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CHAPTER VII

BOLTZMANN'S FORMULA AND
ADIABATIC INVARIANTS

1. Thermodynamics of periodic systems- | already had occasion to appeal to an
important formula that is due to Boltzmann at the endhefsecond chapter. It was
concerned with the thermodynamical properties of périegstems. The arguments on
that subject are very old, since they go back to ClaasidsSzily (1871-1872)Y and the
first theoretical discussions of Carnot’s principlEhose remarks are often not very well
known. One finds that quantum theory has returned thosadghold ideas to the
forefront. The proof was given in a very general fiyrBoltzmann?). One also knows
of numerous works by Helmholtz on that subject, which wmks that Poincaré
summarized remarkably and discussed in the last chaptehis course on
thermodynamics.

It was Ehrenfest who recalled the importance of thdsas from the quantum
viewpoint. He showed that Wien's law is attached to gkeeral ideas that were
developed by Boltzmann and Helmholtz. He then showed timat quantization
conditions for orbits according to the Bohr-Sommerfalles (Chap. 1ll) satisfy some
important properties of adiabatic invariance. That quedtien became the object of
numerous works, such as those of Burgers, Bohr, Kraeter<).

| cannot summarize the general proofs here, which ang delicate and appeal
directly to the fundamental principles of classicachanics. Boltzmann established his
argument on the principle of least action, which Indt¢o discuss in detail in a different
place. Here, | will content myself to presenting teneral ideas, and above all, to
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2 Quantum theory and the Bohr atom

presenting a large number of examples. That will paumib specify the hypotheses that
are made in a useful way, along with the conventiorsdha must assume. We shall
also see that Boltzmann’s formula is rich in consegegnand the important role that it
plays in the study of a multitude of problems in meat&or electromagnetism.
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2. Conventions. Heat and work— On the basis of Boltzmann’s arguments, one will
find a convention that plays an important role. bhis distinction between the quantities
of heat and mechanical work. That distinction is intredubere in a form that is very
close to the one that we have specified already iptéeeding chapter in the context of
the statistical interpretation of thermodynamics.e Bliding idea is the same in the two
cases: One represents heat as the disorganized energly,oMhimethods do not permit
us to summarize directly in the form of useful work.classical example will make the
distinct more precise: Consider a gas that is comtlain a cylinder that is closed by a
piston. We think of that gas as being composed ofalaege number of molecules that
are animated with large velocities of agitation. TEha®lecules collide with each other
and can strike the walls of the cylinder or piston. ddenot seek to pursue the laws of
motion in detail, but to deduce certain mean propertiasdfre of interest to us. What
means of action do we have to modify the state of the gas?

We can heat the wall, which will transmit energytiie molecules at the moment of
impact, and the agitation will increase little-by-&ttl In truth, only the usual mechanical
forces enter here: Heating the wall will communicateupplementary vibratory energy
to it. When the gas molecules collide with the walhistate of vibration, they will, in
the mean, rebound with an accrued kinetic energy, aridighthe mechanism of the
heating of the gas.

However, even though that process is entirely mecharoc@ must nonetheless
appeal to very rapid vibrations or oscillations, which digtinguished by theihigh
frequency. The changes in energy of the type that we just descaleclassified by the
name otheat.

That character will be recovered in the various examtat we shall give later on.
One can further note that the forces of heat defirextremely complex system of forces
that is specially adapted to the mechanical system astgun. In addition, they are
forces that are not derived from a potential.

Themechanical workhat is done under a thermodynamic transformatioegmts a
completely different character: First of all, on@shinclude only continuous forces, and
even constant forces that are independent of timg,ofegn. In the preceding example,
one considers the mechanical work to be the work shdbmne by the slow displacement
of the piston. The molecules that strike the pistaart a certaimean force If the
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displacement of the piston is performed at constalaicity then only that mean pressure
will be significant and it will provide a certain mechaalievork. The work done will
have a different value if the displacement of thequi is subject to rapid variations, with
a frequency that has the same order as the intervableicular collisions. One must also
specify thathe velocity of the piston is constant and very small

These remarks suggest a precise definition: Considetbdragy mechanical model.
It is subject to a certain number @dnstraintsthat signify that certain parametefs &,
..., & remain constant during all of the motion of the system

From the physical viewpoint, we must suppose that @syst exterior forces:

El, Ez, ey —n

is applied to the system and that it equilibrates theticee that our system exerts on the
constraints at each instant.

This mechanical model of motion represents a cett@mmodynamic statéor us.
The motion concerns all of the microscopic coordinateshe system, but they are
inaccessible to our means of observation. The only giggnthat we can measure are
the macroscopic variables, which correspond to the @ntsté,, &, ..., & .

Recall the example of a gas that is enclosed in md®n, so the microscopic
variables will be the coordinates of all the molesul@hose molecules are constrained to
remain insider the cylinder; that constitutes the mechhmignstraint that is imposed.
The motion of the molecules in the cylinder definesititel thermodynamic state.

| then make one of the constraidis ..., & vary slowly, while allowing the motion to
continue. It no other modification is made to thetesysthen | will say that | have
performed aradiabatic transformation That is what | do when | slowly displace the
piston in the cylinder, while being careful that no fgreforce (viz., heat) acts on the gas
through the wall.

During the variation of the constraints, | will deexrtain amount of work:

(1) dT:—El dgzl—Ez dgzz ...—En dgzn

That represents th@echanical workhat was done on the system during the adiabatic
transformation.

That convention is fundamental for the comprehensioBadizmann’s formula. It
will suffice to give the proof that the author gave.

It is quite obvious that when that distinction betweerk and heat is applied to
ordinary mechanical systems, it will seem very aitifi For the mechanical models that
present themselves in thermodynamics, the classificatidorces into one category or
the other can be done with no hesitation.

In all cases, the definition of an adiabatic invarignvery clear: It is the infinitely-
slow variation at constant (or very slowly-varyingglocity of the parameters that define
the constraints. Thslownessf the modification must be such that the phenomasion
reversible. That signifies that in the varied equatioh motion, one must neglect the

velocities &, &,, ... , &,, which one supposes to be constant or slowly-variable and
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infinitely-small in comparison to the velocities dfet microscopic coordinates of the
system.

Under a non-adiabatic modification, there will besimultaneous variation of the
constraints and an action of the forces of heathdfvariation of the constraints is slow
then one can write that the variation of the ind¢energy of the system is:

(2) dE=dQ-d 7.

3. Boltzmann’s formula. — For a periodic system that obeys classical mechaifics,
the preceding conventions have been specified cleagely Boltzmann’'s formula will
give the heat providedQ under the transformation of a periodic system:

@3) Q= §d(rﬁkm).

In that formula,7 represents the period of the system d&fg represents its mean
kinetic energy, which is defined by the relation:

(4) rEg,= [Egdt,

where the integral on the right-hand side is taken a\erration ofr.
We write that the heat provided under an adiabatic foemation is zero, which
immediately gives us the condition:

(5) r E,, = const.

The expressiom E, then represents adiabatic invariant.

The preceding formulas are valid for a holonomic eaysthat obeys the laws of
classical mechanicand executes a perfectly arbitrary periodic motione @wst further
specify that the mechanical system considered must becsubjonlyconstraints that
are independent of tima its normal state.

For systems that include constraints that are funetaf time or the ones that obey
relativistic mechanics, the statements will take odightdy more complicated aspect,
which we shall point out a bit later.

Among the mechanical systems of that type, thereseaistimportant category for
which the formula simplifies. They are tipairely-sinusoidal oscillatory motiongor
which one has:

(6) Ekin = Epot = % E '

The mean kinetic energy and the mean potential are &geach other and to one-half
the total energ¥. Boltzmann’s formula will then reduce to:
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™ dQ= 5.

In order to modify the motion of the system withoutiehing the period, one must
provide a quantity of heat:
dQ=dE

When an adiabatic transformation does not modeypériodr, the system will exert
no force on the corresponding constraint. HoweWdhe adiabatic deformation varies
the periodrthen it will be easy to calculate the mean for@e it exerted by the vibrating
system on the corresponding constraint parameter.

Indeed, in that case, the adiabatic invariant ist@vrit

(8) 2rE,, = TE = const.
At the time of the modification, one will then v

_dTE:O £+d_E: .

9 ,
®) TE r E

However, the variatioWE of the internal energy of the system is due to dh&
mechanical work that is done on the constraint forwbg;h will give us:

(9 cont) dT:—dE:EE.
T

That expression will permit one to easily calculatleof the mean forces that are
exerted by vibrating systems on their constraintsr éxample, one has the radiation
pressures of elastic or electromagnetic waves.

We shall see how these various formulas are verifistime examples.

4. Variable-length pendulum.— In the usual mechanical models that | will take for
my first examples, the distinction between “heat erieand “mechanical work” can
seem a bit arbitrary. Those terms are not directhalsie to those examples. The study
of those simple problems will nonetheless permit usaie the ideas more precise and
to know clearly the meaning of adiabatic transformations.

Consider a pendulum that consists of a string thas ga®ugh a fixed ring and
carries a mass on.

The position of the ring constitutes a constraine 8Nall vary it by slowly displacing
that ring up and down, which will modify the lendtbf the pendulum. The period of the
pendulum is:

(10) r= ZH\/T—.
g
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The force that acts upon the ring can be easily caémlilzere. Indeed, the tension in the
string is:
T =mgcosé.

Upon composing the two equal tensidnthat nonetheless have different directions and
act on the ring, one will see that what remainsvsréical component:

Z=T(1-cosbH
and a lateral component:
X=Tsiné.

We shall suppose that the ring is kept in a vertical sht@se reactions will
equilibrate the forc&X. The latter is zero in the mean, moreover. Onctiv@rary, for
small angled, the vertical force will have the mean value:

T2 02

Z:T(l—cose}:T%:mg cose%.

Our oscillations are supposed to have small angd&uso we take the value 1 for @&s
and the value? / 4 for 82 / 2, in whicha represents the maximum angle between the
pendulum and the vertical.

However, one gets, on the one hand, the energyption from the expression:

2

a
E=mgl—,
g 4
which will permit us to write:
- _1E
11 Z ==-—.
(11) >
When we slowly displace the ring up and down, wiedw an amount of work:

d7=Zd = 1Eq.
21

That workd 7 will be borrowed from the energy of vibration detpendulum, and one
will have:

E E 21°
The simultaneous variation of the period of ostdla is:

dr _1dl

r2I_
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and one will immediately verify the relation:

(12) eIy,
E T

T E = const.
We then recover the invariance of the quantigy under an adiabatic transformation

directly in this particular case. In fact, that isawvhlmade us predict Boltzmann’'s
formulas [viz., formulas (8) and (9)].

~N) mg
Figure 34.

The variation of the constraint was supposed to beitiely slow, which signifies that
during a period of oscillatiom the ring will displace only by an infinitely-small qutéy.

A rapid displacement of the ring will lead to somempletely different laws. For
example, if | displace the ring briefly by a finite aqtigy then at the moment when the
pendulum passes through the vertical, | will realizepgagsage from a pendulum length
of I; to another length without doing any work.

It is no less important for one to perform the dagspiment with a constant or slowly-
varying velocity. A displacement by fits and startshwieriod that is close to two times
the periodr of oscillation will give entirely anomalous resu(ts.

Any force that acts on the pendulum and is capable difymag the amplitude of the
oscillations (while the ring is fixed) will be called'farce of heat.” They will be forces
that alternate with the same period as the pendulemipacts, etc.

() That anomaly amounts to the fact that the compahenbmits to variations of frequency &round
its mean value. One will see this easily in the fdas of the preceding page.
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We can account for part of the oscillatory energythef pendulum in the form of
mechanical work under an adiabatic transformation. nUgowly withdrawing the ring
out to a infinite distance, we can then extract &lhe energy in the system, while the
masanm finally remains at rest. That is completely analogouse adiabatic dilatation of
a gas. Upon withdrawing the piston indefinitely, wel adcount all of the caloric energy
of the gas. Its temperature will go down progressivetyiawill conclude by attaining a
state of complete rest (viz., absolute zero) aftesingagiven up all of its energy of
agitation in the form of work.

5. Vibrating string. — The tensed string that executes transverse vibnatavides us
with a model that is quite analogous to the preceding one.

The string is attached to a fixed poltand passes through a riQy We suppose
that the ring is capable of displacing in the longitudseaise. Lek be the length of the
vibrating string and lei be the speed of propagation of transverse waves aleng th
string. One possible vibratory mode will consist of, dgample,n extrema and — 1
nodes between the extreme poiRtandO. The periodr of the vibrations will then be
given by the relations:

(13) I:ni, A=V, T:EI—.
2 V n
P O F
T/\/\W'
|
' |
e - - - — = >

Figure 35.

Lord Rayleigh has calculated) the mean forc€ that is exerted by the vibration on
the ring directly, and he found:
F-E,

in which E represents the vibratory energy of the system. Whedigplace the rin@®
very slowly, we will produce an adiabatic deformatidrth@ system. The work doweZ
is equal to the reductiondE in the internal energy and is written:

dT:—dE:I—EdI,

and one will immediately verify the relations:

() Lord Rayleigh Scientific Papersvol. 5, pp. 41; pp. 262.
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(14) —E: E: ﬂ,
E T I
E 7= const.

The adiabatic invariance of the expressiok is then verified effortlessly. The
remarks that we made in regard to the pendulum apply inatedglhere.

Figure 36.

6. Box that defines a resonant parallelepiped- In Chapter I, we studied the
modes of vibration of a box that is a rectangular peegiped with sides, I, I3. We
suppose that one wall is perfectly reflecting, while glteex =1; can slide like a piston.
Since the equations are completely analogous to thode gfreceding problem, | shall
recall them briefly here. A mode of proper vibratioattborresponds to:

n; extrema along the edde,

n2 n n n |2,

n3 n n n |3
will have a period of vibration:

S ORCRCE

For an elongatiodl; of the lengtH, the period will vary byl7 :

P 65 YY) O

T T

(15
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Lord Rayleigh calculated the radiation pressure thatxerted upon the reflecting
piston by stationary waves. His calculations supposgdiditly that the speed of the
waves in the medium that fills up the enclosure is peaeent of the volume of the
enclosure. That is what will be produced if we considerempty enclosure with
electromagnetic waves that propagate inside of it. pféssure on the piston will then be

given by the formula:
(Il jz
E cogo=—F i

SR CEGEC]
n n, n,
@is the angle of reflection of the wave from the orirconsidered, so ct@will be

expressed as a function of the direction parametetedight ray ).
If | now produce an adiabatic dilatation of the r&dia while slowly displacing the

piston whose surface lisl; then | will exert a certain amount of wadlk7 :

G e
SEGAHA

If we compare this with formulas (15) and (16) then we wimediately deduce the
adiabatic invariance of the expressioi :

(16) ~dE=dT=phlsdy=E

r

Here, as in the preceding case, we appeal to Lord Ragdaimulas for radiation
pressure. Furthermore, | shall point out the restricbine agrees to make in order to
apply those results to the case of radiation. Wetake the opposite route for other
problems. We know that formulas (9) andd@nt) are valid for arbitrary sinusoidal
vibratory systems, since they are attached directlptmdla (3), for which Boltzmann
gave an absolutely general proof.

For complex problems in which Lord Rayleigh’s procedurad te the evaluation of
the radiation pressure quite laboriously, one willvarrat the result very quickly upon
appealing to formulas (9) and ¢8nt).

That case will present itself when one supposes teapahallelepiped enclosure is
filled with an arbitrary material medium. One mustrittake into account the variation
of the density of the body when one produces a dilatati®n the other hand, the
medium can be dispersive — i.e., waves propagate withreliff speeds for different

() For all of the details of the calculation, | shalfereto Chapter Il and to Note II, in which this
problem is treated more thoroughly.
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frequencies. Since the dilatation modifies the fregyeone must take that effect into
account in the calculations. On the other hand, | s&esvn {) that one will thus arrive
at the following formula:

(17) p= & cog g+ 209V |
\ dlogd
in which:
& total energy density of the two incident and reflegiraves
6 angle of incidence
\% phase velocity
U group velocity
d density of the medium

That formula applies with no modifications to arbiravaves, such as longitudinal or
transverse elastic waves, as well as electromagwetres.

Boltzmann’s method then has value for the calculatibth® mean forces that are
exerted by vibrating systems and analogous calculatiorzl@ition pressures.

L

e

Figure 37.

7. Oscillating electric circuit. — The same results will be recovered effortlesslgnn
electric example. One knows, moreover, that edsaignetism satisfies the principle of
least action, provided that one considers the eleetrérgy to be “potential” and the
magnetic energy to be “kinetic.”

Consider an electric circuit that includes a sedfuictionL and a capacito€. The
resistance is assumed to be zero. The circuit i$ ¢hpable of oscillating continually
with a frequency of:

(18) r=2m/LC, w=2".
4

If one calls the currentand the charge in the capaci@then | will have expressions
of the form:

I, .
| =lg coswt, Q= -Lsin wt
W

for those two quantities.
The energy of the oscillations is:

() L. BRILLOUIN, Thesis pp. 420, formula (27).
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I shall now impose an adiabatic transformation tbe oscillating system. For
example, | will slowly vary the value of the cagaoce. | must then take into account
the forces of attraction that are exerted on the anmatures of the condensor. Upon
calling the coordinate that measures the displanewiethe electrodes, the force will
have the expression:

‘()
(20) f=-3Q Tdx

Indeed, one is dealing wittisplacement with given chargand formula (20) will
represent a classical result in that cdse The mean value of the force can be written:

qf 1
f_:—lg C = |§ E: Ed_c
2 dx  4C3%w? dx 2C dx’

We will get the work donel7 by that force or the corresponding variati of the

oscillatory energy in the form:

-dE=d7= fdx :Ed_C
2C

If one takes into account the simultaneous vamadibthe periodr of oscillation:

(21) —+—=0, r E = const.

Here again, we recover the adiabatic invariancehef expressiorr E. | have
supposed that the circuit is composed of a variaapacitance and a fixed self-
inductance. One will recover exactly the same lrabwne fixes the capacitance and
varies the self-inductance. In the latter casefahce will have the value:

Foolpdi_lide_ Ed

f = - ==

2 dx 4dx 2Ldx

() Cf., e.g., BOUASSEPhysiquet. 3, Electricité et MagnétismeChap. |, 97, pp. 95.
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Under an adiabatic transformation that increases ghdod (viz., increases the
capacitance or the self-inductance), one can assinalbof the oscillatory energy of the
circuit in the form of mechanical work.

8. Systems in rotation.— All of the examples that we just summarized reéer t
models that are capable of oscillating in accord with &lgtginusoidal law. We have
seen that Boltzmann’s formula then yields the expressiBras an adiabatic invariant,
and we could verify that property in our various problens. the general case, the

adiabatic invariant is =27 E, ; a new example might permit us to verify that point.

D

Figure 38

Consider a mags that is carried by a rod of lengthihat articulates at the poift
That rod (without the mass) is constrained to slid&aut friction on a circleC that is
normal to the lineDD. | will suppose, first of all, that no external ferield acts upon
the massn. It will turn around the axi®D with a rotational velocity otu

The potential energy is zero, and the kinetic enesgy i

(22) Exin =2mr o, r=1Isiné.

| can subject the system to an adiabatic transfoomaipon slowly displacing the
circle C along the axifOD, which will make @ vary progressively. Since my rod is
supported without friction on the circtg, | shall exert only central forces, and the area
constant:

2

A=Zrw

N
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will remain unchanged. However, the adiabatic invarianthat | indicated in
Boltzmann’s formula is nothing but:

(23) | = 21 Eyin = 27mr° w=4rm A t:g,
w

and | can indeed verify its constancy in the course ofrémesformation.

If 1 have a force field that acts upon the mamssthen | must introduce the
corresponding potential ener@y.: . The total energ¥in + Eyor Will vary in an arbitrary
manner under the adiabatic transformation, but thébateinvariant will be obtained, as
always, from formula (23), in which only the kinetic ege appears, but not the total
energy.

We can push the argument further in this simple exampdevarify Boltzmann’s
formula itself:

(24) dQ="d(rE,)=~di = —dI

What forces can be grouped under the term “heat”? @reyperiodic forces of the
same period as our system. The central components of thosesfgcoanponents along
the radius) will have no effect here, since they eqailibrated by the reaction of the
circle C. Only the components that are perpendicular to theigaddll play any role.
They will communicate an acceleratigato the mass such that:

dw
f=m@g=mr—.
Po=mry

The work done by the fordeduring a timedt is written:

(25) fr wdt=mr wdw= -2 d.
2

The expressions (24) and (25) are indeed identical.

The work that is done by these particular forces, w@ecially adapted to our
mechanical model, will then be predicted precisely by Zadinn’s formula, which we
have been able to verify completely in this simplengxie.

These special cases have clearly permitted us to miekedistinction between
mechanical work and heat very precise and to show whadiabatic transformation that
is applied to a mechanical system would signify.

9. Extension of Boltzmann’s formula.— Formula (3) can be put into a somewhat
different form, which will permit us to extend its fietd application considerably. One
knows that in classical mechanics, the kinetic enasgg homogeneous function of
second degree in the velocities. gif ..., gm are the coordinates that serve to define the
state of the system then the kinetic energy wiehthe form:
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(26) Bun =8, 0f + @, G+ + 8, 428,79 GH+2 3,7 ¢ ¢
The momentyp are defined by the relations:

oE,. oE,.
27 =S gz S
(27) P1 ot Pm a6,

The homogeneity of the expression (26) then permits@easily verify the relation:
(28) Ein=p g+ pGt -+ R G

That relation plays a fundamental role in the proofsofne general theorems in
mechanics.

Boltzmann’s formula involves the kinetic energy by wajto©mean over time. Upon
making that precise, we will get:

(29) | = 2rE,,= 2[E, dt= [} pdq.

| is our adiabatic invariant, which is then found to bgressed as something that is equal
to the sum of the integralp dg when each of them is taken over a duration that it equal
to the periodr.

Boltzmann’s formula is then written:

(30) dQ= %dl.

These expressions represent most precise form of oarajeasults.

I will point out their interest forthwith. Formu(@) will cease to be true in problems
that are more complex than the ones that we have enedi That situation will arise,
for example, when we introduce relativistic mechanius the variation of mass with the
velocity. The kinetic energy will no longer be a quadrérm in the velocities (26),
while at the same time formulas (27) will cease togy@ieable. The momentswill be
given by the partial derivatives of a new function, vahwill no longer be the kinetic
energy. The relation (28) will also disappear. Iftiven repeat Boltzmann’s proof step-
by-step then we will find that one will arrive at thepeessions (29) and (30} (

We shall then prefer to take the results in that fisom now on.

() The details of that proof, which | shall not give dyewill be published moreover. That result has
been assumed by various authors (Sommerfeld, EhrenfegferByrbut it is not found explicitly in their
work.
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10. Quasi-periodic systems= A new extension will give a statement that is védid
the most general mechanical systems with separabkblesi We have already recalled
some properties of those systems in Chapter 11, aqdhiticular, the following one: let
O1, 92, ---, Om be the coordinates that permit the separation ofblasao take place, each
of which will correspond to a particular periad 7, ..., 7m. The global motion is not
periodic, but one can (in an infinitude of ways) fegobroximate periods such that one
will have:

(31) t=mn+a=-nn+& =... =Ny Int &n,

in which theny, n, ..., Ny are integers, and the absolute values ofstaee less than an
arbitrary quantityn that is given in advance. After a timethe mechanical system will
return as close as one desires to its initial statejt will never pass through that state
again, rigorously speakingd)(

The existence of those approximate periods will sufficeprove Boltzmann.
Suppose that we then introduce such a perodto formula (30), along with the
notations:

(32) Ilszldq, Im:.[pmdom.
The integral of the formula (29) will take on the appearance of:
(33) I:n1I1+n2I2+...+nmIm+Z,

in which the quantity is very small. Upon neglecting all correcting tertingt were
introduced by our approximate period, we will then find that:

A0 =2 d (i) + ... +—d (1)
rllrl m®m
(34)
Z-l Tm

This represents the most general form that we antg our results?.

() ESCLANGON,Thesis Paris, 1904.

BOHL, Thesis Dorpat, 1893.

BOHL, “On certain differential equations of a generaaracter...,” Dorpat, 1900 (Russian); French
transl. Soc. Math. (1913).

KRONECKER, “N&herungsweise ganzzahlige Auflosung line@terchungen,’"Werke v. 3, pp. 49.

H. POINCARE, “Les Méthodes nouvelle de la Mécaniquesté|” Bulletin astronomique (1893).

| have J. Hadamard to thank for these referencese $ia@resented this subject in his course at the
Collége de France in 1912 (unpublished lecture notes). Irdremthat, we cite the following papers:

J. HADAMARD, Bull. Sc. Math34 (1906);ibid., 25, pp. 7, and C. R. (8 January 1906).

() For a variatiordly, ..., dl, of the integral, the variation of the internal enerdyVis given by the
relation (34):

dW=dQ= ?1dll+ +Tid|m.
1

m
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But what does our adiabatic invariant become here®2elns that we can no longer
give a precise definition. If we wrigQ = 0 then that will give us a relation:

idll + ... +idlm: 0,
Z-l Z-m

but nothing tells ua priori that thedl, ..., dl, must be separately zero.

However, we can guess what that case will be mRre invariance property of the
a detailed study will permit us to give a rigorqueof. | shall not recall it here, and |
will content myself to only explaining the resufErom the physical viewpoint, we must
establish a distinction between a transformationafbich the total heat provided is zero
and a truly adiabatic transformation, under whiohgoantity of heat is transmitted to any
part of the system. The different variablgs qy, ..., gn that define our motion are
distinct and obey laws of evolution that are sefgafeom each other. No constraint
exists between them in our equations. To wdife= 0 is to write that the sum of the
guantities of heat that are provided to each degfefeeedom is zero. However, an
energy of (1 /ry) dl; will be provided to the first coordinateg, and similarly for the
other coordinates. That does not correspond tovéng clear definition that we have
given for an “adiabatic transformation.” We sha&éerve that name for a modification
under which one is content to vary one of the tangs very slowly, and the system is
assumed to beompletely isolated If the system is completely isolated then onestmu
suppose that no quantity of heat is provided naerdweed from any degree of freedom,
and one can write:

d|1:0, faay d|m:0,
I, =const.,, ..., Im = const.
The I, ..., In are then adiabatic invariants. They remain constander any

modification that does not involve the forces oédh”

Our justification cannot take the form of a precisroof. However, it can be
established without too much difficulty, and we Ivalrive at the result that we just
pointed out precisely.

11. Adiabatic invariants and quantum conditions.— We have already seen some
applications of adiabatic invariants and Boltzmanférmula. The proof of Wien's
formula (Chap. Il) is directly linked with thosergal ideas. The most important point,
upon which | must insist, is that the quantum cbods are applied to quantitiéshat
are adiabatic invariants. We have only to redal various examples that we discussed

This represents precisely the result that we utilize@hapter V, %, formula (11), in the context of Bohr’s

correspondence principle. We deduce the relations:
1_ oW

Lol
from it.
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above one after the other in order to traverse thgest of development in quantum
theory.

We have shown that for all systems that are capdbdsallating in accord with a
purely-sinusoidal law, the quantityE will be an adiabatic invariant, wheEerepresents
the total energy. That was the case for our exasnpl@84 to 7. Now, it was to such
systems that Planck first applied the idea of quanta tingthat:

(35) TE=— =nh, n integer.

<|m

For these pure oscillators, the total energy will thenequal to an integer number
timeshv. (I pointed that out at the end of Chapter Il.) slimportant to know that this
condition is invariant under an adiabatic transfornmaticslowly modifying one of the
parameters that define the oscillator will have theafbf changing its frequenay but
if the energy has the valuday before the transformation then it will constarkéep that
expression throughout all of the successive state abatic evolution.

The example in paragrag@pertained to a system in rotation. We remarked that one
no longer needed to introduce the total energy in ordgetahe adiabatic invariant, but
only to take the kinetic energy. Furthermore, our invédiavill then be linked directly
with the area constait by:

(23) | = 2r E,, = 4TmA

After numerous attempts, it was exactly that expoesthat Bohr chose in order to
apply the quantum conditions to it. In his first paperkich arrived at a remarkable
interpretation of the Balmer series, Bohr supposediea¢lectrons gravitated around the
central nucleus along circular orbits. After having ttiedappeal to a relatioB = nhy
that is analogous to that of Planck for the vibratoffji@dly arrived at the condition:

(36) 4r mA=nh.

That is therefore yet another adiabatic invariaat tme must set equal iaimes the
guantumh. If one can slowly vary the mass or rather the coefficient of the attractive
force between the nucleus and the electron then oille provoke an adiabatic
transformation that will modify the frequency of rotatiand leave our quantum relation
(36) invariant.

Finally, the last stage (88and10) will permit us to find the adiabatic invariants for
the very general problems that are solved by separatigariables. Those invariants are
nothing but the integrals:

(387 Ii:J.pi dqg =nh,

which are integrals to which Sommerfeld successfullyiegghe quantum conditions in
the form (37). There is then a complete paralleli@twben the development of our
arguments concerning adiabatic invariants and the natohlt®n that quantum theory
followed while its creators were guided by very differemgmcupations.
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That coincidence is not fortuitous. As Ehrenfest réedyrit seems indispensible that
the quantum conditions must bear upon only adiabatic emaxi Indeed, what are our
“‘gquantized” motions? We have been led to attribute rg special property to them,
namely, that they must persist indefinitely with heit emission not absorption of
radiation. However, the radiation comes from haa we have insisted on several
occasions upon the role of isothermal radiation Asmxdamental thermostat. If perhaps
by basing that upon the laws of thermal radiation (\alack-body) that the notion of
absolute temperature will become most accessible to us.

The quantized motion is then characterized by the tfadt it will persist with no
exchange of heat with the outside. Such a property hasimgeanly if it stays valid in
the case where the motion is perturbed slightly byarditrary external force. We are
then naturally led to consider all adiabatic transttioms that are applicable to our
mechanical model and to choose the expressions thatrrémvariant under all of those
modification for the quantum conditions.

If our conditions do not pertain to invariants of tkatd then any external action,
however, miniscule, will suffice to perturb any motiand to require the system to
radiate or absorb energy. We will then be led terutbnsense.

12. Examples of adiabatic transformations that apply to the Bohatom. — We can
go back to the various types of quantized motions thaenwisioned above from this
viewpoint. In the absence of any perturbing cause, datreh that gravitates around the
hydrogen nucleus will follow a Keplerian ellipse. Ipdogressively introduceraagnetic
field then | will deform the orbit. The trajectory will Zge to be a closed curve, but it
will take the complex form that we have described;ghantum conditions will remain
unchanged. If the motion was previously quantized thenviNeget the very complex
manifestations of the Zeeman effect, which can be deddiedtly from the various
initial elliptic motions.

If we establish aelectric field instead of a magnetic field, then the deformationk wil
be different; that is the case of the Stark eff@dte introduction ofelativistic terms will
represent a third deformation that one can suppose talgeathiabatic, and which will
translate into a rotation of the perihelia of our sitig.

In each of these three cases, we know how to dbkreproblem by separation of
variables. That method will fail when two of thosdeefs act simultaneously. One
cannot presently solve the case of superimposed electdienagnetic fields, much less
the effect of an electric field when one takes reigtinto account{). The method that
one should employ in that case would be to take adedilied Keplerian orbit and to
follow its modifications when one progressively makes ypbihg causes act upon it.
Experiments show that one will always obtain a sp@ctof sharp lines. There must then
always exist well-defined energy levels; i.e., motitingt are defined entirely by the
guantum conditions.

() Kramers attempted to treat these various problenmssimecent works. However, he neglected to
point out the details in his calculations, which does se@m to me to be safe from all criticism. The
process of adiabatic invariants will certainly be a vetiable guide for attempts of that kind. [Zeit. PH¥s.
(1920), pp. 199]
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That notion of adiabatic transformation plays a vengortant role in Bohr’s recent
work. That author sought to represent the logical straadf atoms and to comment on
the continuity of the evolution of the atomic struetwhen it follows Mendele’ev’'s
table. He then represented a (fictitious) nucleus whtessric charge one can change in
a continuous manner. Whenever that charge increasedelhynitn a new electron could
be added to the ones that were found around the nucteasyaf).

That hypothesis for continuous formation seems to praavigescious guide for that
study. In any case, it permits one to eliminate cedtaunctures that are unrealizable by
the progressive process that we just supposed. For exatimgy are the atomic models
in which a certain number of electrons gravitate arouads#me circle while remaining
at the summits of a regular polygon. Such a symmetamggic figure must be formed
all at once, but one cannot reasonably suppose thamis@about by the progressive
addition of electrons.

One must distinguish the casedefgyeneracyn the adiabatic modifications. They are
the motions for which several partial periods must be legaahe trajectory will reduce
to a closed curve. That is the case for the unpetiukeplerian motion in the hydrogen
atom. These degenerate cases are important in &yapénmit one go from one problem
to another.

Therefore, in order to follow the deformation of rajéctory from the case of a
magnetic field to the one in which an electric fieldses, it will be convenient for us to
observe the evolution of the motion by passing though thendegfe intermediate state
for which neither of two perturbing fields exists.

Another consideration is often introduced for which aiseemathematical definition
would be very desirable: It is the idea of “classesihotions. Such a mechanical system
can often take on very different motions accordinghéinitial conditions. A weight that
is suspended from a poi@ and defines a pendulum can turn indefinitely either by
oscillating from one side of its rest position to thder or if it is launched with great
vigor and describes a circle around its attachment p&mnie will find a limiting motion
between these two classes of motion in which the wegglaunched in such a manner
that it will just attain the highest point of the ate, but that motion will last for an
infinite time.

Similarly, for planetary motions, the elliptic or hypelic trajectories form two
distinct classes with the parabolic motion as thating case. There again, an infinite
duration will be necessary if one is to execute tinaitihg motion.

An adiabatic transformation will permit one to passnf a motion in one well-
defined class to a series of other motions in the sdass, but one can never reach a
motion in a different class. At least, that is the hippsts that one recovers very often in
those subjects (Ehrenfest-Bohr). In order to make thiat pnore precise, one will need
a mathematically-precise definition of the “classes’haition, but it does not seem that
we do not presently possess anything satisfactory.

() However, Bohr's argument is the following: The atom nhestcapable of being formed by taking
only the nucleus, and he then replaced its various etectone-by-one. The system would then pass
through all of the successive stages. Once we have tiaddentrons, our atom will have a structure that is
very similar to that of the neutral atom of atomic to@mN = n. In particular, the once-ionized atom,
which lacks only one electron, will be composed imanner that is completely analogous to that of the
neutral atom that precedes in it Mendele’ev's table, ianludes just that number of electrons. One will
then arrive at the continuity of the atomic structut@laing the Mendele’ev series.
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13. Attempts to generalize— It will be very important to find how one can apfthe
guantum conditions to mechanical problems that are cwrglex than the ones that we
have treated up to now. The method to follow is ¢federived from the preceding
results. One must begin by looking for the adiabemvariants and choosing the ones
that reduce to the forms that we have indicated abotieeisimple cases. They are the
invariants that one will set equal to an integer tineegbantunh. That generalization is,
without a doubt, very arduous, and we do not presently theveolution to it. Just the
same, it seems that a large part of the resultselae to the quasi-periodic problems are
capable of being extended to even more general caseshandne can find adiabatic
invariants in them, as well")( Furthermore, these questions are closely related to
Poincaré’s integral invariants, which might permit omdinid the right path to pursue.

From the physical viewpoint, it seems entirely certdiat this generalization is
possible. In spectroscopy, we see no difference betthegoroblems that we have been
able to treat completely and the ones that still elusle In all cases, even the most
complex ones, we observe sharp lines whose frequeneiedefined very exactly. The
classification of those lines always follows eagityn Bohr’'s second rule. There again,
we will find very well-determined discontinuous values foe total energy of the system.
That mode of classification will always impose itsalhen one is dealing with the
extremely-numerous lines of band spectra (viz., thddbdses formulas) or the lines of
X-rays and light for arbitrary atoms.

If there are energy levels then there will be pref# motions that must be determined
from the quantum conditions. The methods of ratiora¢hanics that we have applied
already break down for the three-body problem; i.e.fHe helium atomN = 2). Now,
we find sharp lines and energy levels in all atomic spagrto the uranium atonN(=
92), which is nothing less than a 93-body problem!

One sees that some very difficult questions renwipetresolved. The considerable
importance of the results that were obtained alresttbws that the path followed is
extremely interesting. We have attempted to summaheeprincipal points and the
collection of new doctrines in this presentation, and vewe not hidden the very
numerous imperfections in their present form.

One must find the general form of the link between edetaignetic phenomena and
matter (viz., positive nuclei and electrons) from aglarthat joins up with classical
electromagnetism once more in the problems with mooge quanta and provides the
necessary discontinuities in the atomic domain.

Many obscure points remain in the question of the structdir@atoms. The
distribution of electrons into successive layers aeddtvs of their quantized motions are
yet to be specified.

Finally, the structure of the atomic nucleus itseld amhe laws of radioactive
decomposition have not been given any interpretation upote. We think that the
nuclei are formed from hydrogen nuclei and electronsateabssembled according to the

() P.S.EPSTEIN, Zeit. Phy8.(1922), pp. 211 and 305.

This author followed a very different path from the dnat we suggested. He utilized the calculus of
variations and Delaunay’'s method. He proceeded by sueeeggiroximation by means of quasi-periodic
motions. For each stage of approximation, he then vdoten the quantum conditions and arrived at a
precise determination of the quantized motions for a genasg whose scope was even more extensive
than that of the problems of separated variables.
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guantum laws. The primordial elements of matter wob&htreduce to the positive
electron (i.e., the hydrogen nucleus) and the negateetreh. That is presently a very
reasonable hypothesis, but one whose physical basesuareless numerous. We hope
that in the near future we might shed some new lighhoset problems that would permit
us to penetrate even deeper into the mystery of atoms.




