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 This year, in his lectures at the Collège de France, Bertrand point to a gap that exists in the 

method that Jacobi used to integrate first-order partial difference equations. Without recalling that 

method here, which is known to all geometers, I shall immediately write down the equation upon 

which the proof of that fundamental theorem is based (see Journal de M. Liouville, tome III, page 

176): 

dx – (p1 dx1 + p2 dx2 + … + pn dxn) = − 0 0 0 0 0 0

1 1 2 2( )n nM p dx p dx p dx+ + + . 

 

Jacobi concluded that dx – (p1 dx1 + p2 dx2 + … + pn dxn) is zero from that equation and the fact 

that 0

1dx , 0

2dx , …, 0

ndx  are zero. Now that will be permissible only after one has shown that M 

cannot become infinite. 

  I would like to give a geometric proof of that for the case of three variables that seems free of 

any objection to me. 

 Let: 

 

(1)      f (x, y, z, p, q) = 0  

 

be a first-order partial difference equation that is to be integrated. First, let us establish the meaning 

of some terms. 

 

 Integral surface: We regard x, y, z as rectangular coordinates. Having said that, any integral of 

equation (1) represents a surface, to which we give the name of integral surface. 

 

 Enveloped cone: Consider x, y, z in equation (1) to be the coordinates of a well-defined point, 

and consider p and q to be the partial derivatives of a function Z of two variables X and Y. If X, Y, 

Z are the running coordinates then equation (1) will represent an infinitude of developable surfaces, 

and in particular, a cone that has the point x, y, z for its summit. We shall call that cone the 
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enveloped cone at the point x, y, z. It is obvious that each point x, y, z in space corresponds to one 

and only one enveloped cone and that its equation will result from eliminating p, q, dq / dp from: 

 

(a)   

( , , , , ) 0, 0,

( ) ( ) , ( ) 0.

df df dq
f x y z p q

dp dq dp

dq
Z z p X x q Y y X x Y y

dp


= + =



 − = − + − − + − =


 

 

One sees, in addition, that if one imagines an enveloped cone at a point on an integral surface then 

the tangent plane to the surface considered will also be tangent to the cone. 

  

 Characteristic: Suppose that an integral surface is given. I shall say “characteristic” to mean 

any line that is traced on the surface such that its tangent at an arbitrary point m is a generator of 

the enveloped cone, and along which the tangent plane to the cone coincides with the tangent plane 

to the integral surface at the point m. It is obvious that any integral surface corresponds to a unique 

system of characteristics. 

 

 Let us return to the integration of equation (1) and let us look for its characteristics in order to 

get an integral surface. x, y, z, p, q will vary according to a well-defined law along one of those 

lines. We must then establish four relations between those five variables. That question then 

immediately produces two: 

 

(1)      f (x, y, z, p, q) = 0 , 

 

(2)  dz = p dx + q dy . 

 

If one observes that the tangent to the characteristic is a generator of the enveloped cone then one 

will have: 

(3)  
dx

df

dp

 = 
dy

df

dq

 

 

from equations (a). On the other hand, if one lets x, y, z, p, q denote the variations of x, y, z, 

p, q, resp., then for an infinitely-small displacement that is performed along the tangent that is 

conjugate to the tangent to the characteristic, one will have: 

 

(5)  dx p + dy q = 0 , 

 

(6)  x dp + y dq = 0 , 

 

and 
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df df df df df
x y z p q

dx dy dz dp dq
    + + + +  = 0 , 

or 

df df df df df df
p x q y p q

dx dz dy dz dp dq
   

  
+ + + + +  

   
 = 0 . 

 

Due to equations (3) and (5), the last equation will give: 

 

df df df df
p x q y

dx dz dy dz
 

  
+ + +  

   
 = 0 , 

and due to equation (6): 

(4)  
dp

df df
p

dx dz
+

 = 
dq

df df
q

dy dz
+

 . 

 

That is the desired fourth equation. Now, if one integrates (2), (3), (4), while appealing to (1), 

moreover, then one will get four relations between x, y, z, p, q, and three arbitrary constants , , 

, and then upon eliminating p and q, one will get the two equations: 

 

(b)     (x, y, z, , , ) = 0 ,  1 (x, y, z, , , ) = 0  

 

for an infinitude of curves, among which one will find the characteristics of any integral surface. 

 We shall let c denote the curves that are represented by the two equations (b), to abbreviate. A 

first observation that should be made is that no surface that is composed of the curves c can be an 

integral surface. Let S be a surface that is composed of the curves c1, c2, c3, …, which were chosen 

at random from among the curves c. Take an arbitrary point m on cp and draw the tangent mt 

through that point. From equation (3), that tangent will be a generator of the enveloped cone. Draw 

the tangent plane P to the enveloped cone along mt. If one moves m along cp then the plane P will 

move and envelop a developable surface that I shall call p . Having said that, in order for S to be 

an integral surface, it is necessary and sufficient that S should be the envelope of the developable 

surfaces 1, 2, 3, … that are constructed from c1, c2, c3, … in the same way that p was 

constructed from cp . In other words, it is necessary and sufficient that when one supposes that the 

curves c1, c2, c3, … are infinitely close, the intersection of p and p+1 will be either cp or cp+1 . 

 Jacobi’s theorem consists of saying that S will be an integral surface when the curves c1, c2, c3, 

… start from the same point. Hence, in order to establish that theorem, it will suffice for us to show 

that if cp and cp+1 have a common point then cp+1 will be found completely on p . In order to do 

that, we first state the characteristic properties of the curves c. Now, any of those curves cp : 

 

 1. Has a tangent at each point that is a generator of the enveloped cone that relates to the 

point. That results from equation (3). 
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 2. Is such that the developable surface p that one deduces in the manner above has each of 

its generators tangent to the curve that is the locus of the summits of the enveloped cones that have 

a tangent plane that is the tangent plane to the developable surface along the generator in question. 

That results from equation (4). 

 

 Now recall the curves cp, cp+1, and the surface p . Furthermore, regard cp+1 as being deduced 

from cp by varying the parameters , ,  by quantities that are infinitely small of order one. I shall 

base normals to p at the various points of cp+1 . Let nn1 be one of those normals, where n is its 

point on cp and n1 is its foot. I shall draw the rectilinear generator g n1 m to the surface p through 

n1 and suppose that this line meets cp at m. I now trace out the curve m n2  that is the locus of the 

summits of the enveloped cones whose tangent plane is the tangent plane to p along mg. I draw 

the normal n1 n2 to that curve, and finally I connect n n2 . If n n1 is infinitely small of order two 

then since n1 n2 is, as well, it will follow that n n2 has order two. One easily sees from this that the 

tangent to cp+1 at the point n makes an angle that is infinitely small of order two with the tangent 

plane to p along mg. It will suffice to recall that the tangent to cp+1 is a generator of the enveloped 

cone that relates to the point n and that the tangent plane to p is tangent to the enveloped cone 

that relates to n2 . Now, upon neglecting third-order infinitesimals, the angle that the tangent to 

cp+1 at the point n makes with the tangent plane to p along mg is nothing but the derivative of the 

distance nn1 from cp+1 to with respect to the arc-length of cp+1 . Indeed, one must prove this very 

simple general theorem: If one is given a surface c and a developable surface  then the derivative 

of the distance from the points of c to  with respect to the arc-length of c is nothing but the cosine 

of the angle that the tangent to c makes with the normal to  that measures the distance in question. 

Thus, when the distance nn1 from a point n of cp+1 to p is infinitely small of order two, one can 

conclude that the derivative of that distance with respect to the arc-length of cp+1 will have order 

two. I say that it results from this that if a point of cp+1 has a distance from p that is infinitely small 

of order two then the same thing will be true for all points of cp+1 , which proves Jacobi’s theorem. 

 

 Consider the skew surface that is the locus of the normals that are drawn from the various 

points of cp+1 to p , which is a surface that I shall call . I trace out an arc of the curve na on  

that starts from the point n on cp+1 that has a distance from p of order two, has length l, and cuts 

all of the generators of  at an angle that is equal to one that the tangent to cp+1 at the point n makes 

with the generator that passes that point. Then, while starting from the point a, and always on the 

surface , I draw a second arc ab of length l that cuts all of the generators of  at an angle that is 

equal to the one that the generator of the enveloped cone that relates to a, which is located in the 

tangent to , makes with the generator to . Then, upon starting from the point b, and always on 

the surface , I draw a third arc bc of length l that cuts all of the generators of  at an angle that is 

equal to the one that is the generator of the enveloped cone that relates to b, which is situated in 

the tangent plane to , makes with the generator of , and so on. It is clear that the polygon nabc, 

etc., will tend to cp+1 when l decreases indefinitely. Now from what was said above, all of the 

points of that polygon are at distances from p of order two, no matter what l is. Hence, all points 

of cp+1 are also at distance of order two. 
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 As one knows, once one has proved Jacobi’s theorem, one can deduce a complete integral and 

then the general integral. 

 

__________ 

 


