On a solution to the Monge problem that relates to the equation $f\left(d x_{1}, d x_{2}, \ldots, d x_{n}\right)$ with variable coefficients

Note by M. Bottasso, presented by E. Picard

Translated by D. H. Delphenich

1. - The problem comes down to finding (without quadrature) the functions $x_{1}, x_{2}, \ldots, x_{n+1}$ of one parameter that satisfy the differential equation:

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{n+1}, q_{2}, \ldots, q_{n+1}\right)=0, \quad q_{j}=\frac{d x_{j}}{d x_{1}} \quad(j=2,3, \ldots, n+1) . \tag{1}
\end{equation*}
$$

Monge (Mém. de l'Acad., 1784) gave the solution for $n=2$. J. Serret (Journ. de Liouville, 1848) solved the problem when (1) reduced to the expression for the line element of our space. Some new and elegant formulas for that case were given by Darboux (Journ. de Liouville, 1887), with method for finding the solution when (1) reduces to a relation with constant coefficients in q_{2}, \ldots, q_{n+1}. For the more general case, quite recently, Zervos (Comptes rendus, 19 April 1905) exhibited a system of $n+1$ equations ($n-2$ of which are linear differential equations) that are necessary and sufficient conditions that the functions x_{1}, \ldots, x_{n+1} must satisfy. Zervos started from the complete integral $V=0$ of the first-order partial differential equation:

$$
\begin{equation*}
F\left(x_{1}, \ldots, x_{n+1}, p_{1}, \ldots, p_{n+1}\right)=0, \quad p_{j}=\frac{\partial x_{n+1}}{\partial x_{i}} \quad(i=1,2, \ldots, n) \tag{2}
\end{equation*}
$$

that one obtains upon eliminating q_{2}, \ldots, q_{n+1} from (1) and the relations:

$$
-\frac{q_{2} Q_{2}+\cdots+q_{n+1} Q_{n+1}}{p_{1}}=\frac{Q_{2}}{p_{2}}=\ldots=\frac{Q_{n}}{p_{n}}=\frac{Q_{n+1}}{-1}, \quad Q_{j}=\frac{\partial f}{\partial q_{j}} \quad(j=2,3, \ldots, n+1) .
$$

What inspired me to write this note is that I have obtained my own method for solving the problem in the general case.
2. - I first showed that the problem (as well as for $n=2$) is equivalent to the problem of finding (without quadrature) all of the integral lines (or envelopes of characteristics) of (2) with the equation $V=0$.

From a general proposition that I have established in the theory of envelopes in a hyperspace, I then deduced the theorem:

In order for a simply-infinite family Σ of characteristics of (2) to admit an envelope, except for the singular integral, it is necessary and sufficient that one of the following conditions must be fulfilled:
I. The equations:

$$
\begin{gather*}
V\left(x_{1}, \ldots, x_{n+1}, a_{1}, \ldots, a_{n}\right)=0, \quad \sum_{i=1}^{n} \frac{\partial V}{\partial a_{i}} a_{i}^{\prime}=0, \tag{3}\\
\frac{\partial V}{\partial a_{i}} b_{h}+\frac{\partial V}{\partial a_{h}}=0, \quad b_{h}^{\prime}+\sum_{i=1}^{n} \frac{\partial}{\partial a_{i}}\left(\frac{\partial V}{\partial a_{h}}: \frac{\partial V}{\partial a_{i}}\right) a_{i}^{\prime}=0 \quad(h=2,3, \ldots, n-1)
\end{gather*}
$$

are both verified for the values $a_{i}(t)$ and $b_{h}(t)$ that define Σ, provided that those values do not identify all of the n equations in the first column identically for any $t\left({ }^{1}\right)$.
II. Σ belongs to a general integral without belonging to any complete integral of (2).
III. Σ belongs to $n-1$ general integrals $\Pi_{s}(s=0,1, \ldots, n-2)$ that are each obtained by eliminating the a_{i} from the equations:

$$
V=0, \quad \varphi_{s}\left(a_{1}, \ldots, a_{n}\right)=0, \quad \frac{D\left(V, \varphi_{s}\right)}{D\left(a_{1}, a_{h}\right)}=0 \quad(h=2,3, \ldots, n),
$$

in which the $\varphi_{s}=0$ are $n-1$ hypersurfaces in the space of a_{1}, \ldots, a_{n} that intersect along the line that is the image of the value of a_{i} that defined Σ and nowhere else.
3. - If the $\varphi_{s}=0$ verify the latter condition for a simply-infinite family Γ_{1} of values of the a_{i}, and if one supposes, to simplify, that they are both satisfied only for another simple family Γ_{2} along which $\varphi_{0}=0$ and $\varphi_{1}=0$, for example, do not intersect. I have shown that one will find the expressions $x_{i}\left(a_{1}\right)$ for the coordinates of an integral curve of (2) by solving the equations:

$$
V=0, \quad \varphi_{s}=0 \quad(s=0,1, \ldots, n-2), \frac{D\left(V, \varphi_{0}\right)}{D\left(a_{1}, a_{h}\right)}=0 \quad(h=2,3, \ldots, n),
$$

[^0]$$
\frac{D\left[\frac{D\left(V, \varphi_{0}\right)}{D\left(a_{1}, a_{2}\right)}, \cdots, \frac{D\left(V, \varphi_{0}\right)}{D\left(a_{1}, a_{n}\right)}, \varphi_{0}+\lambda \varphi_{1}\right]}{D\left(a_{1}, \ldots, a_{n-1}, a_{n}\right)}=0
$$
for the x_{i} after eliminating the a_{2}, \ldots, a_{n} and ultimately setting $\lambda=0$ in the expressions that are found. When Γ_{2} does not exist, one can set $\lambda=0$ before solving.
4. - From Theorems II and III, the solution to the proposed problem is obtained by seeking the envelope of an arbitrary simply-infinite family Σ of characteristics that belongs to an arbitrary general integral Π_{0} of the indicated type. In the case of no. 3 , that solution will come down to finding $n-2$ functions $\varphi_{m}\left(a_{1}, \ldots, a_{n}\right)(m=1,2, \ldots, n-2)$ such that the hypersurfaces $\varphi_{s}=0(s=$ $0,1, \ldots, n-2$) intersect all along an arbitrary simply-infinite family Γ_{1} (among the ones that verify the arbitrarily-given equation $\varphi_{0}=0$), and are not all satisfied outside of Γ_{1} for another simplyinfinite family Γ_{2} along which two of those $\varphi_{s}=0$ do not intersect.
5. - In order to indicate a general path to follow in the solution of the latter question, I shall suppose that the family Γ_{1} is given as the set of all values that verify all of the $n-1$ independent relations:
$$
\varphi_{0}\left(a_{1}, \ldots, a_{n}\right)=0, \quad \chi_{r}\left(a_{1}, \ldots, a_{n}\right)=0 \quad(r=1,2, \ldots, n-2) .
$$

Moreover, to simplify, I shall assume (which is the general case, moreover) that there exists a group $a_{1}^{0}, \ldots, a_{n}^{0}$ in Γ_{1} for which one has:

$$
\left(\frac{\partial \varphi_{0}}{\partial a_{j}}\right)_{0} \neq 0 \quad(j=1,2, \ldots, n-1)
$$

One can find one of the functions φ_{m} as the left-hand side of the equation that one obtains by eliminating $\alpha_{1}, \ldots, \alpha_{n-1}$ from the equations:

$$
\varphi_{0}\left(a_{1}, \ldots, a_{n}\right)=\varphi_{0}\left(\xi_{k 1}, \ldots, \xi_{k n}\right), \quad \chi_{r}\left(a_{1}, \ldots, a_{n}\right)=\chi_{r}\left(\xi_{k 1}, \ldots, \xi_{k n}\right) \quad(r=1,2, \ldots, n-2),
$$

when one sets:

$$
\begin{gathered}
\xi_{k n}=a_{n}^{0}, \quad \xi_{k n-1}=\sum_{k=1}^{n-1}\left(\frac{\partial \varphi_{0}}{\partial a_{h}}\right)_{0} \frac{\alpha_{r}^{k}-\alpha_{0 r}^{k}}{k \alpha_{0 r}^{k-1}}+a_{n-1}^{0}, \quad \xi_{k r}=\left(\frac{\partial \varphi_{0}}{\partial a_{n-1}}\right)_{0} \frac{\alpha_{0 r}^{k}-\alpha_{r}^{k}}{k \alpha_{0 r}^{k-1}}+a_{r}^{0} \\
(r=1,2, \ldots, n-2),
\end{gathered}
$$

in which the $\alpha_{0 r}$ are non-zero constants, k is a positive integer, and the a_{i}^{0} (with the restriction that was posed above) verify the equations:

$$
\varphi_{0}\left(a_{1}^{0}, \ldots, a_{n}^{0}\right)=0, \quad \chi_{r}\left(a_{1}^{0}, \ldots, a_{n}^{0}\right)=0 \quad(r=1,2, \ldots, n-2) .
$$

In general, it will suffice to take $k=1,2, \ldots, n-2$ in order to obtain the $\varphi_{m}=0$ that verify all the conditions, along with $\varphi_{0}=0$.

The $\varphi_{0}\left(a_{1}, \ldots, a_{n}\right), \chi_{r}\left(a_{1}, \ldots, a_{n}\right)$ are essentially the $n-1$ arbitrary functions that enter (if necessary) into the solution that we just indicated for the proposed problem.

[^0]: ${ }^{(1)}$ The set of formulas (3) and (4) from which one deduces the result is basically the same as those of Zervos.

