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Summary 

 

 According to the new viewpoint of modern physics, the gravitational action between two 

masses is not transmitted instantaneously, but with the velocity of light, which is what also happens 

with the electromagnetic action. 

 Recently, M. Abraham formulated a new theory of the gravitational field according to which 

the actions are transmitted with precisely the speed of light (c), which depends upon the 

gravitational potential, which is consistent with the hypothesis that Einstein proposed quite 

recently (1). 

 Abraham first assumed the Laplace equation for c2 for a field that was homogeneous, static, 

and massless (2).  However, Einstein assumed the Laplace equation for the velocity itself c for the 

same field in order to make his equivalence principle valid for the propagation of light (3).  As a 

result, Einstein (4), as well as Abraham (5), were led to drop their initial hypotheses in order to 

assume the Laplace equation for c . 

 If one assumes a reference system whose z-axis is normal to the equipotential planes of a 

homogeneous field that is static and massless then with an opportune choice of origin and unit of 

measurement, the three hypotheses, which are recalled here in the order in which they followed 

chronologically, would give for c : 

 

   (I)  c = z   (Abraham), 

 

  (II)  c = z  (Einstein), 

 

 (III)  c = z2  (Einstein and Abraham) . 

 

 
 (1) A. Einstein, Ann. Phys. (Leipzig) 35 (1911), pp. 898.  

 (2) M. Abraham, Rend. Reale Accad. dei Lincei 22, 2nd sem. (1911), pp. 679.  

 (3) A. Einstein, Ann. Phys. (Leipzig) 38 (1912), pp. 355. 

 (4) A. Einstein, Ann. Phys. (Leipzig) 38 (1912), pp. 456. 

 (5) M. Abraham, Nuovo Cim. 4 (1912), pp. 459. 
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 Under any of those hypotheses, it would follow that the speed of light would no longer be 

constant and that its propagation would no longer be rectilinear.  The light ray would then describe 

a curve whose nature would depend upon the particular relation that one establishes between c and 

z. 

 In the new theory of gravitation, the equations of motion of material points are also radically 

modified, in such a way that the trajectory of the point will generally depend upon the way that 

the speed of light varies, and in that way, the trajectory will be coupled with that of light rays. 

 In the present article, I propose to establish precisely those relations for passing between the 

trajectories in the general case of an arbitrary massless static field for which c will then be an 

arbitrary function of the coordinates. 

 The form that the equations of the light ray will take by virtue of Fermat’s principle is stated.  

From a comparison of those equations with those of the trajectory of a material point that is valid 

in the new theory, one will arrive at the interesting result that the trajectories of a material point 

that emanate from a point in a given direction constitute a manifold of curves that has the light 

ray that emanates from that point in the same direction as a limit curve.  In other words, if the 

velocity of a material point approaches that of light then its trajectory will become identical to the 

light ray (§ 2). 

 In the case of a field whose equipotential surfaces are (horizontal) parallel planes, the speed of 

light will become a maximum whether the ray is horizontal.  Furthermore (§ 3), the light ray and 

the material point that emanates horizontally and at the same instant from the same point will 

simultaneously approach points of the same horizontal, and the horizontal projections of the 

motion will have the same relationship that the initial velocities did. 

 It will then follow that one can determine the trajectory of the material point when one is given 

that of the light ray. 

 Therefore, if c is proportional to a positive power of the height z then light will have its 

maximum velocity at the highest point of the trajectory and will arrive normally to the horizontal 

plane; in addition, two arbitrary rays will always describe similar curves.  The trajectories of two 

material points that have velocities at the points where they are horizontal that are proportional to 

that of light at those same points (§ 5). 

 For the three cases that were posed above, one will then have: 

 

(I) 

 
c = z  The ray describes an ordinary cycloid, while the material point 

describes a Fermat cycloid. 

 

(II) 

 

c = z The ray describes a circle, while the material point describes an ellipse. 

(III) c = z2 The ray describes an elastic curve, while the material point describes 

a curve that is affine to the elastic curve. 

 

 The time that it takes for either the ray or the material point to reach the point at which it motion 

is horizontal to the plane for which c = 0 is finite and proportional to the height in the first case, 

but infinite in the other two. 
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 We add that the case of the circle, which was studied before by Garbasso (1), is the only case 

other than that of rectilinear propagation in which the wave surfaces are spheres, with the 

difference that they are eccentric spheres. (It is precisely because the wave surfaces are spheres 

that Einstein could assume his equivalence principle in that case.) 

 Results are obtained in the cases in which the field has equipotential surfaces that are planar 

and parallel, and in particular, in the three special cases that are of interest to the theory of 

gravitation from a purely theoretical standpoint, one is given that in the field considered the speed 

of light must annulled on a certain plane. That cannot be neglected in ordinary optics, in which 

one considers optical media in which the index of refraction varies with the distance from a given 

plane. 

 I must warmly thank prof. Abraham, who suggested this article to me and whose advice has 

been of valuable assistance to me. 

 

 

§ 1. – General equations of the trajectories of light rays. 

 

 The speed (c) of a light ray at any point in the field in the field considered is a function of only 

position [c = c (x, y, z)].  When one assumes Fermat’s principle, the determination of the trajectory 

(s) will reduce to a problem of finding a minimum, and more precisely, the ray that passes through 

one point and another will follow the path that takes the least time.  Therefore, the curve travelled 

must be such that the time required: 

 
 

must be a minimum.  The calculus of variations then teaches that one must then annul the first 

variation of that integral: 

 
which implies the three equations: 

 

(I)      

 

 Those are the general equations of the trajectories of light rays.  It is clear that they are just the 

equations of the brachistochrone for an arbitrary point that moves with velocity c. 

 In order to integrate (I) when one knows the form of the function c (x, y, z), it is enough to find 

the integral for two of those equations, since the remaining one will then be satisfied. 

 Indeed, (I) are not independent, but when one is given two of them, the third one will be a 

consequence of the latter.  That is easily verified by multiplying (I) by dx / ds, dy / ds, dz / ds and 

summing, which will give an identity. 

 

 

 
 (1) A. Garbasso, Archiv für Optik I 5 (1908), pp. 251. 
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§ 2. – General equations of motion for a material point in a gravitational field. 

 

 As was said in the introduction, starting from the hypothesis that the speed of light depends 

upon the gravitational potential, M. Abraham developed a new theory of gravitation, on the basis 

of which, the theorem of impulse and energy for a material point that is subject to only the force 

of gravity would be expressed by the equations (1): 

 

 
(II) 

 

 

 

(G = impulse vector, E = energy of the point). 

 If one now introduces the Lagrange function (L), by means of which and the velocity of the 

point (v) one can express the values of the impulse and energy as: 

 

(1)      

 

then it will follow that L must be a homogeneous function of degree one in v and c (2).  In particular, 

in agreement with the theory of relativity, L will assume the form (3): 

 

(2)  L = M c k , 

 

in which M is the mass of the point, and: 

 
 

 If one substitutes (2) in (1) then one will have: 

 

(1.a)      

 

 

for the impulse and energy, by means of which, from the first of (II), one will have: 

 

 

(II.a)     

 

 
 (1) M. Abraham, Communication to the Intern. Congr. of Math. at Cambridge (22-28 August 1912).  Ann. di Mat. 

pura ed appl., Lagrange Centenary volume (3) tomo XX, pp. 29. 

 (2) M. Abraham, Ann. di Mat. pura ed appl., loc. cit. 

 (3) M. Abraham, Ann. di Mat. pura ed appl., loc. cit., Nuovo Cim. 4 (1912), pp. 459. 
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which is an equation that coincides with the equation of motion for a point that Einstein gave 

(second form) (1).  Since later on we will always confine ourselves to a static gravitational field, 

for which c / t = 0, from the second of (II), we will have the energy theorem: 

 

E = const., 

 

and consequently, from the second of (1.a): 

 

(3)       

 

which once more expresses the theorem of the conservation of energy in the form that Abraham 

found in the first article in Nuovo Cim. (2). 

 If one eliminates k from (II.a) by means of (3) then one will have: 

 

(II.b)      

 

 

 In that form, the equations of motion of the material point will coincide with those of Einstein 

in the first form (3). 

 In terms of components, (II.b) can be written: 

 

 
or also: 

 

(II.c)    

 

 

 We then have the equations of the trajectory of the material point whose form is closely 

analogous to that of equations (I) for the light ray.  We can also prove that the equations of the 

trajectory of the material point (II.c) will become coincident with those of the light ray (I) in the 

limiting case in which the velocity of a given point of the trajectory and that of light are equal at 

that point.  To that end, we can first prove that if the velocity (v0) of the material point coincides 

with that of light (c0) at a given point P0 then we will have v = c at any other point P of the trajectory 

of the material point. 

 Indeed, it follows from (3) that: 

 
or 

 
 (1) A. Einstein, Ann. Phys. (Leipzig) 38 (1912), pp. 355.  

 (2) Max Abraham, Nuovo Cim. 3 (1912), pp. 211.  

 (3) A. Einstein, Ann. Phys. (Leipzig) 38 (1912), pp. 355. 
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from which: 

 

(4)     

 

 

which shows precisely that if v0 = c0 at a given point P0 then one will have v = c at all other points 

of the trajectory of the material point.  Now suppose that the velocity of the material point coincides 

with that of light at a point.  At any point of the curve that is represented by (II.c), one can set v = 

c, and (II.c) will then coincide exactly with (I), which therefore proves the theorem. 

 Now consider a light ray that emanates from P0 at a given direction with the velocity c0 that 

belongs to that point and a material point that starts from P0 in the same direction with a velocity 

v0 < c0 , so it will then describe a trajectory that is distinct from the light ray.  Suppose that v0 now 

increases while preserving its initial direction, which is equal to that of the ray.  The corresponding 

trajectory will also change, and in the limit of v0 = c0 , it will coincide with the light ray.  Therefore: 

The trajectories of a material point that originate from that point in a given direction will constitute 

a manifold of curves that has the light ray that originates from the same point in the same direction 

as a limiting curve. 

 

 

§ 3. – Gravitational field whose equipotential surfaces are parallel planes. 

 

 Suppose that the gravitational field has equipotential surfaces that are planes parallel to the xy-

plane.  In that case, the gravitational potentials, as well as c, depend upon only z : 

 

(5)       c = c (z) . 

 

 Assume that the positive sense of z is the one for which dc / dz > 0, so that c will increase with 

z. 

 Let us then see what we will have for the trajectories of the light ray and the material point. 

 

a) Trajectories of the light ray. 

 

 Since, by the hypothesis (5), one will have c / x = c / y = 0, and the first two of (I) will 

give: 

 
 

from which, it will result that the light rays lie in a vertical plane (that is normal to the xy-plane). 

 Set B = 0 and study the trajectories in the vertical xz-plane.  If one sets A = 1 / c0 then (I) will 

reduce to just the two equations: 
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dx

ds
= 

0

v

c
 , 

(I.a) 

 
 

and once more, we have that one is a consequence of the other.  As for the significance of the 

constant c, it seems obvious from the first of (I.a) that since the direction cosine of the trajectory 

dx / ds = ± 1 for c = c0 , c0 will be the value that velocity assumes at the points where the ray is 

horizontal (i.e., parallel to the x-axis) and that that value will be the maximum over all points of 

the ray considered.  From the first of (I.a), we can also derive the expressions for the horizontal 

and vertical components, (cx) and (cz), resp., of the velocity of light: 

 

(6)        

 

 

(7)     

 

 

 

b) Trajectories of the material point. 

 

 Under the hypothesis (5), (II.c) will also reduce to just two equations, and the curves that they 

represent will only lie in vertical planes.  If we confine ourselves to the xz-plane then we can 

deduce those equations more simply by starting from (II.b): 

 

 
(II.d) 

 

 

 

 Let the index 0 denote the entities that are referred to the points at which the trajectory is 

horizontal (so one will then have v0x = v0).  From the first of (II.d), one will get: 

 

 
so 

(6.a)      
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and therefore, since 2

zv  = v2 – 2

xv , from (4), one will have: 

 

(7.a)       

 

 

c) Comparing the trajectories of the material point and light rays. 

 

 In a) we let c0 denote the maximum value of the speed of light along a ray, which is a value 

that it is assumed wherever it is horizontal, and we let v0 denote just the value of the speed of the 

material point at the points where the motion is horizontal.  We must note that v0 is not the 

maximum value of v along the trajectory considered, because in fact, from (4) it will have its 

maximum value vm for: 

 
i.e., for: 

 
 

which differs from c0 , and for which we will have: 

 

 
 

 In the case of free fall, v0 = 0, and one will have vm = c0 / 2, which is what Abraham found 

before (1). 

 When one compares (6) with (6.a) and chooses the sense of propagation of light and the motion 

of the point conveniently, it will result that: 

 

(6.b)      

 

 

so vx will coincide with cx only for v0 = c0 , while it will result from (7) and (7.a) that one always 

has: 

 

(7.b)     vz = cz . 

 

Therefore: 

 

 
 (1) M. Abraham, Ann. di Mat. pura ed appl., loc. cit. 
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 The vertical components of the velocity of a material point and a light ray that are initially 

both horizontal at the same point P0 will always be equal. 

 

That means that vz is independent of the initial velocity v0 and that: 

 

 At any later instant, the light ray and the material point that start from the same instant 

horizontally at the point P0 will reach points with equal ordinates – i.e., the same horizontal. 

 

 The abscissas of those points (x, z for the light ray, ,  for the material point) are, if one 

supposes that P0 is on the z-axis: 

 
 

From (6.b), the second integral will become: 

 

 
so 

 

(8)       

 

 

i.e., the abscissas of the points of the trajectories of the light ray and the material point that 

originate horizontally at the same instant from the same point on the z-axis will both have the same 

ratio as the initial velocities. 

 (We shall establish, once and for all, the convention that we shall use Latin or Greek symbols 

according to whether we are referring to the light ray or the trajectory of the material point, resp., 

while still using c and v for the respective velocities.) 

 Based upon (8), the trajectory s of the light ray and all of the possible trajectories  of the 

material points that are horizontal at P0 will constitute a congruence of affine curves. 

 As for the radius of curvature r of a light ray, one will have the simple expression: 

 

(9)       

 

 

 

 In fact, from (6) and (7), we will have: 
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If one substitutes that in the expression for the radius of curvature: 

 

 
then one will get (9) precisely. 

 Analogously, (6.a) and (7.a) will give: 

 

(10.a)      

 

and therefore: 

 
 

from which the radius of curvature of the trajectory s at the point Q (, ) will become: 

 

 
and from (4), one will have: 

 

(9.a)     

 

at the points where  = z . 

 In particular, one will have: 

 

(9.b)     

 

at the point P0 . 

 One sees (as would only be natural) that (9) and (9.a) will coincide for v0 = c0 , and therefore 

for v = c ; i.e., the light rays represent the limiting trajectory that is described by the material point. 

 Now suppose that: 
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in particular, in which a and  are constants that satisfy the condition that dc / dz > 0 uniquely, 

which is equivalent to assuming that the positive sense of z is the one in which c increases. 

 Therefore: 

 
 

in that case, which is zero only along the x-axis, and it results from this that if one takes the point 

P0 to be on the positive z-axis and supposes that light propagates from P0 then x, and therefore cx, 

will be always increasing or always decreasing. 

 In what follows, we will confine ourselves to the positive quadrant of x and z and let c0 = 
0a z  

be the maximum value of c, from which it will result that z0 is just the maximum value that z 

assumes along the trajectory – i.e., P0 is the vertex of the curve s.  Therefore, x will increase as z 

decreases in the quadrant considered.  It will then follow that dx / dz < 0, so: 

 

(12)      

 

 

 Assuming that the tangent to the ray has the positive sense that corresponds to the sense of 

propagation of light, the angle  that the tangent makes with the x-axis will vary between 0 at P0 , 

where one has dz / dx = 0, and  / 2 along the x-axis, where dz / dx =  .  Therefore, the light ray 

will meet both the axes normally, and the angle  between the tangent and the horizontal axis will 

be given by: 

 

(12.a)     

 

 Analogously, one will have: 

 

(12.b)     

 

 

for the trajectory of the material point that originates horizontally at P0 , in which  is the angle 

between the tangent to the curve  at the point Q (, ) and the horizontal. 

 It will follow that: 
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§ 4. – Correspondence between the trajectories of the material point 

and those of the luminous point. 

 

 Once more under the hypothesis (11), consider two distinct light rays s and s whose vertices 

are at P0 and 0P   along the z-axis.  Let P (x, z), P (x, z) be two points on s and s that have parallel 

tangents (Fig. 1). 

 
Figure 1. 

 It will then follow from (12.a) that: 

 

 
so 

 

(13)       

 

From (12), one will then have: 

 
for the abscissas of P and P. 
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so 

 
or, when one also takes (13) into account: 

 

(13.a)      

 

 

 That relation is valid for the coordinates of any pair of points P and P on s and s that have 

parallel tangents.  It will then follow that P and P are aligned with the origin O and therefore that 

the ratio of their distances OP, OP from O is just a constant that is equal to the ratios in (13.a). 

 Therefore: 

 

 The two curves s and s are similar and have the origin for their center of similitude. 

 

 On the basis of that, when one is given s, it is easy to construct the points of the ray s that has 

its vertex at an arbitrary point 0( )P  of the z-axis.  Indeed, if P is a generic point of the s then the 

corresponding point P of s will be the intersection of the ray OP with the parallel through 0P   to 

the line P0P (Fig. 1), as one will easily see from the similar triangles P0PO, 0P P O  . 

 Under the hypothesis (11), the trajectories s and s of two material points will also have their 

vertices at P0 and 0P   with initial velocities v0 and 0v  such that: 
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are similar. 
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, in such a way that the tangents to those points are parallel. 

 From (10.a), one will then have: 
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at the points Q and Q, and from (11): 

 

(13.b)       

 

 

 As for the abscissas of the points Q and Q, from (12.b), one will have: 

 

 
 

so, analogous to what was done in the preceding case for s and s, from (14) and (13.b), one will 

have: 

 

(13.c)      

 

 

 That shows precisely that  and  are similar with their centers of similitude at the origin, and 

that they will have the same ratio of similitude that was found for s and s. 

 With a construction that is analogous to the preceding one, given , one can construct the 

material point that has the initial velocity 0v  and satisfies (14) for the points of the trajectory  

with its vertex at 0P  . 

 Therefore, suppose that s is given.  On the basis of (8), one can then construct the congruence 

of curves  with their vertex at P0 for all values of v0 < c0 .  One can then construct the curve  of 
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if a material point starts horizontally from a point on the z-axis and passes through Q then one can 
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 One now poses the more general problem: Pass a material point with a velocity v that makes 

an angle of  with the x-axis through an arbitrary point Q.  Construct the trajectory of the point. 

 Let 0v , 0c  denote the initial velocities of the point and the light at the vertex of the trajectory.  

From (6.a) and (7.a), at the point Q they will become: 
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 When one calculates 0v  and 0c  in that way by means of the givens in the problem, one will 

know how to construct the corresponding trajectory  under the hypothesis that its vertex is on 

the z-axis.  Having done that, one takes the point Q of  to have the same ordinate as Q and 

performs a translation of the curve  that is parallel to the x-axis and equal to Q Q.  In that way, 

the curve  will pass through Q and represent the desired trajectory (Fig. 2). 

 
Figure 2. 

 

 

§ 5. – Determining the trajectories in particular cases. 

 

 The relation (8) establishes an affinity between the trajectories  of material points and the 

trajectory s of the light ray, on the basis of which, given s, one can construct all of the  that have 

the same vertex as s that will be valid in general no matter what the function of z that c might be.  

However, the relations of similitude between s and  when they have distinct vertices that were 

found in the preceding § were valid under the hypothesis (11), namely, that c = a z.  In order to 

effectively determine s and , it will then be necessary to fix the form of c, and therefore to give 

definite values to a and  . 

 For the sake of simplicity, we begin by choosing the units of measurement in such a way that 

a = 1.  

 We saw in the introduction how the cases in which c is proportional to z , z, and z2 present 

a special interest, or the cases in which  = 1 / 2,  = 1,  = 2, respectively.  For our considerations, 
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we shall confine ourselves to the positive quadrant of the xz-plane (in case 1, it will be 

indispensable that we have z > 0 in order for the curves to be real), so that we will always satisfy 

the relation: 

 
 

 We shall now study the three cases individually. 

 

 Case 1: 

 = 1
2

 

or 

 

(16)      c = z  . 

 

 a) Light rays. 

 

 In order to determine the trajectory s of the light ray, it is enough to integrate (I.a).  However, 

it is simpler to start from (12), and when one takes (12.a) and (16) into account, it can be written: 

 

(17)      

 

 From (17), one will have: 

 

(18)      z = z0 cos2  , 

 

so: 

dz
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 = − 2 z0 sin  cos  , 

and therefore, also from (17): 

 
from which, integration will give: 

 

(18.a)      

 

 

in which x0 is the abscissa of the point for which  = 0, so its ordinate will then be z = z0 , from 

(18.b).  That is, one addresses the vertex P0 of the curve when one assumes, as usual, that it is on 

the z-axis, and one can then write (18.a) and (18) as: 
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(19)     

 

 

 

 Those equations define a cycloid that is generated by a circle of radius z0 / 2 that rolls along 

the x-axis. 

 
Figure 3. 

 

 Furthermore, it already results from the expression for the radius of curvature in (9), and with 

(16), that: 

 
so the curve is a cycloid (Fig. 3). 

 
Figure 4. 

 

 Therefore, for c = z , light rays will describe cycloids that have the horizontal axis for their 

bases.  That was exhibited before by Abraham (1), who found, as Giovanni Bernoulli had found 

 
 (1) M. Abraham, Nuovo Cim. 3 (1912), pp. 211.  
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already (1) regard to that, that from Fermat’s principle, light rays that propagate in an 

inhomogeneous medium with a velocity that is proportional to z  will describe cycloids. 

 Light rays that radiate from a point and all start with the same velocity will generate a 

congruence of cycloids that all intersect the horizontal axis normally (Fig. 4). 

 Differentiating the first of (19) with respect to time will give: 

 

x  = cx = z0 (1 + cos 2)  , 

 

and from the second one, along with (6): 

 
so: 

  = 
0

1

2 z
= 

0

1

2c
= const. ; 

 

i.e.: the angular velocity with which the tangent rotates (and therefore the generating circle) is 

constant along the ray. 

 When  is expressed as a function of time and the time is measured from the instant at which 

the ray passes through the vertex: 

 
 

 The time that is required for the ray to reach the x-axis will then be: 

 

T =  c0 . 

 

The distance that is travelled will then be 4  z0 / 2 = 2

02c  (viz., the length of a quadrant of the 

cycloid), so the mean velocity c  will be given by: 

 

 
 

 b) Trajectories of the material point.  

 

 As for the trajectory  of a material point that starts horizontally from P0 with a velocity v0 , 

one knows that the points of s and  that have the same ordinate have abscissas that have the ratio 

c0 / v0 .  One can then write the parametric equations of  by starting from (19) and multiplying 

the first one by v0 / c0 , while leaving the second one unaltered: 

 
 (1) Giov. Bernoulli, Acta Eruditorum, Leipzig, May, 1697, pp. 211.  
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(19.a) 

 
 

 As we have established already, the  and  denote the coordinates of a generic point of , and 

 always denotes the angle between the tangent and the curve s at the point whose ordinate is  .  

The curve that is defined by (19.a) is affine to the ordinary cycloid and is a Fermat cycloid 

precisely (1). (See Fig. 3) 

 Naturally, the time required is always the same regardless of v0 and is once more equal to T = 

 c0 . 

 

 Case 2: 

   = 1 

or 

 

(20)      c = z . 

 

 a) Light rays. 

 

 In order to determine s, one must recall the expression for the radius of curvature in that case, 

which is, from (9): 

r0 = c0 = z0 = const. 

 

 Therefore: The light rays traverse circles whose centers are on the x-axis (2) (Fig. 5), and if 

one supposes that the vertex of s is on z then its equation will be: 

 

(21) x2 + z2 = 2

0z  . 

  

 When one introduces the angle  between the tangent and the x-axis, one will have: 

 

x = z0 sin  , z = z0 cos  . 

 

Differentiating the first one with respect to time will give: 

 

 

 
 (1) P. Fermat. Oeuvres, vol. II, letter to Cercavi, June 1660.  Fermat studied that curve independently of any optical 
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 (2) Garbasso, loc. cit.  
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and from (6.a), cx = z2 / z0 , so: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 

 

 Therefore, dt = d / cos , and when one integrates this, one will get: 

 

 
in which one sets t = 0 for  = 0 . 

 It will then follow that the time T required by the ray to reach the x-axis when it starts from the 

vertex will become infinite like log  . 

 

 b) Trajectories of the material point. 

 

 By virtue of (8), those trajectories are obtained from (21) by setting x = (c0 / v0) 0 and z =  : 
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 Hence, in this case, the material point will describe ellipses that are all inside the circles (21). 

(See Fig. 6.) 

 The time it takes to fall, and for free fall (v0 = 0), in particular, is only logarithmically infinite, 

as it is for the light ray. 

 

 Case 3: 

 = 2, 

or 

 

(22)      c = z2 . 

 
Figure 6. 

 a) Light rays: 

 

 From (12), one has: 

 

(23)      

 

 

from which one can get x as a function of elliptic integrals in z . 

 
Figure 7. 

 

z 

P0 

O x 

  

 

 

 

z 

x O 

2

4 4

0

,
dz z

dx z z
= −

−



Caldonazzo – Trajectories of light rays and material points in a gravitational field. 22 
 

 However, it is not necessary to integrate (23) in order to determine the curve that is described 

by the light ray because it is known that (23) represents an elastic curve that intersects normally 

the coordinate axes with respect to which it is symmetric. 

 The curves s and s in Fig. 1 are elastic curves.  We have a congruence of such curves in Fig. 

7. 

 The elastic curve represents the form that a thin elastic band will assume when it is fixed at 

one extreme (in Fig. 1, the vertex) and the other extreme is subject to a force that is normal to the 

plane of the curve (1).  That curve represents just the normal section of a cloth that is supported by 

two parallel axes and inflated by the wind (i.e., air), or if the supports are horizontal, filled with a 

ponderous liquid: That is why one also calls it a linteare curve (curva linteare) (2). 

 Finally, Euler used the calculus of variations to determine that one among the plane curves that 

have one extreme on x and the other on z and have equal length and enclose an equal are with the 

axes whose area will generate the maximum or minimum volume when it is rotated around the x-

axis, and he arrived at the elastica precisely (3). 

 From (12.a), we have: 

 
which gives: 

 
 

 Differentiating the first of these with respect to time will give: 

 

 

and from (7), one has z  = − 
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from which: 

 
 

 
 (1) Giac. Bernoulli, Opera I, page 122, III, pp. 512.   Poisson, Traité de Méc. (1833) I, pp. 600. 

 (2) Giov. Bernoulli, Opera I, pp. 451, 576, and 639.  

 (3) L. Euler, Methodus inveniendi lineas…, Lausanne and Geneva (1977), Chap. V, ex. I. 
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 Therefore, in the third case, the angular velocity with which the tangent to ray rotates is 

proportional to z3.  Since z = 
0 cosz  , one can then write: 

 

 
 

and when that is integrated, it will give: 

 

 
 

in which we have set cos  = z / z0 = u .  Thus, for 0 < z  z0 or for 0 < u  1, the following 

development of the integrand will be valid: 

 

 
 

and integrating this series will give: 

 

 
 

 From that, in the limit of u = 0, or for z = 0, one will have that time required by the ray to reach 

the x-axis will become infinite: 

 
 

 b) Trajectories of the material point. 

 

 The trajectory of the material point is a curve that is affine to the elastica, and from (8) and 

(23), its equation will be: 
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Figure 8. 

 

 As was essentially explained before, we shall now briefly discuss the elastic curves that are 

presented in the figure. 

 

 c) Construction of the elastic curve. 

 

 From (23), we will have (for points in the positive quadrant of the xy-plane): 

 

 
in which we have set z0 = 1, for simplicity. 

 If z  1 then the integrand can be developed into the series: 
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is found to lie between 0.598 and 0.601 (1).  If one assumes the value 0.6 then the error that is 

introduced will be negligible for the graphical construction of the points of the curve.  Thus: 

 

 

(24)      

 

 For z = 0, the value of the horizontal semi-axis of the curve (Fig. 8) will be: 

 

OA = 0.6 . 

 

If the vertical semi-axis is OP0 = 1 then one will see that the semi-axes of an arbitrary elastic curve 

have the ratio 10 to 6. 

 The series that appears in (24) is rapidly convergent and permits one to calculate approximately 

the values of x that correspond to the given values of z when one takes into account only the first 

terms of the series: In that way, one can construct the points of the elastic curve. 

 For example, that is how one gets the elastic curve s in Fig. 1. 

 The construction of the other elastic curves whose vertical diameter is different from that of 

the curve that was already illustrated in Figure 1 can be obtained by recalling the similitude that 

that exists between those curves.  Hence, the effective construction will become difficult in that 

way.  It is preferable to appeal directly to an elastic band that is fixed at one extremity and subject 

at the other to a force that is normal to the band, which will assume the geometric form of the 

elastic form to a great degree of approximation. 

 To that end, I shall appeal to a steel band whose thickness is about 0.2 mm and whose width is 

2 cm.  Fix one end with a clamp in such a way that the free band would be parallel to the x-axis.  

Then bend the band by pressing down on it normally at the other extremity until the band becomes 

normal to the x-axis at that extremity.  One will then get a quadrant of a curve that coincides with 

the one that is obtained for points.  It would be even more practical to curve the band into an arc 

until the extremity becomes parallel while keeping it in that position with a string, which will then 

represent the minor diameter of the elastic curve.  In various tests, one will then find that the ratio 

of the two diameters of the curve that is represented by the band will oscillate in the neighborhood 

of 10/6 precisely.  In order to be more certain, it is better to curve that band in such a way that the 

ratio of the two diameters is appropriate to the one that is desired by the theory.  In that way, the 

form of the band will coincide reasonably with that of the elastic curve, and the band can serve as 

a convenient guide to drawing the curve. 
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§ 6. – Comparing the trajectories in the three special cases. 

 

 In Fig. 9, the three curves s1, s2, s3 with a common vertex are a cycloid, a circle, and an elastic 

curve, respectively, which are then the curves that are described by light rays that emanate 

horizontally from P0 according to whether: 

 

  c = z , c = z, c = z2, 

respectively. 

 
Figure 9. 

 

 One then sees that the cycloid is on the outside, the elastic curve in on the inside, and the circle 

is between those two curves.  From (9), their radii of curvature at points of the same horizontal 

are: 

 
 

respectively.  In particular, P0 assumes the values: 

 

2z0 , z0 , 1
02
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respectively, which are in decreasing geometric proportion (viz., each of them is half of the 

preceding one).  When z varies from z0 to 0, the ray of the cycloid will decrease and become zero 

the limit of z = 0, the second will remain constant, and the third will increase and become infinite 

for z = 0. 

 The points A1, A2, A3 on the x-axis that are arrived at have the abscissas: 

 

 z0 , z0 , 0.6 z0 , 

 

respectively.  A1 will be reached in the finite time 0z , while the ray will asymptotically 

approach A2 and A3 . 
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 As far as the material point that starts horizontally from P0 with the velocity v0 is concerned, 

in each of the three cases, it will describe trajectories whose radii of curvature at P0 are, from (9.b): 

 

 

 In the case of the Fermat cycloid, the initial radius of curvature will not depend upon the height 

of the vertex then, while in the other two cases, it will be inversely proportional to z0 and 3

0z , resp.  

Therefore, in any case, it will be proportional to the square of the initial velocity.  The points on 

the x-axis that are reached in each case then have abscissas that are those of the points A1, A2, A3 

multiplied by v0 / c0 ; i.e.: 

 

The time it takes to fall will then coincide with the time required for the ray to reach the x-axis. 

 The results obtained might be of interest to ordinary optics, independently of the theory of 

gravitation.  Bernoulli already observed that the case of the cycloid can present itself in an 

inhomogeneous medium whose density is inversely proportional to z , so our considerations 

will be valid for inhomogeneous isotropic media whose indices of refraction vary with distance 

from a given plane (1). 

 

 Milan, March 1913. 

 
(Received 26 March 1913) 

 

__________ 

 

 
 (1) For the fact that such media exist in reality, see, e.g., A. Barbasso and G. Fubini, Atti della R. Accad. delle Sci. 

di Torino, vol. XLIV.  Announced on 27 December, 1908. 

2 2
2 0 0
0 3

0 0

2 , , .
2

v v
v

z z

0
0 0 0

0

, , 0.6 .
v

v z v
z




