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In the sequel, a systematic treatment of planar kitiesnaill be sketched out whose
guiding principle is based in the ideas of E. Study in an Agppeto hisGeometrie der
Dynamen For the case of the plane, one can clarify theemgal group-theoretic
viewpoint more easily than for space, and it is easseoriganize the differential-
geometric problems of the geometry of motion that exatéd by the usual manner of
representation within the scope of Study’s kinematicse fitesent paper can thus also
serve as an introduction to Study’s kinematical methods.

The guiding thought of the investigation is the followingedt will be shown that
planar kinematics can be associated with the projective geometry of. spatas way,
one comes to a projective metric that goes to the non-Euclidian, and intigéd, e
metric under passing to the limiiThe geometry that is thus defined will be calig@si-
elliptic geometry. Its absolute structure consists of a pair of conjugasgiimary planes
and a pair of conjugate-imaginary points on the line efrggction of these planes.

The passage from planar kinematics to this quasi-elliptic geometngdsated by a
map of ordered point-pairs in the plane to lines of space, a map that asdatiat®ns
in the plane with points in space and transfers in the plane with planes ie. spac

") D.H.D.: Corrections to the text that were laterlishied by Blaschke have also been incorporated.
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A map of the lines in space to ordered point-pairs in thelane.
Quasi-elliptic geometry.

8 1. Construction of the map.

We start with a (real) perpendicular axis cross andtéetite inhomogeneous point
coordinates that we would like to employXyy, andz. We call the plane = O thebase
plane We clarify that thgositive sense of rotatidmas
the sense of the shortest rotation that takes theaam
in the positivex direction to the positive. Let the
planesz = - 1 andz = + 1 be denoted by and a,
accordingly. By the symbolsandr, we intend this to
means the words “left” and “right” that will be
employed later on.

Now, letG be a (real) liné), that does not intersect
the ideal lineC in the base planeG is then a real line
that does not run parallel to the base plane. We car
out the following construction (see Figure 1):

Extend the line G to its intersection with the planes
ai, a; at the pointsg”, g/, and look for the normal

piercing points (Normalriss)g,, g, of these two intersection points on the base plane.
One then rotates the ordered point-pég, , g;) around its midpoint m in the base plane
through a positive right angle @, gr), such that the poing, goes to the point;gand

the pointg’ goes to g. %)

Figure 1

In this way, one finds an ordered point pajr §;) associated with every ling. On
the other hand, if we choose an ordered pair of re&lab¢not necessarily distinct)
points @, gr) in the base plane then we can search for theQitigat is associated with
them in a unique way by inverting the given construction. @aee thus exhibited an
invertible relationshifs « (g, g-) between the lines of space that do not nizahd the
ordered pairs of real, actual points in the base plaibat this association first attracts
attention to is the following fact:

Theorem |. Under our association, two lines G and tBat cut each other go to two
ordered point-pair{g;, gr) and (g, g”) that relate to each other in such a way that the
line segmentgy, g~ and g, g~ are equal to each other. Conversely, such point-pairs are
associated with lines that lie in a plane.

) We first restrict our reasoning teal elements throughout.
% The map of liness onto the ordered pairg( , g') finds an application in descriptive geometry, as
E. Miller has discussed thoroughly in his lectures.
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We likewise prove a more far-reaching theorem thatusubs the latter one:

Theorem lla. The? lines G that go through a point p that does not line on C will
be mapped teo? ordered pairgg, g:) under the association G (g, g;) whose starting
points g are associated with the endpointsugder a motion,g - o .

We first assume that the pois a finite point

and has the coordinates y, z its “base point” g
(Grundriss)p' then has the coordinatgsy, 0. We a
draw a lineG throughp (which does not meét, as Pog '/[ o

we have always assumed here) and apply ou ¢ A
construction to it. (Cf., Fig. 2, in which the g’ i i
construction is presented at the base point an ' :
upper point.) The pointg’, g/, and g, lie in a dl/' :
line, and one has (also up to sign):

Pg:pg =@2+1):e-1

and
pm:mg; =z:1.

If we now rotate the pair(g/,g ) around its Figure 2

midpoint m through a positive right angle tg;,(gr)

then the segmentsg andp'g: will be absolutely equal to each other, and for the angle
2¢ (which is determined mod72 including the sign) between these two directed line
segments, one finds:

(1) cotp=-z

The transformationy — g is then aotation aroundp’ through the angle®

If p lies at infinity (but not orC) then atranslationenters in place of the rotation, as
one easily confirms.

By an analogous argument, we find:

o ] % Theorem llb. Under the association G- (g, ¢), the
«? lines G that lie in a planerand do not go through C are
mapped tox?® ordered point-pairs whose starting points g
m correspond to their end points gnder a transfer.

) g Thus, as usual, by the tetransfer we shall understand

9 ] this to mean a point transformation in the base plaaedan

be generated by the composition of reflections througle thre

lines of a plane.

PP P One can see the validity of IIb in the following way:

Figure 3. cutsai and a; at two parallel actual lines whose base points
we would like to calP, andP; (Fig. 3). These two lines will
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be switched with each other under the reflection irtrleeP of /7on the base plane that
is parallel to them. To an arbitrary lig there now belongs a paig/,g) whose

starting pointg, lies onP; and whose end poing; lies onP; .

If one rotates this pair

around its midpoinim from P to (g;, gr) through a positive right angle then the new pair is
oriented such that one can take the starting mpiat the end poing, in such a way that
one first reflectsy throughP and then translates it in the directionRof The magnitude

of the translation is equal to the distance
the angle that the base plane subtends
base plane then we obtairf point-pairs ¢

ffarto P, or — 2 cotwy when we letwdenote
withf we then map all line& in /ronto the
, Or) that determine a transfgr — g, that is

generated when one composes the reflection throughabeR of /7with a translation

through the line segment:

(2)

in the direction of.

29=-

2 cotw

A remark concerning the siga of importance here. If one orients the trRce i.e.,

one singles out a sense of traversal on t
is established by this for the (determined

his lineea%tsitive” one — then a certain sign
mp@nglew as well as for the magnitude of

translation 2, when one agrees upon the following closely-related thiidgge quantity
g shall be counted as positive or negative according tothehehe sense of the

translation does not does not agree with
In order to clarify the sign ofy we furthe

the posiémeesof traversal o, respectively.
r establish that the positive sense of imtat

aroundP shall likewise imply the positive sense of traveirdahg that line, just as the
positive sense of rotation in the base plane relatdsetpositive sense of traversal along

the z-axis.

Formula (2) is correct with these assumptions, as also might have chosen the
positive sense oR. In fact, if one changes the orientatiorPahen$ and wchange their

signssimultaneously
We summarize the latter results neatl

Theorem llla. The points p in spac
that do not lie on C are mapped to t
motions g — @ in the base plane in a on
to-one manner. Every actual point
corresponds to a rotation. The center
the rotation is the base point of p. T
relation:
(1) cat=-2"
exists between the rotation angt¢ and
the distance z from the point p to the b
plane.

p)

R. Bricard employed (Nouvelles Annales

y as follows:

e Theorem llIb. The planesrrin space
hthat do not go through C are mapped to the
etransfers ¢ —» g in the base plane in a
Pne-to-one manner. Any of these plames
@orrespond to a transfer whose centerline
h@ the trace ofrron the base plane. The
relation:

(2)

exists between the translation magnitude
A& and the angle the base plane makes
with 7z

cag=-79

de MathématiddgslO0, 1910) a similar arrangement

between the points in space and the rotations ofreepla
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Concerning the theorem on the right, we remark: Uadgrtransfer in the plang
single actual line will be transformed in such a way thatsésse of traversal remains
preserved; we call it theenterlineof the transfer. One can compose the transfer fhem
reflection in its centerline and a translation that conesutith it through the segmen2
in the direction of the centerline.

The analogy between the theorems on the left add n@y be pushed somewhat
further when one counts the translations along withrtitations and clarifies that the
center of a translation is that ideal point to whicé hormals to the translation direction
point.

The chosen associatio® - (g, @) is also useful in descriptive geometry.
Furthermore, it represents a transference principldhan it mediates the connection
between theorems of spatial geometry and those oé glaametry. An example of this
will be given later (8 9). Here, we would next like to put arrangement into formulas.

8 2. Analytical representation of the map.

It is preferable here to introduce homogeneous coordindtée set:

(3) x:ﬁ, y:é, z:ﬁ.
X X %

In the base plane, we preserve the inhomogeneous cdesjina order to give the
formulas the most lucid form possible. Let the coordisatfg bex, y and let those df;
ber, v.

For the homogeneous coordinate of the pogftsand g™ (cf., Fig. 1), one finds:

X =2, X = +2,
=42, " =42,
(4) g’ = Xl_ o' = Xl_
X, =X+ y+r—m, X, =tX=-y+r+y,
X3 ==X+ ytr+y, X, ==X+ y—r+mn.

The two-rowed determinants of the matrix:

R XK
Yo 1 Y2 ¥

are proportional to the Plicker line coordinaBgsof G:

X %
Yi %

, p%0.

Gik:p‘

One finds:
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. . 2 IX+r 1zt
C;01 'G02 ' G03

= X2+ 2\ —(+2 412
ng:G3l:G12} - Y)Z(x v) IX—riy-y

(5)

and from this, one has, conversely:

- Gy *+ Gy, - Gyt G,

X v Y
(6) G01 C;Ol
= Gy, — Gy, n= Gy~ Gy
GOl C;Ol
The assumption:
(7) Go1 %0

that is necessary in this states precisely @ahall not meet the ideal lir@ in the base
plane. It has, in fact, the coordinates:

(8)

and one thus has:

Cor :Cp :Cyl _[0:0:0
C,:C,:C, 1:0:0

Go1 Caz + Gpz Ca1 + Goz Ciz2 + Goz Co1 + Ga1 Coz + G12 Coz = A Goy, AZ£0.

Go1 = 0 is thus the necessary and sufficient conditiorG andC to intersect. We take
two linesG andG’ then we find under the assumptiGg, # 0, G, # O:

(9) GmGEs'*' G02G§1+ Gogc’gl - +[(X_ *3)2 +( Vi )F) ?
+ngG(?1+ G31G%2+ Glzc’go —[(x _?[)2 +(p _Utbz .

This is the analytical formulation of our theorem!
Now, let the poinp lie on the lineG, which we think of as the connecting line two
pointsx andy. The three-rowed determinants of the matrix:

X X Y. ¥
Yo i X% X%
Po P B Py

must all vanish. If we establish the assumptiat xhiy; —x; yo # 0 then it suffices to set
two of these determinants equal to zero, and therdivo must then also vanish. We
have set the determinants equal to zero that fiagse our matrix when one first deletes

) Formula (5) and (9), as | have learned from personal eoriwation, have also been found by Study.
Cf., the last § of the next-appearing issue 1 of thierdes on selected topics in geometry (Leipzig, 1911).
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the fourth column, and then deletes the third colummon# develops the last row then

one finds:
(10) PG, ~ PG+ P.Gu=0,

PGt RGy;— PGy, =0,
or, when we invoke formulas (5):

Po(Y—1)— p(x+r)+2p =0,

(11)
Po(X—1)+ p(y-n)-2p=0.

From our assumptio@®o; # 0, p cannot lie orC, sopy andp; cannot be simultaneously
zero, andp? + p? is therefore positive (thus, we always restrict oueseto real elements

here). One can therefore solve the formula (11},for

(12) (RE+p)r=(+ @) x*2pR0v2(Rp- BB
(RE+p)y="2p,px+ (- F) ¥Y2( R R+ B B

In this, if one thinks of the parametaras held fixed then these equations represent
the motiongi(x, y) — :(z, v) that is associated with the motion (Theorem fip).

For pi # 0, we find the coordinates of the rotational centér, Theorem llla) from
(11):

(13) X:?:_Za y:t):&.

Our formula (1) for the rotational angle & also confirmed, since here we find:

(14) cotp =— o
)

If p goes to infinity po # 0, p1 = 0) then the formulas (12) simplify to:

r=x-22
(15) Po

p=y+2L2,
Po

The magnitude of this displacement is:

) This parametric representation of the motionhiplane has already been found by E. Study, “Von
den Bewegungen und Umlegungen,” Math. AB®(1891), § 11, pp. 58%t seq.
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(16) =2 [+,

Po

We can present an analogous argument when wedreégarlineG as the line of
intersection of two planeg;, v. If p also goes througlts then the three-rowed
determinants of the following matrix must vanish:

Ho Ky Hy Hy
Vo Vi V, V.
o 74 71, 11y
One finds, in particular:
(17) Gy, ~ 11,6, = TG 5,= 0,
]ZiGOl + ]TZGOZ+ ]TSGOl: O’

and from this:
21, = 1, (y —9) — 115(x—1) = 0,

(18)
2m + 1, (X+1)+m(y+y) =0,
or:
(19) —(n§+n§);:(nf—ﬂ§)x+2n2ﬂ3ty+2(771772—77(173),

(71 + 10 = 271,71, X = (71, = 113) y + 2711, 7T 4T ).

For fixed values of theg , these equations represent the trargtery) — g:(x, y), which

corresponds to the plang ') The second formula (18) yields the equation tfoe
centerline:

(20) +(UE+7mBX+BY)=—(7AE+7Br+78Y)=0.

For the magnitude of the displacemeg @ne obtains:

(21) g=—To
TG+ 7T
when one sets:
(22) cotw=— di :
S+ 7T,

8 3. Composition of motions and transfers.

The formulas shall be repeated here in brief 8tatly found for the composition of
motions and transfers in the plafg.

) Formula (19) was also found by Stuthg. cit.
%) Math. Ann. 39 (1891), pp. 558-561. Cf., also the Monatseltiefath. und Phys. | (1900), pp. 352.



Euclidian kinematics and non-Euclidian geometry. I. 1l 9

For a motion that takes the point, §) to (X, y'), we have found the parametric
representation [Formula 12]:

(23) (R+e)X=(g+ D *x2pp0w2(RE- B Y.
(PZ+p)y=-2ppx(g- B) v2( pp+ B P

If we follow this motion &, y) - (X, ¥'), which has the parameteps with another
motion ', y) — (X", y") that has the parameteps, then we obtain a new motion under

compositionX, y) - (X", y'). For its parameterg’, one finds the expressions:

PP =P~ P A,
PP = PR~ RK,
PP, = B~ RBT BRT RA
PR =B+ PR~ BAT BR

(24)

For atransferx y) - (X,VY'), we have the formula (19):

—(77; +77§)X' :(77'22—775)X+2772773[b/+ 2(771772_77(179)’

2
3) LB ATR)Y = 207, k- (- )y 20Tt g,

If we compose two transfers, §) —» (X, Y), X,Y) - (X', y") with the parameterg
and 7z , resp., then this produces a motion with the parameters:

PP, = = TT,7T, = T,
PP = — T, = 1T,
PP, = T,TT, = LT3+ TT T+ TT T,
PP; = Ty, + 7T, = TTJT, + 1T T

(26)

For the composition of a motion with a transfer, éinds, depending upon the order
in which these transformations were performed, either:

PTTy = Polly = PIT, = PJT,~ PiT,
:077;': pon’1+ p177lo+ p277'3— p'ﬂlz
P, = P,IT,~ P,
PTl; = PoTly + PIT,,

(27)

or:
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PTty = TP, = T, P~ 7T,8,~ 7T3P,
PTY =TT, py + 7T, Py + 7T, B3~ 75,
pT, = + 7T, P + 715,
Py = —T,p, + 7T, P,

(28)

From Study, one can summarize these formulas mlegant way, when one appeals
to higher complex numbers. We set:

P=R&t REt et E ¢

(29)
TT= 166, + TTEQ+ 11,6+ TT,8

In this, thee might mean the quaternion units, which, as is well-knosatisfy the
multiplication rules:

=86 EETT BF - ££
6=6§=teg=1 £&F~ ££
&=QE="g6=T 8T £
& =6t =" eF+ ££

(30)

and £ means a unit that commutes with the quaternion units, and is subject tdelod r
calculation:

(31) £=0.

By means of these complex relations, one write tdam(24), (26), (27), (28) fqw =
1 in the form:
(24) =P, (26) p =7,
(27) ' =pr, (28) T=7rp.

We then introduce two notations. If:

P=po&tpieL+pee +psEes,
then we set:
(32) P=poe-prei—-PE& P36,
Likewise, from:

TT=TpéE+TREE+TBE + TRES,
one deduces the relation:

(33) JT=THhEQ—TE £€1— 75 € — 7§ €3.
We further define:
(34) (M=RK+HE=PP

N(7) = 72+ 722 = 7T
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The followingrules of calculatiorare valid for the two symbols that were introduced,
which one can confirm immediately by direct computatiorby assuming the known
formulas of the theory of quaternions. By small Gersymbols, we intend this to mean
the formulas that follow by using complex quantitiesdplace the previous ones, so we
now associate motions wittp, p', J',...) and transfers withsz, 77,77 ,...).

U

From p" =pp', it follows that p" =pp'.
N(p") = N(p)N(p’) .

Thus, fromp" =pp’, it also follows that

The complex relations also enable one to comlmnadlas (23) and (25). One sets:

(35) g=etxeetyce;.
One then finds

(23) N(p) = pyp

for themotions and:

(25) Ny =7y 7

for thetransfers.
8 4. Left-parallel and right-parallel lines.

Let two linesG, G be given, that do not meet the ideal IiDén the base plane. Let
(@, o), (97, g") be their images. We pose the followihefinition:

Two lines G, G are called left-parallel (right-parallel, resp.when the associated
points gand g, (gr and g;’, resp.)coincide.

From the formulas (6), one deduces the followiagditions forleft-parallelism:

(36) Go1: G2 +G31: Goz+Go = GODl . G(?z + Ggli G?)3+ Gjl;
andright-parallelism:
(37) Go1:Goo— G31: Goz—Gyo = GODl . G(?z - Ggli G%3— GDH.

From the definition, one infers the following pespes of this parallelism:

If one reflects a left (right, resp.)-paralleldirn the base plane then this produces a
right (left, resp.)-parallel line. In fact, theflextion corresponds to the exchange of the
starting and ending points of the point-pair.

One and only one left (right, resp.)-parallel tay aarbitrary chosen lin& goes
through each point that does not lie@n

One and only one left (right, resp.)-parallel tyy dine G lies in any plane that does
not go througlc.



Euclidian kinematics and non-Euclidian geometry. I. 1l 12

We now introducémaginaryelements, which have a distinguished relationship to our
real figures. We then introduce two poiotsc, that belong to the absolute conic section
(spherical circle) of the Euclidian metric, and lighe base plane:

2% %=0:0:i:1
C X X% %=0:0:1:i,
and two planes:
(39) / %7 =0 i = v-1).
Vi X tix =0,

If we consider all line$* that run left-parallel to the fixed lin& [equation (36)]
then we see that they all meet two conjugate-insagitinesM, M with the coordinates:

; }_{ 0 -Gy, i +iG,,
Mzs:Mal: 12 (Goz+Gs)_i(G03+G12 :_Goi+iG01

I\ﬁm:l\ﬁoz:l\ﬁ%:}:{ 0 =G, :—iG,, :
(Goz + G31) + i(Goa+ G12) - G01: - iG‘01

(40)

We find the following coordinates for the interSen pointsg”, g/ of G with y, y

[cf., formulas (10)]:
(42) 9/ X X% %=+1G,: G, G~ iG, Gyt i1G,
9/ X i X% %=— 101Gy Gy Gt 1G,; Gy iGy,

One sees from this thd connects the pointg” andc , while M connects the points
y/ andc; .

Theorem IV. The? lines that run left (right, resp.)-parallel to acd line G belong
to an elliptic net — i.e., the totality of all lisghat cut two conjugate-imaginary lines (viz.,
the guidelines of the net).

The guidelines of a net of left-parallel lines areimaginary line ay through ¢and
the conjugate-imaginary gt through ¢.

The guidelines of a net of right-parallel lines ae imaginary line at through ¢
and the conjugate-imaginary gt through ¢.

We have proved the relation only for left-parallees, but it also follows for right-
parallel lines when one applies a reflection inllase plane. One can, although we shall
not do so here, also easily confirm the conterredorem IV in a purely geometric way
without the use of the formulas.

We call the ideal point theormal to the base plang’ (1 : 0 : 0 : 0) and formulate
Theorem IV in a somewhat different way:
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Theorem V. Letg/, g” be the intersection points of a line G wjhand s . The
two conjugate-imaginary connecting lingg’c '], [9’c p’] cut the base plane at the

real starting point gand the two conjugate-imaginary lifegc p’], [9/¢ p’] cut the
base plane at the real endpointig the imag€g, gr) of G.

In fact, from Theorem 1V, e.g., the line of intersec of the former two planes is
left-parallel toG, and since it is normal to the base plane, its bas# past coincide
with g, on the base plane.

8 5. The transformation groups of quasi-elliptic geometry.

The figure that consists of the poimis ¢, , and the planeg , g shall be called the
guasi-absolute structure.

Let there be given a real collineation or correfataf space that takes the quasi-

absolute structure to itself. We would like to denote tlsissformationG — G, since
we would like to think of it as being applied to the linespace. Under the association
G - (9, 9), the mapG — G corresponds to an exchange of the ordered point-airs (
o) and (g, @) in the base plane. From the imaginary-geometrierpmetation of
“p*arallelism” that was given in the previous paragrapimsler the transformatio@ -
G, left (right, resp.)-parallel lines must again go thexi left or right-parallel lines; i.e.,
under the corresponding mag (g) - (g, g’), point-pairs with a common starting
(ending, resp.) point will again go to point-pairs thateha common starting or ending
point.

The transformationg(, gr) — (g,,g") thus decomposes point-pairs into two point-

transformations, which we will denote by either the syteg - g,’, gr -~ g~ org - g’
g - g . One can say more once one knows how the points langéspof the quasi-
absolute structure permute amongst themselves under thé ma@ .

About the point transformatiorg - g, o -~ g” (org - g°, gr — g,), we next
remark that they exchange the actual points of theeplaith each other in a non-
singular, one-to-one, and continuous manner. Sincen#EG — G takes intersecting
linesG andH again to intersecting lings, H, from our Theorem | in 8§ 1, the two point
transformations in the base plane must have thewiwl@p property: When two pairs of
real, actual pointg, h;; gr, h; are given in such a way that the segmgntsandfg; h. are
absolutely equal to each other, the lirggl’, g h’ between the associated points always
turn out to be equal to each other, as well.

However, from this, it follows that these point tfammations must basimilarities
with the same expansion ratio.

Conversely, if we choose two real similarit@ggs- g, - - g-(org - g, o — g,)

with the same expansion ratio, but still completelyiteary, then a transformatic@ -

G of lines in space corresponds to them under our tranaf@n ¢, g) — G that is
first explained only for the those lines that do not betd¢onnecting lin€ of ¢, andc; .
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For these lines, the transformation is uniquely inbs&tand takes intersecting lines to
intersecting lines.G - G is then a part of a collineation or a correlatiorspéce. By
means of our imaginary-geometric interpretation of the types of parallelism, one

further proves that the ma@p — G transforms the quasi-absolute structure into itself.
We have thus found:

Theorem VI. Under the association G. (g, gr), the collineations and correlations
G - G of space that transform the quasi-absolute structure into itselbaithapped to
pairs of real similarity transformations;g- g, g- — g andg - g, g — g with the
same expansion ratio.

The seven-parameter group of collineations and correlations of the quasi-absolut
structure decomposes into eight continuous families.

In order to make a simple notation possible, we wall tb, e.g., denote an actual
(i.e., sense-preserving) similariy — g~ by a; and, e.g., an ideal (i.e., sense-reversing)
similarity g —» g by a,. The eight familiess,, £, $°,9", X7, X}, X', X' of the
automoprhic group of the quasi-absolute structure map toatte plane in the following
way:

6, o {aa:} X, o {a/,q}
| - —, - , xl - —’ + ’
(42) S/jﬂ {all ar: I7I {a”+ Qr_}
57)7 < {alr’arl ' x7 < {alr’q“l }’
o o {ay.arh X o {o, a7}
Thus, &7, 9, 91,9 is the mixed group of collineations adg X}, X!, X' are the
families of correlations of the quasi-absolute structures.

With the help of Theorem V (8§ 4), one can decide hosvgoints and planes of the
guasi-absolute structure are permuted. The result widlbedated by the following

table:
67{01 -G, G ~¢}’ x7{0| ~ ¥ G eyr,}’
Vi = Vo Vi =¥ -G, ¥ -G
ﬁ;{qw, G ﬂp}’ X;{qw/ﬂq ay},
(43) ViV Vi = % -G, ¥ ~ 6
ﬁg{c‘wq, qu;}, xy{qay, G ayr},
ViV ¥ =% -G, ¥ -6
g ]G =66 w}, X;..{q -V G ey,}
ViVl =% -G, ¥ -¢

If one substitutes motions and transfefsb™ everywhere in the schema (42), in place of
actual and ideal similaritias, a”, then one obtains a six-parameter group, in place of the
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seven-parameter one, whose eight continuous famikedemote bys , 9, 95, b,

Xe, Xg, X4, X{', corresponding to the eight families of the sevenspatar group.

This six-parameter group is included in the seven-parameater as an invariant
subgroup.

According to Felix Klein, any group of geometric transfations belongs to a
“‘geometry.” The geometry that is associated with ¢batinuous groupbs shall be

calledquasi-elliptic geometry

The group®s is composed of two commuting subgroup$, ®. — the so-called
parameter groupsf the plane motions — each of which is holomorphicaltynorphic to
the group of motions in the plane. The grodps &, map to the plane as:

(44) &, - {by,in}, &L - {in,b’ }.

The symbol means the identity in this.

®s is called the group afuasi-motions®,,, & are the groups déft-sidedandright-

sided quasi-translationgesp.
Any transformation of®g is the product of two particular transformations of

®, and®}, which are immediately commutable. If we write only ameex, instead of
two of theml andr then the three transformations are the followingson

(45) {61, b/}, { by, i}, {1, br}.

8§ 6. Transformation formulas.

One can represent the transformations of the quigstieekpace in a simple way by
means of the complex relationships that were introducg8in
We think of a quasi-motiop — p  as being applied to the points of space. ket |

b/] be its image in the base plartg;is a motiong, — g, andb, is a motiong, — g, .

The corresponding poipt then belongs to the motign =g~ - g”= b p b, .
We introduce the complex relationships (cf. § 3):

b = me+ Re+t PEFe+ F ¢
p’= me+ He+ Pret+ E ¢

g = e+Xxg + ¥ ¢
(46) g = g+xeg + Ve g
g = g+r£g +yee,
o = e+reg +yee,
b =b’e+ 1 e+ Be et Ye g
b =b'e+H’ e+ Be e+ Bee,
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then, from (23), § 3:
(47) N(p) g
(48) N(p) g

Py b, N(p)g'=p g 1.
Py b, N(p)g'=p ¢ 1.

and therefore (cf., the rule of calculation in § 3):
(49) p”=hph.

This is the transformation formula for the quasi-mofion p'.

When one sets:
(50) =T e+ ITEQ T T, 61 7156

0= Myge, Y TEQ+ T, 6+ 1T, 6,
in plane coordinates:, one likewise finds the transformation formula:
(51) 70 = b

In a similar way, one can also describe the remaisgnen families of the six-
parameter grougs , 9y, He, 9e . X6, Xg, Xe, X' . We would thus like to content
ourselves with giving a discrete Abelian group of eighblatory transformations, ti,
to, t3, T, 1, B, T3 that correspondingly are contained in the mixed group,tlamaigh

whose adjunction, the continuous grotip will be extended to the mixed group. We
thus make the coordinates individually evident.
t is the identity.

X'= x y=E-y 0= o plE-w,
t pg:_po’ dlj: Py ng (O @:_
ﬂ()D:_ﬂo’ﬂlm: ﬂl’ﬂ‘g: TT,, ﬂg: T,
X'= 5 Y= on o= ox o=y,
LIP="Py B= B BT B BT B
ﬂ()D:_ﬂo’ﬂlm: 771’772: 5, ﬂg: Ty
X'= p y'=-n, '= ox yi=-y,
t31P= Po P= B BT B B R
ﬂ()D: ﬂo’ﬂlm: ﬂl’ﬂ‘g: T, 772:—773,
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(-

X'= x y'= y '= r yl=-y,
(52) r pOD:_ﬂga p1D: 7T, p§=—ﬂ1, Fﬂ,: T,
ﬂ()D:_pg’ 771D: Pa, ﬂg:_pr ﬂg: Po

o_ 0_ _ _
L3Po= 70, D= 7Ty pmz__ﬂli d]?,__ﬂo’

= Py 4= Py ,== Py, == P,

X'= o Y=oy = or 9=y,
I, pg:_ﬂaa p?: 7T, pDZZ—]Tl’ Fg:_ﬂo’
ﬂ()D:_pg’ 771D: P., ﬂg:_pr ﬂg:_p@
X'= 5 YyE-n, o= X 9=y,
Iy pg: 7T, p?: 7T, pDZZ—]Tl’ Fg: Ty

775: pg’ﬂlm: pz’ﬂgz_prﬂg: Po

One can verify the relations (42) and (43) thatendted in the previous paragraphs
by means of these formulas.

§ 7. Passing to the limit from elliptic to quasi-ellipticgeometry.

The formulas that were developed in the previcaragraphs make it possible for us
to realize this passage to the limit in a simplg.wa

We start with the formulas (46) and no longer evthe rule of calculatiog” = 0 for
the imaginary unite that appears in it, but the new rufe= p {0 > 0}. From formula
(49), the continuous group of automorphic collimmad will then be represented by the
regular surface of second order:

(53) pi+pi+pp+pp =0,

which is the same thing as the group of elliptictiots of non-Euclidian space that has
this surface for the absolute structure.

If one now carries out the passage to the lmit O then the surface of second order
ranges through a pencil and finally degenerates the plane-paity , ¥ . The two
families of generators of the surface become the ffencils of planes that lie pand y
and have their vertices atandc, . The parallelism that Clifford introduced, to i/
Study gave the name phrataxy becomes the parallelism that was given in § the
limit.

Study has given an association between the pditges in elliptical space that
correspond to each other under the absolute pgland the point-pairs whose points are
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divided between two planes with elliptical metrics. Tdssociation, which is uniquely
invertible in the real domain, associates the motionh@felliptical space with pairs of
motions in the two elliptical plane¥. One can now also carry out a passage to the limit,
under which this association will go to our n@p- (g, o).

In fact, if the Gx mean Plucker coordinates in the elliptic space whoselubso
surface is represented by equation (53) then we can expresStudy association in
formulas as follows: We set:

5887 QPG Gt G G G

(54) o . .
$5,.5,.5;= Gm_szs- Goz_ G31- Gos_ Glz

We intend thes, , and likewises , to mean homogeneous point coordinates of a plane. In
the plane of the,, we must take the conic section:

(55) sS+ps+pg =0
for the absolute structure, and in the plane ofghe
(55) 5.+ pso+psi = 0.

If one now introduces inhomogeneous coordinates intombiglanes:

(56) i:X, i:y, i:x, ﬁ:t),
S S 5, 51

and passes to the limgt — 0 then the elliptic space becomes quasi-elliptic, thertore
EuclidiaZn planes become Euclidian, and the formulas &d)converted into formulas
(6), 8 2.)

8 8. Invariants of quasi-motions.

Two (real) pointg, p’ whose connecting line does not meet the Gnef the quasi-
absolute structure have an absolute invariant uédeamely, their double ratio with the

conjugate imaginary planegs i . We call the real quantity:

(57) ¢ =+5 InDv(p Py ¥)

') One might confer, say, E. Study: “Beitrdge zur nichisakken Geometrie 1I,” Am. Journ. of Math.,
Bd. XXIX (1906), page 116t seq.
%) A similar passage to the limit is found in the dissiioh of H. Beck, Bonn, 1905.

*

) DHD: the notation DV’ is from the German “Doppelverhéltnis,” which means “deutaitio.”
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the quasi-separatiorbetweenp andp’. ¢ can be expressed in terms of homogeneous
coordinategx, p, of p, p' by way of:

(58) tang =-— M_
PP~ PB

The invariantp (as well as its sign) is defined up to multiplesof

If the connecting ling@p cuts the lineC [ p,p, — p,P, =0, P, P, + P, P % O] then a
new invariant unde®g appears in place of the vanishing quasi-separation thatinedle
only up to sign, namely:

(59) X=

m\/(popz RR)’+H(RB- RR (R R R'E R'Y.

We define thequasi-anglebetween two planeg, 77 whose intersection does not cut
C to be the quantity:

(57) Y=-% InDv(rrtq c).

One has:

(58) tang = +JBTL T,
TL,TT, + TT7T,

Y is invariant unde; . In the excluded special case, we again finthaariant under
B
(59) w=

VOt =) + (Mgty- gty + (T - )2 + (T - T )7

@#+%

A pointp and a planerdetermine thguasi-distancép does not line o€ andrdoes
not go througlC), which is invariant undebe:

(60) g= P/h* P/L* P, PITs.

Ry
Jis only defined up to sign.
We take a poinp that does not lie o€ and a lineG that does not medf. Both
determine an invariangh underGg that we would likewise like to call theuasi-distance
It agrees with the (previously-defined) quasi-dista from the pointp to that plane

throughG that is perpendicular to the connecting lin€okith p (¢ :I_ZTJ One finds:
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e \/{ p0G12_ p1G02+ szo}lz"‘{ po%f*' plGOS'_ Q%lz .

G P5+ 1

(For this, one confers the formulas (10) in § 2). If oeoduces the coordinat&sy and
t, y of the image pointg,, g- of G then one gets:

(61)

— 1\/{ po( y_t)) - Iq( X+x) +2 Q}Z-i-{ m )e) + 9 y'l) 2 pz
p__ 2 2 '
? Jr+

Dual to this, we define thguasi-anglebetween a lin€& with the planez

(62)

r= \/{770601_772G12+772G3}12J‘{ 771G01+77902_7T Q}osz

61)

) G705 + 715

or:

(62)* r= E\/{Z%_ﬂo(y_t))'*'ﬂl(x—x)}z-'r{Z TT,— 11§ X+3 + 71, y+D} 2 |

2 7+ 1

The line that meet€ {Go1 = 0} also determines an invariant und® with a point,
and likewise with a plane, although we shall not go deipe these quantities since we
will make no further use of them.

Under the transformations of the famiky, (cf., § 5), the invariantg, x, ¢, @ 3, o,

r will be permuted into the invariantg, w @, x, J, 1, p, resp. Our metric is dual to
itself.

8 9. The ruled surface of second order.

Here, we consider only real surfaces of second ordérreal rectilinear generators.
We next give a classification of the surfaces thatiavariant under the grougs; .

a9l (cf., 85).
Regular surfaces:

The surface contacts eitl@or y, ). It does not go throug, ¢; .
The surface contac® but noty, . It thus does not go throughc;, either.
The surface contacjs ), and does not go throughc;.

. The surface goes throughc: and does not contagt ) .
The surface contacjs ), and goes through, c;, but not througlit.
The surface goes throughand has tangential planesa@tc; that are different
from y, k.

6. The surface goes throu@hand contacts,, ¢, in the planegs, ¥ .

*

N
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Of the singular surfaces, we consider only:

7. Irreducible conics, which have their double pointsCoand contacty, y along
generators.

In the cases 1 to 4, the reciprocal polar€ teelative to the surface will be called its
guasi-axes.

All points of one of the surfaces of th8 #amily have equal quasi-distance from their
guasi-axis, and all tangential planes to the surfaceesdl@qual quasi-angles with the
quasi-axis. The converse is also true, which emergesdtorformulas (61) and (61)
All points that have an equal quasi-distapee0 from a lineG does not mee fill out a
surface of the fourth family and all planes that subtiie quasi-angle= p with this line
contactthis verysurface.

A surface of the " family consists of all points that have the same gdistanced #

0 from a plane: the “center plane” of the surface. &k each such surfacecmuasi-
sphere. The center plane is associated with the Gneslative to the polarity defined by
the quasi-sphere.

Although we shall make no use of the fact later on,siell nonetheless briefly
discuss what the two ruled families of a surface obsé®rder are associated with in the
base plane under the transformat@n- (g, gr).

| We begin with asurface of the
Ki 4 first family. A family of generators
G is mapped onto the plane as

follows: g and g both range

across the conic sectionk/, K/
whenG' ranges through the family.
K/, K! are either both ellipses (as in

our Figure 4) or both hyperbolas
with equal eccentricities; they are
thus ellipses when the surface meets
the line C in imaginary points and
hyperbolas when the intersection
points are real and coincident. The
relation g, — g, betweenK/, K|
] is affine (in the same or opposite
Figure 4 Vil VI sense), and indeed in such a way that
the endpoints of the principal axes,
and also the endpoints of the secondary axis, corregpoadch other. In the figure,
associated points are characterized by equal Arabic sgmbol
The second family of generato® is mapped to the same surface in an analogous
way. g' ranges over the conic sectidq)', which is confocal tok, and congruent to

K., and likewiseg' ranges over the conic sectidf)' , which is confocal toK' and
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congruent toK,'. The relationshipg' - g' between the two curvek' K is again
affine and of the same type as the one betweerK,' (cf., the figure).

Let the common midpoint oK', K" bem and let that oK!, K" bem,. (m, m)is

the image of the quasi-axis of our surface.
Since each generator of the first family cuts a gdperof the second one, there
always exists the relationship:

949 =99,

between corresponding pointg, g!, g', g', which one confirms by means of a well-
known property of confocal conics. In the figure, e.g,ttho segments that are denoted
by 2 11l have equal length.

We now make a few assumptions aboutsiinéaces of the remaining familiesn the
case 2, the conic section§', K!, K", K' are parabolas. In the caseK3,, K/, and

likewise alsoK|", K!', are circles that are similar in the same sensejracase 3 they
are circles that relate to each other in a similat,opposite sense.
A surface of the 4 family includes a family of left-parallel generatd®s g thus

remains fixed, whilg! rages over a circl&!. The generator8" of the other family are
right-parallel. The associated poigl remains fixed at the center &f' . g' runs over

the circleK," with the centeg, that has the same radiusIgs.

In the cases 5 and 6, the one family of generatorsloeitneC, so it is passed over
by our mapG - (g, gr). In case 5, the other families map to two lines thkate to each
other as similar (but not congruent) to each other una@eaghociatiog, — g, . Finally,
in the 6" case, the representable generators are either leflepanaright-parallel, so
eitherg, remains fixed, whilg, ranges over a line, or conversafyremains fixed, while
g ranges over a line.

The surfaces of the families 3 anda®mit one-parameter groupsés, under which

the quasi-axes of the surface remain at rest. Fosuhaces 3, the quasi-axis then
remains point-wise at rest, while the groups of automorpbiasi-motions of the plane
through the quasi-axis that belong to caseefhains individually at rest.

Any surface of thefamily can be regarded as a limiting case of the sesfat3, as
well as the surfaces in.3 It admits a two-dimensional group of quasi-motions, namely,
the group of all transformations # that take the quasi-axis of the surface to itself. The

real points of the surface will be permuted with eachemttransitively by the
transformations of the group. Such a surface behavdardynio a cylinder of rotation in
Euclidian geometry.

A quasi-sphere admits the three-parameter group afuaki-motions that take the
center plane of the sphere to itself.



I.
Group-theoretic foundations of kinematics in the Euclidianplane.
8 10. Positive and negative somas.

The association that was treated in 8§ 1 and 8 2 of pandglanes of space, on the
one hand, and motions and transfers in the plane, artlibe, shall be given a somewhat
different interpretation here.

We have assumed that there is a right-angled axis énothe base plane for the
purpose of enumerating the inhomogeneous coordinatgs / p1, y =ps/ p1 . We call
this axis crossp . If we perform a motion in the base plane thenobi&in a new axis
crossothat is oriented with the same senseg@s Conversely, the motiol) that takes
o to ois determined uniquely by the given of the axis cimsshich consists of an in
a certain sense orderedpair of mutually perpendicularientedlines.

An axis cross in the base plane that is oriented thithsame sense ag shall be
called apositive somaas long as it can be regarded as the representaiéveagi planar
field.

We remark that a certain motion belongs to any pesgoamag, namely, the one that
takes thaur-somaap to 0. Previously (8 1), we associated motions in the bassephith
points of space, and we can, moreover, associate #igvpsomas with points of space
in a uniquely invertible way. Only the points of the [@@f the quasi-absolute structure
are associated with no somas, for the moment.

The ur-somag, corresponds to the (“ideal” in the Euclidian sense) tpdlwith the
coordinates:

Po:pr:p2:ps=1:0:0:0.

If we choose the axis crossto be oriented in the same senseggsso it therefore

comes fromap under a transfer, then we analogously find a one-torelaionship
between these oppositely-oriented axis crosses, whiclvowdd like to callnegative
somas and the planes of space that do not go thr@ugh

Let two somas of the same type be given, so elibgr of them are positive, ¢ or
both of them are negative s'. The half-angle of the rotation that brings thet fs@ma
over the second one shall be calledahgle between the somédere. One finds (cf., the
formulas of § 3 and the formulas (58), (58)* in § 8):

The angle between two positive (negative, resp.) saméas(s, s', resp.)is equal to

the quasi-separation (quasi-angle, resp.) between the associated point@ianpsz
7t, resp).

If a translation figures instead of a rotation then wetke rotation angle equal to
zero. The half-translation magnitude is determined byattraula (59) or (59)

) By a “motion,” here, we always mean a single paiabsformation, and not perhaps a continuous
family of such transformations.
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Let a positive soma and a negative ornebe given. The half-translation magnitude
of the transfer (cf., the remark on Theorem lll8id) that bringsoto s shall be called
thedistance between the soma3ne further finds [cf., (60), § 8]:

The distance from a positive somdo a negative ongis equal to the quasi-distance
&g from the associated point p to the associated prane

When# = 0, one finds thgb and 7rareunited and we would also like to say ofand
s, which are permuted with each other under reflectionlimeathat they, too, are united.

§ 11. Elementary equivalence concepts in kinematic.

Let there be given an assemblage of positive and negatiwasoi, o, 0, ...; 51, 52,
s3, ... The corresponding figure in space consists of paimtisplane, pz, ps, ...; 74,

76, 78, ... The totality can also be included in a continuous mhhiftt is close at hand
that one can introduce a notion of equivalence, under whmehatlows two different
types of transformations that yield new assemblages whey are applied to our
assemblage to be regarded as equivalent to the original offee two types of
transformations are the following ones:

I. One subjects the assemblage o, o, ...; s1, 52, 53, ... t0 one and the same
motion.

Il. One chooses an arbitrary positive somga The motion (transfer, resp.) that
takes the ur-somap to o (sk, resp.) takess, to a somao,’ (s., resp.). We replace the
assemblage, &, G, ...; 51, 52, 53, ... With the new oner;, 07, 03, ...;s7, 55, 53, ...

The corresponding transformations of space are:

I. The figureps, p2, ps ...; 74, 78, 78, ... IS subjected to aght-sidedtranslation, and:
II. Itis subjected to &eft-sided translatior{cf., the end of § 5).

The two groups of translations generate the gy pf quasi-elliptic motions. We thus
find the result:

Theorem VII. The natural equivalence in planar kinematics corresponds in space to
the equivalence under the groti of quasi-motions.

We are now also close to carrying over the geomdtogh®r groups that includés
to kinematics.

One obtains a notion of “natural’ equivalence thahas very different from the
above when one allows the following transformations:

') On this subject, cf., StudGeometrie der Dynamepp. 589¢t seq.
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I. One subjects the present assemblage of somasaideal or ideal (i.e., the same
or opposite sensa)milarity transformation.

Il. One takes an arbitrary positive or negative sargiar s, and constructs the new
somasag,, s, with its help in a manner that is analogous to befditee associated group

of transformations in space is the mixed groéip (9}, X7, X.).

In order to also clarify the kinematic meaning of tleenaining four families of

groups®s, 95, 91, 9, Xz, XJ, XI, X', one must introduce a transformation of

somas that one refers to as the “inversion process.”
Let o (s, resp.) be a positive (negative, resp.) soma thasafiem the ur-somap by

a certain motion (transfer, resp.). Under the invamesformationgy goes to a soma
(s, resp.). One calls the exchange of somas that repdaeey soma (s, resp.) with the

soma o (s, resp.) that is constructed in this way thleersion process The

corresponding transformation of space is, as emerges ffheorem Ill, § 1, the
reflection in the base plane.

The group &7, $), X7, XJ) will be extended to the groug¢, 9, H%, H7', Xs, X3,
X, XY by adjunction of this transformation to the fangily.

8 12. The projective geometry of somas.

In order to make the notion of equivalence in the ptvjegeometry of space useful
for planar kinematics, we must first dispense withabesumption that points and planes
appear as positive and negative somas under the map. dmaemntroducesgdeal somas
one carformally arrive at a continuum @' positive somas and a second continuum of
o' negative ideal somas. One maps this in a one-to-ageonto the points and planes
of space that are united with the li@ef the absolute structure.

We have chosen an axis crds$o be the geometric representative of an actual soma
One can also introduce geometric representatives éoiddal somas, such as the points
of the doubly-covered ideal lines. One then has the n@tian was introduced at the end
of § 10) of united objects, but extended to ideal somasehsand indeed, in such a way
that two somas of unequal type that are united in spaceyale@respond to united
points and plane$)

It is now possible (at least, theoretically) to iptet all of projective geometry in
space in our base plane. At least, we consider theasdm be structures that are
associated with thbasic structuref projective geometry, the sequence of points, the
pencil of planes, the planar point field, and the bumwdiplanes, and we classify these
structures undebs .

) One can just as well introduce, e.g., an orienteddliement for this purpose.

%) One can also make the associat®m (g, g,) that was treated in § 1.2 non-singularly one-to-one by
the introduction of a continuum of ideal point-pairs. Follapthrough on this line of thought is, however,
quite laborious.
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Thus, we next consider what the line is associatedwlitn one regards it as a locus
of points (planes, resp.) Under the group of quasi-maqttbese are three classes of lines
(when one restricts oneself to the real domain, aalways do):

1. Lines,G that do not cuC,

2. Lines that cu€, and

3. The lineC itself.

Correspondingly, in the base plane we obtain:
1. The “lineM;” of positive (negative, resp.) somas, which containaetoal soma.

All of the somas of Marise from an arbitrary one of them when one subjects it to all
rotations around the point,ghat correspond to the line G under the map-QGgi, 9r).

2. The lineM; of positive (negative, resp.) somas that does coataideal soma.

All actual somas of this Marise from an arbitrary one of them when one subjects it
to all translations in a certain direction.

3. The lineM; of positive (negative, resp.) ideal somas.

Under the group of quasi-motions, there are only two differclasses of points
(planes, resp.), namely, the ones that are not unitddGvand the ones that are united
with C.

Accordingly, one must distinguish:

1) The “planeM;” of positive (negative, resp.) somas with a singlelideaa. This
consists of all somas that are united with the actegative (positive, resp.) soma that
correspond to the plane (point, resp.) of space that eppsathe carrier of the plane
point-field (pencil of planes, resp.).

One thus obtains all actual somas of such a planarwiMen one reflects a fixed
actual soma through all actual lines in the base plane.

2) The planeM with o' ideal somas.

All actual somas of this Memerge from an arbitrary one of them when one subjects
it to all translations.

The projective geometry of somas shall not be cortstallemy further here, since this
undertaking has already been commenced elsewhaatthough we shall make just one
closely-related remark on the geometry in a pleheof the first class. We take, e.g.,
such a plan/, of positive somag that correspond to the poimf a planerz On the
other hand, one can map the sorad M, to the axisS of the reflections, through which

') De Saussure, Exposé resumé de la geometrie des feuBlets.1910 and Bricard, Nouv. ann. (4) X,
1910; cf., on this, also the critique of Study, Jahresberictd.death. Ver., XIX, 1910, pp. 205-263.
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they will be taken to the fixed somahat corresponds to the plare One can assign the
ideal soma oM, with an ideal line in the base plane. Howeverhis tvay the field of
lines S in the base plane is further related to the field ohysq, and this relation is
projective. Under this correlation, the absolute points of the Ipdgne correspond to the
line of intersection ofrwith the planegs, ) of the quasi-absolute structure. From this,
one further deduces that the three-parameter group affdramations thats provokes

among the somagof M, is mapped to the group of motions of the e

§ 13. The inversion geometry of somas.

In the previous paragraphs, we considered the collinegtaup of space. Now, we
would like to add another group of point-transformations atephat likewise includes

®s , and which one can all theversion group of quasi-elliptic spacgince it defines an

analogy to inversion geometry (or the sphere geometodius) in Euclidian space.

In 8 9, it was explained what is meant by the term “gspkere.” We would now
like to present all point-transformations that generadigociate quasi-spheres with other
guasi-spheres. It happens that these maps are, a&s &r#)-valued, such that one can,
however, make then (1, 1)-valued transformations by meé&re certainorientation
process.

One must doubly cover the totality of points in projexpace with the manifold of
“oriented” points, and indeed in such a way that (in thedemain) only the lineC is a
branching manifold. Analytically, it happens that one pioke of the two values of the

square root:
MZV%+ﬁ’

and takes the ratig® : p1 : p2 : ps : ps as coordinates of one of the two oriented points
that cover the poinpo : p1 : p2 : p3. The five homogeneous coordinates of the oriented
points thus satisfy a quadratic condition:

(63) pHp-p=0
whose coefficient matrix has rank 3.

Dual to this, one introduces tloeiented planeswhose five coordinates; have the
relation:

(63) m+m-m =0.

One can now also clarify tlgpiasi-distancécf. (60) in 8 8) from an oriented point to
a plane, including its sign, by the formula:

(64) 79: p0ﬂ0+ plﬂl+ p2ﬂ2+ pﬂ3
P.72,
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The totality of all oriented points that have equal qdagances # < 0 or 4 > 0)
from a fixed plane that does not go throwgkhall be called aariented quasi-sphere.

The desired group of inversions consists of single-vatuaadsformations of the
oriented points that permute the oriented quasi-sphetbhseach other. In order to put
this group into simple formulas, one introduces moreabldt coordinates that are
expressed in terms of tipeby:

(65) Patpi=t, pa—-p1=ti, po=tty, P2 =t P =tz2.

If one regards theas being homogeneous in the sense that one considénotbgstems
of valuesty, ty, ti1 tzo, andpty, pto,  t11, OF o for p# 0 as equivalent then any system
of values of thet, with the single exception of the one that contaomy zeroes,
corresponds to one and only one oriented point, andcalseersely, any oriented point
corresponds to one, and essentially only one, systém of

The group of inversions is expressed in terms of theseaaordinates thusly:

t1D = aghtayl, d=a,a,~ a,a,# 0,

tZD = ayhtayt, oJ=a.g,,a4a,70,
(66) t1D1 =d{a,t +a,t} + b11t21+2 bt bzirz

tzmz =d{a,t+a,t} + C11t21+2 C Az C23?2

With no restriction on generality, one can det £ 1. The group includes 13 essential
parameters and decomposes in the real domain into fouatepantinuous systems that
are characterized by the various combinations of the tonsld =+ 1, < 0,0> 0.

How can one now carry over all of this to kinemaic&irst, one must define the
oriented soma.ln the first place, we choosegasitiveactual somar. From formula (58)
in 8 8, one has for the angfg (8 10) between the ur-sorma ando:

LY

0

tango = -

From this, it follows, after an arbitrary decision ceming the sign:

sin¢o:—&, COS¢02+&, pa= P+ P

Ps Ps

If we thus give the angle, as well as its sign, up to a multiple ofr2henp, is
determined uniquely from these formulas, and our samsahen oriented. One can then
orient an actual positive sonaawhen one gives the angl@gof rotation that takesp to
oup to a multiple of #(and not merely up to a multiple ofig

In the second place, we takenegativeactual soma. One can orient it when one

gives the half-displacement magnitude (cf., (64)):
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=, meEe

of the transfer that take% to s, including its sign. The centerline of this transteriso

oriented in a definite way by this. For the angkewith the x, / x; — axis, which is
defined mod 2z one has, in fact, the formula:

: TT T
sinyp =- -2, cosip =+—2.
7, 7,

One can, moreover, orient the centerline of both equdl opposite transfers that
exchange two actual oriented sonm@ands with each other when one establishes that

they should subtend the angpe + ¢ with the x; / x; — axis (defined mod 7. The
distance between two such somas (8 11) is defined by thetadiae of the centerline,
along with its sign. Aroriented soma sphereontains all oriented, positive somas that
have the same distanée< 0 or#> 0 from an oriented, negative, actual soma.

These preparations suffice to make it possible to exethé transfer of spatial
inversion geometry to kinematics.

On this, we make the following remark: If one restricis considerations to the
oriented somagr of an oriented quasi-sphere exclusively then one canthiggn a
single-valued way to the oriented centerline of trengfers that make the oriented
“middle soma’s of the sphere cover the associated somdhe oriented somas of the

sphere will be permuted with each other under the 13-pargraeigiikewise, also the
12-parameter, group (66) in a seven-parameter manner. Tige @frthese permutations
is mapped to a group of transformations of the oriented amelthis is identical with the

so-called extended Laguerre group in the pldpe.

Here, | would like to content myself with these fdacts about the inversion
geometry of somas, although it amounts to no hardship semrehis little theory in a
similar way to the geometry of oriented lines in thengl

It is trivial that this inversion geometry is opposedatmther dual one, in which the
oriented plane appears as the spatial element andiémen negative somas appear in
the kinematics of the base plane.

The application of our ma@ ~ (g, g) to the questions of differential geometry
shall be treated in a continuation of this treatises aA example of the results that one
comes to in this way, we give the following one:

One maps the tanger®sto a curved lineM; in quasi-elliptic space that does not lie
in a plane througi€ theng andg: range along two mutually isometric curves, which
take the form of the “pole path” and “pole curve” of thation” that is associated with
M;. — The “motion” that the joint of a linked quadrilatecarresponds to in space is a

') On this, one can confer the author’s treatise: ‘@Gaometrie der Speere in der Euclidischen Ebene,”
Monatshefte f. Math., XXI, 1910.
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winding curve of fourth order: viz., the intersectionwb surfaces of second order from
the family 4 (cf., § 9).

Perhaps the following result should be mentioned conugrtiie treatment of the
two-dimensional families of somad, : ThoseM, for which a curve that is rigidly
coupled to a soma (i.e., axis cross) that is movingJjralways contacts a fixed curve in
the plane corresponds to a family of surfaces in sffateunder the passage to the limit
of § 7, emerge from the family of surfaces with zerosature measure in elliptic space
that L. Bianchi has examined. — The gendfalhave a remarkable relationship to the
transformations of oriented lines in the plane.

The behavior of kinematics in the sphere is somewingbler than kinematics in the
plane, and one can map to the geometry of elliptic spgpa@mploying a process that C.
Stephanos gave. From that point onward, one proceedsebysnof a transference
principle of Study to kinematics in Euclidian space.

Graz, Easter 1911.



Corrections to the treatise “Euclidian kinematics and mn-Euclidian
geometry I. I1.” %)

BY WILHELM BLASCHKE in Greifswald

One might excuse the large number of mistakes andngietrors that are included
in my paper by the fact that only one proofreader wasataito me.
I have since then noticed the following errors:

Page in place of one must set:
63. Line 9 from bottom (1 %) :(1-2 z+1):e-1)
69. Formulas (21), (22) o} Vg
70.  Formula (28) T 7"

71.  Line 13 from top P p
73.  Line 9 from top %4 g’

78. Line 15, 16, where | am speaking of Study’s investigations, must
strike the words “in connection with the papers of ahallageometer.”
The dissertation of G. Fubini (Il parallelismo di fi@ird negli spazii
ellitici, Pisa 1900), in which this situation is also tesh appeared
simultaneously with Study’s examination (Uber nichtetiktitle und
Liniengeometrie, Greifswald 1900).

Page in place of one must set:
82. Line 4 from bottom in the latter case in the scdbe
87. Line 5 “ collineation correlation
87. Line 4 “ a , . K

Finally, let it be mentioned that simultaneous to mggpawhich | submitted to this
journal for editing on Easter of 1911, a comprehensiveise@n the same situation
appeared that had the recently-deceased J. Grunwald forauthor. (Ein
Abbildingsprinzip, welches die ebene Geometrie und Kinematik dei raumlichen
Geometrie verknupft. Presented to the Vienna Acadertineagession on 4 May 1911).

Greifswald, in November 1911.

Y pp. 61-91 of v. 60 (1911) of this Journal.



