“Solution de quelques problemes de mécanique,” J. math. gLaepl.9 (1844), 217-238.

Solving some problems of mechanics
By OSSIAN BONNET

Translated by D. H. Delphenich

Consider a perfectly-flexible and homogeneous string ket the same density
everywhere. Suppose that its extremities are fixedninnvariable manner at the two
pointsA andB, and each of its elements are subject to a given tbatas subject to only
the condition that it must vary in a continuous manmemiagnitude, as well as in
direction, when one passes from one element toolleeving element. We will have the
three known equations for the equilibrium of an arbitedeynent:

d [éT%} X ds=0,
ds

(1) d [ﬁTﬂ}Y ds=0,
ds

d [ﬁTd—Zj + Z ds=0.
ds

X, Y, Z represent the rectangular coordinates of a pdititeoelement considered s the
arc length of the string between a fixed point aéimel variable pointx, y, 2), T is the
tension at the latter poink, Y, Z are the forces per unit length and parallel toakes
that are found at that point, and finally, all bétdifferentials refer to the same infinitely-
small displacement that is performed on the strin@ sense that can be arbitrary, but
which we suppose to be always the sense in whelpdisitive values of are counted in
order to fix ideas and make the differentalpositive.

If the equilibrium curve of the string is planar Wrtue of the nature of the forces
Y, Z then one can refer the equilibrium to two axes #ra situated in the plane of that
curve, and it will then suffice to consider thesfitwo of equations (1).

That is the case that we shall examine first.

If one develops the two equations of equilibriunent upon takings to be the
independent variable:

2
H.}.ﬂix + X = 0,

ds’ ds ds
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Td Y. dT dy

+Y=0,
ds2 ds ds
SO
dx EI
T= ds ds
d*xdy_dydx
ds ds d$ d
d’y  d’x
X—=-Y—
dar _ " dg¢  d¢
ds  d°xdy_dydx
ds ds d$ d
and upon eliminating :
y Xy Y x Yy O
2) d ds ds |_ ds ds 4s=0.

d’xdy dydx| dxdy @ ydx

d& ds d$ d ds ds ds ds

That equation represents the curve that the stringaffdtt in the equilibrium position.
One can put it into a simpler form. dfis the independent variable then one will
have:

axdx, dydy_o

S0
dzx/ds dzy/ds d’x dy d2de L1
dy/ ds dx/ds d€ ds d& di  p’

upon calling the radius of curvatyveand observing that:

XY’ (dy)_ dx) (dy) 1
(dsj +(dsj 1 and \/[dszj +[d§j o

We infer from this that:

d’x_ . dy/ds d’y _dx/ds d’xdy of ydx_

=+ F - - s +

1
@ = p &~ " p d ds dd df  p’

in which the upper or lower sign must be takenhim last relation according to whether
the derivative ofly / dx with respect tes is nhegative or positive, resp.; i.e., according to
whether tangent of the angle, and consequently, atigle that the tangent to the
equilibrium curve makes with the positive part bé &k-axis, diminishes or increases,
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resp., for an infinitely-small displacement of thentact point that is performed on the
string in the sense where one counts the positive vaiubg arc lengtls.
If one substitutes that in equation (2) then one geatt

d p(vd_x_ xiyj i( x. 9%, Y_dﬁ d=0,
ds ds ds d

in which the sigr is determined in the way that was just described.

Now letR denote the intensity of the force that acts uporstitieg at the poinx, y, z,
and leta denote the positive angle that the direction of tbeted makes with the positive
part of thex-axis. At the same time, lgt be the positive angle that the portion of the
tangent to the string that is obtained by prolongingetement of arc length of that string
in the positive sense makes with the same part of¢has as before. One will have:

X=Rcosa, Y=Rsina,

and the preceding equality will become:
(3) dORpsin (@-¢@)] £t Rcos @—-¢) ds=0.

If @is the angle (less than IBhat the direction of the ford® makes with the portion of
the tangent to the string that is obtained by prolongmegeiement of arc length in the
positive sense then one will have:

sin(@—¢)=xsinéd and cosdq — ¢) = coséb,

in which the sign in front of si@is + or — according to whether the angleliminishes
or increases, resp., for an infinitely-small dispraeat that is performed in the sense of
positive s, which is easy to assure oneself by examining all optistions that can be
presented and remarking that the foRRenust always act towards the convexity of the
string.

That will finally give the equation of the equilibriucarve of the string:

4) dORpsin 6 +Rcosfdds= 0.

In order to bring more uniformity to our calculationse whall always employ the
preceding equation when we would like to know the figurequfilbrium of a string
when the force is given, or conversely, to deternmimgeforce when we know the figure
of equilibrium. We must point out only that it is sadmees more advantageous to
proceed directly.
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If we suppose, first of all, that the for&eis normal to the equilibrium curve of the
string then we will have:

g=—, SO sind= 0, cos@=0,

N Y

and equation (4) will become:
Ro=c,

which will show that the equilibrium curve in the casensidered has its radius of
curvature inversely proportional to the force at eachsopoints, so one deduces that if
the force is constant then the curve will be a ejretc. All of those results are known.

Suppose, secondly, that the foR& always parallel to the same direction. Take the
positive part of the-axis to be a parallel to the for&eand the positive part of theaxis
to be a perpendicular that is drawn through the sidegalhich are situated the portions
of the tangent that are obtained by prolonging the elenwdrarc lengtls in the sense of
the positive values of those arc lengths. It is eassee that since the foréealways
points towards the convexity of the string, the andlewill increase then for a
displacement of the string in the sense of positivaesabfs, and that one will have the
differentials:

ds=pdg,

if they refer to a displacement in the same sensab@ge. That being the case, equation
(4) will then become:
(5) dORpsing + Rocosfddfd=0.

It was only to fix ideas and arrive more rapidly at gneceding equation that one has
supposed that the positive part of thaxis points in a certain sense. However, it is easy
to see that equation (5) will still be true when thsifpee part of they-axis is taken in the
opposite sense. Furthermore, one can establish thatoegimaanother manner that will
exhibit what we just proposed.

If one returns to equation (3) and sets 0 in that equation then one will get:

d ORpsing) T Rocos¢g ds= 0,

in which the upper or lower sign will be taken accordingmveether g diminishes or
increases, resp., for a displacement that is carriedrothe string in the sense of positive
s, however, one will obviously have:

ds=F pdg,
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in which the sign is determined in the same manner. HKeheeequation above will
come down to:
dRosing + Rocosg d¢ = 0;
moreover:
¢p=6 or ¢ =2m-6.

When one substitutes this, one will find equation (5), Wwhis then found to be
established in every case.
If one develops equations (5) then it will become:

sindd [Rp + 2Rpcosddé=0,
SO upon integrating this:
(6) Rosirf 8=C.

Let us now make some hypothesesRorin the first place, set)(

R=asin" g,
so equation (6) will become:
(7) psit? 9= =c;
a
upon remarking that:
y’=tané,

SO

%‘ = sin™?2 gcosHda,

and upon integrating, that will give:

J (M X X iy g
C' X

One does not include the constant, since it is wilbgwbe possible to make it disappear
by displacing ther-axis parallel to itself.
y

Finally, replace si@with its value , SO0 one will get:

—(m+1)

J1+y? ’

X | x

SO

() One will get this expression for the force when onesiders a flexible sheet of rectangular form
with two opposite sides that are fixed and supposes tharédssure of the moving air on a fixed surface
element is proportional to the area of that surfackta them™ power of the air velocity, when estimated in
the sense of the normal to that element.
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(8)

We then obtain the curves that we considered inhenarticle (), which enjoy several
remarkable properties.

One can deduce some known results from thatndfsetsn = O then the forc& will
be constant and equation (8) will be that of armatg [fm = 1 then the forc® will be
directly proportional to the sine of the angle betw thex-axis and the tangent to the
curve at the point where that force is appliedotlmer words, the forces that act upon the
elements of the string are proportional to the gmopns of those elements onto the
axis, and in that case, equation (8) will represeparabola that is, in effect, the curve of
the suspension bridge, etc.

Equation (8) will take on an illusory form whem= - 1. In that case, which is the
one in which the component of the given force thatormal to the equilibrium curve of
the string is constant, one must revert to equdfidnone will then get:

psin@=C_/,
where, upon replacing with its value as a function @f:

2( _ cosgdo
C' sing '

so if one integrates twice without introducing damgs (since it is always possible to
make them disappear by displacing the axes pataltbemselves) then:

/%= cos Y.
C

X

e

If one changes the axes in such a way that theéiy®giart of thex-axis and the positive
part of they-axis become negative part of tlgeaxis and the positive part ofaxis,

respectively, then one will have:
z X
e cos— =1.
C

That is the result to which one will arrive wheredaoks for the equation of the catenary
of equal resistance, as Coriolis did on page 3ém€ | of this journal.

If one supposes that the forBeis proportional to a power of and a power op,
instead of supposing that it is simply proportiot@la power ofg, then one will once
more find the curves (8). Indeed, one will themeha

() See Journal de Mathématiques pures et appliquées, Xopage 97.
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R=asin" 84",
and equation (6) will become:
o sim™2 9= €.
a

or
m+2 1

psinmt g= C'nl =C”
SO, upon integrating as above:
dx

2(n+1)

dy=

-+l
X
Xy

Suppose, moreover, that the foR& proportional to an arbitrary power of c849n such
a way that:

R=acos" 4,
so equation (6) will become:

psirt 8cos" = % =C/,

from which one easily infers that:
ax_ dé
C' sinffcodtg

In particular, ifm = 1, in which case, the ford@ will have an intensity that is easy to
interpret, then the preceding equation will give:

xtan@= xﬂ =-C/
dx

when one drops the constant, so, upon integrating:

y=-C’Ix,
which is quite remarkable.

V.

Without stopping to make more applications of tase in which the forc® is
always parallel to the same direction [which isagsecthat we must point out is almost
always simpler to deal with directly, without pagsthrough equation (5)], we pass on to
some other hypotheses about the direction of tleefo

Suppose that the angtthat the forceR makes with the tangent to the equilibrium
curve is constant. Equation (5) will then become:
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dRpo+Rcotfds=0.

However, ifg is always the angle that the tangent to the cund@emwith thex-axis then
one will have:

ds=+ pdg,
in which the sign is easy to determine. The preceding equaiil then amount to:

dRoxRpcotfdg =0,

S0, upon integrating:
9) Ro=C €™,
when one sets:

Fcosfd=m,
to simplify.

We now make some hypotheses Rn Suppose, first of all, thaR is constant;

equation (9) will then reduce to:
(10) p=C’d™.

All of the curves that are included in the latter equatiamehdevelopments that are
similar to it. Indeed, one can infer from that equatlwat:

do=m C’ €™ dg = mp dg,
SO
do _
dg ¥
Now, = do / d¢ is the radius of curvature of the development of thereguand the
preceding equation will show that this quantity is proposil to the radius of curvature.
One knows that the logarithmic spirals enjoy that prypel say, moreover, that the
logarithmic spirals are the only curves that are includestjuation (10).
Indeed, upon replacingwith its value, that equation will give:

dx =+ C’cos¢ €™ dg,
and consequently:
dy=+C’sing €% dg ;

hence, integrating by parts will give:

e™ (sing + mcosp )

x=xC’ 5
1+m

e™ (msing — cosp )
1+n7

y=+C’
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while leaving aside the constants, since it is alwaysiplesto make them disappear.
In order to eliminatep from the preceding two equations, we divide the one by th
other and get:

y _ msing-cosgp _ mtang -1
X sing+mcogp tang+m’
o)
1

_xemy_ 'y

tang = = :

mx—y 1_5@[

m X

Dividing by the value of* + y?, while recalling that:

m= Fcot g,
and setting:

X+y =r, arctany = @
X

one will find, after all reductions have been made:
r= Agneo)
One will arrive at an analogous conclusion if oaetss
R=ad".

One can make some other hypotheseR ¢imat will lead to results that are more or less
curious.

V.

Now suppose that the forée constantly passes through the same point, which we
assume to be the coordinate origin, so the anglethie forceR makes with the positive
part of thex-axis, and which we represented d&syn 8§ |, will be equal to the azimuth of
the point where the force is applied in this cas®ahat azimuth plus 180 Hence, if we
represent the azimuth of an arbitrary pointaathen we will have:

a=w or a=180+ w
so in both cases:
da=dw.

Now recall equation (4) and replads with its value ¥ p do in that equation. It will
become:
d (Rosin@F Rocosfdg =0,
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where the upper or lower sign must be taken accordimdnébher the angl¢ diminishes
or increases for an infinitely-small displacementhe sense of positive However, as
we saw in 8§ I, we have:

sin (@—¢@) =£sin g, CoSs @ — @) = cosd,
o)
da— dg =dw- dgp =+ d6,

in which the sign in the right-hand side is determinethensame manner. We will then
have:
d (Rosin§ + Rpocosfdbd x Rocosfdw =0,

in which the sign¥ is always determined as was described above. We dé&ducehis
that:

sind d[Rp+ 2Rpcosfdld rRocosfdw =0,
SO
(11) dER,o: -2cosfda+ cosﬁda).

Ro sind

That will equation will be mostly useful for telling uke force when the equilibrium
curve of the string is given. Let us make some appdinatof it.

Suppose that the equilibrium curve is such #at constant and first look for the
equation of the curve. In order to do that, we remaakdimce we have:

sin (@—¢) =xsin g, Cos @ — @) = cosd,
as we said in 8 I, we will also have:
tan (@—¢) =t tan§g,
and consequently:

tan (w— ¢) =t tané,

sincea = wor = 180 + w However, since is the radius vector that corresponds to the
azimutha we will have:

tan (w— @) :_rd_a);
dr
hence:
rdw
——=Ftan@
dr *

in which the sign is always determined in the same way; ugegrating this, we infer
that:

(12) r=Cce®®
is the equation of the desired curve.
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Now, sincedis constant, equation (11) will become:

d;R’O: + cosddg,
Ro
SO, upon integrating:
Ro=C'e*%®,

Furthermore, one infers the radius of curvature from tuél2):

= r = C e:cotea).
sind sind@ ’
one will then have:
. . C"
R=C'sinfe?™* = —

r
for the desired force.
Suppose, secondly, that the equilibrium curve is suc¢h tha

Fdé=m dw
or

T
—F60=m
2+ w

upon taking the polar axis suitably, and the sign is detewinas it was above.

recalls that one has:

dw
r— =F tan@g,
dr *

in general, the polar equation of the curve considerédbevi

dw _
r— =-cotma
r

S0, upon integrating:
(13) r™=a" cosma

Now, under the present hypothesis, equation (11) will become

dER,o:+ (2m+1)cod dw _ (2m+1)sinmw dw
Ro sing cosmw ’

SO upon integrating:

2m+1

Rpocos ™ mw=C.

Moreover, one infers the radius of curvature from equdfiGit

11

If one
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a

1

—-1
—(cosmw )" .
m+1( y

pP=
One will then have:

_m+2

R=C'cos ™ mw=C”r (™2

for the desired force.

VI.

Up to now, we have always supposed that the éqguin figure of the string is a
planar curve. If the equilibrium curve is a cuedouble curvature, by virtue of the
nature of the forc® and the position of the fixed poinésandB then one must remark
that the projection of that curve of double curvatwnto an arbitrary plane can be
considered to be the equilibrium figure of a stnmgose elements are acted upon by the
components of the forces that act upon the finshgstthat are parallel to the plane of
projection, as one will easily recognize, either mgans of equations (1) or by
immediately employing the elementary theorems an dbmposition of forces. That
being the case, one can always put the equatidheoprojections of the equilibrium
curve of an arbitrary string onto the coordinatengls into the form of equation (4), and
then conclude that in several cases, either thegirons of the equilibrium figure of the
string when the force is given or conversely, thed when one knows the projections of
the equilibrium figure.

VII.

Consider the motion in space of an arbitrary nigtgyoint. Letx, y, z be the
coordinates of that point after a tipdet R be the intensity of the force that acts upon it,
and finally, leta, B, ybe the angles that the direction of the foRRenakes with the
positive parts of the coordinate axes. As one lsyamme will have the three equations:

2
d_zx = Rcosa
dt
d’y

= Rcoss,

dt? s
d?z
—— =Rcosy,
dt? 4

(14)

If the motion takes place in a plane then one e&g the coordinate axes in that plane,
and it will then suffice to consider the first twbequations (14). That is the case that we
shall examine first.

Let v denote the velocity of the moving body after titpdet & denote the angle
between the direction of the for&and the tangent to the pomty, z, when prolonged



Bonnet — Solution to some problems of mechanics 13

in the sense of motion, and finally, jetdenote the radius of curvature of the trajectory at
that point. As one knows, one can replace the equsatibmotion with the following:

2
V—:Rsine, i/=Rcos£
Jo dt

We deduce from the first equation that:
d(Rosing = 2v dy,
where the differentials in the last equation refer, bafore, to an infinitely-small

displacement that is performed in the sense of motidowever, since is the arc length
of the trajectory, when measured from a fixed point irstiree sense, one will have:

_ds
V= —.
dt
The preceding equation then amounts to:
. dv
d(Rosinf — Zads: 0,

or, from one of the equations that were written above
(15) d(Rosinf —2Rcosfds=0,

which is an equation that represents the trajectotlyeomoving body.

If we compare equation (15) to equation (4) then we watice a certain analogy:
The first terms are the same in the two equationd, tha second term in the first
equation is equal to twice the second term in the seco@gdvath its sign changed. We
deduce a remarkable consequence from that: Imagine thatvencave decomposed the
forceR into a normal force and a tangential one, we takh ehthose components in its
opposite sense, while reducing the normal component téhalhets value. Call the
resultant of those two new forcBS and letd” be the angle that the foré&& makes with
the tangent to the trajectory, when it is prolonged endbnse of motion. We will then
have:

Rsinfd=2R sin@, R cosf'=-Rcosb;

hence, upon substituting that in equation (15):
d(R sin@) +R cos@’ds=0.

That equation coincides with equation (4). We can thgn s
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The trajectory that describes a moving body under the action of the Ris the
equilibrium curve for a string whose elements are each acted upon @rgethat is
deduced from R by taking the normal and tangential components of that force and
reducing the normal component by one-half.

Of course, it is intended that the string must be, intiadg constrained to pass
through two points of the trajectory and to havedtsgyth between those two points equal
to the length of the arc length of the curve thatatuthed between those points.

After taking the normal and tangential componentshef forceP in the opposite
sense, one can double the tangential component, insteaddoting the normal
component to one-half, and one will once more arrivbe@asame consequence.

One can present the preceding result in its conversednd say:

If an arbitrary plane curve is the equilibrium figure of a string wheksments are
each acted upon by a force R then the same curve will be thadrgje€ a moving body
that is acts upon by a force that one deduces from R by taking its normalraschtial
components to the curve and doubling the normal component or reducing the tangential
component by one-half.

Of course, it is intended here that the initial sivaif the motion of the body must
be chosen suitably. Hence, as one will easily recegitizs necessary that the starting
point of the moving body must be the extremity of thaiw, that its initial velocity must
be directed along the tangent to the string at thaemmty, and finally that the square of
its initial velocity, divided by the normal componenttbé force that acts at the start of
the motion, must be equal to the radius of curvatutheo$tring at that extremity.

VIII.

The remark that we just made in the preceding paragragili€gis¢s a certain relation
between equilibrium and motion can be useful in sevatation. For example, we can
use it to prove the theorem that we presented on page 1hi3 @blume very easily, and
which was stated as:

If a moving body is subject to the action of forces FFP? ... in succession and it
always starts from the point A with the velocitigs ¥, \v;, ..., resp., which have the
same directions, but different intensities, and it describes the sarme AMB then if that
same moving body started from the point A with the velogisndf were subject to the
action of the resultant of the forces F, F” ... then it would again describe the curve
AMB, provided that the velocity, Ylas the same direction as the velocitigsw, v, ...,
and that its intensity is such that:

Vi= V2 +V2+ 2+ L

Indeed, lefl andN be the components of the foréghat are tangential and normal to
the curveAMB, resp. LeflT”andN’be the analogous components of the fdt¢eand so
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on. If one applies a forceand a forcéN / 2 to the various points of a string in the senses
that are opposite to the those of the componentiseofarceF then that string will have
the curveAMB for its equilibrium curve. The same thing will be truerie applies the
force T” and the forceN’/ 2 in the senses that are opposite to those ofes$gective
components of the fordé’, and so on. Hence, the same thing will also be troaef
applies the resultant of the forc€sT’, T” ... to each element of the string, along with
the resultant of the forcdd/ 2, N’/ 2, N”/ 2, ..., when taken in the manner that was
described. It will result from this that if one subgeat moving body to the action of the
resultant of the tangential componefisT, T” ... and the resultant of the normal
componentd, N, N ... of the forcess, F’, F”, ..., or what amounts to the same thing,
to the action of the resultant of the fordesF’, F” ..., then that moving body will
describe the curvAMB, provided that its starting point is nonethelesa and its initial
velocity Vy is directed along the tangentAalong the curvéMB, or in other words, like
the velocitiesw, V,, V;, ..., and finally that the square of the velodity must be equal

to the sum of the normal componeNtsN’, N7 ..., multiplied by the radius of curvature
of AMB at theA, or what amounts to the same thing, to the sum ofd@res of the
velocitiesvo, Vv, Vy, ..

One can make the preceding proof independent of the remagkVill. Indeed,
preserving our notations, we see that by virtue of the hypistibe equations:

d(Np —2Tds=0, d(N'p—2T'ds=0, d(N”"p) —2I"ds=0, ...

are all verified for the curveMB. The same thing will then be true for their sum; i.e.
for:
dON+N'+N"+..)g-2T+T'+T"+ ...)ds=0.

However, the latter equation includes that of the ttajgoof the moving body under the
composed motion. Hence AMB satisfies the initial conditions of motion that detere
the constants, as well, then that curve will be tilagectory that one is dealing with.
Now, as one saw in the preceding proof, the initial dmms are found to be fulfilled
when the relations between the initial velocitieatthre required by its statement are
themselves fulfilled.

The two proofs that we just gave suppose that the toajes planar. However, we
can easily pass on to the general case, as we whidee.

IX.

In many cases, equation (15) can serve to determirteajbetory that is described by
a moving body very simply when one knows that forcé &legs upon it, or conversely, to
determine that force when the trajectory is knownt usemake some applications.

Suppose that the forde that acts upon the moving body is always parallelhto t
same direction — for example, to th@xis. One will then have:

ds=-pdég
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as one will easily see upon examining all of the cdsasdan present themselves, and
equation (15) will become:
d (Rosin 6 + 2Rpcos#dé=0
or
sin 8dd [Rp=- 3Rpcos@dé.
Hence, upon integrating:
Rosirt 8=_C.
Now, let:
R=asi" g,
so that will become:

psin™g= % =C/

SO upon integrating, as in § llI:
dx

T
m+2
Xy
If one suppose thah = 0 (i.e., that the forcR is constant) then the preceding equation
will become that of a parabola, as it must bemH - 1 (i.e., if the normal component of
the forceR is constant) then the equation will representtaray, etc. Fom=- 2, the

preceding equation will take on an illusory formt In that case, as we saw in 8 Ill, one
must take the equation:

eX® = cos Y .
C

One can suppose that the foRé proportional to a power gf and a power of si# or
to a power of co®; one will find results for all of those cases tha¢ analogous to the
ones in 8 lII.

In the second place, assume that the f&R@ways makes the same angle with the
tangent to the trajectory $dwill then be constant, and equation (15) will b®eo

dRo=2Rcotfds
or, upon remarking that:
ds=+ pdg,

in which ¢ represents, as above, the angle that the popitisteof thex-axis makes with
the tangent to the trajectory:
d [(Ro==% 2R cot £dg,
S0, upon integrating:
R,O =C eJ_r2¢ cot 49.

If P is constant then one will find a logarithmic spis in § Ill; the same thing will be
true if one sets:
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R=C €& etc.

One can finally suppose th& is a central force. Equation (15) will then be mainly
useful for giving one the force when the trajectorgiieen. However, the equation that
one obtains is much less convenient than the one th@atpossesses for that same
purpose. Moreover, that equation will lead to some rethdtsare analogous to the ones
in 8 V. It is then shown that the curves:

r™ =a" cosmé

are described by central forces that are proportionahéopower — (& + 3) of the
distance, etc.

X.

Up to now, we have supposed that the trajectory tltssribed by the moving body
is planar. If that trajectory has double curvature tbee will remark that, since that
results from equations (14) of motion of an arbitrary poihe trajectory of double
curvature that is described by a moving body under the acfianforceR will always
have the trajectory that a moving body would describe rut@eaction of the component
of R that is parallel to each of the coordinate planessasrojections onto those planes.
Of course, if the coordinate that is perpendicular éoptlane of projection enters into the
expression for that component then one will repladgy its value as a function of one of
the other two coordinates, which is a value that must be&sknmoreover. That being
the case, one can put the equations of the projectfaihe drajectory into the form (15)
and then employ, as one has seen, those equations tmidetéhe trajectory when one
knows the force or above all, conversely, to find thedavhen one knows the trajectory.
From that same remark, one will also see how oneecdéend the theorem that was
proved in 8 VIII to the case where the trajectory tlagble curvature. Indeed, if the
forcesF, F’, F” ..., acting separately, make a moving body describe the same of
double curvatureAMB then the components of those forces parallel to anyhef
coordinate planes and expressed as functions of the catmdithat relate to that plane,
acting separately, will also make it describe the ptamee A’ M’B’that is the projection
of AMB onto the plane considered. Hence, if the hypothet&dationship between the
initial velocities is satisfied then the resultahtttie components of the forcés F’, ...,
when expressed as a function of the two coordinatdisals® make it describe the plane
curve A’M’B’. That will be true for the three coordinate planespse sees, by a very
simple argument, that the curve of double curvaAi4B is described by the moving
body under the action of the resultant of the fofeds’, F”, ...
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SUPPLEMENT

At the end of 8 Il in the preceding note, | showed thatfigure of equilibrium of the
catenary of equal resistance is nothing but the curve ahstring will affect in the
equilibrium state when its various elements are sultfedbrces whose directions are
constant and whose intensities make the componenisthatmal to the string constant.
That result admits a very remarkable extension:

The equilibrium figure of a string of equal resistance whose elemaeatsubject to
the action of a central force that is proportional to the distance is ngthut the curve
that a string will affect in its equilibrium state when itsieas elements are subject to a
central force whose intensity is such that the component normal toitigeistconstant.

Indeed, if one adopts the usual notions and takes the ooidie the center of the
forces that act upon the elements of the string tinervall easily find that the equations
of the latter curve are:

rdo
T =

C, dT+R dr=0,
ds

with the condition that:
Rrdé&
=a
ds

If one eliminateR andT from those three equations then one will get:

ds adsdr_
2 +t—=——=0,
rdéd Cdé r

so upon developing this while taking the independent vartalibe &

d’s _ ds ds, adsd_

d? “dordd C &

or
d’s
dg? _ 2dr _ardr
ds rdg C dd’

dé
and integrating:
ds _gn”
r’dé@
so one finally has:
9+ q= J' dr

|
C?%r’ec -1
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It is easy to see now that this equation coincideh e one that one obtains by
setting R = r in equation (3) of page 98 of this volume. Now, the dagguation
represents the curve of equilibrium of a string of egaaistance that is subject to the
action of the central ford®. That will prove what we have proposed.



