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INTRODUCTION

In this fascicle, we once again emphasize the fundahesimilarities and
dissimilarities that exist between the theories @vdy, groups, and — of course, this
latter point is touched upon only lightly — the new meats All of these topics that are
of interest to science relate to multiple integrahgformations.

We say “theories” of gravity. Indeed, one might hamerdinitude of them, since,
from Henri Poincarél], one might have an infinitude of mechanical interpretet of
the Universe that lead one to conceive of one.

We briefly review Einstein’s theory of gravity in 1929o1n the translation of R.
Ferrier, a translation that has the advantage ofjbeugmented by preliminary notes by
Th. De Donder?].

Since this fascicle was edited, Albert Einstein himbal published — in French — a
more developed form of the new theory of gravg¥][ [46].

The very useful work thus presented by Ferrier revealse sdifference of
interpretation between the conceptions of that schexta our own, which we do not
hesitate to point out. Ferrier writes: “The monthJahuary, 1929 marks an important
date in the history of relativity: the one when Einst@bandoned the theory of relativistic
mechanics that he had maintained up till then withouviagiat a coherent system,
which was discussed in a memoir presented to the Bedad@&my of Sciences, and in
which he constructed a new one that was based ordifeasent principles.”

Now, for us, Einstein abandoned nothing whatsoevertrendew theory of gravity is
not based on any principles that differ very much fronoiltdeones.

The first theory of gravity rests on the Bianchi idignifrom (23) of Chapter I, when
the A\’s are null]; the second one is based on the ide(24y. Now, these two identities
are, as one sayspnjugate and are associated in the most intimate manner: bogy
emerge from the same analytic transformation. Trhlyy are not “very different.”

If one retains the idea of a difference then one atsty remark that the first theory of
gravity makes recourse to only Riemann space, therefospa@e without torsion; the
second one makes recourse to a space with torsion, $etise of Elie Cartan. However,
T. Levi-Civita has shown3, in March, 1929, that a space with torsion may be
represented on a space without torsion by means of tb&utbdifferential calculus and
the Ricci rotation coefficients. Once again, the méifferent” aspect disappears.

Ferrier also concluded with some pessimistic thougfitse problem of associating
the electromagnetic and gravitational fields can hatmyconsidered as definitively
solved. Of course, we also believe this, but that willaffect anything. We belong to a
school of philosophy, which again has Henri Poincaré omiéntor, where one does not
believe in the possibility of the existence of synth#teories of a perfect and definitive
character; for us, a theory becomes admissible wiheresents a certain extension and,
above all, a certain esthetic. Now, from this pointiew the Einsteinian theories seem
unrivaled.

Where are these theories going? Without a doubi&rdsmhe use of identities that
are more and more arduous to extract from the theonypfmite groups, of almost
inextricable Pfaff systems, concepts that seem to beneditin the thoughts of Cartan
[33], of De Donder, of Weyl,...; do not forget Einstein hinisd\ext to these identities,
those of Bianchi seem quite small indeed. Howeverpashe truly universal identity
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that expresses the phenomenological existence oftbuay that defines its essence, one
has the strange contradiction that it seems to befribts world.



CHAPTER |

LIE GROUPS AND CARTAN SPACES

1. Structural relations and generalizations.— One knows that the fundamental
structural relations of finite continuous groups are:

(1) ¢ +¢=0,
(2) CiGat GGt & G=0.

Here,a is a summation index, like all indices that appeardwica monomial. The
absolute differential calculus, which has made that cdirepopular, also leads us to
remark that the equalities (2) may be subjecteddongractionby takingi, j, or k equal
tos. Lets=Kk; the relation (2) will become:

(3) ¢, =0,

with two summation indicegy ands, this time.
Obviously, the relations (3) are not distinct from ()t they may be the point of
departure for very important special considerations.

If the constantsc?, in which all three of the indices i, j, s take on all of the intege

values from1 to r, satisfy the relationg1l) and (2) then one may always find r
infinitesimal transformations géuch that:

(4) KiX) =X X = XX = X

This is, in summation, Lie’s third theorem. Now,aetprogress shows that this third
and last theorem does not succeed from all points of,\oee may cause relations (1),
(2) to appear, and likewise functional generalizationghefrelations, in various forms,
without speaking of groups. One may show that thestamrtaborder quite closely to
the principles of analysis; for example, they aredamns of simplicity for certain
differential systems for certain spaces in which ometten recover thgroup spaces
which were already summarized in fascicle XXXIII oétiémorial on the basis of the
significance developments that were published by Elie 8&ja

As an example of the functional generalization ofredations (1) and (2), we shall
first develop Einstein’s new theory of gravity if] [in the style that was adopted in
fascicle XVI of theMémorial for the first kind of gravitational theory.

2. Fundamental identities. Consequences. We shall change nothing concerning
the choice of these identities. They are:
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(5) jcx dy= jjsdx dv, jjsx dY dz= jj ,dxdy dz

and all of the analogous relations that are obtainedrf@rbitrary number of variabl&s
Y, Z, ...; thetwo relations (5) suffice for the construction of a theoifygravity that
relates to ordinary spacetime. We know that, by a ssae of changes of variables and
linear combinations, the identities (5) become tBkes formulas[5], which
immediately reveal the form of the electromagnetimations of Maxwell, and what
makes Maxwell one of the greatest geniuses to have gnaceanity is precisely the fact
that he laid the foundations for a theory of elecagnetism that is, at the same time, a
theory of geometry.

Such results are codified in a more explicit fastbgrthe theory of Pfaff forms that
are provided with an exterior multiplication. The idees (5) are then replaced by:

(6) jcpdx' :jjs[decb&] , jjslvludx' dx = mv[dlvl". dx dx] .

The analogies in notation lead one to think the bas, in (5) and (6), identities that
are basically equivalent. Developing the bracke($) gives the symbolic determinants:

9 0
(7) ox' ox |,
PR
0 9 0
ox  ox X
(8) Mia) Mj(u Mk(u !
i ] Kk
and in the latter, one has:
Mij + Mji =0.

As for @ it is the substitution index, which has an imnag¢ely obvious role, and
which has been explained many times, moreoventi®iavith (7), and using derivatives
in D, which are more general than thos@,inve further set:

/D DJ| |90 o]

. . . - (re. re
(9) Dx Dx|=|ox ox |- b P] .
R R R R ita jTa
Upon writing:
(20) N =T -T1,

the last determinant of (9) is, if one ignoresdlgn that precedes it, equal to:
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(11) NP, .

Furthermore, no matter what the expression for (14¢ may subdivide (9) into
formulas such as:
(12) —l=_1l_rp

Likewise, with:
/D D| |0 9|

. = I L VI et
(13) Dx DX |=|ox ox |+ % 7|,
pop| [P p| PP
the last determinant is equal to:
(rp.-r P,

which does not disappear with the expressions (10), but tieederivatives:

j j
(14) DP 6P F’ pe
Dx 6x
with which:
i - DP,
(15) i( P = P.E p—L,
ox' Dx' DX

One may write an analogous formula wiP' replaced by,Q.
The formulas:

DP

(16) D’dx‘ dP -T“ PR dX=0,
i

(17) [[))—de dP' +T} P"dk=0,

define a generalizegarallel displacemenfor the vector whoseovariant components
are P; or whosecontravariantcomponents ar®. This affirmation may have a very

general sense in which the nature of the functibfjs does not play any role; one
recovers ordinary parallel displacement simply when ddillthese functions vanish
identically. Letting two infinitely small vectors 8 from the same point, the ode

having componentdy, the other one’ having components¥. If one desires thad,
when displaced parallel to itself alodggives the same point dswhen displaced along
o, then this translates into the equality:

¥+ +d &= +dxX + ddX,
or, from (17), into:
Flox7dX=T) dx"ox.
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Upon inverting the summation indicesnd a on the two sides, one concludes that
[lis equal tol’},, which amounts to the nullity of thA7 written in (10). However, if

the quadrilateral contour that we just defined with thecdid and o is not closed then
theA[ in (10) are no longer annulled; the spacetoasion We now place ourselves in
the general case.

The notion of torsion may likewise be revealed inrdaresting manner by means of
formula (9), without which, we would basically be dealinghwsomething distinct from
what we just spoke of.

One may conclude from (9):

D D
JIjox Dxdxax= [ Rax +[[_ RA; dkd.

i i

If theAj are identically null then one has a Stokesian foarmith thed’s replaced by

D’s, which rightfully permits us to speak of a Stokesianmiola that preserves its
ordinary physiognomy in spaces that are devoid of torsiomjever, in the spaces with
torsion, one must add a complementary term to thmautar inD.

One always knowso[ that the reasoning made by starting with (7) may be tegea
by starting with (8) and then following suit. The rute flerivation that is found in (12)
and (14) takes the general form:

D 0 -re ALY foreachy)”
18 — A = D AT P T
(18) DX 10 gy AHD{ +I“ ATEC for eacht)

One will remark that the index of derivatioms always placed below and in the last
place in thd coefficients.

With the aid of the derivation rule (18), one will epgicall the calculations that
were made ing] (pp. 25), and one finds, notably:

Db D

DX DX |_ aa a
DA DA _Bl<jiAb+/\ij Aar
DX Dx

(19)

Db D

DXi DX] —_ Dk A0 a pk
DA* DA¢| By AN Ay
Dx  Dx

with the four-index Riemann symbol:
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a — a a a Bra Bra
(20) Bkji_axj K % 5l +r r _rkjrﬂi :
Of course:
DA «_ DA
A = Dx! '’ A Dx/
One likewise has:
D D
Dx’ Dx° | _ o
(21) DA&W DA)W - Bim'%v + BIpUT Azp +/\T0' '%VH
Dx’ Dx’
More simply, one may write
(22) Awo—Puov = By A+ Ngy Ay s
(21) A/IVUT_A/IVTU: BIZ)T A)v + BZT[ Aza +/\?¢7 '%va )

Now, start with the identity:

A&zva'r - A)Jvm (Aﬁzva - A)Jm/)r
+A&m‘rv - Azm/r = +(A&m‘r - Azm)v
+A§m/a - A)er/ +(A§1rv - A)Jvr)a'

Write the binomials on the right-hand side in fbem (21) and the contents of the
parentheses in the form (22). Next, differenttatese parentheses with respedDi@s is
indicated by the outer indices, upon observingrthe for the derivation of products, of
which (15) is a very particular case, but whichlisays preserved in its ordinary aspect.

After an initial simplification, one obtains:

vab +/\ A}z ,uva) A)7+/\ A}zm +/\a '%a
+Bg'rv A)za + /\a A}zaa - Ab + /\ A}zav + /\a ’%a
+BZ/U A)za +/\Zv A}zm ,urv) Ab +/\ A}ma +/\3m '%a'

In the second column of the left-hand side, subtii@e second column of the right-
hand side, taking into account the first equatio(ilb); i.e.:

A/lVa_A/faV = vaa'Aﬂ +/\gv A}zﬂ .
One obtains:

" [DHD]: This was the equation numbering used in the origina
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BIZ'IT Ab,u +/\?¢7( B;[jva A‘? +/\gv '%ﬂ) (BZVU)T Ab + A‘Vr '%a
+Bg'rv Aza +/\3r( B;[jaa AY +/\g¢7 '%ﬂ) = +(BZUT)V Ab + Am/ '%a
+BZ/0'A)IH +/\ZV(B;[1;m A‘? +/\gr '%ﬂ) +(BZTV)0' Ab + Am '%a'

With some inversions of the summation indices in lgfehand side, one has an
equality that must persist independently of #aeandA,, ; it finally subdivides into two
identities. The first one, which generalizes Ba@nchi identity is:

(23) (Biuo): +(Bir), +(B;

UV

)a + %y /\g'r + qaﬂ/\lr[jl’/ + rﬂ/\ﬂ = O

vo

The second one is:

NG+ N2 + N5 NG, = 0.

Upon adding them, from (10), one has:
(25) A +NS=0.

One has, in (24) and (25), an obvious extension of theafuadtal structural relations (2)
and (1), from the theory of finite, continuous groups.

Einstein’s theory gravity of the first kind rests e tconsideration of a space that is
curved but without torsion; the fundamental identityhef theory is the Bianchi identity
—i.e., (23) — which is reduced to its first three termsesill of the\'s with three indices
are null. The new theory of gravit][is that of a space that has torsion, but not
curvature; the four-index Riemai’s vanish identically and the identity (23) with them.
All that remains is (24) and (25).

The various theories of gravity and the theory of grolyps appear to be closely
linked at their foundations; they have exactly the saghe to exist.

As for the diversity of the theories of gravity, st analogous to the diversity of the
theories of mechanics. Henri Poincaré has made €isienfly habituated to admitting
the existence of an infinitude of mechanical images ifaareconceive of one of them; it
seems proper that this conception should triumph todaygeneral manner. Therefore,
in an admirable work that was published in 1929, R.-H. Fowl€rambridge University
[6] writes (pp. 4): “It is impossible to argue that the fidgtt a particular mechanism leads
to a state of complete equilibrium in agreement with expantal facts is any evidence
for the particular mechanism discussed. It is mereigemce that the laws of this
mechanism have been correctly and consistently wrdtamn! Any other mechanism
would give the same result.”

Of the theories of gravity, one may certainly say that are geometrical theories
that are susceptible to being much more varied that gdodhamical theories.
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We note, moreover, that Fowler writes further ia work cited (pp. 7): “Something
more than success and logical rigour appears to be necdssdhe acceptance of a
model which is to account to our aesthetic satisfaction

It is certainly in gravity that one encounters mosilgdlsat which agrees with our
aesthetic satisfaction. It will be difficult to findraathematical reasoning more elegant
than the one that led from the identities (5) to idex#ti(23) and (24).

It seems very interesting to us to recall this reasofmomy the Stokesian viewpoint;
moreover, it seems that studies such as the one Hugl&a must always be carried out
only while in very explicit connection with the printag of analysis.

As for the authors that have already given formy28 and (24), while deriving
them in ways that differed slightly from the precedmge, or likewise more general
ways, we cite, in particular: E. Cartaf [pp. 382), H. Eyraudqg] (pp. 21), R. Lagrange
[9] (pp. 22).

The work of H. Eyraud, which was published in 1926, is actulillgninated very
advantageously by the new theory of Einstein. In 1928 (pp. 161), we wrote: “A
recent thesis of H. Eyraud plainly introduced torsido electromagnetism, but we lack
the necessary hindsight to appreciate the true value oéttesnpt. Hindsight has been
favorable to H. Eyraud in that his theory and that afskin are very dissimilar;
however, in both cases, one makes recourse to spabe®kgion.

As we have already reproduced Ii] (pp. 7), E. Cartan?] (pp. 367) defined the
components of torsion and curvature by the formulas:

(26) Q' =[7]' -7 7] =N, [T 7],
(27) Q.=[m] -[ 7] =B, [7"7].
If one sets:
=—d¥,  A=Td¢,

upon observing that the accents in (26) and (27) indicatei@xtgrivations, then one
painlessly obtains:

(28) A
which is nothing but (10), and:

i 0 0 i i
(29) Bkmlza?rkl _arkm+r[;lrﬂm_rinrﬂl’

which coincides with (20). Recall that (29) is skew-syntimen |, m, as (28) is ina, B.
More exactly, if, in the left-hand side of (29), onedrtg| andm in the first and third
term then one obtains, up to sign, the second and fondt. This remark will be used
shortly.

3. Bifurcations andn-podes — The principal object of the preceding paragraph was
that of obtaining formulas (23) and (24). It is of greattoseot separate them in order to
judge, from a sufficient altitude, the various aspecigravity; we repeat, moreover, that
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they only form a sort of kernel in the set of formutdshe same type, with more and
more indices of derivation, sets whose process ofidtion has been indicated by Cartan
[7] (pp. 382).

However, having said this, it is convenient to speciét ih the present fascicle we
shall no longer be occupied with formula (24), to which;adrse, (25) will be always be
associated. It is likewise very simple to reconst(@d) in isolation. Start with (29) and
form:

(30) Bli<m| + Bimlk + 3km'
One immediately finds that this trinomial may be tent
0

0 0

(31) W/\im +W/\ilm +a/\imk M N T A AT N
If one introduces the derivatives:
[ 0 i a Al B Al B A
/\klm_aW/\kl _rkm/\m - r|m/\ka + ran‘(\ K

then the expression (31) becomes:

(32) Ay +N

kim Imk-i_/\imkl-i_/\g[d/\i n -i_/\/jlyn(\I k +/\ﬂm i a?
and the equality of (30) with (32) is nothing but (24).

One may now say that the consideration of the mmiab (30) leads to some very
interesting bifurcations. There are at least threatgtieeories that give rise to the
vanishing of that trinomial, according to the manner inclliti vanishes.

In the first placethe trinomial (30) is null when all of th&’s are null. This is the
case for spaces that are curved, but without torsionfoaritieories of gravity of the first
type.

In the second placéehe trinomial (30) is null when tHes, and consequently thEs,
are certain constant, notably when one has:

(33) =c =-¢ N = 2¢;.

ji !
The expressions (31) are then null if, moreover:

(34) it &y Gt 662 0.
In (33) and in (34), one obviously recognizes the relatid) and (2)- i.e., the

fundamental structural relations of the theory of fini@ntinuous groups.
TheB's in (30) are not individually null; they are constasigh that:

(34) Bini = G4 Com = GenGs1 = G-
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In the space thus constituted there exists a displat¢dipgrarallelism that is defined
by equations (17), which is:
(35) dP’' + ¢, P dk=0.

If this displacement is valid along the curve with diféerential equations:
dX +A'dt=0
the A' being arbitrary functions df then equations (35) become:
(36) dP' +¢ A P di= 0.

As we have already shown in fascicle XXXIII of tM&morial, and since we shall
recall it shortly with the new developments, thgar system may be considered as the
fundamental differential system of the theory of groujtsis one of the aspects of the
problem of thdinearizationof this theory. We first considered a space in whiemhave
associated a certain notion of parallelism; a theeay emerge and unfold from this just
as Euclidian geometry unfolds from the fact that onerassiEuclid’s postulate.

In the third placethe trinomial (30) is null when the thr&s that comprise it are
individually null. It was in order to realize such allity that Einstein’s new theory
introduced the ingenious notion ofpodes, which are tetrapodédidrbeinen in four-
dimensional space].

Anr-pode is composed of functions:

'y  tthy .. |
. %h, ... n, |
bk

which define a determinahtwhose minors areormed i.e., when deprived of their sign
and divided byh, they form, in due course, the table:

1S o U |
ht h® L
T
One will obviously have:
(37) sh/‘ *hy = 5.? ) /‘hs i :53 )

with & null, in general, but equal to 1f= v.
One sets, by definition, upon deriving (37):

i i a s s
(38) r|<|:sh ol hk:_ hk

™ h'.

9
ox' °
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One has, in turn:
0 .0 0
_rl = hl S +
ax™ M axax” h X"
I J:_Shi h‘mh"itq
om’ Kkl (7 aXm S aXI ’
a i i o i a s
erl +ramrkl_ sh ax|axm hk'

s as
hKGa_)é h<!

(39)
The terms that seem to have been omitted in thelnght side of (39) contain the factor:
0 0
40 s _s ha v t ,
(40) o7 Mt ot
Thereforefrom (29) and (39)if I}, is defined by38)then one has:

(41) B, = 0.

Before going further, one may make two interesting remark
One sees that (39) gives (41) by virtue of the permutalmfi the ordinary partial
derivatives; i.e., the indicdsandm that appear in the right-hand side of (39). Now, H.

Weyl, in the case of spaces without torsion, establishednullity of the /\‘gﬂ by also

appealing to such a permutability].

One further sees that if the three methods that wemployed here to annul the
trinomial (30) are ingenious then they are no lessqaati; the search for more general
spaces in which this trinomial is annulled will be, with@ doubt, an important subject
of study.

Along this order of ideas, we point out a work of G. filait [34]. It contains
remarkably symmetric formulas that are comparable th (31

Let us continue.The covariant derivativeg12) and (14)pof the®h, and thesh” are
identically null. The verification of this assertion is immediated aamounts to
confirming the nullity of expressions like (40). If ongsse

(42) g =y, g“=n

then the covariant derivatives of these new expresswill again be identically null.
The determinang of theg,,, is the square of the determindnt

Theg with two indices have the well-known role relatimgthe raising and lowering
of indices; one will observe, moreover, that Einsteften underlined an index before
raising or lowering it. Therefore:

A=N=g¥A, AN=A=guA.

Observe, furthermore, that:
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oh _ oh a(h)_
ax’ a(h) ox

-~ a(h .
h(; h‘)(—g’): hr', .
00X

Being given the derivative, conforming to (18):

DT - aT + e + rZTT..H ,
Dx* oxt -

this permits one to contract aand 7, multiply by h, and, upon setting@ for hT, to write:

Dx?  ox?

+...+/\Z;]i--”_

This is what Einstein abbreviated to:
(43) hTo=T g + N T
One sees that the definition of the symbol:
(44) Ty

is quite simple; it is by means of it that the gtaional equations condense in an
extremely remarkable manné]

4. Some gravitational developments- It does not enter into the plan of this fascicle
to go into the physical consequences. We woulsl tlikreturn to the spaces with torsion
whose principles, at the present moment, are ofrténose of group spaces and the
preceding gravitational space. Now that we know kitose spaces come about and how
we arrive at the fundamental symbol (44) thattiackted to them we will be brief in what
follows.

The theory of gravity of the first type rests ugonontraction of the Bianchi identity.
Now we shall contract the identity (24) while, afurse, making an abstraction of the
first trinomial or, if you prefer, the equality a@ed by annulling (32). This contraction
gives, if one uses, as in (43), the semi-colomdacate the covariant derivative:

(45) /\Zm +¢|;k _¢k;| _¢a/\il =0, ¢0/ = /\Igﬂ :
Set:
(46) VkIa: h(/\ﬁ +¢|da _¢k5Ia)'

Consider the equality of the type (43):
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h(/\ﬁ’m +¢k;| _¢k;|) = Vkﬁa + h(/\ﬂ +¢|d<a _¢ka—la)¢a'

The last two terms of the latter parentheses aneirelied under summation overand
the contracted equation (45) is finally written:

(47) Y, = 0.

This is the analogue of equati(3) in the theory of groups.
The identity:

Ajk = A= = (AAD,

is easy to prove if one makes recourse to the definfd8hand takes (41) into account.
Proofs of this type are, moreover, currently populah@dbsolute differential calculus;
on this subject, one may further consult the expo$& adhgrange9] (pp. 21). Thus:

Vkﬂlla _kam = _(]}ki/\lg )|a’

and, from (47), this may be written:

(48) M —UiNG) = 0.

kr! Nor
In the first approximation, Einstein sets:
Vire =Wy =0,
which, from (47), is indeed null, and then writes:
Yy =0

for the law of gravitatiomn the first approximation
He then considers the expression:

(49) ]7kla = Vkla - 8h(¢| dg - ¢k5Ia) '

which differs from\)] as slightly as one pleases, and remarks that upon applyng

operation | to it and annulling, one recovers the Maxwell equatiatsch then play the
role of electromagnetic equatioimsthe first approximation.

We agree to add that one passes to the complete fl2dmy replacing thé’ in (48)

with the overlined’ in (49).

One sees that all of the theory unfolds from the eyu@lv) and the definition (49).
We repeat that a more developed form of the sametihes recently been given by
Einstein himself32], [46].
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Moreover, we have no need to go further into thegees of the theory in order to
make the most important observations. First, as weady said in the preceding
paragraph, it is increasingly obvious that such theorediaitless in number; they may
obviously be as varied as the conceptions of spack. it€gne of the next forms of
gravity will undoubtedly involve a space in which curvature tmdion both play a role,
as in group spaces.

Consequently, all of these theories with a geomstriccture must always recover the
Maxwell equations, in one form or another, as the els@gnetic equations the first
approximation it is natural, because these equations were introcatcé beginning of
our argument, here, with the symbolic determinants {8 tondense its form. The
second formula (6) is the Maxwellian formydar excellence

One may openly affirm that in the present state otr®8®, a physics of non-
Maxwellian electromagnetism, at the ordinary level andhe first approximation, is
nevertheless a construction that is as improbableaafla theory of physics that does
not rest upon simple geometry, in the first approximatsugh as Euclidian geometry,
Cayleyian geometry, or the geometry of Riemann spaces.

In support of this way of looking at things, which, moreovhardly needs to be
defended at the present time, we cite a remarkable érkd. Murnaghan13].

5. The Ricci coefficients— The recent theory of Einstein, whose premises we just
presented, was published in January, 1929. Two months Imethe same
Sitzungsberichtef the Berlin Academyd], Tullio Levi-Civita published a work of the
same nature, which was promptly translated into Enghshhad the same conclusions as
those of Einstein, but while making use of only Riemannespdt should come as no
surprise that if such a duality is possible then it preweply that Cartan spaces, which
are curved and torsed, may be put into correspondencepaities without torsion. The
correspondence may likewise come about in an infinitudeags.

We shall stop short of completely analyzing the expddéevi-Civita, but we shall
content ourselves with showing that the theory @icRcoefficients, which then come
into play, easily assures the preceding relationship efisa® other relationships with the
theory of groups. We shall borrow from Levi-Civita motly the results presented in his
Berlin note, but also in hi€alcolo differenziale assolutfl4]. This latter work was
likewise translated into English and German.

Let there be an-uple of orthogonal congruences. Through each pdoftthe space
Vi, there pass lines that are pairwise orthogonal and denumeratedwsr lmdices in the
table:

All /]12 Al”,
ALAZ A
A A7 A

In a given row of this table one has the directiorapaaters for the same row in the
uple. Now, let there be a tablermbments:
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)llll A 12 A "
/]2|1 /12|2 A X
A, A A

n|1 n|2 njn*

The correspondence between the two tables is such that:
(50) Ah|iAli< = 5#’ /]hu/]hj = 5ij .

One sees that the vertical bar between the lowdices does not have the same
significance as it did in (44). If one sets:

Oik = Anp Ank, g“= A
then one easily obtains: )
g=0xd =4,
o’ A=A G4 = Ay

This permits the construction of Riemannian metrioafbich:
d52 = Oik d)g d)é(.

It seems to be entirely unnecessary to show that théhables above relating to awr
uple of congruences one may derive everything that oneedefav Einstein’ar-podes.
Meanwhile, we pursue the reproduction of certain formthas ultimately entail some
interesting comparisons.

For then-hedron attached tB, consider, in particular, the directioAs and Ay ; they
are orthogonal and give, from (50):

(51) cosh A, = AN =oF.

Imagine thatly, is transported t®', which is infinitely close td®, by the simple device of
varying the coordinates; fok,, one will then havéocal transport, with the symba¥.
On the other handl will be transported t& by parallelism with the symbob .
What, then, is the variatiodof the expression (51)? One will have:

Pricds= JcosA A, = ADA + A0 A,
and, from (17):

i a/]hu I j— i j
(52) P ds= A, ox ~Ay |0X = Ady; 0%

i
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Now, take the particularly remarkable case i_n which fhection & coincides with
that of an edge of the-hedron; for example, tak&' = A'ds. One will have, according
to Ricci, thecoefficients of rotatiof then-hedron:

(53) Yo = Ay AAL.

Observe that in (52) the’'s with three indices are the Christoffel bracket bgig,
which do not change when one invartnd,.

In the cas@ = 3, Ricci’s theory painlessly gives back that of thevimg trihedron to
which is easily attached, as we have shown in fasixl¥lll of the Mémorial in the
theory of parametric groups and the Maurer-Cartan equatidhss again leads us to
recall that the theory of the trihedron, thankshe ¢fforts of the brothers Frangois and
Eugéne and Cosserat, is also becoming a powerful insttumtre synthesis of physical
theories.

It is along the same order of ideas that we may uinée¢heory of gravity in Riemann
space with the theory of gravity in Cartan space. Alaleve only have an admirable
instrument for synthesis, but one must know how totosa sufficient altitude that the
view seems logically harmonious; to insist upon critigjzthe details seems to be only a
testament to one’s incomprehension.

Return to the expressions (53). If one has:

W=UV, V=gV
then one likewise has, by covariant derivation:
(54) W =Uy V+Ui d“Vy=U V +U' V.
Apply this formula to (50); it becomes:
Ay + A = 0.
If one multiplies by’ then one has:

(55) ki + Yt = 0

Furthermore, note the non-permutability of the derivegtithat were made &tin the
directions of the different edges of thdiedron. One has:

oF of d¥  of . .. . .
Of Ot dX _ O i st g A = A
ds. ox ds  ox n e d A=

By covariant derivation, and from (54):
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0 of i
ﬁg— f'A + fiA -
However:
i af n i — nxi— ¢
A —=f /]hln/] fho,=f.
0s,

Substituting thi§' in the preceding equations, when multipliedipy one gets:

o of of ...
EEZ Vh|k£+/]h/]|i fij’
and finally:
0 of 0 of
(56) — ———(%Ik—Mdh)—
0s,0s, 0s0% 05

Finally, we point out the formula:

Y 9
(57) Aivp = Aijpy = 67)Ii'” _a—x,)'up’

which is the analogue of (9) when the expression (1@)lls Since (57) gives:

_ v 0 0
W — Mk = AL (67)'”./ _G_X’)I”pj’

the difference:
Aivpo — Aivop

transforms like (19) and then exhibits the four-in@xof Riemann. One may then set:

d dy.
Yok = yuh_ lek+Mj| (th—ykh)‘F}ﬁijh_J'ﬁh Hik
ds, ds
and confirm that:
Yink == Wikh » Yihk == Mikh Yink = ki »

Yink + Wk + Mejk = 0,

the latter relations being comparable to the oneswbet given for thd®'s of the second
type.

Briefly, Ricci’'s theory, in its fundamental formulasecalls, at the same time, the
theory of groups and that of Riemann spaces. Howdwertheory of groups, as Cartan
[4] and Schoutenlp] have shown, may be a theory of manifolds with torsmne may
thus have, in the theory of Ricci coefficients, etleing that one has in that of Riemann
spaces, generalized by the appearance of torsion.
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6. On certain linear and homogeneous differential systems.We would now like
to focus on the theory of groups more specifically by yhgithe differential systems
(36). We have seen how these systems arise in grougsspath the notion of
parallelism. However, we have also shown, in thgirlmeng of our fascicle XXXIII of
the Mémorial how they arise from conditions of simplicity.

The system:

de
dt

+C6" =0 6k=1,2 ..r),

where theC; are arbitrary functions df is not generally manageable. We attempt to
diminish the generality by making thé coefficients C; depend only upon the

functionsA. For this, there is no method that is simpler andenmatuitive than the one
that consists of linearly setting:

Ce=cp Al

the three-indexc’'s being constants.The difficulty is diminished by linearizationOne
thus has the system:

de
dt

(58) +cA6"=0,

which is nothing but (36), up to notation.

We shall now see the essential fact that the Befarc certain new conditions of
simplicity that one might add to the system (58) obligébesthree-index’s to satisfy
the relations (1) and (2).

Let:

f(8', 6% ..., 0", 1)

be an integral of (58), i.e., an expression that remzonstant by virtue of this system.
One will have:

of | of de° _
ot 06° dt ’
and, from (58):
of coof of
——-cs Al =—+ VE(@=0.
at 06° ot &)

One sees that we introduce the operator:

of
06°°

(59) E(f) = - c6"

We study its properties, notably its permutability prapsrt One has:
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| 2
EE=c6 0 (qle'agtj :cjskq,‘é?"(ae 0 o9 j

06° 06° 96" 00°06"
(60) ﬁEFaE—Ea-mmsﬁéwgg.
Set:
(61) Cﬁk = |] k QS Q<S qts !
(62) VS G tG -

Equation (60) may then be written:
(BE)= G+ G ~ )G~V W0 5

It is now quite remarkable that this latter expressiecomes particularly simple if
the expressions (61) and (62) are always null. Oneumaker these conditions, from
(59):

(63) EE) =6

06

= iEs

It is obviously quite possible for us to study the sys(g&) when (61) and (62) are
non-null, but this nullity seems to be a simple anstance attached to the system, and
which one may exhibit without preliminaries. Nothing wilepent us from comparing
the results of this paragraph with those of the pregedmes in an interesting manner.
Therefore, upon confronting (60) and (63) with (34

(EJ ) = CJI Es BkljeS aet '

The contracted relation:
(3) C,C,= 0

assures us that the syst€d8) has the integral:

c.6°= const.
The verification is immediate. Along the same orderdeas, withr new constants,
and upon setting: _

g Adt= dU,

the system (58) may be written:

(64) Al AjS =0,
with:
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s d&°
(65) A\j: gjm+cjk6’k.
This gives:

A =0.

The determinant of thaé\jS is null.

We remark that one may make the system (58), widguations anad unknown
functions, correspond to the system (65)y‘0équations, which, on the other hand, has
constant coefficients.

If, between these® equations, one may eliminate thdunctions & then one will

obviously find relations between th¢ which are related to thd in (64). One might

have in them a means of seeing how the systems (5&}taohed to integrable systems
by quadratures. However, the elimination involved demaolh algebraic and
differential or integral considerations; we limit oukgs to pointing out how one might
investigate this subject.

7. Inhomogeneous systems: The filament of simple analogies leads one quite
naturally to add to (58) the new system:

sp _ s
(66) ﬂ-}-c_skAjgkp:%.
dt 04

0

This is only an assemblage ro$ystems (58) provided with a right-hand side, and as
for them, their choice is again truly as simple as iptessf one imagines that the
functions A" contain, besidets constantsi, that arer in number. Here, as for (58), we
commence by studying the system (66) without making any hygietba the constants

c; .
jk
Moreover, by the same argument as in fascicle XX&ilihe Mémorial (Chap. Ill, §

2) and upon setting:

(67)

(oo 067 967
FYRREY

r o

+c; 890",
it easily becomeslf):

2s 291s ) ) ko
(68) oA _ 94 =2VW+@AWW—QHJH
04,04, 0104, ot ’ Kot

-Amg' g Cont yr;jcnjl + ynjﬂCl'Sn) '

Again, this gives us every reason to believe that olihawe a particularly simple
theory of differential systems of the type (66), witspect to the constamg introduced
in the X, when the expressions (61) and (62) are null.

The preceding formula will likewise take a form thatasnparable to formula (56) in
the theory of Ricci coefficients. Neverthelessrehethe considerations of ordinary



GRAVITY, GROUPS, MECHANICS 22

analyticity make the left-hand side of (68) identicallyl ma such a way that with the
nullity of the expressions (61) and (62) equation (68) reciaces

LAV cc AV =0,
ot :

which reproduces the form of (58).

We have shownldc. cit) that the &°, which integrate the system (66) and are
annulled fort = 0O, likewise render the expressions (67) null. Frbenintegration of the
Maurer-Cartan system:

SO g
267 36" _ gy
0A 04 ’

r o

This latter system might no longer exist if the expimss (61) and (62) are not
always null; the verification is easyL]] (pp. 15-16). However, the analysis of the
present paragraph explains the fact in a much more profmamter by starting with a

differential system (66) that is meaningful no matteatthe constant coefficients, .

In a general manner we arrive at a question of aisallgat is as important as it is
difficult, that of examining the differential systemsnstructed with constants and which
have properties that are extremely different accgrthnwhether or not certain relations
of an arithmetic nature exist between these constadie knows only very little about
that subject, moreover.



CHAPTER Il

MECHANICS AND NON-COMMUTATIVITY

1. Preliminaries.— We return to the fundamental identities, and notabiyé¢ofirst
equality (5) of the preceding chapter. Such an identikgstaarious forms, by virtue of
the fact that:

(1) d(XY) =X dY+Y dX
Now, (1) may be written:
4 xv-x9v=y,
dXx dX

which proves the existence of symbqglandp such that:
ih

(2) ap — pg= 2—' -
T

The Planck factor having simply been introdugedindq may be treated as constant
coefficients. The secret principle of the new mechaisian (2), which was exhibited by
H. Weyl [17].

Determinants constitute an essential instrument Ff& transformation of our
fundamental identities. This is why most of the forrautd the absolute differential
calculus preserve the symmetry of the determinant. iGenagions of the same nature
may come about in the context of (2).

Let there be two determinants of the same order:

X = |anil, y = | b |.
One has:
Xy = | anm Bm [, Xy = | bm anm [, Xy = yX

The multiplication of determinants is commutative.
Now let there benatrices[18]:

(3) X = (an), y = (b)),
with which one has:

Xy = (@nm bmy), YX = (Bjm ami) = (bhm ami.
Here, there is no general reasonyiwto be equal ty. It is quite imperative that we
try to verify (2) with the matrices (3).

2. Non-commutativity and Poisson brackets— With the action variablesand the
angle variablest of the classical theory, the coordinates are ofdha [19]:
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X= Z x(a,,- ay; \]1’, . ‘Js) @y +ay ) ,

the summations being taken overiaiegersa; . This may be written, to abbreviate:
(4) x = x(a, J) 7",
In the quantum theory is a set of terms:
x(n, n— q) ™nn-at
such that one has (correspondence principle), for farge
x(n,n—a) - x(a, J).

Now, suppose one has a matty yx, one of whose elements is:

X(nk)  y(nk 2i 7w (nm)t
2wk kaje |

For large values ah andn, Dirac wrote this in a form equivalent to:

2, 2

a+f=n-m

x(n, n—-a) y(nn-p5)
x(n=B,n—-F-a) Y nma,na-p)

2imv (n,n-a-pB)t

For very largen, with A due ton, - n, + 7;:
A o
—xX(n,n—-a) - » 1,—X(a,J).
" ( ) - Y. 53, (a,J)

Under these conditions, if, in the determinanttiod preceding expression, one
subtracts the first row from the second one thenekpression becomes:

axa,d) B YB I

PPN 5 imla+(an]
) x(a,J) 53 Y5, J)

r
Now letw; = vt + &, with & a constant phase. One easily obtains:

2 1y(B,9) €7] = 2in (3 9) E7
ow,

The preceding triple sum then takes a form such titra matrix corresponds to the
expression:
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% 8y
in ow.  ow ih
3) Xy—yX=— = —1IXxy.
(5) y-yx=— o oy 27T[>/]
oJ.  dJ

Thereforethe Poisson brackets, which are classically formed from the cooedinat
(4), correspond, in quantum theory, to a calculus of matrices with non-commutative
multiplication.

We construct the partial derivatives with tideand write brackets rather than
parenthesesn order to be in agreement with the notations afBstle [19].

The preceding considerations are due to Dirac and Heigentheey have been
generalized in40] with some extensions of the Poisson brackets.

3. Fundamental double theorem= The canonical equations of Hamilton and Jacobi
play an essential role in the new mechanics. Likeoflhe essential foundations of
physical theories, we attach them to an identity (Af this follows from a double
theorem, both sides of which have been studied overyalosgg time interval 21], [22],
[11].

a. Suppose one has the Green formula:

0D, : 0P, ,
6 addo = |—-dr, dvd =—=— i=1,2,..n
(6) [awdo = | o > ( )
and the identity:
) jw_l X,dX, - dX = [ dX dX,--- dX,.

One passes froif®) to (7) by the transformation:

Xi = Xi(X, X2, vy Xn)

P9 _ 0, with f=Xo, Xs, ..., X

X(f) =
® div® 0x

and if:
X(U]_) =1, with U, = |Og X1 .

b. This permits the construction of the Jacobitipligr:

5 20U X5, X,)

0(X, %o, %,)
with which:
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of of o,

0% 0% 0%,
1 F
Y(f) "5 E

D
Fn
which gives:
(8) XIYO1 = YIXO)I.

The Fs are arbitrary functions of X..., X, but not Y.

On this subject, other than the references that wlesady pointed out, one may
consult two recent memoirs, the one by Pfeiff],[the other, by the authoB6)].

It is always the evaluation of an extend&(d by a very direct transformation, that
gives formulas of physical significance. As for germutability in (8), this may be the
germ of quite a lot of non-permutability.

One may attach several current theories to the equatio

(9) dive = % = 0.

X

Bateman 37] likewise sees in equation (9) the origin of all of thumdamental
equations of physics.
Therefore, with the variablgs, g; divided into two subsets, (9) may be written:

(10) LI
op, 0q

which implies, as naturally as possible:

P=——, Q=—, dH=Q dp-Pidg =0,
Y

if the motion takes place on the maniféld= const. One is then further led to set, always
as simply as possible:

dp dq
P =—,  =—,

dt Q dt

which implies the canonical equations:

(11) d_p:—a_H,d_q:a_H.
dt og, dt odp

One may imagine other things by starting with (9). Usgetting, for example:
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i :6_V’
0x
one will have a Laplace equationnrvariables, which will give to the mechanicsping
the aspect of an extension of the theory of the Newtopotential. Since this Laplace
equation itself may take on the aspect of a generalizatiothe wave equations, the
mechanics will take on a wavelike characte3ed later on, Chapter 111.)
In (10), we also have the famous Liouville theorem:

% + a_n =0,
op. 0q
which is fundamental to statistical mechanics.
If x is a function of thep andq then:

dx_ ox d0H o0xJdH _
—= ———-———=[xH].
dt dg op Jdpaq
Hence, from (5):
ﬂ)‘(=xH—Hx.
2ir

These are the Heisenberg equatidrg. [ Compare with17] (page 28).
Now take the Poisson-Jacobi identity:

(12) [£(Pm, Po)] + [P P, @] + [P, Pm)] = O,

by virtue of which pm, @] is an integral of (11) if the same is true iy and @, .
When one hadinearly:

[@m, &l = C, D,

one concludes, from this and (12) that:

(13) { G Con =0,
lencrz'n’s-i_ Cimélls-i_ Csr;ﬂdms: O

These are the fundamental structural relations etlieory of finite, continuous groups.

One sees that these relations (13) are linked to mecharstas they are to gravity.
Among the mechanical theories with canonical equatitn@smost important is truly

statistical mechanics6]. In the space ofN dimensions, the produdp, ..., do

measures a cellular extentwéight K dp, ..., dgy. If there areM systems present then

the cell has an extent:

(dpy, ...,dg)s ...(dpy, ..., dGs)wm -
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One may make each of the parentheses in this produeispond to arenergetic
factor:

K,e?™, ..., K, e
and imagine that the product of these factors is alsdf:a
Ei1+ ... +Ev = const.

Therefore, theohasespace is complicated; it extends by factorizatioroag las the
energiess; combineby addition That insight, as rudimentary as it is, demonstrdtes
fundamental role of the exponential in statistical Inagucs. In physics, the exponential
appears for a lot of other reasons, for example, iedoation:

dA=kAdt

which governs a host of simple phenome23d.[ It is essential for the representation of
periodic phenomena, but things might not go to nothing initiefinas with theordinary
exponential. Groups introduce infinitesimal transforordiX and corresponding finite
transformation€”; this is asymbolicexponential, with non-commutative multiplication.

4. The symbolic exponential— The first studies of any appreciable profundity on
the preceding symbolic differential seem to have lwaened out by J.-E. Campbell, who
dedicated two interesting memoi&], [25] to them in 1897. One is surprised when one
peruses them to find a language and set of preoccupationstridnagely resemble the
language and preoccupations that one encounters in thedewoked to microphysics in
our own time. Furthermore, Campbell played the distished role of having inspired
Henri Poincaré.

The celebrated memoirs of the latter on grol8 fnake immediate usage of the
preceding symbolic exponential. Henri Poincaré paichtireage to Campbell that is his
due; likewise, one must not forget that the symbolic egptial was employed by Lie
and his immediate disciples, but only as convenience.nc®a, whose fundamental
ideas we shall soon present, afforded it his inspiredt sifirgeneralization; we can
comprehend his work better by first summarizing the muctera@mentary analysis of
the first memoir of CampbelRf], a memoir whose notations we shall preserve as much
as possible.

J.-E. Campbell first considered two operatorgndy, which are associative and
distributive, butnot commutative As a consequence, one writes:

Y1 = YX=XYy,
Y2 = Y1X— XV,

Yr = Yr-1X —XYr-1 .
He likewise writes:
[WX]=yX +xy X+ %y X2+ .. +Xy
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and defines constanéssuch that:

a=i, a=t, a=0  a=--—
2’ 712 ' YT 720 TV

M+ 1)an=am1— @ an1+a am2+ ... +am1 ).

All of the @'s with odd indices are null, except far. One then has:

yX _ | yX yi X Y1 X
7_{(”1)!}6{ T }’””"1[ 21 }L‘”'

This formula is easily verified for = 1, 2, 3, ...; the general proof is made by
recurrence upon passing frantor + 1 with no difficulty. Moreover, let:

y =Y,
yx=3[yx + awy1,

X—Z— X2+ X4
y2!—y§ aiylz 3 ¥,

If one sets:
Z=ytayitay, + ...

then the addition of the preceding formulas gives:

ye=z+ [zl}+{zﬁ} +
2! 3!

If 1is a constant such that one may neglect its sqbare

X+ u2) =X +mz X1,

(14) (1 +my)eX:1+X+1;UZ+(X+2’LIIZ)2+ Y-

One may write, with the same approximation:
e & =™,

We shall see later on that Poincaré disdainecetf@snulas as approximations, and
that he sought, in a very ingenious manner, to fiod one might maintain them when
ceases to be a very small constant.

Now let:



GRAVITY, GROUPS, MECHANICS 30

= i ' = 'i
x-fi(x)axi, X é(x)ax{'

To abbreviateéi(x) signifies&(xa, Xz, ..., Xn); analogous remarks apply to tkie
Likewise:

0 0 0
Y =n (X)—, Y =n.(X)—=Y'(X)— .
ni( )6>g 7( )a>q ( )a>q
We also have:

f(x) =f(x) + — X(f) + —x2(f) + .. =%

f(x) =f(x) + —X(f’) +— X’Z(f’) +..=e%,

Hence:
Xi = e_tX’()O,
(15) Y(x) = Y'e ) = eXyg ),

Having said this, the principal point of the finstemoir of Campbell consists of
establishing that one also has:

(16) Y(x)=¢€e"",

the exponential being developed as in the preceulngonetheless observing that tife
power ofY: will be Y, , and that one will have:

Y, = YX- XY
Y, =Y, X- XY,

(17) 2 1 Y
Yo=Y X= XY,

One must therefore establish that under theseittmmglthe right-hand sides of (15)
and (16) are equal.

For this, it will suffice that in these expressiathe coefficients of are equal. One
must then prove that:

_XY XY X XY X
DIl (-2 2

(—1)r

This is true for = 1. Rewrite the equality after replacingvithr — 1 in it, and then
multiplying by X, once on the right, and then on the left. One has

1y Y X XWX XPYXR XY R
r-1! (-1)! (-2 1 @-3)!2
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LSXY, XY XY X XY X

(-2 = - -t e
r-1! (-1 -2!1 (-3)! 2!

hence, by subtraction:

Y, X XY X1YX X?y X
()"~ =- +r -r —+
(r=1! (r=2)! r-n! (-2) 2!

upon dividing by + one recovers the equality to be established aaudthits process of
recurrence is effectively established for any vabfethe integerr. Briefly: the
fundamental equality (16) is proved.

Now, more explicitly, let there heinfinitesimal transformationX; such that:

(18) Xi Xj—Xin:C”-SXS.

One must prove that they generate a group; hat itone has:

x=¢€, X=A X,

X =, Y= X
then one also has:

X' = &, Z=u X .

This is what Poincaré called t@ampbell problenin his first memoir.
One must prove that:

=&,

Campbell, likewise in his first memoir, was coritemshow this equality by assuming
that thew are sufficiently small that one may replace ithwit

L+ 4 X)X =¢.

The expressiorny, X/ = Y’ is then of the formp X , from formula (16), when one

develops the right-hand side, while taking into cact equalities (17) and (18).
Therefore, one must now prove that:

(L+m) e =¢,

if U andX are of the forng X; . Now, one may transform the left-hand side ugi)
and write:

eX+pU: eZ,
with:
J: U+aU +aUs + ...
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Since theU; are defined like thé&; of the table (17), one sees thatis also of the
form p X, which completes the proof.

This proof is certainly full of interest; it has andeniable esthetic. However, at the
end of it all it seems weak due to the necessity of supgpdbat ¢ and they are
sufficiently small for one to be able to neglectith@owers and products. Campbell
himself remedied this defect in his second memoir.

Henri Poincaré then brought the remedy to perfectierwe shall see in the following
paragraphs. His analysis, while often difficult, seeragsetheless more approachable
when one is habituated to the reasoning of Campbell, aad ishwhy we have
commenced with it. A fundamental notion for Poincaréhat ofregular polynomial A
symbolic polynomial formed from th¥; is calledregular when it contains nothing but
powers of expressions of the fo; .

Any polynomial may beegularizedby making use of the relations (18). This may be
done in only one way. We assume these two assertidnish Poincaré proved in full
rigor and not without some length. In (14), we havegalex series; the developments of
the Lie exponentials are given from others.

In order to return to the very considerable merit of aatijs argument, we note that
the coefficients; are easily expressed in terms of Bernoulli numbérs.

t —1_£+ _2_ E.}-
g-1 =~ 2 %m %m v

(2n)! az, = (1) Bot.

This leads us to the works of Schur that we citeaur fascicle XXXIIl. The
Bernoulli numbers do not play a fortuitous role the theory of groups; they quite
naturally accompany any exponential analysis, wédrathdinary or symbolic.

5. The symbol®(6). — Consider the infinitesimal transformation symbols, or, more
briefly, ther operatorsX , and one of their linear combinations:

T:tiX;.

Then letV be another elementary operator, which might orhinigpt be a linear
combination of the operato¥s HoweverV is assumed to be such that:

(VX) = VX =XV = ;X ,
hence:
(VT) =VT-TV= bij ti Xj = 6(T)
One may imagine some iterations such as:

a4mi = &, v GEM] = g,

Now, let:
D=3 g &
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be a polynomial or an ordered series in increasing poaveis
Henri Poincaré set:

d(G(T) =X gk ().

Consider theharacteristicequation:

bn_e b21 bl
as) s=| > 0 T
b, b, - b -6

It will convenient in the sequel to denote the elemehtseodeterminanB(8) by B;; .
Therefore B; = bj wheni andj differ, while:

Bii = bi — 6.
The algebraic minor d8; will be denoted by and the same minor, wheormed

byB". ThereforeBB’=P'.
If the equatiorB(8) = 0 hag distinct roots then there existombinations:

(20) Yi = Qi Xi
such that:
(21) VYk - YkV = a( Yk .

Here, it is obvious thdt is not a summation index in the right-hand side, sihatindex
is free in the left-hand side. Therefore:

T=tX=tY,.

Multiplying (21) byt, , one has:
aT) =6t.Y,,
&(T) = 4 &T) = GLY,,

and, in a completely general manner:
P(O(T) = PGILY, =hi Xi..

Here,k is indeed a summation index since it will disappear inlefiehand side of the
equation. From (20), one deduces, with the habitual notlatiarormed minors:

Xi:ajkYk, t,’(:dkti,
D(E(T) =P(8)t, ak X,
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(22) hi = ®(8) t &* ax .

This last formula is already quite remarkable; natyrklls a summation index here.
If k is contained only in the sum of products:

ajka,ik:a,ij :{1 |f|:J

0 ifi#j,
then we will obviously have a very simple and eleganilréisat the absolute differential
calculus uses at each step today. However, in thehgid side of (22), things present
themselves in a much more general manner; one must intrdduceefficiento(4,) into
the summation ovek, where thed, are the roots of an algebraic equation, and wBeise
an arbitrary function. Now, the treatment of thisechas been the basis for a true stroke
of genius on the part of Henri Poincaré. He first psepbto determine the produgf
ak without summation by provisionally taking:

1
06 =——,
0=+
with £ denoting an arbitrary constant. Then:
1
—(M)= hi i =H,
FpM=hX
(23) hi = ! tja""aik, (E-9H) =T.
O
This last equation may be written:
(24) éhi —byi he =t; .

In this system, one may solve for tie as functions of thés. One finds {):

ij
hi:—t-—P =-t,
' B(¢)

the P! and B! containing, of coursef in place ofd. Since theh thus obtained are
rational functions o€, they decompose into simple elements. One gets:

L, __®
: B’(ek)(g_ek) ,

(*) The solution of the system (24) leads one naturaiyrite the determinant in (19) as we did here. It
is the determinant in the Mémoire of Poincaré withrtives and columns exchanged.



GRAVITY, GROUPS, MECHANICS 35

if PV is whatP! becomes when one replacgwith 4. Comparing with (23), one has:

Ojk Ok = tJ ,Pkij
B'(6.)
and finally:
R’
(25) P(E)(T) = tCD(H)B(e) -

One may further write, with a Cauchy integral:

D(Y(T) =-—— j dEP(E) = — (5) X,

or better yet:

(26) O = [dED(O 1B X.

The contour of integration must naturally contalinof the roots4 in its interior, and
the function® must be holomorphic on this contour.

The result (26) is certainly more striking tharb)2it restores all of the habitual
simplicity that the summation indicesand| contribute. The formulas in which the
summation index is triple play only a transitoryeto Observe, as well, that formulas
(26), (25), and the preceding ones are given bpd2oé¢ without the@egativesign in the
right-hand side; this amounts to saying that thestitious author was not preoccupied
with the sign that one attributed to the mlnﬁ’PsexactIy that sign playing no essential
part in the sequel.

It will remain for us to recall the preceding reamg for the case where the
characteristic equation has multiple roots; ond Wuild several suggestions on that
subject in the Mémoire of Poincaré.

If Vis a linear combination with constant coefficieimts$heX; then let:

V=v X,
and if:
(X X) = ¢ X,
one has:
(27) AT) =vitg X =bit X, bx=cv.

6. Fundamental exponential combinations.— Among the most immediate
applications of the symbab(&)(T), one must point out the beautiful theorem of Baié
that is expressed simply by the union of the twaonfadas:

(28) e VetV =e?, =e ).
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The product of three exponentials is a successioran$fsrmations to be read from
left to right. The theorem is first established whiem tonstants, [ are assumed to be
very small, and such that one may neglect the tefrisrd order ina andp.

Under these conditions, the left-hand side of thé digsiation in (28) may be written:

(1-av +1a?Vv?)(1+ BT+1 5°T?) (1+aV+ia?V?)
where:
1+ +-aBVT-TV) =" 4D,

from which:
U=T-afT)=e4D,

Now suppose that one pushes the approximatioo tgrins ing anda™, inclusively.
The left-hand side of (28) must then become a syimpolynomial inVV andT that one
may makeregular in just one way, namely:

¢(a, p =2 AM.

One will have:

¢(0’ +da. ’3) —e (a+da)VvV eﬁT e(a+da)V — e—daV eﬁ]’ edaV

#a+da, B - d(a, P = daZ%l‘l .

The left-hand side of this last equality lineaclyntains theA that therefore satisfy
satisfy linear differential equations. MoreovédredeA must reduce to the coefficients of
e’ for a = 0; these conditions suffice to determine thehow, one may satisfy the
differential equations in question by taking, caniong to (28):

#a,p=¢", U=eT.

Indeed, this gives:
¢(a+ da, m — eﬂJ” U ’— e—(a+da)49(-|—)’

and one must verify that:

e—daVe&J edaV — eﬂJ’.
Now here, since one neglects the squadapbne may write, from (28):
M=V, U=e?U) =eeqT) =V
Therefore, the theorem (28) is indeed verifiedmoapproximation of ordesnein S8
and ordemin a.

Now, extend the approximation /i One will have:

#(a+da, B =V PP &V = g(a, Bd(a, dP),
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and, from (28), since one neglects the squadgof

#(a,dp =", U=eT.
Therefore:

#(a+da, B = é(a, p .
This is the differential system that is analogoush® one formed in the preceding

approximation.
It thus gives rise to the same reasoning. It is im@cevith (28), which one sees
again by writing:
#(a+da, B) = P9V = M Y = g, B) .

Briefly, the theorem (28) is now completely establisfar anya andfS.
It is obviously valid if:

Vv X, T=tX, (X X) = ¢ X, .
The same is true for the operatdrandX; , the latter being in number, if:
(29) VX) = b X, i %) =0,

because this case immediately reverts to the preceding one
Recall (28). Upon permutingandT, one has:

(30) e? eV el =™ W = e71(V).
The symboly is formed withT as the symbo#is withV. Therefore:

ny) = (), nv) = (V) == am.

If the second of relations (29) enter into play thea loas:

nX¥)=0, FMV)=0, 7(V)=0,
e?(V) =V—pn(V) =V + BAT).

Formula (30) thus becomes:
(31) Pl e f =gV apan,

This formula is not true if one abandons the secontiaelaf (29), but the latter may
again be considered as being satisfied for very sspadhd thus fofT that are likewise
very small and of first order, one may make ghelay the role of infinitely small in (31),

and nofT, sinceT appears only with the factgt
To the same degree of approximation, formula (31) mayriveen:
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eV FAN = e _ gT &+ ™ pT=e & e+ ™ &7,
or, by virtue of (28):

eV HA =z _e™ M+ e U=eqm),
and, always while neglecting the squargdof

ea’\/+aﬂ6(T)Eea’\/(1_w+ﬁ-|—)EeaVeaT—U).

If we set:
(32) adT)=W, T-U=Y
then it becomes:
_aad
(33) eV v ey 178 T

ald

Henri Poincaré posed a question here that wadesimbappearance, but which was
meanwhile necessary in order for one to comprehleadecessity of all of the detours
that were made in the preceding reasoning, atdigdtt. In the first of equations (32),
whereT representg X and wheraV representsy; X; , might one determine thidor any
w? It is necessary that one have:

agti=w,

which is obviously possible if only the determinafithe 5; is non-null. However, since
one has never reasoned that with Xpehis determinant will always be null, from the
second of relations (27), one infers the necessioppmmencing with the case whares
forced to be a linear combination of the; the case o¥ a linear combination of the
may then follow as a limiting case, the charactiersquation (19) having a null root in
this limiting case, a fact that is well-known antieh does not alter the generalities that
are associated with that equation, except to siyngflem slightly.

7. Generation of theX; by starting with the structure. — Therefore, let the
operatorsX; be linked by the relations:

(X X) = ¢ X,

in which thec; are the “structure constants,” which are linkedydamental structural
relations and are given in advance. Also letndke preceding:

T=tX, U=u X, V=V X, W=w X .
Let the series beegularized:

(34) #(a,f) =™ & = go+Ppo+ o+ ...
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One has:
#(a, f+dB) =e™ & ¥ = g(a, B) € = p(a, H(1 +dBT);
hence:
% = ¢T, M@Pm = P T.

These conditions, combined wifs = €”, determinap. Now make:

(35) #(a, B =¢€", #(a, B+dp) =™V,
it becomes:
VAW — W dBT

Now, from (33), one may satisfy this upon setting:

1-¢e”

(36) dBT= (dw),

if nis a symbol that is taV what & is to V. One thus has, in (36), a symbolic
representation of a system of differential equaticaguations that must be satisfied for
the coefficientsyv, . From (26), one may write:

1 1-e*¢

dﬁT:—ijdf 7 dw B’ X,

hence:
_ 1 1-e* i
(37) t dB= ijdf 7w e

Here, one has:
(W X) =W X, = bis Xs ;

the characteristic equation, after a change of ramg columns in the determinant, is
(19); i.e.,B(& = 0. As forB', it is thenormedminor, defined as above in equation (19).
Therefore B! is a rational fraction if whose denominatds(é) is of degree, while its
numerator is of degree — 1. The integrals must be carried out in then@laf the
complex variable along a contour that envelops all of the rootghef characteristic
equation.

It is now easy to conclude. If thg satisfy the differential equations (36), integdate
in such a manner that they give=v; — i.e., @ = ¢o for = 0 — then the two forms of
#(a, P), as written in (34) and (35), are equal (evenghis now arranged so that this is
true); finally, one has:

eV =
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The product of the finite transformatioe® ande” is indeed a transformation of the
same form, in which only the parameters are changed; dieéine agroup The
Campbell problem is then solved.

Nevertheless, the question, when treated as we gistioes not stop with that. We
have not reached the end of the first Mémoire of Ro@cwhile the illustrious scholar
dedicated three of them to the subject. For the mgnwe& content ourselves with
pointing out two very important transformations of equagi(37).

We have:

in — i _ |0 Ifk# ]
B'Bk =B’ bx—¢B {1 K= |,
hence:

bt 4=~ [dé(1-e) dy B

The use of the preceding relations for= j changes nothing in this result, since the
Cauchy integral is then augmented with another onaslidntically null.

Here is another outcome of (37), which is prodigiousigartant, this time.

Equation (36) may be written:

dW ()___ &dé
dp " 1- e” 2im? 1- efJ

t BYX,
the Cauchy integral providing a new approach to the fornd@n (Therefore:

dw _ édé
(38) dg 2|71J. efJ

Now observe that equation (37), when solved fodthegives a result of the form:

d
%Zﬁqi t,

hence:

of dw _ of of
i —=tX, X =Aj —.
ow dp =5 " ow % = o

Comparing this with (38), one has:

jfdf
2ir’! 1-e¢ aw'

j = -

This may be considered as a result of the grelmigsial and esthetic value. By starting
with the given structure, from the characteristiu@ion and the minors &’, one sees
that one may very simply construct a Cauchy integtase contour encloses all of the
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roots of the characteristic equation, but no the poiktg 2n integral that represents
infinitesimal transformations that are associatedhwthe structure considered.
Nevertheless, one must indeed observe something thaRbuhid not say immediately,
and which came to light only at the beginning of his sedd@doire.

We began our reasoning in paragraph 3 with the operétihrast one represents, first
of all, as each constructed from certain independemblasx, the w used in the last
place being onlgxternalparameters to th¥, so to speak. Now, it is not thesehat we
just constructed, buf that depend upon tivg which meanwhile indeed generate a group
having the given structure, but it igparametricgroup. Briefly, we have here, at last, a
fact that, with Elie Cartan, we originally presented fascicle XXXIII.

The most general construction of groups depend, aboverathe construction of
parametric groups; it is notably the latter that gensréditegroup spacesin the sense of
Cartan.

Another fundamental remark In our fascicle XXXIIl and at the end of paragraph 2
of the present chapter, we have recalled that ceatatimors, notably Schur and Pascal,
have attached the theory of finite and continuous groupkatoof Bernoulli numbers.
Now, the exponential theory that is due to Henri Pailcavhich is essentially
constructive, also makes this relationship evident.uffices, in our last formula giving
the operatok; , to propose to study the integral of the right-hand s developing:

¢

1-e°¢’

in increasing powers af. The Bernoulli numbers appear immediately as theficaafts
of such a development.

8. Terminal comparisons.— The comparisons, with which we are under material
obligation to terminate a chapter of limited extent, rhbaythe point of departure of new
and great developments. In Chapter | of the presentséxpee recalled that gravity,
even with the very recent improvements, is always &libate to its dependence upon
transformations of multiple integrals. We have beguset®, in Chapter Il, that the same
is true for the new mechanics. The theory of groupH) Ws exponential character,
emerges at the same time as the preceding disciplirlesviin the same principles.
Some of the works of Campbell and Poincaré do not feenorrespond to physical
reality, but the first research of Charles Hermmenmatrices gives the same impression.

From the bibliographic point of view, we cite the Mérasiof Th. De Donder2[/],
who united gravity and mechanics by many relationshipsd®st initial principles that
are much than the ones that formed the basis for eariéfs. The conclusion is also that
there is nothing to oppose a link between gravity and waeehanics 28]. The
following chapter will confirm that impression.

One of the first developments in the statistical Imaedics is comprised of the theory
of adiabatic invariants that was presented in the wérR.eH. Fowler (loc. cit.), but
reprised by T. Levi-Civitag9]. The eminent Italian geometer has made great ugeeof
methods of Lie concerning the transformation of candsigstems.
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All of these domains are in a state of active developnogiet may not encompass or
fix anything. If the work of Birtwhistle is translated anErench then the fundamental
work of Louis de Broglie is translated into Germ&0]] Another exposition arrived in
Leningrad that is particularly physical, very clear, vé&steinian, and is due to J.
Frenkel B1]. All of this is, without a doubt, only an initial &



CHAPTER IlI

GEOMETRY AND MECHANICS OF CHANNEL SPACES

1. Stokes formula for channel spaces: The formula thus enunciated is:

v o) PV
(1) [UdP+Vdg= Hfr(a_P_Ej > P, R|d.
Q Q Q

An elementary channel has a quadrilateral sectionitfateral facesp, Q, P + dP,
Q +dQ are constants.

Let there be a channel containitdg (in x,y, 2 anddS(atX, Y, 2. The finite barriers
o andS are intercepted by a sheaf of channels; theyiraehannel projection. Upon
calling A(P, Q), the parenthesis that appears in the double integral iori@)may write
for A dP dQ:

a By A(P,Q) Px Oy @, O(X,Y, 2 dS
AP,QIR P PBl&o=—"<_|PB R P D .
o(X,Y, Z 2 L D24+ D2

Q Q Q ( )QX Q Q JO2 + D2+ D2

The barrielS has the equatiof® = 0. Set:

b, d, P, [AX)Y, D),

1
) _~___IR R P[={5(®P.Q,
OVP*+ P *+P210, Q@ Q| |A,0,P,Q)ons

since, in order to determing(P, Q):

AP, Q) A1(0,P, Q) = 1.
It is the means to have:

a B vy q
[leds=[[|p B RI—2Z
s o 0, Qy Q A (0,P,Q)

The double integral in the right-hand side is $8&n and easily takes the form of the
left-hand side of (1).

Briefly, in a channel or a sheaf of channels,dbable integrals o® dSare invariant
under propagation. The general and fundamentalteouof the phenomenon is (2) with
the right-hand sidé;(®, P, Q). General propagating surfacgsnay correspond to that
partial differential equation i®. They depend upon arbitrary elements; for exajgple
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parametert that one will calltime. Therefore, along the channel one may have the
propagation of invariant elements (or depending upon timecertain manner), which
are the analogues ofassegconstants or variables). There are therefordainedations

of a very general mechanic8§ in the preceding geometrical considerations. This
mechanics will have equation (2) for its fundamental eqoatihich is analogous to the
Jacobi equation written for the motion of a point, fouch more plastic.

2. Comparisons with the Jacobi equation— These comparisons seem to come
about in various ways. For the moment,FetndQ be homogeneous of degree zero.
Then:

XPx + YR+ ZP, =0, XQ«+YQ +ZQ, = 0.

The equatior®p = 0 will take the fornf = 1, withf homogeneous of order one, which
is always possible. On the surfades 1, equation (2) may be written, by using Euler’'s
theorem:

(3) I:)x R( F>z =—— )

(6f jz (af jz (af jz_ XY Z
— |+ = |+ = | =F|——— |
oX oY 0Z f f f
This is thehomogenizedlacobi equation. On any surfate= 1, it takes on the
ordinary form:

of \* (of \* (of \°_
(4) (a_xj {a_vj {a_zj =F(X, Y, 2).

However, one will say, witf® andQ homogeneous of zero the channel will always
be rectilinear and, more exactly, conical with sutrin

Now, one mayvary them, from a general remark concerning (1). Thafflah
reduction is:

or rather:

UdP+V dQ=M dN,

which translates, in the right-hand side of (1§0in
v _ou
oP 0Q

Moreover, (3) may take the form:

P R

P, M, M, M,
Q Q Q

N, N, N

X y z
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£, f, f
5) ! LML M=t
2 2 2 Y z| ™~ f2°

O fZ+f2+f] N, N, N,

The right-hand side obviously reduces to 1 on a sufface However, in (5)M and
N are again homogeneous of order zero as functibRsamdQ. Observe then that (5)
does not change if, for example, one replddemndN, respectively, by:

M =M + of), N' =N + off).
Thus, channels appear anew that are not rectilieeal are very profoundly
indeterminate39].
It is essential to remark that in classical mea®swa() corresponds to the motioha
single point,and that here one associates (4) with channelespacwhich themulti-
pointlike motions are the general case.

3. Jacobi and Schrodinger symbols— Take these two types of symbols in the

respective forms:
2 2 2
SRR
0x oy 0z
(6) T(W) = AW + WQ.

Moreover, set:
u=5+S, Vv=§5-S.

Now, change the notations in the double integrdl) by setting:
AP.Q(RQ-RQ)= w+ uy+ F

(7) AP Q(RQ-RQ)= w+ uy+ G
AP, Q(RQ - FQ)= w+ uy+ H

This system (7), which is collectively elementasgems fundamental in regard to
putting the geometry of mechanics in channel spagesquantum form, wavelike or
corpuscular being the most commonly adopted for@se is forced to have:

Fx+Gy+H;=0,
which may be written) being the Laplacian in three variables:
AW+ UAV + U W+ Uy Wy + U, V, = 0,

or indeed:
(8) AW+ (5 +9)3(S-9) +IS) -IS) =0.
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This relation, which is the only one that is neces&ary7) to be meaningful, couples
the Jacobi symbal with the Schrédinger symbal [40] in anon-symboliananner.
This is, without a doubt, the most natural pretextherintroduction ok.

4. Quantization.— Recall the Schrddinger equation, with the notation&eyl [17],
namely:

©) 2“—A¢+ E-V)g=0.
m

TheW in (6) is replaced by. In (9),V represents the potential energy, & the
constant total energy.

Set: _
¢ =€" Yxy, 2.
One has:
» oy
—e"y, -—L=hwy,
Y ¢ " ¥,
and equation (9) iy becomes:
2
(10) Map-D%% _vu-o i E=hw
2m i ot

One sees that merely the fact that one introdticesinto the Schrédinger equation
in a periodic fashion entails the quantization érgy.

5. Wave equations— Now recall the Schrodinger equation, with the&tion (6):
AW +WQ = 0.

Upon seeking the solutions that are periodic wagpect to time, as usual:

wW=€"wx,y,2), hence, 662':/2\/ =-W,
one may write:
ve ot

With the notation employed in (9) fo¥ andE = hy, it becomes:

162\N_0 C= E

W-— —-=0, S —
C* ot? J2m(E-V)
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This value ofC is precisely the result that one obtains by compategeuation of
propagation of a wave front:

(aFJZ oF Y (asz_ 1 (GFJZ
i S B A (e R el
ox oy 0z C*\ ot

with the Jacobi equation:
FY (oFY (oFY
| 4| — | | == = E-V),
(axj [ayj (62} anE=Y)

for F when it is replaced by(x, y, z2) — Et.
One sees the simplicity with which the mechanicshainnel spaces is linked to the
fundamental formulas of wave theories, whether cotausec quantum.

6. Homogeneity and non-commutativity.— How does the preceding discussion
relate to non-commutativity? It is easy to see imgeaph 2 that the latter notion is
replaced by that of homogeneity because homogeneityitseone to create non-
commutative differential operators in various wayswedrst has Euler’s theorem:

of of = _of
X—+y—+ z—=mf
ox ~0dy 0z
which associates the operators:
0 0 0
ox oy 0z
and:
XY, Z

This association was pointed out by Weyl for probalslisttasons 17]. It
immediately gives combinations such as:

i(xf)—xi f=f,
0x 0X

a fact that was already pointed out at the beginnirigeopreceding chapter.

The theory of groups permits us to vary this. One nmady &is we saw once more in
paragraph 3 of Chapter Il, linear differential operatérand Z, such thatXZ = ZX
Furthermore, let:

Y=2Z+rX, hence, XY -=YX=X(r)X.
Euler’s theorem giveX(f) = kf, and, taking such thaX(r) = 1, one might have:

XY(F) — YX(F) = Kf.
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With n variabless;, andf homogeneous of ord&r one further has:

d

9 0 ifi#],
—(xf)-x— f=
6)9()q) X {

0x nf if i=],
because the index becomes a summation indax=far

Briefly, homogeneity is equivalent to non-commivig, from several points of
view.

This is why we find appeals to homogeneity in thspter, while other authors will
take recourse to notion of non-commutativity.

Moreover, the fundamental partial differential agon (2) for® is an integrable first
order equation if one considers a differential systthat is mixed, like all of these
systems, with the fundamental constructions ofthe®ry of groups. That theory and
mechanics again appear to be inseparable.

7. Probabilistic considerations— The double integral of (1) or, from (7):

obviously expresses a certain probability for aaierphenomenon to take place in the
sheaf of channels intercepted by the bargerlt is indicated that one let(u, v, w) dr
express the probability for an analogous phenomdnohe produced in the volume
elementdr. In a theory that agrees with (8), which invoh@dy solutionsv of the
Schrodinger equation, the same probability will $enply a(v) dr. Conditions of
simplicity might guide one in one’s choice @fv); we reduce that function t5, which

is always possible. However, the Schrodinger eguahat was invoked here is the time-
independent on& = 0, whereas, in general, one must consider theplie equation
(10) and likewise imaginary solutiong of it. One then has that the probabifgr is
replaced by:

(11) Ygdr,

the ¢ surmounted by an overbar denoting the imaginamyugate ofy.
The study of the expression (11) and its integsaés limiting case of the study of the
forms with conjugate indeterminates of Charles Herm

(12) AKX A = G

forms that correspond to unitary geometry, whoselipmary study plays a very
important role in current microphysics. The workswhich such considerations are
developed tend to become quite numerous; we cowmfineelves to once more citing
those of H. Weyl 17], as well as thé.econsof Elie Cartan 41], which lift the purely
geometric spirit.
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8. Probability fluids and waves.— The considerations of this chapter are essentially
in accord with the fundamental remark that Bateman nradegard to equation (9) of
the preceding chapter. In order to satisfy:

(13) Fx+ Gy +H;=0,
we now set42:

2F =uv, —vu =2\ (P, Q(F Q- PQ),
(14) 2G=uv, - vy, =2A(P Q(PQ- RQ),
2H =uv,-vu,=2A(P,Q(R Q- P Q).

Equation (13) takes the form:
(15) uXv-vxu=0,

while always denoting the Schrodinger symbol (6EbyNow, (15) may also be written:

0 0 0
(16) — () +— (o) +—(pv)=0
0x oy 0z
on setting:
a7 L=y, AV, u= IogX :
o(xvy,2 ~u

One has in (16) an equation of continuity relatv@ permanent fluid motion.
Suppose we have the complete Schrodinger equdtratd its conjugate:

LRI LRy
(18) 2mA¢1+i o V- = 0.
It gives:
N g g npy+ 2wy =0
2m ot '
le.:
O om+2 (o + 2 (o) + 22 -
(19) aX(p/l)+ ay(,O,U)+ az(pl/)+ T 0,
upon setting:
) hi a /a
20 = , A, =— logZ—.
(20) pP=yy MV 2m6(>gy,z)ogz//

This time, (19) refers to a general fluid motiordam dr is the probability (11), but
reconstructed by a more complete reasoning. leraw be in accord wit4p] the ¢
surmounted by an overbar is replaced/by

In (10) and (18) we have equations that relateprimbability waves which are
imaginary waves in general, and which does notredrtt the fact that the results (20)
are real.



GRAVITY, GROUPS, MECHANICS 50

The search for extensions of (16), (17), (19), and (20nés af the most current
guestions of wave mechanics. We cite the results of G{ut8, [44], and Darwin, with
comments by Néculcéd$).

Here, we also direct attention to the determinatiof,d?, Q by (14); the function®
andQ are then two distinct integrals of:

F29.629. 1%

0x oy oy

This determines ehannel spacé which the transversal barriers propagate like wave
fronts while transporting certain integrals. Thesentsp from one channel to a
contiguous channel, might not be consistent; they thenarpuscles.

We again remark that one may imagine that the functiorG, H in (13) depend
upon not onlyx, y, z, but also a functiof(x, y, z) and the partial derivatives dip to an
arbitrary order. One thus has an immense class of pdaiffatential equations of
arbitrary order irf, such that they all correspond to channel propagations.

9. Conclusions.— While nonetheless regretting the brevity of this fdeciwe still
believe that it has sketched out some essential p&fesfirst recalled that the principles
that form the theory of gravity lead to spatial consitiens of extreme generality in
which the theory of groups of transformations is includéshe does not have to ponder
too long on the latter situation to find the origin of &pis that are or are not
commutative; this is why we have developed the considasatiue to Henri Poincaré, as
well as further applying them to physical applications.

Finally, one can go only so far into the channel spasich are initially Euclidian,
without encountering non-Euclidian considerations thatespond to the forms (12); it
remains to pursue an extremely interesting geometry inddgadts invariances, its non-
commutative matrix multiplications, and respresentationd®y groups.

Luther Pfahler Eisenhart, of Princeton University, jgblished a very remarkable
book on the theory of continuous grougs][ From many points of view, that work
develops the present fascicle; it is the quite beauwifialysis that we first pondered that
must subsequently occupy theoretical physics.
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