"Zur zweiten Variation bei isoperimetrischen Problemen," Math. Ann. 57 (1903), 44-47.

On the second variation for isoperimetric problems

By

OSKAR BOLZA in Chicago

Translated by D. H. Delphenich

In volume 55 of these Annalen, **Kneser** gave a rigorous proof of *the necessity of the Jacobi condition for the simplest class of isoperimetric problems*, although the question remained undecided in a certain exceptional case (*).

The goal of the following note is to show that this *exceptional case* can also be resolved quite simply with the help of a method that **H. A. Schwarz** had developed in his lectures (**) for the analogous proof in the case of the simplest problem without auxiliary conditions.

The problem that will be treated can be formulated as follows:

Let H_1 , H_2 , U be three functions of t that are regular in the interval (t_0 , t_1). Moreover, let $H_1 > 0$, while U is not zero identically in that interval. Furthermore, let:

$$\Psi(w) \equiv H_2 w - \frac{d}{dt} \left(H_1 \frac{dw}{dt} \right) ,$$

and let *u*, *v* be solutions of the two differential equations:

(1) $\Psi(u) = 0, \qquad \Psi(v) = U$

that both vanish at t_0 (***):

(2)
$$u(t_0) = 0, \quad v(t_0) = 0,$$

^(*) Cf., also the dissertation of **Hormann**, *Untersuchungen über die Grenzen, zwischen welchen Unduloide und Nodoide, etc.*, Göttingen 1887, which was directed towards the corresponding investigations of **Weierstrass**, and the same exceptional case was still left unresolved.

^(**) The method was made known to me from a postscript by Herrn Dr. J. C. Fields to a lecture on the calculus of variations in the Winter semester 1898/99. It is the same method that **Sommerfeld** extended to double integrals in Jahresberichte der Deutschen Mathematiker-Vereinigung, v. VIII, pp. 188.

^(***) It is known how one can exhibit such solutions as soon as the general integral of Euler's differential equation is known. Cf., **Hormann**, *loc. cit.*, and **Kneser**, *loc. cit.* The functions u, v are linear combinations of the functions that **Kneser** denoted by A, B.

and finally let:

$$m = \int_{t_0}^t u U dt, \quad n = \int_{t_0}^t v U dt,$$
$$\Delta(t) = m v - n u.$$

One then has $\Delta(t_0) = 0$. Let t'_0 be the next zero of $\Delta(t)$ after t_0 (the *conjugate point* to t_0), and assume that:

(3)
$$t'_0 < t_1$$
.

It will then be shown that one can always find functions w of t that vanish at t_0 and t_1 :

(4)
$$w(t_0) = 0, \quad w(t_1) = 0,$$

for which:

(5)
$$\int_{t_0}^{t_1} wU\,dt = 0$$

and for which the integral (*):

$$J_2 = \int_{t_0}^{t_1} \left[H_1 \left(\frac{dw}{dt} \right)^2 + H_2 w^2 \right] dt$$

assumes a negative value.

In that way, w itself will be continuous in the entire interval (t_0, t_1) , dw / dt will exist and be continuous, except for a finite number of points, and the forward and backward derivatives will exist and be finite at the exceptional points, as well.

For the case in which u and v do not both vanish at t'_0 , **Kneser** carried out the proof in the cited treatise by showing that $\Delta(t)$ will then vanish to odd order at t'_0 , which will imply the desired result from an argument that goes back to **Weierstrass**.

It still remains for us to examine the exceptional case:

(6)
$$u(t'_0) = 0, \quad v(t'_0) = 0$$

Since:

(7)
$$v \Psi(u) - u \Psi(v) = \frac{d}{dt} H_1(uv' - u'v)$$

it will follow $(^{**})$ from (1) and (2) that:

(8)
$$H_1(uv'-u'v) = -m$$
.

^(*) It is known from Weierstrass that the second variation can be transformed into that form in the present case.

^(**) Cf., Kneser, loc. cit., equation (22). The prime denotes derivation with respect to t.

However, it will follow that under the present assumption (6), one will also have:

(9)
$$m(t'_0) = \int_{t_0}^{t'_0} u U \, dt = 0$$

If one then chooses:

$$w = u$$
 in (t_0, t'_0) ,
 $w = 0$ in (t'_0, t_1) ,

w will satisfy the conditions (4) and (5) and make $J_2 = 0$. That is because if $\tau_1, \tau_2, ..., \tau_n$ generally denote the places where dw / dt is discontinuous then J_2 can be put into the form:

(10)
$$J_2 = \sum_{\nu=1}^{n} \left[H_1 w \frac{dw}{dt} \right]_{\tau_{\nu} + 0}^{\tau_{\nu} - 0} + \int_{t_0}^{t_1} w \Psi(w) dt$$

by partial integration, which will yield $J_2 = 0$ in the present case.

Now, in order to obtain a function that makes negative J_2 , we follow **Schwarz**'s procedure and choose *w* to be a function that deviates from the one above only slightly, namely:

(11)
$$w = u + \kappa \omega \quad \text{in} \quad (t_0, t_0'),$$
$$w = \kappa \omega \quad \text{in} \quad (t_0', t_1),$$

in which κ is a small constant, and ω is a function of t that satisfies the following conditions:

- 1) ω is continuous with continuous first and second derivatives in (t_0, t_1) .
- 2) $\omega(t_0) = 0$, $\omega(t_1) = 0$.
- 3) $\omega(t'_0) \neq 0$.

$$4) \quad \int_{t_0}^{t_1} \omega U \, dt = 0 \; .$$

The function *w* that is defined in that way will fulfill the conditions (4) and (5). It is itself continuous, but its first derivative suffers a jump at the location t'_0 . One will then have to consider the term that arises from the discontinuity (*) by an application of the formula (10) and after a simple calculation, in which one makes use of the identity:

^(*) In so doing, one should observe that a discontinuity of the type considered will have no effect on the first variation and the conversion of the second variation into **Weierstrass** form, due to the continuity of w.

$$u \Psi(\omega) - \omega \Psi(u) = \frac{d}{dt} H_1(\omega u' - \omega' u),$$

that will yield the result that:

(12)
$$J_2 = 2\kappa H_1 \omega \frac{du}{dt}\Big|_{t_0} + \kappa^2 V,$$

in which V is a finite quantity, just as in the case the **Schwarz** treated.

However, by assumption, H_1 and w are non-zero at t'_0 , just like du / dt, since $u(t'_0) = 0$, and t'_0 is a non-singular location for the differential equation $\Psi(u) = 0$. However, it will follow from this that *one can make the integral J*₂ *negative* by a suitable choice of κ .

It only remains for us to show that we can always determine a function ω that satisfies one of the four conditions above. Let ω_1 be any function that satisfies one of the first three conditions, e.g., $\omega_1 = (t - t_0) (t - t_1)$. If it should, by chance, also satisfy the fourth one then $\omega = \omega_1$ would be a useful function. However, the integral:

$$\int_{t_0}^{t_1} \omega_1 U \, dt = C_1$$

will be non-zero, in general. In that case, one chooses a second function ω_2 as follows: From the assumption that was made about U, one can always find a subinterval (τ', τ'') of (t_0, t_1) in which $U \neq 0$. One then sets:

$$\omega_2 = (t - \tau')^3 (\tau'' - t)^3 (t - t_0')^2$$

inside of (τ', τ'') and $\omega_2 \equiv 0$ outside of (τ', τ'') . The integral:

$$\int_{t_0}^{t_1} \omega_2 U \, dt = C_2 \,,$$

is certainly non-zero then. However, it will follow from this that the function:

$$\omega = C_2 \,\,\omega_1 - C_1 \,\,\omega_2$$

satisfies all of the conditions that were posed above.

Therefore, a minimum cannot exist beyond the conjugate point to t_0 in the exceptional case that was consider, either.

University of Chicago, 27 February 1902.