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Schrodinger’'s wave mechanics:
a general method of solution by successive approxations.

Note byL EON BRILLOUIN , presented by Marcel Brillouin

Translated by D. H. Delphenich

1. Schrodinger, while developing the ideas of L. de Brodjlas recently specified
the major features of an atomic wave mecharlics $uppose one has an atomic system
whose potential energy \6(q', ..., q"), while its kinetic energ¥ has the expression:

(1) =ymdd=Ympp.
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Them are functions of the coordinatgs ..., and we lem denote the determinant of the
m. The classical Hamilton equation is written:
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in which E represents the energy constant. Schrodinger arriviek dollowing general
equation:
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in whichh is Planck’s constant. The quantized energy lelzedse the proper values of
that equation; i.e., the ones for which one can findrdicuous functiony that is finite
and uniform in the entire extension-in-phase

2. | would like to show that equation (3) can be solved bycesgive
approximations, where the first approximation recoveesall quantum mechanics. |
set:

(4) w:e2niW/h;
equation (3) then gives:

() L. DE BROGLIE,Thesis E. SCHRODINGER, Ann. Phys. (Leipzi@P (1926), 361-376, 489-527,
734-756. Equation (3) above is found in Schrodinger, pp. 310, eqi8pand pp. 748, equation (31).
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This equation differs from Hamilton’s (2) by the adjuontof the right-hand side, which
is very small, due to the value lof In order for the functio to have only one value at
each point, whileV is a multi-valued function, it is necessary ti#must have residues
that are integer multiples tf

(6) e = Nk h.

Starting from a point in the extension-in-phase tlet & valué/V and traversing an
arbitrary closed circuit, one will determine a valoe W + Nh that gives back the same

value of . These are the usual quantization conditions, whey dare interpreted as
resonance conditions, in the sense of L. de Broglie.

3. Equation (5) can be solved by successive approximationgtingse
(7) W=Wo— Wi+ [0 Wiy +
0 o7 (1) o7 (n)

The first approximation is given by the classical Heonilequation (2). The ones
that follow are:
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The expressiorF contains the derivatives of functions that are knowamfrthe
preceding approximations.

We then find that the first approximation is Hamiltoeguation, combined with the
conditions (6); i.e., the old quantum mechanics. Theal fapproximations involve only
linear equations and constitute the novelty in Schrodiage€chanics.

4. When the variables are separated in Hamilton’s functlonfirst approximation
is solved by quadratures that pertain to each variableigugilly; however, the final
approximations will establish a coupling between thoseabbes because one cannot
recover such a separation, in general.

There will be complete separatiorMfandT are presented as sums of terms that each
include one variable:
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(10) V=V, (d) and =) m*(g) g with '=0 k=)

One will then have:

m=|m! | =mt 2 ™

We seek a solution of the form:
(12) W=ty (),
k

and we will obtain separated equations of the Valhg type:
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with the auxiliary condition:

> a=E.
k

These equations are solved easily by successiypeoxmations using simple
guadratures.

Schrodinger's mechanics thus admits the old quantmechanics as a first
approximation, but generally establishes suppleargrouplings between the variables.



