Y.,
Z—-z 2'-2272"-2 ...,
ie.:
AX, AX + AX, AX + AX + AX', ...,
Ay, Ay + Ay, Ay + Ay + Ay, ...,
Az, Az + N7, Az+ N7 + A7, ...,
or rather:

AX, 2Ax+ A%,  3AX+ AX+AX, ...,
Ay, 20y+A%y, Ay + 3Ny +AYy, .
Az,  20z+ N’z 3Az+ 3Nz+ A%z ...

The cosine of the angé of the first two sides is:

—~ _ AXAX+AYAYy+AZA Z
cosad = :

!

aa

The square of the sine will then be:

o~ 2 2 L2 12 _ . ,
() sifag = O HAY +AZ)AXHAY ;A;;) (B8 %D P WA &Y

Upon multiplying this by the produef a’? of the squares of the two sides of the angle,
what will remain is the numerator, which is the squaréhefarea of the parallelogram
that is constructed on the first two sidea’, and one can give that expression the form:

(Ay AZ —AzAY')? + (AzAX — DX AZ)? + (AX Ay — Ay AX)?.

The termAy AZ — Az Ay is the projection of that rhombus onto geplane. It is equal
to Ay A’z — Az A%, so the expression for the area of that parallelogsam i

[(Ay A%z — Az DY) + (Az AX — AX A%2)? + (Ax A%y — Ay A*X)?],
moreover.

2. — Consider three consecutive sides’, 8" and draw a plane through each of their
extremities that passes through the other ones orafigddo them. A parallelepiped will
result from that construction, four edges of which Wwél equal and parallel t&, four
others will be parallel ta’, and the last four, ta".

As one knows, the volume of that body will be expeeisby:

AX (Ay +Ay”) (Az + AZ + AZ") — Ax (Az+ AZ) (Ay + Ay’ + Ay")
+Ay (Az+ AZ) (Ax + AX + AX") — Ay (AX + AX) (Az+ AZ + AZ")
+Az (AX + AX) (Ay + Ay’ + AZ") — Az (Ay + Ay’) (Ax + AX + AX")
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and if one removes the terms that cancel each attet, will remain is:

AX Dy’ DZ' + DAy AZ DX + Az AKX Dy
—~AXAZ AY' - Dy DX AZ' - Az DAY DX,

Replace the values @, AX, AX", Ay, Ay, Ay", ... with their values as functions Ax,
A%, A%, Ay, ..., and again remove the terms that cancel, anidttiee expression for the
volume will become:
AX DA%y N7 + Ay N7 Nx + Az AXx Ny
- A A%z NPy - Ay N N3z - Az NPy Nx,

about which, one can remark that, as in the expressiothdoarea of the parallelogram
that is constructed fromanda’, theAx, AX", Ay’, Ay", ..., are replaced with thEx A%,
A%y Ny, ... the reason for that will become obvious beilo\§ 4.

The square of that function can be put into the form:

(A + DAY + A x (ADE + NP + NP x (037 + APy + N3F)

(A’XA3X+ AP YA y+ A2 70 )
+ 29 x (AXAx+APyAy+A°ZA )
X (AXDN*X+AYA® y+ A Z0N° )

— (AX N3 + A%y Ny + N2 N3 x (A + DAY + AD)
— (A% Ax+ D%y Ay + A%z A7)% x (ADC + AN + ND)
— (Ax A + Ay Ay + Az N%2)% x (A3C + A + A3P).

(Seethe paper byagrange“Sur la Rotation des corps,” (1773), Berlin, oe threceding
volume of this journal.)

The three sides, a’, @' are not in the same plane, and it will be usedul ds to
determine the angle that the plane of the first tovons with that of the second and third
one. The sine of that angle is equal to the prodiithe volume of the parallelepiped by
the length of its edge that is common to two pladesded by the product of the areas of
the two faces that are included in those planeas.tite angle between the planes that cut
alonga’, that sine will then be:

2 3 2 3 2 3
AXA YN Z+HA YA 2N A A R \/Ax'2+Ay2+AZZ
) —MXA?ZNy—AYA? N2 2N AZ )3
’ [(AyA*z-AzZN* §*+(A D\* 2D A*)P+(A &% yA A°)N |
X [(By A?Z -AZN% Y)?+(A 2A? =D Y2 PP+(A A7 'y A RN
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In order for the three sides a’, a” to be situated in the same plane, it is necessaty t
this quantity must be zero, or that:

0 =Ax A%y A%z + Ay 0%z N + Az AX NPy
- AX A%z Ny - Ay A A’z - Az Ny A

and that condition must be verified for each of th&t fi — 3 summits, where is the total
number of them if all of the polygon is in the samenpla

3. — Suppose that one has a curve of double curvature, andrgtaran arbitrary
point. Take three consecutive infinitesimal elemestsgeverything that was just said
about a polygon can apply to the curve, and the fornwillhsindergo only a change of
the characteristic of the finite differencAsinto thatd of infinitely-small differences.
The area of the parallelogram that is constructed frensides, a’ of the polygon will
change into the area of one that is constructed fwanconsecutive infinitely-small
sides, which will be infinitely-small of order threénee the two sides and their angle are
infinitely small. Its expression is:

V [(dy d?z—dz d%)? + (dz d*x —dx d?2)? + (dx d?y —dy d*X)?).

If one divides that area by the product of the lengtht®two consecutive elements or
(what amounts to the same thing) by the squisteof the element of arc length of the
curve then one will get the sine of the contingencglewror the angle between two
consecutive sides, which is what the radius of curvadepends upon ordinarily. That
infinitely-small angle, which does not differ from gme, will then be:

J(dyd®z- dzd YP+( dz8 x dxid) z+( dXd-y dypd

(f3) e

One will likewise get the angle between two consigeuosculating planes upon
substituting differentials for differences in fortauyf,) and dropping the primes; the sine
of that angle will then be:

dxd®ydf z dyd zd x dzd xXd-y dXd 2dy dydxd z dzd*
(dyd®z- dzd y+( dz8 x dxd)Zz( dXd-y dyy’z '

(f) ds

It is precisely that angle that constitutes sikeond curvatur®f the curve. In order for
that curve to be planar, it is necessary that teeqaing function should be zero at all of
its points, or that one should have:

0 =dxd? d3z+dyd?z d® +dzd ?x d°y - dxd %z d®y — dyd >x d3z - dzd %y d*x.

(SeeCalcul différentielby Lacroix, vol. I, pp. 631, new edition.)



Binet — The elasticity and stiffness of curves of deutrvature. 6

4. — Go back to the polygon 1, 2, 3, ... that is defined bgithesa, a’, a”, ... Extend
the sidea’towards the point 2, which will serve as origin, by a gitpttiat is equal to its
length. One will then arrive at a point whose coor@isareX —AX,y’ —Ay’, Z —AZ, or
rather,x — A%, y — A%, z— A%z Call that point 3 If we repeat the same construction
with the summits 3, 4, ..., then we will have:

X =X,y =Ny, Z N7, ... X' —AX' Y Ny 2 — N7

for the coordinates of the extremities of the extarsiof the sidea”, a"', ... Call those
points 3, 3", 3", ..., and join them to the points 1, 2, 3, 4, ..., bystingight lined, b’,
b”, ... The lengths of those lines will be given by the &qos:

b? =A% +A*Y +A% 7,
b"2 :AZXHZ +A2y"2 +A2 2"2’

We draw a parallel through the pointtBat we just constructed that is equabtand
directed from 3in the same way that & directed towards 2. We will then arrive at a
point 4 whose coordinates will be— A% + A%, y — A%y + A%’ z— A%z + A%Z, orx +
N3, y + A%, z + A’z ; let c denote its distance to the point 1. Similarly, drapaeallel
through the point '3that is equal td" and directed in the same sense. We will then
arrive at a point 4whose coordinates will bg + A%, y’ + A%y’ Z + A’Z, and its
distance from the point 2 will be called One will have:

? =N+ NV + N Z
C'2:A3X'2+A3y,2+A32'2,

After having drawn a parallel through the pointtdat is equal toc’, a parallel
through 4 that is equal ta”, ..., and so on for the ultimate constructions tegtend
upon the numben of proposed points 1, 2, 3, etc, then we will have congtduct 2
points that are denoted by, &, 5, ... and separated by the distanbex’, d’, ...,n— 3
points that are denoted by,3V', 5', ...,n — 4 points that are denoted bY; 3", ..., and
separated by distanck$ c”, d”, ...,b", c", d", ... If we join the points 1, 2, to time- 2
points 3, 4, 5, ..., then we will hava points in all that are separated by distar&es),

b', ¢’ ..., and form a polygon @f— 1 sides, like the original polygon. Upon commencing
with point 2, the lines’, a", b", ¢”, ..., we will also define another polygon that has th
same relationship to the polygon 2, 3, 4, ..., that thegpol 1, 2, 3 4, 5, ..., has to the
proposed one. Things happen just the same for the pantd3o on for the other ones.

The coordinates of the summits 1, 2,8, 5, ..., of the new polygon that answers to
the point 1 will then be:

X, X + AX, X — AX, X+ A, ...,
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Y, y+Ly, y - 4%, y+ 4%, ...,
z z+ Az, z—-N%z, z+N0%7 ...
Call those coordinates X', X", X", ...y, ¥. Yy, Yy", ...,z Z,Z',Z", ... Those of a polygon

that has the same relationshlp W|th respect to thetlomtewe address that the latter
polygon has to the proposed polygon will also have theegal

X, X + AX, X — AX, X + A3,
Y,  y+A4y, y — A%, y+20%, .,
z z+Az z—-N?z, z+NA0% ..

Now, upon letting denote an arbitrary number:
2

If one replaces the™, xi™

have:

, ... with their values in terms &f Ax, Azx, ... then one wiill

A'x, = x[l—i+i ! ;1—i ! ;1ﬁ;2+ etc}i[Ax +i Ay 4 > ~Lreay etc+|Ax}

The — sign will be used when the numbéesr even. The multiplier of for that value will
be (1 - 1)= 0, and the second part will be equalxb — x ; one will then have

A'x. = (< = x)". It will then result that the coordinates above will come down to:
X., X +X =X X +X' =X ...,

e, x X, x", X", ..., and fory andz one will also have, y’ vy’ ...,z Z, 7', ... One will
then see that this new polygon is precisely th@@sed polygon. That reciprocity is very
singular. One can deduce that from a direct cenattbn of the construction by which
one passes from one of those polygons to the ather It will permit one to call the
polygons that were derived in that manregiprocal if one finds that their consideration
can be useful. They have many other propertias vanshall perhaps develop the most
remarkable of them, moreover.

The construction of the reciprocal polygon to pneposed polygon amounts to this:
Prolong the last side along its length to the poiat is denotedh — 1 and join the
extremity of that prolongation to the poimt- 2 by a line to which one will have to draw
a parallel through the extremity of the prolongatmf the penultimate side. Join that
extremity to the poinh — 3, as well as that of the parallel, and aftesingaprolonged the
antepenultimate side along its length, draw a far#tat is equal to the first of the
preceding two lines that goes from the pant 3, and draw a parallel through its
extremity that is equal to the second one. Aftaritg once more joined the summits of
that new polygon by lines to the point— 4, we will continue the construction in the
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same manner up to the last side. One will have thudrooted the reciprocal polygons
to the polygon that is composed of the last two sidélseoproposed one, of its last three
sides, of its last four sides, ..., and finally, of alitsfsides.

A polygon has two different reciprocal polygons that arsw each of its extremities
and in the sense by which one follows its contour. disi@nce from the extremity of the
last side of one of those reciprocal polygons to thgiroof its first side is equal to the
analogous line of the other one.

5. — Now take a system of three points 1, 2, 3, to whicketliorcesP, P’, P" are
applied, whose components we denotexXbyy, Z, X’ Y, ..., in the sense of the three
coordinate axes. We suppose that the mds that separate these points are capable of
extension or contraction while remaining inflexible andaigtit, that the longitudinal
forces on these rods will b& A’ when equilibrium has been established, and that no
matter what the reaction of the third point to the finge is, we will suppose that it can be
replaced by an internal for&that acts in the direction of a libethat joins the point 1 to
the point 3, which one finds by prolonging the inflexible sidéalong its length. Upon
supposing that this system is entirely free, the sutefvirtual moments of all those
forces will be:

xd(+Y@+Z&+XI&I+YI@I+ZI&I+XI/5(II+Y”@”+ZI/&I/
+Ada+A’da’+Bd,

and that sum will be zero for the equilibrium of thésees. However, one has:

a2 =AC +AY +AZ,

a’?=Ax? +0y"? + 172

b? =A?X® + Ay + N2 7,
and consequently:

oa= ax OAX +ﬂ oy +E oAz,
a a a
a=2 sax + say +2% s5az,
a a a

2 2 2
1o ) :% ON*X +% ON%y +% ON*z.

Now:
OAX =X —JX, OAX = X' —IX, OAX=JX' —20X + JX,

and the values adAy, JAY’, A%y, Sz, ... are formed in the same manner. Since the
system is free, one must equate to zero the terthe isum of the moments multiplied by
each of the independent variatiodg, o X, ...,0Y, ... One will then have the following
nine equations for the equilibrium of those forces, wiegpress the equilibrium of the
three times three forces that act at each point:
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0 :X—éAx+ EAZX,
a b

0 :Y—éAy+ EAZy,
a b

0=z-2pz+Bp2;
a b

0=Xx"+2nx —A,Ax' ~ 2B p2y
a a b

(fs) 0=v+2ay-Lay-22 a7y,

a a b

0=2"+ éAz—A,Az’ ~2B 2,
a a b

0=x"+2pax + B2y
a b

O :Y//_I_éAy/_I_ EAZy,
a b

0=z"+2n7 + B2z,
a b

6. — Upon adding these equations three at a time — namelyirsh with the fourth
and the seventh, the second with the fifth and thetlgighe third with the sixth and the
ninth — one will have:

X+ X'+ X”=0, Y+Y'+Y”"=0, Z+72'+72"=0.

If one adds the fifth one, multiplied yz, to the sixth one, multiplied by Ay, to the
eighth one, multiplied bz + AZ, and the ninth one, multiplied by Ay + Ay”) then one
will find that the terms that depend upon internal forked’, B once more cancel, and
that will give:

Y Az-Z'Ay+Y”(Az+DZ) -Z" (Ay + Ay’) = 0,
and similarly:

Z'DMX—X'Az+Z" (AX + AX) = X" (Az + AZ) = 0,

X'y =Y/ AX + X7 (Ay + Ay’) =Y (AX + AX) = 0.
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These six equations are the general relations for tieenexk forces on the system. For a
system of three points, one can replace the last thith some other ones that are simple
to interpret. Multiply the first three equations by:

Ay N’z - Az Ny, Az N’ x - DX DNz, AX Ay — Ay A? X,
respectively, and add them: The terms that are meitigdyA andB cancel, and one will
have:

X (Ay A’z - Az N%y) + Y (Az A% X — AXA?Z) + Z (AX A%y — Ay A?X),

which is an expression that express the idea thabtlee P, which is the resultant o,

Y, Z, is included in the plane of the three points 1, 2, 3. dther two expressions that
one infers from the last six express the same conditi regard to the forcé®, P”.

7. — If we eliminateB from the first three equations abovs) then we will arrive at
the following three, two of which imply the third:

YA zZ-Z Ny = A (DAy N’z — Nz NY),
a

7 Nx—X pz =2 (Az A% — Ax N%2),
a

XAy —Y Nx = A (AX A%y — Ay AX),
a

and from this, upon taking the sum of the squares and engalee root:

_ o N I(YNZ- ZN 9P+ (ZD% % XA PP+ Dy K%
J[(AyA*z-AZA% Y2 +(A D A A2 P+(A &2 yA A2)R

and by the same process:

_ JIUYAz- ZA Y +(ZDh x XA P+( A ¥y X)F
J [(AyA*z-AZA? Y2 +(A D2 x A A2 P+(A &2 yA K2)A

The numerator in the first expression can be put ireddhm:
VIXZ2+Y2+Z3 (A2 + 02 + A7) - (X A% x+ YAy +Z N2)F] .
However,X, Y, Z are the rectangular components of a fd?chence:

X2+Y2+22:P2,
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and one will have:
B2 =A% + A%y + A7 and XA%x+ YA +ZAz2=PbcosPb,

moreover, in which one letBb denote the angle that is formed by the directiorhef t
force P with b, which is the direction of the tensi@nthe numerator above then amounts

to \/ P2b? - P2k?cos? Pb, or rather, t®Pb sin Pb.
As for the denominator, it is (cf.,1§ the area of the parallelogram that is constructed
on the linesa anda’, and it is easy to see that it is equivalent eoarea of the one that is

constructed from the lines b or ab sin aﬁ). It will then follow that:

A= ab Psin Pb _ PsinPb

absinab sinab

and in the same way, one will also have:

B=p S|.n PAa’

sinab

in such a way that the forcAsandB will be the components &f in the sense af andb,
as they must be.

8. — Often, the action of the point 3 on the poimioines about by means of an elastic
force on the angle 2 that one considers to be djgptwsit, depending upon whether the
angle 123 is open or closed. It seems to us thatcan then regard that force as the
tension in a filament that is constrained to pneséhe form of an arc of a circle that is
described with the point 2 that is the summit & #mgle as its center, in such a manner
that since the extremities of that filament areppadicular to the two sides of the angle,
that force of tension will also be perpendiculathiie same sides at the points where the
filament is attached to those roalanda’; at least, that is how one commonly introduces
the elasticity of an angle into the calculationpod denoting the tension in the filament,

or the elasticity of the angle 2 By and lettinge denote the supplement of the ang/ﬁé
between the two rods, which is an angle that issorea by the length of the arc of the
circle that is intercepted by its sides, and whession we have denoted By One will
get E Je for the virtual moment of the forde Now, in order to determine the angle
one will have:

az + arz _ bz

!

2aa

cose=

in the triangleaa’b, so:
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dajl1 d b | dd1 a B | bt
2|a a ad '

-sinee=—|— gL |-
{ 2| a & d4a| aa

Upon dividing this by — sie, the term that is multiplied bga will become:

aZ+b?— 42
-2aladsine
However:
aa’sine=aa’sinaa =absinab and a’+b’-a’?=2abcosab,
so that term will be equal to:
_ cosab
alsinab

The term that is multiplied bga’will also be:

cosab
alBinab’

and the last one will become:

adsinad brh

b®b _ bdb _ b
hl

in whichh is the distance from the summit 2 to the sidéHence:

_ oa gd  db
é__ — — +_ .
atanab dtandb h

Let a and arepresent the tensions that exist in the @ds, resp. They will no longer
be the same as the A’that we used above when we suppose that theséentermal
forces agree with the ford® in order to produce equilibrium. The sum of theual
moments of these new tensions and the elastcitll be:

ada+dda’+E %,

(a— E Ajéa{d— E AJcFa’ +—E5b,
atanab d tanab h

or rather:

and that sum must replace the @énéa + A’ da’+ B d of the internal forces in §; one
will then have:
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A=a-E:atanab, A’=d—E:a’tanab, B=E:h:

one can also get this from decomposing the forces andarorg their moments.

9. — Once more, consider four points that are subjecttermed forced, P’, P', P
whose components ak Y, Z ; X, Y, Z"; X", ... No matter what the reactions of those
points on each other, one can always imagine thatdheyn equilibrium and replace
their effect by that of:

1. Longitudinal tension in the sidasa’, @’ of the polygon that is formed from those
four points, and we call those tensiggsA’, A”.

2. The tensions in the two linbsb' that join: first of all, the point 1 to the extregnit
3 of a’, prolonged along its length in the sense3@f and secondlyb' to the extremity

3" of @", prolonged in the sense a8 along its entire length, and these new tensiois wi
be calledB, B’ resp.

3. Finally, from the tensiof in a linec that unites the point 1 to the well-defined
point 4 while drawing a parallel that is equalldathrough the point’3

One will see that the polygon that is formed frdva points 1, 2, 3, 4 is then one that we
called “the reciprocal polygon to the polygon 122dbve in 8. From what was shown
there, we will have:

a? =N + Ay + A7,

a"2 :AXHZ +Ay"2 +Az"2’

b* =A%+ A%V + N2,

b,2:A2X,2 +A2y,2 +AZZ'2,

? =N +NYV + N A
One might even presume that this hardly-naturasiwamt between the points 1, 2, 3, 4 is
employed here only because it will serve to explamat follows, and that is also the only
reason that makes us return to the question oétjdibrium of the forces that act on
material polygons.

The sum of the virtual moments of all of thosec&xw, whether external or internal, is:

XX+YHY+ZZ+AX' XK +Y' H+2' T+ ...+
+Ada+A’dd +A”&A"+Bd+B’db +C dg



Binet — The elasticity and stiffness of curves of deutrvature. 14

and if the system is entirely free, as we suppose, ttheensum will be zero, no matter
what the independent variations:
X 0, X, , ...

are. Now:
oa = g5Ax+ﬂ5Ay+E5Az,
a a a
& = snx + Y sayr+ A2 snz,
a a a
&= sax + B sayr + B2 spz,
a a a
2 2 2
d = 2% spx+ BY 5py + B2 5p2,
b b b
2 2 21
& =B sz + BY 5p7y Ab,z SN%Z,
3 3 3
& = DX onex+ BY say + B2 5n%,
C C C
and

OAX =0X —0X, OAy =0y’'- 0y, 0Az=0Z -0z
OAX =0X' —JX, ONy'=0y"-0dy, OAZ =07 -072,
ONX" = dX" = X', dDy”"=dy”-3dy”", ...,

ONX =OX' —=20X + &, ONY"=0y"-20y'+dy, ..,
ONX = X" =2 OX" + X, ONY' =0y —..., ..,
ONX =OX" —30X' + 3K — &  ONy=3dy”"—...,

Substitute these values féh in those ofda, da’, &a”, &, ..., and then substitute them in
the sum of the moments. Upon equating the termsatkatultiplied by the independent

variationsdx, oy, ..., one will then have the equations:

0=X- éAx+ EAZX—EAsx,
a b c

A

0=Y-ZAy+ EAZy—ENy,
a b c
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A B C

0=2-NAz+ =2 Nz2-2N37
a b c

0=x"+2ax —A,Ax' —28 % +§,A2x' +3S A%
a a b b c

0=Y'+ éAy —A,Ay’— 2EA2y +§,A2y + 39A3y,
a a b b C

0=2"+ éAz—A,Az’ — ZEAZZ+E,AZZ’ +35n%
a a b b c
(fo)
0=X"+ A,Ax' —i" Ax +2 p2x - 25,A2x' ~3%a%
a a b b c
0 :Y”+A,Ay'—i" py' +2 a2y - 25,A2y'— 3C Yy,
a a b b c
0=2"+ A,Az’ —i"Az' + B2 25,Azz -3Sn%
a a b b c
0=X"+ i"Ax" +5,A2x' +35a%
a Cc
0 :Y”+i"Ay' +§,A2y'+ 39A3y,
a b c
0 :Z”+i"Az' +§,Azz +35n%.
a b c

10. — Add the first one to the fourth one, the seventh ané the tenth one. That will
give:
0=X+X"+X"+X",
and in the same manner:
O0=Y+Y'+Y"+Y”,

0:Z+ZI+ZII+ZIII.

Multiply: the fifth by Az and the sixth by Ay,
the eighth byAz + AZ and the ninth by (Ay + Ay”)

the eleventh bz + AZ + AZ' and the twelfth by (Ay + Ay’ + Ay")
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and add those products. All of the terms that depend uypernal forcesA, A, ... will
cancel, and one will find that:

0=Y'Az+Y"'A(z+Z2)+Y"A(z+Z +Z)-Z'Dy-Z"A(y+Yy')-Z"Ay+y’ +y”),
and by an analogous process:
0=Z'AX+Z"A(X+X)+Z"A(X+X +X") = X'Az—=X"A(z+Z) - X" AX+X +X"),
O :xlAy+xllA (y+yl) +XI/IA (y+yl+yll) _Y,AX_Y,,A (X+xl) _Y,,,A(X+X,+X")’
upon observing that:

A(z+2)=2'-Z, A((z+Z+Z)=Z"-2 Aly+y')=y’—y, ...
These equations amount to:

O :Y,(Z _Z) — Zl(yl_ y) + Yll(z" _ Z) — le(yll_ y) + YI/I (ZHI _Z) — ZI/I (ylll_y),

O :ZI(XI _X) — XI(ZI_Z) + ZII(X" _X) — XII(ZII_ Z) + ZI/I(X"I _X) — xlll (Z,,,—Z),

O :xl(yl_y) — YI(XI _X) + xll(y" _y) — YI/(XII_X) + xlll(ylll _y) — YI/I (XIII_X) .
These are the known equations of the moments that erisstin the equilibrium of any
free system.

To abbreviate, we shall lehx, A%) denote the functioAx A% —Ay A%, let (A%x, Ay)
denote the functionx A%y — A% Ax, and so on for all similar functions. The expressio
(Ax, A%y, A%2) will represent:

AX DA% N7 + Ay Nz N3x + Az N N3y — Ax D%z Ny — Ay A N3z — Az Ny Nx .
With that, one infers from the first three of equasidy) that:
A= a[X (A%, A%) +Y (0%z A3X) + Z (0%, A%)] : (Ax, DYy, £%),
B=-b[X (A%, A2) +Y (Az, AX) + Z (A%, Ay)] : (Ax, A%y, A*2),
C= c[X(Qy,A%) +Y (Az, AX) + Z (A%, AY)] : (Ax, A%y, A7) .
In particular, consider the first of these quantitienely,A. The coefficients oX, Y, Z
in its numerator are (cf., 8) the projections onto the coordinate planes of a
parallelogram that is constructed from the libes. LetM be that parallelogram, and let

m be the direction of a perpendicular to its planey tiie projection principle, one will
have:
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(0%, A%2) =M cos mx, 0%z, A%X) =M cosmy, (A%, A%) =M cos mz.

The denominator/fx, A%, A7) is the volume of the parallelepiped that is consemict
with that parallelogram as its base and the edgdence:

(Ax, A%y, A7) = Ma sin Ma,

in which sin Ma denotes the sine of the angle that the dirferms with the plane d¥l.

FurthermoreX = P cos >/<I\3, Y =P cos )//I\D Z =P cos zP. Making these substitutions in
the value ofA will give:

A=P [cosxP cosxm + cosyP cosym + coszP coszm] : sin Ma
=P cosPm :sin Ma =P sin PM: sin Ma.

The last expression is the component of the f&tadong the linea, while the other
component of that same force will be in the pl&he One will obtain the same result for
the forcesB, C relative to the lined, ¢ in such a way that these three forces are the
components oP along the directiong, b, c that concur at the point 1 where the foRce
is applied.

If one substitutedx + A%, A% + A% for AX, A%, resp., in the fourth of equations
(fo) then it will become:

0=X"- (A—AJAX+(E—2E——AJAZX+(E+3—C)A3x,
a a o] b a b c

and the following two will change into:

0=Y'- (A—éjAy+(E—2E——AjAZy+(%+ 3—3A3y,

a a b b 4
0=2"- (A—AJA2+(E—2E’——AJAZ z+(£’+ 3—CJA3 z,
a a b b 4 b C

in the same manner. If one adds the first, secand,third of {g) to these equations,
respectively, then they will become:

0=X+X'- A,AX+(E,——B——AJA2X+(—B+2—CJA3X,
a b b d B

0=Y+Y'- A,Ay+(
a



Binet — The elasticity and stiffness of curves of deutrvature. 18

0=Z2+2'- A,AZ{E,—E—'—&jAz z+(—B+2—CjA3 2
a b b d B c

One will then infer that:

A= g (X+ X)A%y, A%+ (Y+ V)(A® yA° p+ (2 F(A° NP
(A, A?y,A\%2) '

One operates similarly d& / b, when one already knovigs/ b, A’/ a’, and finally forA”
/ &", which one easily infers from a combination of k&t equations irf4).

11. — If the polygon is invariable in form then thdues ofA, A’ A", B, B/, C that are
provided by the preceding formulas will be detemdincompletely, and they will
represent the efforts that are exerted in the seht®e lengths of the rods a’, a", and
three other®, b’, c that are coupled with them in a fixed manner, awhith are capable
of producing that invariability, along with them.

Upon supposing that the rodsa’, a’ are absolutely rigid, the angles tletforms
with a anda” will be indeterminate, along with the inclinatiaf the planeaa’” with
respect to that ad”a’. If, one gives the lengths bfandb’ along with those o4, a’, &’
then the angle betweemanda’” and the one betweem” anda” will be determinate,
although the inclination of the planes of thoselasgvill once more be arbitrary and
capable of taking on all magnitudes. However, uassigning the value @f moreover,
the form of the polygon will become entirely deterate, and the same thing will also be
true for efforts of the forces that act at its asgin the sense of those lines, when one
supposes (as we shall) that it is those links &liatv those points to transmit the action
that they receive from external forces. If theygoh that we consider is elastic (i.e., it is
capable of changing in form under the action oémdl forces as a reaction) then we will
have to consider that elasticity, so to be complte must operate at the expense of the
six elements that we just indicated, namely, atetkgense of the elongation of the three
rodsa, a’, a’, and that elasticity will then take the nameegtiensibilityor contractibility,
at the expense of the variation of the angles bat@e@anda’and betweea’anda”, and
finally, at the expense of the angle of inclinatminthe planes of these two angles, and
the latter variation can itself take place onlyuigue of a type of torsion of the si@dg
which is the edge of that inclination. The effeatshe last three elements of elasticity of
the polygon are the ones that mainly replace tfwteBB, B’, C of the rod%, b’, ¢, which
are supposed to be elastic in the sense of thegthe whether extensible or contractible.
As we have said (8), one measures the elasticity of an angle bydhsidn in a circular
cord that have the summit of that angle for itsteeand a radius of a linear unit, and
which is found between the sides of the angle aradtached to those same sides. In that
same paragraph, we saw how one can replace the dbedasticity of the angle between
the two sides with tensions. In order to repldee gystem of six forces of elasticity that
we just enumerated with similar longitudinal temsié, A, A”, B, B, C, we leti denote
the inclination of the planes @fa’ anda’a”, which cut along’, and letl denote the
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elastic force on that angle. We alsodge#’ denote the anglega’ ,ad, resp., and leE,

E’ denote the elastic forces on the those angles, antlyfied a, & d denote the
longitudinal tensions in the rods a’, a”, resp., that are produced by these angular elastic
forces. The sum of the virtual moments of thosdaizes will be:

adat+tdd +d &A"+Edk+E’'& +I Ii,
and that sum must be equal to:
Add+A’Ad+A"A"+BD+B ' d'+C .

Now, the angleg, €, i will be easy to determine as functionsapfa’, a”, b, b', c by the
usual methods of geometry. | shall not report on thelues, due to the extreme
complexity in that of. Upon differentiating them usingand substituting that in the first
of those two sums, one will get an expression ofsdmme form as the second one, and
one can then compare the coefficients of the samatims da, &, oc, ... That will
provide the equations that are necessary for the deteiommdithe tensiong, A’ A” B,

B, C by means of the three forces of elastidtyE’, |, and the tensions a;, &', or
conversely. One sees that this transformation repts the theorem of analytical
mechanics that when the sums of the virtual momenteeofwo systems of forces are
equal, those two systems will be equivalent, and onleesh ican replace the other.

In these two systems of internal efforts, which lédtewise appropriate to establish
the equilibrium of the forces that act on the polygume will remark that the longitudinal
tensions on the rods, a’, a’ are expressed by &, &', resp., when one considers the
forces of elasticitye, E’, | along with them and that the tensions in those lindses A,

A’ A" if one imagines that equilibrium is established wité &id of three other tensions
B, B, C. Now, theA, A’ A" have expressions that are very different from’'ada
However, in a polygon that is presently in equilibriuwhich of the two systems of
forces is the one that actually occurs? One can redgan it is neither of them, at least
if the constitution of the polygon is materially jube one that was supposed in order to
arrive at those formulas for equilibrium. Howevesttbof them are suitable to establish
equilibrium and to replace the one that provides theaet@n of contiguous molecules
on each other in all cases.

If the polygon has four sides then one must considee thesv internal forces that
one denotes bA", B", C’, while supposing that the new sid& is coupled with the
preceding ones in the first wayi.e., by means of longitudinal tensions in straight lines
a",b", c orbyd’, E", I', if one employs two forces of elasticity along witte tension

a" in the new sid@"', one of whichE" relates to the anglﬁ’, and the other of which

I" relates to the angle that is found between theepddithe sideg”’, a’ and the plane of
the sidesa’, a'. One sees that each new side can introduce only tlergdorces for its
coupling with the preceding ones, but one will also bedetthtee new equations for the
determination of those forces.
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12. — All that we just said about polygons with an arbitranynber of sides and the
manner by which the action of the forces upon those polygansbe imagined to be
transmitted or cancelled is obviously applicable to cunfedouble curvature, whether
elastic or stiff. The elasticity of these curves cepend upon only the extensibility of
their elements, the variation of the contingency abglkeveen two consecutive elements
at each point, and the variation of the contingennglea between two consecutive
osculating planes at that point, which can be consider@atersect along the second of
the three consecutive elements of the curve at that, mv rather, along the tangent that
is its prolongation. The stiffness of the curve cossidtthe invariability of those three
guantities for each point of the curve, so it must depend tipee forces that are capable
of producing that invariability in each of those elementdle first suppose that the
elasticity or stiffness is produced by forces that asdogous to the ones, B, C that we
employed in the equilibrium of polygons @. They act along directions that form
angles with the coordinate axes whose cosines are:

AX Ay Az
J O +DP+AZ J O +DP+AZ J O +DP+AZ
Y Ny N’z

\/A2x2+A2y2+A222 ! \/A2x2+A2y2+A222 ! \/A2x2+A2y2+A222 !

A3 Ny N’z
\/ASXZ +A3y2+A322 ! \/ASXZ +A3y2+A322 ! \/ASXZ +A3y2+A322 '

For the arbitrary point of the curve whose coordinatesdgnoted by, y, z, we then
imagine three force4, B, C that act along directions that form angles witly, z whose
cosines are similarly:

dx dy dz
Jd@ +dy+ dZ’ Jd@ +dy+ dZ’ Jd@ +dy+ dZ’
d?x d’y d?z

JBXC+d? Y+ 2 2R+ P+ P72 P+ d Y P2

d®x d®y d*z
JEC+Ey+ 2 B+ P+ P2 B+ 7

and the forceg, B, C that are placed with respect to the paing, z as we said in of 8.
Let X, Y, Z denote the intensity of the components of the fore¢ #cts upon the
elementdm of the curve that is situated at the poiny, z soX dm Y dm Z dmwill be
the absolute forces that are produced by its action uporeldment. Upon observing
that the internal force&, B, C act in the directions of the three lines whose lengths
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JAE+dy+ dZ,  |JdBE+d2y+ d?Z, B+ Y+ 2,

the variations of those directions will be expressed by:

dxddx+ dy dyr dd d  d’xdd’x+ W w dFd  dxdEx+ PPy dFd
J @+ dy’ + dZ Jd*X+d? P+ o 7 J a5+ PP+ B Z

If one abbreviates the quantities:

A B C
Jd@+dy+dZ  Jde+dy+dZ  Jd¢+dy+ dZ

by a, b, c then one will have:

S a(dx ddx + dy ddy + dz 5d?)
+S b ddXx+dy ddy+dz5d%)
+S c(d3 dd* +d% 5d3%y +d%26d %),

for the sum of the virtual moments of those interoatés, in which the integration sign
S must be extended over the entire curve. After integydly parts and neglecting the
terms that refer to the limits of the integral, team of the moments will be combined

with thatS(x ox+Y oy+Zdz dmof the external force and reduce to:

S [Xdm—d (adx) +d? (b d?x) -d?(cd>x)] ox
+S [Ydm—d(ady) +d?(bd?y) -d3(cd?y)] oy
+S [zdm-d(ad) +d?(bd?2) -d3(cd32)] oz

and one knows that the terms that are multipliedkydy, 0z must be separately equal
to zero, which will provide the three indefinite equasion

0=Xdm-d(@adx) +d?(bd?x)-d3(cd?®x),
(f12) 0=Ydm-—d (ady) +d?(bd?y) -d>(cd?3y),
0=Zdm-d(ad? +d?(bd?2)-d3(cd32).

13. — The object of these equations will be very diffedgpending upon the problem
that one is treating. It amounts to determining the figlaaé an elastic filament will take
that initially has a known form and upon which the étastements will depend before
the application of external forces, and some relatiofll exist between the internal
forcesA, B, C, and those elastic elements that one imagines caledeed from what
we said above (81) on the subject of elastic polygons; we shall retorthat subject,
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moreover. However, in order to get an idea of thee®A, B, C, assume that the
filament is perfectly stiff. Those forces will thdxe the resistances that are suitable to
establish that stiffness in the filament when it castied external forces that act upon its
particles. Since the figure of the filament is givenwy equations in three coordinates,
the equations above will be completely integrable, eedhe force¥, Y, Z can then
depend upon only the variable that fixes the point of tineecto which they relate. One
will then first infer these integrals:

O:,[de—adx%d(bdzx)—dz(cd3x),
O:,[Ydm—adyfd(bdzy)—dz(cd3y),
O:IZdm—adzd(bdzz)—dz(cd3z),

in which thej sign refers to an integration that is performed fiame of the extremities
of the curve up to the point at which one would like ticudate the effort#\, B, C, which
are replaced in those equationsa)yp, c. In addition, | suppose that the constants are

attached to tha[ sign. If we eliminatea from those equations then we can form the
following three, two of which will imply the third:

0 :dyIz dm+dyd (b d%2) - dyd?(c d%2) —dzIY dm-dzd (b d?%) +dzd? (c d?y),
0 :dzfx dm+dzd (b d*) — dzd ? (c d>%) —dez dm-dxd (b d%2) + dxd? (c d*2),

0 :deY dm+dxd (b d%) — dxd? (c d3y) —dyfx dm-dyd (b d*x) +dyd? (c d>x).

One can further integrate them and arrive at theviatig equations, in which we have
once more supposed that the constants are included inwhiategration signs that were
introduced:

0 :yfz dm—zIY dm—f(yz—z Y) dm+ b [dy d’z—dz d%]
—c[(dy d*z—dz d*y) - (d?y d®z—d?z d3y)] —dc[dy d* z—dz d* ],

0 :zIx dm—xfz dm—f(zx—x 2) dm+ b [dz d* —dx d?7]
- c[(dz d*x —dx d*2) = (d%z d*x—d *x d*2)] —dc [dz d*x —dx d*Z,

0 :xIY dm—ny dm—j(xY—yX) dm+ b [dx d%y —dy d*]
—c[(dx d*y —dy d*x) - (d>x d°y —d %y d>x)] — dc [dx d®y —dy d*¥] .
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One can observe that upon multiplying these equatiordxbgy, dz respectively, and
adding the productb anddc, they will be collectively eliminated, and one willtghe
equation:

0:@dz—zdijdm+(zdx—xdz),[Ydm+(xdy—ydx)jde

+dxj(yZ—zYdm+dyj(zX—dem+dzj(xY—y)de
- ¢ (dx d%y d®z + dy d%z d°x + dz d*x d°y —dx d?z d°y —dy d*x d°z—dz d?% d>x)

for the determination of. If one adds these equations, after multiplying thend’&y
dy, &z, respectively, then one will find that they have bekminated, bub is preserved
in them:

o:@/d3z—zd3y)Ide+ (zd3x—xd3z)ijm+ (xd3y—yd3x),[de

+d3xf(yz —zydm+d3yf(zx —xzjdm+d3zf(xv —yX dm
- b (dx d%y d3z +dy d?z d°x + dz d*x d°y —dx d?z d°y —dy d*x d3z—dz d?y d°x)
- ¢ (dx d® d*z+dy d®z d*x+ dz d® dy —dx d°z dy —dy d°x d*z—dz d®y d“x) .

b is eliminated by means of that equation, sioé eliminated already, buat enters into
the first integrals withb andc, so it will be easy to obtain in its own right.

Before going any further, it might be good to point datt the preceding integrals of
the three equation$:£), which are of order three with respectaid, ¢, contain only the
six arbitrary constants that are included in the insgra

Jde JYdm Ide j(yZ—ZYdm j(zX—XZIdm J(xY—dem-

This is howa, b, c enter into these equations: They each contain onlgliffezentialsda,
db, dc, d b, d %c, d %, in such a way that they will have order three,iorder two inb,
and first order ina. That consideration assures one that their compié¢grals can
contain only six arbitrary constants. If one imaginbat tone differentiates these
equations three times in succession then nine equation®sult that contain, b, ¢, da,
db, dc, d %a, d®b, d %c, d *a, d °b, d 3¢, d *a, d *b, d “c, d °a, d °b, d °c, and one principal
variable. If one combines these nine equations with tlgnatithree then one can
eliminate the eleven quantitiasb, da, db, d %a, d®b, d %a, d °b, d *a, d b, d °b, and what
will result is a differential equation of order six en One knows that this completely-
integrable equation will provide the complete integraltheforiginal three equations by
eliminations, which will be integrals that contain ot six arbitrary constants of the
equation that has sixth orderan
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14. — If one has, b, c then the internal forces, B, C that belong to each point will
be given by the equations:

A=ay d¢+ dy + dZ, B=by d®X+ Y+ #Z, C=cd®%+dy+dZ.

Now, the quantityc that is found above has a first-order differentialction for its
numerator, and a sixth-order differential quantity fsrdenominator, in such a way that

its value will be infinite of order five, and when one ltiplies by \/d3x2 +d’y’+ d* 7,

it will give an expression fo€ that is infinite of order two. One sees in the samay
thatb has a sixth-order differential function for its dempator and another one of third
order for its numerator. However, in order to Betone must multiply that value by

J d5¢+d?y?+ d?Z, which is infinitely-small of order two. It will thebe obvious that

it will have an infinitely-small dimension that iswer in the numerator d than in its
denominator, and that it will be infinitely-large of ordere. As forA, it will be a finite
qguantity. One will see the reason for that in thet that there is a singularity in the
magnitude of those forces when one compares with atlwas said (8% and9) in
relation to polygons. One will see in that way thatftree B that opposes the opening-
up of the angle between two infinitely-small contiguoudes will have its direction at a
distance from the summit of that angle that is inéilytsmall of order one, that the force
C that mainly opposes the variation of the angle bellincluded in the planes of the first
two elements of the curve, and the plane of the skaad third ones, and that this force,
| say, will be at a distance from the edge of thelarmptween those plane that is
infinitely-small of order two. The magnitude of thoeseces must compensate for the
way that their direction approaches the summits or dfiehe angles of opening that
oppose them.

15. — What we just said about the fordgsB, C that keep the curve in the form that
one assumes to be preserved when it is considered stifbean be applied to the
internal forces that exist in an elastic curve of doehlevature when the curve when the
curve has taken the form that it must have under thenacf external forces that are in
equilibrium by reacting with its elasticity. Howevéhat quality of the curve cannot be
expressed by means of the infinite forces that we pustuntered. One can avoid the use
of those infinite forces by introducing elements, whetastic or stiff, that are more
natural than the forces B, C. We will take them to be:

1. The tension that exists in the sense of the aleaféhe curve.

2. The elasticity of the angle between two infinitehgall contiguous sides, when
measured by the tension in a material line that jdiaseixtremities of the two infinitely-
small sides when each of them are prolonged to a ugitHen the sense of the edges of
the infinitely-small angle. The distance betweenséhtwo points will be a measure of
that angle.
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3. The elasticity of the inclination between two amnsgive osculating planes. The
latter force is again measured by the tension in athae joins the extremities of two
lines that equal to one unit, situated in the two oscyjgtianes, and perpendicular to
their common intersection, or rather to the secohthe three consecutive infinitely-
small sides of the curve at the given point. Upormntakhose two lines when starting
from this second side in the curve in the sense for whiehangle between them is
infinitely-small, the distance between their extreesi will be the measure of the
infinitely-small angle between two consecutive oating planes, and the tension in that
line can be regarded as a force of torsion on the deside of the curve. Letdenote
that angle, or rather, the infinitely-small line thraeasures it, and which we call the

tension. From(f;), one will have:

dxd’yd® z+ dyd z8 x dzd Xd-y dXd 2dy dxd z dzd*

'=ds (dyd®z— dzd Y +( dz8 x dxd)z+( dXd-y dyy’x

The square of the function that enters into the natoeiof that value can be put into the
form:

(¢ +dy? +dZ) (d>C +d AP +d D) (d3C +d 3 +d D)
+2 [d*> dX +d? dy +d?z d2) (d°3x dx+d3y dy+d >z d2 (dx d® + dy d?y + dz d%2)
— (¢ +dy? +dZ) (d*x d°x +d?y d° +d %z d*2)?
- (@3¢ +dA2 +d?DP) (d3k dx+d 3y dy+d3z d?
- (@3¢ +d3? +d>2) (dx d* +dy d%y +dz d?2)?.

However, if represents:

dx + dy? + dZ by a,
d2>¢+d3y? +d?Z2 by 3
d3¢ +d3% +d372 by y;

as inMécanique analytiquehen one will have:

da

dx d X +dyd?y +dzd?z =

d’>xdX+d?yd?% +d?zd?z :%,
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d3*dx+d%dy+d3zdz = -B.

The denominator:

(dy d%z — dz dy)? + (dz d* — dx d?2)? + (dx d?y — dy d?)?
amounts to:

(X +dy? +dZ) (d>¢ +d 3 +d?ZP) — dx d X +dyd %y +dzd %2>
One will then see that the differential functiotlepends upon only:
a, B v da, dgB da
| shall dispense with writing it out, but it is dbus that the variation of that angle &r
will have the form:
oda+pdB+qdy +0dda+p dds+o'dd?a,
and that variation, when multiplied bywill be the virtual moment of that foreewhich

will measure the torsion at the point consideredhencurve.
From formula {3), the angles between two consecutive elements of the curve is:

J[@¢+dy+d2)( & %+ d y+ d 3-( dx8x dyd+y dXdl]:
dx’ + dy’ + dZ ’

hence, that value will depend upon oolyg, da. Its variation will then have the form:
ce=moa+ndB+m oda.

Call the elastic force of that angdewhich is measured in the way that we just spdke o
its moment will bes de. Finally, if gis the force of tension in the element of the eurv

the direction ofds then its moment will ber dds Now, one has?dszﬂ, so that
2/a

moment will have the fornorl da. The sum of the moments of the forces at thetpgin

y, zwill then be:

XOox+Yoy+Zozdm+ ol oa+e(Mda+ndB+m oda)
+1 (0 da+pdB+qdy+o’dda+p’ddB+0" 5d?3a),

and upon supposing that the elastic or stiff filatme free along its length, but can have
its extremities constrained, when the integrallat tsum over the entire extent of the
filament is added to the sum of the moments offtinees at the extremities, the result
must be zero. Hence, upon abstracting from therlé&dirces, we propose only to find the
indefinite equations:
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0=S (X Ix+YJdy+Z52dm
+S[ol+em+10] s
+Sien+ip B+Siqdy
+Slem +/0]dda+Sipdip+Siod? .
The last three integrals can be partially performed wadcan make the following

replacements, in which we have again omitted the tenatsrélate to the limits, as in (8
12), namely:

Slem +/0]d o with -Sd[em +/0] da,
Sipdoa with -Sd[/p] &8

Siod?a with +Sd?[/01 da.

The integral above can then be replaced with:

SXox+Ydy+Z 7 dm
+ S{ol+em+i0-d[em +10]+d?[1 0]}
+S{en+/p-d[/p]} B
+S{q .

However:
od=2dxdox+dydoy+dz ddo),

IB=2d>xd?’x+d?yd?dy+d?zd? &),
oy=2@3xd®*x+d3yd3y+d3zd’®) .

If one puts those values into the sum above therethdtito which one will arrive will be
identical in form to the one in (8), and one will deduce three indefinite equations that
are entirely similar to the onef4 in that article, but in which the quantitiasb, c are
replaced with:

2{cl+em+ro—d[em +/0]+d?[s0"},

2{en+/p-d[/p]}

2 {1 q},
respectively.
Once one has determined the values, &f c for a stiff rod with a given figure above
(8 13), one can deduce the value of the forfmom the equatiort = 2/ g. On that
subject, one can remark theis a quantity that is infinite of order five, and we ssvove
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thatc has the same order, swiill be a finite quantity, as we stated. If one knawisen
will get £ by means of the equation:

b=2{en+/p-d[/pl}

in which b is infinite of order three, as well as/ p, d [/ p']; it will then follow thate is
finite. The same thing will be true far, which is determined by means afand ofe
and/, which are presently known.

The value of the torsionis remarkable. One finds it by very simple substnsi

/= y dz- zdyJ-Xdrn+ zdx deYdm x dy yTder
ds ds ds

dx dy dz
+d—SJ.(yZ—zY) deSJ'( z% XY dm—d ( XY X «

As is easy to see, that is the sum of the momerd# tife external forces when one starts
from one of the extremities of the rod and goes t@thetx, y, z of the curve that relates
to the tangent to the curve at that point. One avilive at the general values ©&nd o
only by tedious calculations whose results will seerteqomplicated.

16. — Such is the manner of introducing the most completmesits of stiffness or
elasticity into the indefinite equations of equilibriurineostiff or elastic filament. These
elements seem natural to us, and can, in addition, ceegglae ones thaLagrange
introduced for stiffness to some advantage, using his lhelamethod of indeterminates,
which he appealed to as multipliers of the variationsesfain functionsz, S5, ywhose
special meaning he did not discuss. From our discussi@edsy to see that the forces
that result from those indeterminates will be nothingthetones that we have denoted
by A, B, C; i.e., two of them — viz.B, C — will have the convenience of being quantities
that are infinite of various orders.

In all of this, | believe that one must not sepathéeproblem of the equilibrium of a
stiff rod from that of an elastic filament, becaule indefinite equations have the same
form: However, we have already said that they willedliessentially depending upon the
use that one makes of those two questions. For thébegum of a stiff rod, one knows
the form of the rod from two equations in three coaté#n. If, for example, one
supposes that it is entirely free then six arbitrarystamts, and no more, will enter into
those equations, from which, that curve can take allt&tuan space without changing
form. Now, one sees from the discussion of tha¢ @adécanique analytigugpage 163
(new edition) that one will be led to the following etjoas:

O:Sde 0=SYdm 0=Sde

0=S(Yz-zydm 0=S(zx-X3dm 0=S(Xy-Yydm
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in which the sigrS always represents an integral that is extended beeerttire length
of the filament. These definite integrations can begperd since the force§ Y, Z will

be functions that can depend upon only the position of ¢h@ pn the curve at which
they act, and due to the two given equations for the ctiaé point will be determined
by one of its coordinates. The six constants of the @msadf the curve will enter into
the results of those integrations, and they will beetmined by the six equations that are
formed from those integrals when they are equated ta z€nace those constants are
known, the particular position of the curve will itsdlé determined, since nothing
indeterminate will remain in its six equations. One sulissstthe values of y, z X, Y,

Z as functions of the variable that one deems to baldaifor fixing the position of the
point on the curve in the equations 013 The integrations can pertain to only known
functions of that variable, and one further consideesntto have been performed. The
elementsa, b, ¢ of the stiffness for each point of the curve (whicplaeelLagrange’s
indeterminatesi, 4, v) will become known from those equations, and they, wilkturn,
provide the forces, B, C that we have employed, or even better, the valuéseoforces

o, & | that we have found to be convenient substitutes for themrder to avoid the
infinite magnitudes of the forca3, C. The evaluation oty & ¢ demands only some
differentiations, so it will present no difficultyThe examinations of any other case will
likewise leads to the entire determination of the cantstéhat fix the rigid rod in its
equilibrium.

However, when one addresses a filament that is ertlovith the three types of
elasticity that we represent lay &, /, or two of them or just one of them, those quarstitie
will be given by the nature and constitution of the fiéary and what one must know is
the form that it must take under the action of thedsrcFor example, one might know
that the filament has a certain form before being swdxe to that action, and its
constitution permits it to oppose the changes in that foy known forces for each of the
three types of elasticity. One then knows the tangj the elasticitys, and the torsiom.
Upon imagining that they are expressed by the same vafaldach point of the curve,
as well as the forces, Y, Z that relate to that point, it will suffice to hatleose of these
three indefinite equations upon which the form of the cudepends. However, an
indeterminate will necessarily enter into those equsatitat itself depends upon the
unknown length that the extensible filament must take rutleeaction of forces, and it
will only be when one knows the form that it takesionts equilibrium that one can
obtain that indeterminate. It must be eliminated befamdhand that will reduce their
number to two. The difficulty in their integration wbke very great in any case. Since
our goal is solely to point out the manner by which caea make the most complete
elements of elasticity enter into consideratioe, éxample that we just followed through
seems sufficient to us, but each case to be treatedbcag with it even more
modifications of that path. As for the equations a timits, we have constantly
neglected to address them, because the method of varata the applications that
Lagrangedeveloped in higlécaniqgueeave nothing in the dark in regard to that point.




