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Abstract

The simplest Ansatz for the description of the éoea&nd annihilation of a particle at a point leads to
a stochastic equation that is equivalent to the correspprguantum-mechanical equation. Since all
equations of non-relativistic quantum mechanics are caatibits of such elementary processes, quantum
mechanics is implied by the definition of the elemenfancesses of “creation-annihilation” in the same
way that NEWTONIAN mechanics follows from the defioiti of the elementary process of “infinitesimal
motion.”

On 25-9-1911, ARNOLD SOMMERFELD proved to the assembled Germa
naturalists and physicians, perhaps two years before BOfdRdamental work on the
subject, that one should not connect energy with PLANGiONnstant, but the action
integral, and in conclusion, stated: “However, | would Iiiee to go so far as to see the
true origin ofh in this connection...Moreover, | would like to give prefarerto the
opposite standpoint, that PLANCKFsis not explained by molecular dimensions, but by
the existence of molecules as functions and as atrefudssuming an elementary
guantum of action.”

This recollection of SOMMERFELD is welcome to mé)ce the title “elementary
processes in quantum mechanics, from a stochastic statidgan arouse the suspicion
that | would like to return to classical mechanics,sepeak. On the contrary, it shall be
detailed how the stochastic character of quantum mexhdiffers from that of classical
statistical mechanics. Therefore, | shall restmgtself in the mathematical part to the
examination of processes in the simplest physical syst@amely, the ones with only
two properties such as spin, isospin, and the like, te@lwthe alternative existence-
nonexistence also belongs.

Due to their simplicity, such processes are treatpdatedly, especially in popular
and philosophical papers. Here, they are recommendedsieettaay can be immediately
compared to the alternatives that enter into in teerghof stochastic processes. | hardly

() From a colloquium talk in Karlsruhe, 22-2-1965.
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need to explain what | mean by alternatives in stochd®mries. One thinks of the two
sides of a coin, even and odd faces of a die, andkte |

The concepts of “stochastic” and “stochastic process® still unfamiliar to
physicists. In the Foreword to his book, the Englistth@mmatician J. L. DOOB said: “A
stochastic process is the mathematical abstractian attual process whose evolution is
governed by the laws of probability.” Thus, in the future,should no longer speak of
“statistical mechanics,” but of “stochastic mechanias,’physics. In fact, the word
“statistics” is used by mathematicians only in connectith counting, but not with the
concept of “probability.”

| must confess my sin, that in the Festschrift ®ISENBERG’s 68 birthday, | said
that one could not associate the changes in probadbiltiequantum mechanics with
stochastic equations. At the time, | identified ststic equations with MARKOV
chains, master equations, PLANCK-KOLMOGOROV equationswiatever else that
they might be called. My assertion was correcttfiem. However, it was not true for
arbitrary stochastic equations. In fact, the concégstochastic equations” is so far-
reaching that it subsumes all equations for time-dependebalpiities, including the
ones that will be developed here.

In the broader sense of the concept, the staterhahtthie equations of quantum
mechanics are stochastic is somewhat narrow in sctpgays only that we can derive
how the probabilities change in time from the equatiofss.for the question of whether
guantum mechanics can be derived from a classical ortbatilk relevant is whether the
von NEUMANN equation of quantum mechanics can be developed MARKOV
chain. Nothing changes in our previous assertion, excapthils is probably possible
approximately, but not rigorously.

When we speak of elementary processes, we mean anorhiland creation
processes, and thus processes in which a particle ofaandeind disappears or appears
at a location in space. The state of a particle atirat pall thus be described by two
probabilities: Letwy(t), wi(t) be the probabilities for zero or one particles of steted
kind to exist at the point considered at titneespectively. We would not like to speak of
two particles at one point. If there were such a thinegn we would briefly speak of two
particles, three particles at a point, etc., of a kiexdt as a double particle, triple particle,
etc., in order to not distinguish them. With that d&fm of particles, the Pauli
Exclusion Principle will always be true, so we wilMeaonly two probabilitiesw andw;
for a particle type at a point, for which one will alyg have:

Wo(t) +wa(t) = 1. (2)
Thus, there is only one key numbesay, the difference between the probabilities:

= 1= w(t) =wo(t) —wa(t) <1, 2

which must always lie in the interval between — 1 arld #We ask: According to what
law doeswm(t) change in time? In this, we are assuming that it iprinciple, possible to
determinemt) experimentally at every moment.

What properties must the equation have that links théapitity differences at
different times to each other? The linearity of¢baenection follows from the miscibility
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of statistical aggregates and from their virtual charac&nce ignorance — i.ey = 0 —
cannot go to knowledge by merely waitimg= O must be a stationary solution, and the
equation forw must be homogeneous. It follows from the causalitgggle thatw(t)
can depend upon only thoag') for whicht' <t. We thus have:

w(t) = j; K(t —t) w(t') dt, (3)

if we consider the homogeneity of time, in addition.
This integral also subsumes differential equations,esoee can allowK to be a
distribution. The simplest differential equation hader one:

W(t) =— A W)

In this, the factor - on the right-hand side must be less than O, sitlcerwisew(t)
would increase exponentially, which would lead tcoaflict with the inequality (2). Eqg.
(4) is the master equation for the alternativeis ttertainly inconsistent with the quantum
mechanics of elementary processes.

The integral kernel in eq. (3) has damped or um@ahrharmonic oscillations as its
eigensolutions. From the inequality (2), no eigduag with a positive real part can occur;
let negative real parts also be excluded. Indekstiay processes are commonly
characteristic in physics, and they are at the odothe entropy theorem, which is a
collective phenomenon in statistical mechanics. oukh that remain true, then the
elementary process must contain no eigenvalues weijative real parts. In fact, this
requirement has a deeply-rooted would like to say, philosophical — meaning. We
shall first go into that in our the conclusion. @nagain, here is the requirement: The
eigenvalue must be purely imaginary or O.

Since the integral kernel is real, it lies symneally about 0. Within the concept of
“process” lies the fact that there must be at leasteigenvalue (so here, at least one pair
+1Q) that is non-zero. We would like to interpret tancept of “elementary” by saying
that there should be only one such pair. In thet, vone will obviously get an oscillating
function.

If one thinks of creation and annihilation proess$or the motion of a particle in
space, in particular, then the particle will beréfeat one moment and somewhere else
before and after it. The location will then be a¢ynfor a long time, in such a way that
there must be a solutiom = constant 0, along with the oscillating solution, and thas,
0 eigenvalue, and indeed only one, in order tdfard¢it the elementary character. Thus,
the differential equation:

W+Q?w=0 (4)

will enter in place of eq. (3). This equation, alnis simple to understand, is equivalent
to the von NEUMANN equation in the quantum mechsiwtelementary processes.

We shall next show that the elements of the sitalsmatrix of quantum-mechanical
elementary processes satisfy eq. (4) preciselye vilm NEUMANN equation generally
reads:

iP =HP — PH (5)
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P andH will be 2x2 matrices for an elementary process. They are KemP andH
have traces 1 and O, resp. We can then represent bollero in terms of PAULI
matrices as follows:

P=11+ply),
] ()
H=1Q.
It follows from this that:
H* =307 =0° Y

will be a real number. If we substitute that into ¢lgiation that emerges from eq. (5):
-P=H’P-2HPH+PH
then the once-more-differentiated equation:

- P = H?P-2HPH + PH?, (8)
in connection with:

iHPH=H’PH-HPH=PH -HPH=-HP-PH H*=-PH?,

will imply that all three summands on the right-laside of eq. (8) will coincide.
Together with (7), one will get:

P+Q?P =0, Q%= Q?, (9)
in harmony with (4a).
Since the solutions of the von NEUMANN equation dHermitian 2 matrix with
trace 1 include three givens, just like the stobbasjuation fow, one can substitute the
two equations for each other. If we substitute(@gin (5) then it will follow that:

p=Q xp. (10)
If we identify ps with w.
W =ps3 (11)
then it will follow from (10) that:
W:lez—szl, (12)
and by differentiating this, and using (10):

W =Q1 (Q3 p1 —Q1 ps) — Q2 (Q2 p3 —Q3 Pa),
SO

W+ (Q + Q7)W= Q3 (Q1 p1 + Q2 o). (13)
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One finally obtains from (12) and (13) that:

_Q WH(Qi+Q)w_ Q,w
Q, Qi+Q;  QI+Q}
(14)
:&W+(Qf+§2§)w+ QW |
Q, Q’+Q? Qi+Q?

Thus,p andP can be determined from(t) for a givenQ. Initially, only the magnitude

of Q is fixed from eq. (9).

The vectom then describes the instantaneous state of the sttistjgregate. Since
— 1< w< +1, all conceivable states will lie in the slab between— 1 andp; = + 1 (see
Fig. 1). That state will then decompose into two s#asthat are characterized by the
inequalities [p |< 1 (| p | > 1, resp.). They will be vectors inside (outsidsp.) the
cross-hatched unit sphere.

Eq. (10) shows us that the changes of state in thee sfa
the vectorg are rotations around an axis with angular velocity Ps

Q. For an adverse position of the rotational axis,attside
points can enter into the domaips|| < 1. That means that not /

all directions for the axis are admissible, such thatpossible %

motions would depend upon the aggregate of state vectbes. ]

Lbon prysical phenomena here 9a¥ﬁa“t”?s”r'1dofﬂllsi?éis"?‘%hiﬁe "

only admissible aggregates will be ones whose statergeli
inside or on the unit sphere:

-1
Fig.1. The
convex body of all
aggregates.

p?< 1. (15)

This restriction has the consequence that one caredastvonly the magnitude of the

vector Q, but also the anglé€ with respect to the 3-axis, from observations. To éinat,
we consider the state in which the particle certainlysdue exist at timé= 0, sowm0) =
+ 1. Since that value cannot be exceeded, one must have:

w(t) =w(0) —Q?t* + ..., (16)
for small times, so:
w(0) = 1, W) =0,  W(0) =- yQ?<0. (17)
On the other hand, it follows from(0) = 1, with the inequality (15), that:

p(0) =p2(0) =0, ps(0)=1, p°=1. (18)
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It then follows from eq. (14) that:

-yQ®+ Q?+Q2 =0, (19)

eSX%‘:sinﬂ:\/T/. (20)

It emerges from eq. (19) that the azimuth@fwith respect to a plane the 3-axis will
remain undetermined. It cannot be derived fug(t), since the probability difference =

p2 does not change under rotations around the 3-axis. Fexp@rimentally-verifiable
statements, all anglesthat we might substitute into:

Q = (Jycosp [y sip [ Ey (21)

will therefore be equivalent.
The vectorg and Q are associated with the matrid®sandH in a single-valued,
invertible way. We have to ask: What follows from thequality (15) for the matrile?

What consequences does the inequalitfoih eq. (21) imply foH?
As for the first question: It follows from eq. (6) tha

PP=P-(1-p), (22)
so for an arbitrary one-column matdx
PP =0P* D +1(1-p°) D" D>0. (23)

The von NEUMANN statistical matrix is then positidefinite. Thus,P satisfies not
only the same equation as in quantum mechanics, but itiedsm the same domain of
definition. The pure cases are defined by the outer sudBihe domaimp® = 1. Because
it follows from eq. (22) that:

P°=P, (24)
i.e., P is then idempotent, we can set:

P=o® ", o o =1. (25)
In this, @ is a one-column matrixp* is its Hermitian conjugatep™® is the Hermitian
square of the vectab, and® @" is the dyadic product, which is &2 matrix. One gets
the SCHRODINGER equation fa:

i®=H® (26)
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from the von NEUMANN equation in a known way. The @bitity difference is given
by:
w=0ao" g o, (27)

in this case, which is normalized by:

o*d=1. (28)

%,

1

With & = ( j " = (g5, ;) it will follow from this that:

Wo = @ @y, Wi = @y g (29)

Now, as for the second question: How does the indetecsnimiathe azimuth of) carry
over to the SCHRODINGER operatbt? We assert that it corresponds to the phase
transformation:

H - H=DHD" D:[eo e%j, D+:[eo e?mj. (30)
Starting from the equation that follows from (6):
Q = traceH 7, (31)
we will obtain, by means of (30):
Q' =traceHd", g =D"gD (32)
for the transformed vector, so:
Q= Qicos@-p +Q;sin (@ -pP),
Q,=-Q,cos@—-p +Qzsin (@ -P), (33)
Q, = Qs,
so, by substitution of eq, (21):
Q' =([ycos@p-a+B)ysing-a+p8)/ ty (34)

which is then just a change of the azimuth angle. gdth from eq. (34) to (30) is also
passable. The indeterminacy of the phase angle theesponds immediately to the
indeterminacy of the phase in the SCHRODINGER opera#drcomplete agreement
between the stochastic description and the quantum-meehane also prevalils in this.
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With that, we have shown that a special third-ordefeidihtial equation for the
probability differencew of an alternative agrees with the quantum mechaniss-galled
“dichotomic” systems, which are the systems with passible states. For these simple
systems, there is no doubt about the fact that wedesading with objects that are
sometimes in one state and sometimes in the otherthahdn such simple cases, the
probabilities do not satisfy wave equations, but oscillaguations. The object is the
thing that is capable of changing the state, so the atscilequation refers, not to the
thing, but to the probabilities, which depend, not upontidie ®f the thing, but also upon
our knowledge of it. It is only in that way that thetestaents of quantum mechanics are
linked with the subject, and this, on the same basis @sy stochastic theory.

This thesis was first proved only for elementary preess It will be true for all of
guantum mechanics when one adds the postulate: All pracetspiantum mechanics
are combinations of elementary processes. In paticahe deals with annihilation and
creation processes. A particle, possibly one of ardiffiekind, vanishes or arises at each
point of space. In the “classical” formulation, dieernative that all quantum mechanics
is based upon then reads: “To be here or not to bethates the question.”

If one accepts this postulate then that will yield thebfam from which quantum
mechanics can be derived, for many particles, as welbrasnes that can arise and
vanish. One achieves this with no special effortrion-relativistic theories. It should
also be possible for relativistic theories. Up to ntvat does not appear to be true, as if
obstacles of a fundamental kind had been placed iw#élye Thus, there are difficulties
that originate in the fact that no satisfactory tlgeof relativistic particles exists yet.
Here, one must await what the future might bring.

Our postulate, according to which, quantum-mechanical preeese combinations
of creation and annihilation processes, shows thaticéssiechanics and quantum
mechanics are already quite different in all relatiops, and one can first fathom this
when one returns to the beginnings of the philosophy ofcaltural circle, and thus,
about 2500 years ago. The basic question at the time Wésat“constancy does the
world confer upon all changes in events?” It can be amrslvartwo contrary ways:

THALES of Milet (600 B. C.) and his followers considereverything that happened
to be the motion of an unvarying substance. While somertancty prevailed in the
nature of the substance, there was complete cldraytathe event. The following law
was then handed down by ANAXIMENES: “What changesdeed, can something
change at alt when it does not move?”

Perhaps 100 years later, HERACLITUS posed an opposites,thebich was
perceived by his contemporaries as indeed dubious, but veéhrabst noteworthy for the
physics of elementary particles. He rejected the qurmesubstance. Happening is not
motion, but becoming and passing. The constancy of thddwim not anchored in
substance, but the law that governs all events. Ordp&t he said with greater clarity:
“One must build all that is common upon that, as a eitlyuilt upon its laws, and much
more rigidly. All human laws draw their sustenangent a divine one that prevails to
such an extent that everything obeys it, and it is strotigen everything.” For some
time, modern physics has been no stranger to the ththaghthe constancy of the world
comes down to conservation laws.

Guided by experiment, in quantum mechanics, we havédose, so to speak, the
picture of phenomena that was conceived by HERACLITUSs likewise simple and
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clear how to get back to the classical mechanics of OE&\ Both pictures belong to
ideas that arise whenever one begins to grasp the vetidehally. Naturally, we do not
mean that venerability would be an argument for the onehe other picture, but
probably that both of them reflect basic structureghotight in which one can remain,
and not need to go back and forth between.

What we know about quantum mechanics today can be derwedtlre picture in
which phenomena are a result of a succession ofi@neahd annihilation processes.
Since one then arrives at a self-contained theotyanway, there is no apparent basis for
wanting to go back from the elementary creation and dandn processes in the sense
of THALES to motions, and no criterion that could sargefrom mere speculation, but
probably experiments, which are completely incompatiblé the THALES conception
of things. One thinks of processes such as:

T +p o m +p+

in which nothing happens as a result of the process exwdph nhew particle is added to
the ones that are present.

All the same, SCHRODINGER had a charming idea abowt dvee can understand
the creation and annihilation of particles as procesfesotion, namely, that particles
can be compared to foam crowns on the water. Who kndwehaps, we must master
the physics of water in order to be done with the prolémelativistic foam crowns.
However, one must first know whether the quantum mecsandicelativistic particles is
not actually ascertainable with the help of elemerpaogesses. Although there are still-
unsolved problems in it, there is much that suggests that sunctt the case. We expect
that the theory of relativistic particles can still feemulated with the means that have
been worked out in quantum mechanics.

“Undoubtedly,” we can, almost as in SOMMERFELD’s kanhe lecture, conclude
that “our theoretical intuitions” about the quantum tiyeof relativistic particles “are
found in a somewhat vague, transitional stage. Howeegentific optimism, which is
the basic principle for any advance, obliges us to welibat the vagueness will abate in
the not-so-distant future, and the basic physical priesiplill then lie before our eyes in
a much brighter light!”
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