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Interpretation of the Dirac equation asalinear approximation to the equation of a
wave that propagatesin a chaotically-agitated vorticial fluid of Dirac ether type

By. D. Bohm, G. Lochak, J. P. Vigier

Translated by D. H. Delphenich

PART ONE

1. Introduction. — A causal interpretation of the mechanics of the mlacis
proposed that is based upon the hypothesis that theosldstia particular object that
follows a continuous and well-defined trajectofft) that is accompanied by a real
physical field¥(x, t) (.

In order to obtain the results of the usual interpiatait will suffice to suppose that:

1) W satisfies one of the usual linear wave equations.

2) The corpuscle follows one of the streamlines thatassociated with that wave
equation.

3) An ensemble of such corpuscular objects is necesddistributed with the
densityP = const. V¥ [

In a previous paper, two of u$) (showed that if one adopts the hydrodynamical
representation of the wave equation, and one consiblersorpuscular object to be a
singularity in that field then it will suffice to assurtiegat the quantum fluid is endowed
with chaotic agitation in order to prove the hypoth83is

Here, we propose to develop that model and to show theatwave equations
themselves are a consequence of the preceding hypothresisled that one assumes a
supplementary hypothesis that relates to the structuteéhennature of the energy that
propagates in the quantum fluid.

Start with the idea that the vacuum is comparable ¢ordinuous, relativistic fluid
that is endowed with a perpetual chaotic agitation.

By “chaotic agitation,” we mean that the density #wel current of the fluid fluctuate
in a very complex fashion in space and time aroundt state.

More precisely, if one considers a relative maximurthefdensity then one will find
another one at a distance that we shall assume smak compared to I cm, in such
a way that the density will be constant, in the meamer a spatial slab of that dimension,
while that mean value itself will remain constant mei Furthermore, we assume that

() It amounts to the real physical wawighoutsingularities that de BROGLIE introduced.
() D.BOHM and J. P. VIGIER, Phys. Re36 (1954), 208.
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the geometric sum of the velocity vectors at the pafitsuch a spatial slab is zero and
that the orientation of the velocity vector at epoimt fills up the light cone in the course
of time.

Having said that, we assume, in addition, that thoséonmotre generally vorticial,
and that there exist vorticial structures of very $uliahensions inside of that fluid.

In the classical theory of vortices, one knows #hath structures effectively exist.

The entire world knows about the classical vortegsi One can likewise cite the
following example:

vorticity velocity

Consider a torus whose meridian sections are vdirteg. The quantity of fluid that
is enclosed by that surface will be conserved in the coafséme by virtue of
Helmholtz's theorem. The fluid turns around the axitheftorus, and its vortex moment
is directed along that axis and will be conserved in tlesgoof motion.

Such structures can be stable only if they are smalpaced to the dimensions of the
fluctuations, because it is necessary that the lattely ¢hem along without breaking
them.

We assume that there exist a very large number of\gutices on each of the slabs
that were previously envisioned.

By reason of the chaotic agitation of the vacuum, came then suppose that their
distribution is uniform in the mean in space and time, thatgeometric sum of the
moments of the vortices that are distributed on aiapsab of 10" cm is zero, and that
the orientation of each vortex varies chaoticallyhia course of time.

If one so desires, one can roughly compare those veticeolloidal micelles that
are endowed with kinetic moments, uniformly distributediliquid, and carried along
by molecular agitation. If one supposes that eachadéiment, no matter how small it
might be (down to 1®° cm), contains a large number of small vortices therfluid will
appear to be endowed with an internal angular momentuntydens

2. Réativigtic theory of bodiesin rotation, described in terms of spinors. — We
commence by describing the behavior of one of thosacesrby supposing that it is
stable enough that one can consider it to be a rotagithhody.

In classical mechanics, the Lagrangian of a rotatoutyl§in the absence of a field) is
written:

L=31"w g,
in which: )
' is the inertia tensor,
a is the angular velocity vector, which is dual to a sdeamk tensor.
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In relativity, we introduce an antisymmetric tensays that represents the spatial
angular velocity of a rigid body and its acceleratimmporal angular velocity).

The invariance of the Lagrangian then imposes a foartk-inertia tensot”””’ that
one can suppose, with no loss of generality, to be ®tnomin the pairs ¢5) and (0)
and antisymmetric separatelyan Sandy; o.

The Lagrangian that we will adopt will then B (

_ 118l
L=4I Wopm Xy -

Then set:
[ad — 1 laBllel
K =31 A,

K? is the kinetic moment tensor of the rigid body, anel shall, in turn, use the
Lagrangian in the form:

L=%K[”f”]%ﬂ].

We suppose, moreover, that the ten§df is calculated with respect to the center-
of-gravity of the system; i.e., at the point that e tcenter-of-mass in the Lorentz
reference system in which the spatial components dbtaeimpulse are annulled. One
then knows (a theorem of Moller, Annales de la I.H.P949) that the temporal
components ok are annulled in that system.

K? will then be the proper kinetic moment of the systettine Moller sense, and it is
a special case of the Weyssenhoff ter&6r

We shall not use the Euler angles to express the angelocity a,z . Indeed, we
shall ultimately have to describe a continuous fieldodating bodies. Now, the Euler
angles cannot vary continually during a continuous vanatf the state of rotation,
which is of little importance for an isolated bodydamill not prevent one from writing
the classical theory of gyroscope in terms of the iEamhgles. By contrast, those angles
cannot truly describe a field of rotating bodies. In ordedo that, we shall take the
Cayley-Klein parameters, which do not present thatnmenience, or — what amounts to
the same thing — the spinof$. (

In the Appendix, one will find a theory of relativist@€ayley-Klein parameters that
we have included in order to permit us to write the calmratthat follow.

Calculate the expression fakz in terms of spinors:

From the expression:

() One should note that, for example:
A" antisymmetric tensor

B“”: symmetric tensor
(Translator’s note: | have changed the original notatidhé present one for ease of typesetting.)
() BOHM, TIOMNO, SCHILLER, Nuovo Cim. (Suppl] (1955).
H. WEYL, Theory of Groups and Quantum Mechanit328, pp. 180.
SMIRNOQV, Course in Higher Mathematics. Ill, 1. (Russian).
MURNAGHAN, The Theory of Group Representatiopg. 318.
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1 i
l=1+=9Jyla— B o
2 Y 2’3

for the infinitesimal Lorentz transformation, onesdbat a variation of a spinor can be
written:

3 = (% 5y|:|a—'E 5B00) W,
SO:
0 = - (% 5y[|a—'E 5B 0).

Now write the combinations:

i (W BGW - Ba W)
and
(W Baj W - Ba ).
One sees that:
ﬁq:iakmm:m (Withq_k|:+l),
Ba=ara=iTj,

in which 'y andlj4 define the second-rank antisymmetric tensor that scaged with
the spinor.

If we divide the two expressions by the proper-timeridl and denote the derivative
o0/ or by a dot then we can set:

(1) W o =i(u'ﬂrmw—wmr

(ag P)-

The explicit calculation of that is not difficulind gives the expressions:

(1) w =-6,9,-%9Q, (A = + 1),
Wy = HJ- Qz—yj Q,,

in which @ is the angular velocity, and:

\'/j/c

y:i arctan\i =
' d 1-v?/c*

y C
Qi=cosA and Q,=sinA

are the invariant and the pseudo-invariant that are cowpiédthe spinor. If one
supposes that = 7rthen one will have:

o« =4 (A = 1),
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w, =V,

In the non-relativistic approximatioay; must then be negligible compareddp.
The spatial components &€ tend to the classical kinetic moment, and our
Lagrangian will tend to the classical Lagrangian ef tbtating rigid body. A # 7rthen

we can write the Lagrangian in terms of spinors:

a, - I i a, a, i
(2) L=1K%a, —E[WDK T ¥ —WKPT W,

Now calculate the quantities that are canonically ugate to the components, of

the spinor, namely:

o= oL

"oy,
oL

n—a—qJn-

We set:
M = (@on,nLng= _IE W KPT 0,

[

=
1
a1 33 3 3
w N
1
N | =

I

One will then have:
Ny =nlw +N5¥,+NSW +N5Y, :—'E W KPT 0 W,

= _IE KBW T gpW = _IE K% Mg,

W = Wwin +Won,+win +win, :'E W KPT 5,

i . i
= KPWT W = K% My .

Now, K% andmy; are tensors, dd° W andW’ rrare invariants, and one will see that

M" andr arespinorsthat transform likéV”BandB W, respectively.
The Lagrangian can then be written:



Bohm, Lochak, Vigier — Interpretation of the Diraguation... 6

(4) L=%T1+n"y.

From the mode of transformation Bf and [, one will immediately deduce the
guantities:
(5) Mi=WaaN-MNaaW,
(6) Mia =W a M+ M a W,
which are the components of a second-rank teMsgt

Upon specifyind1 andr’, one will get:

M; = I_qu K¥ (e aiTap+Tap ot ) W
=i WK (a a0 acaias+ acan as a a) W

+HiW K gaglaa+iaaaa) W,
and the relations between tbeive:
[
iM; = E W' KP# (A Tap—T ap k)

:iuflI()'k‘I (O aayas—ia o as o) W

+iW K (Oaas—iaasa) ¥,
which implies, after a simple calculation:
3 Mg = Q1 K — Q2 Kj (A =+ 1).

One can then write, in tensorial form, that:

7) M, = QK =1Q,0,,6K".

apyo

Consider the system that is linked with the body ihdefined byd = y=0 ( =1, 2,
3). Inthat system, one will have:

0

A

COS—

W= 2 1 y'=(0,cos2, 0,isinD),
0 2 2

. A
—isin—
2

K*=K**=K3*=0 (from the starting hypothesis),
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K23:T1, K3l:-|—2, K12:T3,

will be invariants that are the projections of the prdpeetic moment into the principal
axes of the body.

If one takes the relations (5) and (6) into accodatgawith Qi = cosA andQ; = sin
A then the relation (7) can be written in the propsteay as:

. A . A
M,, = |(|'|f—|'|l)cosE+ ﬂ§+l'l3)sm§= T, cod ,

A . A
M,, = —(I‘If+|‘|l)cosE+| Q'IDg—I'I3)S|nE: T, cod ,
- D A D - A
M,, =-i(M,-M,)cos—- (1,+1,)sin—= 2, COA ,
(7, cont.) i i
M,, = i(I'Ig—I'IS)cosE—i Q'If—l'll)sinzz— Z, siA
- D A . D - A -
M,, = |(I'I3+I'I3)cosE—| Q'Il—l'll)smE:—ZTzsmA,

. A . . A .
|\/|34:—I(|_|E—|_|4)COSE+I 5+ 2)smE:— Z, sirA

Those expressions are not covariant. In order taimh covariant form, we express
the left-hand sides with the aid of the invariants #ratlinked to the spinof3 andW¥.
We have four of them:

* * ~ * ~

MY, Ny, NTWY, 0Oke,
in which one has:
}zé:i0'10'20'3
and

- LPE

W=ima (= “charge conjugate”).

One easily finds six invariant expressions that are ickdrto (7, cont.) in the proper
system.

NP+ 97 = 2T, sin A,

i (PN -N% W) = 2T, cosA
i (N"® - = 2T, sinA,
M%. % +$%, N =2T, cosA,
N%,W+WT, 7=2T,sinA,

i (WT1-N"W) =2T, cosA.

(8)
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One has the two relations:
©) MW +wT =0,
N%.w-wo. M =0,
moreover, which couple the Cayley-Klein parameters egith other.
3. The vorticial model of the ether. — We must now remind ourselves that we do
not have to describe a rigid body, but a vortex; aeqtating fluid mass.
In that case, once it attains its equilibrium staélbere will be no spin precession
around the rotational axis.
We then suppose that in the proper system the kinetmeant is aligned along one of
the principal axes of the body, which is written:
T,=T>,=0,
and one can sdt = k.
Calculation then shows immediately that one masth

M=ikW =KY" g
M =-ik BY.

The tensoM gz that we have introduced can then be written:
Mgs=2W* T oW =2myp,

in whichmgg is the second-rank tensor that is linked with the spino
The relation (7) is then written:

(71) Mas = Q1 Kap— 2 Q2 dugo K,
but one of the Pauli-Kofinck identities is written:
(72) Map =3 Qg (W'’ — 0 S) = Q2 (Ug Sp— Us ),
in which one hasbecausé¥ is normalizedt
u,=¥a,V, s, =Wa,W,
and
uy =1, s, s'=-1.

The right-hand sides of {yfand () must be equal, no matter what the afgls.
Now K%, u”, ands’ do not depend upol One will then have:

(10) Koy =kOps WS =Kky s- Yy s
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That result is known already in Dirac’s theoty (

If one takes the expressions farandM’ into account then the Lagrangian can be
written:

(11) L =ik (W'Y -wrw).

However, one also has tHat1 K .z, which can also be written:

L=k af,.

(wg[, denotes the values afz in the proper system.)
The relation (9 will then give:

(‘)102 == Qle‘e?_Qng-

If we suppose thahe energy of translation of the body is negligible compared to the
energy of rotatiorthen the Lagrangian can be written (upon seftirgk &7):

(12) L=—xQ.

Upon adding (11) and (12), the Lagrangian willketéake form:

(13) L:ig(w*qJ—liJ*W)—)(Ql.

One will recognize the great formal analogy whk Dirac Lagrangian.

() Cf., HALBWACHS, LOCHAK, VIGIER, C. R. Acad. S@41 (1955), pp. 276.
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Appendix

Expressionsfor therelativistic Cayley-Klein parameters
asfunctions of the Euler angles

1. Rotation matrices in space-time. — Let the following matrices describe the
rotations in the coordinate planes in space-tithe (

A rotation through an angle in thetOz plane
B ! ! ! g " tOy "
C " " " )4 " tOx "
D ! ! ! Y " xOy "
E " " " X " xOz "
F " " " g " yOz "
G ! ! ! g " xOy "
cha 0 0 -shlr chf 0 -shg 0 chy -shy O
A= 0 10 0 B= 0 1 0 O, C= -shy chy O O’
0 01 0 -sha 0 clo O 0 0 10
-sha 0 0 chr O o o 1 0 0 01
1 0 0O oO 1 0 O 0 10 0 0
D= 0 coyy si O _ 0 cosy O -siy E= 01 0 0
0 -sing cogy O o o 1 o /| 0 0 co¥ sid|’
0 0 0 1 0 siny 0 coy 0 0 -sind co¥
1 0 0 O
G= 0 cogpp sip O
0 -sing co® O
0 0 0 1

The general rotation about a time axis is writ@n = ABC it is a Lorentz
transformation without rotation of the spatial axes
A rotation about a spatial axis can be writtetwn ways:

(") Translator's note: This list of matrices is clgaredundant, since the Lorentz group is six-
dimensional. In particular, the matridesandG describe the same basic rotation. However, this Appendix
also had an unedited character to it, So one mussioocedly correct things that do not seem right.
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a) Qr=DEF: successive rotations around spatial axes
b) Qe =DFG: rotations through the Euler angles.

The general rotation can then be written:

either: Q=Q, Mr=ABCDEF
or: Q=Q, Me=ABCDFG

2. Expressions for the rotations as functions of the Cayley-Klein parameters. —
We briefly summarize the theory of spinors:

Consider two two-dimensional planés and A in a complex, four-dimensional

affine spaceé\4 that havgust one point in common.
Let the affine frames have two basis vectorsAjnand two of them inAE, and

consider the unimodular transformations that are defayed

e, =ae, A=1,2,

— ol ~—
e, =aye,, (=12,

with
Det | a} | = Det|a | = 1.
One introduces the second-rank spin terséy such that:
M=M=, M’ =c.
That definition is invariant under the transforroatlaw:

Ni o A
c'=aj aic”.

One then sets:

0 0 ¢ ¢ 0 0 xX=x"  X-ix
o = 0 0 ¢t ¢ _| 0 0 X+ix2 =x*-x°
2 0 o0 X=X X+ix 0 0 ’
A 2 o 0 x'—ix*> =-x*=-x° 0 0

in which®, x, >, x° are the contravariant components of a space-ten®r Since the
transformations are unimodular, one verifies that:

Clicz“z_ Cl‘zcz“zz (X0)2 _ (Xl)z _ (X2)2 _ (X3)2
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is invariant, which shows the correspondence betweesptherial transformations and
the rotation group.
Moreover, one has:
¢ = (cM),
which implies that:

r_ A
a/'i - a/"‘ .

The spinorial transformations of the contravar@omponents o# are then written:

KWisTw?,
myl+ny?,

W=kt +] @2 W
W =my!+ny? W?

and those of the covariant components are written:
LIJll LIJZ! 1 Lpil Lpi :LIJZ, —LIJl, LIJQ! _LIJia

and one will always have the condition:

k |
m n

in whichk, I, m, n are theCayley-Klein parameters.
The transformatior'” = a; a4 ¢ is then written:

(xg—x" X = ix? j _ (k mj{xs’—xo N ixzj[T( Tnj

X +ix2 ==X I n)ix+ix2 =x*-x\T 7))

from which one infers that:

2¢ =x°(kk+ Il + mm+ AP+ X(— kk kI- mr M X kb K A e 2 kk H mmo),

2 =x°(-km- km-1n—- 1D+ X( kKot ke Tm e X kA Tk “lm )m °x “km " kmv In),

2¢ =x°(km- km+ T 1D+ X( k- ket Im Ik & kA kn “Im Jm °k km  km -n),

2¢ =x°(kk= Il + mm+ AP+ x( ki k- mr- M X kb K ™A e S kk H o mmo)n
3. Calculation of the Cayley-Klein parameters as functions of the angles. — We

shall now calculate the parameters that corresponidetootation through an angiin
xOt. One solves the system of 17 equations:
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0):  kn—-Im=1,

(1)  kl+kl +mn+ mn=0, (9) kk-mm+ - nn=0,
(2)  kl-kI +mn- mn=0, (10) kI +KkI —mn- mn= 0,
(3) —-kk-mmt Il+ An=0, (11) kk+IT +mm+ nn= 2,
(4)  km+ kmt+ T+ In= 0, (12) Im+ml +kn+ kn= 2,
(5) Im—Im+ kn- Kn= 0, (13) kn+kn- Im- Im= 2codb |,
(6) km+ km- Th— In= 0, (14) km- Kmt+ Th— In= 2ising .
(7)  km- kmt+ T~ In= 0, (15) ki -kl +mn-mn= 2ising .
(8) —Im+Im-kn+ kn=0, (16) kk-II —mm+ nh= 2cod .
One will then have:
1)+ (16): a)kiumzzaﬁg 3)+(9): ®) I -mm=0,
] 'S — . 9 —
(1D)-@16): @) Il +mm= 25|r’1§ (3)-(9): ®) -Kkk+nn=0,
S0
Kk = in=cog ,
2
Il_:nr_l:sm2§.
2
Moreover:
12)+ (13): ¢€) m+mp2aﬁg (5)+(@®): (d) kn-kn=0,
! — T . 9 —_
(12)-(@3): €) Im+Im= 2sii=> (5)-(8): @) Im-Tm=0,
S0
kn = kn= coszg :

In_1:I_m:sin2§.
2

Upon comparing | and 11, one will get:

k=n and |I=m.

The relation (0) will then become:

(0): K —12=1.
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On the other hand:

(1) + (2): kl+mn=0 and (2)+(10): kl-mn=0,
SO
(@) mn+mR=0 and P  ki+kl =o0.

Multiply () byk: Kki+ k2T =0. From (0, let:

Ico§g+ T@a+®»=o, ) Ico§g+ I_+Isinzi§=0,

SO
l+1 =0,
hence:
| =m=zisin—,
which gives:
k:icosg.
2

Now, if &= 0 then one will recover the identity matrix, so:

k:n:cosg.
2

In order to get the sign df one substitutes=m==1i sin &/ 2 into (14), for example.
After simplifying, that will become:id+) sin 8= 2 sin g, so:

.. 0
| =m=isin—.
2

Some analogous calculations will lead to expressionshke other rotation matrices.
One will find the seven matrices:

chg shg a ché =i shé 8
a= 2 2 = exp(a{zj, b= 2 2| = exp(ag Ej :
shg chg ishé ché
2 2 2 2

o
1

c= e 0 = ex O"Z, e O = ex ia’ﬂ,
0 e—y/Z 3 2 0 e—u///z 3 2



co% sin%( cosz i sinE

e= = exp(algj, f= 9 9 = exp{'
—sinl co# isin— coSs—
2 2 2

in which o, , o,

g

X

, g, are the Pauli matrices.
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ig/2

.O j = ex;{i agfj,
e—|¢/2 2

IUlE

4. The Dirac equation. — One introduces the contravariant spin tensor:

00 3t i ew

N L e T
whoe w0
w e aeae 0O

Note that the invariant of this spinor is the d’'fleertian.

Now consider the spinol’= DY _.

m .
My one wil get:

Introduce the spinor that is defined by:

qu_a‘-P ow. 6‘-PA2 awé——ﬂ:lp
e ax° axl X oY
@2 = 6‘-|J Ia‘-PAl_aWAZ awé:ﬂ:w
axl X X X n v
~ v, o¥., v aw mc
LIJZ - 14 14 2 4 _ l-IJA,
¢ 9xX’ ox 6)(2 nho 2
@4:awl_lawl_aw2+aw2:_ﬂ: .
ox ¢ o ax not

= (¥, W),
¢2:_%(wz+iw1)’
gs= (W +i¥),

)

Upon imposing the demand th&#’ =
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) :_%(wz_iwi)-

The equations can then be written:

Ll
%%_(_xl I
R )

5. Calculating the linear transformation of a Dirac spinor as a function of the
Cayley-Klein parameters. — One has:

W, =¢,-¢,

LP2:¢4_¢2’

l.|J1:i(¢4+¢2),

W, =i(¢, +9s,),

and

W= ¥ -m¥, = ng,-¢)-ng,~¢,) = ¢,-9,
W, =W, +kY, =-1(4,-4)+k(@,~8) = .-,
Wy= N -, = g, +4,)+ Mg +¢) =1g,+9.),
W, =-TW, +kW, =-li(g,+¢,)-ki(p,+4) =i(p,+9,).

One then easily sees that #ie transform by way of the matrix:

Pyl
|
>

k+n | -m m

A =1 -1+m k+n [+m —-k+n
2 k-=n T+m k+n 1T-m
|+@ —k+T 1+M k¢

The matrices, b, ¢, d, e f, g give us expressions fdg |, m, n as functions of the
angles of rotation. One can then infer expressiong?).
If one sets:

¥ = rotation of thé™ spatial axis around the time axis,
a; = Dirac current-matrix,
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g = spatial rotation around thi8 spatial axis,
g, = Dirac spin-matrix

then one will find that for a simple Lorentz transf@ation:

Ni = exp{a'i KJ :
2
.6
A= exp[—laj —Jj.
2

Hence, one has the general transformation:

A= ﬁ exp(ai %j[ﬁ exp{—iai %j

If the transformation is infinitesimal then ondlwecover the known expression:

I:1+a%/—iag.

and for a spatial rotation:

6. Calculating the Cayley-Klein parametersin the case of a general rotation. —
Consider the most general Euler rotation. ket abc and w = dfg. One will then

have:
k |
L:a”]UIL = ,
m n

B

h? snd [ ol i s | e w2 O isin? | g2

c > s 5 c ) i s ) Ley 0 j[eu// 0 cosE ISII’FZ é¢ 0
-yl2 —iyl?2 2] 2] -ig/2

sh? ch% i ng C|£2 0 e 0 e 0 e

isin— cos—
2 2

SO one can identify:



Bohm, Lochak, Vigier — Appendix. 9

k=exp[y+iw+¢}cog(chﬁ ch- +i slcr Sﬁj+l ex{yﬂw {q
2
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7. Expressionsin the proper system. — We can suppose th# = 0 and¥, = 0, so
$1=0,0,=2a, ¢3=0,¢,=b. We will then have the invariants:

Q, =¢"a,p=aa-bb,
Q, =¢"a.¢ =i(@b- ab).

One can demand that the spinor should be defined upntdtilicative factor:Q; = cos
A andQ; = cosA. One will then find the two solutions:

A .. A
a= coSs—, a=-isin—,

2 I 2
b=—sin£‘, b= cosé .

2 2

Take the system I; one has:

0
cosé 0 =i siné 0 0
A A A 0
coS— 0 coS— 0 —i sin— || 1 AN 1
2 1= 2 2 = exp(—ia4—j :
. A A 2)|0
—-1sin— 0 COS— 0 0
0 2 2 0
—j siné 0 =i sin? 0 cosg‘ 0

Note thato; commutes witho; and g, so upon settind = &, , one will get the general
spinor:
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N|J>

| |

0
4 3 1
W= exp(—la, ﬂj exp{a, ﬁj
- 2 )L 2)|0
0
One has:
|| mesia
| exp 4= |-mexpi—
2 2
cosé ﬁexp[—ié} k exp{ié}
=N 2 =1 2 2
(Tenlg]mentid
| exp —i— |+mexpi—
0 2 2
sng) (renl-ig)keqig
—isin— nexp —i—|-kexpi—
2 2 2
S0
2¢, =1 exp —ig -m ex{lg} k=(¢, - ¢4)9XI0[ '
2¢, =N exp S8k ex{lé} |:(¢1D+¢E)9XIO[ B
2 2
- A: A and
29, =T x| -1 2] o exfi m=(,~g)exp -
2¢, =Nexp —ig‘ -k ex{ g‘} n= (¢2+¢4)exp[ '

If one takes solution Il instead of | then onel fild that:

0 0

—isinA/2 [ ) A} 0
=exp|-io,— .

0 210

COSA /2 1
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