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INTRODUCTION 
 

 In this fascicle, we once again emphasize the fundamental similarities and 
dissimilarities that exist between the theories of gravity, groups, and – of course, this 
latter point is touched upon only lightly – the new mechanics.  All of these topics that are 
of interest to science relate to multiple integral transformations. 
 We say “theories” of gravity.  Indeed, one might have an infinitude of them, since, 
from Henri Poincaré [1], one might have an infinitude of mechanical interpretations of 
the Universe that lead one to conceive of one. 
 We briefly review Einstein’s theory of gravity in 1929, from the translation of R. 
Ferrier, a translation that has the advantage of being augmented by preliminary notes by 
Th. De Donder [2]. 
 Since this fascicle was edited, Albert Einstein himself has published – in French – a 
more developed form of the new theory of gravity [32], [46]. 
 The very useful work thus presented by Ferrier reveals some difference of 
interpretation between the conceptions of that scholar and our own, which we do not 
hesitate to point out.  Ferrier writes: “The month of January, 1929 marks an important 
date in the history of relativity: the one when Einstein abandoned the theory of relativistic 
mechanics that he had maintained up till then without arriving at a coherent system, 
which was discussed in a memoir presented to the Berlin Academy of Sciences, and in 
which he constructed a new one that was based on very different principles.” 
 Now, for us, Einstein abandoned nothing whatsoever, and the new theory of gravity is 
not based on any principles that differ very much from the old ones. 
 The first theory of gravity rests on the Bianchi identity [from (23) of Chapter I, when 
the Λ’s are null]; the second one is based on the identity (24).  Now, these two identities 
are, as one says, conjugate, and are associated in the most intimate manner: They both 
emerge from the same analytic transformation.  Truly, they are not “very different.” 
 If one retains the idea of a difference then one may also remark that the first theory of 
gravity makes recourse to only Riemann space, therefore, a space without torsion; the 
second one makes recourse to a space with torsion, in the sense of Élie Cartan.  However, 
T. Levi-Civita has shown [3], in March, 1929, that a space with torsion may be 
represented on a space without torsion by means of the absolute differential calculus and 
the Ricci rotation coefficients.  Once again, the “very different” aspect disappears. 
 Ferrier also concluded with some pessimistic thoughts.  The problem of associating 
the electromagnetic and gravitational fields can hardly be considered as definitively 
solved.  Of course, we also believe this, but that will not affect anything.  We belong to a 
school of philosophy, which again has Henri Poincaré for its mentor, where one does not 
believe in the possibility of the existence of synthetic theories of a perfect and definitive 
character; for us, a theory becomes admissible when it presents a certain extension and, 
above all, a certain esthetic.  Now, from this point of view the Einsteinian theories seem 
unrivaled. 
 Where are these theories going?  Without a doubt, towards the use of identities that 
are more and more arduous to extract from the theory of infinite groups, of almost 
inextricable Pfaff systems, concepts that seem to be outlined in the thoughts of Cartan 
[33], of De Donder, of Weyl,…; do not forget Einstein himself.  Next to these identities, 
those of Bianchi seem quite small indeed.  However, as for the truly universal identity 
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that expresses the phenomenological existence of everything that defines its essence, one 
has the strange contradiction that it seems to be not of this world. 



 

CHAPTER I  
 

LIE GROUPS AND CARTAN SPACES 
 
 

 1.  Structural relations and generalizations. – One knows that the fundamental 
structural relations of finite continuous groups are: 
 
(1)      s s

ij jic c+ = 0, 

(2)     s s s
ij k jk i ki jc c c c c cα α α

α α α+ + = 0. 

 
 Here, α is a summation index, like all indices that appear twice in a monomial.  The 
absolute differential calculus, which has made that convention popular, also leads us to 
remark that the equalities (2) may be subjected to a contraction by taking i, j, or k equal 
to s.  Let s = k; the relation (2) will become: 
 
(3)      s

ij sc cα
α = 0, 

 
with two summation indices, α and s, this time. 
 Obviously, the relations (3) are not distinct from (2), but they may be the point of 
departure for very important special considerations. 
 If the constants s

ijc , in which all three of the indices i, j, s take on all of the integer 

values from 1 to r, satisfy the relations (1) and (2) then one may always find r 
infinitesimal transformations Xs such that: 
 
(4)     (Xi Xj) = Xi Xj − Xj Xi = s

ij sc X . 

 
 This is, in summation, Lie’s third theorem.  Now, recent progress shows that this third 
and last theorem does not succeed from all points of view; one may cause relations (1), 
(2) to appear, and likewise functional generalizations of the relations, in various forms, 
without speaking of groups.  One may show that these relations border quite closely to 
the principles of analysis; for example, they are conditions of simplicity for certain 
differential systems for certain spaces in which one will then recover the group spaces, 
which were already summarized in fascicle XXXIII of the Mémorial on the basis of the 
significance developments that were published by Élie Cartan [4]. 
 As an example of the functional generalization of the relations (1) and (2), we shall 
first develop Einstein’s new theory of gravity in [2] in the style that was adopted in 
fascicle XVI of the Mémorial for the first kind of gravitational theory. 
 
 
 2.  Fundamental identities.  Consequences. – We shall change nothing concerning 
the choice of these identities.  They are: 
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(5)   
C

X dY∫ = 
S
dX dY∫∫ ,  

S
X dY dZ∫∫ = 

V
dX dY dZ∫∫∫ , 

 
and all of the analogous relations that are obtained for an arbitrary number of variables X, 
Y, Z, …; the two relations (5) suffice for the construction of a theory of gravity that 
relates to ordinary spacetime.  We know that, by a succession of changes of variables and 
linear combinations, the identities (5) become the Stokes formulas [5], which 
immediately reveal the form of the electromagnetic equations of Maxwell, and what 
makes Maxwell one of the greatest geniuses to have graced humanity is precisely the fact 
that he laid the foundations for a theory of electromagnetism that is, at the same time, a 
theory of geometry. 
 Such results are codified in a more explicit fashion by the theory of Pfaff forms that 
are provided with an exterior multiplication.  The identities (5) are then replaced by: 
 

(6)   i

C
P dx∫ = [ ]iiS

dPdx∫∫ ,  i j
ijS

M dx dx∫∫ = [ ]i j
ijV

dM dx dx∫∫∫ . 

 
 The analogies in notation lead one to think that one has, in (5) and (6), identities that 
are basically equivalent.  Developing the brackets in (6) gives the symbolic determinants: 
 

(7)      i j

i j

x x
P P

∂ ∂
∂ ∂ , 

 

(8)      

i j k

i j k

x x x
M M M

i j k
ω ω ω

∂ ∂ ∂
∂ ∂ ∂

, 

and in the latter, one has: 
Mij + Mji = 0. 

 
 As for ω, it is the substitution index, which has an immediately obvious role, and 
which has been explained many times, moreover.  Starting with (7), and using derivatives 
in D, which are more general than those in ∂, we further set: 
 

(9)    i j

i j

D D

Dx Dx
P P

= i ji j

i j
i j

x x
P PP P

α α
ω ω

α α

∂ ∂
Γ Γ

−∂ ∂ . 

 
 Upon writing: 
(10)     ij

αΛ = ij ji
α αΓ − Γ , 

 
the last determinant of (9) is, if one ignores the sign that precedes it, equal to: 
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(11)      ji P
α

αΛ . 

 
 Furthermore, no matter what the expression for (11), one may subdivide (9) into 
formulas such as: 

(12)     j

i

DP

Dx
= j

ijj

P
P

x
α

α

∂
− Γ

∂
. 

 Likewise, with: 

(13)    i j

i j

D D

Dx Dx
P P

= i ji j
i j

i j

x x
P PP P

ω ω
α α
α α

∂ ∂
Γ Γ

+∂ ∂ , 

 
the last determinant is equal to: 

( )j i
i j Pα

α αΓ − Γ , 

 
which does not disappear with the expressions (10), but gives the derivatives: 
 

(14)     
j

i

DP

Dx
= 

j
j
ii

P
P

x
α

α
∂ + Γ
∂

, 

with which: 

(15)    ( )j
ji

P P
x

∂
∂

=
j

jj
j i i

DPDP
P P

Dx Dx
+ . 

 
 One may write an analogous formula with PjP

j replaced by PjQ
j. 

 The formulas: 

(16)    j i

i

DP
dx

Dx
= i

j jidP P dxα
α− Γ = 0, 

 

(17)    
j

i

i

DP
dx

Dx
= j j i

idP P dxα
α+ Γ = 0, 

 
define a generalized parallel displacement for the vector whose covariant components 
are Pj or whose contravariant components are Pj.  This affirmation may have a very 
general sense in which the nature of the functions ji

αΓ  does not play any role; one 

recovers ordinary parallel displacement simply when all of these functions vanish 
identically.  Letting two infinitely small vectors issue from the same point, the one d 
having components dxj, the other one δ having components δxj.  If one desires that δ, 
when displaced parallel to itself along d, gives the same point as d, when displaced along 
δ, then this translates into the equality: 
 

dxj + δxj + d δxj = δxj + dxj + δ dxj, 
or, from (17), into: 

j i
i x dxα

α δΓ = j i
i dx xα
α δΓ . 
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 Upon inverting the summation indices i and α on the two sides, one concludes that 
j
iαΓ is equal to j

iαΓ , which amounts to the nullity of the ij
αΛ written in (10).  However, if 

the quadrilateral contour that we just defined with the aid of d and δ is not closed then 
the ij

αΛ in (10) are no longer annulled; the space has torsion.  We now place ourselves in 

the general case. 
 The notion of torsion may likewise be revealed in an interesting manner by means of 
formula (9), without which, we would basically be dealing with something distinct from 
what we just spoke of. 
 One may conclude from (9): 
 

i ji j

S

i j

D D

dx dxDx Dx
P P

∫∫ = i i j
i ijC S

Pdx P dx dxα
α+ Λ∫ ∫∫ . 

 
 If the ij

αΛ are identically null then one has a Stokesian formula with the ∂’s replaced by 

D’s, which rightfully permits us to speak of a Stokesian formula that preserves its 
ordinary physiognomy in spaces that are devoid of torsion; however, in the spaces with 
torsion, one must add a complementary term to the formula in D. 
 One always knows [5] that the reasoning made by starting with (7) may be repeated 
by starting with (8) and then following suit.  The rule for derivation that is found in (12) 
and (14) takes the general form: 
 

(18)  
i

D
A

Dx
∗∗∗∗
∗∗∗∗∗  = 

 for each  

 for each 
i

i
i

A
A

x A

α
µ α µ
µ α µ
α

∗∗∗∗ ∗∗∗∗
∗∗∗∗ ∗∗ ∗∗ ∗∗ ∗∗
∗∗∗∗∗ ∗∗ ∗ ∗∗ ∗

∗∗∗∗∗ ∗∗∗∗∗

−Γ∂
∂ +Γ

. 

 
 One will remark that the index of derivation i is always placed below and in the last 
place in the Γ coefficients. 
 With the aid of the derivation rule (18), one will easily recall the calculations that 
were made in [5] (pp. 25), and one finds, notably: 
 

(19)    

,

,

i j

kji ij k
k k
i j

i j
k k
ij ijk k

i j

D D

Dx Dx B A A
DA DA

Dx Dx

D D

Dx Dx
B A A

DA DA

Dx Dx

α α
α α

α α
α α



 = + Λ






= + Λ



 

 
with the four-index Riemann symbol: 
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(20)    kjiBα = ki kj ki j kj ij ix x
α α β α β α

β β
∂ ∂Γ − Γ + Γ Γ − Γ Γ

∂ ∂
. 

 Of course: 

Akj = k
j

DA

Dx
, k

iA =
k

j

DA

Dx
. 

 One likewise has: 

(21)   

D D

Dx Dx
DA DA

Dx Dx

τ σ

µν µν
τ σ

= B A B A Aρ ρ α
µστ ρν νστ µρ τσ µνα+ + Λ . 

 
 More simply, one may write *: 
 
(22)    Aµνσ – Aµσν = B A Aα α

µστ α σν µα+ Λ , 

(21)   Aµνστ – Aµντσ = B A B A Aα α α
νρτ αν νστ µα τσ µνα+ + Λ , 

 
 Now, start with the identity: 
 

A A

A A

A A

µνστ µντσ

µστν µσντ

µτνσ µτσν

−
+ −
+ −

 = 

( )

( )

( ) .

A A

A A

A A

µνσ µσν τ

µστ µτσ ν

µτν µντ σ

−
+ −
+ −

 

 
 Write the binomials on the right-hand side in the form (21) and the contents of the 
parentheses in the form (22).  Next, differentiate these parentheses with respect to D, as is 
indicated by the outer indices, upon observing the rule for the derivation of products, of 
which (15) is a very particular case, but which is always preserved in its ordinary aspect. 
 After an initial simplification, one obtains: 
 

B A A

B A A

B A A

α α
νστ αµ τσ µνα
α α
στν µα ντ µσα
α α
τνσ µα σν µτα

+ Λ
+ + Λ
+ + Λ

 = 

( )

( )

( ) .

B A A A

B A A A

B A A A

α α α
µνσ τ α σν µατ σντ µα
α α α
µστ ν α τσ µαν τσν µα
α α α
µτν σ α ντ µασ ντσ µα

+ Λ + Λ
+ + Λ + Λ
+ + Λ + Λ

 

 
 In the second column of the left-hand side, subtract the second column of the right-
hand side, taking into account the first equation in (19); i.e.: 
 

Aµνα – Aµαν = B A Aβ β
µνα β αν µβ+ Λ . 

One obtains: 
 

                                                
 * [DHD]:  This was the equation numbering used in the original.  
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( )

( )

( )

B A B A A

B A B A A

B A B A A

α α β β
νστ αµ τσ µνα β αν µβ
α α β β
στν µα ντ µσα β ασ µβ
α α β β
τνσ µα σν µτα β ατ µβ

+ Λ + Λ
+ + Λ + Λ
+ + Λ + Λ

 = 

( )

( )

( ) .

B A A A

B A A A

B A A A

α
µνσ τ α σντ µα
α
µστ ν α τσν µα
α
µτν σ α ντσ µα

+
+ +
+ +

 

 
 With some inversions of the summation indices in the left-hand side, one has an 
equality that must persist independently of the Aα and Aµα ; it finally subdivides into two 
identities.  The first one, which generalizes the Bianchi identity, is: 
 
(23)  ( ) ( ) ( )B B B B B Bα α α α β α β α β

µνσ τ µστ ν µτν σ µνβ στ µσβ τν µτβ νσ+ + + Λ + Λ + Λ = 0. 

 
 The second one is: 
 
(24)  ( ) ( )B B Bα α α α α α

νστ στν τνσ νστ στν τνσ+ + + Λ + Λ + Λ  

      β α β α β α
νσ τβ στ νβ τν σβΛ Λ + Λ Λ + Λ Λ = 0. 

 
 Upon adding them, from (10), one has: 
 
(25)     ij ji

α αΛ + Λ = 0. 

 
One has, in (24) and (25), an obvious extension of the fundamental structural relations (2) 
and (1), from the theory of finite, continuous groups. 
 Einstein’s theory gravity of the first kind rests on the consideration of a space that is 
curved but without torsion; the fundamental identity of the theory is the Bianchi identity 
– i.e., (23) – which is reduced to its first three terms since all of the Λ's with three indices 
are null.  The new theory of gravity [2] is that of a space that has torsion, but not 
curvature; the four-index Riemann B’s vanish identically and the identity (23) with them.  
All that remains is (24) and (25). 
 The various theories of gravity and the theory of groups thus appear to be closely 
linked at their foundations; they have exactly the same right to exist. 
 As for the diversity of the theories of gravity, it is analogous to the diversity of the 
theories of mechanics.  Henri Poincaré has made us sufficiently habituated to admitting 
the existence of an infinitude of mechanical images if one can conceive of one of them; it 
seems proper that this conception should triumph today in a general manner.  Therefore, 
in an admirable work that was published in 1929, R.-H. Fowler of Cambridge University 
[6] writes (pp. 4): “It is impossible to argue that the fact that a particular mechanism leads 
to a state of complete equilibrium in agreement with experimental facts is any evidence 
for the particular mechanism discussed.  It is merely evidence that the laws of this 
mechanism have been correctly and consistently written down!  Any other mechanism 
would give the same result.” 
 Of the theories of gravity, one may certainly say that they are geometrical theories 
that are susceptible to being much more varied that the mechanical theories. 
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 We note, moreover, that Fowler writes further in the work cited (pp. 7): “Something 
more than success and logical rigour appears to be necessary for the acceptance of a 
model which is to account to our aesthetic satisfaction.” 
 It is certainly in gravity that one encounters most easily that which agrees with our 
aesthetic satisfaction.  It will be difficult to find a mathematical reasoning more elegant 
than the one that led from the identities (5) to identities (23) and (24). 
 It seems very interesting to us to recall this reasoning from the Stokesian viewpoint; 
moreover, it seems that studies such as the one this fascicle must always be carried out 
only while in very explicit connection with the principles of analysis. 
 As for the authors that have already given formulas (23) and (24), while deriving 
them in ways that differed slightly from the preceding one, or likewise more general 
ways, we cite, in particular: É. Cartan [7] (pp. 382), H. Eyraud [8] (pp. 21), R. Lagrange 
[9] (pp. 22). 
 The work of H. Eyraud, which was published in 1926, is actually illuminated very 
advantageously by the new theory of Einstein.  In 1928 [10] (pp. 161), we wrote: “A 
recent thesis of H. Eyraud plainly introduced torsion into electromagnetism, but we lack 
the necessary hindsight to appreciate the true value of that attempt.  Hindsight has been 
favorable to H. Eyraud in that his theory and that of Einstein are very dissimilar; 
however, in both cases, one makes recourse to spaces with torsion. 
 As we have already reproduced in [11] (pp. 7), E. Cartan [7] (pp. 367) defined the 
components of torsion and curvature by the formulas: 
 
(26)    Ωi = [ ] [ ]i iα

απ π π′ − = [ ]i j k
jk π πΛ , 

(27)    i
kΩ =[ ] [ ]i i

k k
α

απ π π′ − = [ ]i m l
kmlB π π . 

 If one sets: 
πi = − dxi,  i

jπ = i
j dxβ
βΓ , 

 
upon observing that the accents in (26) and (27) indicate exterior derivations, then one 
painlessly obtains: 
(28)     i i

αβ βαΓ − Γ = i
αβΛ , 

which is nothing but (10), and: 
 

(29)   i
kmlB = i i i i

kl km kl m km lm lx x
β β

β β
∂ ∂Γ − Γ + Γ Γ − Γ Γ

∂ ∂
, 

 
which coincides with (20).  Recall that (29) is skew-symmetric in l, m, as (28) is in α, β.  
More exactly, if, in the left-hand side of (29), one inverts l and m in the first and third 
term then one obtains, up to sign, the second and fourth ones.  This remark will be used 
shortly. 
 
 
 3.  Bifurcations and n-podes. – The principal object of the preceding paragraph was 
that of obtaining formulas (23) and (24).  It is of great use to not separate them in order to 
judge, from a sufficient altitude, the various aspects of gravity; we repeat, moreover, that 
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they only form a sort of kernel in the set of formulas of the same type, with more and 
more indices of derivation, sets whose process of formation has been indicated by Cartan 
[7] (pp. 382). 
 However, having said this, it is convenient to specify that in the present fascicle we 
shall no longer be occupied with formula (24), to which, of course, (25) will be always be 
associated.  It is likewise very simple to reconstruct (24) in isolation.  Start with (29) and 
form: 
(30)     i i i

kml mlk lkmB B B+ + . 

 
 One immediately finds that this trinomial may be written: 
 

(31)   i i i i i i
kl lm mk k lm l mk m klm k lx x x

β β β
β β β

∂ ∂ ∂Λ + Λ + Λ + Γ Λ + Γ Λ + Γ Λ
∂ ∂ ∂

. 

 
 If one introduces the derivatives: 
 

i
klmΛ = i i i

kl km l lm k m klmx
α β β α

α α α
∂ Λ − Γ Λ − Γ Λ + Γ Λ

∂
 

 
then the expression (31) becomes: 
 
(32)   i i i i i i

klm lmk mkl kl m lm k mk l
α β β

α α αΛ + Λ + Λ + Λ Λ + Λ Λ + Λ Λ , 

 
and the equality of (30) with (32) is nothing but (24). 
 One may now say that the consideration of the trinomial (30) leads to some very 
interesting bifurcations.  There are at least three great theories that give rise to the 
vanishing of that trinomial, according to the manner in which it vanishes. 
 In the first place, the trinomial (30) is null when all of the Λ’s are null.  This is the 
case for spaces that are curved, but without torsion, and for theories of gravity of the first 
type. 
 In the second place, the trinomial (30) is null when the Γ’s, and consequently the Λ’s, 
are certain constant, notably when one has: 
 
(33)    s

ijΓ = s
ijc  = − s

jic ,  s
ijΛ = 2 s

ijc . 

 
 The expressions (31) are then null if, moreover: 
 
(34)    i i i

k lm l mk m klc c c c c cβ β β
β β β+ + = 0. 

 
 In (33) and in (34), one obviously recognizes the relations (1) and (2) − i.e., the 
fundamental structural relations of the theory of finite, continuous groups. 
 The B’s in (30) are not individually null; they are constants such that: 
 
(34*)    i

kmlB = i i
kl m km lc c c cβ β

β β−  = i
k mlc cβ

β . 
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 In the space thus constituted there exists a displacement by parallelism that is defined 
by equations (17), which is: 
(35)     j j i

idP c P dxα
α+ = 0. 

 
 If this displacement is valid along the curve with the differential equations: 
 

dxi + λi dt = 0 
 
the λi being arbitrary functions of t, then equations (35) become: 
 
(36)     j j i

idP c P dtα
α λ+ = 0. 

 
 As we have already shown in fascicle XXXIII of the Mémorial, and since we shall 
recall it shortly with the new developments, this linear system may be considered as the 
fundamental differential system of the theory of groups.  It is one of the aspects of the 
problem of the linearization of this theory.  We first considered a space in which we have 
associated a certain notion of parallelism; a theory may emerge and unfold from this just 
as Euclidian geometry unfolds from the fact that one assumes Euclid’s postulate. 
 In the third place, the trinomial (30) is null when the three B’s that comprise it are 
individually null.  It was in order to realize such a nullity that Einstein’s new theory 
introduced the ingenious notion of r-podes, which are tetrapodes (Vierbeinen) in four-
dimensional space [2]. 
  An r-pode is composed of r2 functions: 
 

1h1  
1h2 … 1hr , 

2h1  
2h2 … 2hr , 

…   … … … 
rh1  rh2 … rhr , 

 
which define a determinant h whose minors are normed; i.e., when deprived of their sign 
and divided by h, they form, in due course, the table: 
 

1h
1  1h

2 … 1h
r , 

2h
1  2h

2 … 2h
r, 

…   … … … 
rh

1  rh
2 … rh

r. 
 One will obviously have: 
 
(37)    sh

λ  shν  = λ
νδ ,  λhs νh

s = λ
νδ , 

 
with λ

νδ null, in general, but equal to 1 if λ = ν. 

 One sets, by definition, upon deriving (37): 
 

(38)    i
klΓ = i s

s kl
h h

x

∂
∂

= − s i
k sl

h h
x

∂
∂

. 
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One has, in turn: 
i
klmx

∂ Γ
∂

= i s s s
s k k kl m m l
h h h h

x x x x

∂ ∂ ∂+ ⋅
∂ ∂ ∂ ∂

, 

i
m kl

σ
σΓ Γ = − s i t

s t km l
h h h h

x x
σ

σ
∂ ∂⋅

∂ ∂
, 

(39)    i i
kl m klmx

σ
σ

∂ Γ + Γ Γ
∂

= i s
s kl m
h h

x x

∂
∂ ∂

. 

 
The terms that seem to have been omitted in the right-hand side of (39) contain the factor: 
 

(40)    s s t
k k t kl l

h h h h
x x

σ∂ ∂−
∂ ∂

, 

 
 Therefore, from (29) and (39), if i

klΓ  is defined by (38) then one has: 

 
(41)      i

kmlB = 0. 

 
 Before going further, one may make two interesting remarks: 
 One sees that (39) gives (41) by virtue of the permutability of the ordinary partial 
derivatives; i.e., the indices l and m that appear in the right-hand side of (39).  Now, H. 
Weyl, in the case of spaces without torsion, established the nullity of the i

αβΛ by also 

appealing to such a permutability [12]. 
 One further sees that if the three methods that were employed here to annul the 
trinomial (30) are ingenious then they are no less particular; the search for more general 
spaces in which this trinomial is annulled will be, without a doubt, an important subject 
of study. 
 Along this order of ideas, we point out a work of G. Mattiloi [ 34].  It contains 
remarkably symmetric formulas that are comparable to (31). 
 Let us continue.  The covariant derivatives, (12) and (14), of the shν and the sh

ν are 
identically null.  The verification of this assertion is immediate and amounts to 
confirming the nullity of expressions like (40).  If one sets: 
 
(42)    gλµ = shλ

 shµ ,  gλµ = sh
λ 

sh
µ  

 
then the covariant derivatives of these new expressions will again be identically null.  
The determinant g of the gλµ is the square of the determinant h. 
 The g with two indices have the well-known role relating to the raising and lowering 
of indices; one will observe, moreover, that Einstein often underlined an index before 
raising or lowering it.  Therefore: 
 

Aλ = Aλ = gλµ Aµ , Aλ = Aλ = gλµ Aµ . 

 
 Observe, furthermore, that: 
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h

xσ
∂
∂

=
( )

( )

i
j

i
j

hh

h xσ

∂∂
∂ ∂

= 
( )

( )
i

jj
i

h
h h

xσ

∂
∂

= i
jh σΓ . 

  
 Being given the derivative, conforming to (18): 
 

..
..DT

Dx

σ

τ =
..

....
..

T
T

x

σ
σ α
αττ

∂ + + Γ
∂

⋯ , 

 
this permits one to contract in σ and τ, multiply by h, and, upon setting T for hT, to write: 

 
..

..DT
h

Dx

σ

σ =
..

....
..x

σ
σ α
ατσ

∂ + + Λ
∂

⋯
T

T . 

 
 This is what Einstein abbreviated to: 
 
(43)     ..

..;hT σ
σ = .. ..

..; ..
σ σ α
σ ασ+ ΛT T . 

 
One sees that the definition of the symbol: 
 
(44)      ..

..|
σ

σT  

 
is quite simple; it is by means of it that the gravitational equations condense in an 
extremely remarkable manner [2]. 
 
 
 4.  Some gravitational developments. – It does not enter into the plan of this fascicle 
to go into the physical consequences.  We would like to return to the spaces with torsion 
whose principles, at the present moment, are certainly those of group spaces and the 
preceding gravitational space.  Now that we know how those spaces come about and how 
we arrive at the fundamental symbol (44) that is attached to them we will be brief in what 
follows. 
 The theory of gravity of the first type rests upon a contraction of the Bianchi identity. 
Now we shall contract the identity (24) while, of course, making an abstraction of the 
first trinomial or, if you prefer, the equality obtained by annulling (32).  This contraction 
gives, if one uses, as in (43), the semi-colon to indicate the covariant derivative: 
 
(45)   ; ; ;kl l k k l kl

α α
α αϕ ϕ ϕΛ + − − Λ = 0,  ϕα = β

αβΛ . 

 Set: 
(46)     kl

α
V = ( )kl l k k lh α α αϕ δ ϕ δΛ + − . 

 
 Consider the equality of the type (43): 
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; ; ;( )kl k l k lh α
α ϕ ϕΛ + −  = | ( )kl kl l k k lhα α α α

α αϕ δ ϕ δ ϕ+ Λ + −V . 

 
The last two terms of the latter parentheses are eliminated under summation over α and 
the contracted equation (45) is finally written: 
 
(47)     |kl

α
αV = 0. 

 
 This is the analogue of equation (3) in the theory of groups. 
 The identity: 

.. ..
..| | ..| |

ik ik
i k k i−A A = − ..

.. |( )ik
ik
σ

σΛA  

 
is easy to prove if one makes recourse to the definition (43) and takes (41) into account.  
Proofs of this type are, moreover, currently popular in the absolute differential calculus; 
on this subject, one may further consult the exposé of R. Lagrange [9] (pp. 21).  Thus: 
 

| | | |k l l k l l
α α

α α−V V = − |( )k l l
α σ

α σΛV , 

 
and, from (47), this may be written: 
 
(48)    | |( )k l l k

α σ α
τ στ α− ΛV V = 0. 

 
 In the first approximation, Einstein sets: 
 

| |k l l
α

αV = | |k l l
α

αV  = 0, 

 
which, from (47), is indeed null, and then writes: 
 

|k l l
α
V  = 0 

 
for the law of gravitation in the first approximation. 
 He then considers the expression: 
 
(49)    kl

α
V = ( )kl l k k lhα α αε ϕ δ ϕ δ− −V , 

 
which differs from kl

α
V as slightly as one pleases, and remarks that upon applying the 

operation | α to it and annulling, one recovers the Maxwell equations, which then play the 
role of electromagnetic equations in the first approximation. 
 We agree to add that one passes to the complete theory [2] by replacing the V in (48) 

with the overlined V in (49). 

 One sees that all of the theory unfolds from the equality (47) and the definition (49). 
 We repeat that a more developed form of the same theory has recently been given by 
Einstein himself [32], [46]. 
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 Moreover, we have no need to go further into these aspects of the theory in order to 
make the most important observations.  First, as we already said in the preceding 
paragraph, it is increasingly obvious that such theories are limitless in number; they may 
obviously be as varied as the conceptions of space itself.  One of the next forms of 
gravity will undoubtedly involve a space in which curvature and torsion both play a role, 
as in group spaces. 
 Consequently, all of these theories with a geometric structure must always recover the 
Maxwell equations, in one form or another, as the electromagnetic equations in the first 
approximation; it is natural, because these equations were introduced at the beginning of 
our argument, here, with the symbolic determinants (8) that condense its form.  The 
second formula (6) is the Maxwellian formula par excellence. 
 One may openly affirm that in the present state of Science, a physics of non-
Maxwellian electromagnetism, at the ordinary level and in the first approximation, is 
nevertheless a construction that is as improbable as that of a theory of physics that does 
not rest upon simple geometry, in the first approximation, such as Euclidian geometry, 
Cayleyian geometry, or the geometry of Riemann spaces. 
 In support of this way of looking at things, which, moreover, hardly needs to be 
defended at the present time, we cite a remarkable work of F.-D. Murnaghan [13]. 
 
 
 5.  The Ricci coefficients. – The recent theory of Einstein, whose premises we just 
presented, was published in January, 1929.  Two months later, in the same 
Sitzungsberichte of the Berlin Academy [3], Tullio Levi-Cività published a work of the 
same nature, which was promptly translated into English and had the same conclusions as 
those of Einstein, but while making use of only Riemann space.  It should come as no 
surprise that if such a duality is possible then it proves simply that Cartan spaces, which 
are curved and torsed, may be put into correspondence with spaces without torsion.  The 
correspondence may likewise come about in an infinitude of ways. 
 We shall stop short of completely analyzing the exposé of Levi-Cività, but we shall 
content ourselves with showing that the theory of Ricci coefficients, which then come 
into play, easily assures the preceding relationship, as well as other relationships with the 
theory of groups.  We shall borrow from Levi-Cività not only the results presented in his 
Berlin note, but also in his Calcolo differenziale assoluto [14].  This latter work was 
likewise translated into English and German. 
 Let there be an n-uple of orthogonal congruences.  Through each point P of the space 
Vn there pass n lines that are pairwise orthogonal and denumerated by lower indices in the 
table: 

1 2
1 1 1
1 2
2 2 2

1 2

,

,

.

n

n

n
n n n

λ λ λ
λ λ λ

λ λ λ

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯

 

 
In a given row of this table one has the direction parameters for the same row in the n-
uple.  Now, let there be a table of moments: 
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1|1 1|2 1|

2|1 2|2 2|

|1 |2 |

,

,

.

n

n

n n n n

λ λ λ
λ λ λ

λ λ λ

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯

 

 
 The correspondence between the two tables is such that: 
 
(50)    |

i
h i kλ λ = k

hδ ,  |
j

h i hλ λ = j
iδ . 

 
 One sees that the vertical bar between the lower indices does not have the same 
significance as it did in (44).  If one sets: 
 

gik = λh|l λh|k ,  gik = i k
h hλ λ  

then one easily obtains: 
j

kg = gik g
ij = j

kδ , 

gij λh|i = j
hλ , j

ij hg λ = λh|i . 

 
 This permits the construction of Riemannian metric for which: 
 

ds2 = gik dxi dxk. 
 
It seems to be entirely unnecessary to show that with the tables above relating to our n-
uple of congruences one may derive everything that one derives for Einstein’s n-podes.  
Meanwhile, we pursue the reproduction of certain formulas that ultimately entail some 
interesting comparisons. 
 For the n-hedron attached to P, consider, in particular, the directions λh and λk ; they 
are orthogonal and give, from (50): 

(51)     �cos h kλ λ = |
i

h i kλ λ  = k
hδ . 

 
Imagine that λh is transported to P′, which is infinitely close to P, by the simple device of 
varying the coordinates; for λh , one will then have local transport, with the symbol δ′. 
  On the other hand, λk will be transported to P′ by parallelism, with the symbol δ*. 
 What, then, is the variation δ of the expression (51)?  One will have: 
 

phk ds = �cos h kδ λ λ = | |
i i
k h i h i kλ δ λ λ δ λ∗′ + , 

and, from (17): 

(52)   phk ds = |
|

h ii l j
k ij h lj

x
x

λ
λ λ δ

∂ 
− Γ ∂ 

= |
i j
k h ij xλ λ δ . 
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 Now, take the particularly remarkable case in which the direction δxj coincides with 
that of an edge of the n-hedron; for example, take δxj = j

i dsλ .  One will have, according 

to Ricci, the coefficients of rotation of the n-hedron: 
 
(53)     γhkl = |

i j
h ij k lλ λ λ . 

 
 Observe that in (52) the Γ’s with three indices are the Christoffel bracket symbols, 
which do not change when one inverts i and j. 
 In the case n = 3, Ricci’s theory painlessly gives back that of the moving trihedron to 
which is easily attached, as we have shown in fascicle XXXIII of the Mémorial in the 
theory of parametric groups and the Maurer-Cartan equations.  This again leads us to 
recall that the theory of the trihedron, thanks to the efforts of the brothers François and 
Eugène and Cosserat, is also becoming a powerful instrument in the synthesis of physical 
theories. 
 It is along the same order of ideas that we may unite the theory of gravity in Riemann 
space with the theory of gravity in Cartan space.  Above all, we only have an admirable 
instrument for synthesis, but one must know how to rise to a sufficient altitude that the 
view seems logically harmonious; to insist upon criticizing the details seems to be only a 
testament to one’s incomprehension. 
 Return to the expressions (53).  If one has: 
 

W = Ui V
i, Vi = gikVk  

 
then one likewise has, by covariant derivation: 
 
(54)   Wl = Ui |l V

i + Ui g
ik Vi |l = Ui |l V

i + Ui Vi |l . 
 
 Apply this formula to (50); it becomes: 
 

| |
i i

h ij k h k ijλ λ λ λ+ = 0. 

 
 If one multiplies by j

lλ then one has: 

 
(55)     γhkl + γkhl = 0 
 
 
 Furthermore, note the non-permutability of the derivations that were made at P in the 
directions of the different edges of the n-hedron.  One has: 
 

h

f

s

∂
∂

=
i

i
h

f dx

x ds

∂
∂

= i
hi

f

x
λ∂

∂
= i

i hf λ = fi g
ni λh|n = fn λh|n . 

 
By covariant derivation, and from (54): 
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j
h

f

x s

∂ ∂
∂ ∂

= |
i i

h ij ij hf fλ λ+ . 

However: 
i
h

h

f

s
λ ∂

∂
= |

n i
h n hf λ λ = n i

nf δ = fi. 

 
 Substituting this fi in the preceding equations, when multiplied byj

kλ , one gets: 

 

k h

f

s s

∂ ∂
∂ ∂

= i j
hlk h k ij

l

f
f

s
γ λ λ∂ +

∂
, 

and finally: 

(56)    
k h h k

f f

s s s s

∂ ∂ ∂ ∂−
∂ ∂ ∂ ∂

= (γhlk – γklh)
l

f

s

∂
∂

. 

 
Finally, we point out the formula: 
 

(57)    λi|νρ − λi |ρν  = | |i ix xν ρρ νλ λ∂ ∂−
∂ ∂

, 

 
which is the analogue of (9) when the expression (10) is null.  Since (57) gives: 
 

γikl – γilk = | |k i i ix x
ν ρ

ν ρρ νλ λ λ λ∂ ∂ − ∂ ∂ 
, 

the difference: 
λi|νρσ – λi|νσρ  

 
transforms like (19) and then exhibits the four-index B’s of Riemann.  One may then set: 
 

γij,hk = ijh ijk

k h

d d

ds ds

γ γ
− + γijl  (γihk − γikh) + γlik γijh − γlih γljk , 

and confirm that: 
 

γij,hk = − γij,kh ,  γij,hk = − γji,kh ,  γij,hk = − γhk,ij , 
γij,hk + γih,kj + γik,jk = 0, 

 
the latter relations being comparable to the ones that were given for the B’s of the second 
type. 
 Briefly, Ricci’s theory, in its fundamental formulas, recalls, at the same time, the 
theory of groups and that of Riemann spaces.  However, the theory of groups, as Cartan 
[4] and Schouten [15] have shown, may be a theory of manifolds with torsion; one may 
thus have, in the theory of Ricci coefficients, everything that one has in that of Riemann 
spaces, generalized by the appearance of torsion. 
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 6.  On certain linear and homogeneous differential systems. – We would now like 
to focus on the theory of groups more specifically by studying the differential systems 
(36).  We have seen how these systems arise in group spaces with the notion of 
parallelism.  However, we have also shown, in the beginning of our fascicle XXXIII of 
the Mémorial, how they arise from conditions of simplicity. 
 The system: 

s
s k
k

d
C

dt

θ θ+  = 0  (s, k = 1, 2, …, r), 

 
where the s

kC  are arbitrary functions of t, is not generally manageable.  We attempt to 

diminish the generality by making the r2 coefficients s
kC  depend only upon the r 

functions λj.  For this, there is no method that is simpler and more intuitive than the one 
that consists of linearly setting: 

s
kC = s j

jkc λ , 

 
the three-index c’s being constants.  The difficulty is diminished by linearization.  One 
thus has the system: 

(58)     
s

s j k
jk

d
c

dt

θ λ θ+ = 0, 

 
which is nothing but (36), up to notation. 
 We shall now see the essential fact that the search for certain new conditions of 
simplicity that one might add to the system (58) obligates the three-index c’s to satisfy 
the relations (1) and (2). 
 Let: 

f(θ1, θ2, …, θr, t) 
 

be an integral of (58), i.e., an expression that remains constant by virtue of this system.  
One will have: 

s

s

f f d

t dt

θ
θ

∂ ∂+
∂ ∂

= 0, 

and, from (58): 
s j k
jk s

f f
c

t
λ θ

θ
∂ ∂−
∂ ∂

= 
f

t

∂
∂

+ λj Ej(f) = 0. 

 
 One sees that we introduce the operator: 
 

(59)     Ej(f) = − s k
jk s

f
c θ

θ
∂

∂
. 

 
 We study its properties, notably its permutability properties.  One has: 
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Ej Ei = s k t l
jk ils t

c cθ θ
θ θ
∂ ∂ 
 ∂ ∂ 

 = 
2l

s t k l
jk il s t s t

c c
θθ θ
θ θ θ θ

 ∂ ∂ ∂+ ∂ ∂ ∂ ∂ 
, 

(60)   (Ej Ei) = Ej Ei − Ei Ej = ( )s t s t k
jk is ik js t

c c c c θ
θ
∂−

∂
. 

 Set: 
(61)    t

ijkC = s t s t s t
ij ks jk is ki jsc c c c c c+ + , 

(62)     s
ijγ = s s

ij jic c+ . 

 
 Equation (60) may then be written: 
 

(Ej Ei) = ( )t s t s t s t k
ijk ji ks ij ks ik js t

C c c c cγ γ θ
θ
∂+ − −

∂
. 

 
 It is now quite remarkable that this latter expression becomes particularly simple if 
the expressions (61) and (62) are always null.  One has, under these conditions, from 
(59): 

(63)    (Ej Ei) = k t s
ji sk t

c c θ
θ
∂

∂
= s

ji sc E . 

 
 It is obviously quite possible for us to study the system (58) when (61) and (62) are 
non-null, but this nullity seems to be a simple circumstance attached to the system, and 
which one may exhibit without preliminaries.  Nothing will prevent us from comparing 
the results of this paragraph with those of the preceding ones in an interesting manner.  
Therefore, upon confronting (60) and (63) with (34*): 
 

(Ej Ei) = s
ji sc E = t s

kij t
B θ

θ
∂

∂
. 

The contracted relation: 
(3)      i s

is jkc c = 0 

 
assures us that the system (58) has the integral: 
 

i s
isc θ = const. 

 
The verification is immediate.  Along the same order of ideas, with r new constants gj, 
and upon setting: 

gj λj dt = du, 
the system (58) may be written: 
 
(64)     j s

jAλ = 0, 

with: 
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(65)     s
jA = 

s
s k

j jk

d
g c

du

θ θ+ . 

This gives: 
i s
is jc A = 0. 

The determinant of the sjA  is null. 

 We remark that one may make the system (58), with r equations and r unknown 
functions, correspond to the system (65) of r2 equations, which, on the other hand, has 
constant coefficients. 
 If, between these r2 equations, one may eliminate the r functions θs then one will 
obviously find relations between thesjA  which are related to the λj in (64).  One might 

have in them a means of seeing how the systems (58) are attached to integrable systems 
by quadratures.  However, the elimination involved demands both algebraic and 
differential or integral considerations; we limit ourselves to pointing out how one might 
investigate this subject. 
 
 
 7.  Inhomogeneous systems. – The filament of simple analogies leads one quite 
naturally to add to (58) the new system: 
 

(66)    
j

s
s k
jk

d
c

dt

ρ
ρθ λ θ+ = 

s

ρ

λ
λ

∂
∂

. 

 
 This is only an assemblage of r systems (58) provided with a right-hand side, and as 
for them, their choice is again truly as simple as possible if one imagines that the 
functions λr contain, besides t, constants λρ that are r in number.  Here, as for (58), we 
commence by studying the system (66) without making any hypothesis on the constants 

s
jkc . 

 Moreover, by the same argument as in fascicle XXXIII of the Mémorial (Chap. III, § 
2) and upon setting: 

(67)    Vsρτ = 
s s

s k j
jkc

ρ τ
ρ τ

τ ρ

θ θ θ θ
λ λ

∂ ∂− +
∂ ∂

, 

it easily becomes [16]: 
 

(68)  
2 2s s

ρ τ τ ρ

λ λ
λ λ λ λ
∂ ∂−

∂ ∂ ∂ ∂
= 

k
s s j k s j

jk jkV c V
t t

ρ
ρτ ρτ τ θλ γ θ∂ ∂+ −

∂ ∂
 

      ( )m l n s s j j s
lmn mj nl ml jnC c cρ τλ θ θ γ γ− + + . 

 
 Again, this gives us every reason to believe that one will have a particularly simple 
theory of differential systems of the type (66), with respect to the constants λρ introduced 
in the λj, when the expressions (61) and (62) are null. 
 The preceding formula will likewise take a form that is comparable to formula (56) in 
the theory of Ricci coefficients.  Nevertheless, here, the considerations of ordinary 



GRAVITY, GROUPS, MECHANICS                                              22 

analyticity make the left-hand side of (68) identically null in such a way that with the 
nullity of the expressions (61) and (62) equation (68) reduces to: 
 

s s j k
jkV c V

t
ρτ ρτλ∂ +

∂
= 0, 

 
which reproduces the form of (58). 
 We have shown (loc. cit.) that the θsρ, which integrate the system (66) and are 
annulled for t = 0, likewise render the expressions (67) null.  From the integration of the 
Maurer-Cartan system: 

s sρ τ

τ ρ

θ θ
λ λ

∂ ∂−
∂ ∂

= s k j
kjc ρ τθ θ . 

 
 This latter system might no longer exist if the expressions (61) and (62) are not 
always null; the verification is easy [11] (pp. 15-16).  However, the analysis of the 
present paragraph explains the fact in a much more profound manner by starting with a 
differential system (66) that is meaningful no matter what the constant coefficients s

jkc . 

 In a general manner we arrive at a question of analysis that is as important as it is 
difficult, that of examining the differential systems constructed with constants and which 
have properties that are extremely different according to whether or not certain relations 
of an arithmetic nature exist between these constants.  One knows only very little about 
that subject, moreover. 



 

CHAPTER II 
 

MECHANICS AND NON-COMMUTATIVITY 
 

 1.  Preliminaries. – We return to the fundamental identities, and notably to the first 
equality (5) of the preceding chapter.  Such an identity takes various forms, by virtue of 
the fact that: 
(1)      d(XY) = X dY + Y dX. 
 
 Now, (1) may be written: 

( )
d d

XY X Y
dX dX

−  = Y, 

 
which proves the existence of symbols q and p such that: 
 

(2)      qp – pq = 
2

ih
I

π
. 

 
The Planck factor having simply been introduced, p and q may be treated as constant 
coefficients.  The secret principle of the new mechanics is in (2), which was exhibited by 
H. Weyl [17]. 
 Determinants constitute an essential instrument for the transformation of our 
fundamental identities.  This is why most of the formulas of the absolute differential 
calculus preserve the symmetry of the determinant.  Considerations of the same nature 
may come about in the context of (2). 
 Let there be two determinants of the same order: 
 

x = | ahi |, y = | bjk |. 
 One has: 

xy = | ahm bjm |,  xy = | bjm ahm |,  xy = yx. 
 
The multiplication of determinants is commutative. 
 Now let there be matrices [18]: 
 
(3)     x = (ahi), y = (bjk), 
with which one has: 

xy = (ahm bmk),  yx = (bjm ami) ≡ (bhm amk). 
 

 Here, there is no general reason for yx to be equal to xy.  It is quite imperative that we 
try to verify (2) with the matrices (3). 
 
 
 2.  Non-commutativity and Poisson brackets. – With the action variables J and the 
angle variables νt of the classical theory, the coordinates are of the form [19]: 
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x = 1 12 ( )
1 1( , , ; , , ) s si t

s sx J J e π α ν α να α + +∑ ⋯
⋯ ⋯ , 

 
the summations being taken over all integers αi .  This may be written, to abbreviate: 
 
(4)      x = x(α, J) e2iπ(αν)t. 
 
In the quantum theory, x is a set of terms: 
 

x(n, n – α) e2iπν(n, n − α)t, 
 
such that one has (correspondence principle), for large n: 
 

x(n, n – α) → x(α, J). 
 
 Now, suppose one has a matrix xy – yx, one of whose elements is: 
 

2 ( )( ) ( )

( ) ( )
i nm t

k

x nk y nk
e

x km y km
πν∑ . 

 
For large values of m and n, Dirac wrote this in a form equivalent to: 
 

2 ( , )( , ) ( , )

( , ) ( , )
i n n t

n m

x n n y n n
e

x n n y n n
πν α β

α β

α β
β β α α α β

− −

+ = −

− −
− − − − − −∑ ∑ . 

 
 For very large n, with ∆ due to nr → nr + τr: 
 

h

∆
x(n, n – α) → ( , )r

r

x J
J

δτ α
δ∑ . 

 
 Under these conditions, if, in the determinant of the preceding expression, one 
subtracts the first row from the second one then this expression becomes: 
 

− 2 [( ) ( ) ]

( , ) ( , )

( , ) ( , )

r r
i t t

r r

x J y J

h e
x J y J

J J

π αν βν

α α β β
δ δα β

δ δ

+∑∑∑ . 

 
 Now let wr = vrt + er, with er a constant phase.  One easily obtains: 
 

2 ( )[ ( , ) ]i t

r

y J e
w

π βνδ β
δ

 = 2iπβr y(β, J) e2iπ(βν)t. 

 
The preceding triple sum then takes a form such that the matrix corresponds to the 
expression: 
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(5)     xy – yx = 
2

r r

r r

x y

w wih

x y

J J

δ δ
δ δ
δ δπ
δ δ

∑  = [ ]
2

ih
xy

π
. 

 
 Therefore, the Poisson brackets, which are classically formed from the coordinates 
(4), correspond, in quantum theory, to a calculus of matrices with non-commutative 
multiplication. 
 We construct the partial derivatives with the δ and write brackets, rather than 
parentheses, in order to be in agreement with the notations of Birtwistle [19]. 
 The preceding considerations are due to Dirac and Heisenberg; they have been 
generalized in [20] with some extensions of the Poisson brackets. 
 
 
 3.  Fundamental double theorem. – The canonical equations of Hamilton and Jacobi  
play an essential role in the new mechanics.  Like all of the essential foundations of 
physical theories, we attach them to an identity (7), and this follows from a double 
theorem, both sides of which have been studied over a very long time interval [21], [22], 
[11]. 
 
 a. Suppose one has the Green formula: 
 

(6)   i i dα σΦ∫  = i

i

d
x

τ∂Φ
∂∫

, div Φ = i

ix

∂Φ
∂

  (i = 1, 2, …, n) 

 
and the identity: 

(7)     
1

1 2
n

nW
X dX dX

−
∫ ⋯ = 1 2

n
nW

dX dX dX∫ ⋯ . 

 
 One passes from (6) to (7) by the transformation: 
 

Xi = Xi(x1, x2, …, xn) 
 
if 

X(f) = 
div

i

i

f

x

Φ ∂
Φ ∂

 = 0, with f = X2, X3, …, Xn 

and if: 
X(U1) = 1, with U1 = log X1 . 

 
 b.  This permits the construction of the Jacobi multiplier:  
 

D = 1 2

1 2

( , , , )

( , , , )
n

n

U X X

x x x

∂
∂

⋯

⋯
 

with which: 
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Y(f) =

1 2

1

2

0

1

n

n

f f f

x x x

F

FD

D

F

∂ ∂ ∂
∂ ∂ ∂

⋯

⋯

, 

which gives: 
(8)      X[Y( )] = Y[X( )]. 
 
The F’s are arbitrary functions of X2, …, Xn, but not U1. 
 On this subject, other than the references that were already pointed out, one may 
consult two recent memoirs, the one by Pfeiffer [35], the other, by the author [36]. 
 It is always the evaluation of an extended W, by a very direct transformation, that 
gives formulas of physical significance.  As for the permutability in (8), this may be the 
germ of quite a lot of non-permutability. 
 One may attach several current theories to the equation: 
 

(9)      div Φ = i

ix

∂Φ
∂

 = 0. 

  
 Bateman [37] likewise sees in equation (9) the origin of all of the fundamental 
equations of physics. 
 Therefore, with the variables pi, qi divided into two subsets, (9) may be written: 
 

(10)     i i

i i

P Q

p q

∂ ∂+
∂ ∂

= 0, 

 
which implies, as naturally as possible: 
 

Pi = − 
i

H

q

∂
∂

, Qi = 
i

H

p

∂
∂

, dH = Qi dpi – Pi dqi = 0, 

 
if the motion takes place on the manifold H = const.  One is then further led to set, always 
as simply as possible: 

Pi = idp

dt
,  Qi = idq

dt
, 

 
which implies the canonical equations: 
 

(11)    idp

dt
= − 

i

H

q

∂
∂

, idq

dt
= 

i

H

p

∂
∂

. 

 
 One may imagine other things by starting with (9).  Upon setting, for example: 
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Φi =
i

V

x

∂
∂

, 

 
one will have a Laplace equation in n variables, which will give to the mechanics in p, q 
the aspect of an extension of the theory of the Newtonian potential.  Since this Laplace 
equation itself may take on the aspect of a generalization of the wave equations, the 
mechanics will take on a wavelike character.  (See, later on, Chapter III.) 
 In (10), we also have the famous Liouville theorem: 
 

i i

i i

p p

p q

∂ ∂+
∂ ∂
ɺ ɺ

= 0, 

 
which is fundamental to statistical mechanics. 
 If x is a function of the p and q then: 
 

dx

dt
= 

i i i i

x H x H

q p p q

∂ ∂ ∂ ∂−
∂ ∂ ∂ ∂

= [x, H]. 

Hence, from (5): 

2

ih
x

π
ɺ = xH – Hx. 

 
 These are the Heisenberg equations [19].  Compare with [17] (page 28). 
 Now take the Poisson-Jacobi identity: 
 
(12)   [ϕl(ϕm , ϕn)] + [ϕm(ϕn , ϕl)] + [ϕn(ϕl , ϕm)] = 0, 
 
by virtue of which [ϕm , ϕn] is an integral of (11) if the same is true for ϕm and ϕn . 
 When one has, linearly: 

[ϕm , ϕn] = s
mn sc ϕ , 

 
one concludes, from this and (12) that: 
 

(13)    
0,

0.

s s
mn nm

s s s
lm ns nm ls nl ms

c c

c c c c c cα α α

 + =
 + + =

 

 
These are the fundamental structural relations of the theory of finite, continuous groups.  
One sees that these relations (13) are linked to mechanics, just as they are to gravity. 
 Among the mechanical theories with canonical equations, the most important is truly 
statistical mechanics [6].  In the space of N dimensions, the product dp1, …, dqN 
measures a cellular extent of weight K dp1, …, dqN .  If there are M systems present then 
the cell has an extent: 

(dp1, …, dqs)1 …(dp1, …, dqs)M . 
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 One may make each of the parentheses in this product correspond to an energetic 
factor: 

12
1

jEK e− , …, 2 MjE
MK e− , 

 
and imagine that the product of these factors is also a K if: 
 

E1 + … + EM = const. 
 

 Therefore, the phase space is complicated; it extends by factorization as long as the 
energies Ei combine by addition.  That insight, as rudimentary as it is, demonstrates the 
fundamental role of the exponential in statistical mechanics.  In physics, the exponential 
appears for a lot of other reasons, for example, in the equation: 
 

dA = k A dt, 
 
which governs a host of simple phenomena [23].  It is essential for the representation of 
periodic phenomena, but things might not go to nothing indefinitely as with the ordinary 
exponential.  Groups introduce infinitesimal transformations X and corresponding finite 
transformations eX; this is a symbolic exponential, with non-commutative multiplication. 
 
 
 4.  The symbolic exponential. – The first studies of any appreciable profundity on 
the preceding symbolic differential seem to have been carried out by J.-E. Campbell, who 
dedicated two interesting memoirs [24], [25] to them in 1897.  One is surprised when one 
peruses them to find a language and set of preoccupations that strangely resemble the 
language and preoccupations that one encounters in the work devoted to microphysics in 
our own time.  Furthermore, Campbell played the distinguished role of having inspired 
Henri Poincaré. 
 The celebrated memoirs of the latter on groups [26] make immediate usage of the 
preceding symbolic exponential.  Henri Poincaré paid the homage to Campbell that is his 
due; likewise, one must not forget that the symbolic exponential was employed by Lie 
and his immediate disciples, but only as convenience.  Poincaré, whose fundamental 
ideas we shall soon present, afforded it his inspired spirit of generalization; we can 
comprehend his work better by first summarizing the much more elementary analysis of 
the first memoir of Campbell [24], a memoir whose notations we shall preserve as much 
as possible. 
 J.-E. Campbell first considered two operators, x and y, which are associative and 
distributive, but not commutative.  As a consequence, one writes: 
 
      y1 = yx – xy, 
      y2 = y1x – xy1, 
      ………………, 
       yr = yr−1x – xyr−1 . 
 He likewise writes: 

[yxr] = yxr + xy xr−1 + x2y xr−2 + … + xr y 
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and defines constants ai such that: 
 

   a1 = 
1

2
, a2 = 

1

12
, a3 = 0,  a1 = − 

1

720
, …, 

   (m + 1) am = am−1 – (a1 am−1 + a2 am−2 + … + am−1 a1). 
 
 All of the a’s with odd indices are null, except for a1.  One then has: 
 

!

ryx

r
= 

1
1 1

1 1( 1)! ! 2!

rr
r

r r r

y x y xyx
a a a y

r r

−
−

−
    + + + +    +     

⋯ . 

 
 This formula is easily verified for r = 1, 2, 3, …; the general proof is made by 
recurrence upon passing from r to r + 1 with no difficulty.  Moreover, let: 
 
  y  = y, 
  yx = 1

2 [yx] + a1y1 , 

  
2

2!

x
y  = 

2

1 1 2 23! 2!

x x
y a y a y
   + +     

, 

  ………………………………….. 
 If one sets: 

z = y + a1y1 + a2y2 + … 
 
then the addition of the preceding formulas gives: 
 

y ex = z + 
2

2! 3!

x x
z z

   +      
 + … 

 
 If µ is a constant such that one may neglect its square then: 
 

(x + µ z)r = xr + m[z xr−1], 

(14)  (1 + m y)ex = 1 + 
2( )

1! 2!

x z x zµ µ+ ++ + … = ex−µz. 

 
 One may write, with the same approximation: 
 

eµz ex = ex+µz. 
 
 We shall see later on that Poincaré disdained these formulas as approximations, and 
that he sought, in a very ingenious manner, to find how one might maintain them when µ 
ceases to be a very small constant. 
 Now let: 
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X = ( )i
i

x
x

ξ ∂
∂

,  X′ = ( )i
i

x
x

ξ ∂′
′∂
. 

  
To abbreviate, ξi(x) signifies ξi(x1, x2, …, xn); analogous remarks apply to the x′. 
 Likewise: 

Y = ( )i
i

x
x

η ∂
∂

,  Y′ = ( )i
i

x
x

η ∂′
′∂
= ( )

i

Y x
x

∂′ ′
′∂
. 

 We also have: 

     f(x′) = f(x) + 
1!

t
X(f) + 

2

2!

t
X2(f) + … = etX, 

     f(x) = f′(x′) + 
1!

t
X′(f′) + 

2

2!

t
X′ 2(f′) + … = e−tX′. 

Hence: 
xi = ( )itX xe ′ ′− , 

(15)    Y′(xi) = ( )itX xY e ′ ′−′  = ( )itX xtXe Ye− . 
 
 Having said this, the principal point of the first memoir of Campbell consists of 
establishing that one also has: 
(16)     Y′(xi) = tYe ∗− , 
 
the exponential being developed as in the preceding by nonetheless observing that the nth 
power of Y* will be Yn , and that one will have: 
 

(17)    

1

2 1 1

1 1

,

,

..................

.r r r

Y YX XY

Y Y X XY

Y Y X XY− −

= −
 = −


 = −

 

 
 One must therefore establish that under these conditions the right-hand sides of (15) 
and (16) are equal. 
 For this, it will suffice that in these expressions the coefficients of tr are equal.  One 
must then prove that: 
 

( 1)
!

r rY

r
− = 

1 2 2

! ( 1)! 1! ( 2)! 2!

r r rX Y X Y X X Y X

r r r

− −

− +
− −

− … 

 
 This is true for r = 1.  Rewrite the equality after replacing r with r – 1 in it, and then 
multiplying by X, once on the right, and then on the left.  One has: 
 

  1 1( 1)
( 1)!

r rY X

r
− −−

−
 = 

1 2 2 3 3

( 1)! ( 2)! 1! ( 3)! 2!

r r rX YX X YX X X Y X

r r r

− − −

− +
− − −

− … 
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  1 1( 1)
( 1)!

r rXY

r
− −−

−
 = 

1 2 2

( 1)! ( 2)! 1! ( 3)! 2!

r r rX Y X Y X X Y X

r r r

− −

− +
− − −

− … 

 
hence, by subtraction: 

  1 1( 1)
( 1)!

r rY X

r
− −−

−
 = −

1 2 2

( 1)! ( 1)! ( 2)! 2!

r r rX Y X YX X Y X
r r

r r r

− −

+ −
− − −

+ …; 

 
upon dividing by – r one recovers the equality to be established and that this process of 
recurrence is effectively established for any value of the integer r.  Briefly: the 
fundamental equality (16) is proved. 
 Now, more explicitly, let there be r infinitesimal transformations Xi such that: 
 
(18)     Xi Xj – Xj Xi = s

ij sc X . 

 
 One must prove that they generate a group; i.e., that if one has: 
 
      x = eX,  X = λi Xi , 
      x′ = eY,  Y = µi Xi  
then one also has: 
      x″ = eZ,  Z = νi Xi . 
 
 This is what Poincaré called the Campbell problem in his first memoir. 
 One must prove that: 

i iXeµ ′ = eZ. 
 

 Campbell, likewise in his first memoir, was content to show this equality by assuming 
that the µ are sufficiently small that one may replace it with: 
 

(1 )i i iX xµ ′ ′+ = eZ. 

 
 The expression i iXµ ′ = Y′ is then of the form ρi Xi , from formula (16), when one 

develops the right-hand side, while taking into account equalities (17) and (18).  
Therefore, one must now prove that: 
 

(1 + µU) eX = eZ, 
 
if U and X are of the form ρi Xi .  Now, one may transform the left-hand side using (14) 
and write: 

X Ue µ+ = eZ, 
with: 

U = U + a1U1 + a2U2 + … 
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 Since the Ui are defined like the Yi of the table (17), one sees that U is also of the 
form  ρi Xi , which completes the proof. 
 This proof is certainly full of interest; it has an undeniable esthetic.  However, at the 
end of it all it seems weak due to the necessity of supposing that µ and the µi are 
sufficiently small for one to be able to neglect their powers and products.  Campbell 
himself remedied this defect in his second memoir. 
 Henri Poincaré then brought the remedy to perfection, as we shall see in the following 
paragraphs.  His analysis, while often difficult, seems nonetheless more approachable 
when one is habituated to the reasoning of Campbell, and that is why we have 
commenced with it.  A fundamental notion for Poincaré is that of regular polynomial.  A 
symbolic polynomial formed from the Xi is called regular when it contains nothing but 
powers of expressions of the form ρi Xi . 
 Any polynomial may be regularized by making use of the relations (18).  This may be 
done in only one way.  We assume these two assertions, which Poincaré proved in full 
rigor and not without some length.  In (14), we have a regular series; the developments of 
the Lie exponentials are given from others. 
 In order to return to the very considerable merit of Campbell’s argument, we note that 
the coefficients ai are easily expressed in terms of Bernoulli numbers.  If: 
 

1t

t

e −
= 1 − 

2 4

1 32 2! 4!

t t t
B B+ − + … 

(2n)! a2n = (−1)n−1 B2n−1. 
 

 This leads us to the works of Schur that we cited in our fascicle XXXIII.  The 
Bernoulli numbers do not play a fortuitous role in the theory of groups; they quite 
naturally accompany any exponential analysis, whether ordinary or symbolic. 
 
 
 5.  The symbol Φ(θ). – Consider the r infinitesimal transformation symbols, or, more 
briefly, the r operators Xi , and one of their linear combinations: 
 

T = ti Xi . 
 

 Then let V be another elementary operator, which might or might not be a linear 
combination of the operators X.  However, V is assumed to be such that: 
 

(VXi) = VXi – XiV = bijXj , 
hence: 

(VT) = VT – TV = bij ti Xj = θ(T). 
 

 One may imagine some iterations such as: 
 

θ[θ(T)] = θ2(T), …, θ[θm(T)] = θm+2(T), … 
 
 Now, let: 

Φ(θ) = ∑ gk θk 
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be a polynomial or an ordered series in increasing powers of θ. 
 Henri Poincaré set: 

Φ(θ)(T) = ∑ gk θk(T). 
 

 Consider the characteristic equation: 
 

(19)    B(θ) = 

11 21 1

21 22 2

1 2

r

r

r r rr

b b b

b b b

b b b

θ
θ

θ

−
−

−

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯

= 0. 

 
 It will convenient in the sequel to denote the elements of the determinant B(θ) by Bij .  
Therefore, Bij = bij when i and j differ, while: 
 

Bii = bii − θ. 
 

 The algebraic minor of Bij will be denoted by Pij and the same minor, when normed, 
by Bij.  Therefore, BBij = Pij. 
 If the equation B(θ) = 0 has r distinct roots then there exist r combinations: 
 
(20)     Yk = αik Xi , 
such that: 
(21)     VYk – YkV = θk Yk . 
 
Here, it is obvious that k is not a summation index in the right-hand side, since that index 
is free in the left-hand side.  Therefore: 
 

T = ti Xi = k kt Y′ . 

 
 Multiplying (21) by kt′ , one has: 

θ(T) = k k kt Yθ ′ , 

θ2(T) = θk θ(T) = 2
k k kt Yθ ′ , 

 
and, in a completely general manner: 
 

Φ(θ)(T) = ( )k k kt Yθ ′Φ  = hi Xi . 

 
Here, k is indeed a summation index since it will disappear in the left-hand side of the 
equation.  From (20), one deduces, with the habitual notation for normed minors: 
 

Xi = αik Yk , kt′ = αik ti , 

Φ(θ)(T) = Φ(θk) kt′ αik Xk , 



GRAVITY, GROUPS, MECHANICS                                              34 

(22)     hi = Φ(θk) ti αjk αik . 
 
 This last formula is already quite remarkable; naturally, k is a summation index here.  
If k is contained only in the sum of products: 
 

αjk αik = j
iα  = 

1 if  ,

0 if  , 

i j

i j

=
 ≠

 

 
then we will obviously have a very simple and elegant result that the absolute differential 
calculus uses at each step today.  However, in the right-hand side of (22), things present 
themselves in a much more general manner; one must introduce the coefficient Θ(θk) into 
the summation over k, where the θk are the roots of an algebraic equation, and where Θ is 
an arbitrary function.  Now, the treatment of this case has been the basis for a true stroke 
of genius on the part of Henri Poincaré.  He first proposed to determine the product αjk 
αik without summation by provisionally taking: 
 

Θ(θ) = 
1

ξ θ−
, 

 
with ξ denoting an arbitrary constant.  Then: 
 

1
( )T

ξ θ−
= hi Xi = H, 

(23)   hi = 
1 jk

j ik
k

t α α
ξ θ−

, (ξ −θ)(H) = T. 

 
 This last equation may be written: 
 
(24)     ξhi – bki hk = ti . 
 
 In this system, one may solve for the h’s as functions of the t’s.  One finds (1): 
 

hi = − 
( )

ij

j

P
t

B ξ
 = − ti , 

 
the Pij and Bij containing, of course, ξ in place of θ.  Since the hi thus obtained are 
rational functions of ξ, they decompose into simple elements.  One gets: 
 

hi = − 
( )( )

ij
k

j
k k

P
t

B θ ξ θ′ −
, 

                                                
 (1 ) The solution of the system (24) leads one naturally to write the determinant in (19) as we did here.  It 
is the determinant in the Mémoire of Poincaré with the rows and columns exchanged. 
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if ij
kP  is what Pij becomes when one replaces ξ with θk .  Comparing with (23), one has: 

 

αjk αik = − 
( )

ij
k

j
k

P
t

B θ′
, 

and finally: 

(25)    Φ(θ)(T) = − ( )
( )

ij
k

j k i
k

P
t X

B
θ

θ
Φ

′
. 

 
 One may further write, with a Cauchy integral: 
 

Φ(θ)(T) = − 1
( )

2 ( )

ij

i i

P
d t X

i B
ξ ξ

π ξ
Φ∫ , 

or better yet: 

(26)    Φ(θ)(T) = − 1
( )

2
ij

i id t B X
i

ξ ξ
π

Φ∫ . 

 
 The contour of integration must naturally contain all of the roots θi in its interior, and 
the function Φ must be holomorphic on this contour. 
 The result (26) is certainly more striking than (25); it restores all of the habitual 
simplicity that the summation indices i and j contribute.  The formulas in which the 
summation index is triple play only a transitory role.  Observe, as well, that formulas 
(26), (25), and the preceding ones are given by Poincaré without the negative sign in the 
right-hand side; this amounts to saying that the illustrious author was not preoccupied 
with the sign that one attributed to the minors Pij exactly, that sign playing no essential 
part in the sequel. 
 It will remain for us to recall the preceding reasoning for the case where the 
characteristic equation has multiple roots; one will find several suggestions on that 
subject in the Mémoire of Poincaré. 
 If V is a linear combination with constant coefficients in the Xi then let: 
 

V = vi Xi , 
and if: 

(Xi Xj) = s
ij sc X , 

one has: 
(27)   θ(T) = k

j i ij kv t c X = bik ti Xk , bik = k
ij jc v . 

 
 
 6.  Fundamental exponential combinations. – Among the most immediate 
applications of the symbol Φ(θ)(T), one must point out the beautiful theorem of Poincaré 
that is expressed simply by the union of the two formulas: 
 
(28)    e−αV eβt eαV = eβU,  U = e−αθ(T). 
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 The product of three exponentials is a succession of transformations to be read from 
left to right.  The theorem is first established when the constants α, β are assumed to be 
very small, and such that one may neglect the terms of third order in α and β. 
 Under these conditions, the left-hand side of the first equation in (28) may be written: 
 

( )( )( )2 2 2 2 2 21 1 1
2 2 21 1 1V V T T V Vα α β β α α− + + + + +  

where: 
1 + βT + − αβ(VT – TV) ≡ eβT – αβθ(T), 

from which: 
U = T – αθ(T) ≡ e−αθ(T). 

 
 Now suppose that one pushes the approximation up to terms in β and αm, inclusively.  
The left-hand side of (28) must then become a symbolic polynomial in V and T that one 
may make regular in just one way, namely: 
 

ϕ(α, β) = ∑ AΠ. 
 One will have: 
 

ϕ(α + dα, β) = e− (α+dα)V eβT e(α+dα)V = e− dα V eβT edα V, 

ϕ(α + dα, β) − ϕ(α, β) = 
dA

d
d

α
α

Π∑ . 

 
 The left-hand side of this last equality linearly contains the A that therefore satisfy 
satisfy linear differential equations.  Moreover, these A must reduce to the coefficients of 
eβT for α = 0; these conditions suffice to determine them.  Now, one may satisfy the 
differential equations in question by taking, conforming to (28): 
 

ϕ(α, β) = eβT,  U = e−αθ(T). 
 Indeed, this gives: 
 

ϕ(α + dα, β) = eβU′,  U′ = e−(α+dα)θ(T), 
 

and one must verify that: 
e−dα V eβU edα V = eβU′. 

 
 Now here, since one neglects the square of dα, one may write, from (28): 
 

eβU″ = eβU′, U″ = e−dαθ(U) = e−dαθ e−αθ(T) = U′. 
 

 Therefore, the theorem (28) is indeed verified to an approximation of order one in β 
and order m in α. 
 Now, extend the approximation in β.  One will have: 
 

ϕ(α + dα, β) = e−α V e(β+dβ)T eα V = ϕ(α, β)ϕ(α, dβ), 
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and, from (28), since one neglects the square of dβ: 
 

ϕ(α, dβ) = edβU, U = e−αθ(T). 
 Therefore: 

ϕ(α + dα, β) = ϕ(α, β) edβU. 
 

 This is the differential system that is analogous to the one formed in the preceding 
approximation. 
 It thus gives rise to the same reasoning.  It is in accord with (28), which one sees 
again by writing: 

ϕ(α + dα, β) = e(β+dβ)U = eβU edβ U = ϕ(α, β) edβU. 
 

 Briefly, the theorem (28) is now completely established for any α and β. 
 It is obviously valid if: 
 

V = vi Xi , T = ti Xi , (Xi Xk) = s
ik sc X . 

 
 The same is true for the operators V and Xi , the latter being r in number, if: 
 
(29)    (VXi) = bik Xk ,  (Xi Xk) = 0, 
 
because this case immediately reverts to the preceding one. 
 Recall (28).  Upon permuting V and T, one has: 
 
(30)   e−βT eαV eβT = eαW,  W = e−βη(V). 
 
 The symbol η is formed with T as the symbol θ is with V.  Therefore: 
 

η(Y) = (TY),  η(V) = (TV) = − θ(T). 
 
 If the second of relations (29) enter into play then one has: 
 

η(X) = 0, η2(V) = 0, ηm(V) = 0, 
e−βη(V) = V – βη(V) = V + βθ(T). 

 
 Formula (30) thus becomes: 
 
(31)     e−βT eαV eβT = eαV + αβ θ(T). 
 
 This formula is not true if one abandons the second relation of (29), but the latter may 
again be considered as being satisfied for very small X, and thus for T that are likewise 
very small and of first order, one may make the β play the role of infinitely small in (31), 
and not T, since T appears only with the factor β. 
 To the same degree of approximation, formula (31) may be written: 
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eαV + αβ θ(T) ≡ eαV – βT eαV+ eαV βT ≡ eαV – eβT eαV+ eαV eβT, 
 

or, by virtue of (28): 
 

eαV + αβ θ(T) ≡ eαV – eαV eβU + eαV eβT,  U = e−αθ(T), 
 

and, always while neglecting the square of β: 
 

eαV + αβ θ(T) ≡ eαV (1 – βU + βT) ≡ eαV eβ(T−U) . 
 If we set: 
(32)    αθ(T) = W, T – U  = Y 
then it becomes: 

(33)    eαV+βW = eαV eβW, Y = 
1

( )
e

W
αθ

αθ

−−
. 

 
 Henri Poincaré posed a question here that was subtle in appearance, but which was 
meanwhile necessary in order for one to comprehend the necessity of all of the detours 
that were made in the preceding reasoning, at first sight.  In the first of equations (32), 
where T represents ti Xi and where W represents wi Xi , might one determine the t for any 
w?  It is necessary that one have: 

α βij ti = wj , 
 

which is obviously possible if only the determinant of the βij is non-null.  However, since 
one has never reasoned that with the Xi this determinant will always be null, from the 
second of relations (27), one infers the necessity of commencing with the case where V is 
forced to be a linear combination of the Xi ; the case of V a linear combination of the X 
may then follow as a limiting case, the characteristic equation (19) having a null root in 
this limiting case, a fact that is well-known and which does not alter the generalities that 
are associated with that equation, except to simplify them slightly. 
 
 
 7.  Generation of the Xi by starting with the structure. – Therefore, let the r 
operators Xi be linked by the relations: 
 

(Xi Xj) = s
ij sc X , 

 
in which the s

ijc  are the “structure constants,” which are linked by fundamental structural 

relations and are given in advance.  Also let, as in the preceding: 
 

T = ti Xi , U = ui Xi , v = vi Xi , W = wi Xi . 
 
  Let the series be regularized: 
 
(34)   ϕ(α, β) = eαV eβT = ϕ0 + βϕ0 + β2ϕ2 + … 
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 One has: 
ϕ(α, β + dβ) = eαV eβT edβT = ϕ(α, β ) edβT = ϕ(α, β)(1 + dβ T); 

hence: 
d

d

ϕ
β

= ϕT, mϕm = ϕm−1T. 

 
 These conditions, combined with ϕ0 = eαV, determine ϕ.  Now make: 
 
(35)    ϕ(α, β) = eW,  ϕ(α, β + dβ) = eW+dW ; 
it becomes: 

eW+dW = eW edβT. 
 

 Now, from (33), one may satisfy this upon setting: 
 

(36)     dβ T = 
1

( )
e

dW
η

η

−−
, 

 
if η is a symbol that is to W what θ is to V.  One thus has, in (36), a symbolic 
representation of a system of differential equations, equations that must be satisfied for 
the coefficients wi .  From (26), one may write: 
 

dβ T = − 
1 1

2
ij

j i

e
d dw B X

i

ξ

ξ
π ξ

−−
∫ , 

hence: 

(37)    ti dβ = − 
1 1

2
ij

j

e
d dw B

i

ξ

ξ
π ξ

−−
∫ . 

 Here, one has: 
(W Xi) =

s
ki k sc w X  = bis Xs ; 

 
the characteristic equation, after a change of rows and columns in the determinant, is 
(19); i.e., B(ξ) = 0.  As for Bij, it is the normed minor, defined as above in equation (19).  
Therefore, Bij is a rational fraction in ξ whose denominator B(ξ) is of degree r, while its 
numerator is of degree r – 1.  The integrals must be carried out in the plane of the 
complex variable ξ along a contour that envelops all of the roots of the characteristic 
equation. 
 It is now easy to conclude.  If the wj satisfy the differential equations (36), integrated 
in such a manner that they give wi = vi – i.e., ϕ = ϕ0 for β = 0 – then the two forms of 
ϕ(α, β), as written in (34) and (35), are equal (everything is now arranged so that this is 
true); finally, one has: 

eαV eβT = eW. 
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 The product of the finite transformations eαV and eβT is indeed a transformation of the 
same form, in which only the parameters are changed; they define a group.  The 
Campbell problem is then solved. 
 Nevertheless, the question, when treated as we just did, does not stop with that.  We 
have not reached the end of the first Mémoire of Poincaré, while the illustrious scholar 
dedicated three of them to the subject.  For the moment, we content ourselves with 
pointing out two very important transformations of equations (37). 
 We have: 

BijBik = Bij bik – ξ Bkj = 
0 if  ,

1 if  ,

k j

k j

≠
 =

 

hence: 

bik ti dβ = − 1
(1 )

2
kj

jd e dw B
i

ξξ
π

−−∫ . 

 
The use of the preceding relations for k = j changes nothing in this result, since the 
Cauchy integral is then augmented with another one that is identically null. 
 Here is another outcome of (37), which is prodigiously important, this time. 
 Equation (36) may be written: 
 

dW

dβ
= ( )

1
T

e η
η

−−
= − 1

2 1
kj

j i

d
t B X

i e ξ
ξ ξ

π −−∫
, 

 
the Cauchy integral providing a new approach to the formula (26).  Therefore: 
 

(38)    idw

dβ
= − 1

2 1
ij

j

d
t B

i e ξ
ξ ξ

π −−∫
. 

 
Now observe that equation (37), when solved for the dwj, gives a result of the form: 
 

idw

dβ
= Aji tj , 

hence: 

i

f

w

∂
∂

idw

dβ
= Aji tj 

i

f

w

∂
∂

= ti Xj ,  Xj = Aji 
i

f

w

∂
∂

. 

 
 Comparing this with (38), one has: 
 

Xj = − 1

2 1
ij

i

d f
B

i e wξ
ξ ξ

π −

∂
− ∂∫ . 

 
This may be considered as a result of the greatest logical and esthetic value.  By starting 
with the given structure, from the characteristic equation and the minors of Bij, one sees 
that one may very simply construct a Cauchy integral whose contour encloses all of the 
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roots of the characteristic equation, but no the points 2kiπ, an integral that represents r 
infinitesimal transformations that are associated with the structure considered.  
Nevertheless, one must indeed observe something that Poincaré did not say immediately, 
and which came to light only at the beginning of his second Mémoire. 
 We began our reasoning in paragraph 3 with the operators X that one represents, first 
of all, as each constructed from certain independent variables x, the w used in the last 
place being only external parameters to the X, so to speak.  Now, it is not these X that we 
just constructed, but X that depend upon the w, which meanwhile indeed generate a group 
having the given structure, but it is a parametric group.  Briefly, we have here, at last, a 
fact that, with Élie Cartan, we originally presented our fascicle XXXIII. 
 The most general construction of groups depend, above all, on the construction of 
parametric groups; it is notably the latter that generates the group spaces, in the sense of 
Cartan. 
 
 Another fundamental remark. – In our fascicle XXXIII and at the end of paragraph 2 
of the present chapter, we have recalled that certain authors, notably Schur and Pascal, 
have attached the theory of finite and continuous groups to that of Bernoulli numbers.  
Now, the exponential theory that is due to Henri Poincaré, which is essentially 
constructive, also makes this relationship evident.  It suffices, in our last formula giving 
the operator Xj , to propose to study the integral of the right-hand side upon developing: 
 

1 e ξ
ξ

−−
, 

 
in increasing powers of ξ.  The Bernoulli numbers appear immediately as the coefficients 
of such a development. 
 
 8.  Terminal comparisons. – The comparisons, with which we are under material 
obligation to terminate a chapter of limited extent, may be the point of departure of new 
and great developments.  In Chapter I of the present exposé, we recalled that gravity, 
even with the very recent improvements, is always subordinate to its dependence upon 
transformations of multiple integrals.  We have begun to see, in Chapter II, that the same 
is true for the new mechanics.  The theory of groups, with its exponential character, 
emerges at the same time as the preceding disciplines and with the same principles.  
Some of the works of Campbell and Poincaré do not seem to correspond to physical 
reality, but the first research of Charles Hermite on matrices gives the same impression. 
 From the bibliographic point of view, we cite the Mémoires of Th. De Donder [27], 
who united gravity and mechanics by many relationships between initial principles that 
are much than the ones that formed the basis for our theories.  The conclusion is also that 
there is nothing to oppose a link between gravity and wave mechanics [28].  The 
following chapter will confirm that impression. 
 One of the first developments in the statistical mechanics is comprised of the theory 
of adiabatic invariants that was presented in the work of R.-H. Fowler (loc. cit.), but 
reprised by T. Levi-Cività [29].  The eminent Italian geometer has made great use of the 
methods of Lie concerning the transformation of canonical systems. 
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 All of these domains are in a state of active development; one may not encompass or 
fix anything.  If the work of Birtwhistle is translated into French then the fundamental 
work of Louis de Broglie is translated into German [30].  Another exposition arrived in 
Leningrad that is particularly physical, very clear, very Einsteinian, and is due to J. 
Frenkel [31].  All of this is, without a doubt, only an initial surge. 



 

CHAPTER III 
 

GEOMETRY AND MECHANICS OF CHANNEL SPACES 
 

 
 1. Stokes formula for channel spaces. – The formula thus enunciated is: 
 

(1)    U dP V dQ
Σ

+∫ = x y z

x y z

V U
P P P d

P Q
Q Q Q

σ

α β γ
σ ∂ ∂− ∂ ∂ 

∫∫ . 

 
 An elementary channel has a quadrilateral section.  On its lateral faces, P, Q, P + dP, 
Q + dQ are constants. 
 Let there be a channel containing dσ  (in x¸y, z) and dS (at X, Y, Z).  The finite barriers 
σ and S are intercepted by a sheaf of channels; they are in channel projection.  Upon 
calling Λ(P, Q), the parenthesis that appears in the double integral in (1), one may write 
for Λ dP dQ: 

( , ) x y z

x y z

P Q P P P d

Q Q Q

α β γ
σΛ = 

2 2 2

( , ) ( , , )

( , , )

X Y Z

X Y Z

X Y Z
X Y Z

P Q X Y Z dS
P P P

X Y Z
Q Q Q

Φ Φ Φ
Λ Θ

Θ Φ + Φ + Φ
. 

 
 The barrier S has the equation Φ = 0.  Set: 
 

(2)   
2 2 2

1
X Y Z

X Y Z

X Y Z
X Y Z

P P P

Q Q Q

Φ Φ Φ

Θ Φ + Φ + Φ
= 1

1

( , , ),

( , , ),

(0, , ) on ,

X Y Z

P Q

P Q S

∆
∆ Φ
∆

 

 
since, in order to determine Λ(P, Q): 
 

Λ(P, Q) ∆1(0, P, Q) = 1. 
 It is the means to have: 

S
dSΘ∫∫ = 

1(0, , )x y z

x y z

d
P P P

P Q
Q Q Q

σ

α β γ
σ

∆∫∫ . 

 
 The double integral in the right-hand side is Stokesian and easily takes the form of the 
left-hand side of (1). 
 Briefly, in a channel or a sheaf of channels, the double integrals of Θ dS are invariant 
under propagation.  The general and fundamental equation of the phenomenon is (2) with 
the right-hand side ∆1(Φ, P, Q).  General propagating surfaces S may correspond to that 
partial differential equation in Θ.  They depend upon arbitrary elements; for example, a 
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parameter t that one will call time.  Therefore, along the channel one may have the 
propagation of invariant elements (or depending upon time in a certain manner), which 
are the analogues of masses (constants or variables).  There are therefore the foundations 
of a very general mechanics [38] in the preceding geometrical considerations.  This 
mechanics will have equation (2) for its fundamental equation, which is analogous to the 
Jacobi equation written for the motion of a point, but much more plastic. 
 
 
 2.  Comparisons with the Jacobi equation. – These comparisons seem to come 
about in various ways.  For the moment, let P and Q be homogeneous of degree zero.  
Then: 

XPX + YPY + ZPZ = 0,  XQX + YQY + ZQZ = 0. 
 

 The equation Φ = 0 will take the form f = 1, with f homogeneous of order one, which 
is always possible.  On the surfaces f = 1, equation (2) may be written, by using Euler’s 
theorem: 

(3)    
2 2 2

1 1

, ,

X Y Z

X Y Z

X Y Z
X Y X

f f f

P P P
X Y Z f f f Q Q Q
f f f

  + +Θ 
 

 = 2

( , )P Q

f

∆
, 

or rather: 
2 2 2

f f f

X Y Z

∂ ∂ ∂     + +     ∂ ∂ ∂     
= , ,

X Y Z
F

f f f

 
 
 

. 

 
 This is the homogenized Jacobi equation.  On any surface f = 1, it takes on the 
ordinary form: 

(4)     
2 2 2

f f f

X Y Z

∂ ∂ ∂     + +     ∂ ∂ ∂     
= F(X, Y, Z). 

 
 However, one will say, with P and Q homogeneous of zero the channel will always 
be rectilinear and, more exactly, conical with summit O. 
 Now, one may vary them, from a general remark concerning (1). The Pfaffian 
reduction is: 

U dP + V dQ = M dN, 
 
which translates, in the right-hand side of (1), into: 
 

x y z

x y z

P P PV U
Q Q QP Q

 ∂ ∂− ∂ ∂ 
= x y z

x y z

M M M

N N N
. 

 
 Moreover, (3) may take the form: 
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(5)     
2 2 2

1
X Y Z

X Y Z

X Y Z
X Y Z

f f f

M M M
f f f N N NΘ + +

= 2

1

f
. 

 
 The right-hand side obviously reduces to 1 on a surface f = 1.  However, in (5), M and 
N are again homogeneous of order zero as functions of P and Q.  Observe then that (5) 
does not change if, for example, one replaces M and N, respectively, by: 
 

M* = M + ρ(f),  N* = N + σ(f). 
 

 Thus, channels appear anew that are not rectilinear and are very profoundly 
indeterminate [39]. 
 It is essential to remark that in classical mechanics (4) corresponds to the motion of a 
single point, and that here one associates (4) with channel spaces in which the multi-
pointlike motions are the general case. 
 
 3.  Jacobi and Schrödinger symbols. – Take these two types of symbols in the 
respective forms: 

J(S) =
22 2

2S S S
S

x y z

 ∂ ∂ ∂   + + − Ω    ∂ ∂ ∂    
, 

(6)      Σ(W) = ∆W + WΩ. 
 
 Moreover, set: 

u = S1 + S2, v = S1 – S2 . 
 
 Now, change the notations in the double integral in (1) by setting: 
 

(7)    

( , )( ) ,

( , )( ) ,

( , )( ) .

y z z y x x

z x x z y y

x y y x z z

P Q P Q PQ w uv F

P Q PQ P Q w uv G

P Q P Q P Q w uv H

Λ − = + +
Λ − = + +
Λ − = + +

 

 
 This system (7), which is collectively elementary, seems fundamental in regard to 
putting the geometry of mechanics in channel spaces into quantum form, wavelike or 
corpuscular being the most commonly adopted forms.  One is forced to have: 
 

Fx + Gy + Hz = 0, 
 

which may be written, ∆ being the Laplacian in three variables: 
 

∆w + u ∆v + ux vx + uy vy + uz vz = 0, 
or indeed: 
(8)    ∆w + (S1 + S2) Σ(S1 − S2) + J(S1) − J(S2) = 0. 
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 This relation, which is the only one that is necessary for (7) to be meaningful, couples 
the Jacobi symbol J with the Schrödinger symbol Σ [40] in a non-symbolic manner. 
 This is, without a doubt, the most natural pretext for the introduction of Σ. 
 
 
 4.  Quantization. – Recall the Schrödinger equation, with the notations of Weyl [17], 
namely: 

(9)      
2

2

h

m
ϕ∆ + (E – V)ϕ = 0. 

 
 The W in (6) is replaced by ϕ.  In (9), V represents the potential energy, and E is the 
constant total energy. 
 Set: 

ϕ = eiνt ψ(x, y, z). 
One has: 

ψ = e−iνt ϕ,  − 
h

i t

ψ∂
∂

= hνψ, 

 
and equation (9) in ψ becomes: 
 

(10)    
2

2

h

m
ψ∆  − 

h

i t

ψ∂
∂

− Vψ = 0 if  E = hν. 

 
 One sees that merely the fact that one introduces time into the Schrödinger equation 
in a periodic fashion entails the quantization of energy. 
 
 
 5.  Wave equations. – Now recall the Schrödinger equation, with the notation (6): 
 

∆W + WΩ = 0. 
 

 Upon seeking the solutions that are periodic with respect to time, as usual: 
 

W = eiνt w(x, y, z), hence,  
2

2

W

t

∂
∂

= −ν2 W, 

one may write: 

∆W −
2ν

Ω 2

2

W

t

∂
∂

= 0. 

 
 With the notation employed in (9) for W and E = hν, it becomes: 
 

∆W −
2

1

C

2

2

W

t

∂
∂

= 0, C = 
2 ( )

E

m E V−
. 

 



GRAVITY, GROUPS, MECHANICS                                              47 

 This value of C is precisely the result that one obtains by comparing the equation of 
propagation of a wave front: 
 

22 2
F F F

x y z

 ∂ ∂ ∂   + +    ∂ ∂ ∂    
= −

2

2

1 F

C t

∂ 
 ∂ 

 

with the Jacobi equation: 
22 2

F F F

x y z

 ∂ ∂ ∂   + +    ∂ ∂ ∂    
= 2m(E − V), 

 
for F when it is replaced by F(x, y, z) – Et. 
 One sees the simplicity with which the mechanics of channel spaces is linked to the 
fundamental formulas of wave theories, whether corpusclar or quantum. 
 
 
 6.  Homogeneity and non-commutativity. – How does the preceding discussion 
relate to non-commutativity?  It is easy to see in paragraph 2 that the latter notion is 
replaced by that of homogeneity because homogeneity permits one to create non-
commutative differential operators in various ways.  One first has Euler’s theorem: 
 

f f f
x y z

x y z

∂ ∂ ∂+ +
∂ ∂ ∂

= mf, 

which associates the operators: 

x

∂
∂

, 
y

∂
∂

, 
z

∂
∂

 

and: 
x, y, z. 

 
 This association was pointed out by Weyl for probabilistic reasons [17].  It 
immediately gives combinations such as: 
 

( )xf x f
x x

∂ ∂−
∂ ∂

= f, 

 
a fact that was already pointed out at the beginning of the preceding chapter. 
 The theory of groups permits us to vary this.  One may find, as we saw once more in 
paragraph 3 of Chapter II, linear differential operators X and Z, such that XZ = ZX.  
Furthermore, let: 
 

Y = Z + rX,  hence,  XY – YX = X(r)X. 
 

 Euler’s theorem gives X(f) = kf, and, taking r such that X(r) = 1, one might have: 
 

XY(f) – YX(f) = kf. 
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 With n variables xi, and f homogeneous of order k, one further has: 
 

( )i i
i i

x f x f
x x

∂ ∂−
∂ ∂

= 
0 if  ,

if  ,

i j

nf i j

≠
 =

 

 
because the index becomes a summation index for i = j. 
 Briefly, homogeneity is equivalent to non-commutativity, from several points of 
view. 
 This is why we find appeals to homogeneity in this chapter, while other authors will 
take recourse to notion of non-commutativity. 
 Moreover, the fundamental partial differential equation (2) for Φ is an integrable first 
order equation if one considers a differential system that is mixed, like all of these 
systems, with the fundamental constructions of the theory of groups.  That theory and 
mechanics again appear to be inseparable. 
 
 
 7.  Probabilistic considerations. – The double integral of (1) or, from (7): 
 

dw dv
u d

dn dnσ
σ + 

 
∫∫ , 

 
obviously expresses a certain probability for a certain phenomenon to take place in the 
sheaf of channels intercepted by the barrier σ.  It is indicated that one let ϖ(u, v, w) dτ 
express the probability for an analogous phenomenon to be produced in the volume 
element dτ.  In a theory that agrees with (8), which involves only solutions v of the 
Schrödinger equation, the same probability will be simply ϖ(v) dτ.  Conditions of 
simplicity might guide one in one’s choice of ϖ(v); we reduce that function to v2, which 
is always possible.  However, the Schrödinger equation that was invoked here is the time-
independent one Σ = 0, whereas, in general, one must consider the complete equation 
(10) and likewise imaginary solutions ψ of it.  One then has that the probability v2dτ is 
replaced by: 
(11)     dψψ τ , 
 
the ψ surmounted by an overbar denoting the imaginary conjugate of ψ. 
 The study of the expression (11) and its integrals is a limiting case of the study of the 
forms with conjugate indeterminates of Charles Hermite: 
 
(12)    ik i ka x x , aki = ika , 

 
forms that correspond to unitary geometry, whose preliminary study plays a very 
important role in current microphysics.  The works in which such considerations are 
developed tend to become quite numerous; we confine ourselves to once more citing 
those of H. Weyl [17], as well as the Leçons of Élie Cartan [41], which lift the purely 
geometric spirit. 
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 8.  Probability fluids and waves. – The considerations of this chapter are essentially 
in accord with the fundamental remark that Bateman made in regard to equation (9) of 
the preceding chapter.  In order to satisfy: 
 
(13)     Fx + Gy + Hz = 0, 
we now set [42]: 

(14)   

2 2 ( , )( ),

2 2 ( , )( ),

2 2 ( , )( ).

x x y z z y

y y z x x z

z z x y y x

F uv vu P Q P Q PQ

G uv vu P Q P Q P Q

H uv vu P Q P Q P Q

 = − = Λ −
 = − = Λ −
 = − = Λ −

 

 
Equation (13) takes the form: 
(15)     u ∑ v – v ∑ u = 0, 
 
while always denoting the Schrödinger symbol (6) by Σ.  Now, (15) may also be written: 
 

(16)    ( ) ( ) ( )
x y z

ρλ ρµ ρν∂ ∂ ∂+ +
∂ ∂ ∂

= 0 

on setting: 

(17)    ρ = uv,  λ, ν, µ = log
( , , )

v

x y z u

∂
∂

. 

 
One has in (16) an equation of continuity relative to a permanent fluid motion. 
Suppose we have the complete Schrödinger equation (10) and its conjugate: 
 

(18)    
2

2

h h
V

m i t

ψψ ψ
∗

∗ ∗∂∆ + −
∂

 = 0. 

It gives: 

( ) ( )
2

hi

m t
ψ ψ ψ ψ ψψ∗ ∗ ∗∂∆ − ∆ +

∂
 = 0, 

i.e.: 

(19)    ( ) ( ) ( )
x y z t

ρρλ ρµ ρν∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂

= 0, 

upon setting: 

(20)   ρ = ψψ*, λ, µ, ν = log
2 ( , , )

hi

m x y z

ψ
ψ

∗∂
∂

. 

 
This time, (19) refers to a general fluid motion and ρ dτ is the probability (11), but 
reconstructed by a more complete reasoning.  In order to be in accord with [42] the ψ 
surmounted by an overbar is replaced by ψ*. 
 In (10) and (18) we have equations that relate to probability waves, which are 
imaginary waves in general, and which does not contradict the fact that the results (20) 
are real. 
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 The search for extensions of (16), (17), (19), and (20) is one of the most current 
questions of wave mechanics.  We cite the results of Crudeli [ 43], [44], and Darwin, with 
comments by Néculcéa [45]. 
 Here, we also direct attention to the determination of Λ, P, Q by (14); the functions P 
and Q are then two distinct integrals of: 
 

F G H
x y y

θ θ θ∂ ∂ ∂+ +
∂ ∂ ∂

= 0. 

 
 This determines a channel space in which the transversal barriers propagate like wave 
fronts while transporting certain integrals.  These fronts, from one channel to a 
contiguous channel, might not be consistent; they then emit corpuscles. 
 We again remark that one may imagine that the functions F, G, H in (13) depend 
upon not only x, y, z, but also a function f(x, y, z) and the partial derivatives of f up to an 
arbitrary order.  One thus has an immense class of partial differential equations of 
arbitrary order in f, such that they all correspond to channel propagations. 
 
 
 9.  Conclusions. – While nonetheless regretting the brevity of this fascicle, we still 
believe that it has sketched out some essential paths.  We first recalled that the principles 
that form the theory of gravity lead to spatial considerations of extreme generality in 
which the theory of groups of transformations is included.  One does not have to ponder 
too long on the latter situation to find the origin of symbols that are or are not 
commutative; this is why we have developed the considerations due to Henri Poincaré, as 
well as further applying them to physical applications. 
 Finally, one can go only so far into the channel spaces, which are initially Euclidian, 
without encountering non-Euclidian considerations that correspond to the forms (12); it 
remains to pursue an extremely interesting geometry in regard to its invariances, its non-
commutative matrix multiplications, and its representations by groups. 
 Luther Pfahler Eisenhart, of Princeton University, just published a very remarkable 
book on the theory of continuous groups [47].  From many points of view, that work 
develops the present fascicle; it is the quite beautiful analysis that we first pondered that 
must subsequently occupy theoretical physics. 
 

_________ 
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