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 1. The fundamental problem statement and its origins in mathematical physics. – In what 

follows, we shall address real, second-order (1) ordinary differential equations. The general 

solution to such an equation will include two integration constants (II A 4.a, no. 6), that we would 

like to regard as parameters. In addition, the differential equation itself might include k parameters. 

If we then let y1, y2, …, yn denote arbitrary solutions of our differential equation then k + 2n 

parameters will enter into them. If we focus on n segments along the x-axis a1 b1 , a2 b2 , …, an bn 

then the boundary-value problem is subsumed by the question of whether and in how many ways 

those k + 2n parameters can be determined such that the solution yi (i = 1, 2, …, n) inside of the 

segment i ia b  is continuous, along with its first derivative, and fulfills certain boundary conditions 

at the endpoint ai and bi . 

 Up to now, the very extensive class of problems that was just referred to has been developed 

only to a lesser degree. There are mainly two cases that have already been treated, which we shall 

refer to as a) and c). Due to its greater importance, however, we shall regard case b) as a special 

case of c). 

 

 a) n = 1, k = 0. The boundary conditions consist of saying that the solution to the 

differential equation should assume certain arbitrarily-prescribed values at the endpoints of the 

segment. 

 

 b) n = k = 1. The differential equation is then assumed to be linear and homogeneous. 

The boundary conditions consist of saying that the quotient 1 1/y y  approaches arbitrarily-

prescribed (perhaps infinite) values at the endpoints of the segment (2). 

 

 c) n = k > 1. The differential equation is assumed to be linear and homogeneous, and the 

boundary conditions are the same as in b). 

 

 Those problem statements have mathematical physics to thank for their existence. 

 The relationship of case a) to physics is merely indirect, since the problem was taken up by E. 

Picard as an analogue of similar problems in the partial differential equations of mathematical 

physics (3), and indeed only in recent years. We will discuss Picard’s investigations, as well as 

the applications of them that he made to the boundary-value problem b), in no. 7. 

 The problem b) goes back to the Eighteenth Century. One must frequently start with a boundary-

value problem for a partial differential equation in mathematical physics. In order to solve it, one 

next forms products that satisfy the partial differential equation and whose factors each include 

only one variable. Each of those factors will then satisfy an ordinary linear differential equation, 

and in that way, one will deal with precisely the simplest cases of the boundary-value problems b) 

 
 (1) Higher-order equations will occur only in no. 4.  

 (2) The boundary conditions will be discussed in a somewhat more general, as well as modified, form 

in no. 3.  

 (3) The fundamental (first) boundary-value problem of potential theory might be mentioned as the original starting 

point. Cf., II A 7.b, no. 17. 
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(4). The boundary-value problem c) occurs in the same way in more complicated cases. However, 

G. Lamé (1839) (5) was the first to treat one such case. 

 That method of treating physical problems was already known to L. Euler in some rather 

general cases (6). However, neither Euler nor his contemporaries, with the exception of J. le R. 

d’Alembert (cf., infra), knew of the necessity of treating the questions that were raised by it. 

Rather, the possibility of determining the parameters that were considered in b) was tacitly 

assumed on physical grounds or merely by analogy with simpler cases. J. Fourier (who is regarded 

as Euler’s successor in that domain) did not go much further in that direction, although he did 

seek an analytical treatment in some individual cases (7).  

 By contrast, as has been often remarked, D’Alembert (8) knew of the necessity of an analytical 

treatment. He started from the problem of an oscillating non-uniform string, which led to the 

equation: 
2

2

d y

dx
 =   (x)  y , 

 

in which  (x) means a given positive function. D’Alembert asked whether one could determine 

the parameter  such that this equation would admit a solution that would vanish at a and b without 

vanishing identically. In order to answer that question, he converted the equation above into a 

Ricatti equation (II A 4.b, no. 8, 27) by introducing the new dependent variable z = /y y . When 

he investigated that equation, he arrived at the result (9) that the desired parameter determination 

was always possible, and indeed in such a way that the solution in question y did not vanish 

between a and b. However, the fact that there was only one such parameter value was not 

mentioned, any more than he spoke of the infinitely-many parameter values that one obtained by 

allowing zeroes of y between a and b. 

 Except for that exception, the boundary-value problem b) [c), resp.] was not only not 

addressed, but up to the year 1833 [1881, resp.], it was not even formulated, which is when the 

work of C. Sturm [F. Klein, resp.], which shall be discussed in nos. 2 and 5, came out. However, 

whereas the motivation for Klein’s work lay in mathematical physics (10), it is not as clear that this 

 
 (4) It should be remarked that these boundary-value problems sometimes also appear directly (i.e., without the 

intermediary of a partial differential equation). As an example, one might cite the determination of the equilibrium 

figures of an inhomogeneous string when one neglects gravity, and one assumes that it lies in a plane that rotates 

uniformly around the line that connects the two fixed endpoints of the string. In order to arrive at a linear equation, 

one must assume that the length of the string is only a little larger than the distance between the endpoints.  

 (5) J. de math. 4 (1839), pp. 126.  

 (6) Cf., Petrop. N. Comm. 10 (1764) [66], pp. 243.  

 (7) Thus, e.g., in § 284 of Théorie de la chaleur (Paris, 1822), he spoke of a differential equation that could be 

solved by circular functions, and the possibility of determining the parameters followed directly from its known 

properties. Moreover, in § 307, Fourier unnecessarily considered, on the one hand, the determination of imaginary 

parameters that will not come under consideration here, even when they exist. On the other hand, it would seem that 

he concluded that a real parameter determination was possible from the assumption that a transcendental equation 

always has infinitely many real or imaginary roots! 

 (8) Berl. Hist. (1763) [70], pp. 244.  

 (9) His treatment of it includes a gap that is easily filled.  

 (10) And indeed with the ambition of shedding new light on Appendix B of Thomson and Tait’s Natural Philosophy 

by considering a more general case.  
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was the case for Sturm (11), although he obviously recognized the relationship between his results 

and mathematical physics, and he very soon after made some applications of it in that spirit in 

conjunction with J. Liouville. He originally (12) started from finite difference equations (I E), and 

only later adapted the results that he obtained (but did not publish) to differential equations. 

 The developments of the previous century have been prefatory to our boundary-value problems 

b) and c) in yet another direction. One might consider an article of P. S. Laplace (13), who started 

from a problem in the theory of attraction and treated a certain triple integral that was a function 

of the three polar coordinates (r, , ) (II A, 7.b, no. 21). He developed that integral into a series, 

each term of which included a polynomial in sin  and cos  as a factor. However, instead of 

evaluating that polynomial directly, as A. M. Legendre (14) did in a simpler case, Laplace 

remarked that it would satisfy differential equations that would have the form: 

 

2

2

2

(1 )

( 1)
1

d
d

d n
i i

d







 

 
−     − − + 

− 
 = 0 . 

 

when one sets  = cos . In that way, Laplace knew from the outset that the two parameters i and 

n were whole numbers, and for him the only purpose of the differential equation was to simplify 

the calculation of those entire rational functions of  and 
21 − . Nothing was said about a 

boundary-value problem. However, he was close to addressing the Laplace, and other similar, 

problems (15) in such a way that he assumed that n was a whole number, but sought to determine i 

in such a way that the differential equation would possess a solution that remained finite for the 

values  =  1 (i.e., for the endpoints of the interval that comes under consideration for ), and in 

that way, one would be dealing with a boundary-value problem that is only a slight modification 

of b). In that way, he proposed that the necessary and sufficient condition for such a solution to 

exist consists of the statement that it should be an entire rational function of  and 
21 − . The 

boundary-value problem will then be solved here in such a way that we determine the values of i 

for which the differential equation admits an entire rational function of  and 
21 −  as a 

solution. As one confirms by an easy calculation, they are the whole-number values of i. 

 The investigations of Lamé (16)  into the differential equation that is named after him were 

connected with that treatise of Laplace. Lamé sought to determine the parameters that entered into 

it in such a way that the equation would admit a solution that was a polynomial, except for certain 

simple irrational factors. As will be explained in detail in no. 5, the problem that is thus defined 

 
 (11) Sturm’s algebraic, as well as the mathematical-physical, tendencies go back to Fourier. One sees how 

intrinsically intermingled those two tendencies were in Sturm in his earlier papers in Bull. de Férussac 11, 12. 

 (12) Cf., J. de math. 1 (1836), pp. 186.  

 (13) Paris. Hist. (1782) [85], pp. 113.  

 (14) Paris sav. [étr.] 10 (1785), pp. 411. 

 (15) So, e.g., in the problem of heat conduction in a ball that was likewise treated by Laplace [Connaissance des 

temps pour l’an 1823 (1820), pp. 249, et seq. and Méc. cél., livre XI (Oeuvres 5, pp. 82)]. 

 (16) J. de math. 4 (1839), pp. 126  
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will have a relationship to the boundary-value problem c) that is entirely similar to the relationship 

between the Laplace work that was just discussed and problem b). Those special investigation have 

then led to the more general ones that will be discussed in no. 6. 

  

 

 2. The fundamental treatise of Sturm (17) and the oscillation theorem in the case of one 

parameter. – Sturm started from the general second-order homogeneous linear differential 

equation, which he wrote in the form: 

(1)  

dy
d K

dx
G y

dx

 
 
  +  = 0 . 

 

The K and G in that mean arbitrary functions of x and a parameter  that cannot, however, become 

infinite in the interval a  x  b under consideration. K cannot vanish that interval either (18), and 

will then be assumed to be positive, for simplicity. 

 A well-defined solution of (1) is now selected in such a way that one requires y and dy / dx to 

be equal to certain arbitrarily-given functions of  at a (19). Sturm then addressed the variation of 

the function y with . In particular, he posed the following two questions: 

 

 1) How do the roots of y vary with  ? 

 

 2) How does the ratio 
dy

K y
dx

 vary with  when one regards x as constant? 

 

In order to answer those question, he derived the following otherwise-useful formula from the 

differential equation (20): 

 

 (x) –  (a)  

 

= 1 2 2 1( , ) ( , )[ ( , ) ( , )]

x

a

y x y x G y y G y y dx  −  − 1 2
2 1

( , ) ( , )
[ ( , ) ( , )]

x

a

y x y x
K y y K y y dx

x x

  
 −

  , 

 

in which 

 (x) = 1 2
2 1 1 2

( , ) ( , )
( , ) ( , ) ( , ) ( , )

y x y x
y x K x y x K x

x x

 
   

 
−

 
 . 

 

 
 (17) Read to the Paris Academy in September 1833. J. de math. 1 (1836), 106-186.  

 (18) Cf., however, what happens at the endpoints a and b of the interval on pp. 108 of Sturm’s treatise. 

 (19) In the vast majority of the physical applications, those functions of  are merely constants. 

 (20) Cf., e.g., II A 8, in which the formulas for determining the coefficients in series developments that represent 

solutions of linear differential equations are subsumed by the formula that was given here as a special case. Such 

special cases of that formula appear frequently in Sturm’s treatise. 
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Sturm now considered only the case in which the function 
dy

K y
dx

 increased monotonically with 

increasing  at the point x = a (21), and the function G decreased monotonically for every value of 

x that came under consideration, but K increased monotonically. When he assumed that the 

difference 2 – 1 was infinite, he then concluded that (22): 

 

 1) The roots of y increase monotonically with increasing . 

 

 2) 
dy

K y
dx

 increases monotonically with every value of x that comes under consideration 

(23). 

 

 With those theorems, one is in a position to compare the solutions of two differential equations 

of the form (1) that include no parameters  to each other in only the event that the function G in 

the first equation is nowhere greater and the function K in the first one is nowhere smaller than the 

corresponding functions in the second equation. That is because obviously one can indeed write 

down (and in infinitely-many ways) an equation of the form (1) that includes a parameter  and 

reduces to two given equations for two values of  while the functions G and K vary monotonically 

between those values of . 

 One will get simple theorems when one compares the given equation in that way with an 

equation in which K and G are constant, so one that can be solved by elementary functions. On the 

basis of those theorems, Sturm ultimately came to the following so-called (24): 

 

 Oscillation theorem (25): 

 

 We let  vary between two (finite or infinite) values   and   (   <  ). In that way, the 

function G might decrease monotonically with increasing , while K increases monotonically, and 

indeed the ratio G / K might decrease from +  to − . Moreover, let f1 () and f2 () be two 

arbitrarily-given functions that increase monotonically with . There is then one and only one 

value  =   for which equation (1) possesses a solution y that vanishes an arbitrarily-prescribed 

number of times in the interval a < x < b and for which the function 
dy

K y
dx

 assumes the values 

1 ( )f   and –
2 ( )f   at the points a and b, resp. 

 

 
 (21) The expressions “monotonically increasing” and “monotonically decreasing” (II A 1, no. 11) do not exclude 

the possibility of constancy. 

 (22) Loc. cit., pp. 116, 117.  

 (23) Klein derived that theorem, if only in some special cases, from mechanical considerations. Cf., his Ueber 

lineare Differentialgleichungen der zweiten Ordnung, pp. 268, et seq., 1894. 

 (24) That name goes back to Klein. Cf., Gött. Nachr. March 1890. 

 (25) We are stating this theorem in a somewhat-more-general way than Sturm did. 
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 For given boundary conditions, i.e., for given functions f1 and f2, there is then an infinite series 

of parameter values 0, 1, 2, … (the so-called distinguished parameter values [F. Pockels, loc. 

cit.]) that one determines by means of the oscillation theorem according to whether one demands 

that the solution of the differential equation in question should vanish never, once, twice, etc., in 

the interval. Those parameter values obviously define the set of real roots in the interval ( , )    

of a transcendental equation that is easy to write down. For each of those distinguished parameter 

values, as a result of the oscillation theorem, the differential equation will possess one (and 

obviously only one, except for a constant factor that remains arbitrary) solution that satisfies the 

desired boundary conditions at a and b. They are called (F. Pockels) distinguished solutions, and 

might be denoted by y0, y1, y2, …, in which the index gives the number of zeroes in each case. 

Sturm then proved the theorem: 

 

 The roots of two successive distinguished solutions yn and yn+1 that belong to the same 

boundary conditions are separate from each other. 

 

 The theorems of Sturm that were cited here do not, by any means, exhaust the results that were 

obtained in that treatise. For example, we might refer to his investigations in regard to the roots of 

the expression K dy / dx + p y, where p means a function of x that satisfies the inequality G K + 
2p  − /K dp dx > 0 (26). 

 

 

 3. Details regarding the case of one parameter (27). – Soon after Sturm’s treatise appeared, 

a series of works by Sturm and J. Liouville (28) appeared that were devoted to the same topic. 

However, due to its greater physical interest, the only case that was treated in them was the one in 

which K was independent of , while G had the form  g – l, in which g and l mean positive 

functions of x alone. f1 and f2 were also assumed to be independent of  and positive. Naturally, 

one can give Sturm’s original theorems more specific forms under such special assumptions. One 

then finds that, e.g., by applying a method of S. D. Poisson (29), that the aforementioned 

transcendental equation for determining the distinguished parameter values (which is now analytic 

in ) possesses no imaginary roots. Therefore, since the interval     now coincides with the 

entire -axis, the distinguished parameter values now define the set of all roots of that equation. 

 
 (26) Even more results of that treatise, as well as the work of Sturm and Liouville that will be cited directly, will 

be discussed in II A 8 and II B 4.  

 (27) For the method that Picard recently applied in order to derive some of Sturm’s results, cf., no. 7. 

 (28) C. Sturm, J. de math. 1 (1836), pp. 373. C. Sturm and J. Liouville, ibid. 2 (1837), pp. 220. J. Liouville, ibid. 

1 (1836), pp. 253, 269. ibid. 2 (1837), pp. 16, 418, 439. Those treatises are meaningful mainly because the series 

developments in the distinguished solutions were treated for the first time in them. Cf., II A 8. 

 It might be mentioned here that the Liouville article 2, pp. 439 treated a special second-order inhomogeneous linear 

differential equation that can, of course, be solved by trigonometric functions. 

 (29) Bull. Soc. Philomath. (1826), pp. 145; cf., also Sturm, J. de math. 1 (1836), pp. 384, et seq. Poisson’s proof 

consists of a simple application of the integral formula that was given in no. 2.  
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As one easily proves, they are all positive; they are also simple roots (30). One ultimately finds (31) 

that for large n, 
n can be represented asymptotically by /n Z (32), where: 

 

Z = /

b

a

g K dx . 

 

 We would like to add the following remark that Liouville generally did not make. It deals with 

the question of how the distinguished parameter values will change when the interval ab becomes 

unbounded. In the simple case when one deals with a differential equation with constant 

coefficients, those parameter values will cluster along the entire positive half of the -axis in such 

a way that arbitrarily-many parameter values will lie along an arbitrary piece of that axis. One 

would like to suspect that similar things might be true in the general case. However, W. Wirtinger 

(33) was the first to emphasize the fact that this was not the case. Perhaps one can see that most 

easily in a case that Wirtinger did not discuss, namely, the one in which the ratio g / K converges 

to zero with increasing x so strongly that  /
a

g K dx



  has a finite value. Here, one concludes from 

the asymptotic representation that was written down above that the parameter values do not 

accumulate at all when the interval ab increases (34). However, the case that Wirtinger treated is 

even more interesting: K = 1, l = 0, f1 = f2 = , g = an even periodic function. Here, Wirtinger 

proved that the distinguished parameter values naturally accumulate for an increase interval ab, 

but that they generally fill up only certain pieces of the positive half of the -axis increasingly but 

can leave the remaining pieces of the -axis completely empty (35). 

 We now return to Sturm’s ground-breaking treatise. 

 As was the custom at the time, Sturm did not say anything more detailed about the nature of 

the functions that entered into his proofs. However, they must be continuous functions of their 

arguments in any event, and it emerges from the line of reasoning in the proof that they can also 

be regarded as differentiable, in part. However, the latter assumption is not necessary for the 

 
 (30) One might confer, e.g., the Sturm article that was cited last.  

 (31) J. Liouville, J. de math. 2 (1837), pp. 30.  

 (32) The case in which the distinguished solutions vanish at one endpoint of the interval a b, but not the other, 

defines an exception. In that case, n  will be represented asymptotically by the formula (n + 1
2

)  / Z. 

 M. Radaković gave an approximate formula of a different type for the distinguished parameters [Monatsh. für 

Math. u. Phys. 5 (1894), pp. 228]. It also relates to all values of n, but only for the case K = 1, l = 0, f1 = f2 = , and g 

is a function that varies only slightly between a and b. 

 (33) Math. Ann. 48 (1896), pp. 387.  

 (34) In order to make that conclusion rigorous, one requires an even-more-specialized argument that can nonetheless 

be implemented rigorously with ease under certain restricting assumptions in every case.  

 (35) Those investigations are connected with the problem of the oscillation of an infinitely-long string, and 

Wirtinger expressed his result by saying that the oscillation would generally correspond to a “band spectrum,” in the 

terminology of optics. 

 Obviously, this question has the closest relationship to the case that will be discussed much later in which the 

interval ab extends up to a singular point of the differential equation, because the point x =  is indeed a singular one, 

in general, and in fact an irregular point of the differential equation (II B 4). 



Bôcher – Boundary-value problems for ordinary differential equations. 9 
 

 

 

theorems that are obtained to be valid. On the other hand, the mathematically-rigorous modern 

development Sturm’s proof cannot be regarded as free from objections at each of its steps. More 

recently (36), the author undertook the task of putting Sturm’s main result on solid foundations, 

and that yielded the result that Sturm’s methods could be preserved essentially. In his treatment, 

the author had restricted himself to equations of the form: 

 
2

2

d y

dx
 =   y 

 

(which is a case that also received special consideration by Sturm), because any equation (1) can 

be put into that form by changing the independent, as well as the dependent variables (37). 

 The question of whether Sturm’s theorems will remain true in the case when one endpoint (or 

both of them) (38) of the interval in question is a singular point of the differential equation has been 

investigated in several cases and by various methods (39). We shall cite only the following two 

main theorems here, in which one deals with differential equations with analytic coefficients that 

have a regular singular point (cf., II B 4) with real exponents at the endpoint a of the interval in 

question. For the sake of simplicity, we assume that the other endpoint b is a non-singular point. 

 

 If one assumes that the boundary condition at the point a is that the solution to the differential 

equation belongs to large exponents then Sturm’s theorems will remain true (40). 

 If one assumes that the boundary condition at the point a is that the solution to the differential 

equation is an arbitrarily-prescribed linear combination with constant coefficients of the solutions 

that belong to the two exponents then Sturm’s theorems will persist in the even that: 

 

 () the difference between the exponents at a is less than 1. 

 

 () the exponents are independent of the parameter  (41). 

 

 
 (36) N. Y. Bull. April, June, and October 1898. The proof that was given here can be simplified in part. Cf., a 

preliminary communication of the author in N. Y. Bull., Dec. 1899, pp. 100. 

 (37) A second restriction in generality consists of saying that the functions that were denoted by f1 () and f2 () 

above will be assumed to be constants. However, it is easy to go from that special case to the general one by means 

of the first two theorems of the second article. 

 (38) The possibility of singular points appearing inside of the interval was also considered by the author.  

 (39) L. Schäfli, Math. Ann. 10 (1876), pp. 137; the book by the author that was cited above, pp. 174, et seq.; F. 

Klein, Lin. Diff.-Gl. d. 2. Ord., pp. 429; M. B. Porter, N. Y. Bull. May 1897; E. B. Van Vleck, N. Y. Bull., June 

1898; M. Bôcher, N. Y. Bull., Oct. 1898. 

 (40) This was probably stated for the first time by M. B. Porter in N. Y. Bull. May 1897. 

 (41) M. Bôcher, N. Y. Bull., Oct. 1898. For a further extension of these theorems, one can confer a preliminary 

communication of the author, N. Y. Bull. April 1900. 
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 In conclusion, we shall speak of the modified form of the boundary-value problem b), in which 

instead of prescribing the values of /y y  at a and b, one demands that the following equations 

must exist (42): 

y (a) = y (b) , ( )y a  = ( )y b  . 

 

 Fourier was led to pose that question when he investigated the problem of heat condition in a 

thin wire that closes on itself (43). However, when he assumed that the wire was uniform, he was 

treating one of the cases that would be trivial from our standpoint. 

 The general problem that was indicated here does not seem to have been dealt with. The special 

case in which the coefficients of the differential equations possess the same values at the points a 

+  and b –  can be easily reduced to the ordinary boundary-value problem b) (44). In fact, one 

needs only to focus upon the half segment a < x < (a + b) / 2 and prescribe either y = 0 or y  = 0 

at both endpoints as the boundary condition. 

 By contrast, the possibility of so-called two-fold distinguished parameter values (F. Pockels, 

loc. cit.) appearing in that problem arose for the first time, i.e., parameter values for which two 

linearly-independent, and as a result, all solutions, of the differential equation would be 

distinguished solutions. For example, in the case of constant coefficients, all distinguished 

parameter values are two-fold. 

 

 

 4. Extension of Sturm’s result to higher-order differential equations. – Such an extension 

to certain fourth-order linear differential equations already presents itself in the physical problem 

of the vibration of elastic rods and plates, but only some special cases of it will be treated here (45). 

If one addresses an inhomogeneous elastic rod then one will be dealing with the differential 

equation: 
2 2

4

d K d y

dx
 =  g y , 

 

in which K and g means positive functions of x that are independent of , and one then deals with 

the determination of the parameter  in such a way that the differential equations will possess a 

solution that fulfills one of the following three boundary conditions at each endpoint a and b : 

 

 
 (42) That boundary-value problem obviously coincides with the following problem: For what values of the 

parameter  will a second-order homogeneous linear differential equation whose coefficients are periodic functions 

of x possess at least one solution with the same period? Cf., pp. below. 

 (43) Théorie de la chaleur, pp. 239.  

 (44) Cf., the author’s book that was cited above, pp. 181, et seq. 

 (45) One finds most of those cases in Lord Rayleigh’s Theory of Sound. Cf., also G. Kirchhoff, Berl. Ber. Oct 

1879 and F. Meyer, “Zur Capellen,” Ann. Phys. Chem. (2) 33 (1888), pp. 661. 
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3

3

0,

0.

d y

dx

d y

dx


=


 =


 

 

 Based upon general mechanical principles, Lord Rayleigh (46) gave some results that have a 

close analogy with Sturm’s theorems. More recently (47), that question was taken up by A. 

Davidoglou for the case of K = const. by applying Picard’s methods (cf., no. 7). 

 J. Liouville has treated a somewhat-different boundary-value problem (48), namely, the 

differential equations of arbitrary order that take the form: 

 

n

d K d L d M d N dy
y

dx


   
+  = 0 , 

 

in which K, L, …, M, N mean n – 1 positive functions of x that are independent of the parameter 

. He proved the following oscillation theorem: 

 

 One can determine the parameter  in one and only one way such that the differential equation 

possesses a solution that possesses an arbitrarily-prescribed number n of roots in the interval ab 

and satisfies the boundary conditions: 

 

y = A ,  
dy

N
dx

 = B , …, 
1n

K dL dM dN dy

dx −
 = D  

 

at the point a and the boundary condition: 

 

1n

dy K dL dM dN dy
y N

dx dx
  

−
+ + +  = 0 

 

at the point b. In that, A, B, …, D, as well as , , …, , means positive constants (some of which 

might vanish, with the exception of D). 

 

 If one denotes the parameter values that are determined by that by n then one will have an 

infinite series of distinguished parameter values 0, 1, 2, … As Liouville proved, they are all 

positive and ordered by magnitude. Ultimately, the roots separate two successive distinguished 

solutions from each other. 

 
 (46)  Theory of Sound 1, § 187. 

 (47) C. R. Acad. Sci. Paris, 12 March and 7 May 1900. Cf., also C. R. Acad. Sci. Paris, 12 February 1900, in which 

certain third-order differential equations were treated by the same mathematician. 

 (48) J. éc. polyt., cah. 25 (1837), pp. 85. J. de math. 3 (1838), pp. 255 and 561. Here, we shall mainly deal with the 

third of those treatises, since the second one is only a brief preview, while first one can be regarded as a preliminary 

work in which only the special equation 
3 3

/dy dx  =  x was treated, which is soluble by exponential functions.  
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 Although those theorems are entirely analogous to those of Sturm, nonetheless, Liouville 

found that they made it necessary to invent a new method of proof because the integral formula of 

no. 2 breaks down here. In place of it, Liouville appealed to a method that is similar to the one that 

was applied to prove Fourier’s theorem on real roots of algebraic equations (I B 3.a, no. 4). Just 

as Sturm’s is, Liouville’s proof was based upon the fact that for large values of , the solutions 

of the differential equation will possess many roots in the interval ab. One sees that this is true in 

the case where K, L, …, M, N mean constants in the explicit solution of the differential equation, 

which can be represented by exponential functions in this case. However, Liouville carried out the 

transition from that special case to the general case in a very unsatisfactory way. 

 

 

 5. The oscillation theorem in the case of several parameters (49). – The case that was 

indicated by c) in no. 1 was first treated by Klein in 1881 (50) in a deliberate and explicit way, if 

only for a special differential equation. Indeed, many of the differential equations that appeared in 

the last century include two parameters (51). However, one of them is always known (52), and one 

then deals with the problem of determining the second one by means of Sturm’s oscillation 

theorem. On the other hand, as we will see directly, Lamé’s work (53) has a relationship to the 

question that lies before us that is entirely similar to the relationship between the Laplace treatise 

that was discussed in no. 1 and Sturm’s oscillation theorem, because Lamé said nothing about 

boundary-value problems, and yet his results, along with those of his followers, yield the solution 

to the boundary-value problem c) in one special case in a most immediate way. 

 In the article that was just cited, Klein started from the Lamé equation, and indeed in essentially 

the form: 
2

2

1 2 3 1 1 1

1 1 1 1

2 4( )( )( )

d y dy A x B
y

dx x e x e x e dx x e x e x e

  +
+ + + − 

− − − − − − 
 = 0 , 

 

in which e1 < e2 < e3 , and considered two segments of the x-axis a1 b1 and a2 b2 , one of which lies 

in the intervals e1 e2, e2 e3, e3 , but indeed not both of them. He posed the following oscillation 

theorem (54): 

 

 One can determine the real parameters A and B (and indeed in only one way) such that Lamé’s 

equation possesses two solutions y1 and y2, of which, y1 vanishes at the points a1 and b1 and 

possesses an arbitrarily-prescribed number of zeroes between those points, while y2 vanishes at 

the points a2 and b2 and possesses an arbitrarily-prescribed number of zeroes between those 

points. 

 
 (49) For the relationship to the theory of polygons of circular arcs, cf., II B 4. 

 (50) Math. Ann. 18, pp. 410.  

 (51) E. g., the equation that Laplace addressed. Cf., no. 1.  

 (52) And indeed, often by applying Sturm’s oscillation theorem to another differential equation that likewise 

includes that parameter. 

 (53) Cf., no. II B 4.b, namely, 33, 34, 36.  

 (54) That formulation was already generalized in various directions in the same treatise. In particular, the segments 

can bend around the singular points. 
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 Klein proved that theorem by geometric considerations that made no claim to complete rigor. 

Namely, he considered the auxiliary line y = A x + B, and when he directed his attention to the one 

segment a1 b1, he investigated how that line would have to move in order for the desired solution 

u1 to exist. Based upon some of Sturm’s results (55), he found that in order to do that, the line 

would have to envelope a certain enveloping curve whose form he examined more closely. When 

he then considered the second segment a2 b2 similarly, he found a second enveloping curve, and 

he concluded from the form and mutual position of those two curves that those two curves will 

always possess one and only one common tangent. The equation of that tangent then gave the 

desired values of A and B. The proof that is thus sketched out was posed in analytic form (56) and 

carried out rigorously by the author (57). 

 In order to connect with Lamé’s results, Klein let the two segments coincide with the intervals 

e1e2 and e2 e3 . Moreover, if e1, e2, e3 mean 0 or 1, independently of each other, then Klein posed 

the problem of determining the parameters A and B such that Lamé’s equation would possess two 

solutions y1 and y2, of which, y1 belongs to the exponents 1 / 2 and 2 / 2 at the points e1 and e2, 

respectively, while y2 belongs to the exponents 2 / 2 and 3 / 2 at the points e1 and e3, respectively. 

The somewhat-extended oscillation theorem tells us that there are infinitely many such pairs of 

values A, B that differ by the number of zeroes of the corresponding functions y1 and y2 in the 

intervals e1e2 and e2 e3. On the other hand, one sees from an easy function-theoretic argument (58) 

that the two functions y1 and y2 (which differ by only an imaginary constant factor) have the form: 

 

31 2

1 2 3( ) ( ) ( )x e x e x e
 

− − −  , 

 

in which  means a polynomial in x. One will then be likewise led to the desired pair of values A, 

B when one determines those parameters such that the equation will possess a solution of that 

form, and therein lies precisely Lamé’s original statement of the problem. In particular, one 

observes the relationship between the oscillation theorem and the theorem on the distribution of 

roots of the Lamé functions that Klein found shortly before it (59). 

 Klein extended the oscillation theorem in two directions in one of his lectures (Winter 

Semester 1889-90) (60): He then directed his considerations to a generalized form of the Lamé 

equation, which raised no new complications. However, he did that in such a way that in so doing 

he presumably expressed an oscillation theorem for higher-order Lamé equations (61), which made 

a greater number of segments appear, corresponding to a greater number of parameters. A 

 
 (55) Klein did not refer to Sturm’s treatise but derived the desired result in a geometric way.  

 (56) N. Y. Bull., April 1898, pp. 307, et seq.  

 (57) One can also confer a modified form of the proof in Pockels: Ueber die Differentiagleichung u + 
2

k u  = 0, 

pp. 118. It was rigorously implemented only in part. 

 Investigations of the asymptotic values of the parameters A, B in the case of a very large number of zeroes of y1, as 

well as y2, can be found in the dissertation of C. Jaccottet, Göttingen 1895. 

 (58) Cf., the author’s book that was cited before, pp. 213.  

 (59) Math. Ann. 18, pp. 237, et seq. One can confer II B 4.b, no. 36.  

 (60) Cf., Gött. Nachr. (1890), pp. 91, et seq.  

 (61) Cf., II B 4.b, nos. 40, 42.  
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geometric proof was given (62) in the simplest case where three parameters are present, in which 

one operates with enveloping surfaces instead of enveloping curves. In the more complicated 

cases, that method of proof led to higher-dimensional spaces, and as a result they lost their power 

to convince, since intuition played an essential role (he made no claim to rigor). 

 Somewhat later (63), Klein expressed the conjecture that the oscillation theorem could be 

extended to other everywhere-regular differential equations under certain circumstances. He was 

led to it mainly by certain results of Stieltjes that showed the validity of his conjecture in one 

special case, although we will first discuss that in no. 6. In order to explain Klein’s theorem, we 

would like to start from the general second-order homogeneous linear differential equation that is 

everywhere regular: 

(3)   
2

1 1

2

1

11 n n

n

d y dy

dx x e x e dx

      − −− −
+ + + 

− − 
 

+ 21 1 1
2 1 0

1

( )( )1

( )

nn n n
n

n

f ef e
C x C x C y

f x x e x e

   −

−

     
+ + + + + + 

− − 
 = 0 , 

in which 

f (x) = (x – e1) (x – e2) … (x – en) . 

 

 We assume that the coefficients of that equation are real for real values of x. We can then 

summarize Klein’s conjecture as the following theorem: 

 

 Consider the k + 1 intervals (k  n – 2) a0 b0, a1 b1, …, ak bk, which satisfy the following three 

conditions: 

 

 1)     a0 < b0  b1  a2 … < bk−1 < ak < bk . 

 

 2) No singular point ei shall lie inside of the interval, but at most at its ends. 

 

 3) The singular points that lie at the endpoints of that interval shall have exponents whose 

difference has an absolute value that is less than 1. 

 

 Moreover, m0, m1, …, mk might mean arbitrary numbers that are positive integers or zero. 

 When one considers the other quantities that enter into the differential equation to be given, 

one can then determine the parameters C0, C1, …, Ck in one and only one way such that the 

equation (3) will possess k + 1 solutions y0, y1, …, yk in such a way that yi will vanish precisely mi 

times in the interval ai < x < bi , and at each endpoint of that interval it is proportional to an 

 
 (62) Although it was only published later. Cf., e.g., Klein, Lin. Diff.-Gl., pp. 403, et seq.  

 (63) In his Lin. Diff.-Gl., 1894, pp. 427, et seq. One can also confer the autographed volume from 1891 on 

differential equations, which nonetheless includes many conjectures by Klein that were subsequently proved to be 

false.  
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arbitrarily-prescribed linear combination of the fundamental solutions that belong to that point 

(64). 

 If one drops the condition that the absolute values of the difference between the exponents at 

the endpoints of the segments must be less than 1 for some of the segments then the theorem will 

remain unchanged in the event that one demands that at each such singular point, the function yi 

in question shall be proportional to the fundamental solution that belongs to the larger exponent 

at the point in question. 

 

 That theorem was proved by the author (65), and indeed as a special case of a similar theorem 

that related to the equation: 

 
2

1 02
( ) { ( ) ( )[ ]}k

k

d y dy
p x x x C x C x C y

dx dx
 + + + + + +  = 0 , 

 

in which the functions p, ,  do not need to be analytic, but must only satisfy certain conditions. 

 

 

 6. Excursion into polynomial solutions. – When E. Heine attempted to extend Lamé’s 

result to the higher-order Lamé equations that he introduced, he was led to take up the following, 

more-general, problem (66): 

 

  means a polynomial of degree (p + 1) in x, while  and  mean polynomials in x whose 

degrees do not exceed p (p – 1, resp.).  and  are regarded as given, and one asks whether (in 

how many ways, resp.) the polynomial  can be determined such that the differential equation: 

 
2

2

d y dy
y

dx dx
  + +  = 0  

 

will possess a polynomial solution of degree n. 

 

 Heine answered that question by direct algebraic calculation. He found that in general (i.e., 

when the polynomials  and  are not specialized in any way), there are: 

 

[n, p] = 
( 1) ( 2) ( 1)

1 2 ( 1)

n n n p

p

+ + − −

  −
 

 

 
 (64) Cf., II B 4. It should be mentioned that since the exponents are 0, 1 at a non-singular point, that condition will 

come down to saying that one can prescribe the value of the ratio /y y  arbitrarily at a non-singular point.  

 (65) N. Y. Bull., May and Oct. 1898.  

 (66) Berl. Ber., Jan. 1864; Heine’s Kugelfunktionen, 2nd ed., 1, Berlin, 1878, pp. 472, et seq. One can also confer 

Klein, Lin. Diff.-Gl., pp. 191, et seq.  
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different ways of determining . However, in order to apply that theorem to a special case, one 

needs to prove each time that the number of functions  is not reduced by the specialization that 

takes place, and Heine had, in fact, given such a proof for the case of higher-order Lamé equations 

that was especially interesting to him. More general questions of that kind, as well as the reality 

questions that were connected with them, remained undiscussed by Heine. 

 T. J. Stieltjes (67) had answered all of those questions under certain restricting assumptions in 

a surprisingly simple way. Namely, one assumes that the polynomials  and  are real, so the 

equation  = 0 will have nothing but distinct real roots. a0 < a1 < … < ap, and furthermore that 

when one decomposes  /  into partial fractions: 

 




 = 0 1

0 1

p

px a x a x a

 
+ + +

− − −
 , 

 

the  will all be positive (and non-zero). Stieltjes then proved that there will always be [n, p] 

different real polynomials  for which the differential equation possesses a polynomial of degree 

n as a solution, that those polynomial solutions of degree n will all have real roots that lie in the 

interval 
0 pa a , and that they will differ precisely by the way that those roots are distributed in the 

individual intervals a0 a1, a1 a2, …, ap−1 ap . Klein (68) called those polynomial solutions Lamé 

polynomials, while E. B. Van Vleck (69) called them Stieltjes polynomials. 

 Stieltjes derived the proof of his theorem from the remark that the root-points of the 

polynomial solutions would give the equilibrium locations for a system of n moving unit mass-

points that are repelled by p + 1 fixed masses 0 / 2, 1 / 2, …, p / 2 such that the force of repulsion 

is directly proportional to the masses and inversely proportional to the distance. That proof is 

directly connected with the mechanical picture but is not based upon it. Rather, it was carried out 

in a rigorous analytical form. 

 Those considerations were extended by the author (70) in such a way that complex quantities 

were also brought under consideration, which meant that one would be dealing with a system of 

points in a plane. 

 An extension of Stieltjes’s theorem by E. B. Van Vleck (71) should be mentioned in which the 

polynomials  that are determined in that way also have nothing but real roots that lie in the interval 

a0 ap . 

 Now, in order to explain the relationship between Stieltjes’s theorem and the oscillation 

theorem, it should be pointed out that in each theorem one is dealing with the general everywhere-

regular equation whose singular points are all real, while one exponent at each such point is zero, 

while the others are algebraically less than 1. The Stieltjes polynomials then belong to zero 

exponents at all singular points, and that exponent is the smaller one at the point in question when 

 
 (67) Acta Math. 6 (1885), pp. 321.  

 (68) Lin. Diff.-Gl., pp. 191.  

 (69) N. Y. Bull., June 1898.  

 (70) Cf., his book: Reihenentwicklungen, etc., pp. 214, et seq., as well as N. Y. Bull., March 1898. See also Klein, 

Lin. Diff.-Gl., pp. 201, et seq.  

 (71) N. Y. Bull., June 1898.  
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the difference between the exponents at that point is < 1. Klein’s oscillation theorem then 

subsumes the Stieltjes theorem as a special case. 

 Finally, we shall speak of the cases that lie beyond the so-called Stieltjes limit, at which one of 

the quantities  becomes negative. The Stieltjes theorem will no longer be true then. Those cases 

were examined by E. B. Van Vleck (72), who started from the Stieltjes case and let the quantities 

0, …, p decrease continuously and then observed how the roots of the polynomial solutions in 

question would change. There are two types of situations to consider in that way: 

 

 1) Two real polynomial solutions can become imaginary, but only when they were previously 

identical, and therefore only when one has drifted so far from the Stieltjes case that two real 

polynomial solutions will take on the same distribution of roots. 

 

 2) The distribution of roots for polynomial solutions that remain real can change. That can 

happen when either a number of roots coincide (which must necessarily happen at one of the points 

a0, …, ap, ) and some of them are imaginary, or in such a way that roots that remain real will go 

from one interval to another. 

 

 One therefore next (i.e., as long as the polynomial solution remains real) needs to investigate 

only when and how the roots go through the singular points a0, …, ap, . In that way, one can 

determine the distribution of roots of the polynomial solutions precisely in the simplest cases. 

 One notes that these investigations go beyond the scope of Klein’s oscillation theorems, and 

as a result, they can be regarded as preliminary to the further development of that theorem. 

  

 

 7. The methods that were adapted from partial to ordinary differential equations since 

1890 (73). – Once E. Picard had employed the method of successive approximations that H. A. 

Schwarz (74) applied for that purpose by starting from the boundary-value problem and treating 

similar problems for certain other partial differential equations (75), he remarked that the same 

methods could be applied to the ordinary differential equation: 

 

(4) 
2

2

d y

dx
 = , ,

dy
f x y

dx

 
 
 

 . 

 

 
 (72) That work of Van Vleck was never published. However, one might cf., Klein, Lin. Diff.-Gl. 2 Ord., pp. 226, 

et seq., where one part of Van Vleck’s results was derived along a mechanical route. (Van Vleck himself used only 

analytical methods.) In the case p = 2, those results were included, in part, implicitly in many general investigations 

of Van Vleck [Am. J. Math. 21 (1899), pp. 126]. 

 (73) Cf., in particular, the following works of Picard: J. de Math. (4) 6 (1890), pp. 197; ibid. (4) 9 (1893), pp. 228; 

C. R. Acad. Sci. Paris, 19 Feb. 1894, 9 April 1894, 23 April 1894, 14 Feb. 1898. One finds a thorough presentation in 

Picard’s Traité d’analyse 3 (1896), pp. 94, et seq. 

 (74) Fenn. Acta 15 (1885), pp. 315 = Ges. Abh. 1, pp. 244.  

 (75) Cf., II A 7.c, no. 5.  
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The function f might be assumed to be a single-valued continuous function of its three independent 

arguments, as long as   x  , | y |  L, | |y   L  (76). We next state the following very general 

theorem: 

 

 For a sufficiently-short (77) interval ab that lies inside the interval , there is one and (in case 

one considers only the case of | y | < L, | |y   L ) only one solution of (4) that varies continuously 

inside of that interval along with its first derivatives and satisfies the inequalities | A | < L, | B | < 

L at the points a and b, resp., but otherwise assumes arbitrary values A and B. 

 

 In the derivation of that theorem, as well as the ones that follow, the algorithm of successive 

approximations was applied in the following way (78): 

 One starts from an initial function y0 (which is chosen in various ways) and calculates the 

approximations y1, y2, … by the equations: 

 

   
2

2

id y

dx
 = 1 1( , , )i if x y y− −

    (i = 1, 2, …). 

 

Each of those equations is integrated in such a way that the solution assumes the desired values A 

and B at the points a and b, resp. Now, one can prove that those functions yi approach a limit 

function uniformly (II A 1, no. 16), so it will follow that this limit function is the desired solution 

to (4) (79).  

 One can apply the same method to systems of differential equations: 

 

  
2

2

id y

dx
 = 1 1( , , , ; , , )i m mf x y y y y    (i = 1, 2, …, m) 

 

and get a theorem that is analogous to the one that was just stated. 

 
 (76) Other conditions were also imposed upon that function, in part, such as the existence and finitude of its partial 

derivatives with respect to the second and third argument. 

 (77) This was made more precise by three inequalities; cf., Traité d’analyse, 3, pp. 96, 97.  

 (78) From a remark of P. Painlevé, Bull. soc. math. 27 (1899), pp. 150, all of Picard’s results (naturally, only to the 

extent that they do not refer to that method explicitly) can were derived in such a way that one employs the Cauchy 

method for integrating real differential equations, instead of the method of successive approximations (cf., II A 4, no. 

5), which is a method that possesses the greatest-possible domain of convergence, from a remark of Painlevé (loc. 

cit.) and Picard (C. R. Acad. Sci. Paris, 5 June 1899). 

 The method of successive approximations, which had been applied to other branches of mathematics all along (cf., 

e.g., Fourier, Théorie de la chaleur, § 286, 287), was probably first employed by J. Liouville [J. de math. 1 (1836), 

pp. 255] in order to solve ordinary differential equations. However, the way that method was applied to the latter has 

no special relationship to boundary-value problems, because the approximations were determined in such a way that 

they would fulfill certain initial conditions at a single point. Cf. II A 4.a, no. 9. In the form that we use (in which the 

approximations are determined by limiting values at two points), the method seems to have been used only once before 

Picard’s work, namely, by J. Liouville, J. de math. 5 (1840), pp. 356. 

 (79) We refer to a theorem that Picard gave (C. R. Acad. Sci. Paris, 9 April 1894), which said that when f is an 

analytic function of x, y, y , and a parameter , the solution that is determined by the method that was discussed here 

will likewise be an analytic function of . 
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 One can further treat some special cases of (4), namely: 

 

()   
2

2

d y

dx
 = f (x) ,  

 

() 
2

2

d y

dx
 =  (x) y , 

 

()   
2

2

d y

dx
 = f (x, y) . 

 

We would like to discuss those equations in turn. 

 

 () In this case, the boundary-value problem a) of no. 1 can always be solved, and in only one 

way, and indeed by the formula: 

 

y = 
( ) ( ) ( ) ( )

( ) ( ) ( )

x b

a x

b x a b x a A B
f d f d x a A

a b a b a b

 
   

− − − − −
+ + − +

− − −   . 

 

 As H. Burkhardt remarked (80), in the especially important case of A = B = 0, that formula 

can be linked with the theory of one-dimensional Green functions. Namely, Burkhardt 

understood the Green function G (x, ) of the region ab to mean the function of x that vanishes at 

a and b, is single-valued and varies continuously, along with its first derivative, between those 

points, except at the point , and satisfies the differential equation 2 2/d y dx  = 0, while the function 

G is continuous at the point x = , but dG / dx possesses two values that different by – 1. 

 When f (x) is negative between a and b, one sees from the formula that was written down above 

that the solution of () that vanishes at a and b is positive between a and b and that when f is 

replaced by an algebraically smaller function, that solution will increase at each point. 

 The case () is important because the result that was obtained here can also be employed in 

the cases () and () by applying the method of successive approximations. 

 

 ()  Since we are dealing with a linear differential equation, the boundary-value problem that 

was denoted by a) in no. 1 will generally admit one and only one solution. An exception to that 

will occur only when the solution to the differential equation that vanishes at a also vanishes at b. 

That case cannot occur as long as  is positive in the entire interval ab. We would now like to 

assume that  is negative. Moreover, we next consider only the case in which the interval ab is 

short enough that the solution to () that vanishes at a does not vanish between a and b or at b, or 

what amounts to the same thing, we restrict ourselves to the case in which () possesses a solution 

 
 (80) Bull. soc. math. 22 (1894), pp. 71. Burkhardt appealed to Picard’s work only to the extent that he treated a 

more general boundary-value problem for equation (), and likewise with the use of a Green function. 
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that is positive in the entire interval (including the endpoints). As Picard proved, that solution can 

be represented by the method of successive approximations. 

 Moreover, Picard gave a criterion for determining whether the case that is considered does or 

does not occur that was closely linked with the aforementioned work of Schwarz. In order to do 

that, he considered the constants: 

Wn = − ( ) ( )

b

n

a

x u x dx , 

 

in which u0 = 1, and the successive approximations u1, u2, … that are defined by the method that 

was described above vanish at the point a and b. The quotients cn = Wn / Wn−1 approach a limiting 

value c as n increases. When c < 1, the solution to () that vanishes at a will not vanish between a 

and b or at b. When c > 1, that solution vanishes between a and b, and when c = 1, it will vanish 

at b, but not between a and b. In that last case, that solution that vanishes at a and b will appear to 

be the limit of the functions un . 

 The constant c depends, on the one hand, on the values of the function , and on the other, on 

the length of the interval ab. Indeed, one finds that this constant increases, on the one hand, when 

the function  is replaced with an algebraically smaller function, and on the other, when the 

interval ab is replaced with a larger one. It follows from this that the roots of the solution that 

vanishes at a will also move towards the point a for algebraically degreasing . In order to do that, 

a special case of the Sturm theorem that was discussed in no. 2 will be proved again. 

 If one replaces equation () by the equation: 

 

( )      
2

2

d y

dx
 =   (x) y 

 

then c will be replaced by  c. As a result, ( )  will have a solution that vanishes at a and b but 

does not vanish between those points for  = 1 / c, and no other value of . Therefore, in that way, 

not only will the existence of the distinguished parameter value that was denoted by 0 in no. 2 be 

proved by an entirely new method (81), but one will also arrive at an Ansatz for calculating that 

parameter value. 

 If we let ya and yb denote the solutions of ( )  that vanish at a and b, resp., then they will 

coincide with  = 1 / c. If we let  grow beyond that value then the root of ya that originally lay at 

b will move to the left, while the root of yb that originally lay at a will move to the right. Those 

two roots will occur for a certain value of , and in that way, we will get the second distinguished 

parameter value 1 . Picard proved the existence of the other distinguished parameter value by 

proceeding in a similar way. 

 The solution to ( )  that assumes arbitrarily-prescribed values A and B at a and b, resp. (so A 

and B cannot both vanish), is a single-valued analytic function of  in the entire plane of complex 

, except at the points 0, 1, 2, … As Picard proved, it possesses a pole for those distinguished 

 
 (81) Naturally, that is only true in the case when the corresponding distinguished solution vanishes at a and b.  
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values. Starting from that fact, Picard obtained a limit process for calculating those distinguished 

parameter values (82).  

 

 () In this case, one next assumes that the function f (x, y) that enters into the differential 

equation is single-valued and continuous for a  x  b and for all values of y, and that f (x, 0) = 0. 

Furthermore, f / y should exist and be negative in that region. Finally, the absolute value of that 

derivative should decrease when y increases through positive values or decreases through negative 

values. Picard then proved the following theorems, among others: 

 

 If a solution of () exists that assumes positive values at a and b and does not vanish between 

a and b then that solution can be represented by the method of successive approximations. 

 If the solutions of the two auxiliary equations: 

  
2

2

d y

dx
 = 

0y

f
y

y
=

 
 

 
, 

2

2

d y

dx
 = 

y

f
y

y
=+

 
 

 
 

 

that vanish at a vanish again for the first time at  (, resp.) (83), and  < c < , then there will be 

one and only one solution to () that vanishes at a and c but remains positive between those points. 

One can obtain that solution by the method of successive approximations. 

 

 We shall mention some special results that relate to the case in which the desired solution is 

not everywhere positive. In particular, we refer to the search for periodic solutions in the case 

where f means a periodic function of x (84). 

 For the case in which equation () means an everywhere-positive function that increases along 

with y, Picard proved the theorems: 

 

 There never exist two different solutions to () that assume the same values at a and b. 

 If M means a positive constant, and one has the inequality | f / y | < M for negative y then 

one can find a solution to () that vanishes at a and b (85) by the method of successive 

approximations when the length of the interval ab is less than / M . 

 

 If one has a longer interval and one defines the successive approximations y1, y2, y3, … that 

vanish at a and b then the odd-order approximations will approach a limit u uniformly, while the 

even-order approximations will approach a limit v uniformly (86). However, as Picard showed in 

 
 (82) Those investigations of Picard regarding equation () were adapted to certain third and fourth-order linear 

differential equation by A. Davidoglou (C. R. Acad. Sci. Paris 1900, 12 Feb., 12 March, 7 May). 

 (83) We assume that these points both lie in the interval ab.  

 (84) Traité d’analyse 3, pp. 142. Cf., also H. Poincaré, Les méth. nouv. de la mécanique cél, 1, Paris 1892, chap. 3. 

 (85) The restriction to the limiting value zero at a and b is not essential, since the general case will be reduced to 

that case by the substitution z = y +  x + .  

 (86) Cf., Traité d’analyse 3, pp. 146, as well as the part about uniform convergence in C. R. Acad. Sci. Paris, 14 

Feb. 1898. 
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an example, those functions do not always coincide. They also will not satisfy equation () then, 

but the two equations: 
2

2

d u

dx
 = f (x, v) , 

2

2

d v

dx
 = f (x, v) . 

 

 Thus, the method of successive approximations is not always applicable to the problem of 

finding a solution of () that vanishes at a and b. However, Picard proved that such a solution 

always exists by giving a method for its calculation that was patterned precisely on Schwarz’s 

method of alternating procedures (87). 

 Picard’s investigations into equation () admit a generalization, on the one hand, by allowing 

more general boundary conditions, as H. Burkhardt has remarked (88). On the other hand, as 

Picard himself had showed, one can consider systems of differential equations. 

 We emphasize expressly that singular points of the differential equation did not appear in 

Picard’s investigations. 

 

__________ 

 

 

 
 (87) II A 7.b, no. 28.  

 (88) Bull. soc. math. 22 (1894), pp. 74. 


