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PREFACE 

____ 
 

 

 For some years now, there has existed an annual exchange of professors between the University 

of Paris and Harvard University. I have had the honor of representing the ones from Paris since the 

beginning of November 1913 up to the end of January 1914, and it was during the three months 

that I taught these lectures at the Sorbonne that Borel was kind enough to propose that I should 

submit them to his series of monographs. Editing them was the work of Gaston Julia, who was 

then a third-year student at l’École Normale supérieure: I would like to express my warmest thanks 

to him for the excellent manner by which he accomplished that task. 

 I have not cited all of the important work that is attached to my subject, but only the ones that 

the reader should consult to begin with in order to go further into the theory. On the other hand, 

those who would like to learn about the historical development of the subject can consult: 

 

 1. The article II.A, 7a in the Encyclopädie der mathematischen Wissenschaften (which is 

already a bit old-fashioned). 

 

 2. The talk that I gave at the Fifth International Congress (Cambridge, 1912), which was 

published in the first volume of the Proceedings, page 163. 

 

 I regret that lack of time has prevented me from addressing the beautiful work of Liouville that 

is followed so closely here and represents a very important complement to Sturm’s research. That 

is why questions of asymptotic values and developments into series of arbitrary functions are 

excluded from this volume. Meanwhile, even in this incomplete form, I hope that this little book 

might be regarded as a token of my admiration for the work of that French geometer, which is 

work that the rest of us in America were proud to be able to develop in several directions. 

 

____________ 
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CHAPTER I 

SOME EXISTENCE THEOREMS (1) 

_______ 

 

 

 1. Fundamental theorem. – In this course, we will often have to study linear second-order 

differential equations. We shall write them in the form: 

 
2

2

d u du
p qu

dx dx
+ +  = r , 

 

in which p, q, r are functions of the independent variable x. 

 Above all, it is important to examine the conditions for the existence of solutions to the 

preceding equation. From that viewpoint, we prove the following theorem: 

 

 Theorem: 

 

 Let x be a real variable that can vary over the closed, finite interval A  x  B. p, q, r are 

continuous functions of that variable x (which can have the form p1 + i p2, q1 + i q2, r1 + i r2, in 

which p1, p2, q1, q2, r1, r2 are real and continuous functions of x, and i is the symbol for the 

imaginary unit). Let c be an arbitrary value in the interval (A, B). The equation: 

 
2

2

d u du
p qu

dx dx
+ +  = r 

 

admits a unique solution u that verifies the conditions: 

 

(1)  
( ) ,

( ) ,

u c

u c





=


 =
 

 

in which  and    are two arbitrary given constants. 

 

 We shall call the combination of the equation and the preceding conditions that the solution 

must verify at c a differential system. Our theorem can then be stated as: 

 Any linear differential system of the preceding type has a unique solution. We shall use the 

method of successive approximations. 

 
 (1) For the method of successive approximations in the theory of nonlinear equations, one can consult Picard’s 

Traité d’Analyse, Tome 2. For the linear equations, see: 

 PEANO, Math. Ann. 32 (1888), pp. 450. 

 BÔCHER, Amer. J. Math. 24 (1902), pp. 311. 
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 First consider the particular equation: 
2

2

d u

dx
 =  (x) , 

in which  (x) is continuous in (A, B). 

 Upon integrating by parts, one will find that any solution of that equation is given by the 

formula: 

u = ( ) ( ) ( )
x

c
x d C x c D   − − − −  . 

 

One can choose C and D such that u takes the value  at c and u  takes the value   . In order to 

do that, take C =    and D = . The solution thus-obtained is unique, and our theorem is true for 

this particular case. 

 If one has, for example,  =    = 0 then one will find that: 

 

u = ( ) ( )
x

c
x d   − , u  = ( )

x

c
d   . 

 

 Now imagine the general case. 

 Choose a function u0 (x) that is subject to just the condition that it is continuous and has a 

continuous derivative in (A, B), and let u1 be the solution to the equation: 

 

1u   = − 0 0p u q u r − + , 

which will also verify: 

u1 (c) =  , 1 ( )u c  =   . 

 

 From the preceding special case, u1 is unique and well-defined. It will be a function with a 

continuous derivative in (A, B). We can then find a function u2 such that: 

 

  2u   = − 1 1pu qu r − +   [u2 (c) = , 2 ( )u c  =   ]. 

 

 Upon continuing this process indefinitely, we will define an infinite sequence of functions u0, 

u1, u2, …, un, … We shall show that un tends to a limiting function that is the solution of the 

proposed linear differential system. 

 It amounts to the same thing for us to show that the series: 

 

u1 + (u2 − u1) + … + (un − un−1) + …, 

which we shall call: 

v1 + v2 + … + vn + …, 

 

is convergent, and that its sum is the desired solution. 
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 From the process of their formation, un and un−1 have continuous derivatives in (A, B). 

Therefore, vn is also continuous and has continuous derivatives nv . 

 We now prove that the two series: 

 

(2)  1 2 nv v v+ + + + , 

 

(3)  1 2 nv v v  + + + +  

 

are uniformly convergent in (A, B). We can start with v2. v2 and 1v  are continuous in (A, B), so 

their absolute values have a maximum C : 

 

2

2

| |

| |

v

v




 
 = C . 

 

p and q are continuous, so | p | + | q | is a continuous function that admits a maximum M in (A, B): 

 

| p | + | q |  M . 

 

 Finally, let L be the greater of the two quantities 1 and B – A. 

 We shall show that for any n, we have: 

 

2

2

| |

| |

v

v




 
 = 

2 2 2| |

( 2)!

n n nC L M x c

n

− − −−

−
. 

 

For n = 2, those inequalities will reduce to the ones that led us to choose C. Suppose that they are 

true up to the index n – 1, and show that they are true for n. 

 One has: 

  nu    = − 1 1n npu qu r− −
 − + , 

1nu −
  = − 2 2n npu qu r− −

 − + . 

 

Therefore, upon subtracting the two, one will have: 

 

  nv   = − 1 1n np v q v r− −
 − + . 

 

vn then verifies an equation of the special type that was studied, and one will have: 

 

vn (c) = un (c) − un−1 (c) = 0 , 

( )nv c  = 0 . 

One then concludes that one has: 
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vn = 
1 1( )[ ( ) ( ) ( ) ( )]

x

n n
c

x p v q v d     − −
− − − , 

  nv  = 
1 1[ ( ) ( ) ( ) ( )]

x

n n
c

p v q v d    − −
− − . 

 

 We remark that | x –  | and 1 are  L, so we will have: 

 

| |

| |

n

n

v

v




 
  

3 3 3
3| |

| | | |
( 3)!

n n n
x

n

c

C L M x c
L M c d

n
 

− − −
−−

−
−  . 

 

Upon performing the integration, we will get the inequality that was to be proved. 

 We now point out that | x – c | < L, so we will have: 

 

| |

| |

n

n

v

v




 
   

2( 2) 2

( 2)!

n nC L M

n

− −

−
. 

The series whose general term is: 
2( 2) 2

( 2)!

n nC L M

n

− −

−
 

 

is obviously convergent for any C, L, M. Hence, the series (2) and (3) are uniformly convergent in 

all of the interval (A, B). Moreover, one notes that vn is continuous, along with nv , since un and 

un−1 are. 

 If we let u denote the sum v1 + v2 + … then the function u will be continuous, along with its 

derivative u , which is equal to 1 2v v + +  

 It remains to be shown that the function u = v1 + v2 + … is a solution of the differential system: 

 

 1. First of all, one has: 

 

v1 (c) = u1 (c) =  , 1 ( )v c  = 1 ( )u c  =   , 

vn (c) = un (c) − un−1 (c) =   and ( )nv c  = 0  for n  2. 

Therefore: 

u (c) = g , ( )u c  =   . 

 

 2. I say that u verifies the differential equation at any point of (A, B). 

 

 In order to show that, define the function − pu qu − . The two series u and u  are convergent, 

so one has: 

− pu qu −  = 1 1 2 2( () )p v q v p v q v − −− −+ +  

 However, one has: 

  1 1n np v q v− −
− −  = nv   for n  3 , 
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1 1p v q v −−  = 1 2v v r + − . 

Hence: 

pu qu−  −  = 1 2r v v − + + +  

 

 From the way that we combined the two series u and u , it is clear that the series 1 2v v + +  

is uniformly convergent, so it will follow that u has a second derivative that is equal to 1 2v v + +  

 That permits us to write: 

pu qu−  −  = r u− + , 

 

and we see that u indeed verifies the differential equation. 

 It is thus proved that the differential system has a solution u that is continuous and has a 

continuous derivative in the entire interval (A, B). 

 That solution is unique. If there were two of them then their difference would be a solution to 

the system: 

( ) 0,
0,

( ) 0,

u c
u pu qu

u c

=
 + + =

 =
 

 

and would not be identically zero. 

 Now, that system, which we call the system with no right-hand side or homogeneous system 

corresponding to the proposed system, has only one solution, which is zero. 

 Indeed, one immediately establishes Abel’s identity between two solutions u1 and u2 of the 

homogeneous equation: 

1 2 2 1u u u u −  = ( )0
exp

x

k p dx−  , 

in which k is a certain constant. 

 Therefore, suppose that the homogeneous system admits a solution u1 that is not identically 

zero. That would say that one would find a point c1 in (A, B) where u1 (c1)  0. 

 Hence, define a solution u2 to the homogeneous equation such that: 

 

u2 (c1) = 0 , 2 1( )u c  = 1 , 

which is possible. 

 Construct Abel’s identity with those two solutions u1 and u2 . Upon substituting the value c for 

x, one will have: 

u1 (c) = 0 , 1 ( )u c  = 0 . 

Hence k = 0, i.e.: 

1 2 2 1u u u u −  = 0 . 

 

Now, it one takes x to be equal to c1 then the left-hand side will reduce to − 1 1( )u c , which is not 

zero. The contradiction is obvious. The homogeneous system will then have only the zero solution. 

 Therefore, the proposed system has a unique and well-defined solution. 
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 2. Various extensions of the fundamental existence theorem. – The proof that we gave of 

the existence theorem is valid when x is real and the functions p (x), q (x), r (x) are continuous. We 

shall indicate some cases in which the proof that we just gave can be applied with slight 

modifications that are either more general than the preceding case or constitute some applications 

of the same method to some similar questions. 

 

 1. Suppose, as always, that x is real, A  x  B, and suppose that p, q, r are finite, but they can 

take on a finite number of discontinuities in (A, B). We must specify what we mean by a solution 

of the differential equation here. It is obvious that it will be a function that must verify the equation 

at any point where p, q, r are continuous. Moreover, we shall demand that this function is 

everywhere-continuous and has a continuous derivative. Since the hypothesis of the continuity of 

p and q will be introduced only when we wish to fix the maximum M of | p | + | q |, and since p 

and q are finite here, we can also fix a number M that is greater than | p | + | q |, so our argument 

will be immediately valid. There is therefore one and only one solution to a differential system like 

the ones that we are considering. 

 

 2. Suppose that x is a complex variable and p, q, r are analytic functions that are defined in a 

continuum D in the Weierstrass sense. That domain, which is called a Weierstrass domain, is 

assumed to be simply connected. Its characteristic property is that one can describe a circle with 

its center at any point in the domain that is small enough that all of the points that are interior to 

that circle or situated on its circumference will belong to the domain. In certain cases, that domain 

can extend to infinity, but it will always be supposed to be simply connected. There would be no 

inconvenience in supposing that this domain can overlap itself at certain points in the manner of a 

Riemann surface. The reader will easily understand why one has needs only to make some very 

slight modifications to the preceding analysis in order to prove that the system (1) has one and 

only one solution in the present case. 

 The case in which p, q, r are analytic functions of the real variable x in (A, B) reduces, in turn, 

to the preceding one because one can put (A, B) in a two-dimensional domain in which p, q, r are 

analytic at x. The solution to the system (1) will be necessarily analytic. 

 

 3. Suppose that x is real, and p, q, r depend upon the real parameter . (One can suppose that 

p, q, r depend upon k real parameters 1, 2, …, k . To simplify, we shall take just one of them, 

although our results will still be valid for k parameters.) We suppose that p, q, r are continuous in 

the two real variables x and . [x is in the closed interval (A, B), while  is in the interval (A1, A2), 

which can be open.] 

 One can likewise suppose that  and    are continuous functions of . That solution will be a 

continuous function of x and  under our hypotheses. In order to ensure that, it will suffice to take 

the C that is used in our calculus of inequalities to have a positive value that is greater than | v2 | 

and 2| |v  for any x in (A, B) and  in an arbitrary closed interval that is interior to (A1, A2), and for 

any M with a value that is  | p | + | q | under the same conditions. 

 The argument proceeds as follows: The series: 
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2

1!

C L M
C + + , 

 

which majorizes the series 
nv  and 

nv , is independent of . Hence, 
nv and 

nv  are 

uniformly convergent for x in (A, B) and  in a closed interval that is interior to (A1, A2). Hence, 

their sums u and u  are continuous in x and , and since u  = − pu qu r − +  will also be 

continuous in x and . 

 

 4. Suppose that x is real, while p, q, r are continuous in x and  and analytic in  (or more 

generally, analytic in 1, 2, …, k),  and    are also analytic in  when x is in an interval (A, B) 

and  is in a Weierstrass domain D. One can once more conclude that the solution u, as well as ,u  

are continuous in x and  and analytic in . 

 

 5. What is the effect that is produced on the solution by arbitrary small variations of the 

coefficients p, q, r, and ,   ? x is supposed to be real. 

 In order to see what that effect would be, it is important to understand how the solutions 

depends upon p, q, r, ,   . 

 It is determined when one knows those five functions of x ( and    are constants, but we shall 

include them within the concept of functions of x), and we then write u =  (p, q, r, ,   ). 

 However,  is not an ordinary function of the five arguments p, q, r, ,    because if that were 

true then the value of u would not vary at a point x0 when one changes p, q, r, ,   arbitrarily, 

provided that the values of those five functions remain the same. Some simple examples will show 

that, on the contrary, the value of u will change under those conditions, so u is not an ordinary 

function of p, q, r, ,   . It is what one calls a functional of those five arguments, i.e., a function 

of x that is determined in (A, B) by three functions p, q, r that are defined in (A, B) and the two 

constants  and   . We shall confine ourselves to the case where p, q, r are continuous here. 

 Under those conditions, I say that the functional: 

 

u =  (p, q, r, ,   ) 

 

is a continuous functional of its five arguments, i.e., when one is given a positive number  that is 

as small as one desires, one can determine a positive number  such that arbitrary variations of the 

functions p, q, r whose absolute values are everywhere less than  in the interval (A, B) and 

arbitrary variations of the constants  and    whose absolute values are likewise less than  will 

imply a variation of the functional  whose absolute value is less than  everywhere in (A, B). 

 One can then answer the question that was posed to begin with by proving that u =  (p, q, r, 

,   ) is a continuous functional. 
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 Indeed, one first proves that the sum and product of several continuous functionals are 

continuous functionals, just as one has for continuous functions. One also sees very easily that the 

integral: 

 = ( , , , , )
x

c
p q r dx    

 

will be a continuous functional when  is also one. 

 It follows from those elementary propositions that the terms in the two series 
nv , 

nv  are 

continuous functions of p, q, r, ,   . Those two series of continuous functionals have terms that 

are respectively lower in modulus than the ones in a series of constants that one can easily calculate 

from the known expressions for vn and nv  when one supposes that one restricts oneself to the 

domain of functions that is defined by functions p, q, r that are continuous in x in (A, B) and finite 

along with  and   : 

| |
| | ,

| |
| | ,

| |

p N
N

q N
N

r N









 



 

in which N is a certain constant. 

 One chooses C  | v1 |, 1| |v  for any p, q, r, ,    that belong to that domain, and one will soon 

see that this is possible. Similarly, one chooses M  | p | + | q | ; for example, M = 2N. 

 The two series 
nv  and 

nv  are then uniformly convergent in the preceding domain, i.e., 

one can determine and index N1 such that for n1  N1 : 

 

1

n

n n

v
+

=

  and 
1

n

n n

v
+

=

  

 

are <  for any p, q, r, ,   that belong to the domain envisioned. Each functional vn, nv  is 

continuous, so one can prove, just as one does for series whose terms are continuous functions, 

that the sums 
nv  and 

nv , i.e., u and u , are continuous functionals of p, q, r, ,    

 Moreover, we remark that nothing in the preceding argument compels us to suppose that p, q, 

r have a finite number of discontinuities while they all remain finite. 

 Finally, this method of variations still applies when p, q, r are analytic with respect to the 

complex variable x in a domain D. Any small variation of p, q, r that leaves those functions analytic 

will produce a variation of u, u  that is uniformly small in any region that it interior to D. 

 

 6. Quasi-differential equations: 

 

 Let an equation have the form: 
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1 ( ) ( )
d d dy

a au bu l au qu
dx dx dx

 
+ + + 

 
 = r . 

 

 If a, a1, b are differentiable then one will have an ordinary differential equation upon 

performing the differentiations. 

 If a, a1, b, l, q, r are continuous, but not differentiable, functions then one will no longer be 

dealing with an ordinary equation. We suppose that a and a1 are everywhere non-zero in (A, B). 

 A solution of that equation will be a function u that permits one to perform the differentiations 

and that also verifies the preceding equation. 

 u will have no derivative when a has none, but a u does. Hence, the preceding relation is not a 

relation between the values of u and its first and second derivatives, as would be the case with 

ordinary differential equations. That is what we call a quasi-differential equation. Our 

approximation method still applies. We start from a function u0 that we substitute in 

( )
d

l au qu r
dx

− − + , and is such that a u has a continuous derivative. Step by step, we will have 

the desired solution u in the form of a series that is unique and verifies the conditions: 

 

u (c) =  , 

 

( )
c

d
au

dx

 
 
 

=   . 

 

Moreover, those equations reduce to first-order differential systems by setting: 

 

  y = a u , 

  z = 1bu a y+ , 

thanks to the hypotheses that a  0, a1  0. 

 

 7. What we have said about the second-order equation applies with no essential modification 

to the 
thn -order equation and to the differential system: 

 
1

1 1

n n

nn n

d u d u
p p u

dx dx

−

−
+ + +  = r , 

 

u (c) = 1 , 

 

( )u c =   , 

………….. 
( 1) ( )nu c−

 = 
( 1)n −

. 
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 3. Review of some known facts. – Let an equation be given: 

 
1

1 1

n n

nn n

d u d u
p p u

dx dx

−

−
+ + +  = r . 

 

Let c be a point in the interval (A, B) in which the coefficients are continuous, or else a point in the 

Weierstrass domain where they are analytic. We shall say principal solutions for the point c to 

mean the solutions u1 (x), u2 (x), …, un (x) of the homogeneous equation: 

 
1

1 1

n n

nn n

d u d u
p p u

dx dx

−

−
+ + +  = 0 

that verify the conditions: 

 

u1 (x) = 1 , 1 ( )u c  = 0 , …, ( 1)

1 ( )nu c−  = 0 , 

u2 (x) = 0 , 2 ( )u c  = 1 , …, ( 1)

2 ( )nu c−  = 0 , 

  ..………… …………. …, ……………, 

un (x) = 0 , ( )nu c  = 0 , …, ( 1) ( )n

nu c−  = 1 . 

 

Each of those n functions u1 (x), …, un (x) is well-defined and unique. 

 u1 (x), …, un (x) constitute a fundamental system of integrals for the homogeneous equation 

since any integral of that equation will be a linear and homogeneous combination with constant 

coefficients of u1, u2, …, un, and conversely. 

 Recall that the necessary and sufficient condition for the n solutions u1, u2, …, un of the 

homogeneous equation to form a fundamental system is that their Wronskian: 

 

   = 

1 2

1 2

( 1) ( 1) ( 1)

1 2

n

n

n n n

n

u u u

u u u

u u u− − −

  
 must be  0 . 

 

 That Wronskian is calculated by Abel’s formula: 

 

 (x) = ( )1
0

( )exp
c

c p dx −  . 

 

It cannot be zero at a point without being identically zero. 

 Another necessary and sufficient condition for the system of solutions u1, u2, …, un, to be 

fundamental is that u1, u2, …, un must be linearly independent, i.e., there can exist no constants 

that are not all zero c1, c2, …, cn such that one has: 
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c1 u1 + c2 u2 + … + cn un = 0 

identically. 

 The condition   0 is the condition for the n solutions u1, u2, …, un to be linearly independent. 

 If one returns to the inhomogeneous equation: 

 
1

1 1

n n

nn n

d u d u
p p u

dx dx

−

−
+ + +  = r 

 

then its general solution will be obtained by adding a particular solution u0 to the general solution 

of the homogeneous equation: 

c1 1 + c2  2 + … + cn  n . 

 

(c1, c2, …, cn are constants, while 1, …, n is a fundamental system of solutions of the 

homogeneous equation.) 

 

____________ 

 

 



CHAPTER II 

 

THE ANALOGIES BETWEEN LINEAR DIFFERENTIAL 

SYSTEMS AND LINEAR ALGEBRAIC SYSTEMS (2) 
_________ 

 

 

 4. Algebraic systems. – In his research concerning differential equations, Sturm, like many of 

his predecessors, was led to envision them as the limits of finite difference equations. 

 For example, consider the equation: 

 
2

2

d u du
p qu

dx dx
+ +  = r , 

 

in which p, q, r are continuous functions of x in the interval (A, B). 

 
 Imagine that (A, B) has been divided into k equal parts by the points x1, x2, …, xk−1. x denotes 

one of the differences: 

  xi – xi−1,  
0 ,

k

x A

x B

= 
 

= 
. 

 One has: 

u (xi) = u (xi+1) − u (xi) , 

u (xi) = u (xi+2) − 2u (xi+1) + u (xi) . 

 

 Consider the equation then: 

 
2

2

( ) ( )
( ) ( ) ( )i i

i i i

u x u x
p x q x u x

x x

 
+ +

 
 = r (xi) , 

 

which must be true for all values i = 0, 1, 2, …, k – 2. 

 If one multiplies both sides by 
2x  then the equation can be written: 

 

 
 (2) For the purely-algebraic facts, see, for example: 

 BÔCHER, Introduction to Higher Algebra, New York, 1907, or the German edition in 1909, Teubner. 

 For the theory of the adjoint equation, see: 

 DARBOUX, Théorie des Surfaces, t. II, Chap. V. 

 For the differential systems, see: 

 BÔCHER, Trans. Amer. Math. Soc. 14 (1913), pp. 403. 

A x1 xk−1 B 

Figure 1. 
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(1)   1 2( ) ( ) ( )i i i i i iP u x Q u x R u x+ ++ +  = ri ,      ri = 2( )ir x x  (i = 0, 1, 2, …, k – 2). 

 

 Equation (1), which couples the values of u at three consecutive dividing points, must be its 

values for i = 0, 1, …, k – 2, as one has seen. It thus gives rise to k – 1 algebraic equations between 

the k + 1 unknowns u (x0), u (x1), …, u (xk−1), u (xk) . If k tends to infinity then the initial differential 

equation will appear to be the limit of a system of linear algebraic equations in which the number 

of unknowns, which always exceeds the number of equations by two units, will tend to infinity. 

 The system (1) admits an infinitude of solutions, in general, which depend linearly upon two 

arbitrary constants. Without going into the details, one might expect that the differential equation 

will have an infinitude of solutions that depend linearly upon two arbitrary constants. 

 If one has a linear differential equation of order n then one can regard it as the limit of a finite-

difference equation, i.e., a linear algebraic system, each equation of which links the values of the 

solution u at n + 1 consecutive points that are chosen from x0, x1, …, xk, and the number of 

unknowns in them exceeds the number of equations by n. 

 We shall first imagine the homogeneous algebraic system: 

 

(2)     

11 1 12 2 1

1 1 2 2

0,

....................................................

0.

N N

M M MN N

a a a

a a a

  

  

+ + + =


 + + + =

 

One knows that: 

 

 1. If the system (2) has only the solution: 

 

1 = 2 = … = N = 0 

then it is called incompatible. 

 

 2. If the system (2) has several solutions: 

 

1  ,  2  , …, N  , 

1  , 2  , …, N  , 

……………….. 

 

then one will have a more general solution that is given by the formulas: 

 

1 1 2 1c c  + + , 1 2 2 2c c  + + , …, 1 2N Nc c  + + , 

 

in which c1, c2, … are some arbitrary constants, and one can always find a finite number of 

solutions such that the latter formula gives the general solution to the system (2). 

 If a finite number of those solutions are linearly independent then one says that they form a 

fundamental system of solutions of system (2). 

 Recall that the solutions: 
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1  ,  2  , …, N  , 

1  , 2  , …, N  , 

……………….. 

 

are called linearly independent if it is impossible to find constants k , k , … that are not all zero 

such that one has, at the same time: 

1 1k k    + +  = 0 , 

2 2k k    + +  = 0 , 

…………………….. 

 The rank of the matrix: 

11 12 1

1

N

M MN

a a a

a a

 
 
 
 
 

 

 

is the maximum order of a non-zero determinant that is drawn from that matrix. If that rank is p 

then one will have the following theorem: 

 

 The number of solutions to a fundamental system is always N – p. That number will be called 

the index of compatibility of the system (2), or simply its index. 

 

 The reader has already observed the striking analogy between the preceding and the features 

that were recalled at the end of the last chapter in relation to the homogeneous differential equation. 

 If one envisions an inhomogeneous system: 

 

(3)  

11 1 12 2 1 1

1 1 2 2

,

....................................................

N N

M M MN N M

a a a b

a a a b

  

  

+ + + =


 + + + =

 

 

then one will be led to consider, in parallel with the matrix: 

 

11 1

1

N

M MN

a a

a a

 
 
 
 
 

 , 

the augmented matrix: 

11 1 1

1

N

M MN M

a a b

a a b

 
 
 
 
 

 , 
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and one knows that the necessary and sufficient condition for the system (3) to be compatible is 

that the rank of the matrix of a is equal to the rank of the augmented matrix. 

 Under those conditions, the general solution of the system (3) will be obtained by adding a 

particular solution to the general solution of the homogeneous system (2). 

 

 

 5. Differential systems. – In the case where M = N – n, the system (3) is the analogue of an 

inhomogeneous linear equation of order n. In order to get the analogue of the algebraic system 

where M = N, one must add n supplementary conditions that the solution must verify to the 

differential equation of order n. For example, one can take: 

 

u (c) =  , 

( )u c =   , 

………….. 
( 1) ( )nu c−

 = 
( 1)n −

, 

 

in which c is a point of (A, B), 
( ) ( )iu c  is the value of 

i

i

d u

dx
 at the point c, and ,   , …, 

( 1)n −
 are n 

arbitrary constants. (If one passes to the finite-difference equation then those n conditions will 

indeed give n relations between the values of u at n – 1 consecutive points after c, so n linear 

equations that must be added to the N – n equations that produce the equation itself.) 

 In what follows, we shall envision some more-general supplementary conditions: 

 

 1. One can take two points a, b in the interval (A, B) or in the Weierstrass domain, where one 

restricts x to remain, and one imposes the following condition on a solution: 

 
( 1) ( 1) ( 1) ( 1)( ) ( ) ( ) ( ) ( ) ( )n n n nu a u a u a u b u b u b     − − − −   + + + + + + +  =  , 

 

in which ,  , …, ,   , …,  are constants. (It would be pointless to introduce the 
thn  derivative 

of u since the differential equation will permit one to express it as a function of u, u , …, 
( 1)nu −

.) 

 We shall let U (u) denote the left-hand side of the preceding condition. In this general case, we 

take m conditions of the preceding form: 

  Ui (u) = i  (i = 1, 2, …, m). 

 

 One can take h points a, b, … in (A, B), instead of only two, and impose a linear relation 

between the values of u and its (n – 1) first derivatives at the points a, b, … 

 

 2. One can consider a second type of condition: 

 

Ui (u) = (0) (1) ( 1) ( 1)[ ( ) ( ) ( ) ( ) ( ) ( )]
B

n n

i i i
A

f x u x f x u x f x u x dx− −+ + +  = i , 



16 Chapter II 
 

in which (0)

if , (1)

if , …, ( 1)n

if
−  are given functions of x that we suppose to be continuous in order 

to avoid complicating matters. 

 

 3. Finally, upon taking Ui (u) to be the sum of an expression of type 1. and an integral of type 

2. above, one can take the more-general conditions: 

 

  Ui (u)  = i . 

 

 Those conditions are linear from two standpoints: 

 

 1. One can imagine that they are limits of linear relations between the values of u at the k 

division points in the interval (A, B) when k increases indefinitely. 

 

 2. If one has several functions u1, u2, …, and one forms the functional Ui for the function 1 1c u

+ c2 u2 + …, in which c1, c2, … are arbitrary constants, then one will have: 

 

Ui ( 1 1c u + c2 u2 + …) = c1 Ui (u1) + c2 Ui (u2) + … 

 

That functional Ui (u) is distributive, and one knows that distributivity is the essential characteristic 

of algebraic linear expressions. Any expression that possesses that distributive property can be 

called linear. 

 

 Having said that, we can envision differential systems of the form: 

 

(1)  
( ) 0,

( ) 0 ( 1,2, , ),i

L u

U u i m

=

= =
 

in which: 

L (u) = 
1

1 1

n n

nn n

d u d u
p p u

dx dx

−

−
+ + + . 

 

The conditions Ui (u) = 0 can be linear conditions of the most-general type 3. that was envisioned 

above. 

 If m is arbitrary then that system will be the analogue of the linear algebraic system of M 

equations in N unknowns that we have exhibited in no. 4. 

 The analogue of the system [§ 4, (3)] will be: 

 

(2)  
( ) ,

( ) ( 1,2, , ).i i

L u r

U u i m

=

= =
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 We shall develop a theory of compatibility for those two types of systems – viz., homogeneous 

and inhomogeneous ones – that is analogous to the one that we recalled for algebraic systems (2) 

and (3) in no. 4. 

 Take a homogeneous system (1) that: 

 

 1. Might admit only the solution u = 0. It will then be called incompatible. 

 

 2. Might admit linearly-independent solutions 1, 2, …, k . One will always have k  n 

since the equation L (u) = 0 will have at most n linearly-independent solutions. Under those 

conditions: 

c1 1 + c2 2 + … + ck k 

 

will be a solution of the system that depends upon k arbitrary constants c1, c2, …, ck . We say 

fundamental system of solutions to mean a system of linearly-independent solutions 1, 2, …, k 

that give the general solution to the differential system by the formula: 

 

c1 1 + c2 2 + … + ck k . 

 

 If one considers the system with the right-hand side (2) then: 

 

 1. It might not have a solution because it might happen that no solution of L (u) = r verifies 

the supplementary conditions. 

 

 2. It might admit one solution u0 . If 1, 2, …, k constitute a fundamental system of solutions 

of the homogeneous system (2) that corresponds to (1) then the general solution of that system (2) 

will be: 

u0 + c1 1 + c2 2 + … + ck k , 

 

in which c1, c2, …, ck are k arbitrary constants. One has seen that the necessary and sufficient 

condition for a homogeneous algebraic system [§ 4, (2)] to have k independent solutions is that the 

rank of the matrix 
11 1

1

N

M MN

a a

a a

− 
 

− 
 should be N – k. 

 Let us study an analogous condition for the homogeneous differential system (1). 

 Let u1, u2, …, un be a fundamental system of solutions of L (u) = 0. Choose the constants in 

such a way that: 

u = 1 1c u + … + cn un 

verifies the conditions: 

  Ui (u) = 0  (i = 1, 2, …, m). 

 

One has the following conditions for determining the ci : 

 

c1 U1 (u1) + c2 U1 (u2) +  … + cn U1 (un) = 0 , 
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c1 U2 (u1) + c2 U2 (u2) +  … + cn U2 (un) = 0 , 

……………………………………………… 

c1 Um (u1) + c2 Um (u2) +  … + cn Um (un) = 0 . 

 

 Those are linear and homogeneous equations in c1, …, cn . 

 One must consider the matrix: 

 = 

1 1 1

2 1 2

1

( ) ( )

( ) ( )

( ) ( )

n

n

m m n

U u U u

U u U u

U u U u

 
 
 
 
 
 

 . 

 

If its rank is k then one will have n – k linearly-independent solutions c1, …, cn . Each of those 

solutions gives a function u = 1 1c u + … + cn un. We then have n – k linearly-independent solutions 

for the system (1). [Those solutions are linearly-independent since u1, …, un is a fundamental 

system of L (u) = 0.] 

 One will then have this result: 

 The necessary and sufficient condition for the homogeneous system (1) to have p linearly-

independent solutions is that the rank of the matrix  must be n – p. 

 That result is theoretical. Suppose that one has solved the equation L (u) = 0. 

 Let u0 be a particular solution of L (u) = r, and let u1, u2, …, un be a fundamental system of 

integrals of L (u) = 0. 

 u = u0 + 1 1c u + … + cn un will then be the general solution to L (u) = r. In order for such a 

solution to verify: 

  Ui (u) = i  (i = 1, 2, …, m), 

 

it is necessary and sufficient that the ci should verify the equations: 

 

c1 U1 (u1) + c2 U1 (u2) +  … + cn U1 (un) = 1 − U1 (u0) , 

………………………………………………………….. 

c1 Um (u1) + c2 Um (u2) +  … + cn Um (un) = m − Um (u0) . 

 

 Conforming to the result that was found for the algebraic system [§ 4, (3)], the two matrices: 

 

 = 

1 1 1

1

( ) ( )

( ) ( )

n

m m n

U u U u

U u U u

 
 
 
 
 

 

and 
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1 = 

1 1 1 2 1 1 1 0

1 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

n

m m n m n m m

U u U u U u U u

U u U u U u U u





− 
 
 
 − 

 . 

 

 The differential system (2) will have solutions if  and 1 have the same rank. 

 If n – p is that common rank then the system (2) will have an infinitude of solutions that depend 

linearly upon p arbitrary constants since that is true for the system that determines the ci . 

 That entirely-theoretical result supposes that the equation L (u) = r has been solved. 

 Meanwhile, if the rank of  is n, and one supposes that m = n, in addition, then the 

homogeneous system (1) will have no solution, but the system that determines the ci will always 

have a unique solution. One will then have the following statement in a form that is independent 

of  and 1, which is a statement that has its analogue for linear algebraic systems: 

 If m = n and the homogeneous system (1) is incompatible then the system (2) will always have 

one and only one solution. 

 The parallelism of the linear algebraic systems and the differential ones can be pursued further. 

In order to avoid some very great complications, in what follows, we shall not envision limit 

conditions of the form Ui (u) = i that include integrals of the second type that was indicated. We 

shall even confine ourselves to “two-point conditions at a and b” on u, i.e., ones with the form: 

 

Ui (u) = 
( 1) ( 1) ( 1) ( 1)( ) ( ) ( ) ( ) ( ) ( )n n n nu a u a u a u b u b u b     − − − −   + + + + + + +  = i , 

  

so the one-point conditions will be only one particular case. 

 The theory of the adjoint system to a given differential system likewise exhibits the greatest 

analogy with the parallel theory in the algebraic equations. 

 

 

 6. The adjoint equation. – First, recall some properties of the Lagrange adjoint equation. If 

one considers a differential linear expression: 

 

L (u) = 
1

1 01

n n

n nn n

d u d u
l l l u

dx dx

−

− −
+ + + , 

 

and if one seeks to determine a multiplier v such that v L (u) is the derivative of a linear expression 

in u, u , …, 
( 1)nu −

 then one will find that v must satisfy the differential equation: 

 
1

1 1
01

( ) ( )
( 1) ( 1)

n n
n nn n

n n

d l v d l v
l v

dx dx

−
− −

−
− + − + +  = 0 , 

 

which one calls the Lagrange adjoint equation. One obviously supposes in that statement that any 

coefficient li admits continuous derivatives up to order i. In that way, one makes the function li 
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more specific. Later on, that restriction shall be dropped. Finally, one supposes that ln  0 in all of 

the interval (A, B) considered in order for the equation L (u) = r to have continuous coefficients at 

every point in the interval when one divides both sides of it by the coefficient of 
n

n

d u

dx
. 

 If we let M (v) denote the left-hand side of the adjoint equation: 

 

M (v) = 
1

1 1
01

( ) ( )
( 1) ( 1)

n n
n nn n

n n

d l v d l v
l v

dx dx

−
− −

−
− + − + +  

 

then we will easily prove the identity: 

 

(1)  v L (u) – u M (v) = ( , )
d

P u v
dx

 

 

for any u and v. P (u, v) is a bilinear form relative to the variables u, u , …, 
( 1)nu −

, v, v , …, 
( 1).nv −

 

 If one integrates the two side of the identity (1) between a and b, which are two arbitrary points 

in the interval (A, B), then one will have the identity: 

 

(2)  [ ( ) ( )]
b

a
v L u u M v dx−  = [ ( , )]b

aP u v  . 

 

Those two forms (1) and (2) are equivalent because if one supposes that (2) is true for any b in (A, 

B) then upon differentiating the two sides of (2) with respect to the upper limit b, which one can 

call x, one will get back to (1). 

 We shall call (1) the Lagrange identity and (2), Green’s formula, although (1) and (2) were 

given by Lagrange, and Green did not give the formula (2). However, (2) is the one-dimensional 

analogue of Green’s famous formula that permits one to reduce the calculation of a double integral 

to that of a curvilinear integral in certain cases. That explains our choice of terminology. 

 When one establishes the identity (1) or (2), one can then, in turn, deduce the property of the 

multiplier because if v is the solution of the adjoint equation then one will have M (v) = 0, so: 

 

v L (u) = ( , )
d

P u v
dx

 . 

 

 If one integrates both sides between A and B then one will have: 

 

(3)  ( )
B

A
v L u dx  = [ ( , )]B

AP u v  . 

 

The integral ( )
B

A
v L u dx  will then be expressed by a linear function with values in u, u , …, 

( 1)nu −
 

at the two points A and B. 
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 Let us find the analogy for algebraic equations. To simplify the problem, suppose that L (u) is 

a second-order differential expression, so the right-hand side of (3) will be a linear function in the 

values of u and u  at A and B. 

 What corresponds to the expression L (u) here is M linear forms in 1, 2, …, N (M = N – 2): 

 

a11 1 + … + a1N N , 

……………………. 

aM1 1 + … + aMN N . 

 

1, …, N are the values that u takes at the division point along the interval (A, B) [using the finite-

difference equation that one substitutes for L (u) = r]. Multiplying L (u) by a function v and 

integrating from A to B will have the following analogue here: Multiply the preceding forms by 

constants y1, y2, …, yM, respectively, and add the results. Furthermore, ( )
B

A
v L u dx  is expressed 

linearly in terms of just the values of u and u  at A and B. Now, the value u (A) corresponds to 1, 

and ( )u B corresponds to N . In the finite-difference equation, ( )u A  corresponds to a linear 

expression in 1 and 2 , while ( )u B  is a linear expression in N−1 and N . We will get the analogue 

of a multiplier v by choosing the constants y1, …, yM in such a way that the expression: 

 

y1 (a11 1 + … + a1N N) + … + yM (aM1 1 + … + aMN N) 

 

includes only the values of 1, 2, N−1, N. 

 One must then annul the coefficients of 2, …, N−2, which will give the following equations 

that must be satisfied by y1, y2, …, yM : 

 

(4)  

13 1 23 2 3

14 1 24 2 4

1, 2 1 2, 2 2 , 2

0,

0,

............................................................

0.

M M

M M

N N M N M

a y a y a y

a y a y a y

a y a y a y− − −

+ + + =


+ + + =


 + + + =

 

 

 The matrix of coefficients in those equations is deduced from the matrix of coefficients of the 

forms above in 1, …, N : 

11 12 1

1

N

M MN

a a a

a a

 
 
 
 
 

 

 

by permuting the rows and columns and then suppressing the first two and last two rows. 

 A system such as (4) is the analogue of the adjoint equation, and in the case that we are 

currently considering, M = N – 2, there will be N – 4 equations in N – 2 unknowns in (4), which 

one would have to expect since the adjoint equation has order two here. 
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 We shall return to this analogy after we have defined the adjoint system to a given differential 

system. Indeed, one has an even closer analogy with algebraic systems if one considers differential 

systems, instead of differential equations. 

 In the meantime, we shall recall some known facts from the theory of bilinear forms. 

 

 

 7. Bilinear forms. – Suppose that one has two systems of N variables: 

 

x1 ,    x2 ,    …,    xN , 

y1 ,    y2 ,    …,    yN . 

 

A bilinear form with respect to those variables is an expression such as: 

 

   a11 x1 y1 + a12 x1 y2 + … + a1N x1 yN 

+ a21 x2 y1 + a22 x2 y2 + … + a2N x2 yN 

 + …………………………………… 

  + aN1 xN y1 + aN2 xN y2 + … + aNN xN yN 

 

that is linear with respect to x and with respect to y separately. 

 The determinant: 

A = 

11 12 1

21 22 21

1 2

N

N N NN

a a a

a a a

a a a

 

is called the determinant of the form. 

 If A  0 then the form is ordinary. If A = 0 then the form is singular. 

 Make a substitution of the xi that replaces them with Xi such that: 

 

X1 = c11 x1 + c12 x2 + … + c1N xN , 

………………………………….. 

XN = cN1 x1 + cN2 x2 + … + cNN xN . 

 

We suppose that this substitution is ordinary, i.e., that the determinant C = | cik | is not zero. 

 One can then replace the xi as functions of Xi in the given bilinear form, which will then take 

the form  dij Xi yj . 

 The transformed form will be singular or ordinary according to whether the proposed form is 

singular or ordinary, respectively. 

 Imagine that transformed form. One can write it as: 

 

X1 Y1 + X2 Y2 + … + XN YN 

 

on the condition that one must set: 
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Y1 = d11 y1 + d12 y2 + … + d1N yN , 

………………………………… 

YN = dN1 y1 + dN1 yN + … + dNN yN . 

 

That substitution replaces the yi with the Yi. If the proposed form is ordinary then that substitution 

will be ordinary. 

 Therefore, upon supposing that the initial form is ordinary, one can reduce the initial form 

, 1

N

ij i j

i j

a x y
=

  to the canonical form 
1

N

i i

i

X Y
=

  by two convenient ordinary substitutions that take the 

xi to the Xi and the yi to the Yi . 

 The determinant C is  0, so the forms X1, X2, …, XN in x1, …, xN are independent, one can 

give them arbitrarily. The forms Y1, …, YN will then be well-defined by the choice of Xi, and they 

will be independent since their determinant D  0. 

 If we leave p of the forms Xi unchanged and change the remaining q = N – p then what effect 

will that have on the forms Yi ? 

 When we choose the forms X1, …, Xp, Xp+1, …, Xp+q, the corresponding forms Y will be Y1, …, 

Yp, Yp+1, …, Yp+q . If we choose the forms X1, X2, …, 
1pX +

 , …, 
p qX +
 , while preserving the preceding 

first p forms, and make 
1pX +

 , …, 
p qX +
  different from Xp+1, …, Xp+q, but still forming a linearly-

independent system with X1, …, Xp, then they will correspond to linearly-independent forms 1Y  , 

2Y  , …, 
pY  , 

1pY +
 , …, 

p qY +
  for the Y. One obviously has the identity: 

 

(1)    
1 1 1 1

1 1 1 1 ,

p p p p p q p q

p p p p p q p q

X Y X Y X Y X Y

X Y X Y X Y X Y

+ + + +

+ + + +

+ + + + +

     = + + + + +
 

 

in which one supposes that the X and the X  , as well as the Y and Y  , are replaced with their 

expressions as functions of xi and yi, resp. 

 Choose the xi to be the unique system of values that makes: 

 

X1 = 1 ,  X2 = X3 = … = Xp = 
1pX +

  = … = 
p qX +
  = 0 . 

 

For those values of the xi, the forms Xp+1, …, Xp+q will take the numerical values Ap+1, …, Ap+q. 

Upon substituting those values in the identity (1), one will have the identity with respect to the :iy  

 

1pY +
  = Ap+1 Yp+1 + … + Ap+q Yp+q . 

 

 One will find analogous results for 
2pY +

 , …, 
p qY +
 . Thus, the last q forms 

1pY +
 , …, 

p qY +
  are 

expressed by linear and homogeneous functions of the last q old ones Yp+1, …, Yp+q . 

 Now choose the xi such that: 
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X1 = 1 ,  X2 = X3 = … = Xp = 
1pX +

  = … = 
p qX +
  = 0 , 

 

while the Xp+1, …, Xp+q take certain numerical values Bp+1, …, Bp+q, and the identity (1) will give 

the following identity with respect to the yi : 

 

1Y   = Y1 + Bp+1 Yp+1 + … + Bp+q Yp+q . 

 

 One gets the same result for 2Y  , …, 
pY  . 

 The first p forms 1Y  , …, 
pY   are equal to the p old ones Y1, Y2, …, Yp, respectively, augmented 

by homogeneous linear functions of Yp+1, …, Yp+q . 

 

 

 8. Adjoint systems. – Having recalled that, one has seen that if one considers: 

 

L (u) = 
1

1 01

n n

n nn n

d u d u
l l l u

dx dx

−

− −
+ + + , 

 

and if M (u) denotes the adjoint expression then one will have the Lagrange identity: 

 

v L (u) – u M (v) = [ ( , )]
d

P u v
dx

 , 

 

in which P (u, v) is a bilinear form with respect to the systems of variables: 

 

u (x) , ( )u x  , …, 
( 1) ( )nu x−

, 

v (x) , ( )v x , …, 
( 1) ( )nv x−

 . 

 

 One can very easily construct P (u, v), and one finds that: 

 

P (u, v) = 
1

12
1 1

( )( )
( 1)

n
n n

n

d l vd l v
u l v

dx dx

−
−

−

 
− + + − 

 
 

  + 
2

23
2 2

( ) ( )
( 1)

n
n n

n

d l v d l v
u l v

dx dx

−
−

−

 
 − + + − 
 

 

 + …………………………………………. 

 + ( 1)n

nu l v− . 

  

 The determinant of the form is written: 
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1

2

( 1)

( 1) 0

0

0 0

n

n

n

n

n

l

l

l

−

−

−

−

 , 

 

in which the elements of the second diagonal are equal to  ln and the elements below them are all 

equal to zero. 

 That determinant is equal to  (ln)
n then, and since we suppose that the equation L (u) = r is 

regular in the interval in question (A, B), we suppose that ln  0 in that interval. Therefore, the 

preceding determinant is not zero. The form P (u, v) is ordinary for any value of x that is taken in 

the interval (A, B). 

 Green’s formula then gives us: 

 

[ ( ) ( )]
b

a
v L u u M v dx−  = [ ( , )]b

aP u v  . 

 

 The quantity [ ( , )]b

aP u v  is a bilinear form with respect to the following two series of 2n 

variables: 

u (a) , ( )u a , …, 
( 1) ( )nu a−

, u (b) , ( )u b , …, ( 1) ( )nu b− , 

v (a) , ( )v a , …, 
( 1) ( )nv a−

, v (b) , ( )v b , …, 
( 1) ( )nv b−

. 

 

That bilinear form has a particular character. In reality, it is the sum of two bilinear forms: The first 

one is with respect to the 
( ) ( )iu a  and 

( ) ( )iv a , while the second one is with respect to 
( ) ( )iu b  and 

( ) ( )iv b . 

 The determinant of that form will be: 

 

( ) 0 0

( ) 0

0 (zeroes) 

( ) 0 0 0 0

( )0 0

0

   (zeroes) 

( ) 0 00 0

n

n

n

n

n

l a

l a

l a

l b

l b




 =  [ln (a)]n [ln (n)]n . 
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 From our hypothesis, it is  0, so the form [ ( , )]b

aP u v  will be ordinary. It will then be reducible 

to the canonical form. 

 Take 2n forms U1, …, U2n that are linear in u (a), ( )u a , …, ( 1) ( )nu a− , u (b), …, ( 1) ( )nu b− , and 

independent: 

U1 = ( 1) ( 1)

1 1 1( ) ( ) ( )n nu a u a u a   − − + + +  

    + ( 1) ( 1)

1 1 1( ) ( ) ( )n nu b u b u b   − − + + + , 

  …………………………………………… 

   U2n = ( 1) ( 1)

2 2( ) ( )n n

n nu a u a  − −+ +  

  + ( 1) ( 1)

2 2( ) ( )n n

n nu b u b  − −+ + . 

 

 The Ui are chosen to be independent, so that will imply 2n forms V1, …, V2n that are linear in 

v (a), ( )v a , …, 
( 1) ( )nv a−

, v (b), ( )v b , …, 
( 1) ( )nv b−

 and linearly independent, so they are found 

determined by the choice of Ui and are such that one has: 

 

[ ( , )]b

aP u v  = U1 V2n + U2 V2n−1 + … + U2n V1 . 

 

All of the above results from some propositions that relate to the canonical forms that we have 

already recalled. 

 Green’s formula is then written: 

 

(1)    [ ( ) ( )]
b

a
v L u u M v dx−  = U1 V2n + U2 V2n−1 + … + U2n V1  

 

in an infinitude of ways since one can choose the U1, …, U2n arbitrarily, on the condition that those 

forms are nonetheless independent. 

 It will then be easy to define the adjoint system to the system: 

 

(2)  
( ) 0,

( ) 0 ( 1,2, , ),i

L u

U u i m

=

= =
 

 

in which the Ui (u) have the usual form: 

 

Ui (u) = ( 1) ( 1) ( 1) ( 1)( ) ( ) ( ) ( ) ( )n n n n

i i i i iu a u a u a u b u b    − − − − + + + + + +  . 

 

a, b are two points of the interval A, B. Of course, we suppose that the forms U1 (u), …, Um (u) are 

independent relative to the variables u (a), …, 
( 1) ( )nu a−

, u (b), …, 
( 1) ( )nu b−

. For that to be true, it 

is necessary that we should have m  2n. 

 Therefore, let m forms be given U1 (u), …, Um (u). We add 2n – m forms Um+1 (u), …, U2n (u) 

to them such that U1, U2, …, U2n are linearly independent. That choice of Um+1 (u), …, U2n (u) is 
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possible in an infinitude of ways. With this choice of U1, U2, …, U2n, Green’s formula (1) will give 

2n other forms V1, V2, …, V2n that are linear in v (a), ( )v a , …, ( 1) ( )nv a− , v (b), ( )v b , …, ( 1) ( ).nv b−  

Choose the first 2n – m of those forms and define the differential system: 

 

(3)  
( ) 0,

( ) 0 ( 1,2, ,2 ).i

M v

V v i n m

=

= = −
 

 

One calls it the adjoint system to the system (2). 

 The V1, V2, …, V2n−m depend upon the U1, U2, …, U2n, so it would seem that the system (3) is 

not determined completely since a change in the Um+1, …, U2n would imply a change in the V1, …, 

V2n−m. That is nothing fundamental since if one replaces the Um+1, Um+2,  …, U2n with some other 

forms 1mU +
 , 2mU +

 , …, 2nU   then the 1V  , …, 2nV   that are determined by means of Green’s formula 

will be coupled with the V1, …, V2n in a simple way that we have learned how to determine. Upon 

taking that into account in the canonical form that was adopted for [ ( , )]b

aP u v , the order of the 

indices in V is reversed, and one sees that 1V  , …, 2n mV −
  are given by forms that are linear in V1, 

V2, …, V2n−m such that: 

iV   = B1 V1 + B2 V2 + … + B2n−m V2n−m . 

 

Those forms are independent in V1, V2, …, V2n−m because they are independent in v (a), ( )v a , …, 

v (b), ( )v b , … 

 It will then result that the conditions V1 = 0, …, V2n−m = 0 are equivalent to the conditions 1V   

= 0, …, 2n mV −
 = 0. The adjoint system is therefore essentially the same (3). 

 Finally, if one replaces the Ui in the proposed system (2) with some independent linear forms 

in U1 (u), …, Um (u) then the system (2) will not change essentially. An argument that is entirely 

parallel to the one that was just made will show that the condition on the adjoint system V1 = 0, 

…, V2n−m = 0 will not change essentially. Hence, the adjoint system is not altered. 

 Furthermore, the reciprocity between L (u) and M (v) and the symmetry of the right-hand side 

of Green’s formula with respect to the two groups of variables Ui and Vi proves that the adjoint 

system to (3) is the system (2). There is then a reciprocity between a system and its adjoint. 

 Let us say a few words about the algebraic analogue. 

 The differential system corresponds to a homogeneous system: 

 

 
 (3) The forms V2n−m+1, …, V2n are less interesting than V1, …, V2n−m . Meanwhile, the effect on those forms of a 

change in Um+1, …, U2n is simple: One has some new forms that are coupled with the old ones by formulas such as: 

 

2 n m i
V

− +
 = 

2 1 1 2 2

i i

n m i n m n m
V A V A V

− + − −
 + + + . 

 

i is an arbitrary integer from the sequence 1, 2, …, m. 
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(2)  

11 1 1

1 1

0,

......................................

0.

N N

M MN N

a a

a a

 

 

+ + =


 + + =

 

 

 One will find that the adjoint system (3) corresponds to the homogeneous system (3) whose 

matrix of coefficients is simply the matrix of (2) in which one permutes the rows and columns: 

 

(3)  

11 1 1

1 1

0,

......................................

0.

M M

M MN M

a a

a a

 

 

+ + =


 + + =

 

 

 The analogy is more satisfying here than the one that was pointed out for just the adjoint 

equation. 

 We shall not pursue that any further since in the ultimate proofs, we will not use those algebraic 

analogies, so we shall be content to point them out when they might suggest some new facts. 

 

 

 9. Some properties of adjoint systems. – To abbreviate, we shall consider only the very 

important case in which m = n. We have: 

 

(1)  
1

( ) 0,

( ) 0,

.................

( ) 0,n

L u

U u

U u

=

=

=

 

and its adjoint: 

(2)  
1

( ) 0,

( ) 0,

.................

( ) 0.n

M v

V v

V v

=

=

=

 

 

 We will have need for the following lemma: 

 

 Lemma: 

 

 Let u1, u2, …, uk be linearly-independent of the system (1). As in the definition of the adjoint 

system, choose forms Un+1 (u), …, U2n (u) such that U1, …, Un, Un+1, …, U2n are independent. I 

then say that the k systems of constants: 

 

Un+1 (u1) , …, U2n (u1) , 
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Un+1 (u2) , …, U2n (u2) , 

………………………. 

  Un+1 (uk) , …, U2n (uk) 

 

are linearly independent, i.e., that it is impossible to find constants c1, c2, …, ck that are not all 

zero and are such that one has: 

 

  c1 Un+i (u1) + c2 Un+i (u2) + … + ck Un+i (uk) = 0 for i = 1, 2, …, n. 

 

 Indeed, if one can find such constants then that would mean that one has: 

 

Un+i (c1 u1 + c2 u2 + … + ck uk) = 0 , 

 

since the U operations are linear. 

 Now: 

u = c1 u1 + … + ck uk 

 

is the solution to (1), and that solution will verify the 2n conditions: 

 

U1 (u) = 0 , …, U2n (u) = 0 . 

 

 The 2n forms U1, …, U2n are independent, so the equations U1 = … = U2n = 0 admit just the 

solution: 

u (a) = ( )u a  = … = ( 1) ( )nu a−  = u (b) = … = ( 1) ( )nu b−  = 0 . 

 

 Hence, the solution: 

u = c1 u1 + … + ck uk 

 

is identically zero, and since c1, …, ck are not all zero, that will imply that u1, …, uk are not linearly 

independent. The contradiction proves the lemma. 

 Having said that, we remark that in terms of algebraic systems, if one imagines a system: 

 

a11 1 + … + a1n n = 0 , 

………………………... 

an1 1 + … + ann n = 0 , 

and its adjoint: 

a11 1 + … + an1 n = 0 , 

………………………... 

a1n 1 + … + ann n = 0 , 

 

then the matrices in those two systems will be the same, up to a permutation of the rows and 

columns, but their rank will be the same. Since the number of variables is also the same, those two 



30 Chapter II 
 

systems have the same index, i.e., the same number of independent solutions. That suggests the 

following theorem: 

 

 Theorem: 

 

 The index of a homogeneous differential system (1) is equal to that of its adjoint (1). 

 

 The index is also the number of linearly-independent solutions of the system here. 

 If k is the index of (1) then it will suffice to prove that the index of (2) is  k, and the theorem 

will then result from the reciprocity between (1) and (2). 

 We appeal to Green’s formula: 

 

[ ( ) ( )]
b

a
v L u u M v dx− = U1 V2n + U2 V2n−1 + … + U2n V1 . 

 

Let u be a solution to the system (1), and let z1, z2, …, zn be a fundamental system of solutions to 

M (v) = 0. Upon substituting u and zi for u and v in Green’s identity, one will have: 

 

(3)   0 = Un+1 (u) V2n (zi) + Un+2 (u) Vn−1 (zi) + … + U2n (u) V1 (zi)  (i = 1, 2, …, n). 

 

 That is a system of n homogeneous equations in Un+1 (u), …, U2n (u). It is satisfied by the 

values Un+1 (ui), …, U2n (ui), in which ui is an arbitrary solution to (1). Let u1, …, uk be k linearly-

independent solutions to (1), which has the index k. 

 From the lemma, the k systems of constants: 

 

  Un+1 (ui), …, U2n (ui)  (i = 1, 2, …, k) 

are linearly independent. 

 The system (3) will then have at least k linearly-independent solutions. Its rank is then  n – 

k. Now, its rank is that of the matrix: 

 

1 1 1

1

( ) ( )

( ) ( )

n

n n n

V z V z

V z V z

 
 
 
  

 . 

 

Now, that matrix is what one must construct in order to find the index of the system (2). One then 

concludes that the system (1) will have at least k independent solutions, i.e., that its index is  k. 

 If one now considers an inhomogeneous system then the analogy with the algebraic systems 

will suggest some further results. 

 Let the system be: 

a11 1 + … + a1n n = b1 , 

………………………... 

an1 1 + … + ann n = bn . 
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 The necessary and sufficient condition for it to be compatible is expressed simply with the aid 

of Rouché’s characteristic determinants. Without introducing those determinants explicitly, one 

can also say that the necessary and sufficient condition for compatibility is that any homogeneous 

relation that couples the a in the same column of the matrix (aik) must also couple the b, i.e., that 

any solution to the equations: 

1 a11 + 2 a21 + … + n an1 = 0 , 

………………………................ 

1 a1n + 2 a2n + … + n ann = 0 , 

 

in which 1, …, n are the unknowns, must verify the relation: 

 

b1 1 + b2 2 + … + bn n = 0 . 

 

 One sees how naturally one introduces the adjoint system to the homogeneous system that 

corresponds to the given system. 

 We shall infer a compatibility condition that is analogous to Green’s formula for the case of an 

inhomogeneous differential system. 

 If the given system is: 

(4)  
( ) ,

( ) ( 1,2, , )i i

L u r

U u i n

=

= =
 

 

then the homogeneous adjoint system will likewise be, by definition: 

 

(5)  
( ) 0,

( ) 0 ( 1,2, , ).i

M v

V v i n

=

= =
 

 

 Suppose that (4) has a solution u, and let v be an arbitrary solution to the adjoint system. If one 

substitutes those two functions in Green’s identity then it will become: 

 

(6)  
b

a
r v dx = 1 V2n (v) + … +  n Vn+1 (v) . 

 

 Hence, any solution of the adjoint system must verify the relation (6). It is a necessary condition 

for the compatibility of the system (4). One can show that it is also sufficient with the aid of Green’s 

formula, but we shall not dwell upon that point (4). 

 

 

 
 (4) See my article that was cited at the beginning of this chapter, in which one will also find some results for 

differential systems in which m  n that are analogous to the ones that we pointed out here for the case in which m = 

n. 
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 10. Quasi-differential equations. Second-order equations. – In all of the preceding, it was 

supposed that the coefficients in the expression: 

 

L (u) = 0

n

n n

d u
l l u

dx
+ +  

 

have continuous derivatives up to an order that is indicated by their index in order for one to be 

able to construct the expression: 

M (v) = 0

( )
( 1)

n
n n

n

d l v
l v

dx
− + + . 

 

 Can we not simply confine ourselves to continuous l0, l1, …, ln, even if it means enlarging the 

definition of the adjoint expression? 

 For the generalization that we have in mind, it would be simpler to directly consider a quasi-

differential expression instead of L (u) and to develop the theory of the adjoint expression for such 

an expression. The case of a differential expression L (u) in which l0, …, ln are simply continuous 

will be a special case of the preceding theory. 

 We shall only sketch out that theory for a third-order quasi-differential expression: 

 

L (u) = 
3 2 1 0 1 2 2 1 0 1 1 0( ) ( ) ( )

d d d d d d
a a a a u b u b u l a a u b u l a u qu

dx dx dx dx dx dx

    
+ + + + + +    

    
, 

 

if a0 a1 a2 a3  0. 

 We shall call the expression: 

 

M (v) = −
0 1 2 3 2 1 1 2 3 2 2 3( ) ( ) ( )

d d d d d d
a a a a v l v l v b a a v l v b a v qv

dx dx dx dx dx dx

    
− + + − − +    

    
 

 

its adjoint. 

 Upon constructing v L (u) – u M (v), one sees that this expression is equal to ( , )
d

P u v
dx

, in 

which P (u, v) is a linear function in: 

 

u, 0( )
d

a u
dx

, 1 0 1( )
d d

a a u b u
dx dx

 
+ 

 
 , 

v, 3( )
d

a v
dx

, 2 3 2( )
d d

a a v l v
dx dx

 
− 

 
 . 

 

 Those six variables are the ones that correspond to the: 
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u u u

v v v

 

 
 

 

in the ordinary differential equations in the existence theorem for quasi-differential equations. 

 The formulas that one obtains are more complicated, but do not differ essentially from the ones 

that are obtained in the usual theory of the adjoint. With some small changes, one can likewise 

formulate a theory of the adjoint system that is parallel to the one that was already presented. One 

would then see that it is not essential for one to suppose that the l0, l1, …, ln in L (u) have derivatives 

up to certain orders. 

 That raises a question in regard to the adjoint equation. We shall study it for only the second-

order equations. Let: 

  L (u) = 
2

2 2 02

d u du
l l l u

dx dx
+ +  = r  [l2  0 in (A, B)]. 

 The adjoint of L (u) is: 

M (v) = 
2

2 2 1 2 1 02
(2 ) ( )

d v dv
l l l l l l v

dx dx
  + − + − + . 

 

 Under what conditions is the expression L (u) identical to M (v)? One sees immediately that it 

is necessary and sufficient that: 

2l   = l1 . 

 

 Therefore, an arbitrary second-order differential expression is not always its own adjoint, but 

as one sees, one can make it so by a simple calculation upon multiplying it by the factor: 

 

1

2 2

1
exp

l
dx

l l

 
 
 
  . 

 

 Hence, it is no loss of generality for a second-order equation to suppose that its left-hand side 

is self-adjoint and write it in the form that Sturm adopted: 

 

d du
K G u

dx dx

 
− 

 
 = R . 

 

That form is even more general than the ordinary form because K can be supposed to be simply 

continuous, but not differentiable, so u  will not exist, but u and u  will always exist, and that is 

generally all that we shall need. It is then a very simple case of a quasi-differential equation. 

 Thus the adjoint of: 

L (u) = ( )
d

K u Gu
dx

 −  

is: 
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M (v) = ( )
d

K v G v
dx

 − , 

so 

v L (u) – u M (v) = [ ( )]
d

K vu u v
dx

 −  

 

is an identity that will be valid even when K has no derivative. 

 Now take a homogeneous system: 

 

1 1 2 3 4

2 1 2 3 4

( ) ( ) 0,

( ) ( ) ( ) ( ) 0,

( ) ( ) ( ) ( ) 0.

d
L u K u Gu

dx

U a u a a u b a u a a u b

U b u a b u b b u a b u b

= − =

 = + + + =

 = + + + =

 

 

 The search for the adjoint system proceeds with no difficulty. Of course, one supposes that U1 

and U2 are independent, i.e., the rank-2 matrix: 

 

1 2 3 4

1 2 3 4

a a a a

b b b b

 
 
 

. 

Set: 

dij = ai bj − aj bi . 

 

 There are several cases to distinguish: 

 

 1. d12  0: One takes U3 and U4 arbitrarily, but such that U1, U2, U3, U4 are independent. 

 

 One can obviously take U3 = ( )u a , U4 = ( )u b  because the determinant of the four forms will 

then be d12  0. 

 One then, in turn, forms: 

 

[ ( ) ( )]
b

a
v L u u M v dx−  = [ ( )]b

aK vu uv −   

 

and reduces the form on the right-hand side to: 

 

U1 V4 + U2 V3 + U3 V2 + U4 V1 . 

One will then find that: 

 

V1 = 12 24 14

12

1
[ ( ) ( ) ( ) ( ) ( ) ( )]K b d v b K a d v a K b d v b

d
 + +  , 
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V2 = 12 23 13

12

1
[ ( ) ( ) ( ) ( ) ( ) ( )]K a d v a K a d v a K b d v b

d
 − + +  . 

 

 There are analogous expressions for V3 and V4, although they are simpler. 

 The adjoint system is: 

1

2

( ) ( ) 0,

( ) 0,

( ) 0.

d
M v K v G v

dx

V v

V v

= − =

=

=

 

 

 In order for the proposed system to be its own adjoint, it is necessary and sufficient that the 

conditions V1 (v) = 0, V2 (v) = 0 are essentially the same as U1 = 0, U2 = 0, or in other words, that 

V1 and V2 are linear combinations of U1 and U2 . Since v (a) does not enter into V1, upon eliminating 

u (a) from U1 and U2 and comparing them to V1, one will get a first necessary condition. Upon 

eliminating u (b) from U1 and U2 and comparing them to V2, one will get a second necessary 

condition, and when those two conditions are taken together, that will give necessary and sufficient 

conditions. Moreover, they will reduce to the single condition: 

 

(1)  d24 K (a) = d13 K (b) . 

 

 2. If d12 = 0 then there will be several cases to consider. However, one will always recover 

the preceding condition for the proposed system to be its own adjoint. 

 

 Some simple examples will illustrate the circumstances that might present themselves in the 

process of determining the index of a system. 

 For example, let the equation be 
2

2

d u

dx
 + u = 0. Its general integral is u = A cos x + B sin x. 

 If one takes the two independent conditions: 

 

  u (0) – u (2)  = 0 , 

  (0) (2 )u u  −  = 0 

 

then one will have introduced no essential restriction on the solution. The index of the system is 2, 

like that of the equation. 

 If one takes: 

   u (0) – u (2)  = 0 , 

  (0) (2 )u u  +  = 0 

 

then the first one will introduce no restriction, and one will find that the index is 1. The solution is 

A cos x. 

 Finally, if one takes: 
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   u (0) + u (2)  = 0 , 

  (0) (2 )u u  +  = 0 

 

then the only solution will be u = 0. Thus, the index is zero. 

 

 

 11. Characteristic numbers. – In conclusion, consider the case that will often come up in 

what follows in which the coefficients of the system: 

 

( ) 0,

( ) 0 ( 1,2, , )i

L u

U u i n

=

= =
 

 

depend upon a parameter . The first problem that one poses is that of determining the values of  

for which that system is compatible, i.e., there are solutions that are not identically zero. That 

problem is less precise than that of determining the index. 

 If u1, …, un is a fundamental system of solutions to L (u) = 0 then the compatibility condition 

for the system will be: 

(1)      

1 1 1

1

( ) ( )

( ) ( )

n

n n n

U u U u

U u U u

 = 0 . 

 

 The coefficients of Ui and the solutions ui are functions of , so one will then have an equation 

in : 

F () = 0 

 

that we call the characteristic equation of the differential system. Its roots 1, 2, … will be the 

characteristic numbers. 

 We suppose that the coefficients of the system are continuous in (x, ) and analytic in  in a 

certain Weierstrass domain . In this case, F () will be an analytic function of . Its zeroes will 

then be isolated in that domain (but possibly with some limit points on the boundary of the 

domain), unless of course F () is identically zero. 

 Any characteristic number i will make the system compatible. The system will then have a 

certain index ki > 0, whereas for any non-characteristic number, one will have ki = 0. ki will be 

called the index of i . 

 A characteristic number i has a certain order of multiplicity mi if one considers it to be a zero 

of F () = 0, and that order of multiplicity will not depend upon the fundamental system that one 

appeals to in order to define the characteristic equation since a change of that fundamental system 

will have the effect of multiplying the left-hand side of the characteristic equation by a function of 

 with no zero, as one easily confirms. The mi can differ from ki, but one will always have: 
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mi  ki . 

 

(One has seen that ki  n, moreover.) In effect, let k be the index of a characteristic number . One 

can show that this number annuls: 

( )F   , …, ( 1) ( )kF − . 

 

Each of those derivatives is a sum of determinants, each of which includes n – k + 1 unaltered rows 

from the determinant F (), while the other k – 1 rows might have been differentiated. 

 If one develops those determinants by using the Laplace formula, while taking the minors that 

are composed of those n – k + 1 rows, then one will see that all of those minors are zero since they 

are determinants of order n – k + 1 that come from the determinant F (), which has rank n – k, 

from the definition of the index k. One then concludes that: 

 

( )F   = 0 , …, 
( 1) ( )kF −

 = 0 . 

Hence, m  k. 

 Examples: 

 

 1. Let: 
2

2

2

d u
u

dx
+  = 0 . 

Its general solution is: 

u = A cos  x + B sin  x . 

 Take the conditions: 

u (− 1) – u (+ 1) = 0 , 

( 1) ( 1)u u − + +  = 0 . 

 

 For any , A cos  x is even, and its odd derivative will be a solution to the system. Therefore, 

any value of  will be characteristic. Indeed, one finds that: 

 

F ()  0 . 

 2. If one takes: 
2

2

2

d u
u

dx
+  = 0 , 

  u (0) = 0 , 

  (0)u  = 0 

 

then, from the existence theorem, the only solution for any  will be zero. There will be no 

characteristic number, and one will effectively find that: 

 

F ()  1 . 
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 3. 
2

2

2

d u
u

dx
+  = 0 , 

  u (0) = 0 , 

  u () = 0 . 

 

The characteristic numbers here are  =  1,  2, …, and one will easily see that their orders of 

multiplicity and their indices are all equal to 1. 

 

__________ 



CHAPTER III 

 

REAL SOLUTIONS AND THEIR ZEROES 

IN THE SIMPLEST CASES (5) 
 

________ 

 

 

 12. Solutions for one invariable equation. – In this chapter, we shall study the results that 

Sturm gave in his first article, and certain extensions of those results. First of all, imagine the 

homogeneous differential equation: 

( )
d

K u Gu
dx

 −  = 0 . 

 

If one supposes that its coefficients are (real or complex) continuous functions of the variable x in 

the closed interval A  x  B then it will be easy to see that any solution u, whether real or complex, 

of that equation cannot have an infinitude of zeroes in (A, B) without being identically zero. That 

is because those zeroes will admit at least one limit point c in A  x  B. Since the function u is 

continuous at c : 

u (c) = 0 . 

 

One also knows that ( )u c  exists. If one constructs it while considering the value of u at c and at 

a zero of u (x) that tends to c then one can confirm that: 

 

( )u c  = 0 . 

 

From our existence theorem, u (x) will be identically zero then. 

 That extends to homogeneous linear equations of order n with coefficients that are continuous 

in A  x  B. If the zeroes of a solution (6) define an infinite set in (A, B) then they will have at 

least one limit point c. At that point, one has: 

 

u (c) = 0 , ( )u c  = 0 . 

 

However, since u (x) is continuous, along with its derivative, there will be at least one zero of  u

between two zeroes of u. Thus, ( )u x  has an infinitude of zeroes that admit c for a limit point. 

Hence: 

 
 (5) STURM, J. de Math. pures et appl. 1 (1836), pp. 106. – PICARD, Traité d’Analyse, t. III, Chap. VI. – BÔCHER, 

Trans. Amer. Math. Soc. 1 (1900), pp. 414; ibid., 2 (1901), pp. 428; ibid. 3 (1902), pp. 196. – PICONE, Ann. di Reale 

Scuola Normale sup. di Pisa 11 (1909), pp. 3. 

 (6) We supposed that this solution is real in the proof. It can be applied to a complex solution with a slight 

modification. 
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( )u c  = 0 . 

Step-by-step, the argument will show that: 

 

u (c) = ( )u c  = … = ( 1) ( )nu c−  = 0 . 

Therefore, u is identically zero. 

 The property of the function u that it has a finite number of zeroes in (A, B) does not extend to 

either the derivatives ( )u c , ( )u c , … or the solutions to the inhomogeneous equations, as one 

can see in some examples that are easy to construct. 

 Nonetheless, there exist certain combinations of u and some of its successive derivatives u , 

u , … that can have only a finite number of zeroes. 

 For example, one proves (7) that the Wronskian of k independent solutions u1, …, uk of 

homogeneous linear equation of order n  k cannot have an infinite number of zeroes in (A, B). 

 In the case of a second-order equation: 

 

(1)  ( )
d

K u Gu
dx

 −  = 0 , 

consider some functions of the form: 

 

 = 1 2u K u  −  = 0 , 

 

in which 1, 2 are two given functions of x. Under what conditions will  have only a finite 

number of zeroes? We suppose, to simplify, that 1 and 2 have continuous derivatives. The same 

thing will be true for . 

 One has: 

 = 1 2 1 2( ) ( )G u K u     − + − , 

upon taking (1) into account. 

 If  has an infinitude of zeroes in (A  x  B) then those zeroes will have at least one limit 

point c in (A, B). Hence: 

(2)  
( ) 0,

( ) 0.

c

c

 =


 =
 

 

 Now, if u is not identically zero then one cannot have both: 

 

u (c) = 0 , ( )u c  = 0 

at c. 

 The two equations (2) then must have a zero determinant at u (c) and ( )u c . That zero 

determinant will then give the equality: 

 
 (7) See Bull. Amer. Math. Soc. 8 (1901), pp. 53. 
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(3)  
2

21
1 2 1 2 1K G

K


    

 
 − − − 

 
 = 0 for x = c . 

 

 K is supposed to be  0 in (A  x  B) in order that (1) should have continuous coefficients. 

Hence, one can suppress K in (3) and arrive at the following conclusion: 

 

 If 1, 2 are functions of x with continuous derivatives such that: 

 

(4)  {1, 2} = 
2

21
1 2 1 2 1G

K


     − − −  

 

is 0 in the closed interval (A, B) then one will be assured that  has only a finite number of zeroes 

in (A, B) as long as u is not identically zero in (A, B). 

 

 Sturm’s first theorem. – Consider a second-order homogeneous linear differential equation 

with real coefficients for which the real variable x belongs to the interval a, b. 

 If it admits a real solution u1 that is annulled at least twice in a, b, and x1, x2 are two consecutive 

zeroes of u1 then any other real solution u2 that is independent of u2 will be annulled once and only 

once between x1 and x2. 

 It obviously suffices to show that u2 has a zero between x1 and x2 because if there were two 

then u1 would have a third zero between x1 and x2 that would be found between the previous two 

zeroes of u2. Now, u2 cannot be annulled at x1 or x2 because u2 would then be the product of u1 

with a constant. If u2 were everywhere non-zero between x1 and x2 then u1 / u2 would be a 

continuous function in x1  x  x2 that is annulled at x1 and x2, so it would have a zero derivative 

at some point between x1 and x2. 

 That derivative is: 

2 1 1 2

2

2

u u u u

u

 −
. 

 

Up to the factor 2

21/ u , it is the Wronskian of the two independent solutions u1, u2, and one knows 

that it is non-zero in (a, b). Hence, we have a contradiction, and as a result u2 will have at least one 

zero between x1 and x2. 

 We have seen that it cannot have more than one. We can summarize that by saying that the 

zeroes of the independent real solutions to a second-order homogeneous linear equation with real 

coefficients are separate from each other. 

 We cite the example of the equation: 
2

2

d u
u

dx
+ = 0 , 

for which: 

u1 = cos x , u2 = sin x  

are two independent solutions. 
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 The zeroes of u1 are separate from those of u2, like those of any solution A cos x + B sin x (B  

0) that is independent of u1. 

 Imagine the imaginary solution cos x + i sin x = i xe  to that equation. It has no zero in the 

interval a, b of the real variable x. If x varies from a to b then the point u = i xe  in the plane of the 

complex variable will rotate from i ae  to ibe  on the circle of radius 1 that is described around the 

origin as its center. The real part and the imaginary part of i xe , which are solutions, oscillate 

between – 1 and + 1 in a known way. 

 In order to see that this special case is typical, imagine the general case: 

 

( )
d

K u Gu
dx

 −  = 0 . 

 

 If u1 and u2 are two arbitrary real solutions then u = u1 + i u2 will represent the most-general 

complex solution. 

 If u1, u2 are two real independent solutions then u will not be the product of a real solution with 

a complex constant. We call that solution essentially imaginary. 

 Consider the point whose coordinates are u1, u2. It represents u = u1 + i u2, so u1 / u2 will be the 

angular coefficient of ou. 

 Now: 

2

1

ud

dx u

 
 
 

 = 2 1 1 2

2

2

u u u u

u

 −
. 

 

Since the Wronskian always has the same sign, since it is never zero, the vector ou will always 

rotate in the same sense around o. (If u1 and u2 are proportional then u will oscillate along a line 

that passes through o. That will be a limiting case of the preceding one where the trajectory of u is 

flattened into a line that passes through o.) 

 Take two essentially-imaginary solutions: 

 

u = u1 + i u2 , v = u3 + i u4 , 

 

in which u1, u2, u3, u4 are real solutions, while u1 and u2 are linearly independent, as well as u3 and 

u4 . 

 Hence, one has: 

  u3 =  u1 +  u2 , u4 =  u1 +  u2  with 
 

 
  0 , 

in which , , ,  are real, in addition. 

 In the plane of the complex variable u, one passes from u to v by the preceding linear 

substitution, which bears the name of an affinity. That transformation changes lines into lines and 

multiplies all areas by the same quantity ( – ). In particular, a line that issues from the origin 

is changed into a line that issues from another origin o. If the radius vector ou makes a certain 

number of circuits around o then the radius vector ov will make an equal number of them. More 
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precisely, if one considers x to be like time, and one looks for the areal velocity with respect to o 

of the moving body that the solution u1 + i u2 represents then one will see that this velocity is: 

 

ds

dx
 = 1 2 2 1u u u u − , 

 

which is the Wronskian of the two functions u1, u2. 

 When one passes from the solution u to the solution v, that Wronskian will be simply multiplied 

by  – , which should not be surprising since areas are always multiplied by that number. In 

particular, if u makes less than a half-turn around o when x describes the interval (A, B) then v will 

make less than a half-turn, and it will then result that any real solution in (A, B) (that is represented 

by the projection of the vector ou onto ox or oy) cannot be annulled more than once. The differential 

equation is then said to be non-oscillatory in the interval (A, B). We shall ultimately return to the 

question of how to recognize whether a given equation is oscillatory or not in a given interval. 

 With those brief indications about complex solutions, we now return to the real solutions of an 

equation with real coefficients. One then sees that if one considers  = 1 2u K u  − , in which 1, 

2 have continuous derivatives such that: 

 

{1, 2} = 
2

21
1 2 1 2 1G

K


     − − −  

 

is non-zero in (A, B), in addition, then that expression for  will have only a limited number of 

zeroes in (A, B). 

 Take two such functions 1 and 2 such that: The first one is constructed from one solution 

u1, while the second one is constructed from a solution u2 that is independent of u1 (u1, u2, and 1, 

2 are real): 

  1 = 1 1 2 1u K u  − , 2 = 1 2 2 2u K u  − , {1, 2}  0 . 

 

1 and 2 have only a limited number of zeroes in (A, B). Under those conditions, Sturm’s first 

theorem on the zeroes of two independent solutions u1, u2 will extend to the zeroes of 1 and 2 . 

There is one and only one zero of 2 between two consecutive zeroes of 1 . 

 The proof that was given for u1 and u2 applies here with almost no changes. 

 One finds, in the same way, that if u is an essentially-imaginary solution of (1) then the vector 

that represents the quantity 1 2u K u  −  will always rotate in the same sense when x increases 

from A to B, provided that {1, 2}  0 . 

 One can pose a further question regarding those expressions : 

 Take a real solution of: 

( )
d

K u Gu
dx

 −  = 0 

 

that is not identically zero. Take four real functions: 
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1 , 2 ,  1 , 2 , 

and construct: 

 = 1 2u K u  − ,  = 1 2u K u  − . 

 

 Can one deduce any results concerning the zeroes of  and ? First of all, suppose that there 

are a finite number of those zeroes, and in order for that to be true, suppose that {1, 2} and {1, 

2} are non-zero in (A, B). 

 One then notes that K u  and u, which are particular forms of  and , verify a homogeneous 

Riccati equation, i.e., an equation of the form: 

 

1 2 2 1    −  = 2 2

1 1 2 2A B C   + + , 

 

so one can think that the same thing is true for  and , and indeed, one will have: 

 

(5)  

1 2 1 2

1 1 2 2

( ) ( ) 0,

or rather :

( ) ( ) 0

u K u u K u

u K u

   

   

  − −  − =


  −  −  −  =

 

identically. 

 Upon differentiating that and taking the equation that u verifies into account, one will have: 

 

(6)  
1 1 1 1 2 2

1 1 2 2 2 2

( )

[ ( ) ] 0,

G G u

K u

     

     

    −  +  −  −  + 

   +  −  −  −  +  −  =
 

 

so (5) and (6) will be two homogeneous linear equations in u and u . If u is not identically zero 

then one will not have both u = 0, u  = 0 at a point. Hence, the determinant of those two equations 

will be identically zero. That will produce a homogeneous Riccati equation for  and : 

 

(7)   

2

1 2 2 1 1 2

21 1
2 1 2 1 1 2 2 2 1 2

( ) ( ) { }

[ 2 2 ] { } 0.G
K

     

 
         

 −   −   + 

  − − + + −   +  =
 

 

 One sees that a necessary condition for that equation to be regular in (A, B) is that: 

 

  1 2 − 2 1  0  in (A, B). 

 

If that condition is realized then  and  cannot be annulled at the same point because 1 2 − 

2 1   is the determinant of the two equations in u and K u , namely,  = 0,  = 0, so one would 

have u = 0, u = 0 at that point, which is absurd. 
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 Before passing to the study of zeroes of  and , we point out that at a point where  is 

annulled, but  is not, we will have, from (7), that: 

 

(I)   = − 1 2

1 2 2 1

{ } 

   


−
, 

 

and similarly, at a point where  = 0, we will have: 

 

(II)   = 1 2

1 2 2 1

{ } 

   


−
. 

 

 Having said that, one can show that: There is one and only one zero of  between two 

consecutive zeroes of , and conversely. 

 Indeed, first of all,  cannot be annulled more than once in any segment of (A, B) where   

0. Indeed, if  is annulled at least twice at two consecutive points x1, x2 then from (I),  will have 

the same sign since neither  nor 1 2 − 2 1 will be annulled. That is obviously impossible. 

 Conversely,  cannot be annulled more than once in any segment where  remains non-zero. 

 Now suppose that  admits several zeroes in (A, B), and let x1, x2 be two such consecutive 

zeroes.  is annulled at least once between x1 and x2 because in the contrary case, the interval x1, 

x2 will be found in a somewhat-larger interval where  is non-zero, and  cannot have two zeroes 

in that interval. Therefore,  has at least one zero between x1 and x2, and from a known argument, 

it will have only one. 

 Therefore, there exists a case in which the zeroes of ,  in (A, B) are separate: 

 

1 2 − 2 1  0 , {1 2}  0 , {1 2}  0 . 

 

 That theorem will be meaningless if neither  nor  has more than one zero in (A, B). 

 Here is a case in which that situation is produced: 

 

 Theorem: 

 

 If one combines the conditions that: 

 

1 2 − 2 1  0 , {1 2}  0 , {1 2}  0 

 

in (A, B) with the condition that {1 2} and {1 2} have opposite signs then neither  nor  

can be annulled more than once in (A, B), and furthermore, if one of those functions is annulled 

once then the other one cannot be annulled. 

 

 In other words, consider the product  . Its zeroes are those of  and . From the theorem 

that was proved above, two consecutive zeroes of that product are, in one case, a zero of , and in 
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the other, a zero of . The present theorem says that under the preceding conditions, the product 

  has only one zero in (A, B). 

 Indeed, if it has several of them then consider two consecutive zeroes, one of which belongs 

to  and the other to . We shall show that the derivative: 

 

( )
d

dx
   =   +   

 

has the same sign at those points. That contradiction will prove our theorem. For the first zero, 

from (I), the expression ( )
d

dx
   will take the value: 

21 2

1 2 2 1

{ } 

   

−


−
, 

 

and as for the consecutive zero, from (II), its value is: 

 

21 2

1 2 2 1

{ } 

   


−
. 

 

 Those two values have the same sign since: 

 

{1 2}{1 2} < 0 . 

Q. E. D.  

 

 Application. – If one takes 1 = 1, 2 = 0 then one will have  = u, and one will obtain the 

following result: 

 

 If there exist a function  with continuous derivative such that: 

 
2

G
K


 + −  < 0 

then neither a solution u of the equation: 

 

  ( )
d

K u Gu
dx

 −  = 0 ,  in which K > 0, 

 

that is not identically zero nor the function u K u −  can have more than one zero in (A, B). 

 

 The equation is therefore non-oscillatory. 
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 Upon being given a particular form to , we will have various sufficient conditions for an 

equation to be non-oscillatory. We cite the condition G > 0, which we will obtain by setting  = 0, 

and which is well known. Later on, we shall rediscover those conditions of non-oscillation. 

 

 

 13. Effect produced on the solutions by a change of coefficients in the equation. – Having 

thus extended the properties of the zeroes of real solutions in various directions, we shall return to 

those zeroes themselves in order to study the effect that is produced on them by a change of the 

functions G or K. 

 First leave K unchanged. Any reduction in G will then increase the rapidity of the oscillation 

of the solutions to the equation. The proof will clarify the sense of that statement. 

 Consider u1, which is a solution to: 

 

1 1 1( )
d

K u G u
dx

 −  = 0 , 

and u2, which is a solution to: 

2 2 2( )
d

K u G u
dx

 −  = 0 . 

 

 G2 is supposed to be < G1, and neither u1 nor u2 is identically zero. Upon combining the 

preceding two equations, multiplied by u2 and – u1, resp., one will have: 

 

1 2 1 2[ ( )]
d

K u u u u
dx

 −  = (G1 – G2) u1 u2 . 

Hence, upon integration: 

(1)  2

11 2 1 2[ ( )]x

xK u u u u −  = 
2

1
1 2 1 2( )

x

x
G G u u dx− . 

 

 That formula, which was given by Sturm, can be considered to be a special case of Green’s 

formula. 

 Suppose that u1 has several zeroes in (A, B), and let x1, x2 be two of its consecutive zeroes. Say 

that u2 oscillates more rapidly than u1, i.e., that any solution u2 to the second equation has at least 

one zero between x1 and x2 that is distinct from x1 and x2. 

 In effect, if that were not true then one could suppose that u1 and u2 were positive between x1 

and x2. Since G1 – G2 is > 0, the integral in the preceding formula would then be > 0. 

 Now, u1 = 0 at x1 and x2, while it is > 0 at x1 < 0 at x2, and not = 0 since u1 is not  0. Thus, the 

left-hand side of the preceding formula is  0. That fact contradicts the preceding result. Thus, u2 

is annulled at least once between x1 and x2 . 

 The term “oscillates more rapidly than u2” is easy to explain because if one considers a solution 

u1 to the first equation and a solution u2 to the second one that are both annulled at x then the zero 

of u2 that follows x will present itself before the zero that follows u1 in such a way that one half 

the oscillation of u2 is more rapid than that of u1 . 
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 Now suppose that K and G change. Consider the two equations: 

 

1 1 1( )
d

K u G u
dx

 −  = 0 ,  2 2 2( )
d

K u G u
dx

 −  = 0 , 

in which: 

G1 > G2 , K1 > K2 > 0 . 

 

It is easy to see that the reduction in K and G produces an oscillation of the solutions that is more 

rapid. In other words: There will be at least one zero of any solution u2 of the second equation 

between two consecutive zeroes of an arbitrary solution u1 of the first one. 

 We shall give a proof of that fact that is based upon a formula of Sturm that was modified by 

Picone. 

 From the identities: 

 

1 2 1( )
d

K u u
dx

  = 2 1 1 1 2 1( )
d

u K u K u u
dx

  +  = 1 1 2 1 2 1G u u K u u +    

and 

2 1 2( )
d

K u u
dx

  = 2 1 2 2 2 1G u u K u u + , 

one deduces that: 

1 2 1 2 1 2( )
d

K u u K u u
dx

 −  = 1 2 1 2 1 2 1 2( ) ( )G G u u K K u u − + − . 

 

That formula was given by Sturm and immediately generalizes the case that we treated above in 

which K1 = K2 . However, the argument that we presented for K1 = K2 is no longer appropriate here 

due to the presence of the factor 1 2u u  . We then establish the following formula: 

 

1
1 2 1 2 1 2

2

( )
ud

K u u K u u
dx u

 
 − 

 
  

= 1 1 2 1 2
1 2 1 2 1 2 1 2 1 2 1 2 1 22

2 2

[( ) ( ) ] ( )
u u u u u

G G u u K K u u K u u K u u
u u

 −
   − + − + − , 

 

from which, we infer Picone’s identity: 

 

1
1 2 1 2 1 2

2

( )
ud

K u u K u u
dx u

 
 − 

 
 = 

2

2 2 1
1 2 1 1 2 1 2 1 2

2

( ) ( )
u

G G u K K u K u u
u

 
  − + − + − 

 
. 

 

That formula obviously applies at any point where u2  0. If one then supposes that u2 is non-zero 

between x1, x2, which are consecutive zeroes of u1, as well as at x1 and x2, and that one has 

integrated the two sides from x1 to x2, then since K1 and K2 are > 0 in x1 x2, as well as K1 – K2 and 
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G1 – G2, the right-hand side will give a positive integral, and the left-hand side will give a zero 

integral, so the contradiction proves the theorem. 

 

 The formula will still apply when u2 is annulled at x1 or x2 if is also annulled at one of those 

points because u1 / u2 will then tend to the value 1 2/u u  , which it is well-defined (8), since u2 is not 

identically zero and u  is not zero. When the left-hand side is integrated between x1 and x2, it will 

then give a well-defined quantity, along with the third term on the right-hand side, and the 

integration will once more correctly prove that our theorem is exact. 

 One can further extend it to the case in which one has: 

 

G2  G1 , K2  K1 , 

 

but, of course, under the condition that equality is not true at all points in the interval x1 x2. 

Nonetheless, there is one exceptional case here that needs to be pointed out. 

 We appeal to Picone’s identity: 

 
2

1

2 1 2
1 1 2

1 2

x

x

u u
u K K

u u

   
−  

  
= 

2 2 2

1 1 1

2

2 2 1 2 1 2
1 2 1 1 2 1 2 2

2

( ) ( )
x x x

x x x

u u u u
G G u dx K K u dx K dx

u

  −
− + − +  

 
   . 

 

Upon supposing that G1  G2, K1  K2 in AB and that the equality signs are not valid at any point 

in x1 x2, as we have said, the right-hand side will generally have a non-zero positive value. 

 Indeed, if G1 > G2 in part of the interval then the first integral will certainly be positive. If one 

has G1  G2 in x1 x2 then it might happen that one has K1 – K2 = 0 in one part of the interval x1 x2 

and 1u  = 0 in the rest of it, in such a way that the second integral will be zero. However, that can 

happen only if: 

1 1( )
d

K u G u
dx

 −  = 0 

 

admits a constant, but non-zero, solution in that partial integral, which would demand that G1  0 

in that part of x1 x2, and indeed, if G1  0 in part of x1 x2 then there will be a solution u1 that is 

constant in the part. Obviously, if K decreases then that particular constant solution will remain 

invariable. One can then easily construct an example in which the reduction of K does not alter the 

oscillation of the solutions, which would define an exception to the result that we found above. 

 In order to discard those exceptional cases, we suppose that the identity G1  G2  0 is not 

verified on any subinterval of AB (9). 

 With those caveats, the reduction of G and K will indeed produce a more-rapid oscillation of 

the solutions, as we said above. 

 

 
 (8) When x tends to x1 through values that are above it or to x2 through values that are below it.  

 (9) Some much-less-restricting conditions would suffice here.  
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 Application. – The theorem permits us to compare the solutions of two differential equations 

whose coefficients have some simple relations between them. In particular, one can deduce some 

conditions for an equation to be non-oscillatory. 

 Indeed, suppose that one has the equation: 

 

(1)  ( )
d

K u Gu
dx

 −  = 0 . 

 

As always, K is supposed to be > 0, while x is included in AB. Let min K and min G be the minimum 

of K and G, resp., in the closed interval AB, and consider the equation: 

 

[(min ) ] (min )
d

K u G u
dx

 − = 0 , 

or 

(2)   
min

min

G
u u

K
 −  = 0 . 

(2) is, in turn, integrated. 

 If min G > 0 then one will have the exponential solution 
min

exp
min

G
x

K

 
  
 

, which is a real 

solution that is always non-zero in AB. Therefore, (1) will have no solution that is annulled twice. 

The same thing will be true if min G = 0. 

 Therefore, if G is everywhere  0 then equation (1) will not be oscillatory. 

 If min G < 0 then the two fundamental solutions of (2) will be: 

 

u = 
min

sin
min

G
x

K

 
−  

 
 

and 

u = 
min

cos
min

G
x

K

 
−  

 
. 

 

They oscillate: Meanwhile, one can form a solution to (2) that is non-zero in an interval ab in AB 

on the condition that the interval ab must be less than: 

 

min

min

G

K



−

. 

 If one has: 

− 
min

min

G

K
 < 

2

2( )b a



−
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then equation (1) will not be oscillatory in ab. 

 One has, analogously, that: 

− 
min

min

G

K
  

2

2( )b a



−
 

 

is a sufficient condition for oscillation in ab, which implies that max G < 0. 

 That sufficient condition can even be extended. If: 

 

− 
min

min

G

K
  

2 2

2( )

k

b a



−
 

 

then any solution to the equation will have at least k zeroes in the closed interval a  x  b. Those 

results are often useful in the applications. 

 In passing, we point out a special case that was imagined by Sturm and Liouville. It is the case 

of the equation: 

( ) ( )
d

k u g l u
dx

 + −  = 0 , 

 

in which k, g, l are functions of x that are continuous in the interval AB. k > 0, g > 0, l  0. 

 That equation is provided by the study of the motion of heat in a heterogeneous bar or by 

simple vibrations of heterogeneous strings. 

 If  varies then k will remain unvaried, but G = l –  g will vary. If  increases then G will 

decrease, and the solutions will oscillate more rapidly. 

 One cannot suppose that g > 0 and assume that g  0. To simplify, we confine ourselves to g > 

0. The condition that l  0 that is provided by the physical problem is superfluous since it does not 

affect the variation of G = l –  g in any way. 

 Another case that was envisioned by various geometers since Sturm, and with various methods, 

is the one in which k > 0, l  0, but g changes sign in AB. 

 One might believe that this case is essentially distinct from the preceding one. Nothing of the 

sort is true. If one divides by |  | then the equation will be written: 

 

  (sgn )
| | | |

d k l
u g u

dx


 

   
 + −   

   
 = 0 , sgn  = 

1 if 0,

1 if 0.





+ 


− 
 

If one sets: 

K = 
| |

k


, G = 

| |

l


− (sgn ) g 

 

then one sees that the equation has the same type as the ones that we studied in the preceding 

sections. 
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 1. If  > 0 then an increase in  will generally decrease G and also K. That is the Sturm case 

with K and G decreasing. If   0 then G will not vary, but K will certainly decrease. 

 

 Therefore, the solutions will oscillate more rapidly. 

 

 2.  < 0, so if |  | increases then the same thing will result. 

 

 We have then found the circumstances that will be produced in Sturm’s special case as a simple 

corollary to some of his results. 

 

 

 14. The comparison theorems. – Consider the following system, which includes two 

conditions at one point: 

( ) 0,

( ) ,

( ) .

d
K u G u

dx

u a

u a





 − =

=

 =

 

 

With the condition | | | | +  > 0, we exclude the case in which the solution u, which is unique, is 

identically zero. The fundamental problem that is then posed is the study of how the zeroes of the 

solution u vary when K and G change. 

 First of all, let us say a few words from a point of view that is slightly different from the one 

that one takes in such a study. If one considers the system: 

 

( ) 0,

( ) ( ) 0

d
K u G u

dx

u a u a 

 − =

 − =

 

 

then the supplementary condition expresses the idea that for the value a of x, u and u  will be 

proportional to  and  , resp., so the solutions of that second system will be deduced from the 

solution to the initial system by multiplying them by an arbitrary constant, which will not change 

its zeroes. That happens in such a way that the study of the zeroes of the solutions to the second 

system will be identical to the same study that was made of the first one. 

 Therefore, consider two systems: 

 

(1)  

1 1

1

1

( ) 0,

( ) ,

( ) ,

d
K u G u

dx

u a

u a





 − =

=

 =
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(2)  

2 2

2

2

( ) 0,

( ) ,

( ) ,

d
K u G u

dx

u a

u a





 − =

=

 =

 

 

in which we suppose that K1  K2, G1  G2 . In order for their solutions to not be identically zero, 

we suppose: 

1 1| | | | +   0 , 2 2| | | | +   0 . 

 

 Moreover, the equality K1 = K2, G1 = G2 is not valid at any point in a subset of the interval ab, 

and the identity G1  G2  0 must not be true in any subset of that interval. 

 Finally, we shall make the following hypotheses in the  and  : 

 If 1  0 then 2 must be  0, and in such a way that 1 1

1

( )K a 




  2 2

2

( )K a 




, i.e., that 

( )K a 





will diminish upon passing from (1) to (2). 

 If 1 = 0 then we will make no supplementary hypothesis. 

 Under those hypotheses, Sturm established his two comparison theorems: 

 

 First comparison theorem: 

 

 If the solution u1 to (1) has a certain number of zeroes that are distinct from a in the interval 

ab (a < x  b) then the solution u2 will have at least as many zeroes in that interval, and if one 

enumerates the zeroes of u1 in order of increasing magnitude by x1, x2, x2, …, and those of u2 by 

1x , 2x , 3x , … then one will always have: 

kx  < xk 

 

for any value of k that corresponds to a zero of u1 and u2 . 

 

 From a result that was obtained in the preceding paragraph, one knows that u2 has at least one 

zero between x1 and x2, between x2 and x3, etc. It remains to be proved that u2 has at least one zero 

between a and x1. If one has: 

u1 (a) = 1 = 0 

 

then one will be certain that u2 has at least one zero between a and x1 from the results that were 

just mentioned. 

 Hence, suppose that 1  0. If u2 has no zero between a and x1 then since u2 (a)  0, Picone’s 

formula will say that between those limits: 
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1

2 1 1 2 2
1

1 2

x

a

K u K u
u

u u

   
−  

  
= 

1 1 1
2

2 2 1 2 2 2
1 2 1 1 2 1 2 2

2

( )
( ) ( )

x x x

a a a

u u u u
G G u dx K K u dx K dx

u

 −
− + − +   . 

 

 At least one of the first two integrals on the right-hand side is > 0 and  0. 

 The bracket on the left-hand side is = 0 for the upper limit since u1 is annulled, and it is > 0 for 

the lower limit by virtue of the hypothesis: 

 

1 1

1

( )K a 




  2 2

2

( )K a 




. 

 

Hence, the left-hand side is  0. The right-hand side is certainly > 0. That is a contradiction, and 

the theorem is then proved. 

 

 Second comparison theorem: 

 

 Under the same hypotheses, if u1 (b)  0, and u2 (b)  0 then: 

 

1 1

1

( ) ( )

( )

K b u b

u b


 > 2 2

2

( ) ( )

( )

K b u b

u b


, 

 

provided that the solutions u1 of (1) and u2 of (2) have the same number of zeroes between a and 

b. (That restriction is meaningful because u2 can have more zeroes than u1 between a and b.) 

 

 1. First, suppose that u1 and u2 have no zeroes in (ab). One can then appeal to Picone’s identity 

between the limits a and b. The right-hand side is positive. If one does not have: 

 

1 1

1

( ) ( )

( )

K b u b

u b


 > 2 2

2

( ) ( )

( )

K b u b

u b


 

 

then the left-hand side will be negative or zero, from the hypotheses that were made. 

 

 2. Suppose that u1 and u2 has n zeroes between a and b, and let xn be the last of those zeroes, 

which is certainly a zero of u1 (first comparison theorem). One can apply Picone’s formula between 

xn and b. The right-hand side is > 0. The bracket on the left is zero at the lower limit, so in order to 

avoid any contradiction, one must have that the inequality to be proved is true. 

 

 Here are some consequences of the comparison theorems: Let the system be: 
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(3)  

( ) 0,

( ) ,

( ) ,

d
K u G u

dx

u a

u a





 − =

=

 =

 

 

in which K, G, ,   depend upon the parameter  : 

 

| | | | +  > 0 . 

 

 Suppose that  varies in an interval 1 2 (in which one can have 1 = −  or 2 = + ), and 

K and G are continuous functions of x and . The solution u to that system and its derivative u  

will be continuous functions of x and . 

 

 1. The zeroes of u will also be continuous functions of , except perhaps the ones that are 

found at one extremity of the interval ab or the other. That is basically nothing but the classical 

theorem on the continuity of implicit functions since u and u  are never both zero. It is true that 

we are not assured of the existence of the derivative du / d, but one can easily carry out the proof 

without making use of the derivative (10). 

 

 2. Suppose that  increases from 1 to 2, K and G decrease or remain constant for each value 

of x. In order to avoid the exceptional case that was pointed out above, suppose that K and G are 

not both independent of  for any value of , even in a subset of the interval ab, and that if G is 

independent of  in such an interval then they must not be identically zero. Finally, suppose that  

either identically zero or that it does not vanish anywhere in 1 2, and that /K    decreases or 

remains constant for each value of  in the latter case. 

 

 One will then deduce from the comparison theorems that the zeroes of u (x) must be decreasing 

and that, on the other hand, 
( ) ( )

( )

K b u b

u b


 must be decreasing, while the number of zeroes between 

a and b will remain constant. 

 To fix ideas, in this study, it is good to define some zeroes of functions of , K, and G to be 

outside of the interval ab, which does not change anything in the nature of the solutions in the 

interval ab. In order to do that, one takes a number b  > b. 

 For x > b , one chooses K = 1. K will vary linearly between b and b  from K (b) up to the value 

1. K is then a function that is always positive in (a, + ). It will never increase as  increases. 

 Similarly, G is taken to be equal to – 1 from b  to +  and to vary linearly between b and b  

from G (b) up to – 1. 

 Under those conditions, the equation will reduce to: 

 

 
 (10) See, for example, Osgood, Funktionentheorie, Chapter II, section 4.  
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2

2

d u
u

dx
+  = 0 

 

for x > b , and its fundamental solutions are sin x and cos x. 

 The solution u to the proposed system will then be oscillatory, and it will have an infinitude of 

zeroes for x > b . Those zeroes will be continuous functions of  as  varies. 

 One has seen that if (11): 

max

max

G

K

−
  

2 2

2( )

k

b a



−
 

 

for a certain value of  then since the solution to the system is a solution to the differential equation 

of that system, it will have at least k zeroes in ab. Hence, if one adds the following hypothesis to 

the previous ones: when  varies from 1 to 2 : 

 

2

max
lim

max

G

K=

−
 = +  , 

 

then one will see that if  is taken to be sufficiently close to 2 then the solution will have as many 

zeroes as one desires in (ab). 

 In what follows, we shall suppose that this condition is satisfied. 

 

 

 15. Sturm’s oscillation theorems. – Therefore, vary  from 1 to 2 . 

 If  starts from 1 (or a value that is arbitrarily close to 1 if 1 2 is an open interval) then 

the solution u will have a number m of zeroes between a and b, while the extremities a, b are 

excluded. If  increases up to 2 then that number must increase indefinitely. Thus, for a certain 

value m of , the solution u will acquire a new zero at b, which is a zero that will enter into ab for 

 > m . A new zero will present itself at b for a value m+1 > m of , and so on. We will then have 

a sequence of values m, m+1, … that has 2 for its limit point. If  is between m and m+1 then 

the solution will have m + 1 zeroes between a and b. It will then have m + 2 of them when  is 

between m+1 and m+2, … 

 Moreover, when  varies between i and i+1, the quantity 
( ) ( )

( )

K b u b

u b


, which is always 

decreasing, must necessarily decrease from +  to –  since u (b) = 0 at i and i+1 without one 

also having ( )u b  = 0. 

 Having said that, one can look for the values of  (viz., characteristic numbers) for which the 

system: 

 
 (11) Do not forget that here max G and max K denote the maxima of G and K when x varies from a to b, and  is 

fixed. Those maxima obviously depend upon . 
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(1)   

( ) 0,

( ) ( ) 0,

( ) ( ) 0,

d
K u Gu

dx

u a u a

u b u b

 

 

 − =

 − =

 + =

 

 

is compatible.  and    are functions of  such that: either   0 or  does not vanish anywhere, 

and ( ) /K b    is a decreasing function of . 

 The answer is provided by the following theorem: 

 

 Theorem: 

 

 The preceding system has an infinitude of characteristic numbers in the interval 1 2. The 

first of those numbers can be between 1 and m , but one can certainly assert that there is exactly 

one of them in each interval (m m+1), (m+1 m+2), … 

 

 Indeed, if  increases in one such interval i i+1, while u is the solution (12) to the system, in 

the absence of the second condition, then 
( ) ( )

( )

K b u b

u b


 will decrease from +   to − , and by 

hypothesis, ( ) /K b    decreases, so − ( ) /K b    will increase. It is then clear that one will have 

equality for a certain value of  between i and i+1, which is unique moreover, i.e., ( )u b   

( )u b+ = 0. That will suffice to prove that in each interval i i+1, there is a unique value of  for 

which the proposed system is compatible. 

 So far, one has supposed that   0. If one has   0 then the second condition will reduce to 

( )u b   0, and the m, m+1, … will be precisely the characteristic values. 

 More generally, we shall call m+1 the characteristic value between m and m+1, m+2, the 

characteristic values between m+1 and m+2, …, and if there is a characteristic value between 1 

and m then we shall call it m . It is clear that we can prove, by an argument that is completely 

analogous to the one that we just gave, that we cannot have more than one characteristic value in 

the interval 1 m. 

 We let um, um+1, um+2, … denote the solutions to the system for the characteristic values m, 

m+1, …, resp. (We say the solutions by neglecting the arbitrary constant factor that multiplies 

them.) 

 Those functions differ by the number of their zeroes between a and b. 

 If um exists then it will have exactly m zeroes between a and b, um+1 will have m + 1, … 

 That result constitutes one of Sturm’s oscillation theorems. One can then assert: 

 

 

 
 (12) From the nature of the system, one obviously sees that if a solution exists then one can deduce an infinitude of 

them by multiplying it by an arbitrary constant.   
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 Theorem: 

 

 If one is given an arbitrary whole number k > m then there will exist one and only one value of 

 for which the proposed system admits a solution that has exactly k zeroes between a and b. 

 

 The theorem above is incomplete in the sense that it does not say that m exists, and it does not 

tell us how to determine m. 

 One can go further with more precise hypotheses about G and K. 

 Add the following hypothesis to the ones that were made before: 

 

1

min
lim

min

G

K =

− 
 
 

 = −  , 

 

in which min K is necessarily > 0, by hypothesis. Hence, min G will be > 0 in the vicinity of 1. 

Hence, G will be positive for any value of x in ab for values of  that are close to 1. One knows 

that the equation will then be non-oscillatory. Thus, for  close to 1, no solution to the equation, 

and a fortiori, the system (1), will have more than one zero in ab. Therefore, one will have m = 0 

or 1. 

 More precisely: In order to see that, we compare the differential equation of the system with 

the following one: 

(2) [(min ) ] (min )
d

K u G u
dx

 −  = 0  

or 
2

2

d u
s u

dx
−  = 0 , 

with 

s = 
min

min

G

K
 > 0 . 

 

 That equation admits the fundamental solutions: 

 
( )s x a

e
−

    and    
( )s x a

e
− −

. 

 

 Hence, choose a number 0 between m and 2, and look for the solution u2 to (2) that verifies: 

 

(3)  0 0 2 0 2(min ) ( ) ( ) (min ) ( ) ( )K u a K u a    − = 0 , 

 

in which we have denoted the value of K for  = 0 by K0 . One finds that: 
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u2 = 
( )0 0 0(min ) ( ) (min ) ( )

2

s x aK s K s
e

s

    −+
 

 
( )0 0 0(min ) ( ) (min ) ( )

2

s x aK s K s
e

s

    − −−
+ . 

 

 Compare a u2 that verifies (2) and (3) with a function u that verifies the equation and first 

conditions in the system (1). 

 Upon passing from (1) to (2), one has reduced the coefficients of the equation and replaced the 

first condition in (1) with (3) in such a fashion that ( ) /K a    is diminished. [Indeed, the system 

(1) is studied here for  that are found between 1 and m, and since 0 is > m, the value of 

( ) /K a   , which is a decreasing function of , is greater between 1 and m than it is for 0.] 

One can then conclude from Sturm’s comparison theorems that 
( ) ( )

( )

K b u b

u b


 is greater than 

2

2

(min ) ( )

( )

K u b

u b


, which is the value that the preceding expression takes for the system (2), (3). 

 Now, upon appealing to the value of u2, we will easily find that: 

 

1

2

2

(min ) ( )
lim

( )

K u b

u b=


= +  . 

 Hence, we have, a fortiori: 

1

( ) ( )
lim

( )

K b u b

u b =


= +  . 

 

 We reach the conclusion that under our hypotheses, 
( ) ( )

( )

K b u b

u b


 will decrease from +  to −   

as  varies from 1 to m. We then conclude that the system (1) has one and only one characteristic 

number m in the interval 1 m . 

 Moreover, if one observes that for very large s, the preceding expression u2 describes the sign 

of  (0) for any value of x in (ab) or the sign of 0( )   if  (0) = 0 then one can conclude that 

m is equal to zero, and not to 1. 

 

 In summary: Imagine the system: 

 

(1)   

( ) 0,

( ) ( ) 0,

( ) ( ) 0,

d
K u Gu

dx

u a u a

u b u b

 

 

 − =

 − =

 + =
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in which K, G, ,  , ,    are functions of  (and the first two are also functions of x) that satisfy 

the conditions that were stated before. If the conditions: 

 

2

max
lim

max

G

K=

− 
 
 

 = +  , 

   
1

max
lim

max

G

K=

− 
 
 

 = −  

 

are fulfilled, in addition, then the system (1) will have an infinitude of characteristic numbers 

between 1 and 2, namely, 0, 1, …, which are arranged in order of increasing magnitude. The 

characteristic functions u0, u1, …, which are solutions to the system (1) for  = 0, 1, …, resp., 

have a number of zeroes between a and b that is equal to their index exactly. 

 

 Let us indicate another class of conditions that leads to analogous conclusions. 

 Suppose that the interval 1 2 is closed on the left (i.e., 1 belongs to that interval), and 

suppose that: 

1
(min )G =

 0 , 
1

( ) =
  0 ,  

1
( )  =

  0 

 

at the point 1. Hence, one has m = 0, and the characteristic value 0 will exist without fail. 

 Indeed, imagine the auxiliary system: 

 

(4)  ( ) ( )
1 1

1 1

min min 0,

( ) ( ) ( ) ( ) 0.

d
K u G u

dx

u a u a

 

 

= =

  − =
  

  −  =

 

 

The notation ( )
1

min K
=

 is easy to explain. If x varies in ab then K (x, ) will have a minimum 

(min )K  that is a function of . It is the value of that function at 1 that we shall denote by 

( )
1

min .K
=

 

 Let v2 (x) be a solution to that system, and let v1 (x) be a solution to the system: 

 

(5)  

1 1

( ) 0,

( ) ( ) ( ) ( ) 0,

d
K u Gu

dx

u a u a 


 − =


   −  =

 

 

in which one has set  = 1 in K and G. 

 The comparison theorem says that: If v2 has no zero in ab then v1 will not have any, a fortiori. 

If one can show that: 
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2

2

(min ) ( )

( )

K v b

v b


 0 , 

 

moreover, then the comparison theorem will give: 

 

1

1

(min ) ( )

( )

K v b

v b


 0 . 

 One can now integrate (4). 

 Exclude the case in which ( )
1

minG
=

 = 0, for the moment, and set: 

s = 1

1

(min )

(min )

G

K





=

=

 

 

(s is > 0 and  0). The solution v2 is given by: 

 

v2 (x) = 1
1

( )
( )cosh ( ) sinh ( )s x a s x a

s




 
 − + −  , 

 

as a calculation that was already done before will show. 

 Obviously, if 
1

 
=

 
 

 
  0 then one can suppose that   0,    0 with no loss of generality 

since  and   enter into only the conditions (4) and (5), so v2 (x) is   0. Since  and   cannot 

be annulled simultaneously, one concludes that v2 (x) > 0 in ab. Therefore, if v1 (x) is the solution 

to the differential equation and the first condition of the system (1) for  = 1 then it will have no 

zero in ab. Hence, m = 0. 

 A very simple calculation will show, in turn, that: 

 

  2

2

(min ) ( )

( )

K v b

v b


> 0  and  0 . 

 One then concludes that: 

1

1

( ) ( )

( )

K b v b

v b


 > 0 . 

 

If  then increases from 1 to the first value m that makes the solutions v (x) of the differential 

equation and the first condition of the system (1) take on a zero at b then 
( ) ( )

( )

K b v b

v b


 will decrease 

from a positive value that is  0 down to − , and since − ( ) /K b    increases from a negative 

value under the same conditions, there will be a characteristic number 0 of the system (1) between 

1 and m . 
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 In the special case in which ( )
1

minG
=

 = 0, s is = 0, so the solution v2 will be a linear function 

of x – a. One again sees that v2 (x) > 0 in ab, and that 2

2

(min ) ( )

( )

K v b

v b


 is positive or zero. The same 

argument as before shows that m = 0 and 0 exists. However, 0 can coincide with 1 in a special 

case. That can happen only if 1( )  = 0, 1( )   = 0, G (x, 1)  0, as one sees by some very 

simple calculations. Finally, if  is zero then m will be precisely the value m that we are studying. 

 

 In summary, by means of the conditions: 

 

1
[min ]G =

 0 , 
1

( ) =
  0 ,  

1
( )  =

  0 , 

 

there is an infinitude of characteristic numbers 0, 1, … of the system (1) in (1 2) that 

correspond to characteristic functions u0, u1, …, resp., that have a number of zeroes between a 

and b that is equal to their index, and 0 can be equal to 1 only if one has: 

 

G (x, 1)  0 ,      1( )  = 0,      1( )   = 0 . 

 

 We said that Sturm gave some special cases of the oscillation theorem. In particular, he stated 

it for the system: 

( ) ( ) 0,

( ) ( ) 0,

( ) ( ) 0,

d
k u g l u

dx

u a u a

u b u b



 

 

 + − =

 − =

 + =

 

 

in which the conditions that are imposed upon ,  , ,    are the same as before, while k, g, l 

are, in addition, functions of x that are independent of  and satisfy the inequalities k > 0, g > 0 in 

(ab). 

 k remains invariable here, while G = l –  g will diminish if  increases from 1 = −  to 2 = 

+ . 

 The boundary conditions are fulfilled. For example, − max G = min ( g – l) will increase 

indefinitely if  increases up to + . Hence, there is an infinitude of increasing characteristic 

values 0, 1, … for that system that tends to + , and the corresponding characteristic values 

have 0, 1, 2, 3, … zeroes in (ab). Sturm added the restrictions that l  0 (13),   0,   0, at 

least, for  = 0, which were imposed by the physical problem that he addressed. Those conditions, 

which are superfluous for the oscillation theorem, nonetheless permit one to specify the positions 

 
 (13) More precisely, Sturm’s conditions are that l  0, and that ,  , ,   are constants  0 that are independent 

of . 
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of the characteristic numbers by asserting, for example, that they are all positive. Indeed, if one 

considers the interval 1 = 0, 2 = + , which is closed at 1, then the second class of conditions 

that is given for the oscillation theorem will be valid for that interval because G = l is  0 for  = 

0, and its minimum will be  0. Hence, 0, 1, … are positive. 

 Let us return to a problem that we spoke of before, which related to the equation: 

 

(6)  ( ) ( )
d

k u g l u
dx

 + −  = 0 , 

 

in which one always supposes that k > 0, l  0, but g changes sign. [The case in which g is 

constantly < 0 is not essentially distinct from the one in which g > 0, so it would suffice to change 

 into –  in order to reduce one to the other. Finally, we leave aside the case in which g keeps the 

same sign but might be annulled.] 

 In order to obtain some precise results under the new hypotheses, one must suppose that: 

 

 0 ,   0 . 

 

 We shall show how one can include that particular case in the preceding results. 

 If one divides the two sides of the proposed equation by |  | = v then it will become: 

 

(7)  (sgn )
d k l

u g u
dx v v


   

 − −   
   

 = 0 , sgn  = 
1 if 0,

1 if 0.





+ 


− 
 

 

That is an equation of the usual type with: 

 

K = 
k

v
,  G = 

l

v
 − g (sgn ) , 

 

if v increases, while K and G decrease. 

 Let us see whether ( ) /K a    and ( ) /K b    diminish when v increases. 

 In order for that to be true, it is necessary that 
1 ( )k a

v






 and 

1 ( )k b

v






 must diminish. 

 If we then impose the condition that ( ) /K a    and ( ) /K b   will diminish when v 

increases (and for that to be true, it would suffice that /  , /   should diminish) then due to 

the facts that  0,   0, we will then see that ( ) /K a    and ( ) /K b    will also 

diminish. 

 Previously, we supposed that: 

2

max
lim

max

G

K=

− 
 
 

 = +  . 
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 Here we shall use the interval 1 = 0, 2 = + . If v increases then since the dominant term in 

G is – g (sgn ), we will see that G will change sign when v sufficiently large. Hence, max G will 

be > 0, and we will have, in turn: 

max
lim

maxv

G

K=+

− 
 
 

 = −  , 

 

since max K = max k / v is > 0 and goes to zero when v goes to infinity. The result that was found 

seems to contradict the condition that was recalled above. Meanwhile, it is easy to see that the 

essential part of the preceding condition for the oscillation theorem is again found to be verified 

here. Indeed, consider the function – g (sgn ). One can certainly find an interval a b   in ab in 

which it remains constantly negative [because – g (sgn ) changes sign in ab]. Its maximum in 

a b   is then < 0. 

 We confine ourselves to the interval a b   for the variable x. The preceding condition is found 

to be fulfilled: We will indeed have: 

max
lim

maxv

G

K=+

− 
 
 

 = +  . 

 

 If we recall that this condition permits us to assert that the solution v1 to the system: 

 

( )
d

K u Gu
dx

 −  = 0 , ( ) ( )u a u a  −  = 0 

 

can have (if  is sufficiently close to 2) a number of zeroes that is arbitrarily large in the interval 

ab then we will see that the same conclusions will apply to the interval a b   here, and therefore to 

the interval ab, a fortiori. 

 The same observation can be made for the second type of indicated conditions: 

 

1
(min )G =

 0 ,    0 ,      0 . 

 

 Granted, v = 0 does not belong to the interval of variation that we have assumed for v since the 

function K in (7) will go to infinity when v goes to zero. 

 However, one should recall the initial form (6) for which v = 0 did not create a singularity. 

 Upon operating as before, we can compare the equation (6), in which v = 0, and the condition 

(0) ( ) (0) ( )u a u a  −  = 0, to a system that is analogous to the one that we called (4), for which 

v2 will be the solution: We deduce, with no difficulty, that v2 (x) > 0, 2

2

(min ) ( )

( )

K v b

v b


  0, and we 

pass from that to the solution v1 (x) to (6). 

 Thus: 

 

 1. If  > 0 then one will the infinite series of positive characteristic values 0, 1, … between 

0 and + . 
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 2. If  < 0 then upon setting v = −  in equation (6), one will find some new characteristic 

values that are different from the preceding ones since G = l –  g will change value when one 

changes  into – . 

 

 We can denote the positive characteristic values by 
0+ , 

1+ , … (they are increasing and go to 

+ ) and the negative characteristic values by 
0 − , 

1 − , … (they are decreasing and go to − ). 

 
0+  and 

0 −  are generally > 0 in one case and < 0 in the other, and neither of them can be = 0 

except in the exceptional case that was pointed out above where G reduces to zero for  = 1, 

1( )   = 0, 1( )    = 0, i.e., for l  0 here, with 
(0) 0

(0) 0





 =

 =
 (14). 

 By definition, we are again dealing with an oscillation theorem in the case in which g changes 

sign. It differs from the theorem that related to g when its sign was invariable only by the fact that 

for each integer k, there are two characteristic values 
k+  and 

k −  that are positive and negative, 

resp., and will give a solution to the system (8) that is provided with k zeroes in the interval ab. 

 

 

 16. Study of the characteristic values from standpoint of reality and their order of 

multiplicity. – In the preceding sections, we studied real characteristic values. We now demand to 

know if there exist imaginary ones. 

 In order to do that, it is indispensable for us to suppose that the coefficients of the differential 

system under study are defined for imaginary values of . 

 We shall study only the Sturm systems from that viewpoint: 

 

(1)  ( ) ( )
d

k u g l u
dx

 + −  = 0 , 

 

(2)  ( ) ( )u a u a  −  = 0 ,  | | | | +  > 0, 

 

(3)  ( ) ( )u b u b  +  = 0 ,  | | | | +  > 0, 

 

in which we suppose that k, g, l are functions of only x, and ,  , ,    are independent of . 

 Let v1 (x, ) be the solution to (1) that satisfies the conditions u (a) = , ( )u a =  . The two 

functions v1 (x, ) and 1 ( , )v x   are continuous in (x, ), and are not only analytic, but entire in . 

 In order for the system to be compatible, it is necessary and sufficient that v1 (x, ) should 

verify the condition (3). That will give the following equation for determining the characteristic 

numbers: 

 
 (14) The complete discussion of this case, which is slightly exceptional, presents no serious difficulty when one uses 

the method that is employed here, as I pointed out in the Bulletin of the American Mathematical Society, October 

1914.  
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(4)  1 1( , ) ( , )v b v b    +  = 0 , 

 

whose left-hand side is an entire function of . It is indeed the same characteristic equation that 

gave us formula (1) in section 11 when we appeal to the fundamental system u1 = v1, u2 = the 

solution to (1) such that u2 (a) = , 2 ( )u a  =   , in which  and    are constants, and     −  = 

1. 

 First of all, do there exist imaginary characteristic numbers? 

 Before we answer that, let us establish an indispensable formula. 

 Let  ,   be two distinct characteristic numbers, while u1 and u2 are the corresponding 

characteristic functions [viz., solutions to the system (1), (2), (3)]. From a formula of Sturm 

[formula (1), § 13]: 

1 2 1 2 1 2[ ( )] ( )
b

b

a
a

k u u u u g u u dx    − + − = 0 . 

 

However, u1 and u2 verify the conditions (2) and (3), so what remains is: 

 

1 2( )
b

a
g u u dx  −  = 0 , 

and since     : 

1 2

b

a
g u u dx  = 0 . 

 

That formula is valid for k, g, l that are complex functions of the real variable x, and ,  , ,    

are arbitrary complex constants. 

 However, suppose that the coefficients ,  , ,    are real, as well as the functions k, g, l. 

 If  is real then the left-hand side of (4) is obviously a real function. Its roots are then pair-wise 

conjugate. The imaginary root   =  + v i, v  0 corresponds to the root =  − v i, and   will 

be   . 

 If   corresponds to the characteristic function u1 = s + i t, and   corresponds to the conjugate 

imaginary function u2 = s − i t. 

 When one applies the preceding relation to those two functions u1 and u2, one will have: 

 

(5)  2 2( )
b

a
g s t dx+  = 0 , 

 

in which s and t are real functions of x that are not both identically zero since u1 is not that way, so 

if one supposes that g > 0 or equal to zero in exceptional cases then one will reach a contradiction. 

Therefore, there are no imaginary characteristic values in this case. That is a result due to Poisson, 

and all that we did is to reproduce his proof. 

 We now examine the second case that was mentioned before in the preceding sections in which 

k > 0, l  0,   0,      0, and g changes sign. The preceding theorem is still true then: All 

of the characteristic values are real. 
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 Indeed, let =  + v i be an imaginary characteristic, which is assumed to exist. Let u1 = s + 

i t be the corresponding function. If one writes out that u1 verifies equation (1) then, upon 

separating the real part and the imaginary part on the left-hand side, one will have: 

 

( ) ( )
d

k s g l s g t
dx

  + − −  = 0 , 

( ) ( )
d

k t g s g l t
dx

  + + −  = 0 . 

 

 One concludes from that, upon multiplying the first one by s and the second one by t, adding 

them and integrating: 

 

(6) 2 2 2 2 2 2[ ( )] ( ) ( ) ( )
b b b

b

a
a a a

k s s t t k s t dx g s t dx l s t dx   + − + + + − +    = 0 . 

 

It is clear that the second and fourth term are not positive, and the third one is zero, from (5). 

 By means of the hypotheses   0,      0, one will see that from the condition (2), s and 

s  have the same sign at a, as well as t, t . s and s , as well as t and t , have opposite signs at b. 

 Therefore: 

[ ( )]b

ak s s t t +  

is a quantity that is  0. 

 On the other hand: 

− 2 2( )
b

a
k s t dx +  

 

is indeed < 0 and is not zero since otherwise one would need to have that s  and t , and as a result 

1u  would have to be constantly zero in ab, and therefore that u1 would have to be a non-zero 

constant (in order to not be identically zero). That would demand that: 

 

( +  i) g – l = 0 , 

i.e.,  g  0, and since   0, g  0. 

 That would be incompatible with the hypothesis that g changes sign. The left-hand side of (6) 

will therefore indeed be negative, which is the contradiction that proves the stated result. 

 

 Two questions are posed in the study of characteristic values: 

 

 1. What is the index of the system for one such value? – One immediately sees that in the 

present case, the index always has the value 1 since otherwise any solution to (1) would have to 

verify (2). 

 

 2. What is the order of the multiplicity of a root of the characteristic equation? – First, let us 

establish a preliminary formula. 
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 If u is a characteristic function then one will have: 

 

2
b

a
g u dx   0 

 

(except in the exceptional case where g does not change sign, l  0,   =   = 0. We shall exclude 

that case; see the note towards the end of section 15). If g > 0 then the proof is immediate. 

 If g changes sign then let  be the characteristic number that corresponds to the characteristic 

function u. Upon multiplying the differential equation that u must satisfy by u and integrating, one 

will find the formula: 

2
b

a
g u dx  = − 2 2[ ]

b b
b

a
a a

k uu k u dx l u dx + +  . 

 

 The first term on the right is positive or zero, by virtue of the relations: 

 

  0 ,       0 . 

 

Since the second term can be zero only in the exceptional case that we have excluded, we will see 

that 2
b

a
g u dx  is positive (not zero). Our inequality is then proved since the characteristic number 

 can be = 0 only in the exceptional case. 

 Now that that result has been established, it is easy to see that any root of the characteristic 

equation will be simple, except for the exceptional case that was pointed out. 

 Now imagine the entire function in formula (4): 

 

F () = 1 1( , ) ( , )v b v b    + . 

 

Let 1 be any one of its zeroes, so the corresponding characteristic function will be v1 (x, 1). Now, 

calculate 1( )F  . 

 If one combines equation (1), which is verified by v1 (x, ), with the one that is verified by 

1 1( , )v x   and eliminates l then one will infer that: 

 

1 1 1 1 1 1 1 1 1 1{ [ ( , ) ( , ) ( , ) ( , )]} ( ) ( , ) ( , )
b

b

a
a

k v x v x v x v x g v x v x dx        − + −   = 0 . 

 

v1 (x, ) and v1 (x, 1) verify the condition (2) that relates to the point a, and v1 (x, 1) verifies the 

condition (3) that relates to b, so that equality will reduce to: 

 

1 1 1( , ) ( , )
b

a
g v x v x dx   = 1 1 1 1

1

( ) ( , ) ( , ) ( , )k b v b v b v b    

  

  +

 −
. 
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All of that supposes that    0. [If    = 0 then a similar calculation would give the same final 

result.] 

 Now: 

1 1( , ) ( , )v b v b    +  = F () = F () – F (1) , 

 

since F (1) = 0. Therefore, if  goes to 1 then the right-hand side will go to: 

 

1 1
1

( ) ( , )
( )

k b v b
F










. 

 

v1 (x, ) will go to v1 (x, 1) uniformly for any x in ab. Hence, the left-hand side will go to: 

 

2

1 1[ ( , )]
b

a
g v x dx , 

which is  0. 

 One then concludes that 1( )F    0. Any root of the characteristic equation will then be a 

simple root, except in the exceptional case that was pointed out before. 

 

_____________ 

 



CHAPTER IV 

 

CHARACTERISTIC FUNCTIONS AND THEIR ZEROES IN 

SOME MORE GENERAL CASES (15) 
__________ 

 

 

 17. The reality of characteristic numbers. – In this chapter, we shall treat only two typical 

problems that go beyond the Sturm problems that were studied in the preceding chapter. 

Meanwhile, we shall begin with some more general considerations. 

 Imagine a homogeneous system: 

 

(1)  1( ) ( ) 0,

( ) 0 ( 1,2, , ),

n

n n

i

d u du
L u l l g l u

dx dx

U u i n

= + + + − =

= =

 

 

in which  is a parameter, and whose functions g, l, l1, l2, …, ln are independent, as well as the 

constant coefficients that enter into the Ui (u). 

 The adjoint system will be written: 

 

(2)  1( ) ( ) 0,

( ) 0 ( 1,2, , ),

n

n n

i

d v dv
M v m m g m v

dx dx

V v i n

= + + + − =

= =

 

 

and one easily sees that m, m1, …, mn, and the coefficients of the Vi are independent of . 

 Those two systems have the same index for any , so they will have the same characteristic 

numbers. 

 Let u1, u2, … be the characteristic functions of the first system, while v1, v2, … are the 

corresponding characteristic functions of the second one. 

 For two different characteristic numbers (for example, 1, 2), I say that: 

 

1 2

b

d
g u v dx  = 0 . 

 We shall utilize Green’s formula: 

 
 (15) MASON, Trans. Amer. Math. Soc. 7 (1906), pp. 337. – BIRKHOFF, Trans. Amer. Math. Soc. 10 (1909), pp. 

259. – KLEIN, Math. Ann. 18 (1881), pp. 419. – BÔCHER, Bull. Amer. Math. Soc. 4 (1898), pp. 307 and 365; ibid., 

t. 5, pp. 22. – RICHARDSON, Trans. Amer. Math. Soc. 13 (1912), pp. 22. – Math. Ann. 73 (1912), pp. 289. The main 

result in section 1 of that article is incorrect. 

 For higher-order equations, one can consult: 

 LIOUVILLE, J. de Math. 3 (1838), pp. 561. – DAVIDOGLU, Ann. de l’E. N. S. 17 (1900), pp. 359; ibid., 22 (1905), 

pp. 539. – BIRKHOFF, Trans. Amer. Math. Soc. 9 (1908), pp. 373. Ann. Math. 12 (1911), pp. 103. – HAUPT, 

Dissertation, Würzburg, 1911. 
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[ ( ) ( )]
b

d
v L u u M v dx−  = U1 V2n + … + U2n V1 . 

 

Let L0 (u) and M0 (v) be what L (u) and M (v), resp., become for  = 0. One has: 

 

[ ( ) ( )]
b

d
v L u u M v dx−  = 

0 0[ ( ) ( )]
b

d
v L u u M v dx− . 

 

 For u = u1, v = v2, the right-hand side of Green’s formula is zero [from the boundary conditions 

in (1) and (2)], and the left-hand side reduces to: 

 

0 0 1 1 0 2[ ( ) ( )]
b

d
v L u u M v dx−  = 

2 1 1 2( )
b

d
g u v dx − . 

 One then has: 

1 2

b

d
g u v dx = 0 . 

 

 If, in particular, the system is its own adjoint then v1, v2, … will be identical to u1, u2, …, and 

the formula will reduce to: 

1 2

b

d
g u u dx = 0 . 

 

 That is the case for the Sturm systems that were studied in the preceding chapter, and for which 

the preceding formula was established directly. 

 One then deduces from this that for a real differential system that is its own adjoint: 

 

 1. If g > 0 then all of the characteristic numbers will be real because any characteristic value 

1 =  + v i (v  0) will correspond to 2 =  − v i, which is likewise characteristic, and if u1 = s + 

t i then one will have u2 = s − t i, so: 

2 2( )
b

d
g s t dx+ = 0 , 

which is impossible if g > 0. 

 

 2. If l  0 then g will change sign due to certain conditions that are imposed upon the 

coefficients of the Ui (u), and the characteristic numbers will again be real. 

 

 Those restrictions should not be surprising here if one imagines that for the second-order Sturm 

system, with the conditions: 

(3)  
( ) ( ) 0,

( ) ( ) 0,

u a u a

u b u b

 

 

 − =


 + =
 

 

one must impose the conditions that    0,      0 in order to prove the same result. 
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 In order to not complicate the notations, we shall confine ourselves to a second-order system 

that it is own adjoint. We take it in the form: 

 

(4)  
1 1 1 1

2 2 2 2

( ) 0,

( ) ( ) ( ) ( ) 0,

( ) ( ) ( ) ( ) 0.

d du
k g l u

dx dx

u a u a u b u b

u a u a u b u b



   

   

  
+ − = 

 
   + + + =

    + + + =



 

 

 In Chapter II, we saw that this system will be its own adjoint under the condition that: 

 

1 2 2 1( ) ( )k a     −  = 1 2 2 1( ) ( )k b     − . 

 

 One can generally reduce the two conditions in (4) to the form: 

 

(5)  
1 1

2 2

( ) ( ) ( ) ,

( ) ( ) ( ).

u a u b u b

u a u b u b

 

 

 = +


  = +
 

 

The only exception is when 1 2 2 1    − , and as a result, 1 2 2 1    − , are zero. 

 However, it is then clear that the conditions in (4) can be reduced to the Sturm form (3) by first 

eliminating the 1, 1  , 2, 2  , and then the 1, 1  , 2, 2  . 

 One does not exclude the new case by taking the conditions (4) in the form (5) then. Hence, 

the condition for the system to be its own adjoint is: 

 

(6)  k (b) = 1 2 2 1( ) ( )k a     − . 

 

 In order to prove that the characteristic numbers are real, we deduce that: 

 

2 2 2 2[ ( )] ( ) ( )
b b

b

a
a a

k s s t t k s t dx l s t dx   + − + − +   = 0 , 

 

as we did for the Sturm systems in section 16, which is an equality that will imply a contradiction 

when we have: 

( ) ( ) ( ) ( ) ( ) ( )k a s a s a k b s b s b −   0 , 

( ) ( ) ( ) ( ) ( ) ( )k a t a t a k b t b t b −   0 . 

 

 However, s and t satisfy the conditions (5) at a and b that are verified by any characteristic 

function, so if one is to reach the preceding contradiction then it would suffice that every real 

function u should verify: 
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1 1 2 2( )[ ( ) ( )] [ ( ) ( )] ( ) ( ) ( )k a u b u b u b u b k b u b u b       + + −   0 , 

 

which reduces to: 
2 2

1 2 1 2 1 2( ) 2 ( ) ( )] ( )u b u b u b u b         + +   0 , 

because of formula (6). 

 By virtue of the inequality 1 2 2 1    −  > 0, which is a consequence of (6), one easily finds 

that the condition for that quadratic form in u (b), ( )u b  to be defined and positive is that 1, 2, 

1,   2   should have the same sign (some of which can be zero): That is a case whose importance 

was first pointed out by Mason. 

 Hence, if those Mason conditions are verified then one will arrive at a contradiction by 

supposing the existence of imaginary characteristic numbers, which we would like to prove. 

 A very important case is that of a second-order system for which the conditions are: 

 

( ) ( ),

( ) ( ).

u a u b

u a u b

=

 =
 

 

The condition for it to be its own adjoint is that: 

 

k (a) = k (b) . 

 

 [If we define k to be a periodic function of period b – a then k (x) will be continuous and 

positive for any value of x. If we take g and l to be periodic in a similar way, which might introduce 

a finite number of discontinuities for those two functions in a finite interval of variation for x (but 

we know that this is no inconvenience), then the conditions that we just wrote out will determine 

periodic solutions of period b – a for the differential equation. This parenthetic comment shows 

how one might associate what we shall discuss with the theory of periodic solutions.] 

 Mason’s conditions are fulfilled. Hence, it is not only when g > 0, but also when l  0 that g 

will change sign, so the characteristic numbers will all be real. We will see in the next section that 

there are always an infinitude of them. 

 In particular, if one takes: 

(7)      

2

2
0,

(0) (2 ) ,

(0) (2 )

d u
u

dx

u u

u u








+ =


=

  =



 

 

then all of the characteristic numbers will be real. In order to have them, one takes two fundamental 

solutions of the equation that are analytic in  : 
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y1 = 
1

sin x 


, y2 = cos x  . 

 

The characteristic numbers are found very easily by a direct method. They are: 

 

0,    12,    22,    32,   … 

 

 If one forms the characteristic equation then one will see that, except for zero, all of the 

characteristic values will have double roots. 

 One also sees that they have index 2. 

 That example shows that in the case that we are now considering, neither the multiplicities nor 

the indices of the characteristic numbers will be necessarily equal to 1. 

 

 

 18. Systems with periodic conditions. – Let us return to a more-detailed study of the system: 

 

(1)  

( ) 0,

( ) ( ) 0,

( ) ( ) 0,

d
K u G u

dx

u a u b

u a u b

 − =

− =

 − =

 

 

which has periodic conditions, and in which we suppose that: 

 

K (a) = K (b) 

in order for it to be its own adjoint. 

 K and G are functions of x and  that are decreasing in . We suppose, in addition, that those 

two functions satisfy the conditions that we imposed upon them in Chapter III when we applied 

the Sturm method to the system: 

( ) 0,

( ) ( ) 0,

( ) ( ) 0.

d
K u G u

dx

u a u a

u b u b

 

 

 − =

 − =

   + =

 

 

 Take two principal solutions y1, y2 to the equation: 

 

y1 (a, ) = 1 , y2 (a, ) = 0 , 

1y (a, ) = 0 , 2y  (a, ) = 1 . 

  Abel’s formula gives: 

1 2 2 1y y y y −  = 
( )

( )

K a

K b
 , 
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and in particular, for x = b : 

 

(2)  1 2 2 1( ) ( ) ( ) ( )y b y b y b y b −  = 
( )

( )

K a

K b
 = 1 

for any . 

 The characteristic equation here is: 

 

1 2

1 1

1 ( , ) ( , )

( , ) 1 ( , )

y b y b

y b y b

 

 

− −

 − −
 = 0 . 

 It will reduce to: 

F () = y1 (b, ) + 2 ( , )y b   − 2 = 0 , 

by virtue of the identity (2). 

 Does it have an infinitude of real roots? Sturm’s methods permit us to answer that question in 

the affirmative. 

 Indeed, consider the auxiliary system: 

 

(3)  ( ) 0, ( ) 0, ( ) 0.
d

K u Gu u a u b
dx

 − = = =  

 

It is a Sturm system. There are then an infinitude of characteristic numbers 0, 1, 2, … that 

correspond to characteristic functions that have 0, 1, 2, …, resp., zeroes in (a, b). 

 F () is not zero for those values i, in general, Indeed, for those values, any solution of 

( )
d

K u
dx

  – G u = 0 that is zero at a will also be zero at b, so: 

y2 (b, i) = 0 , 

and as a result, (2) will give: 

y1 (b, i) 2y  (b, i) = 1 , 

and one will have: 

F (i) = 
2

1 2( , ) ( , )i iy b y b  −
 

. 

 

 Hence, F (i) will be  0 or  0 according to whether y1 (b, i) and 2y  (b, i) are > 0 or < 0, 

resp. 

 Let us confine ourselves to 2y  (b, i). 

 If 2y  (b, i) < 0 then: 

F (i)  0 , 

 

so 2y  (b, i) is not = 0 because y2 (b, i) = 0. 

 If 2y  (b, i) > 0 then: 
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F (i)  0 . 

 

Those inequalities give the sign of F () at the points 0, 1, 2, … 

 
Figure 1. 

 

 Indeed, 0 corresponds to y2 (x, 0), which is zero at a, b and > 0 between a and b since 2 ( )y a  

= 1. 

 Therefore: 

F (0)  0 . 

 For 1 (see Fig. 1): 

2 1( , )y b   > 0 ,  F (1)  0 . 

 

One can continue in that way, and one will see that the equation F () = 0 will have an infinitude 

of roots that are separated by the numbers: 

0, 1, … 

 

 One can be even more precise. Any solution of (1) that is not identically zero must have an 

even number of zeroes in the interval a  x < b, which is closed at a and open at b, due to the facts 

that u (a) = u (b) and ( )u a = ( )u b . 

 It will then result that 0, 1, 2, … cannot be roots of F () = 0. Indeed, y2 (x, 0) has just one 

zero in (a  x < b), which is a. From Sturm’s first theorem, which was proved in section 12, all of 

the other solutions to the differential equation will also have exactly one zero in the interval. 

Therefore, they cannot verify the periodicity conditions at a and b, and the same argument will be 

true for 2, 4, … Thus: 

F (0) < 0 , F (2) < 0 , … 

 

 Later on, we will go on to consider Sturm’s second auxiliary system: 

 

(4)  

( ) 0,

( ) 0,

( ) 0.

d
K u G u

dx

u a

u b

 − =

 =

 =

 

a b 

y2 

 = 0  = 1 

 
a b 

y2 

F () 
0 

< 0 

1 

 0 

 

2 

< 0 
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There is an infinitude of characteristic numbers 0, 1, 2, … that correspond to characteristic 

functions that have 0, 1, 2, … zeroes in (a, b). 

 One reasons with the i as one did with the i and one will find that F () has a sign at those 

points that one can fix and which is given by the first model below (Fig. 2). 

 One can relate i and i to each other. 

 
Figure 2. 

 

 First of all, 0 < 0 , because for  = 0 , the differential equation will have a solution that is 

everywhere  0 in (a, b), whereas for  = 0, it will have one that is zero at a and b, and 

consequently, for every value   0, any solution will have at least one zero in (a, b). 

 One likewise sees that 1 < 1, because for   1, every solution will have at least two zeroes 

in (a, b), whereas for  = 1, there will be a solution that has only one zero in the interval. 

 One can continue in that way and show that i < i . 

 However, i can be > i−1 or < i−1 . We then draw small segments along the -axis that join 

the points 1, 0 ; 2, 1 ; … Those segments will never overlap with each other. They can reduce 

to points. That is the case for the system (7) in the preceding section. 

 One then sees that the system (1) admits some characteristic numbers that are infinite in 

number and are distributed: 

 

 1. Between 0 and the first segment. 

 2. Between the consecutive segments. 

 

 Those characteristic numbers correspond to characteristic functions that have numbers of 

zeroes in (a  x < b) that are easy to determine. 

 We shall now make those results more precise. 

 The conclusions that we will arrive at as a result will be true in any case. However, in order to 

simplify their presentation, we shall confine ourselves to supposing that K (x) is independent of , 

and G (x, ) is analytic in . Hence, the left-hand side F () of the characteristic equation will be 

a function that is analytic between 1 and 2, so we can speak of the order of multiplicity of its 

roots. Furthermore, we have already supposed that G is a decreasing function of , and here we 

shall suppose that G /  < 0, while excluding the case in which G /  can become zero. 

F () 


1


0
 

 

 

  

  

F () 


2 


1
 

 
  

0 

 

  

 

1 

 

<  

2 

 

  

0 

  

 


3 


2
 

 
<  
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 Those conditions still leave enough freedom for the results that we will establish to apply to 

the important systems in which G = l –  g, g > 0. 

 The characteristic equation is, as one knows: 

 

F () = y1 (b, ) + 2 ( , )y b   − 2 = 0 . 

 

 Consider the sign of ( )F   for various roots of F () = 0 : 

 

F   = 1 2[ ( , )] [ ( , )]y b y b 
 

 
+

 
. 

 

 In order to calculate the derivatives above, we remark that if we consider, more generally, the 

solution u to the differential equation for which u (a) = , ( )u a  =  , in which  and   are two 

arbitrary constants, then u /  will verify the equation: 

 

d u u
K G

dx  

     − 
   

 

 = 
G

u





. 

 

It is an inhomogeneous linear equation in u / , and the equation with no right-hand side is the 

proposed equation that admits the solutions y1 (x, ), y2 (x, ). The method of variation of constants 

gives 
u






 and 

u



 
 

 
, while taking into account the fact that: 

a

u



 
  

 = 0 , 

a

u



    
  

 

= 0 , 

 

since the values of u and u  at a will always be  and  , resp., for any , and one will have: 

 

u






 = 1 2 2 1( , ) ( , ) ( , ) ( , )( , )

( , )
( )

x

a

y y x y y xG
u d

K a

      
  



−

 , 

 

 
u



 
 

 
= 1 2 2 1( , ) ( , ) ( , ) ( , )( , )

( , )
( )

x

a

y y x y y xG
u d

K a

      
  



 −

 . 

 

 Hence, for x = b and u = y1 or y2, one will have: 
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1 ( , )y b 






 = 1

1 2 2 1

( , )( , )
[ ( , ) ( , ) ( , ) ( , )]

( )

b

a

yG
y y x y y x d

K a

  
      




−

 , 

 

 2[ ( , )]y b 






 = 2

1 2 2 1

( , )( , )
[ ( , ) ( , ) ( , ) ( , )]

( )

b

a

yG
y y x y y x d

K a

  
      




 −

 , 

so: 

 

( )F    

= 2 2

2 1 2 1 1 2 1 2

( , )

{ ( , ) ( , ) [ ( , ) ( , )] ( , ) ( , ) ( , ) ( , )}
( )

b

a

G

y b y y b y b y y y b y d
K a

 

             



  + − − . 

 

 In order to determine the sign of the quadratic form in y1 (, ), y2 (, ) that is between 

brackets, imagine its discriminant. From Abel’s formula, one reduces it to: 

 
2

2 1( , ) ( , )
1

2

y b y b  + 
− 

 
 . 

 

 We shall study the sign of ( )F   for those values of  that annul F (). Now, for those values: 

 

1 2( , ) ( , )y b y b +  = 2 , 

 

so the preceding determinant will be zero. The form is the square of: 

 

2 1 1( ) ( ) ( ) ( )by b y y b y   −
 

 , 

 

so it will be positive or negative according to whether y2 (b) and – 1 ( )y b  are positive or negative, 

resp. [It is implicit that the values of  that enter into y2 (b), 1 ( )y b  are the roots of F () = 0.] 

 Let us first overlook the case in which that expression is identically zero, and since it is a 

solution to the differential equation, that amounts to saying that one does not have both y2 (b) = 0 

and 1 ( )y b  = 0. We shall return to that case later. 

 The quadratic form will not be identically zero upon integrating it since K (a) > 0, 
( , )G  






 

< 0. ( )F   will then be found to have the opposite sign to the form. 

 Therefore, F () cannot have more than one zero in any interval of variation for  in which 

2 ( )y b   0 because the form, and as a result ( )F  , will keep the same sign at any point of that 

interval where F () = 0. The same remark will be true for an interval in which 1 ( )y b  remains 0.  

 We then remember that the i are the roots of the equation: 
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y2 (b, ) = 0 , 

and the i are the roots of: 

1 ( , )y b   = 0 . 

 

 Neither 1y nor y2 are zero between two consecutive segments (i i−1) (Fig. 2), so F () can 

have only one zero between two such segments. Moreover, the distribution of the signs of F () at 

the extremities proves that F () is annulled at least once between two consecutive segments, so 

( )F   will admit exactly one zero between two consecutive segments (i i−1). Furthermore, there 

are no zeroes along the segments themselves since there is only one in (0, 1), for example, (see 

Fig. 2), and it is between 0 and 2 . (It is easy to infer the same conclusion for all cases in the 

figure.) 

 For the same reason, there is one and only zero to F () between 0 and the segment (1, 0). 

There are none between 1 and 0. 

 Those results fix the positions of the characteristic numbers 0, 1, … (Fig. 3). 

 
Figure 3. 

 

 Let us move on to the characteristic functions u0, u1, … 

 One knows that for  = 0, the solution to the auxiliary system (3) is annulled at only a and b. 

Thus, for   0, any solution to the equation can have only one zero in (a, b). Now, any solution 

to (1) has an even number of zeroes. Hence, u0 will not be annulled in (a, b). 

 Some entirely-analogous arguments will prove that u1 and u2 have two zeroes, u3 and u4 have 

four, etc., which we summarize in the table: 

 

Characteristic functions…. u0 u1 u2 u3 u4 … 

Number of zeroes in ab…. 0 2 2 4 4 … 

 

 Those results constitute an oscillation theorem for the present case. 

 Once more, the only exceptional cases that we have to consider are the ones for which some 

of the values 12, 12, … coincide [since we know the sign of F ()  0 precisely for (01), 

(23), …], and for which the  coincide with those values. That is exactly the case that we 

overlooked in the preceding discussion, in which y2 (b) = 1 ( )y b  = 0 for a root of the equation 

( )F   = 0. 

 That exceptional case essentially presents itself in the particular example that was treated 

before [see (7), § 16]. One must then study ( )F   for those values of  for which F () = ( )F   

= 0. 

0 

0 

10 

1 

21 

2 

……..

…. 

…….

. 
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 Now, a calculation that is analogous to the one that was made for ( )F   will prove that for 

those values: 

( )F   = 2 1
1 2

( )

( ) ( )
2 ( ) ( )

( )

b

a

G x
y x y x

y x y x dx
K a


 



   −   
 , 

 

so upon replacing 2y






 and 1y






 with their values that were found before: 

 

( )F   = −  
2

1 2 2 1

( ) ( )

2 ( ) ( ) ( ) ( )
( ) ( )

b x

a a

G x G

y x y y x y d dx
K a K a



    

 

  −  , 

 

and since the bracket that appears in the double integral is not identically zero (because y1 and y2 

are linearly independent), one will have: 

( )F   < 0 . 

 

 Those multiple roots of F () are exactly double roots then, and F will have a maximum at all 

of those points. It will then follow that the double roots will replace two simple roots that would 

otherwise be found on two sides of the segment that reduces to that point (16). 

 Finally, one very easily finds that the index of the system (1) for those values is 2 since the 

periodic problem has two linearly-independent solutions, y1 and y2. The double root then 

corresponds to two characteristic functions that have the numbers of zeroes that are indicated by 

the oscillation theorem. 

 Our results generalize in various directions. We can confine ourselves to supposing that G is 

decreasing without supposing that G possesses a derivative with respect to . The methods that we 

must employ are more delicate, but the results will be the same. We can also consider non-periodic 

conditions for systems that are always adjoint to themselves. However, the oscillation theorems 

will be less precise then. One can give the number of zeroes of characteristic functions in (a, b) 

only up to one unit. Finally, there are extensions to equations of order higher than two, which are 

very incomplete up to now. 

 

 

 
 (16) If one has, for example, that 1 and 2 coincide, and  is a characteristic value that coincides with 1 and 2 

then one can demand to know if there are any other characteristic numbers 1 and 2 between (12) and the preceding 

segment (01) that are different from the  that is in (12), as well as ones between (12) and (23). Now, that 

would be impossible since F () is a maximum for the double root with the values 1 and 2 that are supposed to exist, 

so ( )F   must have the signs – and +. 

 However, since F () < 0 for (01) and for (12), one will see that its derivative ( )F   at 1 can only be positive. 

The same argument applies to 2. The contradiction shows that 1 and 2 do not exist since they will coincide with 1 

and 2, resp. 
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 19. Second extension of the Sturm problem. Klein’s oscillation theorem. – In Chapter III, 

we studied systems of the form: 

( ) 0,

( ) ( ) 0,

( ) ( ) 0,

d
K u Gu

dx

u a u a

u b u b

 

 

 − =

 − =

 + =

 

 

in which K contains only the variable x, while G depends upon x and a parameter, and , ,  , 

   are constants that are independent of . 

 In what follows, instead of one interval (a, b) of variation for x, we shall imagine an arbitrary 

number of such intervals: 

(a0 b0) ; (a1 b1) ; …; (an bn) 

 

that follow each other along the x-axis in order of increasing indices and have no point in common 

pairwise (not even the extremities). In addition, we shall consider n + 1 parameters 0, 1, …, n 

that the function G depends upon, such that each parameter varies in an interval that it is associated 

with. For each segment ai bi, we consider conditions such as: 

 

0 0 0 0( ) ( )u a u a  −  = 0 , 

0 0 0 0( ) ( )u b u b  +  = 0 , 

1 1 1 1( ) ( )u a u a  −  = 0 , 

1 1 1 1( ) ( )u b u b  +  = 0 , 

………………………… 

 

 The problem that we pose is the following one: 

 Determine 0, 1, …, n in such a way that the differential equation: 

 

( )
d

K u Gu
dx

 −  = 0  

 

will admit n + 1 solutions u0, u1, …, un such that: 

 

u0 verifies the conditions that relate to (a0 b0) 

u1                                                (a1 b1) 

……………………………………………………. 

un                                                (an bn) 

 

 For n = 0, it is clear that one has the Sturm problem that was studied in Chapter III. 
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 Klein was led to that problem by studying the work of Lamé on the distribution of heat in an 

ellipsoid. The only case that we shall consider, along with Klein, is the one in which G has the 

particular form: 

 

(1)  G = l (x) – g (x) 2

0 1 2[ ]n

nx x x   + + + +  

 

(0, 1, …, n vary from –  to + ). 

 We suppose, to simplify, that g (x) > 0 in the interval (ai, bi). In reality, it suffices to suppose 

that g is not annulled in any of those intervals, but its sign can be different in two different intervals. 

K, l, and g are supposed to be continuous in each of the closed intervals (ai, bi). We suppose nothing 

about the other intervals beyond those ones (17). 

 Of course, one can consider only one interval for x and n + 1 differential systems by changing 

the independent variable, but the stated result would not be as simple as it was in the form that that 

was given to the problem above. Under those conditions, one has the oscillation theorem that is 

due to Klein: 

 

 There exists an infinitude of real systems (0, 1, …, n) for which the desired functions u0, u1, 

…, un, resp., will exist without being identically zero. 

 Those systems of characteristic numbers are distinguished from each other by the number of 

zeroes that the characteristic functions u0, u1, …, un possess in (a0 b0), …, (an bn), respectively. If 

one is given n + 1 numbers in advance that are positive or zero: 

 

m0, m1, …, mn 

 

then one can find one and only one system 0, 1, …, n for which the functions u0, u1, …, un have 

m0, m1, …, mn zeroes, respectively, in each of the intervals (a0 b0), (a1 b1), …, (an bn), resp. 

 

 For n = 0, one will simply have the Sturm theorem that was established in Chapter III. We shall 

then proceed by recurrence. 

 Suppose that the theorem is true up to index n – 1. Prove that it is true for the index n. 

 One can write: 

 

(2)  G (x) = 1

0 1 1[ ( ) ( )] ( )[ ]n n

n nl x x g x g x x x    −

−− − + + +  . 

 

 Give an arbitrary, but fixed, value to n . There will then exist one and only one system of 

values of 0, 1, …, n−1 for which the characteristic functions have: 

 

 m0 m1 … mn−1 zeroes 

in (a0 b0), (a1 b1), … (an−1 bn−1),  

respectively. 

 
 (17) And the coefficients in the Lamé equation essentially have singularities between the intervals (ai bi). 
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 It remains to be seen whether n can be chosen in such a way that un will exist that verify the 

(n + 1) conditions. 

 The preceding 0, 1, …, n−1 are functions of n since they will be determined when n is 

known. Upon expressing them as functions of n in G, G will become a function of x and n : 

( , )nG x  . 

 We shall show that G (x, n) satisfies the conditions that are required by Sturm’s oscillation 

theorem. 

 In order to do that, consider the difference G (x, n) − ( , )nG x  . It is necessarily annulled for 

a value of x in each interval (a0 b0), (a1 b1), …, (an−1 bn−1) because if that difference is not annulled 

in (a0 b0), for example, then it would have a constant sign; for example, one would have G (x, n) 

 ( , )nG x  . However, for the value n  of the parameter, the solution u0 to the equation that verifies 

the boundary conditions that relate to a0 b0 will oscillate more rapidly than the solution for the 

value n (Sturm’s comparison theorem), and that would contradict the fact that u0 always has a 

number of zeroes that is equal to m0 for any n . 

 There is therefore at least: 

one point x0 in (a0 b0), 

one point x1 in (a1 b1), 

……………………….……. 

one point xn−1 in (an−1 bn−1) 

 

such that the preceding difference is zero. 

 Let 0 , 1 ,  …, 1n −
  denote the values of the first n parameters that correspond to 0 . One will 

have: 

 

(3) G (x, n) − ( , )nG x   = 
0 0 1 1( )[( ) ( ) ( ) ]n

n ng x x x       − + − + + −  . 

 

 Since g (x) was supposed to be  0 in all of (ai bi), the polynomial in brackets will admits x0, 

x1, …, xn for its roots. Hence: 

 

(4)  
0 0 1 1( ) ( ) n

n nx x       − + − + + −  = 0 1 1( ) ( ) ( ) ( )n n nx x x x x x  −
 − − − − . 

 

 One deduces two consequences from that: 

 

 1. The continuity of G (x, n) with respect to n : That is because x0, x1, …, xn−1 remain in the 

intervals (a0 b0), (a1 b1), …, (an−1 bn−1), so they are finite. Thus, the difference G (x, n) − ( , )nG x   

will go to zero with n n  − . Moreover, it is obvious from the formula that gives that difference 

that ( , )nG x   will go to G (x, n) uniformly for any x in an, bn when n  goes to n . G (x, n) will 

then be continuous with respect to the two independent variables x, n. 
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 2. If n increases then G (x, n) will decrease for all x in (an bn). That is because one sees from 

(3) and (4) that G (x, n) − ( , )nG x   has the same sign as n n  − , so G (x, n) will be a decreasing 

function, and since the product (x − x0) (x − x1) … (x − xn−1) can never be zero when x is in (an bn), 

the intervals (a0 b0), …, (an−1 bn−1) will have no point in common with (an bn) (
18), and one will 

also see from (3) and (4) that: 

lim ( , )
n

nG x



=+

 = −  , 

lim ( , )
n

nG x



=− 

 = +  . 

 

 The consequences 1 and 2 suffice to show that the conditions for the validity of Sturm’s 

oscillation theorem are fulfilled here. For each number mn, there will then exist one and only one 

real value of n for which the proposed equation will admit an (n + 1)th solution un that satisfies 

the boundary conditions relative to (an bn) and has exactly mn zeroes in that interval. 

 Klein’s theorem is thus proved for any value of n. 

 

 Let us point out, in passing, a physical application of the theorem: 

 In order to interpret Sturm’s oscillation theorem in a particular case, one can say that if a 

heterogeneous cord is given then one can make it execute simple vibrations for which the cord 

presents a number of nodes that is fixed in advance. 

 One can interpret Klein’s oscillation theorem by saying that if a homogeneous membrane is 

given that is bounded by two arcs of ellipses, along with two homofocal hyperbolic axes, then one 

can make it vibrate in such a way that it will present a number m0 of nodal homofocal ellipses, and 

a number m1 of nodal homofocal hyperbolas, when m0 and m1 were established in advance. 

  In the foregoing, we found an infinitude of real systems of characteristic values. Do there exist 

imaginary characteristic values for the , i.e., systems of imaginary values  for which the equation 

will admit n + 1 solutions that satisfy the boundary conditions that related to the n + 1 intervals 

,i ia b , respectively? We shall see that there are none. 

 To simplify the writing, we confine ourselves to the typical case of three parameters. 

 Let 0 1 2( , , )     , 0 1 2( , , )      be two systems of characteristic values that correspond to the 

characteristic functions: 

u1 v1 w1 , u2 v2 w2 , 

respectively. One has: 

2

1 0 1 2 1( ) [ ( ) ]
d

K u g x x l u
dx

     + + + −  = 0 , 

2

2 0 1 2 2( ) [ ( ) ]
d

K u g x x l u
dx

     + + + −  = 0 . 

 

 
 (18) This theorem will still be true when the intervals ai, bi touch each other or when g (x) vanishes without changing 

sign at some isolated points. However, one must then appeal to a form of Sturm’s oscillation theorem that is a bit more 

refined than the one that we obtained. 
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 If one multiplies the two equations by u2 and u1, respectively, subtracts corresponding sides, 

and integrates from a0 to b0 then one will have: 

 
0

0

2

0 0 1 1 2 2 1 2[ ( ) ( ) ]
b

a
g x x u u dx          − + − + − = 0 , 

 

due to the conditions that u1 and u2 verify at a0 and b0 . Similarly: 

 
1

1

2

0 0 1 1 2 2 1 2[ ( ) ( ) ]
b

a
g x x v v dx          − + − + −  = 0 , 

2

2

2

0 0 1 1 2 2 1 2[ ( ) ( ) ]
b

a
g x x w w dx          − + − + −  = 0 . 

 

 If the two systems 0 1 2( , , )     , 0 1 2( , , )      are distinct, with the three differences i i  −  not all 

being zero, then the determinant of the preceding linear equations in i i  −  will be zero. That 

determinant will reduce to the simple formula: 

 

0 1 2

0 1 2

2

0 0

2

0 1 2 1 1

2

2 2

1

( ) ( ) ( ) 1

1

b b b

a a a

x x

g x g x g x x x

x x

    1 0 2 0 1 0 2 0 1 0 2 0 0 1 2( ) ( ) ( ) ( ) ( ) ( )u x u x v x v x w x w x dx dx dx  = 0 . 

 

That formula generalizes the formula: 

1 2

b

a
g u u dx  = 0 

 

that is due to Poisson and was encountered in section 16. It shows that the characteristic values are 

all real for g > 0 because if 0 , 1 , 2  are imaginary and characteristic then they will correspond 

to 0 , 1 , 2  that are characteristic and imaginary and conjugate to the preceding values. The 

functions u1, v1, w1 will be conjugate to u2, v2, w2, resp. The differential element of the triple integral 

above will always be > 0, and not  0, since the intervals (a0 b0), (a1 b1), (a2 b2) for x0, x1, x2, resp., 

will have no point in common. One will then have a contradiction to the supposition that imaginary 

characteristic values exist. 

 Klein’s theorem then gives all of the characteristic values. 

 The preceding remark suggests an extension of Klein’s theorem. We shall present it briefly for 

three intervals (a0 b0), (a1 b1), (a2 b2), but it is general in scope. 

 Take a function G of the form: 

 

G = l – (0 g0 + 1 g1 + 2 g2) . 

 

 Can one determine the  in such a way that Sturm’s three systems of conditions in relation to 

the three intervals are satisfied? 
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 First of all, one can demand to know whether there exist imaginary characteristic values for . 

By an argument that is very analogous to the preceding one, one will be led to consider the 

expression: 

0 1 2

0 1 2

0 0 1 0 2 0

0 1 1 1 2 1

0 2 1 2 2 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

b b b

a a a

g x g x g x

g x g x g x

g x g x g x

    1 0 2 0 1 0 2 0 1 0 2 0 0 1 2( ) ( ) ( ) ( ) ( ) ( )u x u x v x v x w x w x dx dx dx  = 0 , 

 

and one can complete the proof as before if the determinant that enters into the triple integral does 

not change sign. One will then be certain that all characteristic values are real. 

 The study of that question for real values of  was made recently: Richardson extended Klein’s 

oscillation theorem to that case by some methods that are different from ours and in which we 

suppose essentially that the difference under study G (x, n) – ( , )nG x   is a polynomial in x, up to 

a factor g (x). 

 

___________ 

 



CHAPTER V 

 

GREEN’S FUNCTIONS AND THEIR APPLICATIONS (19) 
 

__________ 

 

 

 20. Existence and fundamental properties of Green functions. – As one knows, the Green 

function that solves the Dirichlet problem is defined by saying that: It is a harmonic function in 

the domain considered that is annulled on its boundary and becomes infinite at a point A in the 

domain like 21/ nr −  if n  3 (n is the dimension of the space, and r is the distance from a variable 

point M in that domain to the point A), and like log 1/r when n = 2. 

 One can seek to give an analogous definition for a one-dimensional space, and one will be led 

to imagine the equation: 
2

2

d u

dx
 = 0 , 

 

and a solution to that equation that is annulled at a and b and becomes infinite at a point  in (a, 

b). That would be impossible since no such solution exists. One then seeks those of the properties 

of the Green function that are capable of being extended to ordinary linear differential equations. 

 From that standpoint, we shall appeal to the analogy between linear systems of algebraic 

equations and differential systems. 

 Imagine the system: 

 

(1)      ai1 u1 + … + ain un = bi  (i = 1, 2, …, n) 

 

whose determinant | aik |  0. One can demand to have a formula for solving it that makes the role 

of the bi explicit. In order to present it simply, one can consider the n systems that are obtained by 

successively replacing b1, b2, …, bn with 1 in (1), while all of the other coefficients bi are replaced 

with zero, and one will have a system such as: 

 

 
 (19) BIRKHOFF, Trans. Amer. Math. Soc. 9 (1908), pp. 377. 

 BOUNITZKY, J. de. Math. pure et appl. (6) 5 (1909), pp. 65. 

 BÔCHER, Ann. Math. 13 (1911), pp. 71. 

 For the relationship between differential systems and integral equations (but only for the case in which the system 

is its own adjoint), see: 

 HILBERT, Gött. Nachr. (1904), Zweite Mitteilung. 

 For the method of successive approximations in some particular cases, see: 

 PICARD, Traité d’Analyse, t. III, Chapter 6. 

 STEKLOFF, Ann. Fac. Sci. Toulouse 3 (101), pp. 281. 

 KNESER, Math. Ann. 58 (1903), 109-116. 
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(2)     

11 1 12 2 1

21 1 22 2 2

1 1 2 2

1,

0,

...............................................

0,

n n

n n

n n nn n

a u a u a u

a u a u a u

a u a u a u

+ + + =


+ + + =


 + + + =

 

 

whose solutions we shall call 1u , 2u , …, nu . 

 We will then have n systems that do not depend upon b1, …, bn : 

 

1 2

1 2

( ) ( ) ( )

1 2

, , ,

, , ,

, , .

n

n

n n n

n

u u u

u u u

u u u

  

  
 

 

We will see, in turn, that the solution to the system (1) is: 

 

(3)  

( )

1 1 1 2 1 1

( )

2 1 2 2 2 2

( )

1 2

,

,

..............................................

.

n

n

n

n

n

n n n n n

u b u b u b u

u b u b u b u

u b u b u b u

  = + + +


 = + + +


  = + + +

 

 

 An expression that is analogous to the solution of the Poisson equation: 

 

 (u) = r (x, y) 

 

and vanishes on the boundary can be provided with the aid of the two-dimensional Green function 

G (x, y ; , ), which gives the solution as an explicit function of r (x, y); it is: 

 

u (x, y) = ( , ) ( , ; , )r G x y d d      . 

 

 One seeks to define the Green function for differential equations with boundary conditions in 

such a way that it will permit one to express the solutions of inhomogeneous differential systems 

in such a way that it will exhibit the right-hand sides of those systems. 

 Take the system: 

(4)  
( ) ( ) ,

( ) 0 ( 1,2, , ).i

L u r x

U u i n

=

= =
 

 

L (u) is a linear expression of order n. 

 We suppose that the system: 
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(5)  
( ) 0,

( ) 0i

L u

U u

=

=
 

 

is incompatible. (4) will then have exactly one solution. We shall specify it as a function of r (x). 

 Since the system (5) has no solution that is not  0, take a point  in a, b and try to determine 

a function u that verifies the conditions on the system (5) that has continuous derivatives u , u , 

…, ( 2)nu −  in a, b, and one derivative ( 1)nu −  that is continuous, except at , where its discontinuity 

will be: 

( 1) ( 1)( 0) ( 0)n nu u − −+ − −  = 
1

( )nl 
, 

in which ln () is the coefficient of 
n

n

d u

dx
 in L(u), and finally satisfies L (u) = 0 at every point in (a, 

b), except at the point . I say that this solution is unique, and I call it G (x, ). 

 Indeed, let y1, …, yn be fundamental system of integrals of L (u) = 0. We shall try to determine 

c1, c2, …, cn in such a way that: 

u1 (x) = c1 y1 + … + cn yn 

 

represents G (x, ) in terms of (a, ) and d1, d2, …, dn in such a way that: 

 

u2 (x) = d1 y1 + … + dn yn 

 

represents G (x, ) in terms of (, b). 

 

 1. In order for G (x, ) to have the desired discontinuity at , it is necessary that: 

 

1 1 1 1

1 1 1 1

( 2) ( 2) ( 2) ( 2)

1 1 1 1

( 1) ( 1) ( 1) ( 1)

1 1 1 1

( ) ( ) ( ) ( ) 0 ,

( ) ( ) ( ) ( ) 0 ,

( ) ( ) ( ) ( ) 0 ,

( ) ( ) ( ) ( )

n n n n

n n n n

n n n n

n n n n

n n n n

n n n n

c y c y d y d y

c y c y d y d y

c y c y d y d y

c y c y d y d y

   

   

   

   

− − − −

− − − −

+ + − − − =

   + + − − − =

+ + − − − =

+ + − − −
1

.
( )nl 

= −

 

 

 If one takes zi = di – ci, for the time being, then one will have the following equations for 

determining the zi : 
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(6)  

1 1

1 1

( 1) ( 1)

1 1

( ) ( ) 0 ,

( ) ( ) 0 ,

1
( ) ( ) .

( )

n n

n n

n n

n n

n

z y z y

z y z y

z y z y
l

 

 

 


− −

+ + =
  + + =



 + + =


 

 

 The determinant of those equations is the Wronskian of y1 (), …, yn (). It is non-zero, by 

hypothesis, so the zi are then determined uniquely. 

 

 2. Let us write out what it means to say that the boundary conditions (5) are verified by G. 

Let: 

 Ui (u)  = ( 1) ( 1) ( 1) ( 1)[ ( ) ( )] [ ( ) ( )]n n n n

i i i iu a u a u b u b   − − − −+ + + + +  

 = Ai (u) + Bi (u) . 

Now: 

Ai (G) = Ai (u1) , 

Bi (G) = Bi (u2) . 

Therefore, the equations are: 

  Ai (u1) + Bi (u2) = 0  (i = 1, 2, …, n). 

 Upon making it explicit that: 

 

Ai (u1) = c1 Ai (y1) + c2 Ai (y2) + … + cn Ai (yn) , 

Bi (u2) = d1 Bi (y1) + d2 Bi (y2) + … + dn Bi (yn) , 

and remarking that: 

ci = di – zi , 

one will have: 

 

(7) 
1 1 1 1 2 2( ) ( ) ( ) ( ) ( )

( 1,2, , ).

i n i n i i n i nd U y d U y z A y z A y z A y

i n

+ + = + + +

=
 

 

 Those equations determine the di when one knows the zi since the system (5) is incompatible, 

so the determinant: 

1 1 1

2 1 1

1

( ) ( )

( ) ( )

( ) ( )

n

n

n n n

U y U y

U y U y

U y U y

  0 . 

The ci are also determined then. 

 We must then determine a function G (x, ) that satisfies our desiderata. It is unique. 

 From the formulas that give the zi, and then the di and the ci, it is obvious that those quantities 

are continuous in x, and as a result, G (x, ) will be continuous in (x, ). 

 The same thing will be true of the derivatives: 
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G

x




, …, 

2

2

n

n

G

x

−

−




 

 

 We shall now show that the solution to the semi-homogeneous system (4) is very simple with 

the aid of G (x, ) and that the unique solution u (x) to that system is given by the formula: 

 

(8)  u (x) = ( ) ( , )
b

a
r G x d   , 

 

just as it is for the Poisson problem. Indeed, due to the continuity that was just mentioned, we will 

have: 

  ( )u x  = ( ) ( , )
b

a
r G x d

x
  



 , 

…………………………………., 

( 2) ( )nu x−  = 
2

2
( ) ( , )

n
b

na
r G x d

x
  

−

−



 , 

 

for the (n – 2) first derivatives of the function u that was defined by (8). Since 
( 1) ( , )nG x −

 is 

discontinuous for x = , we write: 

 

( 2) ( )nu x−  = 
2 2

2 2
( ) ( , ) ( ) ( , )

n n
x b

n na x
r G x d r G x d

x x
     

− −

− −

 
+

   . 

 

Each of those integrals can be differentiated, and we will have: 

 

( 2) ( )nu x−
 = 

2 2

2 2
( ) ( , ) ( ) ( , )

n n
x b

n na x
r G x d r G x d

x x
     

− −

− −

 
+

    

+ 

2

2

2

2

( ) ( , ) (for =   0),

( ) ( , ) (for =   0).

n

n

n

n

r G x x
x

r G x x
x

  

  

−

−

−

−

  
−  

  


 
− +   

 

 

 Since the derivative 
( 2)

2
( , )

n

n
G x

x


−

−




 is continuous for x = , one will further have: 

 

( 1) ( )nu x−
 = 

1

1
( ) ( , )

n
b

na
r G x d

x
  

−

−



 . 
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 The same calculation is performed with ( ) ( )nu x . However, the correction term (which was 

zero for ( 1)nu − ) will have the value: 

 
1 1

1 1

0 0

( , ) ( , )
( ) ( )

n n

n n

x x

G x G x
r r

x x
 

 
 

− −

− −

= + = −

    
−   

    
 = 

( )

( )n

r x

l x
 

here. Hence: 

( ) ( )nu x  = 
( )

( ) ( , )
( )

n
b

na
n

r x
r G x d

x l x
  


+

 . 

 

 It results from this calculation that the expression: 

 

u (x) = ( ) ( , )
b

a
r G x d    

verifies the equation: 

L (u) = r . 

 

 If one defines Ui (u) then one will see that: 

 

Ui (u) = ( ) ( )
b

i
a

r U G d  , 

and since Ui (G) = 0, one will have: 

Ui (u) = 0 . 

 

 The expression ( ) ( , )
b

a
r G x d    then represents the unique solution to the system (4). 

 In the preceding, we just regarded G as no longer a function of x, but a function of . We now 

demand to know, in general, what is the nature of G when it is regarded as a function  ? We find 

the following remarkable result here: 

 When regarded as function of , G (x, ) is the Green function of the adjoint system to (5), in 

which  is, of course, the independent variable of that system, and  is the singular point of the 

Green function. 

 In order to prove that theorem, one lets H (x, ) denote the Green function of the adjoint system, 

in which x is the independent variables, as in (5). Consider two arbitrary points, 1, 2, of a, b. In 

order to be more specific, we suppose that 1 < 2 . We then apply Green’s formula by setting: 

 

u = G (x, 1) , 

v = H (x, 2) , 

 

and upon first taking a, 1 −  to be the limit of integration 1 + , 2 − , and finally 2 + , b. The 

integrals in those three formulas reduce to zero, since L (G) = 0, M (H) = 0. If one adds the three 

formulas then one will get the result: 
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1 2

1 2
[ ( , )] [ ( , )] [ ( , )]b

nP G H P G H P G H   

   

− −

− ++ +  = 0 . 

 

 Due to the boundary conditions that are satisfied by G and H, one easily sees that the two terms 

on the left-hand side that refer to the points a and b will vanish. Finally, upon recalling the explicit 

expression for P (u, v) that was cited in Chapter II, one will see that most of the other terms will 

vanish in the limit  = 0, and what will remain is: 

 

H (1, 2) = G (2, 1) . 

 

 The proof proceeds in the same way when 1 > 2, or when 1 = 2. One has then established 

the identity H (x, ) = G (, x), which proves our theorem. 

 

 One sees that a differential system that it is own adjoint will admit a Green function G (x, ) 

that is symmetric with respect to its two variables: 

 

G (x, ) = G (, x) . 

 

 Conversely, if the Green function of a system is symmetric then the system will coincide with 

its adjoint (20). The symmetry of the Green function characterizes the systems that are identical to 

their own adjoints. 

 To conclude this section, we point out that the Green function of the system (5) likewise 

provides the immediate solution to the system: 

 

(9)     
( ) ( ) ,

( ) ( 1,2, , ),i i

L u r x

U u i n

=

= =
 

 

which has a unique solution, since (5) is incompatible. In order to make that solution explicit as a 

function of r and the i, we shall be guided by what we said about algebraic equations. Take the n 

systems: 

1 1 1

2 2

1

( ) 0, ( ) 0, ( ) 0,

( ) 1, ( ) 0, ( ) 0,

( ) 0, ( ) 1,

( ) 0,

( ) 0, ( ) 0, ( ) 1,

n

n n n

L u L u L u

U u U u U u

U u U u

U u

U u U u U u

−

= = =

= = =

= =

=

= = =

 

 

which are independent of r and the i. Each of them has a unique solution. Let G1 (x), …, Gn (x), 

respectively, denote those solutions. An extremely simple calculation will then show that the 

solution to the system (9) is: 

 
 (20) That is a corollary to the more general theorem that two homogeneous and incompatible differential systems 

are identical if their Green functions are identical. 
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u (x) = 
1 1( , ) ( ) ( ) ( )

b

n n
a

G x r d G x G x    + + +  , 

 

whose analogy with the solution to a system of algebraic equations is obvious. 

 In the preceding considerations, we have supposed that a, b are the limits of the interval in 

which x varies. We can drop that restriction. 

 Indeed, take two arbitrary points a, b in the interval (A, B) of variation for x and suppose that 

the conditions Ui (u) on the systems (4), (5), or (9) relate to those points a, b. We then try to define 

the Green function outside of (a, b) (21). In order to do that, it is good to return to the case in which 

a, b are the extremities in order to see how we can modify the definition of the Green function. 

 Let Ga (x, ) and − Gb (x, ) denote the two functions u1 (x) and u2 (x), resp., that have served 

to define G (x, ). One has: 

 

(10) u (x) = ( ) ( , ) ( ) ( , )
x x

a b
a b

r G x d r G x d     +   

 

as the solution to the system (4) in (a, b). 

 When one puts the solution into that form, it is easy to pass to the case in which a, b are no 

longer the extremities  by abandoning the idea of a Green function in order to adopt the idea of a 

pair of Green functions. 

 One can take Ga (x, ) and Gb (x, ) to be two functions that verify the equation in (A, B) (22): 

 

L (u) = 0 

 

when they are regarded as functions of x and satisfy the conditions: 

 

(11) 
2

2

1

1

( , ) ( , ) 0,

[ ( , ) ( , )] 0,

[ ( , ) ( , )] 0,

1
[ ( , ) ( , )] ,

( )

a b

a b x

n

a b xn

n

a b xn

n

G G

G x G x
x

G x G x
x

G x G x
x l







   

 

 

 


=

−

=−

−

=−

+ =



 + =






 + =
 


 + =
 

 

and 

 

(12) Ai (Gb) = Bi (Ga)  (i = 1, 2, …, n), 

 

in addition. 

 
 (21) It is, above all, when a, b are two points that are interior to the domain of the complex variable x that this 

extension becomes interesting. Of course, the coefficients of L (u) = r are supposed to be analytic.  

 (22) Or in the domain of the complex variable x. 
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 One immediately sees that two such functions exist and are well-determined. The calculations 

that are made for the case in which (a, b) coincides with (A, B) are once more valid, so formula 

(10) is valid entirely. Finally, one sees the method that one would have to follow in order to extend 

the Green function to the case in which the conditions Ui (u) relate to more than two points of (A, 

B). 

 

 

 21. The relationship between the theory of differential systems and that of integral 

equations. – Consider a linear differential system. Here, we shall suppose that we can put it into 

the form: 

(1)     
( ) ( ) ,

( ) ( 1,2, , ),i i

L u g x u r

U u i n

= +

= =
 

such that the system: 

(2)  
( ) 0,

( ) 0i

L u

U u

=

=
 

 

is incompatible. (Later on, we shall say a few words about the possibility of carrying out such an 

operation.) 

 One can then find an integral equation that is equivalent to the system (1), i.e., it has the same 

solutions as that system. Indeed, consider the Green function of the system (2), as well as the 

solutions G1 (x), …, Gn (x) of the n systems that are obtained by replacing one of the conditions 

( )iU u  = 0 in (2) with ( )iU u  = 1 without changing the other. Let u1 be an arbitrary solution of (1), 

and imagine that the system: 

(3)  
1( ) ( ) ,

( ) .i i

L u g x u r

U u 

= +

=
 

 

It has a unique solution because (2) is incompatible, and it is u1. One will then have: 

 

u1 (x) = 1 G1 (x) + … + n Gn (x) + 
1[ ( ) ( ) ( )] ( , )

b

a
g u r G x d    + , 

 

as one saw in section 20. 

 If one regards that equation as the one that determines u1 (x) then when one sets: 

 

f (x) = 1 G1 (x) + 2 G2 (x) + … + n Gn (x) + ( ) ( , )
b

a
r G x d   , 

and 

K (x, ) = g () G (x, ) , 

 

it will be an integral equation that is written: 
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(4)  u (x) = ( ) ( , ) ( )
b

a
f x K x u d  +  . 

 

 Equation (4) then admits all solutions to the differential system (1). 

 Let u1 be any solution of equation (4) then. Now imagine the system (3), in which the right-

hand side u1 is the preceding solution. That system has a unique solution u2 that is given by: 

 

u2 (x) = 1 G1 (x) + … + n Gn (x) + 
1[ ( ) ( ) ( )] ( , )

b

a
g u r G x d    + . 

 

Now, u1 verifies the equation: 

 

u1 (x) = 1 G1 (x) + … + n Gn (x) + 
1[ ( ) ( ) ( )] ( , )

b

a
g u r G x d    + , 

 

as one will see upon replacing f and K with their values in (4). Thus, u2 (x) = u1 (x). It will then 

follow that u2 is a solution to not only (3), but also (1). The system (1) will then admit any solution 

to equation (4). 

 

 Any differential system (1) is equivalent to an integral equation (4). 

 

 If r  0, i = 0 then the system (1) is homogeneous. The same thing is true for equation (4) 

because f  0. Conversely, if f  0, u = 0 verifies (4) and also (1). Hence, (1) is homogeneous. 

 Recall that the two equations: 

(5)  u (x) = ( , ) ( )
b

a
K x u d    

and 

 

(6)  v (x) = ( , ) ( )
b

a
K x v d   , 

 

which we call adjoint equations, are closely related to each other. We shall show the parallelism 

that this situation exhibits with regard to adjoint differential systems. 

 Suppose that equation (5) is equivalent to the system: 

 

(7)  
( ) ,

( ) 0 ( 1,2, , ),i

L u g u

U u i n

=

= =
 

whose adjoint system is: 

(8)  
( ) ,

( ) 0 ( 1,2, , ).i

M v g v

V v i n

=

= =
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 Since the Green function of L (u) = 0, Ui (u) = 0 is G (x, ), one sees that the Green function 

of M (v) = 0, Vi (v) = 0 will be G (, x). 

 The integral equations that are equivalent to the systems (7) and (8) will then be: 

 

u (x) = [ ( ) ( , )] ( )
b

a
g G x u d    , 

v (x) = [ ( ) ( , )] ( )
b

a
g G x v d    , 

 

although their relationship to the preceding is not that they are two adjoint equations. Nonetheless, 

if one writes: 

w (x) = g (x) v (x) 

then one will have: 

w (x) = ( ) ( , ) ( )
b

a
g x G x w d   , 

 

which is indeed the adjoint of the integral equation that is equivalent to (7). 

 Therefore, there is a parallelism between two adjoint integral equations and two adjoint 

differential systems. 

 The link that we just pointed out permits us to prove some of the results that we gave in the 

second chapter simply by appealing to the theory of integral equations. For example, according to 

Fredholm, the number of linearly-independent solutions to an integral equation is equal to that of 

its adjoint, and some linearly-independent functions v correspond to functions w that are also that 

way, and conversely, one sees that the index of a differential system is equal to that of its adjoint. 

 Nonetheless, the study of differential systems leads to some very specialized kernels K (x, ) 

for equivalent integral equations, and the properties of some differential systems often imply those 

specialized forms for their kernels in such a way that few of the results of the theory of differential 

systems are provided by the theory of integral equations of the general type. The direct method is 

generally preferable for the advanced study of differential systems. 

 The question of whether it is possible to write a differential system in the form: 

 

( ) ( ) ,

( ) ( 1,2, , ),i i

L u g x u r

U u i n

= +

= =
 

such that the system: 

( ) 0,

( ) 0i

L u

U u

=

=
 

 

is incompatible demands a proof that is rather long, and we shall not give it (23). We shall say only 

that not only can one always choose g (x) in such a fashion as to obtain the preceding form, but 

one can choose it to be real and positive in a  x  b, and that can be done in an infinitude of ways. 

 
 (23) I gave that proof in the Bulletin of the American Mathematical Society for October, 1914, pp. 1. 
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 If one supposes that g (x) > 0 then one can some more precise statements about the integral 

equation. 

 One can suppose that one has reduced g to unity by dividing both sides of the differential 

equation by g (x) [which is always > 0 in (a, b)]. The Green function is obviously altered by that 

transformation, but in what follows, one will have the advantage of taking the kernel K (x, ) to be 

equal to G (x, ). 

 Without supposing that g has been reduced to 1, one can remark that if the system: 

 

L (u) = g u , Ui (u) = 0 

 

is its own adjoint then the same thing will be true of: 

 

L (u) = 0 , Ui (u) = 0 . 

In this case, one has seen that: 

G (x, ) = G (, x) . 

 

 The integral equation to which one is led: 

 

u (x) = ( ) ( , ) ( )
b

a
f x K x u d  +   

 

does not have a symmetric kernel because: 

 

K (x, ) = G (x, ) g () , 

 

and g is not equal to unity. However, if one imagines: 

 

u0 = ( )u g x  

 

then one will see that u0 verifies the equation with a symmetric kernel: 

 

u0 (x) = ( ) ( ) ( ) ( , ) ( ) ( )
b

a
f x g x g x G x g u d    +

  . 

 

 By a small transformation, one can then bring back the theory of systems that are adjoint to 

themselves to that of equations with symmetric kernels. 

 Finally, if one has some conditions that relate to a single point a, instead of having Ui (u) that 

bear upon two points a and b, as in the preceding, then one will know that the system: 

 

L (u) = 0 , Ui (u) = 0 , 

 

in which the Ui are independent, reduces to the system: 
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L (u) = 0 , 

u (a) = 0 , 

  ( )u a = 0 , 

…………, 

 
( 1) ( )nu a−

 = 0 , 

which is always incompatible. 

 The Green function G (x, ) of that system will obviously be zero from a to . Its (n – 1)th 

derivative will have a discontinuity at . G (x, ) will no longer be zero at (, b). 

 In summary: 

  G (x, )  0 for x <  . 

 

 In all integrals in which G (x, ) is a factor, the part that relates to the interval (a, ) will be 

zero. In particular, the integral equation that is equivalent to a system in which conditions are given 

at just one point will be a Volterra equation: 

 

u (x) = ( ) ( , ) ( )
x

a
f x K x u d  +  . 

 

 

 22. The method of successive approximations for differential systems. – We conclude by 

giving an application of Green’s functions to the solution of differential systems by successive 

approximations in a form that is much more general than the one that was considered in the first 

chapter. We suppose that the differential system is given in the form: 

 

(1)  
( ) ( ) ,

( ) ( ) ( 1,2, , ).i i i

L u L u r

U u U u i n

 = +

 = + =
 

 

L  and L  are linear and homogeneous differential expressions here, the first of which has order 

n, while the second one has order less than n, and their coefficients are continuous functions of x. 

We suppose, in addition, that the coefficient of 
n

n

d u

dx
 in L  has no zeroes in (a, b). The U   and U  

are linear forms in u (a), …, 
1( )nu a−

, u (b), ( )u b , …, 
1( )nu b−

. 

 Along with the system (1), consider the homogeneous system: 

 

(2)  
( ) 0,

( ) 0 ( 1,2, , ),i

L u

U u i n

 =

 = =
 

 

which we assume to be incompatible. Let G (x, ) be the Green system of the system (2), and let 

G1 (x), G2 (x), …, Gn (x) be the supplementary functions that are constructed as in section 20. 
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 Start with an arbitrary function u0 (x) and define the functions u1, u2, … that satisfy the 

equations: 

  ( )mL u = 1( )mL u r−
 + , 

  ( )i mU u = 1( )i m iU u −
 +  (i = 1, 2, …, n). 

 

Those functions are determined uniquely since the system (2) is incompatible. If one writes: 

 

u1 = v1 , u2 − u1 = v2 , u3 − u2 = v3 , … 

 

then one will see that for m  2, one will have: 

 

(3)  vm = 
1 1 1 1 1( ) ( ) ( ) ( ) [ ( )] ( , )

b

m n m n m
a

U v G x U v G x L v G x d  − − −
  + + +  . 

 

 One then proves, in a manner that is entirely analogous to the one in section 1, that a solution 

u to the system (1) is given by the series: 

 

(4)  v1 + v2 + v3 + …, 

 

and the derivatives u , u , …, 
( 1)nu −

 are given by the series: 

 

(5)  ( ) ( )

1 2

k kv v+ +  (k = 1, 2, …, n – 1), 

 

provided that all of those series (4), (5) converge uniformly in (a, b). That convergence will not 

always be true, even in the case where the system (1) has a unique solution. In order to treat that 

question, let A denote the largest maximum of the moduli of the functions: 

 

 G (x, ) ,     
G

x




,    …,    

1

1

n

n

G

x

−

−




, 

 Gk (x) ,    ( )kG x ,    …,    ( 1)( )n

kG x−   (k = 1, 2, …, n). 

 

Let  be the sum of the moduli of the coefficients of all of the expressions iU  , and let F (x) be the 

sum of the moduli of the coefficients of L . Finally, let B denote the constant: 

 

B = ( )
b

a
F x dx +  . 

 

One easily sees then that all of the series (4), (5) are absolutely and uniformly convergent if B < 

1/ .A  Since A depends upon only L  and the iU  , while B depends upon only L  and the iU  , the 

method of successive approximations will certainly converge if the moduli of the coefficients of 

L  and the iU   are very small when L  and the iU   are given. 
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 Therefore, introduce a parameter  and consider the system: 

 

(6)  
( ) [ ( ) ] ,

( ) [ ( ) ] ( 1,2, , ),i i i i

L u L u r r

U u U u i n



  

   = + +

   = + + =
 

 

in which r r +  = r, i i  +  = i . The system (6) reduces to the system (1) when  = 1, and on the 

other hand, from what we have said, the method of successive approximations will certainly 

converge when it is applied to the system (6) when the modulus of  very small. 

 From (3), the series that are analogous to (4) and (5) that one obtains by integrating the system 

(6) will be series of powers of  provided that ui = vi does not depend upon , which will be true 

when the functions u0 is subject to the conditions: 

 

0( )L u r +  = 0 , 

  0( )i iU u  +  = 0   (i = 1, 2, …, n). 

 

We shall suppose in what follows that those equations are satisfied. The power series that one 

obtains by integrating the system (6) by the method of successive approximations will certainly 

converge then if |  | is very small. The question is then whether it will converge when  = 1. 

 First imagine a more general system that makes (6) only a special case: 

 

(7)  
( ) ,

( ) ( 1,2, , ),i i

L u r

U u i n

=

= =
 

 

in which the coefficients of L (u) and the function r are analytic in  in a certain Weierstrass domain 

and continuous in (x, ), while the i and the coefficients of the Ui are analytic in . We shall not 

assume that all values of  in the Weierstrass domain are characteristic numbers. 

 Under those conditions, the solution to (7) will be an analytic function in  and continuous in 

(x, ), except for the characteristic values of . In order to prove that proposition, it suffices to 

consider the function: 

(8)  

0 1 2

1 0 1 1 1 1 2 1

0 1 2

1 1 1

1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

n

n

n n n n n n

n

n n n

u y y y

U u U y U y U y

U u U y U y U y

U y U y

U y U y





−

−
, 
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in which u0 is a solution of the equation L (u) = r that is analytic in  and continuous in (x, ), and 

y1, …, yn are functions that are analytic in  and continuous in (x, ) that define a fundamental 

system of the equation L (u) = 0. When  is not a characteristic number, the function (8), which is 

analytic in  and continuous in (x, ), will satisfy the system (7). Since the system (7) has a unique 

solution in this case, the proof is complete. 

 

 It then follows that the power series that one obtains by applying the method of successive 

approximation to the system (6) will converge in all of the disc that is described around the point 

 = 0 as its center and contains no point that corresponds to a characteristic number. That result 

can also be stated in another form: 

 The method of successive approximations, as we applied it to the system (1), will converge if 

the auxiliary system (6) has no characteristic number whose modulus is less than or equal to 1. 

 As an example, take the case in which all of the coefficients in the iU   are zero, along with all 

of the coefficients of u (b), ( )u b , …, 1( )nu b−  in the iU  . The system (6) will then possess one and 

only one solution for all values of . Therefore, the method of successive approximations will 

converge in this case when it is applied to the system (1). 

 Let now return to the system (7) and its solution (8). Let 1 be a characteristic number of (7), 

i.e., a value of  for which the denominator of (8) vanishes. In general, that point will be a pole of 

the function (8), which is a pole whose order cannot be higher than the multiplicity of the 

characteristic 1 . If the function (8) does not have a pole at the point 1 then it will again be a 

solution to the system (7) for that value of , and we will have before us the exceptional case that 

was considered at the end of section 9 in which the inhomogeneous system (7) has a solution, and 

even for a characteristic number. 

 The method of successive approximations, as we applied it to the system (1), will not converge 

if the auxiliary system (6) has a characteristic number whose modulus is smaller than 1 for which 

the system (6) has no solution. 

 Now consider the case of a characteristic number whose multiplicity and index have the same 

value k. It is a very important special case that will always present itself, for example, when the 

characteristic numbers have multiplicity 1 (see, § 11). If the system (7) has a solution for  = 1 

then the rank of the system: 

(9)  

1 0 1 1 1 1 2 1

0 1 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

n

n n n n n n

U u U y U y U y

U u U y U y U y





− 
 
 
 − 

 

 

will be equal to n – k for  = 1, which will also be the rank of the determinant in the denominator 

of (8) (see, § 5). It will then follow that the determinants of order n of the system (9) have zeroes 

whose order is greater than or equal k or  = 1, as one will see upon taking the successive 

derivatives of those determinants with respect to . Since the denominator in (8) has a zero of order 

k at the point  = 1, by hypothesis, one sees that the function (8) has no pole at that point in the 

present case. 

 Upon applying that result to the system (6), we will get the following theorem: 
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 The method of successive approximations, as we applied it to the system (1), will even converge 

when the auxiliary system (6) has characteristic numbers whose modulus is  1 provided that for 

each of those characteristic numbers: 

 

 1. The system (6) has a solution, and 

 

 2. The index is equal to the multiplicity. 

 

 That is a generalization of a very special result that was given by Liouville in 1840 (J. de math. 

pures appl., t. V, pp. 356). 

 

______________ 

 


