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INTRODUCTION 
 

 The idea of analytically defining a surface by three equations that serve to express the 
ordinary coordinates as functions of two arbitrary independent variables u and v had to 
come to mind in the early research in analytic geometry, and it is found to have been 
pointed out explicitly in the writings of Euler and Lagrange, moreover; however, it is 
Gauss that deserves credit for having shown its importance.  Indeed, in his celebrated 
Disquisitiones generales circa superficies curvas, that famous author established a set of 
formulas and theorems that constitute a true school of thought that is entirely new upon 
adopting the general viewpoint that we just mentioned.  Among those theorems, one of 
the more remarkable ones relates to the surfaces that can be mapped to each other.  Gauss 
obtained it by chance, in effect: He proposed to evaluate what he called the measure of 
the curvature of the surface (i.e., the inverse of the product of the radii of principal 
curvature) as a function of the variables u and v, and found that the measure depended 
only upon some functions E, F, G that appear in the expression for the line element of the 
surface.  He concluded from this that if two surfaces can be mapped to each other (i.e., 
one can make each point of the first one correspond to a point of the second one, in such 
a fashion that the distance between two arbitrary infinitely-close points on the first one 
will be constantly equal to the distance between the two corresponding points on the 
second one, in which case the functions E, F, G can be considered to have the same 
values on the two surfaces) then the measures of the curvature will also be the same for 
the corresponding points. 
 That beautiful theorem of Gauss has led geometers to found a theory of surfaces that 
can be mapped to an arbitrary given surface that is analogous to the older theory of 
developable surfaces, namely, ones that be mapped to a plane.  Minding, in tome XIX of 
the Crelle’s Journal, and after him, several geometers (** ), have already indicated the 
means of recognizing when two given surfaces can or cannot be mapped to each other.  
                                                
 (*) This paper is unaltered from the one that was presented in competition for the mathematics prize that 
was proposed by the Académie des Sciences de Paris (year 1860).  
 (** ) See Liouville’s notes in Monge’s Analyse appliquée and my paper “Sur la théorie générales des 
surfaces” (Journal de l’École Polytechnique, Cahier 32, pp. 80). 
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For his own part, an English geometer Jellett has proved several remarkable properties in 
a very beautiful paper.  Nonetheless, the subject has only been touched upon.  Among the 
questions that remain to be solved, one of the more important ones has the goal of 
determining all of the surfaces that can be mapped to a given one.  That is the one that the 
Academy has chosen to be the subject of the competition and that we have tried to solve 
in the present paper.  Our article is composed of two parts.  The first one contains a new 
proof of Gauss’s theorem.  One knows that the numerous known proofs leave much to be 
desired.  Those of Bertrand, Puiseux, are Diguet are direct, but do not lead to a precisely 
expression for the measure of curvature; those of Gauss and Liouville tell one what the 
measure of curvature is, but they are indirect and suppose that the theorem is known in 
advance.  Our proof presents none of those inconveniences.  We take our starting point to 
be the relation that expresses the equality of the corresponding elements on the two 
surfaces, and by some simple transformations, we will be led to Gauss’s theorem and an 
expression for the measure of curvature of the surfaces considered in a natural and, so to 
speak, inevitable manner.  The second part of the paper is dedicated to the determination 
of the surfaces that be mapped to a given surface.  Upon employing variables whose 
importance Gauss and Liouville showed a long time ago, we will easily reduce the 
question to the integration of a second-order partial differential equation.  That 
integration is unapproachable in the general case, but some simple cases for which the 
result is easy to predict will permit one to verify the method and, at the same time, show 
how the calculations can be achieved. 
 In addition, we shall give several formulas that relate to the lines of curvature, 
asymptotic lines, and the radii of principal curvature that are useful in the case where one 
wants the desired surfaces to fulfill certain geometric condition.  Those formulas lead to 
the following theorem: 
 
 Two surfaces that can be mapped to each other and for which the asymptotic lines of 
one and the other system are corresponding lines must necessarily coincide. 
 

_______ 
 
 

PART ONE 
 

Proof of Gauss’s theorem. – Method of recognizing whether  
two given surfaces can or cannot be mapped to each other. 

 
 1. – Suppose that we have two surfaces, which we represent by S and S′, for brevity. 
Suppose that the rectangular coordinates ξ, η, ζ of the various points of the first one are 
expressed as functions of two arbitrary independent variables u and v.  The element ds of 
that surface will be given by the equality: 
 

ds2 = E du2 + 2F du dv + G dv2, 
in which one has: 

 E = 
2 2 2

d d d

du du du

ξ η ζ     + +     
     

, 
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 F = 
d d d d d d

du dv du dv du dv

ξ ξ η η ζ ζ+ + , 

 

 G = 
2 2 2

d d d

dv dv dv

ξ η ζ     + +     
     

. 

 
 Similarly, if we suppose that the rectangular coordinates ξ′, η′, ζ′ of the various 
points of the surface S′  are expressed as functions of the two variables u′ and v′ then we 
can determine the element ds′ of the second surface by the equality: 
 

ds′2 = E′ du′ 2 + 2F′ du′ dv′ + G′ dv′ 2, 
where: 

 E′ = 
2 2 2

d d d

du du du

ξ η ζ′ ′ ′     + +     ′ ′ ′     
, 

 

 F′ = 
d d d d d d

du dv du dv du dv

ξ ξ η η ζ ζ′ ′ ′ ′ ′ ′
+ + , 

 

 G′ = 
2 2 2

d d d

dv dv dv

ξ η ζ′ ′ ′     + +     ′ ′ ′     
, 

 
and if the surfaces can be mapped to each other (i.e., in such a way that each point of the 
first one corresponds to a point of the second one in such a fashion that the distance 
between two infinitely-close points of the first one will be constantly equal to the distance 
between the two corresponding points on the second one) then there must exist values of 
u′ and v′ that are functions of one and the other of u and v and that verify the relation: 
 
(1)    E du2 + 2F du dv + G dv2 = E du′ 2 + 2F du dv + G dv′ 2, 
 
no matter what u, v, du, dv are. 
 
 
 2. – In order to deduce the equality (1) of the various conditions that this equality 
includes, it is first important to simplify the variables u, v, u′, v′ by specializing them.  
Now, Gauss showed in his “Mémoire sur les cartes géographiques, couronné par 
l’Académie de Copenhague” that there exist variables u and v for any surface for which 
one has: 

E = G,  F = 0. 
 

 If one denotes those variables by α and β when one is dealing with the first surface 
and by α′ and β′ when one is dealing with the second one then the equality (1) can be 
written thus: 

λ (dα 2 + dβ 2) = λ′ (dα′ 2 + dβ′ 2), 
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 Upon setting: 
 α + i β   = x, α − i β   = y, 
 
 α′ + i β′ = x′, α′ − i β′ = y′, 
one will have, even more simply: 
 
(2)  ϕ2 dx dy = ϕ′ 2 dx′ dy′, 
 
in which ϕ2 represents the value of λ when it is expressed in terms of x and y, and ϕ′ 2 is 
the value of λ′ when it is expressed in terms of x′ and y′. 
 
 
 3. – The equality (2) shows immediately that x′ depends upon only one of the 
variables x and y, and that y′ will depend upon the second of those variables.  Indeed, if 
one sets: 

 dx′ = dx dx
dx dy

dx dy

′ ′
+ , 

 

 dy′ = dy dy
dx dy

dx dy

′ ′
+  

then the equality (2) will give: 
 

ϕ2 dx dy = 2 dx dx dy dy
dx dy dx dy

dx dy dx dy
ϕ

′ ′ ′ ′  ′ + +  
  

. 

 
 Now, since dx and dy are arbitrary, the coefficients of dx2 and dy2 in the right-hand 
side must be zero; one will then have: 
 

dx dy

dx dx

′ ′
= 0,  

dx dy

dy dy

′ ′
= 0; 

 
so, since x and y are independent variables: 
 

x′ = f (x), y′ = f1 (y), 
or rather: 

x′ = f1 (y), y′ = f (x). 
 

 
 4. – The first result reduces the equality (2) to: 
 
(3)  ϕ2 = ϕ′ 2 f (x) 1 ( )f y′ ; 

hence, upon taking logarithms: 
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log ϕ2 = log ϕ′ 2 + log f′ (x) + 1 ( )f y′ . 

 
 Upon differentiating this once with respect to x and once with respect to y, one will 
get: 

2 2logd

dx dy

ϕ
= 

2 2logd

dx dy

ϕ ′
, 

 
or rather, when one recalls the values of x′ and y′ : 
 

2 2logd

dx dy

ϕ
= 

2 2

1

log
( ) ( )

d
f x f y

dx dy

ϕ ′ ′ ′
′ ′

, 

and due to the relation (3): 
2 21 logd

dx dy

ϕ
ϕ

= 
2 2

2

1 logd

dx dy

ϕ
ϕ

′
′ ′ ′

. 

 
 We then obtain the remarkable consequence that if the two surfaces S and S′ can be 
mapped to each other then the function: 
 

k = 
2 21 logd

dx dy

ϕ
ϕ

 

 
will have the same value for the two surfaces at the corresponding points. 
 
 
 5. – It now remains for us to understand the geometric significance of k.  In order to 
do that, we shall determine the form that this function takes when one employs the 
arbitrary variables u and v, in place of the particular values x and y. 
 I first return to the variables α and β, which have the advantage of being real, so I 
will have: 

4k = 
2 2

2 2

1 log logd d

d d

λ λ
λ α β
 

+ 
 

. 

 
I then multiply this by the surface element dS on the surface, which is an element that 
will have the value λ dα dβ here, and integrate while taking the boundary to be an 
arbitrary closed contour that is traced on the surface considered; I obtain: 
 

(4)    4 k dS∫∫ = 
2 2

2 2

log logd d
d d d d

d d

λ λα β α β
α β

+∫∫ ∫∫ . 

 
 The right-hand side can be simplified.  Consider the first term: 
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2

2

logd
d d

d

λ α β
α∫∫ . 

 
Upon performing the integration over α and omitting the second integration, for the 
moment, one will get: 
 

1 2 3 4 2 1 2

log log log log log log

m m

d d d d d d
d

d d d d d d

λ λ λ λ λ λβ
α α α α α α−

            − + − + + − +            
            

⋯ . 

 
1, 2, 3, …, 2m are the successive points (which are always even in number), where the 
coordinate line β = const. (prolonged in the positive sense) meets the boundary contour, 
and represents the value of d log λ / dα at the point p, in general.  However, if one 
supposes that the boundary contour is traversed in the sense that the points that 
immediately follow the points 3, 5, …, 2m – 1 are likewise on the side to which one 
counts α as negative with respect to the line β = const. then one will have: 
 

dλ β  = sin i ds 

 
for the points of odd rank 1, 3, 5, …, 2m − 1, in which one generally lets i denote the 
positive angle that the contour thus-traversed will form with the positive β and lets ds 
denote the element of the contour (which is taken positively): 
 

dλ β  = − sin i ds 

 
for the points of even rank 2, 4, …, 2m.  Having said that, the expression above will 
amount to: 

− 
log

sin
d ds

i
d

λ
α λ∑ , 

 
in which the sum is taken over all point 1, 2, 3, …, 2m where the boundary contour is met 
by the line β = const.; consequently, upon performing the integration over β that has been 
temporarily omitted, one will find that for the reduced value of the term 

2

2

logd
d d

d

λ α β
α∫∫ , the simple integral: 

 

− log
sin

d ds
i

d

λ
α λ∫ = − sin

d ds
i

d

λ
α λ∫ , 

 
when it is taken over all points on the perimeter of the contour. 

 When an analogous transformation is applied to the term 
2

2

logd
d d

d

λ α β
β∫∫ , that will 

permit one to replace that term by the simple integral: 
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2 cos
d ds

i
d

λ
β λ∫ , 

 
which is also extended over all points on the perimeter of the contour, and the equality 
(4) will then reduce to: 

2 k dS∫∫ = − sin cos
d d ds

i i
d d

λ λ
α β λ

 
−  

 
∫ , 

or rather to: 

(5)   2 k dS∫∫ =
(sin / ) (cos / ) cos sind i d i i di i di

ds ds
d d d d

λ λ
α β α βλ λ

   
− − −      

   
∫ ∫ . 

 
 Now let dα and dβ be the positive or negative increments that α and β will receive 
when one passes from the first extremity of the element ds to the other, and let δα, δβ, be 
the increments in the same variables for a displacement that is equal to δn, perpendicular 
to the element ds, and external to the boundary contour: No matter what point of the 
contour that one considers, one will have: 
 

 λ dα = cos i ds,  λ dβ = sin i ds, 

(6) 

 λ δα = − sin i δn ,  λ δβ = cos i δn, 

so 

(7)  dβ  = − ds

nδ
δα, dα  = 

ds

nδ
δβ. 

 
 The relation (6) permits one to put the equality (5) into the form: 
 

2 k dS∫∫ =
(1/ ) (1/ )d ds d ds di d di d

d d ds ds
d d d ds d ds

α ββ α
α β α β

   − − +   
   
∫ ∫ , 

 
and the relations (7) will then give: 
 

2 k dS∫∫ =
d ds d ds di d di d

ds ds
d ds d ds d ds d ds

δα δβ α β
α β α β

   ⋅ ⋅+ − +   
   
∫ ∫ ; 

i.e.: 

2 k dS∫∫ =
ds

ds di
n

δ
δ
⋅ −∫ ∫ , 

 
in which di is the positive or negative increment that i will receive when one passes from 
the first extremity of the element ds to the second one, and δds is the increment that ds 
receives under a displacement that is equal to δn and normal to ds, and external for the 
boundary contour.  Furthermore: 
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di∫ = A + B + C + … − (n – 2) π, 

 
where A, B, C, … are the interior angles of the contour, and n is the number of those 
angles; one finally has: 

(8)     2 k dS∫∫ =
ds

ds
nds

δ
δ

⋅
∫  − A − B − C − … + (n – 2) π 

then. 
 
 
 6. – The preceding relation implicitly includes all of the formulas of the 
“Disquisitiones generales circa superficies curvas,” those of my paper on the general 
theory of surfaces, and the somewhat-more-general ones that Liouville gave in his course 
at the Collége de France.  Here, we shall confine ourselves to deducing the value of k as a 
function of the variables u and v. 

 
C D 

A 

E A′ F B′ 

B 

 
 Suppose that the boundary contour to which the integrals that are contained in the 
right-hand sides of the equality (8) are referred is the infinitely-small parallelogram 
BACD that is defined by the coordinate lines u, v, u + du, v+ dv (du and dv are positive).  

The integral k dS∫∫  will reduce to just one element, and since dS = 2EG F−  du dv, in 

which E, F, G are always the functions that figure in the expression of the line of the 
surface, one will have simply: 

2 2EG F− ⋅⋅⋅⋅ k du dv 
 

for the left-hand side of the equality (8).  As for the right-hand side, one will first have n 
= 4, and then, upon letting the angle ω be between the lines u and v : 
 
 A = ω, 
 

 B = π − 
d

dv
dv

ωω + 
 

, 

 

 C = π − 
d

du
du

ωω + 
 

, 
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 D = ω +
2d d d

du dv du dv
du dv du dv

ω ω ω+ + , 

and consequently: 

− A − B − C − … + (n – 2) π = −
2d

du dv
du dv

ω
, 

i.e.: 

− 
2

1
2

2

d F dE F dG dF

dv E du G du duEG F

  + −  
  − 

du dv , 

upon observing that: 

cos ω = 
F

EG
. 

 

Finally, the integral 
ds

ds
nds

δ
δ∫

reduces to four elements that correspond to the four sides 

of the parallelogram BACD.  The element that relates to the side AB has the value: 
 

A B AB

AA

′ ′ −
′

, 

 
AA′ and BB′ are normal to AB, and EAF′ B′ is the line (u + δu); however: 
 

AA′ = AE sin ω = − 
2EG F

G

− δu, 

 

A′B′ – AB = EF – AB + FB′ − EA′ = 
d G

du
dv δu – 

( / )d F G

dv
dv δu ; 

 
one will then have: 

−
2

1
2

dG F dG dF
dv

du G dv dvEG F

 + − 
 −

 

 
for that element.  One immediately deduces from this that the element that relates to the 
side CD is: 
 

2 2

1 1
2 2

2 2

dG F dG dF d dG F dG dF
dv

du G dv dv du du G dv dvEG F EG F

    + − + + −    
    − − 

du dv. 

 
One will likewise find: 
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2

1
2

2

d dG F dG dF

du du G dv dvEG F

  + −  
  − 

du dv 

 

for the sum of the two elements that relate to AC and BD; hence, the integral 
ds

nds

δ
δ∫

 will 

have the value: 
 

2 2

1 1
2 2

2 2

d dG F dG dF d dE F dE dF
du dv du dv

du du G dv dv dv dv E du duEG F EG F

      + − + + −      
      − −   

; 

 
consequently, the equality (8) will reduce to: 
 

(9)  4 2EG F− k  

= 
2 2

1 1
2

d dG F dG dF d dE F dG

du du G dv dv dv dv G duEG F EG F

      + − − −      
      − −   

. 

 
That is the formula that give the value of k as a function of the arbitrary variables u and v. 
 
 
 7. –  It is now quite easy to find the geometric significance of k and to prove that two 
times that function will express the measure of curvature, up to sign.  Indeed, suppose 
that u and v are the rectangular coordinates ξ, η, so one will have: 
 

E = 1 + 
2

d

d

ζ
ξ

 
 
 

,      F = 
d d

d d

ζ ζ
ξ η

,       G = 1 + 
2

d

d

ζ
η

 
 
 

, 

 
in which ζ is the third coordinate, and then: 

2

1
2

dG F dG dF

du G dv dvEG F

 + − 
 −

= 

2

2

2 2 2

2

1 1

d d

d d

d d d

d d d

ζ ζ
ξ η

ζ ζ ζ
η ξ η

−

      + + +      
       

, 

 

2

1 dE F dG

dv G duEG F

 − 
 −

= 

2

2 2 2

2

1 1

d d

d d d

d d d

d d d

ζ ζ
ξ ξ η

ζ ζ ζ
η ξ η

      + + +      
       

; 

 
consequently: 
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 2k  = 

2

2

2 2 2 2 2

1

1 1 1

d d
d d d
dd d d d d

d d d d d

ζ ζ
ξ η

ξζ ζ ζ ζ ζ
ξ η η ξ η


 −


          + + + + +          
            

 

 

 + 

2

2 2 2

1 1

d d

d d d d

d d d d

d d d

ζ ζ
ξ ξ η

η ζ ζ ζ
η ξ η






       + + +       
         

, 

 

  = 
2

22 2 2 2 2

1

1 1 1

d
d d d
d dd d d d d

d d d d d

ζ
ζ ξ

η ξζ ζ ζ ζ ζ
ξ η η ξ η


 − −

          + + + + +          
            

 

 

 +
2

2 2 2

1 1

d
d d d

d d d d d d

d d d

ζ
ζ ξ

ξ η η ζ ζ ζ
η ξ η






       + + +       
         

, 

or, upon developing this and reducing it: 
 

2k = 

22 2 2

2 2

3/ 22 2

1

d d d

d d d d

d d

d d

ζ ζ ζ
ξ η ξ η

ζ ζ
ξ η

 
− 

 

    + +    
     

, 

 
which is indeed the expression for the inverse of the product of the radii of principal 
curvature in terms of ξ, η, ζ, up to sign. 
 
 
 8. – It results from all of the preceding that when two surfaces S and S′ can be 
mapped to each other, the measures of the curvatures will be equal for the two surfaces at 
the corresponding points.  One will also get that beautiful theorem of Gauss as a 
consequence of the equality (1).  Moreover, formula (9), which one met up with in the 
course of the proof, will provide the value of the measure of curvature for the general 
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case and in the elegant form that Liouville had pointed out.  One knows that none of the 
known proofs present that double advantage. 
 
 
 9. – Gauss’s theorem constitutes a necessary, but not sufficient, condition; one must 
therefore always revert to the equality (1) in order to know whether two given surfaces 
can or cannot be mapped to each other.  Nevertheless, observe that when one obtains a 
first relation between the corresponding points of the two surfaces, it is easy to deduce a 
second one. One can then calculate the values of u and v that are the only one admissible 
ones, and one will no longer have to substitute those values in the equality (1) in order to 
see whether the surfaces are or are not truly mappable to each other.  Let us go into that 
topic in some detail. 
 
 
 10. – Let k be a function of u and v, and let k′ be a function of u′ and v′.  Suppose that 
when the two surfaces S and S can be mapped to each other, one has: 
 
(10)     k = k′ 
 
for the corresponding points. (One knows from Gauss’s theorem that this will be true 
when one takes k and k′ to be the measures of curvature.) Upon differentiation, that will 
give: 

dk dk
du dv

du dv
+  = 

dk dk
du dv

du dv

′ ′′ ′+
′ ′

, 

or, to simplify the writing: 
(11)    m du + n dv = m′ du′ + n′ dv′. 
 
 Equation (1) and equation (11) determine du′ and dv′ as functions of du and dv.  
However, the values of those differentials must be linear in du and dv, since u′ and v′ are 
supposed to be functions of u and v; due to the form of equations (1) and (11), that 
obviously cannot be true, unless there exists a certain relation between m, n, m′, n′, E, F, 
G, E′, F′, G′. 
 In order to get that relation, I take the square of equation (11) and add the 
corresponding sides of that with equation (1), which has been previously multiplied by an 
indeterminate factor λ ; we will have: 
 

(m2 + λ E) du2 + 2 (mn + λ F) du dv + (n2 + λ G) dv2 
 

= (m′2 + λ E′) du′2 + 2 (m′n′ + λ F′) du′ dv′ + (n′2 + λ G′) dv′2. 
 
 If one now determines λ in such a fashion that the left-hand side is the square of a 
first-degree binomial in du and dv then it will be necessary that the right-hand side 
becomes the square of a first-degree binomial in du′ and dv′.  In other words, the values 
of λ that make both sides into squares must be equal.  One will then have: 
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2 2

2

2En Fmn Gm

EG F

− +
−

= 
2 2

2

2E n F m n G m

E G F

′ ′ ′ ′ ′ ′ ′− +
′ ′ ′−

. 

 
That is the desired relation.  We then write it as: 
 
(12)      H = H′, 
 
and upon adjoining equation (1) to it, along with the two corresponding differential 
equations: 

(13)    
,

,

mdu n dv m du n dv

dH dH dH dH
du dv du dv

du dv du dv

′ ′ ′ ′+ = +


′ ′ ′ ′+ = + ′ ′

 

 
we will get four equations that permit us to determine u′, v′, du′, dv′ as functions of u, v, 
du, dv, in such a way that it will suffice to require those values to verify the equality (1), 
for any u, v, du, dv, in order to get the conditions that express the idea that the two 
surfaces can be mapped to each other. 
 
 
 11. – One can perform some of the calculations and obtain a simpler result.  I first 
observe that if one subtract the product of corresponding sides of the equalities (1) and 
(12) from the square of the equality (11) then one will get: 
 

2

2

[( ) ( ) ]En Fm du Fu Gm dv

EG F

− + −
−

= 
2

2

[( ) ( ) ]E n F m du F u G m dv

E G F

′ ′ ′ ′ ′ ′ ′ ′ ′ ′− + −
′ ′ ′−

, 

i.e.: 
(14)  (en – fm) du + (fn – gm) dv = (e′n′ – f′m′) du′ + (f′ n′ – g′m′) dv′, 
upon setting: 

  
2

E

EG F−
= e,  

2

F

EG F−
= f, 

2

G

EG F−
= g, 

 

  
2

E

E G F

′
′ ′ ′−

= e′, 
2

F

E G F

′
′ ′ ′−

= f′, 
2

G

E G F

′
′ ′ ′−

= g′, 

 
which is a relation that can replace the equality (1). 
 Upon now eliminating du′ and dv′ from equations (11), (13), and (14), and expressing 
the idea that the final equation is satisfied for any du and dv, one will have: 
 

 2 2

[( ) ( ) ] [ ( ) ( ) ]

2

dH dH
e n f m n fn gm m e n f m m en fm m

du dv
en fmn gm

′ ′ ′ ′ ′ ′ ′ ′ ′ ′− − − + − − − −

− +
 = 

dH

du

′
′

, 
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 2 2

[( ) ( ) ] [ ( ) ( ) ]

2

dH dH
f n g m n fn gm n f n g m m en fm n

du dv
en fmn gm

′ ′ ′ ′ ′ ′ ′ ′ ′ ′− − − + − − − −

− +
 = 

dH

dv

′
′

, 

 
from which, one easily deduces that: 
 

2 22

dH dH
n m

du dv
en fmn gm

−

− +
= 

2 22

dH dH
n m

du dv
e n f m n g m

′ ′′ ′−
′ ′

′ ′ ′ ′ ′ ′ ′− +
, 

 

2 2

( ) ( )

2

dH dH
fn gm en fm

du dv
en fmn gm

− − −

− +
 = 

2 2

( ) ( )

2

dH dH
f n g m e n f m

du dv
e n f m n g m

′ ′′ ′ ′ ′ ′ ′ ′ ′− − −
′ ′

′ ′ ′ ′ ′ ′ ′− +
, 

 
or rather, due to the equality (12): 
 

(15)    
2

dH dH
n m

du dv

EG F

−

−
= 

2

dH dH
n m

du dv

EG F

′ ′′ ′−
′ ′

−
, 

 

(16)  
2

( ) ( )
dH dH

Fn Gm En Fm
du dv
EG F

− − −

−
 = 

2

( ) ( )
dH dH

F n G m E n F m
dn dv
E G F

′ ′′ ′ ′ ′ ′ ′ ′ ′− − −
′ ′

′ ′ ′−
. 

 
 It will then suffice that the values of u′ and v′ that are both inferred from the four 
equations (10), (12), (15), (16) will verify the other two, not matter what u and v are. 
 
 
 12. – Before going on, it would not be pointless to indicate the geometric significance 
of the equalities (12), (15), (16).  Now, in the first place, the equality (12) expresses the 
idea that the quotient that is obtained upon dividing by δs the increment δk that k takes on 
for a displacement that is equal to δs that is performed on the surface S normally to the 
curve k = const. is equal to the quotient that is obtained upon dividing by δs′ the 
increment δk′ that k′ takes on for a displacement that is equal to δs′ that is performed on 
the surface S′ normally to the curve k′ = const.  Indeed, if we let δu and δv denote the 
increments that u and v take on when one passes from the first extremity of δs to the other 
then we will have the three equations: 
 

m δu + n δv = δk, 
 

(En – Fm) δu + (Fn – Gm) δv = 0, 
 

E δu2 + 2F δu δv + G δv2 = δs2. 
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Squaring the first and adding corresponding sides to the third one, when it was previously 

multiplied by 
2 2

2

2En Fmn Gm

F EG

− +
−

, one will get: 

 
2

2

[( ) ( ) ]En Fm u Fn Gm v

EG F

δ δ− + −
−

= δk2 + 
2 2

2

2En Fmn Gm

F EG

− +
−

ds2, 

 
or simply, due to the second: 

 
2

2

k

ds

δ
= 

2 2

2

2En Fmn Gm

EG F

− +
−

. 

One will likewise find that: 

 
2

2

k

ds

δ ′
′

= 
2 2

2

2E n F m n G m

E G F

′ ′ ′ ′ ′ ′ ′− +
′ ′ ′−

; 

 
hence, the equality indeed comes down to: 
 

k

ds

δ
= 

k

ds

δ ′
′

. 

 
 As for the relations (15) and (16) – or rather, the ones that one gets upon multiplying 

corresponding sides of the latter with 
1

H
= 

1

H ′
 − they express the idea (one easily 

verifies this, so it should not be necessary to give a proof) that the two quotients that are 
obtained upon dividing by ds the increments that H takes on under displacements that are 
equal to ds and are performed on the surface S along the curve k = const. and normally to 
that curve are respectively equal to the two quotients that are obtained upon dividing by 
ds′ the increments that H′ takes on under displacements that are equal to ds′ and are 
performed on the surface S′ along the curve k′ = const. and normally to that curve. 
 
 
 13. – We have excluded two cases from the preceding: 
 
 1. The one in which equations (10) and (12) are incompatible. 
 
 2. The one in which those two equations imply each other. 
 
In the former case, the surfaces cannot be mapped to each other.  In the latter case, which 
will occur only when H is a function of k and H′ is the same function of k′, the surfaces 
can be mappable to each other, but one must employ some special considerations in order 
to insure that they really are. 
 First observe that equations (10) and (12) will be satisfied by that very reason itself, 
so one can always replace the equality (1) with the equality (14): 
 
(14)  (en – fm) du + (fn – gm) dv = (e′n′ – f′ m′) du′ + (f′ n′ – g′m′) dv′, 
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in such a way that the question comes down to expressing the idea that there exist values 
of u′ and v′, which are functions of u and v, resp., that verify equations (10) and (14) for 
any u, v, du, dv. 
 If we substitute the values of v′ and dv′ in the equality (14) that are inferred from 
equation (10) and the corresponding differential equation: 
 

m du + n dv = m′ du′ + n′ dv′ 
then we will have: 
 

( ) ( ) ( ) ( )n en fm m f n g m du n fn gm n f n g m dv   ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− − − + − − −     

+ ( ) ( )m f n g m n e n f m du ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− − −  = 0 

 
(the line that is placed over an expression indicates that one has replaced v′ with its value 
that is inferred from setting k = k′), and it will suffice to demand that the latter equation is 
satisfied by a value of u′ that is a function of u and v for any u, v, du, and dv.  In order to 
do this, it is necessary that the integrability condition must be fulfilled, which is, as one 
knows: 

  ( ) ( )n en fm m f n g m ′ ′ ′ ′ ′− − −   

 

  × 
( ) ( )

( )
dn m dn d f n g m m d f n g m

fn gm n
du n dv du n dv

    ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− − − − − −    ′ ′ ′ ′ ′ ′    
 

 

  + ( ) (
( ) ( )

n dn d e n f m n dm nm d f n g m
e n f m n f n g m

n dv dv n dv n dv

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− −′ ′ ′ ′ ′ ′ ′ ′− + − − − ′ ′ ′ ′ ′ ′ ′ 
 

 

  + ( ) ( )n fn gm m f n g m ′ ′ ′ ′ ′− − −   

 

  × 
( ) ( )

( )
dn m dn d f n g m m d f n g m

en fm m
du n dv du n dv

    ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− − − − − − −    ′ ′ ′ ′ ′ ′    
 

 

  − ( ) (
( ) ( )

m dn d e n f m n dm nm d f n g m
e n f m m f n g m

n dv dv n dv n dv

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− −′ ′ ′ ′ ′ ′ ′ ′− − + − − ′ ′ ′ ′ ′ ′ ′ 
 

 

  + ( ) ( )m f n g m n e n f m ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− − −   

 

  × 
( )

( ) ( )
d en fm n dn d m

n en fm f n g m
dv n dv dv

 ′−′ ′ ′ ′ ′+ − − − ′ ′
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− ( ) ( ) ( )
( ) ( )

d f n g m n d fn gm m dn dn m d f n g m
m n fn gm f n g m n

dv n du n dv du n dv

′ ′ ′ ′ ′ ′ ′ ′ ′− − −′ ′ ′ ′ ′− − − + − + ′ ′ ′ ′ ′ ′ 
 

 = 0, 
 

or, upon simplifying this by means of the relations 
dm

dv
= 

dn

du
, 

dm

dv

′
′

= 
dn

du

′
′
: 

 

2 2

( ) ( )

2

d en fm d fn gm

dv du
en fmn gm

− −−

− +
 = 

2 2

( ) ( )

2

d e n f m d f n g m

dv du
e n f m n g m

′ ′ ′ ′ ′ ′ ′ ′− −−
′

′ ′ ′ ′ ′ ′ ′− +
. 

 
 That condition, which one can then write: 
 

2 2 2 2

2

2 2

En Fm Fn Gm
d H d H

En Fmn Gm En Fmn Gm

dv du

H EG F

− −⋅ ⋅
− + − +

−

−
 

 

= 

2 2 2 2

2

2 2

E n F m F n G m
d H d H

E n F m n G m E n F m n G m

dv du

H E G F

′ ′ ′ ′ ′ ′ ′ ′− −′ ′⋅ ⋅
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− + − +

−
′ ′

′ ′ ′ ′−
, 

 
upon recalling the values of e, f, g, e′, f′, g′, and which will then reduce to the following: 
 

2 2 2 2

2

2 2

En Fm Fn Gm
d d

En Fmn Gm En Fmn Gm

dv du

EG F

− −⋅ ⋅
− + − +

−

−
 

 

= 

2 2 2 2

2

2 2

E n F m F n G m
d d

E n F m n G m E n F m n G m

dv du

E G F

′ ′ ′ ′ ′ ′ ′ ′− −⋅ ⋅
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− + − +

−
′ ′

′ ′ ′−
, 

 
since k = k′, H = f (k), H′ = f (k′), will replace equation (12) in the present case.  If we set: 
 
(17)     L = L′, 
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for brevity, then upon operating as in the general case, we will see that the necessary and 
sufficient condition for the two surfaces to be mapped to each other is that the values of u 
and v that are deduced from the two equation (10) and (17) must verify the following 
equations identically: 
 

(18) 
2 2

2 2

,

( ) ( ) ( ) ( )
.

dL dL dL dL
n m n m

du dv du dv
EG F E G F

dL dL dL dL
Fn Gm En Fm F n G n E n F m

du dv du dv
EG F E G F

′ ′ ′ ′− − ′ ′=
′ ′ ′ − −


′ ′ ′ ′ ′ ′ ′ ′ ′ ′− − − − − − ′ ′= ′ ′ ′− −

 

 
 
 14. – One sees effortlessly that the second of the preceding equations is a 
consequence of the two equations: 
 

k = k′,  L = L′, 
 
and can consequently be omitted.  Indeed, from the formula that I gave in the volume 42 
of the Comptes rendus, and much later in my paper on the use of a new system of 
variables in the study of the properties of curved surfaces, which was included in volume 
V, second series, of the Journal de Liouville, L represents the geodesic curvature of the 
curves k = const.; hence, the expression: 
 

2

( ) ( )
dL dL

Fn Gm En Fm
du dv
EG F

− − −

−
 

 

is, up to the factor 1/ H , the quotient that is obtained upon dividing by ds the 

increment that this geodesic curvature will take on under a displacement that is equal to 
ds and situated on the surface S and the normal to the curve k = const.  On the other hand, 
since H is a function of k, the curves k = const. are equidistant and have geodesic lines for 
their trajectories; consequently [see my paper on the general theory of surfaces (Journal 
de l’École Polytechnique, t. 32, p. 52)], one has: 
 

2

( ) ( ) 1
dL dL

Fn Gm En Fm
du dv
EG F H

− − −

−
+ L2 = k. 

 One similarly has: 
 

2

( ) ( ) 1
dL dL

F n G m E n F m
du dv
E G F H

′ ′′ ′ ′ ′ ′ ′ ′ ′− − −
′ ′

′ ′ ′ ′−
+ L′ 2 = k′ ; 
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having said that, the two conditions: 
 

k = k′,  L = L′, 
 
the first of which already includes H = H′, will necessarily imply the second of equations 
(18).   

 
 
 15. – It can happen that the relation L = L′ will lead back to the equality (10), or in 
other words, that L is a function of k and L′ is the same function of k′. In that case, upon 
multiplying corresponding sides of equation (14) and this one: 
 

1
L

dk
He

H

−∫
= 

1
L

dk
He

H

′ ′−
′∫

′
, 

 
one will obtain a new equality whose left-hand side is the exact differential of a function 
of u and v and whose right-hand side is an exact differential of a function of u′ and v′.  
Indeed, one has: 

L L
dk dk

H Hen fm fn gm
d e d e

H H

dv du

− −∫ ∫− −⋅ ⋅
−  

 = 
2 2 2 22 2

L
dk

H

En Fm Fn Gm
d d

En Fmn Gm En Fmn Gm
e

dv du

−

− − ⋅ ⋅
∫ − + − + −




 

  + ( ) ( )
L dk dk

fn gm en fm
H du dv

 − − −   
 

 

  = 2 2 2( 2 )
L

dk
H L

e L EG F en fmn gm
H

−∫  − − − +  
= 0, 

and also: 
L L

dk dk
H He n f m f n g m

d e d e
H H

dv du

′ ′′ ′− −
′ ′∫ ∫′ ′ ′ ′ ′ ′ ′ ′− −⋅ ⋅

′
−

′ ′
= 0 ; 

 
hence, one can reduce equations (14) to another one of the form: 
 
(19)    F(u, v) = F′ (u′, v′) + const. 
by quadratures. 
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 In the last case, the surfaces will always be mappable to each other, and the values of 
u′ and v′ will be given by equations (10) and (19).  Due to the arbitrary constant that is 
contained in equation (19), one will see that there is an infinitude of systems of 
corresponding points. 
 
 
 16. – It still remains for us to speak of the interesting special case in which the 
measure of curvature k of the surface S is equal to a constant.  In that case, one will 
immediately see whether the surface S′ is or is not mappable to the surface S.  In order for 
the two surfaces to be mappable to each other, it is necessary and sufficient that the 
measure of the curvature k′ must be the curvature of S′, reduced by the same constant as 
the measure k of the surface S.  However, the search for the corresponding points on the 
two surfaces S and S′ presents some very great difficulties.  That search demands that one 
must know the geodesic lines on the surface S′.  Now, although the first integral of the 
general equation for the geodesic lines on surfaces of constant curvature has a very 
simple, well-known form, as far as I know, it has not been further obtained when the 
surface is given in a general manner by three equations that give the coordinates x, h, z as 
functions of two arbitrary independent variables u and v. 
 To conclude this first part, I would like to remark that the analysis that I made use of 
in order to recognize whether two surfaces are or are not mappable to each other offers 
some great analogies with the one that Minding presented in volume 19 of Crelle’s 
Journal.  Meanwhile, I have added some developments to the solution of that German 
scholar of geometry that seem to me to be worthy of attention. 
 

(End of Part One)   
 

_____________ 


