On the second variation for isoperimetric problems

By

OSKAR Bolza in Chicago

Translated by D. H. Delphenich

In volume 55 of these Annalen, Kneser gave a rigorous proof of the necessity of the Jacobi condition for the simplest class of isoperimetric problems, although the question remained undecided in a certain exceptional case (${ }^{*}$).

The goal of the following note is to show that this exceptional case can also be resolved quite simply with the help of a method that H. A. Schwarz had developed in his lectures (${ }^{* *}$) for the analogous proof in the case of the simplest problem without auxiliary conditions.

The problem that will be treated can be formulated as follows:

Let H_{1}, H_{2}, U be three functions of t that are regular in the interval $\left(t_{0}, t_{1}\right)$. Moreover, let $H_{1}>$ 0 , while U is not zero identically in that interval. Furthermore, let:

$$
\Psi(w) \equiv H_{2} w-\frac{d}{d t}\left(H_{1} \frac{d w}{d t}\right),
$$

and let u, v be solutions of the two differential equations:

$$
\begin{equation*}
\Psi(u)=0, \quad \Psi(v)=U \tag{1}
\end{equation*}
$$

that both vanish at $t_{0}{ }^{(* * *)}$:

$$
\begin{equation*}
u\left(t_{0}\right)=0, \quad v\left(t_{0}\right)=0, \tag{2}
\end{equation*}
$$

[^0]and finally let:
\[

$$
\begin{gathered}
m=\int_{t_{0}}^{t} u U d t, \quad n=\int_{t_{0}}^{t} v U d t, \\
\Delta(t)=m v-n u .
\end{gathered}
$$
\]

One then has $\Delta\left(t_{0}\right)=0$. Let t_{0}^{\prime} be the next zero of $\Delta(t)$ after t_{0} (the conjugate point to t_{0}), and assume that:

$$
\begin{equation*}
t_{0}^{\prime}<t_{1} . \tag{3}
\end{equation*}
$$

It will then be shown that one can always find functions w of t that vanish at t_{0} and t_{1} :

$$
\begin{equation*}
w\left(t_{0}\right)=0, \quad w\left(t_{1}\right)=0, \tag{4}
\end{equation*}
$$

for which:

$$
\begin{equation*}
\int_{t_{0}}^{t_{1}} w U d t=0 \tag{5}
\end{equation*}
$$

and for which the integral (${ }^{*}$):

$$
J_{2}=\int_{t_{0}}^{t_{1}}\left[H_{1}\left(\frac{d w}{d t}\right)^{2}+H_{2} w^{2}\right] d t
$$

assumes a negative value.
In that way, w itself will be continuous in the entire interval $\left(t_{0}, t_{1}\right), d w / d t$ will exist and be continuous, except for a finite number of points, and the forward and backward derivatives will exist and be finite at the exceptional points, as well.

For the case in which u and v do not both vanish at t_{0}^{\prime}, Kneser carried out the proof in the cited treatise by showing that $\Delta(t)$ will then vanish to odd order at t_{0}^{\prime}, which will imply the desired result from an argument that goes back to Weierstrass.

It still remains for us to examine the exceptional case:

$$
\begin{equation*}
u\left(t_{0}^{\prime}\right)=0, \quad v\left(t_{0}^{\prime}\right)=0 . \tag{6}
\end{equation*}
$$

Since:

$$
\begin{equation*}
v \Psi(u)-u \Psi(v)=\frac{d}{d t} H_{1}\left(u v^{\prime}-u^{\prime} v\right) \tag{7}
\end{equation*}
$$

it will follow (${ }^{* *}$) from (1) and (2) that:

$$
\begin{equation*}
H_{1}\left(u v^{\prime}-u^{\prime} v\right)=-m \tag{8}
\end{equation*}
$$

[^1]However, it will follow that under the present assumption (6), one will also have:

$$
\begin{equation*}
m\left(t_{0}^{\prime}\right)=\int_{t_{0}}^{t_{0}^{\prime}} u U d t=0 \tag{9}
\end{equation*}
$$

If one then chooses:

$$
\begin{array}{ll}
w=u \quad \text { in } \quad & \left(t_{0}, t_{0}^{\prime}\right), \\
w=0 & \text { in } \quad\left(t_{0}^{\prime}, t_{1}\right),
\end{array}
$$

w will satisfy the conditions (4) and (5) and make $J_{2}=0$. That is because if $\tau_{1}, \tau_{2}, \ldots, \tau_{n}$ generally denote the places where $d w / d t$ is discontinuous then J_{2} can be put into the form:

$$
\begin{equation*}
J_{2}=\sum_{v=1}^{n}\left[H_{1} w \frac{d w}{d t}\right]_{\tau_{\nu}+0}^{\tau_{\nu}-0}+\int_{t_{0}}^{t_{1}} w \Psi(w) d t \tag{10}
\end{equation*}
$$

by partial integration, which will yield $J_{2}=0$ in the present case.
Now, in order to obtain a function that makes negative J_{2}, we follow Schwarz's procedure and choose w to be a function that deviates from the one above only slightly, namely:

$$
\begin{align*}
& w=u+\kappa \omega \text { in }\left(t_{0}, t_{0}^{\prime}\right), \\
& w=\quad \kappa \omega \text { in }\left(t_{0}^{\prime}, t_{1}\right), \tag{11}
\end{align*}
$$

in which κ is a small constant, and ω is a function of t that satisfies the following conditions:

1) ω is continuous with continuous first and second derivatives in $\left(t_{0}, t_{1}\right)$.
2) $\omega\left(t_{0}\right)=0, \quad \omega\left(t_{1}\right)=0$.
3) $\omega\left(t_{0}^{\prime}\right) \neq 0$.
4) $\int_{t_{0}}^{t_{1}} \omega U d t=0$.

The function w that is defined in that way will fulfill the conditions (4) and (5). It is itself continuous, but its first derivative suffers a jump at the location t_{0}^{\prime}. One will then have to consider the term that arises from the discontinuity (*) by an application of the formula (10) and after a simple calculation, in which one makes use of the identity:

[^2]$$
u \Psi(\omega)-\omega \Psi(u)=\frac{d}{d t} H_{1}\left(\omega u^{\prime}-\omega^{\prime} u\right)
$$
that will yield the result that:
\[

$$
\begin{equation*}
J_{2}=\left.2 \kappa H_{1} \omega \frac{d u}{d t}\right|_{t_{0}^{\prime}}+\kappa^{2} V \tag{12}
\end{equation*}
$$

\]

in which V is a finite quantity, just as in the case the Schwarz treated.
However, by assumption, H_{1} and w are non-zero at t_{0}^{\prime}, just like $d u / d t$, since $u\left(t_{0}^{\prime}\right)=0$, and t_{0}^{\prime} is a non-singular location for the differential equation $\Psi(u)=0$. However, it will follow from this that one can make the integral J_{2} negative by a suitable choice of κ.

It only remains for us to show that we can always determine a function ω that satisfies one of the four conditions above. Let ω_{1} be any function that satisfies one of the first three conditions, e.g., $\omega_{1}=\left(t-t_{0}\right)\left(t-t_{1}\right)$. If it should, by chance, also satisfy the fourth one then $\omega=\omega_{1}$ would be a useful function. However, the integral:

$$
\int_{t_{0}}^{t_{1}} \omega_{1} U d t=C_{1}
$$

will be non-zero, in general. In that case, one chooses a second function ω_{2} as follows: From the assumption that was made about U, one can always find a subinterval $\left(\tau^{\prime}, \tau^{\prime \prime}\right)$ of $\left(t_{0}, t_{1}\right)$ in which $U \neq 0$. One then sets:

$$
\omega_{2}=\left(t-\tau^{\prime}\right)^{3}\left(\tau^{\prime \prime}-t\right)^{3}\left(t-t_{0}^{\prime}\right)^{2}
$$

inside of $\left(\tau^{\prime}, \tau^{\prime \prime}\right)$ and $\omega_{2} \equiv 0$ outside of $\left(\tau^{\prime}, \tau^{\prime \prime}\right)$. The integral:

$$
\int_{t_{0}}^{t_{1}} \omega_{2} U d t=C_{2}
$$

is certainly non-zero then. However, it will follow from this that the function:

$$
\omega=C_{2} \omega_{1}-C_{1} \omega_{2}
$$

satisfies all of the conditions that were posed above.

Therefore, a minimum cannot exist beyond the conjugate point to t_{0} in the exceptional case that was consider, either.

University of Chicago, 27 February 1902.

[^0]: (*) Cf., also the dissertation of Hormann, Untersuchungen über die Grenzen, zwischen welchen Unduloide und Nodoide, etc., Göttingen 1887, which was directed towards the corresponding investigations of Weierstrass, and the same exceptional case was still left unresolved.
 ${ }^{\left({ }^{* *}\right)}$ The method was made known to me from a postscript by Herrn Dr. J. C. Fields to a lecture on the calculus of variations in the Winter semester 1898/99. It is the same method that Sommerfeld extended to double integrals in Jahresberichte der Deutschen Mathematiker-Vereinigung, v. VIII, pp. 188.
 ${ }^{(* *)}$ It is known how one can exhibit such solutions as soon as the general integral of Euler's differential equation is known. Cf., Hormann, loc. cit., and Kneser, loc. cit. The functions u, v are linear combinations of the functions that Kneser denoted by A, B.

[^1]: (*) It is known from Weierstrass that the second variation can be transformed into that form in the present case.
 $\left(^{* *}\right)$ Cf., Kneser, loc. cit., equation (22). The prime denotes derivation with respect to t.

[^2]: (*) In so doing, one should observe that a discontinuity of the type considered will have no effect on the first variation and the conversion of the second variation into Weierstrass form, due to the continuity of w.

