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Abstract. — The theorem offunningham and Bateman regarding the conformal invariance of
electrodynamics will be proved in a new way. With $ane method of proof, one can show that the
equations of motion will also be conformally-invariamen one transforms the masses like a reciprocal
length, adHeisenbergsuggested.

For quite some time, it has been known that electiaates is invariant under not
only Lorentz transformations, but also the transformations of fl&eparameter
conformal group?), which includes the 10-parameter inhomogendauentz group as
a subgroup.

In recent years, the properties of wave equationsareory of elementary particles
that emerge frorhorentz-invariant symmetries have found a certain interdsie(g., in
its earliest formY), Heisenbergs theory contained five parameters beyondltbeentz
group, like the conformal group. In that situation, one tmask whether one can
understand conformal invariance from the standpoint towihie theory of elementary
particles leads better than befofk (

We would not like to pursue such a wide-ranging goal & Ibhief note. We would
only like to show that one can make sense of the coalanwariance of the parameter
transformations thatleisenberg et al, have recently introduced)(
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As soon as one goes beyond the transformation® dbtientz group, one is advised
to employ the formalism of the general theory oétiglty, even when gravitation is not
considered, especially since almost all of the equatibetectrodynamics, as one knows
(°), are not only conformally-invariant, but also generailyariant. It is simpler to look
for reductions of the group of all coordinate transfornmetimstead of extensions of the
Lorentz group.

There are two classes of equations in electrodynathaisare generally-invariant
from the outset. The metric tensor first enters thenthe equations that couple the
guantities of both classes.

The continuity equation:

0,j*=0 )

belongs to first class, along with theaxwell equations:
0w 9 = (I
Both of them will be generally-invariant when the fourreunt:
(*) = 6% 3% 1) = p.J)
is a contravariant tensor density, @nd the fieldi[ k, | = cycl. (1, 2, 3)]:
B =9 =®" 9 =D, 9

IS a contravariant, antisymmetric tensor density.
The second class of equations can be derived froiotiestz force:

,_ adx

Ku=Q Bu ¥, %=
#= QB dr

Q=ze (t

In these expressiong,is an arbitrary parameter that does not change umiedioate
transformations; however, it cannot coincide with greper time. Equation (lll) is
generally-invariant only if the field:

(B/IV) =(- Bv,u) = Boi, Bu) = (—%@,%j

is a covariant, antisymmetric tensor, and ltbeentz forceK, is a covariant four-vector.
The field tensor is derived from a four-potential:

) H. Weyl, Raum-Zait-Materie5" ed., Berlin, 1923, 88; M. v. Laue, Die RelativitatstheorieBd. I,
§ 36, 3% ed., Braunschweig, 1953; see dtsm cit. (*).

() H. Weyl, loc. cit. (6), §14, pp. 104, 111. Recall that without a metric there wilhberansitions
between the various kinds of scalars, vectors, andrgnso it is only in the physical nature of the
guantitieg# and$H*" that they should be contravariant densities.
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(A) = (Ao, A1, Az, Ag) = (—(—];CD,Q[)
which is a covariant vector, according to:
Bw=0,A,—0,A,, (V)
such thaMaxwell’s equations of the second kind will be true:
0,Buw+0,B,+0,By, =0, V)

and there will exist the invariant generalized ptigd ():

V=-QA, x". (V1)

Equations (IV-VI) are generally-invariant)( One does not need the metric tensor for
equations (I-VI) when one observes that equatinsn@ (I1) are determined by only the
measurement of charge and (I11-VI) are determingthke measurement of force$)(

The metric enters into the picture only in theming equationst):

v 1 vo
H* =—ﬂ V-9 99" B, (Vi)
0

in which the factor 1 [ depends upon the system of units in a known wasdinarily,
one writes those equations in the form:

§9=-Lg,,  g¥=+1lp,. (1)

Ho Ho

One will get a special form for it when one sgts and g equal to theMinkowski
tensor:

()  The four-force that is derived from the generalizedgi@kV (x, X) reads:

ov . d oV

ox*  dr ox'
If one demands that (x, X) must exist then it will follow from equation (IIl) thayeations (1V), (V), and
(VI) must be true.

()  H.Weyl, loc. cit. (%), §14, pp. 107.

(% Naturally, the$*” is given by onlyj“ on the basis of (Il) is still not determined compiete
Furthermore, they”” define a kind of current potential that will first betablished by further conditions,

namely, the coupling equations (VII). However, the statémthat we have an antisymmetric,
contravariant tensor density will follow from only.(I
Y  H. Weyl, loc. cit. (%), §18, pp. 132, equation before (66).

K, =
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-1 0 0 O
O +1 O O
) = = , 2
@)=0"=| § o 41 o (@)
0O 0 0 +1

One arrives alorentz invariance from this when one allows only those coordinat
transformations that leave tMinkowski tensor invariant.

However, in order to recover equation (1) (which isahky one that is linked with a
special coordinate system), one needs only to requiréhindourth-rank tensor density:

J-9 g”g” A3)

should not change. That requirement will lead to thearenal group. It implies a new
proof for the theorem o€unningham and Bateman (*) that we would like to briefly
outline here due to its potential for generalization.

First, we formulate the condition equations for theriance of eq. (1). Let:

X4 =fH(x), x=0C x50
so we will have:

dx* =ag¥,dx, at, = of”
ox’

and eq. (3) will go to:
& Vﬂpva—l U p v g Vo — u
V-09°g7==atwafyatyas 79" a=defal).
The transformed expression will coincide with (3) wiee has:
atyatyatya’s ¢0g" = ag g

9" is determined by eq. (2) in this. With the known rules reising and lowering
indices, which we carry out using tiMinkowski metric %), we can write the latter
equation as:

O‘W,a’pp' aVV,aUU’ = 0'5;,15; (4)
When one takes the trace owgp in this, one will get:

dar

e, = ———
P oo’
a”a,,

oy,

0

and it will follow that:

(*3 That is an unconventional definition. It does ngtee with the usual covariant notation, but it is
recommended for the conformal group that is linked tfoseh thelLorentz group by eg. (5).
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aty=yl#,, Iyplvp:d,ﬂ, | =det(l”))=1. (5)

Since the second equation in (5) represents the conflitidirentz transformations, as
long asy andl¥, are constant, we will be dealing witlorentz transformations and
dilatations. They are the only linear transformatidhat leave the equations of
electrodynamics invariant¥. We shall call that group the “extendeatentz group,” in
order to be able to distinguish it from the complete @onél group.

One will arrive at the conformal group when one obsemat ) and |, can be
special space-time functions. It follows franf, =0, f# that:

3,(y1%)=20,(n*). (6)
The infinitesimal transformations:
y:]_+g’ |/1V: 5|/ﬂ+a)/1V1 a}w"’@/l:o (7)
will imply that:
Jvﬂape—dj,’avez—apaf’v —avaf’p. (8)

That will imply that:

Op W + 0y Wyp+ 0y = 0,
and therefore:

Ou Wp=0uv0p €= Gup Oy €, (9)

so due to the symmetry 8f, , differentiating this witld, will yield:

~Oup0up E+ Qv 0ps €=~ Ugp 0y £+ Yov Oy £,
and therefore:

£= £ + & X! (10)
and

[0}
Wp= W, + EXv=EvXp - (12)
If we setf# =x“ + & then this equation will follow:
[0} (o]
0y XK'= £0) +e X O +w’, + &, X' — ¥ %,

whose integration will yield the 15-parameter grotfj (

M= ah+ ext+wh X +e X ¥ —1 K xeb, (12)

Ph. Frank., Ann. Phys. (Leipzig35 (1911), 599.
In integral form, the proper conformal transformasioead:

o = X" = xOxe'
1-2alk+ a¥X
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in which four translations, one dilatation, dimrentz transformations, and four proper
conformal maps occur in succession.(

So much for the new proof of the well-known theoreWle shall now take one step
further. Initially, conformal invariance exists for orthe equations of electrodynamics.
The equations of motion have a narrower symmetryey Mill then change their forms
under a transition to conformal coordinates. We ask ti@rvequations of motion will
change under conformal transformations.

It is known that the inertial force will follow dm the following generally-invariant

action integral:
o] o 0O
-mc [ =g, x? x° dr,

which is obviously parameter-invariant, like the one kbadls to thé.orentz force:
o] O
+Q J A, x*dr

We also choose thdinkowski an proper time here, as well as for arbitrarily-transd
coordinate systems?.
Variation will yield the equations of motion:

O o O
mcqg, X - 0 g
d)meg, X |_me; g XX -g, (13)
dr| ./ 2 4T
Since one has:
_ 1
gyV:?gﬂV

in the coordinate systems that emerge by meansrdéiamal maps oMinkowski space,
we can write the latter in the form:

K, . (14)

Due to the fact that:

- O
that equation will be compatible with the condititmat K, x* = 0. It is obviously
different from theMinkowski an form:

(*® By means of eq. (7), one easily calculates that:
o (dx, dx) = 2¢ dx, dx’,

and conversely the conformal transformations afieek with this.
(*®)  Observe that thilinkowski proper time is not conformally invariant.
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dm3
% _ 1,

dr C (15)

ur

We next consider the case of the extendaentz group, in whichy= const. If we
set:

M m (16)
4
then (14) will imply the equation:
O
dmx* 1.
=K, , 17
dr c ” (17)

which has the same form as (15). The equations of matilh then be invariant under
extendedLorentz transformations when one transforms the mass paganiike a
reciprocal length. The parameter transformation Hweisenbergintroduced does not
occupy a special place in thidt will come about under dilatation of the coordinate
system when one fixes thieénkowskian metric tensor, despite that transformation.

It is surprising that the general equation of motion (14)dminvariant form, along

with eq. (16). One can write it as:
O
d mx*
dr

= 1
+9 m= =
H c

K, (18)

That equation will follow from the action integral thaas given before when one brings
the mass under the integral, as one must, as longigs-dependent’(). Observe that
the form of the equation will indeed change in such a thay it will, however, contain
the same quantities as eq. (17), such that invariance istrmduced artificially, but is a
structural property of the equation. It shows itselfuist the fact that one can insert the
factor by which the metric tensor differs from tenkowski tensor into the parameter.

The result: We have once more proved the theore@uahingham andBateman
and show that the equations of motion are also confbHmaariant when one
transforms the mass like a reciprocal lengthHasenberghas suggested. Conformal
invariance will then take on greater significance thiamad up to now. If that still does
not explain the physical meaning of conformal invariancenthn view of the
fundamental meaning of eq. (18), it is nonetheless hanthdgine that any equation of
physics could violate conformal invarianc8) (

| would like to express my deepest thanks to HerrnMDeister for his help in the
formulation of this note and the remarks that he madetat.

Munich, Institute for Theoretical Physics at the University.

(Submitted to the editor on 23 March 1959)

() Naturally,m can be replaced witim in the action integral only when we simultaneouslyaeg!
the actual metric tensor with thiinkowski an one.

(*¥  Undoubtedly, the scale invariance of fhieac equation for the free electron [see J. M. Jauch, F.
Rohrlich, The theory of photons and electrpr@ambridge (Mass.), 1955, eq. (5.70)] is the quantum-
mechanical counterpart to the extentledentz invariance of eq. (17).



