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 Abstract. – The theorem of Cunningham and Bateman regarding the conformal invariance of 
electrodynamics will be proved in a new way.  With the same method of proof, one can show that the 
equations of motion will also be conformally-invariant when one transforms the masses like a reciprocal 
length, as Heisenberg suggested. 

_______________ 
 
 

 For quite some time, it has been known that electrodynamics is invariant under not 
only Lorentz transformations, but also the transformations of the 15-parameter 
conformal group (1), which includes the 10-parameter inhomogeneous Lorentz group as 
a subgroup. 
 In recent years, the properties of wave equations in the theory of elementary particles 
that emerge from Lorentz-invariant symmetries have found a certain interest (2); e.g., in 
its earliest form (3), Heisenberg’s theory contained five parameters beyond the Lorentz 
group, like the conformal group.  In that situation, one must ask whether one can 
understand conformal invariance from the standpoint to which the theory of elementary 
particles leads better than before (4). 
 We would not like to pursue such a wide-ranging goal in this brief note.  We would 
only like to show that one can make sense of the conformal invariance of the parameter 
transformations that Heisenberg, et al., have recently introduced (5). 

                                                
 (1) E. Cunningham, Proc. London Math. Soc. 8 (1910), 77; H. Bateman, ibidem 8 (1910), 223; E. 
Bessel-Hagen, Math. Ann. 84 (1921), 258; A. Einstein, Berl. Ber., math.-phys. Kl. (1921), pp. 261; S. A. 
Bludman, Phys. Rev. 107 (1957), 1163; McLennan, Nuov. Cim. 3 (1956), 1360; F. Gürsey, Nuov. Cim. 3 
(1956), 988. 
 (2) A. Pais, Physica 19 (1953), 869; Prog. Theor. Phys. 10 (1953), 457; A. Pais, M. Gell-Mann, Proc. 
of the 1954 Glasgow conference, pp. 342; M. Gell-Mann, Suppl. Nuov. Cim. 4 (1956), 848; K. Nishijima , 
Proc. Theor. Phys. 12 (1954), 107; ibid. 13 (1955), 285; Fortschr. Phys. 4 (1956), 519; H. Gell-Mann, A. 
H. Rosenfeld, Annual Rev. Nucl. Sci. 7 (1957), 407. 
 (3) H.-P. Dürr, W. Heisenberg, H. Mitter, S. Schlieder, K. Yamazaki, Z. Naturforschg (in press): 
“Zur Theorie der Elementarteilchen,” The authors must be thanked for furnishing a preprint. 
 (4) F. Klein, Vorlesungen über die Entwicklung der Mathematik in 19. Jahrhundert¸ Berlin, 1927, Bd. 
II, § 7, pp. 79; - Gesammelten Abhandlungen I, Berlin, 1921, XXX “Zum Erlanger Programm,” pp. 552. E. 
Bessel-Hagen, loc. cit. (1). 
 (5) Preprint, loc. cit. (3), pp. 4. 
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 As soon as one goes beyond the transformations of the Lorentz group, one is advised 
to employ the formalism of the general theory of relativity, even when gravitation is not 
considered, especially since almost all of the equations of electrodynamics, as one knows 
(6), are not only conformally-invariant, but also generally-invariant.  It is simpler to look 
for reductions of the group of all coordinate transformations instead of extensions of the 
Lorentz group. 
 There are two classes of equations in electrodynamics that are generally-invariant 
from the outset. The metric tensor first enters them in the equations that couple the 
quantities of both classes. 
 The continuity equation: 

∂µ j
µ = 0     (I) 

 
belongs to first class, along with the Maxwell equations: 
 

∂ϖ Hµν = jµ .     (II) 

 
Both of them will be generally-invariant when the four-current: 
 

(jµ) = (j0, j1, j2, j3) = (c ρ , j) 
 
is a contravariant tensor density (7), and the field [i, k, l = cycl. (1, 2, 3)]: 
 

(Hµν) = (− Hµν) = (H0i, Hkl) = (c D, H) 

 
is a contravariant, antisymmetric tensor density. 
 The second class of equations can be derived from the Lorentz force: 
 

Kµ = Q Bµν x
ν
ɺ , xν

ɺ = 
dx

d

ν

τ
,  Q = z e.  (III) 

 
In these expressions, τ is an arbitrary parameter that does not change under coordinate 
transformations; however, it cannot coincide with the proper time.  Equation (III) is 
generally-invariant only if the field: 
 

(Bµν) = (− Bνµ) = (B0i, Bkl) = 
1

,
c

 − 
 
E B  

 
is a covariant, antisymmetric tensor, and the Lorentz force Kµ is a covariant four-vector.  
The field tensor is derived from a four-potential: 

                                                
 (6) H. Weyl, Raum-Zait-Materie, 5th ed., Berlin, 1923, § 28; M. v. Laue, Die Relativitätstheorie, Bd. II, 
§ 36, 3rd ed., Braunschweig, 1953; see also loc. cit. (7). 
 (7) H. Weyl, loc. cit. (6),  § 14, pp. 104, 111.  Recall that without a metric there will be no transitions 
between the various kinds of scalars, vectors, and tensors, so it is only in the physical nature of the 
quantities jµ and Hµν that they should be contravariant densities. 
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(Aµ) = (A0 , A1 , A2 , A3) = 
1

,
c

 − Φ 
 

A , 

which is a covariant vector, according to: 
 

Bµν = ∂µ Aν − ∂ν Aµ ,     (IV) 
 
such that Maxwell’s equations of the second kind will be true: 
 

∂λ Bµν + ∂µ Bνλ + ∂ν Bλµ = 0,    (V) 
 
and there will exist the invariant generalized potential (8): 
 

V = − Q Aµ xµ
ɺ .    (VI) 

 
Equations (IV-VI) are generally-invariant (9).  One does not need the metric tensor for 
equations (I-VI) when one observes that equations (I) and (II) are determined by only the 
measurement of charge and (III-VI) are determined by the measurement of forces (10). 
 The metric enters into the picture only in the coupling equations (11): 
 

H
µν =

0

1
g

µ
−  gµρ gνσ Bρσ ,    (VII) 

 
in which the factor 1 / µ0 depends upon the system of units in a known way.  Ordinarily, 
one writes those equations in the form: 
 

H
0i = −

0

1

µ
B0i , H

kl = +
0

1

µ
Bkl .   (1) 

 
One will get a special form for it when one sets gµν and gµν equal to the Minkowski  
tensor: 

                                                
 (8) The four-force that is derived from the generalized potential V (x, )xɺ reads: 

Kµ = − 
V d V

x d xµ µτ
∂ ∂

+
∂ ∂ɺ

. 

If one demands that V (x, )xɺ must exist then it will follow from equation (III) that equations (IV), (V), and 
(VI) must be true. 
 (9) H. Weyl, loc. cit. (6), § 14, pp. 107. 
 (10) Naturally, the Hµν is given by only jµ on the basis of (II) is still not determined completely.  

Furthermore, the Hµν define a kind of current potential that will first be established by further conditions, 
namely, the coupling equations (VII).  However, the statement that we have an antisymmetric, 
contravariant tensor density will follow from only (I). 
 (11) H. Weyl, loc. cit. (6), § 18, pp. 132, equation before (66). 
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(gµν) = (gµν) = 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

− 
 + 
 +
 + 

.    (2) 

 
One arrives at Lorentz invariance from this when one allows only those coordinate 
transformations that leave the Minkowski  tensor invariant. 
 However, in order to recover equation (1) (which is the only one that is linked with a 
special coordinate system), one needs only to require that the fourth-rank tensor density: 
 

g−  gµρ gνσ       (3) 

 
should not change.  That requirement will lead to the conformal group.  It implies a new 
proof for the theorem of Cunningham and Bateman (1) that we would like to briefly 
outline here due to its potential for generalization. 
 First, we formulate the condition equations for the invariance of eq. (1).  Let: 
 

xµ⌣  = f µ (x), x ≡ (x0, x1, x2, x3) 
so we will have: 

d xµ⌣  = α µν dxν, α µν = 
f

x

µ

ν
∂
∂

, 

and eq. (3) will go to: 
 

g g gµρ νσ− ⌣ ⌣ ⌣
=

1

α
α µµ′ α ρρ′ α νν′ α σσ′  g

µ′ ρ′ g ν′ σ′,  α = det( )µ
να . 

 
The transformed expression will coincide with (3) when one has: 
 

α µµ′ α ρρ′ α νν′ α σσ′  g
µ′ ρ′ g ν′ σ′ = α gµ ρ g ν σ. 
 

gµν is determined by eq. (2) in this.  With the known rules for raising and lowering 
indices, which we carry out using the Minkowski  metric (12), we can write the latter 
equation as: 

αµµ′ αρρ′ ανν′ ασσ′  = µ ν
ρ σα δ δ .     (4) 

 
 When one takes the trace over ν, ρ in this, one will get: 
 

αµρ′ αρρ′ = 
4 µ

ρσσ
σσ

α δ
α α′ ′

, 

and it will follow that: 

                                                
 (12) That is an unconventional definition.  It does not agree with the usual covariant notation, but it is 
recommended for the conformal group that is linked closely with the Lorentz group by eq. (5). 
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α µν = γ l µν ,  lµρ lνρ = µ
νδ ,  l = det ( )l µ

ν = 1.  (5) 

 
Since the second equation in (5) represents the condition for Lorentz transformations, as 
long as γ and lµ

ν are constant, we will be dealing with Lorentz transformations and 
dilatations.  They are the only linear transformations that leave the equations of 
electrodynamics invariant (13).  We shall call that group the “extended Lorentz group,” in 
order to be able to distinguish it from the complete conformal group. 
 One will arrive at the conformal group when one observes that γ and lµν can be 
special space-time functions.  It follows from α µν  = ∂ν f 

µ that: 
 

( )l µ
ρ νγ∂ = ( )l µ

ν ργ∂ .     (6) 

The infinitesimal transformations: 
 

γ = 1 + ε, lµ
ν = µ

νδ +ω µν ,  ωµν + ωνµ = 0   (7) 

will imply that: 
µ µ

ν ρ ρ νδ ε δ ε∂ − ∂ = − µ µ
ρ ν ν ρω ω∂ − ∂ .    (8) 

That will imply that: 
 ∂ρ ωµν + ∂µ ωνρ + ∂ν ωρµ = 0, 
and therefore: 

∂µ ωνρ = gµν ∂ρ ε − gµρ ∂ν ε ,     (9) 
 
so due to the symmetry of ∂µρ , differentiating this with ∂σ will yield: 
 

− gµρ ∂νρ ε + gµν ∂ρσ ε = − gσρ ∂νµ ε + gσν ∂ρµ ε , 
and therefore: 

ε = 
o

ε  + εµ xµ       (10) 
and 

ωνρ = 
o

νρω + ερ xν − εν xρ .    (11) 

 
If we set f µ = xµ + δxµ then this equation will follow: 
 

 ∂ν δxµ = 
o o

xµ ρ µ µ
ν ρ ν νε δ ε δ ω+ + + εν x

µ − ε µ xν , 

 
whose integration will yield the 15-parameter group (14): 
 

δxµ = α µ + 
o o

1
2x x x x x xµ µ ν ν µ ν µ

ν ν νε ω ε ε+ + − ,  (12) 

                                                
 (13) Ph. Frank., Ann. Phys. (Leipzig) 35 (1911), 599.  
 (14) In integral form, the proper conformal transformations read: 

xµ⌣  = 
2 21 2

x x xa

a x a x

µ µ− ⋅

− ⋅ +
. 
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in which four translations, one dilatation, six Lorentz transformations, and four proper 
conformal maps occur in succession (15). 
 So much for the new proof of the well-known theorem!  We shall now take one step 
further.  Initially, conformal invariance exists for only the equations of electrodynamics.  
The equations of motion have a narrower symmetry.  They will then change their forms 
under a transition to conformal coordinates.  We ask how the equations of motion will 
change under conformal transformations. 
 It is known that the inertial force will follow from the following generally-invariant 
action integral: 

− mc 
o

g x xρ σ
ρσ−∫
⊙ ⊙

dτ, 

 
which is obviously parameter-invariant, like the one that leads to the Lorentz force: 
 

+ Q 
o

A x µ
µ∫
⊙

dτ. 

 
We also choose the Minkowski an proper time here, as well as for arbitrarily-transformed 
coordinate systems (16). 
 Variation will yield the equations of motion: 
 

2

mc g xd mc x x
g

d

ν ρ ρ
µν

µ ρστ

 
 − ∂
  
 

⊙ ⊙ ⊙⌣
⌣ ⌣

 = Kµ

⌣
.   (13) 

Since one has: 

gµν
⌣

= 2

1

γ
gµν 

 
in the coordinate systems that emerge by means of conformal maps of Minkowski  space, 
we can write the latter in the form: 

m xd m

d
µ

µτ γ γ
+ ∂

⊙

⌣
 = 

1
K

c µ

⌣
.     (14) 

Due to the fact that: 
− gρσ dx dxρ σ⌣ ⌣

= dτ2, 
 

that equation will be compatible with the condition that K x µ
µ

⊙⌣
 = 0.  It is obviously 

different from the Minkowski an form: 

                                                
 (15) By means of eq. (7), one easily calculates that: 
 

δ (dxµ dxµ) = 2ε dxµ dxµ, 
 

 and conversely the conformal transformations are defined with this. 
 (16) Observe that the Minkowski proper time is not conformally invariant. 
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d m x

d
µ

τ
ɺ

= 
1

K
c µ .    (15) 

 

 We next consider the case of the extended Lorentz group, in which γ = const.  If we 
set: 

m

γ
= m
⌣

     (16) 

then (14) will imply the equation: 

d m x

d

µ

τ

⊙⌣

= 
1

K
c µ

⌣
,     (17) 

 

which has the same form as (15).  The equations of motion will then be invariant under 
extended Lorentz transformations when one transforms the mass parameter like a 
reciprocal length.  The parameter transformation that Heisenberg introduced does not 
occupy a special place in this.  It will come about under dilatation of the coordinate 
system when one fixes the Minkowskian metric tensor, despite that transformation. 
 It is surprising that the general equation of motion (14) has an invariant form, along 
with eq. (16).  One can write it as: 

d m x
m

d

µ

µτ
+ ∂

⊙⌣
⌣ ⌣

= 
1

K
c µ

⌣
 .    (18) 

 

That equation will follow from the action integral that was given before when one brings 
the mass under the integral, as one must, as long as m is x-dependent (17).  Observe that 
the form of the equation will indeed change in such a way that it will, however, contain 
the same quantities as eq. (17), such that invariance is not introduced artificially, but is a 
structural property of the equation.  It shows itself in just the fact that one can insert the 
factor by which the metric tensor differs from the Minkowski  tensor into the parameter. 
 The result: We have once more proved the theorem of Cunningham and Bateman 
and show that the equations of motion are also conformally-invariant when one 
transforms the mass like a reciprocal length, as Heisenberg has suggested.  Conformal 
invariance will then take on greater significance than it had up to now. If that still does 
not explain the physical meaning of conformal invariance then in view of the 
fundamental meaning of eq. (18), it is nonetheless hard to imagine that any equation of 
physics could violate conformal invariance (18). 
 

 I would like to express my deepest thanks to Herrn Dr. Meister for his help in the 
formulation of this note and the remarks that he made about it. 
 

Munich , Institute for Theoretical Physics at the University. 
 

(Submitted to the editor on 23 March 1959) 

                                                
 (17) Naturally, m can be replaced with m

⌣
 in the action integral only when we simultaneously replace 

the actual metric tensor with the Minkowski an one. 
 (18) Undoubtedly, the scale invariance of the Dirac equation for the free electron [see J. M. Jauch, F. 
Rohrlich, The theory of photons and electrons, Cambridge (Mass.), 1955, eq. (5.70)] is the quantum-
mechanical counterpart to the extended Lorentz invariance of eq. (17). 


