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Introduction.

The great significance that the concepts of rigid boalesrigid coupling take on in
Newtonian mechanics is linked most intimately with one’s fundatal intuitions about
space and time upon which that discipline is construciBoe demand that lengths at
different times should be comparable to each otherldsas directly to the definition of
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the concepts of yardsticks whose lengths are indepentiinteoand motion — i.e., they
arerigid. Later, that concept of a rigid body also provesetdrbitful for the construction
of dynamics itself. The rigid body is then not jastontinuous system of masses with
only six degrees of freedom that has the utmost simphait just kinematically, but also
dynamically, since a combination of the forces thatadts points will admit just as
many “resultant” forces and moments, whose knowleddiesufifice for the description
of motion. In the final analysis, all of those pbdgies are based upon tl@alilei-
Newton coupling of space and time into a four-dimensional mashifathich I, with
Minkowski (*) would like to call the “world”], which is a coupling this essentially
contained in the theorem that the laws of nature shbelindependent of not only the
choice of zero-point and time unit, as well as thetmospf the spatial reference system
and unit of length, but also of a uniform translatibattthe reference system is endowed
with while preserving the measurement of time.

It is precisely those foundations of kinematics thae onust surrender if the
electrodynamical relativity principle, as it was preséntby Lorentz, Einstein,
Minkowski, and others, is to be valid. The coupling of spacetiamel into “world” will
then be a different one in that case: The independehd¢ke laws of nature of the
uniform translation of spatial reference systems W@ true only when the time
parameter also experiences an alteration that dogastarise from a shift of the zero-
point and a choice of a different unit. That is mdssely linked with the fact that a
yardstick that preserves its length in a comoving coorgirsgstem under uniform
translation will suffer a change in length when it isgidered in a rest system, namely, a
shortening in the direction of its velocity. With théhe concept of a rigid body breaks
down, at least in the conceptualization of it thatdapted tdNewtonian kinematics.

Nonetheless, a corresponding concept is also by nosnaaking from the new
kinematics, since otherwise the comparison of lengtimsoving bodies at different times
would be illusory. No problem will arise in the defiaitiof that concept for systems that
move uniformly relative to each other either, and #iffierementioned authors of the
fundamental papers on that theory appealed to that fdwiw giving a special definition
of rigidity.

The problem first arises when accelerations are pregenly one attempt was made
along those lines, namely, WBinstein (%), but without entirely clarifying the state of
affairs. | have therefore undertaken the task of wgrkutthe kinematics of rigid bodies
when it is based upon the relativity postulatéhe possibility of doing that is obvious
from the outset, since in every respletwvtonian kinematics represents a limiting case of
the new one, namely, the case in which the speed ofdightegarded as infinitely large.
The method that | propose consists of defining rigilitya differential law, instead of an
integral one.

In fact, in that way, one arrives at the geneigtlity conditions in differential form,
which are very analogous to the corresponding considasin the old kinematics and
goes over to them when= o. | have carried out the integration of those coon,
which is very simple to do in the old kinematics and letdshe constancy of the

() H. Minkowski, “Raum and Zeit,” Phys. Zeitl0 (1909), pp. 104, and Jahresber. d. deutsch.
Mathematiker-Vereinigund8. (Which also appears as a reprint.) Some knowledge opéper will be
assumed in my own presentation.

() A. Einstein, Jahrb. der Radioakt. und ElectrodikHeft 4 (1907), § 18.
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distances between rigidly-coupled points, but for thee caf uniformly-accelerated

translation here. The result is hardly inferior tee tolder kinematics in terms of
simplicity and intuitiveness, and it is closely-retht®® one’s speculation about what
arbitrary curvilinear and rotatory motions might yieldwaver, | shall not go into that.

The main result is that under uniform motion, once mtre motion of an individual

point of the rigid body will be determined along with afl the other ones by a very
simple law, namely, that the body hl@ady one degree of freeddimren

That now raises the question of whether the rigidhaeics has simple properties in
regard to its dynamical behavior in the new mechanicsag#t did in the old one, and
naturally, we will be dealing with electromagnetic forbese.

The practical value of the new definition of rigidity must then nitaké known in the
dynamics of electronsTo a certain degree, the degree of transparency oésdt thus-
obtained will then also tend to support or contradie assumption of the relativity
principle itself, since experiments have probably giverumique direction in that regard,
and probably never will.

Abraham'’s theory, which studies the motion of rigid electramsheir usual sense in
the force field that they generate, has indeed led tousbtg qualitatively-satisfying
explanation for the inertial phenomena of free etet, based upon on a purely electrical
foundation, but also for the dependence of the electyoaet& mass upon the velocity for
small acceleration as a quantitative rule that ond pradably regard as having still not
been disproved by experiments. However, that theoryctwis grafted onto the
electrodynamics of rigid bodies when it is adaptechéodld mechanics, does not satisfy
the principle of relativity, and therefore it happeng ftefurther development, in which
Sommerfeld (Y), P. Hertz (%, Herglotz (°), Schwarzschild (%), et al, have been
engaged, will lead to extraordinary mathematical cacapbns. Now,Lorentz has
attempted to adapibraham’s theory to the principle of relativity, and to thatde he
constructed his “deformable” electron. That electron ba called precisely rigid
according to the definition that | will give. The fatttat, despite that agreement,
Lorentz’s theory has shown to give rise to contradictionsiibraham’s theory f) is
based upon the fact that one carries over the lavaeotdmposition of forces on rigid
bodies into results without criticizing the old mecle@ni How one must modify that law
will become self-evident in the representation thahissen herelLorentz’s formula for
the dependency of mass on velocity, according to which etgeriments can be
represented just as well by tiAdraham’s formula, proves to be applicable in the
rigorous theory, as well. ABinstein has remarked already, and | have worked out for
arbitrary currents in a papel) on “die trage Masse und das Relativitatsprinzip,” that |
follows directly from kinematics and is not at all noected with the proper
electrodynamical mass, namely, the “rest mass.”

However, my theory rigorously yields the dependency of themrass upon the
acceleration for a class of motions that correspond to the simplesb®ssicelerated

() A. Sommerfeld Nachr. d. k. Ges. d. Wissensch. zu Géttingen, matrsiphgl. Heft 2 and 5
(1905).
() P. Hertz, Math. Ann.65 (1907), pp. 1.
() G. Herglotz, Nachr. d. k. Ges. d. Wissensch. zu Géttingen, math ilpKysHeft 6 (1903).
. Schwarzschi achr. d. k. Ges. d. Wissensch. zu Goéttingen, m . He .
*) K. Sch hild Nachr. d. k. Ges. d. Wi h Gotti Ho Kl. Heft 6 (1903
., M. Abraham, Theorie der Elektrizitgt 2* ed., v. 2, .
%) Cf., M. Abraham, Theorie der Elektrizitat 2" ed., v. 2, § 22
)

() M. Born, Ann. Phys. (Leipzig28(1909), pp. 571.
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motions — namely, the uniformly-accelerated motions of the old meckamitsch | call
“hyperbolic motions,”and in fact the rest mass proves to be constant, upotonens
accelerations. Equations of motion are true for thmstons that take the form of the
fundamental mechanical equations, when they are adaptée forinciple of relativity
(). However, since any accelerated motion can be appaved by such hyperbolic
motions when its acceleration does not vary too suddesrg will arrive at an
electrodynamical basis for the fundamental equatidn®erhanics in that way. That
theory will break down only for very rapidly-varying atsmations; along with the
inertial damping, radiation damping will also appektis remarkable that no matter how
large its acceleration might be, an electron in hyperbolic motion wilit @0 actual
radiation, but its field will move with ,itwhich was known only for uniformly-moving
electrons, up to now.Radiation and the radiation reaction first appear for deviations
from hyperbolic motion.

My definition of rigidity proves to be every bit asasonable in the system of
Maxwellian electrodynamics as the definition of rigidity Iietsystem oGalilei-Newton
mechanics proves to be. The electron that is rigichynsense represents the simplest
electron motion dynamically. One can even go so fdo asate that the theory yields a
clear proof of the atomistic structure of electricityhich is in no way the case for
Abraham’s theory. My theory is then in agreement with thenastic instincts of so
many experimenters for whom the interesting attemptesf-Civita () to describe the
motion of electricity as a freely-moving fluid thatbeund by no kinematical constraints
under the action of its own field will hardly provoke &use.

Since the simplicity of the dynamics of the newidigodies is not accordingly less
than the simplicity of their kinematics, one will leato attribute the same fundamental
significance to this concept of rigidity in the syst®f the electromagnetic world-view
that the usual rigid bodies have in the system ofrteehanical world-view.

() Cf., A. Einstein, Ann. Phys. (Leipzigl7 (1905), pp. 891.M. Planck, Verh. d. deutsch. Phys. Ges.
8 (1906), pp. 136H. Minkowski, Nachr. d. k. Ges. d. Wissensch. zu Géttingen, math.-jly$1908),
pp. 54; cf. M. Born, loc. cit.

() T. Levi-Civita, “Sui campi elettromagnetici puri,” by C. Ferrari, Vemi 1908; “Sulle azione
meccaniche, etc.” Rendiconti d. R. Acad. dei Lincei 43.5his theory also seems to lead to contradictions
with experiments when it is applied to cathode rays.



CHAPTER ONE
The kinematics of rigid bodies
8 1. Rigid bodies in the older mechanics

For the sake of the electrodynamical applicationsiénsecond and third chapter, we
will not concern ourselves with rigid systems of diserparticles, but with continuous
rigid bodies. A continuous flow of matter can be reprged in the manner that is called
the Lagrangian picture in such a way that one gives the spatiatdinatesx, y, z as
functions of timet and three paramete(s s, { — perhaps the values xfy, z at timet =
0:

x=x(¢,n,{,1),
1) y=¥(£.71.4.1),

z=124¢,n,¢,1).

The mass system is rigid when the distance between any two ohits poi

2 = (=% +(%- %) +(z- 2)°

is independent of timand will thus be equal to:

VE=& +=n) +(,=¢ )"
It will then follow from this that equations (1)ilnhave the form:

x=a+a,+a+aq,
(3) y=a+a<+an+ ad,
z=a+a+a+ af,

in which the quantitiea,, asgare functions of tim¢, and the matrix:

a; a, &
A=|a, 3, a,;|=(@sn
A 85 A

is orthogonal {); i.e., if A means the transpose of the matixand 1 is the identity
matrix then:

() In order to avoid becoming verbose, | shall appeai¢anatrix calculus, which is most appropriate
to these arguments. One can find a very simple-to-staitet presentation of it that assumes no prior
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Figure 1.

In order to see clearly the possibility of generafjizihat condition to the kinematics
of the principle of relativity, it is advantageous to apgeathe interpretation of the
variablesx, y, z t as parallel coordinates in a four-dimensional space shedlied the
“world,” which Minkowski employed in the aforementioned paper. In what folldtes,
figures will always mean the plane sectpr 0, z = 0 through that four-dimensional
space; in them, the-axis will be horizontal and thieaxis will point upwards. The path
of a point will be represented in tlkgztmanifold (i.e., the world) as a curve — namely,
the “world-line” — and the motion of a body will be repented by a family of world-
lines. Now, the conditiodr / dt above means that the line that connects the int#se
points of any two world-lines with a three-dimensiosiaticturet = const. will have the
same length for all of those structures. That vefer to the spaces= const. that are

“parallel” to the space= 0.
The meaning of that rigidity condition f&dewtonian mechanics is based upon the

fact that it is invariant under transformations that tdk&ton's equations of motion into

When those transformations preservedire point, they will have the

themselves.
form:
X=X+ K,y Kz Kt
(5) y: k217(+ k22 _y+ k23_Z+ I§ ’t
Z= kg X+ K,y Kzt Kot

in whichkgg , k, are constants, and the matrix:

knowledge in 8§ 11 of the paper bfinkowski on “die Grundgleichungen fir die elektromagnetischen

Vorgange in bewegten Koérper,” (cited in rem. 1, pp. 4).
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K= (kap)

will be orthogonal:
(6) KK=1.

That orthogonal part of the transformation means t@transition from the original
coordinate system to one that is rotated about the zeint; however, the second part
means uniform translation in time. In our four-dimensi world, that represents the
transition from the originataxis to an inclinedt -axis. One sees immediately (Fig. 1)
that the quantity will, in fact, remain unchanged in that way.

The principle of relativity in electrodynamics express$esinvariance of natural laws
underotherlinear substitutions, and therefore the meaning of the tuawitl disappear.
Those “Lorentz transformations” couple the four quéti, y, z t with four new ones
X, VY, Z,t bylinear transformations:

X =k X+ K Y+ Kz Kt
y: k217(+ k22_y+ k23_Z+ |§4_t
2= kg X+ kY kg2 Kt
t= k417(+ k42 _y+ k43_Z+ K4_t

(7)

that transform the expression:

(8) X+ +Z -t

into itself, in whichc means the speed of light.
t

Figure 2.

Thus, the time (or rather the quantity ./ —1 ) will be transformed symmetrically
with the coordinates, and not only will thexis be inclined by the transformation, but
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the spacé = 0 will also take on a different place in the foumdnsional world®). Since
the spaces = const. will not go to the spacés= const. then, neither the quantitynor
the conditiordr / dt = O will be invariant now.

At first, it also does not seem possible for one te g analogous condition between
two world-lines, since there are no three-dimensiopatss that are distinguished under
the transformation (7), (8) in the same way thatgfheced = const. were distinguished
under (5).

Therefore, for the sake of generality, one must lfmokanother definition of rigidity
in the old mechanics. For that, one can employ thetHiat one can replace the condition
r = const. that exists between two finitely-separateatidsines with a differential
condition between infinitely-close world-lines in suctway that when the differential
condition is fulfilled in all of space, it will havéa¢ equatiom = const. as a consequence.

To that end, we consider the distance between twatelfirclose world-lines at time
t; i.e., the arc length:

ds=  dx + dy’ + dZ.

If one sets that equal to a constatiien the equation:
ds' = &

will represent an infinitely-small sphere. It comasout during the motion that is
represented by (1) by way of an infinitely-small ellipstidt one will get when one
represents the quantitig® as a quadratic form i, dn, d¢ by means of the equations:

_0x 0x 0X

dX—65d5+5;Ch+5?(f,
_oy ay ay

9) dy_afd5+a/7 +_6Z «,
=97 r, 02 4, 02

dz—ag dg‘+a/7 d7+aZ .

Let that form be:
(10) dS =p1dé?+padn?® + passdd® + 22 dEdn + 2 s dédd + 2 psdrp dd .
Hence, the matrix of “deformation quantitigs,s :

P = (pap)
is composed from the matrix:

() For a more detailed geometric description of Lorersmsformations, cf.H. Minkowski, “Raum
und Zeit,”loc. cit. (rem. 1, pp. 2).
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ox 0x 0X
o on ol
v a<| O Oy Oy
0¢ 0n 0¢
0z 0z 0z
o on o
in the following way:
(12) P= AA.

We now call the motiomnigid in the smallest partvhen an infinitely-small structure
does not change under the motion, so when all opth@re independent of time. We
will then have thenfinitesimal rigidity condition:

dpaﬂ —o

(13) dt

If & n, {are the initial values of y, z then the matriA will be equal to the identity
matrix 1 fort = 0, so (12) will then read:

P=AA=1.

Now, it is an elementary theorem in infinitesimalogetry ¢) that when this
condition is fulfilled everywhere, the flow will be preesented by equations of the form
(3), so one will be dealing with the motion of a rigicdiipo

This infinitesimal rigidity condition (13) can now beasdly carried over to the
kinematics of the relativity principle.

8 2. The differential condition for rigidity

In what follows, only those quantities that are anant under Lorentz
transformations (7), (8) will be physically mearfing

We now consider a flow that we represent, not by éopsmf the form (1), but by
the following equations, which better exhibit the symmeirthe quantitiex, y, z t that
the principle of relativity demands:

x=X(¢,n,{.1),
y=¥(¢.n.¢.1),
z=124¢,n1,{,1),
t=t(<.n,{.1).

(14)

() The theorem is seldom formulated explicitly, but i&ais immediate consequence of the simplest
mapping theorems.
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Hence, letr be theproper time i.e., the identity exists:

2 2 2 2
o (A
or or or or
ris measured from any “cross-section” of the flow orisa

Theé, n, ¢ shall characterize the individual streamlines, but ctfiien that, we shall
leave their meaning undecided. We now set, for the mbmen

X(0,0,07)=x €),
(16) y(0,0,07 )=v ),
2(0,0,07)=35@),
t(0,0,07 )=t ),

and consider the filaments of world-lines that surroundvibid-line (16)é=r7=¢=0.
t

Normal section

Io
7= const. =g

Figure 3.

They can be represented as follows:

x:;+x‘,df+);7d7+ )§d7+-'-,
y=ptydi+ydp+ y i+,
z=3+tz&+ 7+ 24+,
t=t+tdé+t dp+t.dd+--,

(17)

in which we restrict ourselves to the terms that areali in the incremenidé, dn, d{
(which are initially, small, but ultimately finite)Here,z, v, 3, t are the functions that are
defined by (16), and we have set:
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Xg= 2—2(0, 0, O,T),

Two space-time vectors with the componentsy, z, t1 andx, Y», 2, t, are called
normalwhen their directions are conjugate relative to tivaiiant hyperbolic structure:

(18) X+ +Z-ctP=-1,
so when one has:
(19) XX tY1Yo+ 22— tit, = 0.

All vectors that are normal to a time-like vectdr Xy, yi, z1, t2 will fill up a three-
dimensional linear structure that can be made intsplaeet = 0 by a suitable Lorentz
transformation; we call it theormal sectionof the vector. The concept that is thus
defined is obviously invariant under Lorentz transformations

We now consider a well-defined poiton the world-lineé = 7 = ¢ = 0 that belongs
to the valuerp of proper time. We lay the normal section to thleasiey vectorg,, v,

30, t, atP through that point:

(20) ty (X = 10) + 15 (Y = Do) + 30(2— 30) =€ t,(t —to) = O;

hence:
~3el2]
dr |07 Jeppeo

and the index 0 means thet 1 has been substituted in the functions.
We replace, v, z t in (20) with their expressions (17) as functionsl§fds, d{, and
T:

(21) { r{r—rot X dé+x d7+ % & +-} +--

cemC{t -ttt dE+t dp+t df +--3 0.
We can regard this as an equation fprfrom which one can calculate the values of
proper timet along the neighboring linek, dr, d{ that belong to the normal sectia.

Since the difference — ip = dris small, (21) will be a linear equationda. Namely, if
one develops:

N ,

and observes that from (15), one has:

() Thatis, a vector that meets the structure (18yaalapoint.
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identically inz, it will follow from (21), when one neglects all tas that are quadratic in
dé, dn, dg, dr, that:

(24) Cdr=r,(¢dé+ X d+ f &)+ = CL(f &+ f g+ £ 9),
or, if one sets:

X dE+ ) dp+ f & =5,

y;dé+y) dp+ ¥ & =H,

(25)
zZZdf+ 2 di+ 2 4=2,
ttdé+t2dp+ L df =T,
that:
(26) cCdr=r,Z+y,H+3,Z-c*,T.

We now consider the (one-sheeted) hyperbolic sirac
(27) & —10)° + (y —00)” + (2 —30)° + (X —to)* = £

that is drawn through the poiét= 0,7 =0,{=0, 7= 1o as its center. It cuts the normal
section (20) in a figure that one can regard asreést form” of the filament through that

location.
If we accordingly replacg, y, z t in (27) with the expressions (17), and then replac

the quantities, v, 3, t, X¢, ... with the developments (22) then that will give:
(28) (o dr+xX dé+ X dp+ f )+ = Ct, d+ £ g+ £ g+ t 4)=¢,

and in this, the functions ali¢, dn, d{ that are defined by (26) are defined on the normal
sectiondr ; hence, (28) will go to:

2
12 [ ] o
x = x U x 3 r (!
[ v ez o

(29)

t, U t, U t, U 2
—cz{ ofo= 4 0Jop 4 °f°z+(1—t'02)T} =2,
C ¢ ¢

The rest form is given as a quadratic fornddnds, d{ in this. Since the poirf= 7
= {=0, 7= was an arbitrary point of the flow, one can drb@ indices 0 and replace
', ... withx,, ... If we then write (29) in the form:
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(30) { (ud¢+ 0, dp+ G &) +( 6 &+ G g+ G 4)

+(cudé+c, d+ o, )’ +(g, &+ ¢, g+ G, §)° =&

then the rectangular matrix with four rows and threleroasC = (c,p) will be equal to
the product of two matricéSandA that are defined by the derivatives of the functions:

(32) C=SA
and indeed:
1% XY %z _x{
c? c? ¢ ic
X 0% %E Vi
(32) s=| ¢ c c ic |
Zx XY 4, % _#d
c? c? ¢ ic
_tTXT tr yr _ tr Zr 1_t1_2
IC IC IC
X % %
(33) a=| Yo hox
Zz 45 %

icts ict,] ictZ

If we now develop the quadratic form (30)dé& ds, d{then we will get:

(34) P11 dé?+ppdn?+pssdd® + 2pi dEdn + 2 P13 dE dny +2 pas dE dr,

in which:
(35) P=(ps) =CC = ASS 4

One can further simplify the relation (35) withethelp of equation (15), which has
the vanishing of the determinant $fas a consequence. Namely, a simple calculation
will give:

(36) SS=§
and with that, (33) will go to:
(37) P=ASA

That is the analogue of the equation (12) that das/ed in § 1. The six quantitipgs
will then be referred to as “deformation quantitiaad would be important in a theory of
elasticity that is adapted to the principle of tiely.

A filament will be called rigid in the smallest pavhen its rest form is independent of
the proper timer; i.e., if the following six equations are true:
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ap,,ﬂ _o

(38) 3r

If those equations are fulfilled in all of space then we will be dealitiythe motion
of a rigid body.

With that, we have arrived at the general diffeedrdonditions for rigidity. Since
they are constructed with the help of nothing but conc#ms are invariant under
Lorentz transformation, they will necessarily hakat property, as well.

8 3. The equation of continuity and the incompressible flow
If pis the density that belongs to the flow (1) then Knswn that it is linked with the
velocity components:

(39) Wy = —, Wy = —, W, = —

by the equation of continuity.
One can formulate that in two ways: In thalerian picture, one regargs W, W, W,
as functions ok, y, z, t; the equation of continuity will then read:

a_p+apwx +a'0Wy +asz
ot X oy 0z

=0.

(40)

In the Lagrangian picture, one regards vy, z o as functions o€, 7, ¢, t; the condition
will then read:

(41) 6,0_@ = O,
ot

in which® is the fundamental determinant:

oX 0x 0X
of on o
dy o9y oy
of an ol |
0z 0z 0z
of on o

(42) o=

The connection between the two formulas will be exéibby the identity):

() Cf., say,Weber-Riemann Die partiellen Differentialgleichungen der mathematischen Phgsig
146, 1901.
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9p , 0pw, opw, L 9w, dp©

(43) =L
ot X oy 0z © dt

Both forms of the equations of continuity can be cdraeer to the representation of the
flow with the help of the proper time by the equations.(1&)first, one obviously has:

- X - Y -4
44 = L, =2 , =
(44) R i =

If we further replacep with the “rest density”:

=P
t

T

(45) P
then (40) will go to:

! O O O
(46) opx 0Py ,0pZ 0Pt _,
0x oy 0z ot
We will get the analogue of formula (41) when we verifg validity of the identity that
corresponds to (43):

0, m} 0 0 0
6p>9+6py,+apz+6pt;:16pD,

(47)
0x oy 0z ot D ot

in whichD means the functional determinant:

Xe X% % %
(48) p=|% W X 4

Z 5 % f

.ttt

To that end, for the sake of brevity, we replace:

X, ¥, zt with X, Xg, X3, X4,
&n ¢ r with &, &, &, &,

for the moment. We will then have that the lefhihaide of (47) is:

6( Daxg,j 6[ D6x0,j
0é,) _ 0&, ) 0¢
E AN L z B

" 0x, ap  0S, 0%,

[ o 0°x, , 0p" 0%, |94,
a.p 65ﬂ654 afﬂ 654 6Xa .
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If we now denote the subdeterminant in the matrihefdeterminanD that belongs
to 0./ 9ép by S (0x+/ 9¢) then successive differentiation of equations (14) vatpect
to X, and solving the linear equations that arise will yield:

et
(49) 0 - £
0X D

a

If we substitute that above then we will get:

L 04 Ly 0% gl 0% |, 00 0% 4 0%
> 0x, D27 0,04, 0¢, ) 06,08, |04,
zi{paa_Dﬁ_fD},
D 0é, 0¢,

from general theorems on determinants. It will tredloW that:

0x

0| p'—x
5 [p aaj _10pD
~ 0x, D 0&

and that is the identity (47) that was to be proved.
Hence, one can write the equation of continuityha form:

0p'D _

(50) a7

0.

Formulas (46), (47), and (50) have an invariant character Wwodentz transformations.
The quantity:

(51) p D=p

depends upon only, n, {. If D is equal to 1 forr = 0 (which one can always assume)
then will be the “initial value of the rest density.”

In the old kinematics, a flow was called incompressiwshenp was constant; i.e.,
independent of timé In the new kinematics, we will define that coraltias follows:

A flow is incompressible when the rest dengityis constant; i.e., independent of
proper timer.

(46) and (50) then imply two forms for the incompredisybcondition:
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Namely, one can first write (46) as:

] ] O 0
pD 6_XT+%+6_ZT+6_I} +6,0 XT+610 yr+a,0 Zr+a,0 =0
ox 0y 0z dt) 0X oy 9z ot
or:
n]
(52) pD a_xr+%+a_z'+a_; +dp :O.
ox o0y 0z Ot (0 4

Now, shouldo not depend upon thefirst form of the incompressibility conditiamould
then follow:

(53) —L+——L+—L+—L =0
Thesecond fornthen follows directly from (50):
(54) — =0.

Hence, ifD is equal to 1 for = 0 thenD will be equal to 1 identically, and from (51):

L =m(&n Q.

8 4. The rectilinear translation of a rigid body

We would now like to integrate the differential cdratis of rigidity (38) for the
simplest case of rectilinear translation. If we gme that rigidity must be identical with
incompressibility in this case then we will obtain nat a criterion for our definition of
rigidity to make sense, but also, at the same timegthaod for integrating it.

We then set:

(55) y=n z=¢

and assume thatandt depend upon onl§ andz. We then get from (32) and (33) that:

2
1+% o o Xk
Cc IC
s=| 0 10 o0 |
0 01 0
X9 0 1-r
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X 0 0
| 0 10
A<l o 0 1|
ict, 0 O
If one forms the matrix:
P= ASA

from this then one will easily find that:
(Xt -xt)> 0 0
P= 0 0 0.
0 0 0

The six rigidity conditions will then reduce to tbhae equation:
d _

(56) — (Xetr =X %9 = 0.
dr

On the other hand, the determinant (48) will become

X 0 0 x

0O 100 X, X
57 D= =7 .
7 0 01 Of |t t

tt 0 0t

With that, the incompressibility condition:
o _
dr

will be identical with the rigidity condition (56).
As a result of that, we can also replace the rlattieh the other form (53) for the
incompressibility condition, which assumes the form

(58) % ot _
ox ot
here. The integration will now be easy to perfamrthis form.
If one sets:
(59) Xr=p, tr=-¢

then one will have the following two equations [pQ:
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@—%:O
(60) ox ot
pz _Czqz ——

These are equivalent to one partial differentialsggpn for a function in two independent
variables. Namely, if one sets:

(61) -9 - 90

then the first equation (60) will be fulfilled, amlde second one will go to:
(62) §7 —c’pi=~c

One will get the simplest solution when one gg@nd ¢, equal to constantigand —J
that must fulfill the condition:
(63) y2—-c?d%=-c2
One will then have:

from which, it will follow that:
=W + T,
(64) { x=W(&) +yr

t=V () +dr,

in which W andV mean two arbitrary functions & As a result of equation (63), the
form of equations (64) will indeed remain preserwdten one subjects t to a Lorentz
transformation.

Equations (64), when combined with (55), represent a uniform, rectilimeaion.
The functionsWV (¢), V () are determined from the values tkatndt should have when
r= 0. Here, it is not convenient to assume #haté whenr = 0, but to determine the
functions W (8), V (é) in such a way that formula (64) represents thees&orentz
transformation that transforms the body to rest; to set:

(65) { x=af+yr,
t=£¢&+0r,

which implies that the conditions:
(66) a?-cp%=1, ay— ¢ B5=0, y2—-c? %=1

must be fulfilled.
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As long as one of the two quantitigs ¢, in (62) is independent of it must also be
independent of the other. In this case, the integratid2) can be performed easily
with the help of a Legendre transformation. Namehg can then introduce the quantity:

(67) h=p

as an independent variable, along witland then think of calculatirtgas a function ok
andp by using (67). If one then introduces the new unknowntifmc

YyP.x)=¢-pt
instead ofg, then:
(68) { Y, =t~ pt,~t=-t

[/Ix = ¢x +¢ttx_ ptx = ¢x‘
With that, (62) will go to the following equation fgr (p, X):
pP-ctyr=-¢,

and that can be integrated immediately. That wilhtineply that:

_ [ P
(69) Oyt T

¥ =ax=w P,

in which w means an arbitrary function. It follows from this Oiferentiating with
respect t@ and recalling (68) that:

(70) P wp =-t

cq
If one imagines thgh has been calculated as a function infthis and then substituted in
@ = ¢+ p tthen one will have the desired general solution of (62):

(71) ¢ =qx—w(p) +pt

From (59) and (61), one will obviously have:

X_dx__ 4

t dt g,

T

from which it will follow that every equatiogt = const. = £ represents the world-line of
a point of the rigid body. We will then find the folling representation of the world-line
from (70) and (71):
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P
(72) c?
gx+ pt= w-¢,

X+ qt=qw,

or, when it is solved fox andt:

x=q(w=¢) - paw,

(73) t= _C_lz(w_g) + QP W.

In this, the world-lines of rigid bodies are described in such a Walyxt and t are given
as functions of the independent variablgsp. We would now like to discuss that
representation.

We first remark that uniform translational motidepends upon onlgne arbitrary
function of one argument {p). One then says that here, as in the old kinesatmly
one degree of freedom present. The use of the independent varipbfex; is then
essential, which will also have great meaning later Furthermore, equations (73) go to
the corresponding representation of rectilineandliation in the older kinematics when

= 0. One will then have that=,/1+ (p®/c?) is equal to 1. It follows from the second

equation (73) thap depends upon onlywhenc = o, such the first one will assume the
form:
x=¢+al(t).

Finally, we turn to the characterization of therlddines in thext-plane. One sees
that (72) and (73) have the form of a Lorentz tiamsation and its inverse that take the
variablesx, y to the variablexX =w—-¢, t =qw and read:

X = qx+£ ct x= q‘x—E ct
t=Px+ gct ct= ~Pse gct
c c

Equations (66) in the coefficients are obviousli§ilfad due to (60) then.

We then have a family of Lorentz transformatiomet tdepends upon the parameter
before us. The motion, or rather the associatattipef world-lines, can now be
described thus:

If one givesé a well-defined valuef; thenx andt will be given as well-defined
functions ofp by equations (73) that represent the world-linetr& pointé; . The
components of the velocity world-vector along thandt axes are, — q, resp. All
curves of the family are determined by one cufve One constructs it as follows: One
draws a normal line to the tangent to the curva pointp in the sense of § 2 (pp. 11).
Along with the tangent, it defines a coordinateteysthat is a transform of theandt
axes. One measures out the line segndent £ along thatx-axis using the unit of the
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coordinate systent) If one now moves that coordinate system alongtiee & then
the pointé will describe the world-line that belongs to the paramealueé. All of the

points of that normalx¢axis) will belong to the same value mfand will thus have the
same velocity.

Figure 4.

The rectilinear motion of a rigid body is then aged such that as long as one
transformsonepoint to rest, the same transformation will transfall points to rest; that
rest transformation is just (74). In addition to umfomotion, the lines with the same
velocity p = const. will always have an envelope; the regularftyhe motion is based
upon that. For given dimensions of the body, the cureabiirthe world-lines cannot
exceed a certain limit then, and conversely.follows from this that a rigid body is
necessarily finitely-extended in all directions, and the grealexr &cceleration it
experiences, the smaller it must belere, we have the first proof of the fundamental
meaning of atomism in the new dynamics. If the rigidyboarries a substance of rest
densityo then it will be independent gf and a function of only, 7, ¢ that we denote
by:

P (&, 1, 6).

§ 5. Hyperbolic motion

We will obtain the simplest motion beyond unifornartslation when we set the
arbitrary functiorw = 0 in (72) and (73). One will then have:

() Cf.,H. Minkowski, “Raum und Zeit,loc. cit. (rem. pp. 2)
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(75) p

If one eliminate$ from this then it will follow that:
(76) X2 —c?t?=¢2

One sees from this that the associated world-in¢ke xt-plane and the planes that
are parallel to ity = 17, z= { will be hyperbolas that have the lines throughzém point
that correspond to the speed of light as asympttescut thex-axis at a distance of
from the zero point. A bundle of such hyperbolagresents a motion under which the
rigid body comes in from infinity, approaches thera@ point, turns around, and once
more goes out to infinity, in such a way that iedoeity first decreases fromto 0, and
after the reversal, it will again increasecto We would like to call this motion, which is
analogous to the uniform, accelerated motion indliker kinematics to some extent,
hyperbolic motionfor brevity.

t

N

Figure 5.
Since the zero point is an entirely arbitrary potine hyperbolas:
(77) k-a)’-c(t-p°=¢*

do not represent an essentially different motidtinoaigh the velocity will be non-zero
for t = 0 then. We will then be able to confine oursslto formulas (75), (76).
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This hyperbolic motion proves to be the simplest orteonty kinematically, but also
dynamically. It is closely connected with the facattlany arbitrary world-line will
osculate such a hyperbola at each of its points, nartiedy;curvature hyperbola,” in
which the vector that points from its center to thenpBiand has magnitude = c® / £
will represent the acceleration vector of the world-line.

In fact, if we calculate the components of acceienaof the hyperbolic motion then
we will next find that:

0’y _ 0°z _
(78) 52 O 372 0.

In order to calculate theandt-components, we look at the equations:

242

&=-p, p=< ; ,
(79)
One will then have:
0? ¢
T
We will then get:
0%X
(80) P: bx=-qb,
and likewise:
0%
(81) P: b = C—gb,
in which:
— 2 _ 212 _C_z
(82) b=b’-c’yY = 7

isl the magnitude of the acceleration. The assertonefollows from (80), (81), (82)
).

The acceleration is then constant in magnitude forveond-line of the hyperbolic
motion. Therein lies its analogy with the uniformigealerated motion of the old
mechanics, which is represented by parabolic world-linds.is then the simplest
accelerated motion, and every motion can be approximatebypgrbolic motions.
Supported by that fact, in what follows, we would like téabksh the dynamics of
hyperbolic motions more precisely, and above all, to seeletermine the force that an
electrically-charged body will exert upon itself in tedy. The result will then also give
an approximate explanation for all motions for whicé thagnitude of the acceleration
vector varies only slightly.

() H. Minkowski, “Raum und Zeit,'loc. cit. (rem. pp. 2).



CHAPTER TWO
The field of a rigid electron in hyperbolic motion
8 6. Retarded potentials and field strengths
The forces that are exerted by moving electric chaxgeish enter into the equations
of motion of those charges, are derived from certakiliaty quantities, namely, the
retarded potentials and field strengths. We would likeutmmarize the expressions for
those quantities that will be employed in what follows.

Let an electric current be represented by equatiortieoform (14); let the initial
value of its rest density [cf., 8 3, pp. 16, (51)] be:

P (¢, 17, 6).

The retarded potentials will then be given by the foilg expressions:

_ 2, % o
.y z9=[[] {(x—i)—xw(y——»—w( =y +—X:Jh=odf a7 o

@3))

_ ca I
470 .2 0= {(x—w—xw(y——»—w( T ‘?_X7Jh=od£d” “

In this, X, y, Z, t andX,, y,, Z, t. mean the functions (14) (their derivatives with
respect tor, resp.) when they are taken for the arguments7, ¢, and in the square
bracketst is replaced with the function afy, z t, £, 77, ¢ that one obtains by solving

the equation:
(84) h=(x=%)+(y=P*+(z- "= & £7)7=0

for 7; indeed, one takes the uniquely-determined solutjoof the equation for which>
t. How the expressions (83), which have probably not bsed yet for continuous
flows in that form, are connected with the usual foamubr the retarded potentials shall
be explained briefly in the next paragraph.

The electric field strengtl® and the magnetic on®t can be derived from the

potential by the vector equations:

() That equation has one and only one such solution, #ircepeed of the flow cannot exceed the
speed of light. CfH. Minkowski, loc. cit. (rem. pp. 6).
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19
¢=-=2(d P & )-gradd
(85) ot PPy ®)-0

Mm=curl (@, ,0,).

The potentials (83) are solutions of the equat{®ns

0 1 90°d fou
—lor®+—=—>-A® =~—x,
ox ¢ ot KT
(86) e
0 1 0°®
—lor®+=—-Ad=p1,
¢’ ot? ol

and indeed especially those solutions for whichotientities:

op, 0P, oD, 100
+ + +-—

(87) lord =
ox dy 0dz «cot

vanish for them.
Equations (86) are thkeagrangian equations for the variational problerf) (of
finding those function®y , ®, , ®, , ® for which the integral:

(88) W= jj”{%(mz—ezz)—%m(qaxxr +Oy +D,z —CDI;)} dx dy dz dt

is an extremum when it is taken over a donaim thexyztmanifold, and the electrical
current and the values of the potentials are gorethe boundary d&.

8§ 7. Comparison of the expressions for the retarded potdats
One can regard the expressions (83) for the paterds the superposition of the

elementary potentials that originate in the indiab moving points of the current.
Namely, one has tHdénard-Wiechert (°) expressions for the latter:

() In this representation, | shall follow the procedur8\ofRitz, by which | shall regard the potentials
as solely the effects of charge on charge in thedpptoximation and first introduce the partial differeintia
equation in the second one. It is characteristic sftttat no use is made at all of the acakwell field
equations for&, Mt in my entire theory.

() Cf.,K. Schwarzschild loc. cit. (rem. pp. 3)Max Born, loc. cit. (rem., pp. 3).
() E. Wiechert, Arch. néerl. (25 (1900), pp. 549A. Liénard, “L’éclairage électrique,16 (1898), pp.
5, 53, 106.
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8) e

-,
c t—-t=r/c

In this,e means the charge of the active point:

(90) X=X(1), y=Y(@), z=7Z(1);
furthermore:
(91) r=y (x=%)7+(y-y)?+(z-*

is the distance from that point to the referendetpqy, z
1 _ - _
(92) Wr=F{(x—7<)2V\4+( Y= WH( =W

is the component of its velocity,, w,, W, in the direction of, and in the square bracket,
one must satequal to the value that one gets from the equsition

(93) t-T =

ol=

If one now has a continuous current then the wimkel (90) must be replaced with a
bundle of world-lines by bringing the functions J96to the form (1) by the introduction
of three parametei§ 7, ¢, and replacing@ with the density (&, 77, {). The functionsy,

&y, 9., ¢ will then be independent df 77, {, and one can integrate them over all of space.
In this, one must observe that for the spatialgrdgon, one has:

dx dy dz=0 dédn dd

and that, from § 3, (41), the functional determin@rs coupled with the densify in the
initial density byoy = p ©.

The expressions that arise can be easily bromghtthe form (83). In order to do
that, one needs only to write the equations of emotif the active point homogeneously
in the form:

(94) x=X(), y=y@, z=2Z(), t=1(0),
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in which r means the proper time, apdis replaced with the rest densjpy. Equation
(93) then goes to:

(95) h=(x=X)’+(y-W)'+(z3°- & t)°=0,
from which, 7 will be determined uniquely by the auxiliary conditionttha T (*).

The connection between the expressions (83) and the agpedssions for the
potentials is also easy to establish. The latter Fdad (

dx dy d: x
477'(]))(:'[” X ry Z[p(lN l:t—r/C’

(96) L e

oo [[ L2

t=t-ric’

In this, the current is thought of as being repnesg by equations in the form [(1), pp. 5],
and one further has:

=y (x-%2+(y-)?+(z?,

and all of the arguments in the square bracket$ beuseplaced withx , y, Z, t =t—r/
c. The integrations in (95) are extended over larges, so, since they are moving, over
time-like variable limits. The transition from tlegpressions (95) to the expressions (83)
now consists of just performing the integrationsgrofixed, time-independent limits.
That will happen in the following way:

If we replace with t =t —r/cin the current equations (1) then we will get eigues
of the form:

X
(97) V=¥ 4 K
z

which couples X, y, Z with & 7, ¢, and obviously represent precisely the
transformation that will convert the integral taed limits when it is applied to (96).

That transformation (97) will then represent y, Z as functions of their initial values

for the time-point that comes under consideratiothe square brackets.
In order to compute the functional determinarntheftransformation (97):

o8 As {M}
6(51/71() t:const.’

() Cf.,loc. cit. (rem. 1, pp. 25).
(®) Cf., sayM. Abraham, Theorie der Elektrizitat?™ ed., v.2, formulas (51b), (51c), pp. 57.
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we would like to denote the derivative &f with respect tof for fixed t by (0x/9¢);,
and by (0x/0¢), for fixedt. If we then differentiate equations (97) with resgecf 7, {

in succession then we will get three systems of equatiotin coefficients that read the
same; e.g., for the differentiation with respecfito

ay\o& ) ozl a¢

t

ox)| _(ox) ,ox[aT(ax%)|  dt(ay) at(dz
o)~ \og) "ot |ox ag ik

t

ay\a& ) az\ o0&

t

o) () oy oT(0x) ,0T(0y) ,0T( 02
oé 0é ataxaf e

oz)_(az) ,oz[at(ox) at(ay| atfaz

0&) \oé). ot |ox|9¢ ) 6765 6‘265

&) (1,100, (39) 10801 (92) 1001

¢ ), c dt ox 0 ) cotdy (o) cotaz t,’
&) Layor,(3y)(,, 1dyor),(92) 10yar _(dy
0é ) cat ox (0¢ ), cotay 0 ) cotoz GET’
) 10201, (2y) 10201, (92) (), 10201 (5%
65 cat ox (0¢) catay aft cotoz fo'

Two times three equations, in whi¢his switched with; (¢, resp.), must be added to
these. We shall now denote the matrices that apeearals follows:

or

QJ|QJ
Ny | X

oxX| (9y) (02
aft aft aft
oX) (9y) (02
on ). \on) \on) |’
x| (dy) (92
a¢ ), \ad ), \aq )

(99) P=
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10X or 10X or 10X or
1+=—— e e

cdt ox cotay cotox

(100 o-| lmar iy igyer

cdt ox cotay cotoz
10z or 10z odr 1+16‘zar

cot ax cotay cotoz

x| [9y) (92
o). \9& ). \0¢ ).
(101) r=|[ X [Y) (22
on ). \on ). \on);
x| (YY) (92
ol ). \od ). \9o¢ ).

SO our nine equations can be summarized in thexweguation:

PO=R
The determinant relation:
(102) Pl 1Q|=IR]|

will follow from that. Now, it is obvious that fra (98):

(103) IP|=n;
furthermore, from [8§ 3, (42), pp. 14]:
(104) |R | = [@]T:t—r/c ’

Finally, one easily finds that:

|Q|:1+}(6¥6r 6376r+626rj

4y 4=
c\at ox atay atoaz

_ 1(_or _ o _ or
=1+—|W,—+W,—+W,— |,
c ox ’ay 0z

and from (92), that can be written:

(105) Q= [1—ﬂ} .
c t=t-r/c

Hence, we will have:

30
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C]
W

(106) A=
C T=t-ric

If we substitute that in (96) and observe that fii@r, (41), pp. 14], one must set:

pPO=p (& 1.0,
then we will get:
ane, =[[[pEnO) ———<| D&,
Cr( _Cj t-t=r/c
(107) e,
4ncb=mpo<f,n,5)(wa d¢dy o7 .
r 1—fj
c t-t=ri/c

If we now replacen with x; / t;, etc., as on pp. 15, then formulas (107) will gahe
expressions (83) directly. In factmly the initial densityxy will appear in them.

§ 8. Calculating the potentials for hyperbolic motions

We would now like to evaluate the potentials (88)the hyperbolic motion:

(108) x=-q& y=n z=¢ t:C—'Zf.

Sincey; = z; = 0, one also ha®, = ®, = 0. Since we have the quantjtyas the
independent variable, instead tpfin (108), along withé, 77, ¢, we will also regard the
equation (84h = 0 as an equation f@ It will then read:

(109) (x+QEY +(y-1)" +(2-0)° - C{ t_ﬁ—zgj =0;

C
when one introduces the abbreviations:

s=X-ct=¢?

(110) k=‘2_1g[8+32+( y-m*+(z={)7,
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one can then write (109) as:
pt+gx=k;
one must add to that:

One calculate from these equations, and indeed the valu@ dor whicht > t is
chosen. If one substitutes the value:
_k-qx
P

that follows from the first equation into the secame then the quadratic equation fipr
will arise:

2_q2kx_ _kK+cit?
s s

O]

It follows from this that:
g= E(kx+ct K - s)
S

If we set the positive root equal to:

(111) B=.k?-s,

to abbreviate, and calculaje then we will find that:

~ S(kct+ BY,

= -(kxtBcl.

Figure 6.
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In this, we must choose the sign that correspondbetemaller value of . Now,
sincet = pé/c?, assuming that the electron moves to the right fteerzero poink = 0

(i.e., & > 0), that will imply that:

One must take the positive sign for all reference pdott whichx /s> 0.
One must take the negative sign for all referencetpdon whichx /s < 0.

The distribution of those references points will teemerge from the Figure.

In what follows, we shall mostly assume that s<> 0; only those points can be
interior points to the electron.One must then take the positive r&for them. If we
occasionally also consider points for whichs < 0 then we will have to replaceBrwith
— B everywhere.

We then have:

p=-—(kct+ B,

(112)

g= = (kx+ Bc).

wlik nlo

We shall now calculate the denominator in the inte@3) for these values gb, Q.
Due to the fact that, =z, = 0,X; = p, t; = — @, that will become:

(x+qé)p+ ff(t—c—ﬁjj‘q: Xp+ tg=-cB

We substitute that in the integral, and that giNe:

4ﬂ¢x(x,y,z,t):jjj§‘)3(kCt+ BYd § d,

(113) _
AT (x,y,z,t):J'J'J'f—log(kﬁ Ba)d § q.
If we set:
(9 == [[ 7, & o7 & =5,
(114) S S

1 k = =

s)=—||| p,—=d :

vo(8)=_[[[ g oF 07 &
to abbreviate, in which means the total charge of the electron, then leeasily get:

AT d, =4, (5) Dx+ 4, (9 o

(115) { 471D =, (s) X+, (9Uct

In this, ¢n and ¢ are functions of only the coupling sfvith x andt.
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In particular, those potentials will fulfill equatioB7): lor ® = 0; sinceds / o0x = 2X
ds/ ot = — 2¢*t, one will then have:

oo

— 12 1
Arr—==Yn + 2P, X"+ 2, CtX

477(2;?— Ync— 2, c*tx—2p, C¥ ;
hence:
GlON 16(D
= —_—— == S )

C 5% 2 (401 Y,)

Now:
,_ e

‘/’1 __?’
SO:
(116) lord = 0.

We would like to write the potentials (115) in yet anotivay for later purposes. In
order to do that, we imagine that, from (108), we have se

Xx=-q¢ t=Pg hence s= &2

If we then introduce the following abbreviations:

4ﬂq_)x:_§(¢/1:_§a

Amd =-&y, = jjpo d& d7 o7,

(117)

in place of tha, ¢, then we can write:

o, = qd,-2
(118) ¢

o =-L& +q3,
c

instead of (115).

The functionsb,, ® are then connected with the auxiliary functiois, ® by the
same Lorentz transformation that transforms a rigatly to resfpp. 21, (74)]. We will
call ®, , ® therest potentials They are functions of onl§ 7, ¢ that no longer depend
uponp.
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From the relations (118), we see that the electron must madkatsvfield; the rest
potential that is perceived by an observer that movds tivé electron will depend upon

only the rest coordinates 7, ¢.
We would like to give the explicit expression for tlealar rest potentiadp :

(119) andEn <) == [[[ B2 dF a7 o7,
é rJr2+4&&

in which we have set:

(120) r2= (-8’ +W-m?>+-4)"

If the reference point lies in the regiahs < 0 then we must choose the negative sign,
instead of the positive one.CTJX, as well as®, will be infinite for £ = 0. The entire

hyperbolic motion will be singular for that valuddowever, as we shall see, the field
strengths will remain finite everywhere and will tefined in all of thexyztmanifold.

8 9. Field strengths under hyperbolic motion

We would now like to calculate the field strengtiean the expressions (115) for the
potentials by using formulas (85). Here, they wekd:

““ cat ox Y oy’ 9z
M, =0, om, = 9P« smzz—aq’x.
Y 0z oy

__ 199, 0b . 0b 39

(121)

If we recall (110) then we will find from (115) tha

471621X =cC - 2, Ctx- 24, CF,
4]7'aa£ = P+ 2[//;X2+2¢IiCtX.
X
Hence:
1 '
(122) ¢ =— o W, +sy,).

It then follows from this that, other thap ¢, &, depends upon only (i.e., uponé) but
not onp. The z-component of the electric field strengtihéntconstant along any world-
line of the electron.

If one calculateg, then that will give:
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[rP-28(£-¢)]

r3(r 2 +4§(§?)3/2 dg d,7 dZ !

(123) e=-111z.%

in whichr is defined by (120).
&, will be infinite for £= 0. However, one can also contintiealong the lines = 0;

l.e.,x +ct=0 andx — ct= 0. Inthat, one must give the opposite sigthetodenominator
that is identical tB® in the regionx / s < 0. Hence, one must imagine that equations
(108) represent the hyperbolas in Ktglane that are normal to tlkeaxis for real values

of £ and the hyperbolas that are normal totth&is for imaginaryé. One can write the
bracketed expressions in the numerator and dentwniob, in the form:

F2-E+(n-m)°+((-9)%
[E2+&2+(n-M>*+({-{)*-4EE 5,
resp. Only the square dfenters into them, such that they will also be fealpure

imaginary values of. Furthermore, the expression in the denominaarnever be zero
in the domain of integration — i.e., faf 2> 0. If one then set&=ia then it will become:

[-a?+&%+(n-7)*+({-{)*+4a?E?> 0.

Hence,& is defined in the entirgt-plane.
We would now like to calculate the remaining fielwmponents. They will be:

¢ = _6£ = _L% - i%
(124) Yooy 4mop 4 an’
¢ = —a£ = _L% - i%
> 9z 4md{ 4mal’
Mm, = & = it% = _pi%
(125) Y0z 4ma¢ cAmdd
m :_GCDX :—it%:—_pi%
9y 4man cémon’

Now, one easily finds that:

s _ g5 %=1 474 o7
on = 8l P gy aE T &

al/’z__ —= Q?Z(Z_Z_) T A- A7
?_ 8.[”:00 rs(r2+4&?)3/2dgd,7 ag.

(126)
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Hence, along witly, ¢ they andzcomponents of the field strengths will depend upon
not merely the combinatiofi” = x* —c¢? t%, but also upom andt explicitly. One can then
regard them as functions éf7, ¢, p.

The sign of the expressions (126) are once more ®ditchthe regions wherpe/ s <
0.

One sees that thyeandz-components of the field strengths cannot become infioite
&=0, either. We shall not go into a more preciseusision of the behavior of the field
in the fixed coordinate system. However, one will Seectly that&, and &, will vanish

for x = 0, such that the force lines will be parallel to xFexis, and thafit, andt, will

vanish fort = 0; i.e., at the moment where the electron turesirad, and is therefore
instantaneously at rest. One again sees from thishédieid of the electron, in fact,
moves with it, since the magnetic field will vanish swvehere instantaneously when the
electron is at rest for a moment.

8 10. Transformation of the wave equation, the potentials, andefd strengths to a
comoving coordinate system

The form (118) that we have given for the retarded padsnthen leads to a
transformation of the wave equation (86) itself to a coaitéi system that moves with the
electron; i.e., to the independent variakfes, ¢, p.

In order to simplify the calculations, we transfothe variational problem (88),
instead of the differential equations (86).

We must then next transform the components of &ie §itrengths.

From (79), we have:

100, _ 109, +_16<Dx o =- 6¢X£+OCDX cq
cot coaf cap 06 ¢ op €&

a£ :a£g+ a£ :—a£q+6£m

o  aE " ap & ap &

We now introduce the rest potentiabs, ® by the same relations (118) as before:

® = qb,-L0,
(118) ¢
o=-P3 +q.
c
One then obviously has:
o0, _ 0P, pod

0 Yos cag
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o0 __poo, 09
oé c d¢ o0&’

and correspondingly for the derivatives with respect &md{. By contrast:

0, _ pg 15,09 pi®
op c°q c dp cap
© _ 1z . pg pdd, 30
op c c’q cap dp

Hence:

_19d, b _ 0D 1(. 0D
e Eas T A LA ke |
cat ox 9f €

(127) —¢ = 9 __ PP 2

_QEZ = —_ = -
0z c 0 o¢
M =0
(128) o =P _ 9P, _po®

Y7 9z a7 cal’
_09, _ 0%, pod

X

oy on con

z

That now gives:

o ar-en [ fo-ed (B {3 (-]
& ¢ op on on o¢ il g

Moreover:

O
(130) %(¢xx,+¢yy,+¢zz—¢;) =-p (§¢x+q¢j=—p%.

Finally, the functional determinant will become:

(131) oxy.2) __ ¢
a(¢.n7.¢,p)  cq

Hence, the variational problem (88) goes to thie¥ahg one:
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az) w=ff] {qu@;‘;ﬂ@qam
ST HEHT)

d pDcTD} dédrn dZ dp = min.

cq

+

That will give one thedifferential equations of electrodynamics for a énjgmlically-
accelerated reference system:

_ _ - -
Ei a£+_1 (T)—c;qaq)x _i a CDZX+6 cbzx :O,
cop|o& ¢ ap al . 9an° 94

1{5@+5_anéx}+g[aza +62‘T’j_{@+1[5—cqa@j}:pDE.

(133)

o0& | 0& op on® a¢*) |o& ¢& op

The equations must necessarily be satisfied byrdéke potentials (117) that were
obtained in § 8, as well. However, they do notetebuporp, like the densityp ™ = oo(¢,
n, {); they are then the “static potentials” relatieethe accelerated coordinate system.
By dropping the derivatives with respectgowe will getthe differential equations of
electrostatics in a hyperbolically-accelerated refece system:

0°d,  0°D, _
an 072 =0,
(134) %
1(5@}5(6%&2@}_9:[} ¢
0é\ 0 on® ag?) & U7

In addition, however, the potentials must satitfy equation loid = 0; under the
transformation, that will go to:

(135) 0P, +£(CT>X —qca—cbj =0.
& < op

If ®,, ® are independent @fthen that will become:

0P, O,
+—X=

136 —==0.
(136) Y
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We would now like to show directly that the express (117) [(119), resp.] do, in
fact, satisfy equations (134), (136).

For @, = —%T? that is clear from the outset; the first equati@84), as well as

(136), will be satisfied.
We employ the explicit expression (119) #r. We will show that it is the precise
analogue of the electrostatic potential of the giglbarges:

4mu(én 9= [[[Laz a7 &,

and that it has precisely the same relationshtpedlifferential equation:

o (. 00) (0% 0% & _
(137) a—g(fﬁj‘*f(anz‘*azzj—?—f(faﬂao

that the ordinary potentialhas to the equation:

Au=f(&En Q.
Namely, the function:

11 r?+2¢

F?\/ r2+46F

which is symmetric in the two series of variabfes, & &, 77,  , is initially a solution

(*) to the homogeneous equation (13F7 0), that corresponds to the solutionrlof Au
= 0. One can see that it actually satisfies thaaggn by a generally lengthy

computation. Moreover, it has a singularity ofard /r forr =0 (i.e.,é=&,n=7,¢
= ), and the factor of 1r/will be equal to 1 £ forr = 0. Generally, one must exclude
the cases in which or £ are equal to zero then; naturally, that valuesislitsingular for

the differential equation (137). Our basic solatimw follows from this relationship in
precisely the same way as it does in potentialriheo which the expression:

and(En.0) = [0 2 rrjfj; 4F 47 &

satisfies the inhomogeneous equation (137) whera function that is defined far> 0
or £ < 0 (and naturally, only as long dds non-zero). If one replacésn this with its
value oy £ that corresponds to the comoving charge accorir(@34) then one will get

() Justas 17 is forAu= 0, it is theGreen function of the differential equation (137) for infinkpace,
with the boundary condition that the solution must vamisinfinity and the derivative in any direction,
when multiplied by?, must remain finite.
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back to (119). The different signs in the different regi@f the reference point then
result from the argument that ttg, ®, which are composed from the, , @, should be
retarded, not advanced potentials in the rest coordigaters. Hence, one can establish
the rest potentialsb,, ® uniquely in an analogous way by the differential equations
(134), (136) and their behavior at infinity, like the usudlisiaotential. Hence, | would
not like to go further into that.

If one now observes thab, does not depend upgm 7, ¢ then one will getthe

following expressions for the field strengths in terms of onlyftHeom (127), (128):

.22 o o
¢ ¢
0P p 0P
138 ¢, =-q—, M =-"—,
(138) Y on Y co¢
QEZ:— aﬁ, mzz _pa£
il4 can

One easily sees that these expressions are identibgll®2), (124), (125).

With Minkowski (), we will now introduce theest field strengthsin addition to the
rest potentials.

Therest electric forces defined by:

¢, :tX€X+%(yT€mZ— zM ),

(139) g, =tXQEy+%(Z[9ﬁX— x9N ),

¢, :tXQEZ+%(x,9ﬁ y~ Y.

One adds the expression for tlest electric worko that:

(139) A=XC+y E+2 ;.

Furthermore, theest magnetic forces defined by:

() H. Minkowski, loc. cit. (rem. 1, pp. 4, cf., pp. 28t seq).
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m,

1
trgjtx _E(yrqzz - Z[QE y)’

(140) M, =trfmy—%(z[@x— X€E),

m, :trimz—%(x,cf y~ Y€ s

and therest magnetic work:
(140) B=x My +y: My +2, M, .

If one introduces the expressions (138) into this and meagihat one has set:

XT:pl tT:_ql yT:ZT:0
then one will get:
g - (‘L“%Ej, T, =0,
¢ ¢
_y _aﬁ, 93{ :O,
on Y
(141) 0B
_z =37 ] 2= 0,
0¢
A= p(aﬁ+9j’ _:0
¢ ¢

The rest magnetic force and rest work are thentidally zero, as expected. The rest
electric force and work, however, can be derivaahfrjust the rest potentiab. One
finds the following explicit expressions for the restctie force from the value (119) of
D:

T O L 24 Clud )
QEX _]_T.U'[po r3(r2+4<(<?)3/2 df d,7 dZ’
G 205 SN 7 mar
(142) &=l Pz, gy T &
- Lo €= Fargr
QEZ - n_g.[.['[po r3(r2+4<(<?)3/2 dg dI7 dZ’

and the rest workA will emerge from&, by switchingg with —p. These expressions

are true inside of the electron itself in any case.
If one compares the expressions (141) with equations (108)ptieewill see that the
guantities:
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I
ex,czy,ez,?A
emerge from the quantities:
P o 00 P
—+—, —+— andp, q,
¢ ¢ on n

which depend upon onl§, 7, ¢, in precisely the same thaty, z t emerge fron¥, », ¢,
andp, g. It follows from this that
— 1
¢ s

o€, &, SA

transform in precisely the same wayxay, z t ; i.e., as a space-time vector of the first
kind.



CHAPTER THREE
The dynamics of rigid electrons under hyperbolic motion
8 11. The resultant force and the equations of motion

It is known that the product of the rest density with thst electric force that was
defined in the previous paragraphs is referred to as the pomokére force of the field
and is regarded as equivalent to the usual mechanical.forces

In Abraham’s theory of rigid electrons, as lmorentz’s theory of the “deformable”
electron, the equations of motion of an electron thdtee of ordinary mass are then
defined in the following way: By integrating over the sptet is filled with an electron
at a moment, the resultant of that ponderomotive force with ¢xéernal one from the
force that is generated by the electron itself (tlsiltant moment, when rotations are
considered with it, resp.), and the sum of those @ssitwill be set equal to zero.

Naturally, that process does not correspond to the tbathwe have chosen. The
resultants thus-defined obviously depend upon the chosaenedesystem.We shall
seek to exhibit equations of motion that are invariant under Lorentz oramsfions.

However, the form of the rest force [(141) and (142),taedemark on pp. 43 about
its behavior under Lorentz transformations] that eheyated by the electron itself is
closely related to the way in which one defines the rastgtin order for the equations of
motion to be invariant under Lorentz transformations;, iin order for the resultants
themselves to transform like space-time vectors ofitbekind. We will understand the
resultant force of a force field to mean the integral of the produatrett charge with a
rest force over the rest form of the electron; i.e., dyey, {for fixed p.

We would not like to go into the details of how ondirtes the resultant moment in
the case where rotations are allowed.

Furthermore, we will express tleguation of motion of a rigid electraas follows:
The rigid electron moves in such a way that the resultant of its iedehi$ equal and
opposite to the result of the external fields.

Before we actually calculate the resultant of titernal field for hyperbolic motion,
we would like to make a remark on the laws of impulse aedgy.

As is known, the following identity is true as a résflthe fundamental equations of
electromagnetism:

X, OX, oX, 6 1o0¢ _
+ + -= =pe¢,
ox dy 0z «cot

(143) | e :

ox dy 0dz Ot
In this:
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X, =3 (€ -¢) )+ (M- M-,
(144) X, =€¢E +MM,
XZ :QEXQEZ-Fg‘jt)?))’t 2

and two-times three corresponding quantities, &e ¢omponents of thélaxwell
stressesand furthermore:

(145) S =c[e M|
is theradiation vector while:
(146) W= 1(&® +m?)

is theenergy density.If one integrates those equations over a spatdgibounded by a
closed surface then one will get the equations:

[ av= [T ot~ 2 ]2 o
(L47) e ,

JI P Adv=fe, dt-< ([ way

in which dv means integration over spaaH,means integration over the bounda®y,
means the normal component®f and:

Tx = Xx cos (), X) + X, cos , X) + X; cos (, X)

means the normal component of thetress on the boundary. Those equations say that
the resultant force that is defined in the old sems equal to the decrease in the

electromagnetic quantity of motion (Icy & that one finds in a volume plus the total

stress on the boundary of the volume, and thaivtirk that is done by the forces will be
equal to the decrease in the total electromagmetergy plus the radiation that flows
through the boundary.

We now first consideAbraham’s theory; in it, the ether is assumed to be the
absolute rest system and the electron is assumée tagid in the older sense. The
definition of the resultants by integrating oveasg for fixedt will be justified for it. If
we restrict ourselves to the case of rectilineangiation then all points of the electron
will have the same velocity at a timet. The individual points of the electron will do no
work relative to each other, so the forces that lzetiveen them cannot enter into
consideration, and therefore one can regard tlegrals of the force components and of
the work over the volume of the electron as thailtast force components and total
work, resp. Hence, no relativity principle of asyrt is generally fulfilled.

In Lorentz’s theory, the electron is regarded as deformabldeu quasi-stationary
motion, and indeed according to the same laws hghwhgid, uniformly-moving body
(in the sense of the theory that is proposed lappgars to be deformed in a rest system.
If one defines the resultant forces, etc., herthadntegrals for fixed then one will get
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entirely different values according to which referersystem one uses as a basis.
Equations (143) are generally invariant; equations (143) areadgnavariant; i.e., they
keep their form when one subjects the coordinates torantz transformation, but only
when one simultaneously transforms the quantiigs..., G, ..., W in a certain way.

That situation causes an energy and quantity of motiotetormation to apparently
come about, whicRlank andAbraham have commented upon. Thus, in the kinematics
of the principle of relativity, the values of the rikant force, work, stress, and radiation
that are defined by integrating at fixedhave no immediate meaning. On explains the
contradictions irLorentz’s theory immediately by the fact that this statefdirs is not
observed.

We can say that the localization of energy and ingoulghe ether in the older sense
does not correspond to the principle of relativity. Hoevevor the presentation of the
equation of motion, we do not need the laws of enenglyimpulse in the stated form at
all. Rather, the definition that was given on pp. 44 suiffice entirely. The law of
energy is then combined with the three equations of maisothe statement that depends
upon them that says that the sum of the works thadane by the resultants of the
external and internal fields will always be equal to zero

8 12. The resultant internal force under hyperbolic motion

We now define the resultants of the internal reste® from the expressions (141) or
(142). If we now denote the spatial elemefitl7 d{ by dwthen we will get:

0 — = -4 i) =

Kx _'[poéxdw 77-.”'00'00 r3(r2+4<(<?)3/2 dwdw’

0 — = __2 _ EPr*-28-1)l ~

(148) Ky —Ipoéydw nﬂ,oopo (21 42E) dew do,
(i) = = __2 _ Er2-28( -4 —

K, Ipoezdw nﬂpopo T+ AEEY dw dow.

The resultant work® emerges fronkK @ by switchingqg with —p.
Next, we consider the integrad . Here, we will introduce the coordinate of any

point a of the electron in place of the coordingtevhich is computed from the point at
which the asymptotes of the hyperbolic motion intersaud, then replace:

& with a+ ¢,
é with a+ ¢.

We will likewise prove that the electron must haveeater. We will then choose that
center to be the reference point.
We must then examine the expression under the integral:
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(a+&)1r* ~2(a+&)(E - &)
I +AErO@+ I

Now, from equation (82), the magnitude of the accelaeratfdhe centea is equal to:
2
(149) =<
a

If we substitute that in the expression above thenllibecome the following function of
acceleration:
f = (¢ +&b)[br* -2(c*+&{Y(E-)]

(150) b TraeTr ) FD]

If we denote this function of the two poiRq¢, 7, ), P(&,7,¢) by f(P,P) thenf can
be decomposed into a symmetric and an skew-symmetric part:

f(P,P) = f(P,P)+ (P, P),
in which:
f=1[f(P,P)+ f,(P,P)] is symmetric,
fo=1[f(P,P)- f,(P, P] skew-symmetric.

Now, it is clear that the integral:

[[ 2, (P, P) dow cio
vanishes identically.
As a result, we can restrict ourselves to exargifiin That will imply:

_ b P[P +E0)*+(P+ERT+2(E-&)(C+EN(C+E B2
(151) fi=7 3 2 2 2, 7132 :
2 Pl b2+ 42+ Eb)(C2+ Z b))
With that, the six-fold integral oK > will be proportional tdb. If we combineb with

the factorq into —b,, according to (80), and form the work dok&, in which we
combineb with p into ¢ b then we can write:

0 —_
(152) { KX ﬂbx’

KO =-c?uh.

In this, the rest masg is the following quantity, which depends upon dhy magnitude
b of the acceleration of the center a:
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_1 P
=l acr e e 2o
{rP(c?+ &) +(c*+ED +2(E- D) (c*+EN{ +E D} o d.

(153)

Sinceb depends upon only the initial coordinatef the center, it will be constant under
any hyperbolic motion.Hence, is a constant that depends upon only the form and
charge distribution of the electron for any hyperbolic motion.

One will get the equations of motion for tkeoordinate from (151) when one sets

the sum of the internal forc&,”) and the external forck © equal to zero; similarlyk®
+K® = 0 is the expression for the energy equatiorat Will give:

Hb, =K,

154
Cc

We must still show that we can give an externalddield that is capable of maintaining
a hyperbolic motion. One can get that from an teledorce E that acts in the x-
direction and is independent of position and tinddamely, from (139), the rest force is
then:

ExztrEx:_q Ex,
and likewise the rest work is:
A=xEx=pkE,

and ifEx is constant then integrating,E, and g,A overé, 7, {will yield simply:

K(e):—qu(,

X

K® = pek.

That force can maintain the hyperbolic motion witle acceleratioto when one
chooses:

(155) E.=Hb.

If the external force field varies only slightlsuych that we can regard it as constant
inside of the electron, then it will generate a iotthat deviates from a hyperbolic
motion only slightly. If we were to also regarduatjons (154) as valid in this case then
we would neglect the radiation.

For accelerations that vary only slightly, but aaebitrarily large, we will get the
following equations of motion and energy:
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62
,Ua— =t.eE,
(156)
’ua_zt —i eE(
aTZ C2 XT ’

in which x andt refer to the center of the electromhose equations are invariant under
Lorentz transformations and have the form of the mechanical equations ohrmbia
mass point.

If one regardsy as a constant (which will be justified in the next gaaah),
introduces the “ordinary” mass by the relation:

(157) m=put= £
W
g

and replaces the derivatives with respect taith derivatives with respect tothen one
will get:

omw _ -¢E,
(158) ot

a_m :ie E(

ot A

The first of these equations is the equation ofiamoin a form that is analogous to
Newton's equations of the older mechanics, and the secmed has the form of the
energy equation. The quantity m then corresponds to the kinetic energy in the old
mechanics. The dependency of the mass m on the velocity evifjiven by theé orentz
formula (157). What is more essential than that, even for orglin.e., non-
electromagnetic) mass, in the relation that is tfae the new kinematics is the
dependency of the rest massipon the magnitude of the acceleration in formula (153).
We would like to study that dependency more clogetye following paragraphs.

Before that, we must still consider thandz-components of the internal forces.

If we apply the same argument kf’ that we did toK{ by splitting the integrand

into a symmetric and a skew-symmetric part thewllgyet:

(7 -7)(E = &) +bE)(C+ bf)
r¥{rb2+4(c?+bd(c?+ bf)}

wdow,

(159) K ==2b([ p, 4

and an analogous expression will be trueKgr.
If one assumes that the acceleratiaas small then:

w

(160) (K, =~ j Po Bo dwd®.
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We will now postulate that for vanishingly-small accelerationsetbetron will exert
no lateral forces upon itselfiNamely, if that were not the case then externalt#tforces
would be required under quasi-stationary translation inrai@enaintain the motion.
However, that contradicts the observations with cdehend Becquerel rays, which move
rectilinearly with no external lateral effects o

However, in order to havik "], = 0, the charge distribution must be symmetric to

one of the planeé = 0 orn = 0. One likewise sees that it must also be symmetione
of the planesf = 0 or{ = 0, in order to havgK "],= 0.

Since the direction of motion is an arbitrary dir@ctin the electron, moreover, the
charge must be symmetrically-distributed with respeetith plane that goes through the
center. Hence, it must be distributed in concetdsiers about the center.

It then follows from the observed fact that no external lateralefare necessary in
order to maintain the quasi-stationary translation that the electron has arcenorder
for the charge to be distributed in concentric layers.

However, if that were true then we would get, withfumbher discussion, from (159)

that K¢’ can then vanish for arbitrary valuestpfand the same thing would be true for

K®. Hence, we have the result:

The electron exerts no lateral force upon itself for arbitrary &reded hyperbolic
motions.

The missing part of the law of electrodynamical ieidialso derived from that then.
With the same degree of approximation for which equations @$)158) are true for
motions with weak accelerations, we can also carry thre result to those motions.

The result that one can conclude the existence ohtercand the distribution of
charge in concentric layers from the behavior of trextedn under quasi-stationary
translation is one more contribution to the establestimof the atomic picture of
electricity. | do not believe that any other thebtiys given such a close coupling of
atomism with the principles of dynamics.

8 13. The electrodynamical rest mass
We would next like to calculate the value of the rewiss for quasi-stationary

motions; i.e., for vanishingly-small values laf If we setb = 0 in the expression (153)
then it will go to:

/«10 '['[popOdwdw+'['[p0po(5 5) da)m
The first of these two integrals is tkectrostatic energy of the electron:

(161) 87U = [[ % dewda.

Due to the central symmetry of the electron, theosd integral can also be represented
in the forms:



Born — The theory of the rigid electron in the kinensttthe relativity principle 51

_=\2
H,oo,c_)o 7 rg) dwdw
and

[ 2 ﬁo(z;#da)d@.

If we add these three expressions then we will againrobal. The second integral is
then equal to A/ 3U, and we will get:
4

(162) Ho :gU
for therest mass under quasi-stationary motion.

In particular, if the electron is a homogeneouslyged ball of radiuRR then that
will give:

1 €

163 =
(163) °"5rRC
in whiche means the total charge.

That expression agrees with the values that are giveli biher theories').

If the motion is no longer quasi-stationary then omgst employ the most general
expression (153) fo. One will then developr in powers ob:

(164) U=lo+bn+bo b+ ...

We shall now prove that the coefficiemt of b is equal to zero. Namely, one finds
the expression for it:

_ 1 _ (E+E)rP+(E-8)7
e e [ 2o 2 >

dwdw.

Now, since the charge of the electron is distriburedancentric layers, each system of
values foré, n, ¢; &, i, ¢ will correspond to another oreé, n, {; -&, 77, { for

which the integrand will assume the opposite valuavillthen follow thatzs = 0.
One further finds that:

(165) o=~ %J..Upo :[_)o{-?)l’ + 252+§2+6§(§? + (5_5)2(352: S 1Q{5}da)d5).
32 r

r

() Cf., e.g.M. Abraham, Theorie der Elektrizitat? ed., v.2, pp. 179, formula (117c). A different
unit was chosen there; our formula (163) will gMtwaham’s:
_4¢€
luO - EW

when we replace with /47 e.
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This value is exceptionally small compared to the valugogfhence, whereas this one
converges to infinity for decreasing radiR®f the electrongs, converges to zero likie.
Furthermore/s has the sixth power of the speed of light in its denator. We can then
say:

In the series for the rest mass:
(166) U= +b* e+ ...,

the coefficient ofi, is so extraordinarily small compared p that the term that is
guadratic in the acceleration already cannot be noticed by any observation ims&y c

Hence, one can regard the rest mass as constant in all practical césegalue is
given by the expression (162) fog .

With that, the basic features of the dynamics afilieearly-moving electrons are
given an electromagnetic basis. Naturally, the donadi validity will be extended
directly by the argument that the rectilinear motioas de superimposed with any
uniform translation in an arbitrary direction. Thaasvindeed derived only from the
transition from one coordinate system to another wite help of a Lorentz
transformation, whereby our equations of motion will ibeariant. The theory then
encompasses the deflection of electrons by electric fields that amgvelirection in
relation to their velocities and cannot change too fast in space and tidgyecontrast,
they are not immediately true for magnetic deviatioHewever, one easily sees that the
magnetic deviations will also be reproduced by the thiorguasi-stationary motions.
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