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The existence conditions for a kinetic potential that depends upon
the first and second differential quotients of the coordinates. ()

(By Herrn Karl Boehm in Heidelberg)

Translated by D. H. Delphenich

Once the theorem on the existence conditions for a kinetic potential that Helmholtz posed (%)
was first proved in the treatise by Konigsberger on the principles of mechanics (%), A. Mayer
showed in the Berichten der Kgl. Sachsischen Gesellschaft der Wissenschaften (%) that the proof
of the aforementioned theorem could be carried out in an especially-simple way with the help of a
principle from the calculus of variations, and at the same time, expressed the suspicion that the
method that he applied might also make it possible to answer the question that Kénigsberger
asked regarding the existence conditions for a kinetic potential that depends upon the first v
derivatives of the coordinates.

In fact, such a generalization will create no appreciable difficulties. Everything comes down
to converting the problem into that of treating a system of linear partial differential equations. The
way by which one can achieve that shall next be shown in the present article for case of v=2. To
that end, before we take up the actual problem, we must derive two auxiliary formulas.

Let p1, p2, ..., pn be any functions of t, and let VV be a function of t; p1, p2, ..., Pn; Py Py --os
p!; p®, p® )

AR SR o
If one lets oV denote the variation that V experiences when one assigns the arbitrary variations
op to the variables p then one will always have:

P
s[4V 297 (svy |
at’ | dt’

(*) The present work was produced in the Summer of 1897 and submitted to the editors of this journal. In the
meantime, Arthur Hirsch had solved the problem that was treated here in a more general way in volume 50 of
Mathematischen Annalen.

(3 “Ueber die physikalische Bedeutung des Princips der kleinsten Wirkung,” J. fiir Math. 100 (1886), pp. 166.
Wissenschaftliche Abhandlungen, Bd. 111, Leipzig 1895, pp. 236.

(® Mathematical and natural-scientific communications to the Sitzungsberichten of Konigl. Preuss. Akademie der
Wissenschaften zu Berlin. Report from 30 July 1896, pp. 387.

(*) Berichte der mathematisch-physikalische Klasse. Session on 7 December 1896.
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) o)y %]
5p, + (0P,

= 0P, g op, dt apl ) dt‘””)( Ps)

d’' & | d [ oV oV d d’ oV dt

= it Tt Op, +-+ o T (v) 5O et ) 4t (D) (6p;)
dt”~ 4= | dt\ op, op; dt ap dt op;” dt

AT A v |V pdf v ) di oV ydT ﬂd‘””( .
dt”? < | dt? | op, P pl ™ “dt{epe™ ) dt? 6p!? )| dt” P op) dt®+2 o

o

One now easily foresees what the coefficient of :?(5 p,) will be after performing all p

differentiations with respect to t, namely:

Foro<p:
p)d?? oV p ) dr ooV d**t( oV d?( oV
o | An + —o+1 ' oot Jep1 (o‘ 1) T (o‘)
o)dt” 7\ op, o-1)dt” op;, 1 dt”~ { op; dt” { op;
and for o> p:

oV p Yd( oV p)d?t( eV d” ( ov
et | e | T4 G| A | T S| e
op; p—1)dt\ op; 1)dt op; dt”  op;

When we set one of those expressions equal to the coefficient of gt_" (0p,) on the left-hand side

of our first formula, we will get the two relations:

Foro<p:
o (d°V p)d”? [ oV p ) dr etV d’” [ oV
(A) PWE) c = p-c + p-o+l 4 teet o An@)
op;” \ dt o) dt op, o-1)dt op); dt” | op;
and for o> p:

o (d°V oV p \d oV d’ ( oV
(B) @ | we | = Ao | A [T @
op;”’ \ dt op; o—1)dt{ op; dt”  op;
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They define the generalization of formulas (A), (B), (C) of the aforementioned treatise of Mayer.
If one defines equation (A) for a function R (t, p1, p2, ..., pn), Which therefore does not depend
upon the derivatives of p, then one will get the formula that Koénigsberger started with in his work
on the principles of mechanics:

0 (R(,D))E pld”? [ R Ep(p—l)--.(p_o-+1) a(R(p—o)).
apff) o) dt”” { op, 1.2--.0 op,

In the present article, formulas (A) and (B) will be the basis for all calculations, such that it seems
superfluous to me to point that out in the specific places. The investigation into which we shall
now enter is concerned with the following question:

Let p1, p2, ..., Pn be functions of the independent variable t. We seek to exhibit the conditions
that the n functions Py, P2, ..., Pn Of:

dp , d’p @ d°p @ d'p )
tl Ly — = ] - = ] L= ’ - = :1929 9n
P dt v P aw P ar P (s )
must satisfy in order for them to be expressible in terms of a single function H of t; pa, p2, ..., P, ;
B, Py P PP, p2, L, pt? in the following way:
2
1) P,=- oH _dfoH +d—2 8H2 (z=1,2,...,n).
op, dt\op/ ) dt*{op?
If one sets:
oH
@ @ P
oH do
3 ——— =,
©) o da
by which (1) will go to:
(4) _ ﬁ-ﬁ-% — PI’
op, dt

then one must examine the conditions under which 2n + 1 functions ¢., v, H can be determined
from equations (2), (3), (4).
It next follows from (4) that since H is independent of p® and p', and w. is independent of

P, we will have:
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ok __ dy,
X o op®”

ob _ oy, ddy,
b) @~ 2@ T 2@ |

op, op,” dtl op;

()

We then move on to exhibit the integrability conditions for (2), (3), (4). In order for a function H
of the p/ and p!® to exist that satisfies equations (2) and (3), it is necessary and sufficient for us
to determine the w. as functions of p/, p®, p® and the ¢ as functions of the p/ and p® in
such a way that the equations:

oy, Oy,
a) 0®  op®
P P,
Oy, Oy, _dfdy, OJy,
©) D 0t ol _E(apfﬁ Yoo )
o W v @ (d@}r 0 (d@],
o, op;  op.\dt ) op.\ dt
and
99, __0y,
i Vo T TR
@) op, 0, 1( oy, Oy,
b) =TS @ Ap®
op. op; 2\ op.”  op,

are fulfilled. They can also be derived from the £n(n—1)+n?+<n(n—1) integrability conditions:

oH oH oH oH oH oH
a(ap,@J B a(ap,‘ﬁj a{apff’J _ a(ap,‘”j a(@sz _ a[ap;]

op? op? op! op. op. op!

l

with the help of formulas (A) and (B), which correspond to equations (7), (8), (9), (10), (11) in the
treatise of A. Mayer. In addition, H shall now satisfy equations (4) as a function of the p,. One

must then append the n*+n®+1n(n-1) conditions:
ol M o[ H
apl — apk

P ICial 5H2 ol M| 4 oH
op, ) _ op? op, ) _ \op.

op?  op, op, o, op, o,
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which can be put into the following form:

0 (dy o
a Lt P :_’f,
) op® L dt ') op,
0 (dy o (de J
8 b Lt P l|l=—| L4 ,
() ) " ap,( ey,
C) ﬂ%_l :i(%_P’fj'
op, \ dt op, \ dt

Our problem is then reduced to that of giving conditions that the P, must be subject to in order for
equations (5), (6), (7), and (8) to be satisfied by 2n functions ¢. and . . That is because if that
were the case then there would, in any event, exist a function H that possesses the required
properties, and indeed it can be determined by mere quadratures from equations (2), (3), and (4)
when the ¢. and y. are found.

In order to solve the reduced problem, we first convert equations (6) and (8) with the use of
(5) and (7). From (6.a), (6.b), (6.c), one gets the relations:

P OP.
(9) W - W’
(10) ail?a + ij()g) = %( 5?21) + ai%)] ’
1) oy, oy, 0p Op _1d GP,S _ apg |
op. op, op, op, 2dt{ep® op?

from which, one can conversely derive equations (6) with the help of (5) and (7). If one then further
takes the sum and difference of equation (8.a) or:

oP _ Op Oy, d oy,
= — — +—
op®? op, op. dt|op?

K K K

and the ones that emerge when one switches zand x in them then that will give:

oP oP. _3d( oP oP.
(12) @D An® T 5 | An®  AnG)
op.”  op, 2dt\ op,” Op,

and

2
(13) 6F)z aPl( - _ 6@1 _ 8(01( + a!r//z _ a‘//)( +2d_2 6P2
op, op. op,  dt*| opt?

o @ " op. op, op.  op
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and in conjunction with (5), (7), (9), (10), (11), they are equivalent to equation (8.a). When the
same process is applied to (8.b) or:

R _ oy, v, dfdy, | dfop,
op. op, op, dtlop. ) dt{op, )

that will show us that the latter equation can be replaced with:

P P _d(oP oP 43 ( opP
(14) e [ Ry By B .
op. op, dtlop® op? ) dt*(op!®
and
2
(15) 5_3_8_?:2 oy, oy, +1d_2 5_2_5_32 ,
ap.  op, op, op, ) 2dt?’\ap® op®

Finally, in combination with the foregoing, equation (8.c) is equivalent to:

P oP \_d(oP oP.) 1d*( oP oP
(16) 2| ————& | = — LK -=— ; _ /; ’
op, op, ) dtlop. op ) 2dt*|op® op®

such that we will arrive at the following result:

In order for a function H to exist that fulfills the requirements (1), the existence of the identities
(9), (20), (12), (14), (16) is necessary. Thus, when the 2n functions ¢. and y; can be determined
from equations (5), (7), (11), (13), and (15), the given condition will also be sufficient. The fact
that this is the case will be shown in what follows.

The equations:

op, dp. Oy ow. _1d( P P
(12) A - Ry
op. op, op. op, 2dtop® op?
and
2
(13) B 0o, _8¢K+8t//,+8y/K _ 8P,2 N 6P,; _2d_2 8P21
o, op, op. op,  op? op® dt’ | opl?

can be replaced with their sum and difference, so by the equations:

17 —_— = —— L+ LS R, ‘ — & |4
(17 op. op 2\ op?  op® ) adt\op® op® ) dt?

l

op, Oy, _ 1 P P 1d[8P oP dz(ap

K

and

18 —k Lt = —— £ ——t [+
(18) op, p. 2\ op®?  op? ) 4dtlop® op?® ) dt?

K

dp. oy, _ 1 P  oP ld(ﬁP oP dZ(GP

1
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which must each be true for :1=1,2, ...,n; k=1, 2, ..., n. Now since, with consideration given to
the identities (9), (18) will emerge from (17) by switching z and «, the 1 n (n— 1) equations (18)
will be identical to the 1 n (n — 1) equations (17), so they can be dropped.

The 2n functions ¢, and y: must then be integrals of the following system of simultaneous
first-order partial differential equations:

In order to show
the identities:

0o, oP.
(7.a) —apl((z) = — apl(A) ]
5 o to. iR R
op. op, 2\ opf apl
oy, OP.
(5.a) @:W
oy, op._ df P
(5.b) op® = op® _E(apfj‘) J,
2
R e A A
op, op 2 5pi ) ap,” 2 apf( ) 5P,() dt apf( )
ow, ow. 1(oP oP.) 1d’°( P &P
(15) L K — :__’( —-—— 13 _ I; )
op, op, 2lop. op ) 4dt*|\op® op®

that this system is integrable, we will derive a series of further relations from

oP o
9 ZE K,
©) op  opl®
P P d[ P
WO o a[api‘”}'
) P 0P _3d(oP P
W wE al el al )
P o _dfoP oP d*( oP
14 LYl LR I Bl L
) op, P, dt[apff) 8p,‘2)j dts[api‘”j
P oP. _1d(oP oP) 1d°( P oP.
16) = TS e T 50 |
op. Op, 2dtlop. op/ ) 4dt°(op” Ip,

which are now regarded as having been fulfilled.
Since the fifth differential quotients of the p do not figure, it will follow from (10) that:
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o°P

9 op,” op;”

0.

Likewise, when we differentiate (14) and (16) with respectto p‘®, we will get:

o°P
(20) @@ =0
ap/{ ap/l
o oP OP
(21) & | 300 @ | =0
apﬂ, apl( 6pl

and furthermore, when we differentiate (14) with respect to p%, (12) with respect to p'”, and
(10) with respect to p'¥:

0 oP OP. aZR
(22) @) DR -2 @D An@® 0,
op,” \ op,”  0p, ap;” op;
0 oP oP.
(23) @ | 20® 7o | =0
6p), apl( apl
0 oP  OP. aZP,
(24) (3) (3) + (3) =4 (2) AR@4 '’
op;” \ op.”  op, op; op,

and in conjunction with (21) and (24):

o°P o°P

(24.2) -2
oo  op? op,”

0.

Four further identities will be obtained by differentiating equations (16), (14), (12), (10) with
respectto p®, pl”, p?, p{?, resp., with the use of the formulas that were derived before:

o (0P oP | 1 0 (0P 0P |_
(25) O) [ o J—_ ®) [ @ (3)j =0,
apl apk‘ ap[ 2 apﬂ 8pl( apt

from which it will immediately follow from (9) that:

(25.) o (GPK aplj 0 (apl ae} ) (ae apkaol

_ + — -
8p,‘2) apf) Gp,(f) ap,(f) apl(s) apf’) apf) ap,(f” apl(s)
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5 (534_@&}_ 0 (8R+6F’Kj_i 0 (aler@PKj
o ap, op ) @ op® op® ) dt|apt | ap®  ap?

P d[ &P
2y 6 5w | =0,
op; op, dt| op;” op,

(26)

or from (22):

0 oP OP 0 oP oP o°P d O0°P
(26.2) @ v T T e | e T e | T e A e | =9
op;’\op;, op, ) op;’\op,” Op, op;, p; dt| op;” op,
0 oP oP 3 0 oP oP 0 oP OP
(27) T 20 0 | = 5| @ a® | =S m@ | ar |
op;” \ op,” 0P, 20p;” \ op.”  op, op;’\ op,.  op,
2 2
(28) a(2) 6F(>;) + a%) =4 (? PI(4> +4i{ (?) " (4’}
op;” \ op,.  op, op; op; dt| op;” op,

When we subtract from equation (25) the ones that emerge from it by switching 4 and «, and in so
doing consider the relations (9) and (27), we will get:

(29)

P P @ (GPK_G‘P)J
op?op  oplaop  op” L ap;  op;

The following four formulas (30), (31), (32), and (33), which are obtained from the identities (16),

(14), (12), (10) when they are differentiated with respect to p'”, p®, p{?, p;, resp., are not as
simple as the foregoing ones.

, 0 (P o) 0 (or oR) d| 2 (R P,
op’\op, op, ) op?\op. op,) dt|oplop. op!

JLlofom o) 3dl o (o )|,
20p,\ o op?) 2dt|ap?\op? op )]

(30)

or with the use of (27):

o (P P o (P oP) 1o (P oP dl o (P aP | _
(30.8) 2—r| —t-—E |m | L | e 42— = | == ——= || =0,
o\ op, op, ) op\op. op ) 20p;\op op? ) dt|ops” (ap.  op,

K
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0 [5R+6PKJ_ 0 (GP, +6PKJ_3 0 [68 +6F’KJ
op;”\op, op, ) ap?\op” ap® ) dt| op? (op.”  op”

o°P d[ &P a2 &P
+2—4)+6— —— ’(4) +6— — AT =0,
op, opy? dt| ap;, op; dt? | op{? opf

(31)

or with the use of (26.a):

0 ££+ai]_ 0 (ap, . ap,(j o°P
o \op, op) apP\op? op® ) ap,apl”

(3L.a)
d[ o (ep op)_, @ | ¢ [ or ],
T 2@ | A A | e 2@ | T | @ @ |
dt| op;” \ op,  op, ap;, op,; dt” | op;” op,
) o (op _op ) 30 (o op ) 3dl o (em a)|_,
op® (op® op® ) 20p,\op? op® ) 2dt|op? (p® op? )|
0 oP oP o°P d O°P
(33) [ L xj_4 , _4_{,_1}50,
op; (op® op® ) op,opl®  dt| op; opt!
or
, 0 (op R o(op R\ ook o
2@ . op ) ap | ap®  p® +6_p’ 0O p®
(33a) K A 1 A K 1 1 K A

o (P oP) ,d| o (P oP,
-4 7 L— —4— n L =0.
op\op, op, ) dt|op\ap; op;

It follows from (32) with the use of (25.a) that:

o(op P ) o(ep, @) o(oP o
(34) | 2@ @ | T A @ An® | T & | =0
op, \op;” op.” ) op.\op,” op;” ) op;\op.  Op,

such that (33.a) can be brought into a somewhat simpler form:

o (P op) o(op oP o (P P dl o (P op)]_
(330) 2 W{F_#j+7[a é) @ J_A'a @ (a__a_q—"’a{ﬁ(a_r_a_fﬂ =0.
p)( pﬂ, pz pﬂ pz p/l p/( pﬂ, pl p)( pﬂ. pl

Although the identities that were just derived will not suffice for our purposes, their number will
be increased when their necessity is exhibited in the course of the following investigation.
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We shall next address equations (7.a), and with the help of (19) and (20), we will see that their
right-hand sides are free of the third and fourth derivatives of p, such that from (23), we will further

have:
0 oP.  oP, | _ 0
op® 8p§2) N op® =

I.e., that the n equations that the functions ¢. must satisfy are compatible with each other. With the
help of mere quadratures, that will then give ¢ as the sum of a well-defined function of all p, as
well as their first and second differential quotients and an arbitrary function of the p and their first
differential quotients, which we would like to denote in the following way:

o= 2,(p, P, p?)+a,(p,p) .

The fact that y., as well as ., cannot depend explicitly upon the independent variable t
(according to whether that is or is not true of the P, resp.) is of no interest to us here, and for that
reason it shall not be expressed in the notation that is employed either.

In order to determine the arbitrary functions ¢. , we substitute the expression for ¢, that was
just found in equations (7.b):

- b, 0o, __(0n x| L[ R R )_q
oo, oo, \ap. op) 2\ap® ap®

oQ
S 1 0 [ OR R 0 [from (20)],

o~ 200 (P P

Q, 10 (P oP

op® = E@pf) Gp(;) - ap(’;) =0 [from (21)],
R, ¢ P9 1 0 (R R
oo opop? opop? 20p\op?  op

_ a4 AN az ap,z _ap,g _ olfrom (25)],
opP\ap. op ) 20pP (op® op®

Q8. o0
o
op, op op

l K

0 [from (34)].

The integrability conditions for equations (7.b) are then fulfilled, and as a result the functions
¢ can be determined up to arbitrary functions of the p.
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The integrability of equations (5.a), (5.b), (17), and (15) shall now be examined similarly.

Since the right-hand sides of equations (5.a) are free of the third and fourth differential
quotients of the p, from (19) and (20), we will get the n functions . in the form (upon introducing
a notation that is similar to the one that was just used for ¢.):

vi=1,(p, P, p?, p?)+v, (p, P, p?),

in which the v, are arbitrary functions. We substitute the expression thus-found in (5.b) and get:

ov. _ ou P d( P )
n? @ +8p‘3) Tt @ ) T
8X1K —_
ot =0 [from (19) and (20)],
A
X, _ oy, o°P o°P

=0 [from (19) and (20)]

=— + -
oy oplop? P op? op op”

Furthermore, we have:

2 2
Ky Xy _0R ___OR 0 [ _Fl_g [from (23) and (29)].
op? op?  apPop?  opPopd  op®\ op; op.

Those equations are also integrable, and we then get:

vi= p(p, P, p?)+0o,(p,p).
vi= 1 (p, P, p?, p)+p.(p, P, P?)+0,(p, P)

by simple quadratures, in which the o; are arbitrary functions, and equations (17) and (15) will
serve to determine them.
From (17), one sets:

oo o(u+p) 09 1( P P ) 1d( P op ) d*( oP
K - _ K K + l+_ L + K - L _ K - L E@[[(.
op’ oo, op, 2(op? op?) 2dtlop? op?) di*| op”

Based upon the identity (22), that will give:

ob, 1 0 (P  oP o°P
o " 2@ (P ) aPa®
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Likewise, as a result of (25) and (26.a):

o, _ P, 10 (0P 0P 1 o (0dR PR O°F__,d|_oR
o " opop® 2ap” \op® op@ ) acp? \ap®  ap® ) op,op® ot p? ap
=0.

Ultimately, one finds that:

ov, __o|op d(eR | &P 1 0 (R R ) 10(R _oP
ap(z) = 6pl p(g) dt ap(4) ap 8p(4) Zapf) apl((Z) apl(Z) 4_6[:):1 8p’((3) 6pl(3)

1df o (op _mV|__or ,d[o ()] & &R
4t op?  op®  op® op,op dt| op; ( ap® dt? opP op® |

or with the use of (25) and (10):

»? ~ opop®  4op

L1.0 6P,+8PK 1d| 0 6F3+8PK B o°P —2£i oP
" 2?0 ) 2| ™ \ap el )| o, op® et o) L op®
d? o°P
dt?[ pPop® |
and with consideration given to (34) and (10):

o, 10 (or )10 (op op) 1d[ o (R k| _o
on? "~ 2ap0 on, op ) 2a0\ P oo ) 2t e, ol )| op, apl

_L,d[_p | o[ oP
dt| op, op® | dt?| op@ op® |

One can see immediately that this expression vanishes when one subtracts the total differential
of equation (26.a) with respect to t from (31).

In order to further show that the n differential equations whose common solution shall be the
function ox are mutually compatible, we form the expression:

o, R 10(0ok 0P| 100k R\ P di P
on? o) aop; o p? ) opop® dt| apap®
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o0, oD, o (0p 0p,) 1o (oP P ) 10(aP oP
- = - += + -——— +
op; op.  op.\op, op ) 2ap;\op?  op® ) 20ap

op,”  op;?
_1o(dfep _op |}, 1o(dloP R |
4 0p, | dt| op®  op® 40p/\ dt| op® op |

L K

_22 0 [oR 0P _d_2 0 [ ok oP,
dt| op\op, op, )| dt*| op\ap, op )|
or with the use of (7.b) and (12):

1o(P op ) 1o (P oP) 2 &P &P
=-3 @ 2@ | T2 3@ | 2 A | T3l A An®@ T A @
2 ap){ ap/l apl 3 apl( apﬂ. apz 3 ap/l apl apl ap

A

_,d| 0 (oR oR )| d*| 0 (R OP
dt| op®\ep, op, )| dt?|op®@ op, op )|

If one differentiates (14) with respect to p® and subtracts the identity that is obtained from the
one that emerges from it by switching z and 4 and considers (23) then that will give:

0 oR P ) 0 [dR P 5 0°P. B 0°P.
op, \op? ap® ) ap?\op; ap) \opop® ap/op?
(35) ~d| 0 aF:;)_ 6% +61 8(4) oP  oP,
dt| op, ( op;” P, dt| op,” (dp, op, )
T -
.6 d_2 64 oP oP, _0.
dt*| opt” ( op;  ap; ) |
or in conjunction with (32) and (25):
o oP  OP o [ oP OP, 0°P. 0°P.
' 2 An2) | An®) r !_2 1 A2 Al A~(2)
apl{ apﬁ, apz apl( apﬂ, apz apﬂ, apl apz apl(
e A A RN
2dt| op, \ op;” o, dt| op,” (dp, P, )|
T z
+3d—2 84 oF _oF, =0.
dt*| opt” \ op; ap; )|
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If one subtracts that equation from the following one, which is derived from (12):

- o(om P Y 3a(or P ) 3dlo(om op
oo o0 ) 20p, (0P ? ) 2dt|op | pP P

then one will find that the left-hand side of the relations that arises is equal to three times the

: oD, oD : - "
expression for —= ——% that was found above and that the integrability conditions for

’ '
A pl

0

equations (17) :
o, oD,

K

op,  op,

will also be fulfilled then. We then obtain the n functions o in the form:

o= 7,(p, p)+&(p)
in which the ¢; are arbitrary functions of p. In regard to that, it should be remarked that the 7 also
depend upon the arbitrary functions of the p that enter into the ®. when we substitute the
expressions for ¢, that are determined from equations (7.a) and (7.b), as we had to do above. Those

functions will also remain undetermined in what follows. By contrast, we will try to arrange the ¢;
in such a way that the expressions that are obtained for the v :

wi= w1 (p, P, p?, p?)+p,(p, P, pP?)+7,(p, P)+<i(P)

will satisfy equations (15), i.e., that:

o5, _o¢, _ {a(#ﬁpﬁf) a(u,(+px+r)}+ (aP @J 14 [aP, -an«jE@m
l 2 ’

op. op op, op, op. op, ) 4dt?(p® op®
Pzl O E F) L O [R_Flo [from(s)]
o~ 20pP\op. op ) 4op@\ap® op?

O, __ 0 (oy, oy, ), 1 0 (R R\ 10k 0P “1d[ 2 (P oP
op P op, op ) 20pP\ep. op) 4op.lop® ap® ) 2dt|opP \op® op®

___ 0 (ok oR),1 0 [0k k) 10(0oR OF | di 0 [dR ok
0 op, op, ) 2007 \ap. ap ) adp\ap® @ )t EXCEE"

K
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[from (5.a) and (25)],

22’3’; =0 [from (30.8)]
00, __ 0 (oy, ow, )\, 1 0 (B _or) 10 (op o) 1d[ o op
on? @ ep. op, ) 20p@\ep. op ) 4op,\ep® p® ) 2dt|op;(p® op®

1d2] o (P oP.

4| pP\op®  op®
__ o[ R),10 (R k) 1o(R R
P ap, op, ) 207\, ap) adp, P o

,d| @ (or op )| 1d| o (R &R 1d*| 8 (R oR
dt| op¥ | ép.  op, 2 dt| ap, | op® 8pf3) 4dt*| op? (ap® op® )|

If we introduce the value for the sum of the first three terms that we get by differentiating equation
(16) with respect to p'¥ then we will get, with the use of (25):

®, _d| 10 (ek R 10(k P 0o (kR _op +ol2 o (P ap.
op? FEICAE 48pl n® op® 6p“‘) op, op, dt?| op™ | op. o]

K

Thus:

00
o ﬁl;’ =0 [from (33.b)]

P, _ b (ay/,_a%j Lo
29

o, ol op

[ 9ROk O(oR _oR || 1d°| o R R

L\opL op, 2 dt op,(o0® op® )| 4dt?|op;\p® op®
0 Jop, (P, R _1(oP R ) d’[ P
~ap, | op. 8p “op, ) 6lep? ap<2> dt? | op®
1

_ 0199, _ _ﬂ _a*|op
op, | op, ap apﬂ P op® | ot | 5p

6
L1900k aP 1d a 1d*| o (P R
A dt apﬂ o ap‘s) 4dt*| op, \ op? op® )|’
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_1( &P 'R, ), 2 0 (R 0OR) 10 (0P P
- 3\apop” op.op®) 3ap?\op, op.) 20p;\op. op

_1dlofem o )| 1d*[a(on )| &[0 (R _en
2dt| op, (op® op® )| 4dt®| op;\op? op® )| dt|opl\op, b, )|

In order to prove that 6@, _/dp’; vanishes because of the identities (9) to (16), we differentiate (14)
with respect to p), switch zand A in that, and subtract the equation that results from the first one:

o (op _op)_ o (oR _op ) o(0oP R
op. \op, op ) op, \op® ap® ) op, \op? opd?

d[ o (P op\] d[ &P, &P ]
(38) T (2) o ' T ’ @ 1 AR (2)
dt| op® \ op, op] dt| op; op,” p, op;” |

d?| & (P 0P, d*| & (P P,
+6—7 (4 B 2 o) P
dt®| op,” (op, P, dt”| op.” \op; ap,

Now, it will easily follow from (37), with the help of (34), that:

1l
o

o%h, &R _ 30(om k) 30(R P
op,op® opop?  20p,(apd op? ¢

6p(3) 6p(3)

(37.9) ’

L0 (or or) 3d[o(op P
op®\op, op/ ) 2dt|op.\op® op? )|

so, from (12):
df &, &P |_ 9 (0P R L 0[P R
dt| op,op® opjop? | op,\op? op® ) op,\op?  ap?
L d) o (oR 0P| 38d°| 0 0R 0P
dt| op \ap; op; )| 2dt*| ap;\ap? op? )|’

such that one can give equation (38) the following form:

(37.b)
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(38.2)

%P %P, o (P oP) . d| & (P 0P,
2 2) (2) T " At -2— (2) P At
op,op?  op,op® ) op.\op, op ) dt|opP\ap; op,
d? 0 oP  0oP, 3d?| o oP oP,
6> 4 - Ry ORRPE
dt® | op \op, op, )| 2dt*| op.(opP p®
d*| & (R 0P,
dt*| op  ap;  op; ) |

18

i
©

If one switches xand A in that identity, multiplies it by 1/2, and subtracts it from the equation
below that is obtained by differentiating (16) with respect to p':

(39)

0 [ae _apkj_ 0 [ae _aa]_g{ 0 (83 Al
op? \op, op, ) op;\op. op;) dt|ep?\ap, op; )]
L3dfo(op op )| 3d° o(or P |
2dt| op, \op® op® )| 2dt?| op,\ap® op® )]
1d°[ o (ap o )| _,
Taae |l (@ )| T

then one will get a formula whose right-hand side is zero, while the left-hand side agrees with three
times the expression that was found for 6®,_/op), . Therefore:

00

[, S—

op;

and in order to complete our investigation, we still have only to show
conditions for equations (15), i.e., the identities:

that the integrability

00, 00
+

op,

00

K/1+ /MEO

op op

1 K

are fulfilled.
To that end, we differentiate equation (16) with respect to p):

50 (aP, _aPKJ_ 0 (aP, _ap,()_g o Lapl _ap,{j_
op;\op, op,) op,\op, op;) dt|op;\dp, P,

(40) -

J3d°[a(op _ap | 1d°[ o (om o)
2dt*| op, \ op? op®? )| 2dt*| op;(apl  ap®?

1l
o
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and add that equation to the two that arise from it by cyclic permutation of ¢ x, A. The third term
in the sum drops out automatically, the last drops out because of (34), and what will remain is:

3i(ap,(_apl)_3 o (aa_ae ]_3 o (ae _aPK}
op,\op; op.) op.N\op op,) op,\op. Op,
3d2| o (P oP o (oP,  oP o(oP &P
+ - | — K _ A + A 1 + L K
2dt’| op,(ap® op? ) op \op® P ) ap,p® op?

However, as we easily see, that is precisely the identity that we seek.

With that, we have show that among the assumptions that were made about the P, , there will
always exist n functions w; of the p, p’, p*?, p® and n functions ¢, of the p, p’, p® that satisfy
the partial differential equations (7.a), (7.b), (5.a), (5.b), (17), and (15), as well as include the
independent variable t when it occurs explicitly in the P, .

The desired function H will then be determined by mere quadratures from equations (2), (3),
and (4), whose integrability conditions (6), (7), and (8) for the ¢, and . are fulfilled.

0.

In order for a kinetic potential H in the first and second differential quotients of the coordinates
p that is defined by equations (1) to exist, it is necessary and sufficient that the P, should be
functions of p, p’, p®, p®, p that satisfy the identities (9), (10), (12), (14), and (16).

In conclusion, we might give the form of the necessary and sufficient conditions for the
existence of the most-general Kinetic potential.

The function H shall then depend upon the first n differential quotients of the coordinates and
be defined by the equations:

— ﬁ_i ﬁ _|_..._|_(_:|_)" d ﬁ =P,.
op, dt{ op’ dt” { op®

The P, must then be functions of the p., p/, ..., pfzv’, and satisfy the (2v + 1) equations:

ap‘ — r+l i ﬂ + r+2 d_z ﬂ _...+(_1)2V_T 2v ﬂ i
opt” \ 1 )dt\opl™ 2 )dt?{ opl? 2v—r7 ) dt> | opl

P
Taap(:) (r=0,1,2,...2v—1,2v)

= (-]

identically. When those relations are defined for v = 2, they will coincide with formulas (9), (10),
(12), (14), (16) of the foregoing article completely.




