Excerpted from L. Boltzmanny/orlesungen tber die Prinzipe der MecharikTeil, Johann Ambrosius
Barth, Leipzig, 1904, chap. IV, pp. 162-212.

IVV. Analogies with physical, especially
heat-theoretic, theorems.

§ 42. Analogue of supplied heat.

The special character of the equations of thermodyrsaiigualified by the fact that
the increment in supplied heat is not a complete @iffeal expression. However, the
differential & of the supplied energy will always be a complete bifiial expression,
as long as we consider scleronomic systems, as prév@us paragraphs. Thus, as long
as we restrict ourselves to the consideration of systems and place the differential of
the supplied heat on a parallel with the incren&nin total energy, no analogy will exist
already in this most important context.

On that basisClausiushas already considered systems in which there arendista
forces whose laws of action change in time, such thanpeters that are very slowly-
varying in time enter into the force functidhin place of certain constants, and the
mechanical system that is considerechesonomic

If one thinks of, e.g., a piston that seals a warm ga® the action of repulsive
normal forces that are external to the gas molecwdes which suddenly assume
enormous values in close proximity to the outer surfdeE one can think of a slow
withdrawal of the piston under the action of a slowrge in the force function of those
forces. Clausiusalso treated central motions for which the law ofoacbf the central
force contained parameters that varied in time analdgous

However, a complication in the calculations entenéd this Clausiuspicture of the
variability of the law of action for the forces oftnee. One always added an additive,
arbitrary constant to the force functidhof the these forces, which we can think of as
being determined by the fact that for a certain positfallanaterial points of the system
(viz., the zero level of the potential) one will have= 0. For scleronomic systems, it is
entirely irrelevant which position one chooses forBly contrast, if the law of action of
the force changes in time then the work that is requoegb from one zero position to
another will also change. The absolute valueVofhen changes in various ways,
according to whether one chooses one zero positidcheoother one, and in order to
determine it completely, one must state which speciatipo®ne has chosen to be the
zero position.

It is always best to choose that position to beotie in which all material points are
so far from each other and from all remaining poiritat tact upon them that no
perceptible force acts upon any of them. In physicalsgdbés choice of zero position
will always be possible. It is only for laws of ferthat are constructed by mathematical
abstraction — e.g., when the force that acts between material points is directly
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proportional to the distance between them — that tlagcelof zero position can become
impossible.

The Clausiusassumption that the law of action of the forces Hwit between the
material points changes in time indeed gives a completeggnaith the thermodynamic
equations; we observe nothing in nature itself that would sufjgesthe law of action of
certain natural forces would vary in time. Indeed, phlsysé&search would even cease
completely if we did not know that the laws of nattivat we had found up to now would
still be correct for later times. Therefore, under €lausiusassumption, one can arrive
at an unambiguous definition of an extremely fluctuatingrgy balance only under more
or less arbitrary assumptions, and one is advised to esplee assumption of the
variability of the law of action of the forces withe assumption that material points
interact with then material points that define the system considered. fGimeer points
shall be completely immobile during the unvaried motion;irduthe variation of the
motion, however, they will change their position extegnslowly. The aforementioned
computational difficulty then drops away.

It will not be the energy that is supplied by alltbe n points (which has been
regarded as analogous to the heat that is supplied), butotthethat is done on the
points as a result of their motion under the influencehefforces that act upon them that
are due to thes points, that corresponds to the external work that islgdofo a body,
and merely the remaining supplied energy that corresporttie supplied heat, such that
the differential of the energy component that correspaodse supplied heat is not a
complete differential, while the differential of thetal supplied energy still is.

The position of then material points shall be determined $goordinates (viz., the
rapidly-varying ones), but those of th@oints shall be determined bycoordinates (viz.,
the slowly-varying parameters).

One thus obtains (e.g., in the following way) a goodupetof the irreversible
changes of state of a gas that is sealed by a pigiba. molecular motion and internal
atomic motion of the gas molecule can correspondeadpid motion of th@ material
points that are being considered. The molecules gbiten, whose thermal motion we
can ignore without changing the problem substantiallg, aarespond to the material
points that move only under a variation of the stat¢hefgas (and indeed extremely
slowly as long as its changes of state are irreveysibl

8 43. Concept of cyclic motions and the motions that they relate.

One now deals once more with ascribing properties torap& motion of then
material points that would serve as characteristic ptiegenf a true picture of thermal
motion as much as possible.

The problem of giving a brief, systematic summarylbbasic types of mechanical
systems that could be used for that purpose will thus implazated by the fact that many
of them have some features in common with other oned, the various authors
sometimes regard one feature and sometimes the othiee asost essential one, which
also makes the terminology fluctuate. In the summiaay | seek here, | will then strive
to attain either completeness or the greatest pessudrview of the classification, and |
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will also be forced to deviate somewhat in the ternaigg] sometimes of one author and
sometimes of another.

If we accept the basic picture of the mechanical thebheat then one of the striking
properties of thermal energy consists of the fact thah warm body one indeed
continually finds the most animated motion in the sesalparticles, but we nevertheless
discern no variation in its externally-visible and perddetistate, while we clearly
distinguish how the state of a body continually gfenin time when it moves.

We also find this property in other domains of physicse & not see the slightest
temporal variation in an electric current of unvarying nsigy, in whose vicinity one
finds magnets or masses of iron at rest, except witlteigo the driving battery, and yet
Maxwell explained its properties by the hypothesis that the ess#rthe electric current
consists of a violent motion whose arena is partialbyde of the current conductor and
partially in the surrounding ether.

We must then look at mechanical models that possedarsproperties. An example
of such a model is given by a rotating rigid body thathsolutely symmetric around its
axis that exhibits no motion besides a rapid rotationrd that axis. Another example is
given by an irrotational current in an absolutely honmegels, incompressible, inviscid
fluid in a channel that returns to itself and has abshluigid walls. We refer to such
motions agyclic.

Special cyclic systems have already been employedechamics and the theory of
heat, especially birankine Maxwell first treated general cyclic systems and employed
them in order to explain electromagnetic and electrotyn@henomena. Its application
to the theory of heat in general form was madeRbykine and we havdlelmholtzto
thank for the further development of the basic equation it, which had already been
presented byMaxwell as well as for the foundations of the now-converatio
terminology.

Cyclic systems, in the strictest sense (in whabyed, we would like to call thertue
cycley, are ones in which arbitrary motions are indeed foand, thus, such that when
any massive particle leaves a location in space, aletehpidentical one will always
immediately replace it that has the same parallelcitglthat the first particle had at that
location in space. A coordinate is calledrae cyclic coordinate when the system
performs a motion such that the specified coordindt@nges while the remaining
coordinates remain constant.

The molecular motions that represent heat in the amechl theory of heat are not
strictly cyclic according to the picture of that thgorlt is only for a large number of
moving molecules that as soon as a molecule leavedancstate of motion, it always
soon arrives in the neighborhood of another molecule wery similar state of motion,
such that we perceive no change externally. For #aeton, one must extend the concept
of the true cyclic system: The characteristic ofttle cyclic system consists of the fact
that all of its properties depend, not upon the absoluteesaof the true cyclic
coordinates, but merely on their rates of change. vahee of a cyclic coordinate that is
not differentiated with respect to time can thus emter either the expression for this
viva or into the expression for the forces that act uporsyiséem or into the functions
that express conditions. In generalizing the concepuefcyclic coordinates, we would
like to follow Hertz’'s lead in casually referring to any coordinate whose vallngh is
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not differentiated with respect to time, enters intbo& the expressions as @clic
coordinate.

When either internal or external forces act uponstesy, asHertz assumed of all
systems, the rectangular coordinates themselves wiltyelic, in the event that no
condition equations are present.

Systems whose motion is periodic have a certaitigakhip to cyclic systems when
they thus incessantly repeat precisely the same staetmn in the same sequence in
the course of a long span of time, and we would like &fligrcall themperiodic systems
When the periodically moving masses only play a subomlira@e, the periodic systems
can have almost all properties of the cyclic onefoabh they are distinguished from
true cyclic systems only by, e.g., that fact that t@ytain rotating gears, pistons that go
back and forth, or moving masses that oscillate in otlagsw

Helmholtz went further and considered systems that are subjeche@ly the
condition that not only the sum of the kinetic and ptaérenergy, but each of those
energies individually, always remains consta@lausiusdefined an even more general
concept when he referred to a motion for which the valuany of the rectangular
coordinates or any of the velocity components of a madtpoint in the coordinate
directions never increases beyond all bounds whenntbBon takes place for an
arbitrarily long time interval as stationarymotion, while | would rather prefer to use the
word “finite.” If, in addition, the motion is indeed ngeriodic in the sense that all
material points simultaneously return to preciselyrtb& position, speed, and direction
in the course of a finite time and then begin the samé&on all over again, but a
regularity exists in the motion such that the tempare&n of thevis viva one velocity
component, the value of any rectangular coordinate of aatgrral point, or the total
force functionV, etc., hastens to a fixed limit when one allows tihee interval over
which that mean is taken to exceed all limits in antaty way without varying the
motion, then we would like to call such a motiomasicone.

8§ 44. Special examples.

Before we go into the calculations, we would likectarify what we said with some
examples.

Thefirst exampleis the one that has been already been mentionedaséimees that
comes from the kinetic theory of gases or fluid¢ ttean form droplets. The system will
be defined by material points that, from the intuitions of theahanical theory of heat,
move just like the molecules of a gas that follolhswan der Waaldaw or a fluid that
can form droplets in a cylindrical vessel with rigid wahst is closed from above by a
completely dense, frictionless piston. The raisinghefvis viva(perhaps by molecular
impacts that come from anywhere outside) corresponitetbeat supplied by the raising
of the temperature, whereas the work that is done agdiesinternal forces that act
between then material points corresponds to the internal work. Jkariables are the
guantities that are necessary for the determinatioimeoposition of theé material points.

The piston always moves only slowly, such thapisssure is always nearly equal to
the opposing pressure of the material points between vagahibrium in thevis viva
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should also nearly exist. Tigevariables determined the position of the piston. Taekw
that is done by the force that the piston exerthemtaterial points is the external work.
It is equal to the work that is done on the piston byfoinees that act upon it from the
outside. For a sufficiently large number of molecutas system is not a true cycle, but
it is isokinetic, finite, and mesic, but still not poatic.

Second example: central motion modehAs we already did at the conclusion of
paragraph 41, we similarly consider the central motionaco$ingle material point.
However, let us take precautions that the two consthatgla, which determine the law
according to which the central force acts, should vanylglduring the central motion.

In place of theClausiusassumption of a direct variability in the laws of natwre,
would like to think of the variability ofi anda as coming about by ordinary mechanical
means. If we first treat the central motion of anelt around the Sun then we can perhaps
arrange that masses (e.g., meteor stones) alwaygeploto the Sun from the outside,
such that its mass, and therefore also its forcettodction to the planets, will also
increase in time. If one would like to construct a etbprocess that is analogous to the
Carnot circular process then one would have to, e.g., fikshge masses into the Sun.
That would produce external work. Thas viva of the central motion, which
corresponds to the thermal energy of the warm bodwldvthen be reduced. The same
masses must then be once more taken from the Suo antinfinite distance. Less work
would need to be done by that than was gained before byuhging, since indeed the
planet is now further away and exerts less attractibimally, the energy of the orbital
motion of the planet must again be brought to the oldeptsy a corresponding supply of
energy, and we assume that the form, position, arecitiels of motion are again the
same at the conclusion of the process as they wehe atart. Since the path is always
closed here, complete analogies with the second mad} exist. IfT is the meawis
viva of the planet in its orbital motion, arXD is the energy that one must supply for the
purpose of raising theis vivathen it will not bedQ, but dQ/T, that is a complete

differential, as long as the mass of the Sun alwagi®ases and decreases so slowly that
the increase or decrease during a planetary orbit carofmsdered to be small and
uniform in time. One can verify that by performing theca&tions in detail, although
the introduction of masses into the Sun is, afterstill,a somewhat inconvenient process
for the sake of calculations.

A device that is indeed somewhat abstract, but mechgnicach clearer, and which
illustrates all conceivable cases in the greatest ghtyers the following one: A very
small, completely smooth ball of massmoves on a smooth, horizontal plane. Let a
flexible, massless string of unvarying length be fixed upahait goes through a hole in
the plane and then hangs down vertically and carrieassless, magnetic poke that
moves without friction in a vertical tube at its enderttally beneath it, one finds an
extremely short magnet that can rotate around a dwak axis whose very close poles
shall be calledB andC.

One can now slowly supphjs vivato the small balin during the central motion by
means of small impacts (this corresponds to the supgigat) and also slowly rotate the
magnet (which corresponds to the motion of the pisto@ne can thus vary the state
slowly and also return to the old state of motion mother way when one, e.g., first
rotates the short magnet by less agitated motion eoksthall ballm, then supplievis
viva, then slowly returns to the old position by a violemtion of the short magnet, and
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then again removes just as muadk vivauntil thevis vivaarrives at the old value, and
thus also changes the direction of motion in precideyway that will ultimately put it
once more on the same path with the same positidheomagnet. The variables that
determine the position of the massin the plane are the ones that we previously called
the s variables, while thg variables reduce to a single one, namely, the angletation

of the magnet.

There are two ways that one can arrange that the tbat acts upon the magnet from
the outside does not vary periodically during the unvarietiam, but only needs to be
slowly-varying in time, in the event that the motienviaried: First of all, one assumes
that the orbital period of the massis very short and that the moment of inertia of the
magnet relative to its rotational axis is enormoushdbat it makes only a very small
rotation during the motion of the massfrom perihelion to aphelion. Secondly, one
imagines infinitely many equally-constructed massesn the plane, instead of a single
one, and which have all possible phases of the sameakemtion simultaneously, and
without mutually perturbing each other, move independently df etieer and all of then
will be affixed to the magnet in the same way and leams of the same device that was
described above. In that way, one can convert themystto an isokinetic one (in the
Helmholtzsense) and likewise also a true cyclic one, when indtof these masses
already continuously cover the entire surface thag gweeep out in the course of time
under central motion at the initial time in a suitaby. Thus, the knowledge of a single
cyclic variable is then by no means sufficient for determination of the position of any
of the massive particles that take part in the centation, along with the slowly-varying
coordinates that determine its position or that of tlagmet, but two more variables are
required for that (e.g., two rectangular coordinatetenptiane, or the path length and the
direction of motion at a given distance from thecécenter).

If one would like to arrange that the central motmheach mass results from
Newton’slaw of gravitation then one could apply no ordinary magnbktit rather the
pole A must be attracted to the closer pBlédy a force that varies in proportion to the
first power of the distance, but be repelled by the dispmle C with an equal force.
Then, it is once more naf), but JQ/ T , that will be a complete differential. If one has
two magnets at the same time, one of which exhib#shihavior that was depicted
above, while the other one obeys the same law asdamaoy magnet, and each of them
can rotate independently of the other one then ofieobtiain a central motion under
which the central force will obey the law that wasntiened at the end of paragraph 41,
and the two constantsanda can be varied slowly independently of each other.

J0Q/T is then also not a complete a differential, and sews that’Q/T is not a
complete differential for all isokinetic systems,wsll as not all pure cyclic ones. In
regard to the rigorous calculation of all examplesférto Wien Sitz. Ber. 1192, pp.
853, Oct. 1885, Exn. Rep. d. Phy&R pp. 135.

Third example: A mass rotates rapidly around an axis, and its distiooethe axis
is the slowly-varying parameter. This is an instrucéxample of a cyclic system in the
broader sense, accordingHiertz’s terminology, that is not a true cycle. For the sake
brevity, in what follows, it shall always be referredas thecentrifugal model On the
beautiful analogies that this simple mechanical devidebés with Carnot’s theorem
and the behavior of complete gases, cf., Vioylesungen tber Maxwells Theorie der
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Elektrizitat und des Lichtesolume 1, lecture 2. Another device is described indhges
book (lectures 4 and 6), for which two mutually-independgalic motions are possible.

Fourth example: The fluid flow modelAn inviscid, incompressible fluid flows
irrotationally in a channel that returns to itself. Tiem of the channel and also its
cross-section can vary slowly at different placethout that varying the total cavity of
the channel. This system is a true cycle.

8 45. Either periodicity or a cyclic character of the motions assumed.

We would now like to carry out the calculations in tireatest generality that is
possible. We think of material points (the small balis of the central motion model)
whose position is determined lg/ generalized coordinates.o conditions that are
completely unvarying in time can possibly exist betweendtter, which therefore must
also remain true for all varied motions of them.

Later, we will assume that the motion of thegeaterial points is either cyclic or has
been converted into one. However, for the time beig,would like to leave them
entirely general.

Thesen points define the mechanical system considered. Ini@addihree types of
material points shall be in effect.

1. Along with then material points, r{) other ones shall be in interaction, and the
latter ones shall always keep the same position in spacketherefore, with no loss of
generality, they can also be added tortlpwints. One can find a fixed, unvarying mass —
e.g., in the central motion model, at the place wllkbeestring that exerts an arbitrary
central force on the small bath goes through the hole. Such masses can also have a
distribution in the path plane of the small ball tisafixed in some other way.

2. In addition to then material points, there areother ones in interaction, whose
position, which is determined liygeneralized coordinates (slowly-varying variables or
parameters), is often entirely unvarying and often onaezraxtremely slowly-varying.
Thev points will be regarded as external to the system intigmesThey correspond to
the magnet in the central motion model.

3. (N) other material points are present that shall aceiyermpon thev points, but
not upon then points at all, and therefore shall remain completeiiside of the system
considered. The forces that they exert upon the fisnts must be in complete
equilibrium with the forces that thepoints exert upon the points, as long as the latter
remain completely at rest, while the state must diffam equilibrium only slightly when
thev move slowly. In the central motion model, these the forces that must preserve
equilibrium with the forces that the pdleexerts upon the magnet.

Let T be thevis vivaof then points,F, the force function of all of their interactions
with each other and the action of the forces thateafiom then' points. We call the
work that is done by all of these forces thiernal work and we shall call the work that
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is done by the forces that are exerted byulpoints on then points (i.e., the external
forces) theexternal work. The external force on a coordingieof then points — i.e., the
one that is exerted upon it by means of the interacifoiiie n andv points — shall be
denoted by}, . The forces that act between theind thev points shall have a force

function, in any case, that shall be denotedb¥yy contrast, the total force functiéi+

Q of all forces that act between then', andv points shall be called. As long as one
prefers to say nothing at all about th@oints, the external influence on theoints is
determined simply by the forceéB, that have the force functio@, but which then

include parameters that are slowly-varying in time.

First, then material points shall move during the time intettyat to, with unvarying
positions of thev points, which we would like to refer to as the unvariestiom. The
analogues of the mean valuesTofV, etc., during that time interval, as calculated by
formula (236), shall be denoted By, V .

We next compare the unvaried motion to another mohah hiappens in a way that
differs from the first one by only infinitely littlebegins at the same tintg as the
unvaried motion, and ends at a titpe J&; that differs front; by only infinitely little.

Any state A of the unvaried motion that takes place at any ttmeill always
correspond to the staBeof the varied motion that takes place at the sametti Thevis
vivaT of then points in the statB shall be greater than that in statey Or.

The values of the coordinates of alh points will, in any case, be somewhat different
in stateB than they were in sta#® We denote the increaseshinQ, andV that come
about as a result of this situation &y, X2, anddV, resp. Furthermore, if:

(240) P,=- a—F + ‘Bh
op,

is the total generalized force that acts upon a coordmaiéthe system o points then
one will have:

(241) F+X=N=->Rap,.

h=1

dV is then precisely the quantity that was denoted inw@at in the foregoing, and
represents the total amount of energy that was suppligetsystem of points that will
be performed against all of the forces that act upom fheints. Furthermore, sina&
represents the increase in the vivaof that point, then points must be supplied with the
total energy:

(242) E=0T+N=0a+X =0, - aQ

in some way in order to take the st&tef the system to the staB2 The forces that
produce this supply of energy, and to which we would now tik restrict the name of
additional forces are entirely new forces that are completely déferfrom all of the
ones that act during the unvaried motion. We make tleigygdE analogous to the heat
AQ that supplied to a body, while we make=T + V (or also, if we would prefed,, =
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T + V), along with the total internal energy of a warm haalyalogous to theis vivaof
the molecular motion and the heat that is produced bydoiarnal work, resp.

§ 46. The extended system.

The increases in the force functioQsandV, which arise from the fact that the
material points have somewhat different positions endtateB than they do in stata,
shall be denoted bgQ and 3V, resp., such that the total increase that the quantties
andQ experience under the transition from state stateB is:

(243) QotV =N + 4V, QotQ = X +0Q,
and the expression:
(244) Dy =T + N + 3V

represents the total increase in the total endygy T + V of the extended system oft
Vv points.

One can then say: If the transition from the unvaside to the varied one takes
place at precisely the tintein such a way that precisely the stAtgoes to stat® then
the system oh points will be supplied with the energ¥ from the additional forces,
which supplies the points with the energy €Q by its influence, such that its internal
energy will increase by, = dTI + &, or it will employ the partdT + & of the total
energydk that is supplied by the additional forces towards inangeathie proper energy,
but the partQ) will go to the performing of external work.

Q is the force function of the interaction of theand thev points. Since we are
dealing with merely a mechanical picture of certainurdt phenomena here, it is
completely arbitrary which point one adds to the systensidered and which ones that
one regards as external. One analogy with the prepestiwarm bodies, in particular,
can emerge in one case, and another analogy in anaeer ©ne can then also count the
Vv points as belonging to the system considered, such that:

V=F+Q
is then the potential energy, and:

J=T+V=T+F+Q

is the total energy of the total system considered. W@méd then once more mak# +

oV analogous to the supplied heat, but mpw= 3Q is analogous to the supplied energy
that takes the form of external work to the systend,Q is heat that is expended upon
doing external work.

If the forces that have the force functi@nare not ordinary forces at a distance, but
have the value zero for a certain distance from thetpbetween which the forces act,
but immediately increase to infinity for a somewhagéda or smaller distance, thé&h
will be constant, other than that, so:

xXQ +a0Q =0,
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and both viewpoints will come down to the same thing. Taidition is fulfilled by the
centrifugal model with no further assumptions. In tletype of a gas that is closed by a
piston, one can think of it as being fulfilled in any castt no essential modification of
the problem, since even in that case, only a vanishing mtnadenergy will be employed
for the variation of the force function of the fescthat act between gas molecules and
that of the piston, so the variation@fwill not come under consideration.

We have let]3,, denote the forces that thepoints exert upon the points (e.g., the

piston on the gas). In the casevobpoints at rest, th&l points exert similarly-denoted
forces on they points (the hand or the weight of the load on theroside of a slightly-
moving piston that closes the gas). Thexert equal and oppositely-denoted forces on
thev, or thev on theN points. The same statement is true for an extresiely motion

of the v points in which the entire process becomes nearlywersthble (e.g., the
irreversible extension of gases), at least to a high dedgproximation.

Therefore,~ gV is also the work that is performed by means of theaomaif thev
points against the forces that thgoints exert upon thepoints and imply that the latter
must remain at rest for unvaried motion, but for vameation, they will move only
exceedingly slowly. Namely, the latter forces avmpletely the same as the forégs.

8 47. Application of the principle of least work.

&, JdT, anddV now have the same meanings as in formula (223), 8V3generally
contains, in addition to the coordinates of thealso those of the points, and the
expressions that included in the latter play the roldaflg-varying parameters in the
expression for the force function of theoints, as long as thepoints move slowly; as
long as the motion remains unvaried, this will never happg itself. During the
unvaried motiony is then a function of the coordinates of theaterial points that does
not contain time explicitly, and that alone was assd at the beginning of 8 36. The
effects that come about for infinitely small motiaofsthe v points will be counted with
the additional forces there. Equation (223) is then omm true here, namely:

25["Tdt = ["oE dt+> (G- 45 1),

Up to now, we have consider the unvaried motiomnduthe time interval; —to, and
completely independent of that, the varied motianrdy the timet; + &; —to.

We would now like to concern ourselves with coasadion of the transition from one
motion to the other. Thus, it is initially entiyeirrelevant to which of the points the
additional forces have supplied energy at the tmmements in the course of the entire
time intervalt; —to . By contrast, it is not irrelevant whether theat shift in thev points
happens at a single moment that lies betwig@mdt; or is composed of several shifts,
and when this (these, resp.) shifts take placdnencburse of the time interval —to .
When the total displacement of th@oints is the same, the value of the incredse Q
=0 (T + F) = aJ, in the total energy of tha points, and likewise, the value of the
increasedd,, = O + & + A0t Q = AT + AoV in the totalis vivaand the force function of
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the n + v at the end of the motion, and thus at the time A&;, will naturally be
independent of when that displacement took place. Byrasintlet the total external
work, whether we define it byQ2 or by —3Q, depend upon when the displacement of
the v points took place, and likewise, the enedy+ JdV that the additional force must
supply in total to the points during the time intervél —to. The latter is then equal to
Ol + 0otV —aQ =0T + &F + K.

Now, thev points, in particular, should move uniformly during therertime interval
t1 —to from the position that they have for the unvaried arwtp the position that they
have for the varied motion, such that they haverhml position at time, , but arrive at
the latter at exactly the tinte . Thus, whereas the motion of theoints can happen
with greater or lesser velocity, thepoints shall move infinitely slow, but completely
uniform, such that they can cover only very small pdtiveng the finite time intervah —
to, which is why we have called the quantities that exptiesg influence the slowly-
varying parameters.

If we then letg,Q denote the work that must be performed byvpeints against the
forces that arise from the force functi@hwhen the entire displacement of th@oints
happened at the moment in timethen the work that is performed by the gradual
displacement of the points during the timdt that we consider now will be equal to:

5.Qdt

(t, —to)

in which 3Q is different for the various phases of the motmmd is therefore a function
oft. The total work that is performed by th@oints against the forces that arise from the
force functionQ during the time interval —towill then be:

1 b
(245) aQ; = —— j J,Qdt
t,—1,7%

in the case of the gradual displacement ofvtipmints. If suitable additional forces act
thereby that, together with the displacement pbints, take the unvaried motion to the
varied motion, such that the material points atttire t move in such a way that the
unvaried motion corresponds to that time, as opptsdow they move at the tinte +

A in precisely such a way that would befit the time &; in the varied motion (the time

that corresponds to the end timeof the unvaried motion), the additional forces mus
supply the energy:

1 °1 1 1]
246 =0l + dotV—- ——| 9,Qdt =——| (T +aV) dt
(246) Q=0+ GaV = = GQdt= =] (AT +oV)

to then material points. It is then irrelevant when dgrthe interval; —tp, and in what
way, the additional forces act, as long as the attlynate effect is to generate the varied
motion precisely. Then, when the total energyaase of then points and the total
displacement of the points, and thus, also the energy that is givethémn from the
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olutside is determined in that way, so is the energyislspplied by the additional forces
).

However,dT + dV is the same quantity that was denoteddgyin formula (223), 8
36, and one thus obtains from equation (246):

(247) (-t D= 25["Tdt-Y (455t - G0 ).

§ 48. Consideration of periodic motions.

In case the unvaried, as well as the varied, mstare periodic, one can easily think
of realizing the three types of motion that wereated in the previous paragraphs in
temporal succession, namely, the unvaried, thedaand the gradual transition from the
one to the other. Ifis the period of the unvaried motion ané d is that of the varied
motion then one can sét=1t, +i, & = d. One can then first think of the unvaried
motion as taking place several times during theetintervali, then displacing the
points slowly during the time interval(also 2, 3), and finally performing the varied
motion several times during the time intervat d. One then thinks of all of these
processes as taking place one after the otherimdhrse of time, and if one so desires
then the difference between temporal changes amatieaas can drop away completely.

In the case for which the unvaried motion, as wasglthe varied one, is periodic, as we
have seen, the variations at both limits will baagand we will have:

SO

0Q _
(248) = ==

in which In denotes the natural logarithm. A ngabmplete analogy with the second
law now prevails.

One goes over to increasingly varied paths forctvitinev points assume increasingly
varied positions, but move only infinitely slowly icomparison to the points, or
perhaps one should also make an infinitely smatiguby cyclic motion of then, as

() aQ will have the same value for alin the event that the system is a true cyclic ore, fn the case
where the unvaried motion at the place of each massstialowed at that place is immediately replaced
with another mass that is equally-arranged, with an egelequally-directed velocity, such that the
points act upon the latter in precisely the same walyttiey act upon the former) and in the case where the
same thing is also found to occur for the varied motind,the formula above will also be true whenhe
points do not move uniformly from the unvaried positioritte varied one, so the external work will then
be entirely independent of when the displacement of tha&nts resulted. However, we shall still assume
that the total motion of the points during the time intervél —to is very small. Even when it is made in
jumps, an infinitely smaller jump can always once nimmppen after a finite time. Under this condition,
one can, as always, consider the quantities that exfiressfluence of thes points to be the slowly-
varying parameters.
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always after a finite time. In that way, one varithe motion continuously until one
obtains finite changes of all quantities, and finally ¢érges a complete circular process;
i.e., one finally returns to the same motion of thegoints again, coupled with the same
positions of thes points, without one having to repeat precisely the sapntens of then
and positions of the points simply in the opposite sequence.

The sum of all of the energy that is thus suppliedheyadditional forces on the
points — which we would like to denote by simplg) — will not generally vanish then
for all of these variations of the state, even thoaigthe conclusion one has returned to
the initial state. By contrast:
f§

T

will always be equal to zero. From (248)Q/T is then the increase im(iT)?, so
I? is the difference between the values IniT)? at the initial and final states.

However, since the initial and final states are idahtio the case considered, that
difference must be zero.

If one, e.qg., first displaces thepoints (which we would like to call proces$ then
accelerates the motion of thepoints, then brings theto their old position once more,
and finally again removes enough energy from mhpoints and also changes their
velocity directions in such a way that their motigyaim becomes precisely the old one

thenj 5Q/'T will always vanish. On the contrar&,d} will not be zero, in general.

Naturally, the latter expression will have the samelibs value, but the opposite sign,
when one traverses a sequence of states of motide afgoints and positions of the
points in precisely the opposite way (viz., prod8ss

Proces® corresponds to the following process: One lets a gdissbexpanded, and
then one warms it, then compresses it at the higgmaperature to the old value, and
finally cools it down again, until it has assumed ¢iek state, and everything is done in a
reversible way. The direct reverse of such a pros@ksthen correspond to proceBs

The system that we consider differs from warm b®dmsofar as its state is by no
means determined by its energy and the position of gants (viz., the outer vicinity).
For example, the material poimh in example 2 of 8 44 can move in a circular or
elliptical path, etc., with the same energy and Hmesexternal vicinity.

Sincej % (viz., the entropy) =2In(iT) and any function of it that is multiplied by

an integrating factor must again be an integrating factei/l also be an integrating
factor ofdQ. Sinceli is the time inside of which a particle makes a corepdatcuit, 1 /i
will be the (whole, rational, or irrational) numbsrcyclic orbits in a unit interval.

In this paragraph, we understand the phrase “periodionido mean one for which
the same values of the rectangular coordinates of atlenmal points repeat after the
completion of the period. Whereas, as we saw, perioditions exhibit a complete
analogy with the second law, in the conclusions of &dd § 44, we gave an example,
which we treated as example 2 of the central motioannunclosed path, of a non-
periodic motion with the following properties: It is otivse very similar to what was
treated in this paragraph and can be converted immediatelya true cyclic (but not
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generally monocyclic) motion by considering infinitely mamgss points that move in
the same plane. Thu§ﬁQ/'T, when it is taken over a complete circular procesk

not vanish for them already for fixed positionstbé v points (e.g., the magnet upon
which the values ol anda depend), and thus, even more so for the variedigus of
thev points, since, in facgQ has no integrating factor whatsoever.

It is only with the assumption of the simultanequesence of very many systems
with all possible surface velocities, amongst wttioh states are distributed according to
the laws of the theory of probability, that the lagg with the second law of the theory of
heat can be restored in this case.

The aforementioned flaw in the analogy betweemwhodies and the systemsrof
material points that we have considered can alsgitmenated with the same assumption,
namely, that the state of the former can be detethcompletely by being given the
external situation, along with just one of the eswf one variable (e.g., temperature),
while for the motion of the system under consideratalong with the positions of the
points and the total energy, among other things,iritegration constants that determine
the initial motion of then points can influence its equations of motion. ldger, we
shall not go further into this here.

8 49. Theory of cycles.

We now go on to the development of some propastioom the theory of cycles, in
particular. As we mentioned already, we understeyadic coordinates to be roughly
ones that, when undifferentiated, enter into eithgiressions for theis viva or also into
the forces that are in effect, or perhaps the tmmequations that are present. As we
likewise already mentioned, in the event that n@ds exist, in the ordinary sense of
mechanics, and no conditions that would restrietdbgrees of freedom, the rectangular
coordinates will also be be cyclic. By themsehtbey do not define any finite motions —
i.e., any motions for which the rectangular cocatits and their differential quotients
with respect to time are enclosed between finiteitd for arbitrary times. On the
contrary, the variable that defines the angulaitipmsof the centrifugal model that was
described in § 44 as example 3, is a cyclic coatdinn the extendeHertzian sense,
which can still determine a finite motion in altugtions, although it can go to infinity
with increasing time.

By contrast, a true cyclic coordinate is one ttetermines a true cyclic motion — i.e.,
when it varies, while keeping all other coordinatesistant, any mass that leaves its
position space must be immediately replaced withtter moving mass with the same
properties and the same speed in the same direetioch is the earmark of a true cyclic
motion.

Let a system be given that fulfills the followingnditions:

1. Let some of the variables that determine thsitjpm of its material points be
cyclic.

2. Let the differential quotients with respectitae (i.e., the rates of change) of the
non-cyclic variables that are required in ordedétermine that position be very small in
comparison to the rates of change of the cyclicabdes (i.e., the cyclic velocities), in
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addition. For that reason, the latter variablescailked theslowly-varyingvariables or
parameters

3. Let the cyclic accelerations be very small, in @age, in comparison to the cyclic
velocities — i.e., let the changes in the cyclic vities that occur in time while those of
the absolute values of the cyclic coordinates havedreldanged very noticeably still be
very small. We then call the systeroyelic systemor more briefly, aycle

If its motion is finite, in addition, then we witlall it a finite cycle. If the cyclic
variables are nothing but true cyclic ones then we sladlllit atrue cycle If only one
independent cyclic variable is present then the systealledcamonocycle If there are
two then it will be called ®icycle and otherwise it will be generally callegalycycle
Whenn independent cyclic variables are present, it will be-aycle.

As long as the parameters remain constant, no \@ariafithe externally-perceptible
state of a true cycle will be noticed, despite theadgat motion that takes place inside of
it. This is exhibited by warm bodies, by wires that haeastant electrical currents
flowing through them, but also by an absolutely symmeticthat rotates around its axis
or a completely homogeneous fluid that flows in a tiia¢ teturns to itself. By contrast,
if the cyclic velocities and the parameters changelglthen it will correspond to a gas
that is heated slowly, or reversibly expanded and casspte Another example is the
slow change of intensity or mechanical change of posdioa wire that has an electrical
current flowing in it, or the slow motion or deformatimf a rotating body or a
ponderable fluid that flows in a channel.

One can apply the general formulas that were develop&8& 45-47 to cycles and
make many simplifications in them. The cycle shouldragansist oh material points
whose position is then determined, partially by cyclid gartially by slowly-varying
coordinates; we would like to denote the formerppyand the latter by, . No further
condition equations should exist between them. Thesaterial points correspond to
the ones that we also called thenaterial points in 88 45-47.

Since the, do not enter into the expression Toundifferentiated, the forces that act
upon the cyclic coordinatgs (viz., the cyclic forces):

dq,
249 Py,=—2,
(249) b= 4
in which:

oT
(250) 0o = —-

p,

The forcesPy, correspond to the additional forces of 88 45-47. The gndagt is
supplied to the cycle by it shall be called tyelically-supplied energyit corresponds to
the supplied heat.

Moreover, since the terms that contain two denestiof thep, or p, with respect to
time, or which are of order 1 or even 2 in tip¢, can be regarded as vanishing in

comparison to the ones that merely inclygleand p;, the forces that act upon the
parameterg, will be:
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_oT

251 Pa=——.
(251) on,

SinceT is a homogeneous, quadratic function of tije all p;, andpa. can be constant, so
one will have pi = p, = 0 when allP, vanish. By contrast, the, will generally have

non-zero values if this is to occur. We now distinguigferent classes according to the
forces that act upon the parameteys They can originate, partly from the interactidn o
the n points and partly from the action of other materiahtgthat correspond to the
points in 88 45-47, which one fixes in space, once and forrallwdnich shall be called
fixed, material points. Moreover, here, like thereytitan also be counted with the
material points. These, partly from the interactibthe n points, partly from the effects
of fixed material points that might be present on theds that originate from them,
which we shall refer to anternal forces shall, in any event, have a scleronomic force
function, which we shall again denote By The total portion oP, that arises from this
source is ther oF / 0ps .

Thus, further forces must be added in order forpth® remain constant, in general,
which we denote b§3, and which we call forces that act upon the parameteesnally.
The material points from which they original will cospend to thes material points of
88 45-47 and shall also be once more called/tinaterial points. They will be regarded
as external for the system considered.

If one hasp, = p, = 0 exactly, so the cyclic motion is completelytistaary, then
the position of ther points will also remain completely unchanged and musibé that
one has:

oF oT
(252) Pa:ma__ == —
op,  Op,

exactly. This corresponds to what we called the unvanetion in 88 45-47. Here, in
the theory of cycles, if we again set:

(253) T-F=H, T+F=E,

in which the symbol$d andE have the same meaning as in 88 45-47, but a somewhat
different one from what they will have in the remag sections of this book, then we
can also write equations (249) and (252) as:

oH d oH
(254) ‘Ba == -, ik
op, dt ap,

If the slowly-varying parameters and the values of pheare to change very slowly

then the3, must be slightly different from values that wereegivby the equations

above, and thB, must be slightly non-zero. The latter forces tbemespond to the ones
that we have called the additional forces in 88 45 to d7%yes shall also preserve that



Chapter IV. Analogies with physical, especially heaistietic, problems. 17

name here, as well. The energy that they supply —thiz.¢yclically-supplied energy —
corresponds to the supplied heat in the theory of heat.

The slow variation that the cyclic motion experiendee to the additional forces, as
well as the fact that the forces that are applied ¢o/thoints do not have precisely the

values‘P, that are determined by equation (252), corresponds to whatalled the

variation of the motion in 88 45-47; however, it is preseatinecessary to regard the
gradual variation of the stationary, cyclic motion tbaturs due to the slow motion of
thev points and the effectiveness of the additional foesea problem in the calculus of
variations and to emphasize the increases that atthat way by the use of the symbol
O0. Moreover, one can regard this gradual change of statée asdinary motion that

comes about under the influence of the additional foaoelsthe change of positions of
thev points in the course of time. This is especially clmsthe notion of true cycles, for
which the unvaried motion does not at all represent ial@ishange of state, such that
perceptible temporal variations will first appear becausts glow variation.

The values ofT, V, etc., for an arbitrary moment in time of the unwériaotion
coincide with the mean valuds, V , etc., of the same quantities for the unvaried motion.
It is irrelevant at which moment in time of the unearimotion the variation begins,
which has just the character of a mechanical motianhtdkes place under the influence
of given forces and also takes an arbitrarily long tbmegradually increase to a finite
variation and to end at an arbitrary time. When arggsnly hasp, = p, = 0 in any

phase, one will immediately obtain the unvaried motitwat tone thinks of as
corresponding to that phase.

It seems clearly evident here how the variation We considered in the introduction
to this book can quite gradually approximate the charadtanamrdinary motion that
takes place in the course of time for which only individoabrdinates are rapidly
variable, while the others vary much more slowly.

We would like to still keep the name of variations tbe gradual changes in the
cyclic motion that occur in time, and also keep the egonatof motion for the changes in
the p, that come about due to the fact that §hedo not have precisely the values that

were given by the equations (252) and (254) and were firdsewidlown in § 53.

8 50. The integrating factor of the differential of the cyckally-supplied energy.

From equation (249), the work that is performed by theefBpaduring the variation
of the cyclic motions in the time intervad is:

(255) dQ, =Py dp = R, dt = pj da,.

The sumdQ of all dQ, is the total of all works that are performed by allcé&sP,
(viz., the cyclic or additional forces), which we haadled the energy that is supplied to
the system cyclically, and which is analogous to the &gbpleat.

In case the system is a monocycle, and one writgage cyclic variable with no
index, one will get:

dQ=p' dg,
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and sincel =p' q:
(256) dQ_ 99

T q

dQ/ T is then a complete differential, anddms the entropy.

This formula can be applied to all true monocyclesdasif which arbitrary masses
describe a cyclic motion, such that they all simularsty return to their starting
positions at the same timenside of them and them begin the same motion again. Such
monocycles were referred to as “simple true monocydgdHelmholtz and one easily
sees that they define a special case of the periostierag that were treated in § 48.

If a cycle possesses different mass systems, efdarhioh describes a repetitive
motion in that way, and if the periodss, iy, ... are different for different systems, then
the system will be called amfettered or only piecewise-fetteredoolycycle, as long as
the durations of these periods depend upon the values afk@wdependent cyclic
velocities, in addition to the values of the slowly-wvagyparameters, while it will be a
completely fetteredolycycle, or &composedanonocycle when the duration depends upon
the values of a single cyclic velocity, in additionthe parameters. If, in the latter case,
the number of ratiog /1,1, /1, ... is finite, and the values of these ratios are detaly
independent of the those of the parameters (viz., thdysi@arying coordinates) then one
can think of these ratios as rational, with no esakrthange in the mechanical
conditions, even if they also have a very large coma@mominator, and thus find a
lengthy span of time inside of which the motion of all snagstems is simultaneously a
periodically-repeating one, such that the total mechhsystiem will represent a simple
true monocycle of period, and everything that comes from such a proof will be
applicable.

However, this becomes doubtful when the number ofgatia, i, /i, ... is infinitely
large, and is no longer true in any case when the valudsese ratios are continuous
functions of the parameters, since then the cycliordioates, combined with the
parameters, will no longer define a system of holococuordinates, in generat)(
However, all of the formulas that were developed aree tfor only holonomic
coordinates. Hence, as we already pointed out in ti@rkeon pp. 16 in 8§ 4, for the
entire book, with the exception of 88 27 and 28, we willags understand generalized
coordinates to mean only holonomic, generalized coordinafés would not like to go
into this further here, and we shall carry out the pafod very general theorem that
Helmholtzdiscovered.

() Borchardt's Journal, Bd. 98, 1 Heft, pp. 87, 1885; Wien.-8¢z. Bd. 111, pp. 1603, 1902. For
example, if two bodies that taper down conically on oppasiids have parallel axes of rotation, and a
transmission belt or a friction wheel is continuotdilyplaceable between them, in such a way that
sometimes it couples a thick part of the first axis veitthin part of the second one and sometimes the
opposite, and one chooses the Eatha point of the first body that does not lie on tbiational axis to be
a cyclic coordinate and the displacemermf the belt or the friction wheel to be a slowlysyiag one then
a point that does not lie on the rotational axis of #uwwsd body will generally not arrive at the same place
whensfirst increases by a finite amousiand thea increases by a likewise finite amountor whena first
increases byr and thens increases by Thus, in the event that we are dealing with a trudecyf all
velocities also given by andds/ dt, and thus its entire knowable state, then the positioali pbints of
the system will still not be determined by being givea values o ands, soa ands are not holonomic
generalized coordinates.



Chapter IV. Analogies with physical, especially heaistietic, problems. 19

Let an arbitrary, composed, monocyclic (and thus comilyldettered, polycyclic)
system be given whose slowly-varying coordinates shaltlénoted by, and whose
rapidly-varying coordinate shall be denotedpoylt shall be assumed that for a suitable
change in the3, the motion can proceed in precisely the same way, hichwall

velocities have been multiplied by a constant, bur@gtarbitrary numbem that is the
same for all velocities, so, to some extent, theetduration of all processes will seem to
have been reduced to th8 part. Then, if only a single slowly-varying parameigis
present then the totais vivathat is contained in the system will always be argrang
denominator of the differential of the externally-suggblenergy; by contrast, is several
p. are present then that will also be true whenever thi&reintial possesses an
integrating factor at all.

Next, let only a slowly-varying parametgg be present, so two genera of state
changes will be possible. First, for unchanged path dprome changes merely the
velocity of all moving parts proportionally. The formktbe paths then depend upon
only a single independent variable quantity, while the othdependent variable
guantities determine merely the velocity by which the patie traversed. Thus, in case
one always varies the limits in such a way that as¢ ferm in equation (223) vanishes,
upon returning to the old path, one must also revert torigaal limits, so the two terms
in equation (238) on the right-hand side will become idahtanddQ/ T will become a
complete differential.

In case more than one slowly-varying parampjesxists,T will generally no longer
be an integrating denominator 9@, since when one returns to precisely the same state
of the system, in general, one will no longer comeliadhe same integration limits, as
long as the limits have always been changed in sucayathat the last term in equation
(223) vanishes; however, it can also be proved in this tba$@ must be an integrating
denominator in the event that integrating factord@fexist, at all. In general, lelQ =
M dN, and choos@& andp, to be the independent variables.

From what was just proved, must be an integrating denominatordg), as long as
all p. are defined up to a constantpifs any of the indicea anddgy is the differential
that is combined with the factdrthen it will follow that:

o o
(257) M| Nar+ N g | =7 o g1+ 2% g |.
oT ap, oT ap,

This equation must be true for all combinations of valddte variablegs, p2, ...,
Pg-1, Pg+1, ---, Which are assumed to be constant in it. Thud,ahdN are given thery
will be determined up to an expression that containsattter Ivariables. The same thing
will be true for any othea index; e.g.h. One then likewise has:

(258) M| N agr+ N o | = 7] 9% 474+9% gq |,
oT op, oT op,

in which, naturally, the identity oty and o, has still not been proved. It follows
immediately from this and equation (257) that:
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00,
(259) 9% _ 99,
oT oT
gy and o, can then differ only by quantities that do not confBifbut only thep, .
We would like to setgy = g+ Ny, ch = o+ Iy, in which thell are no longer functions
of T; it will then follow from equation (257) that:

(260) M ON _ Ta—a
oT oT
and
on
(261) MmN _r[92,%
op,  \ap, op,
for every value 0§. That will further imply that:
on
(262) dQ:MdN:T(dU+zapg dgj,
g

in which the sum is extended over all possible valueshefindexg. Since, by
conventiondQ has an integrating factor, in any case, it must alssgss one when one
sets allp, constant, except for two of them — s@y,andp, . If one then divides the
differentialdQ by T then that will give:

on
(263) 99 41+ 99 . % dp, + 99, My | 4o = 99
oT apg 6pg op, dp, T

From what was said, this differential expression nalst have an integrating factor.
If one writes down the known condition for it theneowill see that it will follow that
either:
o
— =0
oT
or
2
o, _ a4,

p,dp,  9p, ap,

(264)

for all pairs of values ofj and h. The first equation can never be fulfilled, since
otherwise when one keeps theconstant, no energy supply at all would be necessary
order to raise theis viva Thus, equations (264) must be true, from which it would
on
follow that 5

g dp, would be the complete differential of a functibinof the p,,
[¢]

which is why one will then hawe@Q =T d(o+ ).
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§ 51. Adiabatic and isocyclic motion.

If all P, = O for an arbitrary cycle, while tH8, are different from the values that

were given by equation (252) and (254), such thapflebange slowly, then one will call
the motion aradiabaticone. It then follows from equations (249) that the motaq,
that relate to the cyclic coordinates must all be @omts However, as a result of the slow
changing of the parameters, the cyclic velocitigswill likewise be slowly-changing.

By contrast, when thB, always have values during the slow changing of the paeasne
such that thep, remain precisely unchanged, one will call the mo&aisocyclicone.

An example of adiabatic motion is defined by a body tb&dtes around its axis, or
the centrifugal model that was described 8 44 as exampléeh a rotational moment
never acts around the rotational axis. On the conttheycentrifugal model exhibits an
isocyclic motion when its rotational velocity is keginstant by suitable forc&3, that

act upon the crank, while the displaceable nms®metimes approaches the rotational
axis and sometimes moves away from it.

Physical analogies for the adiabatic motion are whowlies, by whose changes of
state, heat will either be supplied or removed (hetloe,name “adiabatic” for the
analogous motions of mechanical cycles, as well),trdat current loops in which
unvarying electromotive forces are present, moving statichbyged conductors with a
constant quantity of electricity, etc. The correspogdphysical processes will be
analogous to the isocyclic motions when the temperatiutiee warm bodies, the current
intensity of the electric current, or the potentiatitd electrostatically-charged conductor
are kept constant, respectively. For a rotating bashgyclic motion occurs when it is
connected (i.e., coupled) by a belt or gear with a rgtdtywheel of infinite mass or a
body that is forced to rotate with constant veloci§hysical analogies are given by a
warm body that is well-coupled to an infinite heat rese, an electric conductor whose
ends are kept at constant potential difference (hey are linked with the binding posts
of the power supply), in electrostatics, a body thataaducted to the Earth, which
Helmholtzalso referred to as “coupled” with the Earth, the hesérvoir, etc.

In equation (254), one understands the partial differeguiatients to mean that the
p, are kept constant, so the changes of state havg@peasocyclically. As we already

did in 8 9, we would like to denote partial differential qaots for which thep, are

considered to be constant with the ingexwhile the ones for which, are considered to
be constant shall be denoted with the ingex
One can then say is the force function of the forc&, that acts upon the

parameter, for isocyclic changes of state, so in thermodynantiesll correspond to
the isothermal thermodynamic potential. For evergysbc motion:

- za—Hdpa =-dH=dF —dT

is the energy that is supplied by the forgksthat act upon the cycle during the changing
of thep, for the cycle (i.e., the energy that is supplied afdrm of external work done).
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Since the total energy incrementdg = dF + dT, it will follow that dQ = 2dT, so the
cyclically-supplied energy will then be equal to twice thcrement of the kinetic energy.
From equation (63), one has:

0T _ 9,T 9.E _ 9,H

g =-_F o) 4 =-_F

op, op, P, op,

One can then also write the first of equations (254) as:
(265) Pa= ——.

The external force$, can thus also be referred to as the adiabatic pdiffiedential

guotients o with respect to the coordinatps, and —E, as the adiabatic force function.
The total energy that is supplied by the external wak is done is then equal dé& for
adiabatic motion, and thus, equal to the total energement, which is self-explanatory,
since it is the only supply of energy, in this case.

By applying the theorem that we found that the extdoraes have a force function
for adiabatic, as well as isocyclic, changes of stat¢he theory of heat, we get the
following theorem: If a warm, solid body is deformedbitrarily adiabatically or
isocyclically by arbitrary external forces then theadefation work will always be a
complete differential, as if the external forcesttbaginated from massive particles at
rest were such that equilibrium was preserved when tesine particles of the body
were also gripped in agitated thermal motion.

8 52. Hertz's reciprocal relations.

1. Let the state of a cycle be slowly varied adigbdly, once, in such a way that
only the parametens, anddp, increase, and another time, such that only the paresnete
px anddpy increase. In the first case, the external foJgethat acts upomy might

increase by, while in the second case, the external féfgehat acts upop, might
increase bylB3a, so one will always have:

dma’ — dgna
dpa dpa’ .

The same thing will also be true when all motions soeyclic, and we can write these
two relations in detail as:

0B, 0,
and P p‘ﬁa.
apa apa’ apa apa’
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The proof follows immediately from equation (254) and (268); from the fact that the
external forces have a force function for the adialihanges of state, as well as for the
isocyclic ones.

2. Since:
0T
fBa:—aF— a oF =0, and pt’):a_T
apa apa aqb aqb
[the latter from (60)], one finds that:
a U
(266) My - _ZaPs.
oa, ap,

Thus, when an increment in a cyclic momentgyrby dg, results from an increment in
the force’B, that acts uporp, by d3,, with constancy of all remaining and all

parameters, an adiabatic incrementpafby dp, that results with constancy of the
remaining parameters will produce an increment of thecyeliocity p, by dg, that is

denoted by the opposite @B, (i.e., a decrement), and indeed the ratios of the
incrementsdg, anddp, , which are assumed to be the causes, to the chasiesad
dp,), which are considered to be effects, are equal. Hg said, the ratio of the cause
and effect is the same in both cases.) Under tipeszad circumstances:

(267) a9, __dn,

dg, dp,

Since dg, anddg, must be denoted the same for a monocycle, the fitptheorem

must also be true for it: If an increase in the cyeklocityp' raises the force on any
parametemp, with constancy of the other parameters then an adiaibatement of that
parameter must reduce the cyclic velogityvith constancy of the other parameters.

3. If the forceP, produces the increment, that appears in equation (267) in the
time intervaldt thendg, = P, dt, while, on the other handp. = dJ3. / dt is the velocity

with which the force3, then increases under the circumstances for which equ@67)
is true. The left-hand side of equation (267) will theretpeal to’p3, / Py, and when one

reverts to the notation of equation (266) in the rightdhside, for the sake of clarity, it
will follow from (267) that:

] a !
(268) LA LY
R op,

In words: If all parameters are constant, and alldettbat act upon the cyclic coordinates
are zero, except for on@y), then the forcep, that acts upon the parametar shall

increase by}, dt during the time intervadt, and then an adiabatic incremenipgfwith
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constancy of the remaining parameters, will produce sedent of p,, and the ratios of

cause and effect will be equal in both cases, when we cortbeldorceP, to be the
cause and the rate of changé of the force}3, to be its effect, and on the other hand, the

coordinate incremendp, to be the cause an the decremertg- of the cyclic velocity
p, to be its effect.

4. Since:
PBa=-— a_|:+6p.T and Q= 9,1 ,
op, 0p, p,
one has:
(269) 9%, _ 940
op'  op,

i.e., if an increment of a cyclic velocity,, with constancy of the remaining cyclic
velocities and the parameters, produces an incremeaheiexternal forcég, that acts

upon a parametgs, then an isocyclic increment pf , with constancy of the remaining
parameters, will produce an increment of the cyclic muoma g, that belongs top; ,
and indeed, allertz said briefly (once more, for infinitely small increntg) the ratio of
cause and effect will be the same in both cases. Boocycles, the increment in the
cyclic velocity will again have the same sign as tifahe cyclic momentum.

5. In precisely the same way that equation (268) wasnaotdrom equation (266),
we can also define a new equation from equation (269). Widleng the partial
differential quotients of the right-hand sides of th¢elaequation, it is assumed that the
Ba and P, have values such that afi and all parameters remain constant, with the
exception of a single, . The force that then acts upon the cyclic coordipashall be
called Py, but the increments gf;, andq, during the time intervadt shall be calledip,
anddq,, resp. The quotiertq, / dp, will then be equal to the quantity that is denoted by
0,4,

a

in formula (269), but one also hdg, = p, dtanddg, =P, dt. Thus:

ap’qb — i

op, P,

and one can write equation (269) in the form:

@70) % _R
op, P,

Expressed in words: If an increase in a cyclic veloqggy, with constancy of the
remaining cyclic coordinates and the parameters, producesr@ment in the forc&,
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that acts upon a parametey then, for the purpose of isocyclic increaseg4n with
constancy of the remaining parameters, a positive fyceust act in the direction of the
cyclic coordinatep, , and in fact, the ratio of cause and effect will aganthe same in
both cases, when one refers to the incremery, is the cause and the incremenBin

as its effect, and on the other hand, considers theityel p, with which p, changes

isocyclically to be the cause of the necessity effthiceP, and the latter, as its effect.
In the proof and mathematical formulation of this tleeo in Hertz’'s Prinzipien der
Mechanik no. (577), pp. 245, the symhls all too much.

8§ 53. Helmholtz's theorems on mixed cycles.

Helmholtzhas explored some considerations of somewhat greateraligy. Once
more, let a system af points be given that can interact withpoints that are fixed once
and for all, and if one so desires then one can cdntatter points with the points.

Let the force function of all of the forces that Between these points Be and let the
kinetic energy of then be T. This time, as in 88 45-52, but deviating from our usual
notation, we again set:

such thatE is the total energy of the + n'. Among the coordinates that determine the
position of then points, there can be cyclic ones, which we again wakadtd denote by
Py ; i.e., their values, when differentiated by time, kkater intoT or F. Only the p,

shall enter intdl. Let the total number of these cyclic coordinatesrbd he total force

— 0F / dpy, that then + n' points exert upon any cyclic coordinates must then be égual
zero. The remaining coordinates do not just need ddvdy-varying, so they are then
completely arbitrary coordinates. We thus call theminary coordinates and again
denote them by, . Let their total number be No further condition equations shall
exist between thp. We would like to call such a system, which indeed aiastcyclic
coordinates, but whose remaining coordinates are not eveditb be slowly-varying (or
at least, not all of them), rixed cycleand in contrast to that, we would like to call one
that contains only cyclic and slowly-varying coordinat@sige cycle.

It will be easiest to understand the equations thashedl now develop when we
think of the behavior of the systemmft n' points and the force functidf, as well as
also the motion of the points, and thus that of allrdmates, as functions of time, and
ask which force$, and‘P3, act upon the cyclic coordinates (must be added to tlkeedor

that act upon the ordinary coordinates by means of dhee ffunctionF) in order to
generate the given temporal variation of the coordinaBese must then have:

(271) p,= 4 0H

dt op,
for the cyclic coordinates of equations (254), and ferdhdinary coordinates, one will
have the ordinarizagrangeequations:
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(272) o doH _oH
dtop, op,
For every index andh, let:
oH _ dT
273 — =— =4q.
(273) PRl

The desired forceB, and3, shall again be applied to arbitrary, external (i.@mfthev)
material points, with which, we would, moreover, nottwtie concern ourselves further.
If the values of the are given as functions of time then they can likewas found as
functions of time from equations (271) and (272); i.e., ome answer the question of
which external forceB, and]3, must be added at each moment to the one that is réquire
by the force functior in order to produce the given motion.

Naturally, the validity of equations (271) and (272) isrettiindependent of which
guantities one considers to be given in them and which see®a These equations are
also correct when thig, and‘j3,, are given as functions of time, even when theygaren

as functions of coordinates, velocities, or othervaiggtrary quantities, and when one
posses the question of determining the motion (i.e., deterthep” for given initial
values of thg andp’). It is only in the last case that the left-hand silequations (271)
and (272) will also contain the unknowns that we seekledd, it is actually completely
arbitrary which forces one counts as internal for fdree functionF and which one
counts as external to tHg, , whether one counts the bodies from which certaioe®
originate with the system or regards them as outlyinghat is the only consistent
possibility. Thus, that is why, e.gHelmholtz in the electrodynamics of galvanic
resistance of conductors, included merely e since it gave rise to irreversible

processes. However, for the sake of greater intuitppea, we would always like to
pretend thaf and the motion of the system are given and ask thied?, and33, would

be that would be necessary to produce that.

Equations with the form of equation (272) must also dntpface of equations (252)
and (254) when one would like to develop the theory of sytlat was treated in 88 49-
51 without leaving anything out, or when one would like to stteequestion of how the
slowly-varying parameters change in time under the inflaeof given3, . If one then

would like to answer that question then one can obvioustiyneglectp, and p,; . In

equations (271) and (272), however, one no longer finds anytheig hdls been
neglected. The condition that the cyclic coordinateger into eitherT or F
undifferentiated is not merely realized approximately,dxaictly.

Equation (272) has the form that was suggested at the begioih§ 34, which one
obtains when one sefs= 0 in the generdlagrangeequation (50), and assigns the form
(220) toV.

Next, we shall have that &, = 0, such that the cyclic motions proceed adiabatically.

From (271), the quantities:

(274) — =0
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will then be constant for all time. If the valuestbése constants are given then the
quantities p, can be eliminated fror by means of therequations (274), and thus, also

from H. However, since equations (274) contain terms in thegowers of thg' and
ones that are free of tipg, after that elimination] will become a function of degree two
in the remaining’ (i.e., the p;) that is no longer homogeneous, but also containssterm

that are linear with respect to thg and contain one of these entirely free terms. The
quantities$) that arise by eliminating thgy, from H by means of equations (274) will
also contain terms that are linear in thie

An example of this is a system that contains a bbdy fotates around a principal
axis of inertia without friction or opposition, such &e fpendulum that we treated in §
22. The angle whose differential quotient with respedime determines that angular
velocity of the rotating body is thm in question, and it must be assumed that the forces
always act upon only the two vertices of the axes, shah there will never exist a
rotational moment that would accelerate or retard thation. Maxwell imagined the
same rotating body that was subject to the same @o@mdi order to explain the
magnetism that was present in a volume elementeoéther, and in that way explained
that the electromagnetic energy of the ether costegrms that are linear in the current
strengths, while the purely electromagnetic energyhsraogeneous, quadratic function
of the current strengths. Namely, he assumed thatutinent strengths are the rates of
change of the cyclic coordinates.

Since$) arises fromH when one expresses th® in it by means of equations (274)
as functions of the, and p;,, one will have:

09 _ oH +Z":6H op;,
op, op, = 0P, 9p,
09 _ oH +Z":6H op,
op, Op, <= 0p, op,’
or, due to equations (274):
OH _ 09 & dp, oOH _ 09 & dp,
T A 2% T Ay 2%
op,  p, ; " op, op,  op; ; " op,
Therefore, if one sets:
(275) H =9 - Zpr;)
b=1
then:
oH' oH oH' oH
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Here, the p, are thought of as being eliminated fré#h by using equations (274), but

one considers them to be constant when one f(%'ﬁlqsandg—H,. When one thinks of
P Pr

the p, as being expressed in termgpetnd p;, by means of equations (274), the general
equation of motion (272) will then assume the same forreachpy:

(276) Ph=— o T

The quantityH is now replaced with the quantity in which the p; are thought of as

expressed as functions @f by means of equations (274), such th#tis not a
homogeneous quadratic function of thg, in general.

As an example, we once more consider the problematasittreated already in 8§ 22
of the theory of the rotation of a solid body arounfixad point. Let a rigid body be
capable of rotating around a fixed point. Let its ellipsdithertia relative to that point
be an ellipsoid of rotation.

We choose the same notations as before, an@{haxis again coincides with the
rotational axis of the ellipsoid of inertia.

The variableB then fulfills the conditions that we imposed upon ¢berdinates that
we now denote bp, . Thus, if the generalized for@ that acts upoB is equal to zero

at all times then, from (274), one will have:

oH _oH _ oT
= = const.

op. 0B 0B

If we denote the value of this constant byJ-then it will follow from the third of
equations (121)
CA-B =y,

which agrees with (124). If one uses this equation to elimiBafrom the expression
(123) forT then it will follow that:

(277) H:T:%(yzA’2+C’2)+%v2.

In our present calculations; is the force function for the internal forces bt
system, so since it is a single, solid body, it wédl dgual to zero. The weight, or more
generally, the force and¢, will be regarded as external forces and are included in the

other part of the force functioE‘Bh p, [equation (220)]. NamelH is always equal to
h=1
T — F, here, nofl —V, as was previously true in this book.
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The expression (277) is the quantity that was denoted by equation (275). It
follows from this equation that:

(278) H':53+vJB:%(y2A'2+C’2)+chA,

in which the constant 3/ / 2 was dropped as superfluous. The generalized forcesl
¢ that act upoA andC must be derivable from this quantiy by means of equations
that have théagrangeform entirely. One must then have:

g = d(oH) _oH
dtl 0A ) 0A’

¢:£(5_H'j_5_H'
dtlac) ac’

By substituting the values (278) foif, these equations will, in fact, yield:

(279)

_d ,
(280) Ql—a(GyzA+v.JQ,

C=G(C"-cy A+ Iy A

in agreement with (125). Equations (279) haverelgtthe same form as theagrange
equations, buH’' now also includes terms that are linear in th@csiges. The motions
cannot proceed in a precisely invertible way. Asaiready saw in 8§ 22, for oscillations
under which its center of mass moves in a circleeredulum that is coupled to a rotating
top will have a different period of oscillation fardifferent orbital direction, as long as
the top rotates in the same sense. In completegnahe potential will contain an
electric current in the presence of a permanentnetagor will depend upon the
electromagnetic rotation of the plane of polar@atof light, which are terms that are
linear in the current strengths or velocities. sTkiriking analogy is, of course, not a
proof that hidden rotational motions will play alean the latter physical phenomena.
However, they would be explained most casually Hat hypothesis, and in any event
would show that the comparative study of both kimdsphenomena might promise
further information. The solid body that is coresield in the example that was dealt with
is, moreover, a pure monocycle, when the fofteend¢ always have just those values
that A andC would change very slowly in comparisonBpand otherwise it is a mixed
one.

Helmholtzfound a case in whicH can be a complicated function of the velocities in
the following way: Let the expression for this vivaconstant of two summands, one of
which should contain only a certain velocity,, while the other one contains only the

remaining velocitiesp) , such that one then has:
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T _
op; 9p;

SinceF does not include the velocities at all, it will aledidw that:

0%H
op; 9p;

In addition, the external forces that act upon eacth@fcoordinatepy shall be equal to
zero for all time, and thu¥y = 0. Here, and in all of what follows, we shall nader

speak of cyclic motions.
Now, in any case, motions of the system are pos&iblerhich all p; vanish, so all

pa Will remain constant for all times. Sinékcontains no term that is linear in agjy,

one will then also have:

(281) H _g

apy

for every indexd, and it will follow from equation (272) that:

(282) 2 -o

for every indexd.
The coordinatepq can be found as functions pf and p, from these equations,

except for singular cases. If one substitutes theegabf thepy thus-obtained iH then
one will obtain a function of thp. and p. that shall be denoted By. $ does not need

to be a quadratic function of thg, then, but can contain those quantities in an entirely
arbitrary way, although it will be an even functiortiod p,. One will then have:

0% _ OH 5 0H op,
apc: apc: d apd apc

65_6H+26Hm%

op,  op. op, op.’
so, due to (281) and (282):

op, op, op, op,

and theLagrangeequations for the coordinat@s experience no change in form when
one replace#d with $ in them. If certain velocities have been eliminatexn the
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expression forH by means of certain equations of motion thégimholtz called the
problem in questiomcomplete since one is restricted to calculating the motioas éne
linked to those condition equations.

If one seeks mechanical analogies to physical procéssesone cannot know from
the outset which variables one should place on a plam@i®ordinates and which should
be analogous to velocities. For example, in electradyes® one can draw parallels
between the dielectric moments and coordinates andthédgnetic ones with velocities,
and conversely. Now, in physics, as a rule, the energyiven as a function of the
variables experimentally. One can then employ a ¢tetepmechanical problem as an
analogy to a physical process only when the experimeigain expression for the
energy is a homogeneous, quadratic function of cert@imbles, which must then be
analogous to velocities. On the contrary, if oneodleas an incomplete mechanical
problem as an analogy then it can be entirely doubtfuthviphysical variables one
should make analogous to velocities and which, to coordinsitece both of them can be
included in the expression for energy in an arbitrary form

8 54. Helmholtz's reciprocity theorems.

Unlike theHertz reciprocity theorems, these do not refer to cyclestdabmpletely
arbitrary mechanical systems. Whenever an equatioheofarm (272) is true, it will

follow that:
I azH Ul
Z—pk-

aH
(284) =- + E
P Py aphapk 0,01

If certain coordinates are eliminated by the method west described in the previous
paragraph then this equation will remain valid when one stalgisH to mean the
function for which the equations of motion assume pedgithe Lagrange form, and
thus, the quantityd, when equations (276) are true, and the quafititwhen equations
(283) are true. In what follows, we would like to use same symbdi for all of these
guantities, since equations (284) and the ones that we wouldike to develop from
them are true for all of cases uniformly.

1. From equation (284), the external fofdgthat must be added to the forces that
are determined by the force functiBrin order to provoke the given temporal change in
the coordinate is a linear function of the accelerapbnand one sees immediately that:

2
ope  Op,  Op,0p;

Thus, when an increment in the acceleratjgh produces an increment in an external
force P, that is endowed with another index, with constancythe coordinates,
velocities, and remaining accelerations, then the saarement in the acceleratiop;,
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that corresponds to the same coordinate as the Joyedll produce an equal increment
in the forcePy that corresponds to the other coordinate.

Example. From the second of equations (121), it is clear tleattteleratio®” can

influence the forc&(. Therefore A" must also influenc&, and one must ha\ﬂg% =

ZT% In fact, from (121), both values will be equal to 3

2. It follows further from equation (284) that:

2 2 3 3
%__6H’+6H+Z 9°H - 9°H T
o8 op,0p, 0p,0p, TOHONO R 0 {0 RO b

or when one combines the last two sums, as one alsb dous order to get from
equation (284) back to equation (272):

oP, __ 0°H . 9°H  df o°H
op,  9p,9p, op,op dlopon)

If one likewise construct®p, /0dp, then one will see that in all cases for which
0°H /dp; dp, [which, from (285), is equal t@, /dp, and also equal t@*3, /dp;] is
constant, in particular, whenever it is equal to zé® following equation will exist:

OB, __ 9%
op, ap,

In all of these cases then, the following will be trlfea larger velocity p, demands a
largerBn, with equality of all remaining velocities and the valoésll coordinates and
accelerations, then a larger velocipy will naturally demand & that is smaller by the

same amount, again with equality of the remaining \dscand the coordinates and
accelerations.

Example. If a solid body is capable of rotating around a fixed painsuch a way
thatC, A', andB' are constant, ard is large in comparison t&' then it will perform a
simple precessional motion. The generalized fardeiz., the moment of the external
force around thé©R axis) that acts upon the coordin&emust then be non-zero, and
indeed, it must be negative for positiké andB’, and its absolute value must increase
with increasingA’, such that¢ / 0A' is negative. Thus, if is generated by the weight,

andOZ is the opposite to its direction then the center agsmmust lie on the negati@&”
axis. Furthermore, from (121), one has:
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o aC

S

Thus,02( / 9C' must be positive, and its numerical value must be eqwal / 0A'. Thus,

in order to raise the rati@' from zero to a small positive value, with no othernges,

and then keep it constant for a brief time (i.e., ideoito lower the positiv®{ axis and
thus raise the direction of gravity oppositely), a maon®mvould be required that would
act in the direction of increasing, and thus seek to accelerate the precession, which
agrees with experience. Naturally, the proof here idicgippe only as long as the
remaining ratios are still unchanged by the increas€. inNaturally, equations (121)
immediately yield:

oo __oT

oC' oA
Likewise:

o3 o

oC' B’
but not

oB' oA’
since

o 0B _

— =———==-cJ

aB" aA"

In regard to the proof that this theorem is also truallirof those domains of the
theories of heat and electricity and chemistry in whetfuations are true that are
analogous to the mechanical equations that are trueddemimotions, one must refer to
the cited original treatise ¢felmholtz Here, it shall only be proved, in that regard, that
the relationship between the principle of least worktaedsecond law is also true to the
extent that most of the relations that one obtanesalso proved by means of the second
law. (The relation between compression coefficientelastic moduli and change of
temperature under compression or expansion, change omeolinder melting and
change of melting point under pressure, thermoelectromioiwe and the Peltier
phenomenon, the production of heat in galvanic elemerdstla dependency of its
electromotor force on temperature, etc. Likewiseustmefer to the original treatise for
a series of other propositions and reciprocity thesreas well as for the further
applications in the theory of heat and all applicatibmselectrodynamics, since they
would drift too far from the realm of pure mechanics.




