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INTRODUCTION

The original idea of applying the considerations ofahalysis situgo the theory of
finite, continuous groups goes back to Hurwitz in 1897Who appealed to integrals that
were applied to the entire domain of certain closed gréups the linear group of a
positive-definite Hermitian form and the orthogonaluppin his research on invariants.
That process was used by H. Weyl in 1985 \who, thanks to some considerations of the
analysis situsmade important progress in the theory of the lineprasentation of semi-
simple groups, which is a theory for which E. Cartan gawasis in 1912 by assuming
the infinitesimal viewpoint of S. Lie, but with a lacutiet one cannot further manage to
fill by algebraic means. From a different viewpoihrt, Poincaré %, 6, 7], in three
penetrating memoirs that were published in 1900, 1901, and 1908, shbtwed
importance of the role that is played by the singtdansformations of a group in the
theory of the structure of that group, which is a rblgt is analogous to the one that is
played by the critical points of an analytic functioRinally, we point out two memoirs
of O. SCHREIER 24 and25] that appeared in 1926 and 1927 on the abstract, continuous
groups that were envisioned from a very general viewpoint.

In all of these papers, which remain isolated, exaapthe relatively recent ones by
H. Weyl and O. Schreier, the finite and continuous graanesstudied in their entire
domain of existence, and not just, as with S. Liehm neighborhood of the identity
transformation: They are “integral” studies, and notdld ones. The objective of this
fascicle is to review a certain number of fundamentabl@ms that are posed in the
theory of groups upon assuming the “integral” viewpointyegitoy envisioning a finite,
continuous group, as in Chapter I, to be a variety insiflevhich one defines an
associative law of multiplication or composition thredtisfies, at a minimum, some
continuity conditions, or, as in Chapter II, by introohgc some supplementary
hypotheses on the analytic properties of the law ofpaomition of the group in order to
obtain what | call “Lie groups.” One knows of no feyitcontinuous group that is not a
Lie group; a fundamental theorem (r#6) shows that if such a group existed then it
could not be isomorphic to any linear group. In the thediyie groups itself, we point
out the insufficiency of the usual proofs of the thirddamental theorem, which prove
the existence of onlg subset of a grougrhen one is given a system of constantdhat
cannot be prolonged to form a complete group; a rigoroud pfdbat theorem will be
summarized in Chapter II. We also point out the sefocimecessary and sufficient
conditions that a connected or mixed subgrgugd a Lie groupG must satisfy in order
for g to be the largest subgroup that leaves invariant a @dirg manifold that is
transformed transitively bys; these conditiongre notof an exclusively local nature.
The manifolds that are capable of being transformed thaglgi by a Lie group are not,
moreover, arbitrary from the viewpoint of thealysis situs.

Chapter 1l is dedicated to the study of closed groups, wbiah a very important
role in applications. Chapter IV presents the princigle€artan’s theory of Riemannian
symmetric spaces, when envisioned from the viewpoint afgtbeory, and which have
a great variety of applications to geometry and therthef groups itself.

The theory of linear representations of closed groupsgawith some applications
that one can make to the theory of complete, orthalgsystems of function on a closed
manifold that is transformed transitively by a closed graifgft completely aside in this
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fascicle, since it is far too easy to go beyond itsps¢ which can already be quite
extensive.




CHAPTER |

GENERALITIES ON MANIFOLDS AND ABSTRACT, CONTINUOUS GROUPS

|. — Manifolds. Closed and open manifolds.

1. The notion of a manifold is suggested by those of a Imkasurface that are
embedded in ordinary space. We shall, at the same $peejfy the generalization and
limitation of that by the introduction of a number ofspdates that are analogous to the
ones that were stated by F. Haussdorff in Gisindziige der Mengenlehi@eipzig,
1914).

What we shall call an-dimensional manifolds a set of elements — points— such
that one can define a system of subsets — calkighborhoods— that satisfy the
following conditions:

A. Each neighborhoodV is associated with a well-defined one-to-one
correspondence between the pointslofand the points of a hyperspheie in n-
dimensional Euclidian spaceThe points ofY that correspond to the interior point of
will be calledinterior to V, while the other ones will constitute thentier of 1.

B. Any point of the manifold is interior to at least one neighborhood.

C. Let V be an arbitrary neighborhood, I& be the hypersphere that is associated
with it, let M be an interior point of, let m be the corresponding pointXfand let s be
a hypersphere with its center at m that is interiozto There exists a neighborhodd

that is interior to) and is such that the correspondents of all point¥ of Z belong to
a.

D. Let M be a point that belongs to the interior or to the frontiev’plet m be its

correspondent itx, and let)” be a neighborhood that contains M in its interior. There

exists a hypersphere with its center at m such that the correspondents of all poiris of
that belong tazin V will be interior toV” .

E. If one is given two distinct points M and N then one can find two neighborhoods

that have M and N in their interiors, respectively, and have no pocdrimmon.

2. A point A of the manifold is called aaccumulation poinfor an infinite set of
distinct points of that manifold if any neighborhood thatitainsA in its interior contains
at least one point of the set that is distinct frAmAny infinite set of distinct points that
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belongs to the same neighborhoBdwill admit at least one accumulation point that

belongs toV (by virtue of postulatesd, D and the Bolzano-Weierstrass theorem).
One says that an infinite sequence of pafats,, ..., An, ... tends to dimit point A
if when one is given an arbitrary neighborhaéthat containg\ in its interior, all of the

points of the set are interior 19 past a certain rank. The infinite sequence cannotttend

another limit poinB (by virtue of postulate E).

From any infinite set that admits an accumulatiomipdj one can extract an infinite
sequence of distinct points that tend#\to

It then results from postulatés C, andD that the one-to-one correspondence that
exists between the interior of a neighborhdband the interior of the hypersphere¢hat
it is associated with will be bicontinuous. One carstanalytically define the points that
are interior to any neighborhood of ardimensional manifold in a unique manner by
means oh coordinates, in such a way that two infinitely clpsents will have infinitely
close coordinates.

3. A continuous pathis a set of points that one can put into one-to-one
correspondence with the numerical values of a reahbiai that satisfies @t < 1, in
such a way that if, — tpo then the sequence of points that correspondswadl tend to
the point that corresponds tp.

The manifold is calledonnectedf two arbitrary points can be linked by a continuous
path. We shall consider only connected manifolds or dresate composed of a finite
or denumerably infinite number of connected manifolds.

4. Now, assume the following supplementary hypothesis:

F. It is possible to find a finite or denumerably infinite number of neighborhoods
such that any point of the manifold is interior to at least one of theigdborhoods.

To abbreviate, we agree to say that the manifoveredby the neighborhoods in
guestion.
Arrange the neighborhoods considered into a certaim:orde

Vl, VZ, ...,Vn,

We suppose that the first neighborhadagin the preceding sequence for which any point

that is interior to)/, is interior to at least one of the preceding neighbods. We begin
the process again with the new sequence that is thusiedtand so onWe thus arrive
at a sequence of neighborhoods such that for each neighbothobdhe sequence there

exists at least one interior point that is not interior to any ofrtbgghborhoods/y, 1>,
.., Vi-1 . Such a sequence will be callarmal
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5. The manifolds that are capable of being covered fgit® normal sequence of
neighborhoods are distinguished from the other ones e stharacteristic properties.
Indeed, consider an infinite set of points in such a ra&hifThere will exist at least one

of the neighborhoods in the sequence — ¥ay; that contains an infinitude of points of

the set, so (n®) the given set will admit at least one accumulagioimt.
On the contrary, suppose that the manifold is covered bgrmal sequence of a

denumerable infinitude of neighborhoods. Take a pdinth each neighborhoot; that

is interior to};, but which is not interior to any neighborhood of anuazglation point.
Indeed, such a poirt will be interior to a certain neighborhod@without being interior

to the preceding neighborhoods. L€t be a neighborhood (that does not belong to the
normal sequence) that is interior ¥ and containg\ in its interior. None of the points

Mi+1, Mi+2, ... Of the set belong t®) , and therefor@] can contain only a finite number
of points of the set, which contradicts the hypothesis.

We say that a manifold is open or closed according to whether one can or gadnot f
infinite sets of points that admit no accumulation point, respegtivel

One sees that a closed manifold can be covered by a denumerable infinitude of
neighborhoods then it can be covered by a finite number of neighborhoods
(generalization of the Heine-Borel theorem).

Il. — Abstract finite, continuous groups.

6. One calls a set @lement@anabstract groupvhen one has defined an operation —
called “multiplication” — on it that makes two arbityaelementd, B that are arranged in
a certain order correspond to a third element that ietddnbyAB and satisfies the
following conditions:

a. There exists an elemeht(viz., the unity element) such that for any A, one will
havelA = Al=A.

b. Any element A corresponds to an eleméhsiéch that AA = 1.

c. One has:
(AB) C=A (BO).

It results from these hypotheses that one will hieeA™A = 1. Indeed, the equality
BA = CAimplies thatB = C. As a result, the produét™ A = J will agree with 1 due to
the equalitieA* = AAA™ = A™1 = 1A™". The equalityAB = AC will then also imply
thatB = C.

7. One can associate each elemandf an abstract group with asperation— or
transformation— namely, the one that makes the elenvaif the group correspond with
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the elemenM’= AM. That set of transformations contains idhentity transformatiorvs.
Each transformatioa will correspond to an inverse transformati@n,. Finally, the

resultant of the transformatior& and 7g, when performed in succession, will be the

transformation:
M’=B (AM) = (BA) M,

which corresponds to the elemeéB®. We say that the transformatiofis realize the

abstract group as a group of transformations. They totestheparameter groupf the
abstract group. The transformatidvs= MA define thesecond parameter group

8. An abstract group is calleinite and continuous of order if its elements
generate an-dimensional manifold. Moreover, if one is given twfinite sequences of
elementsA, and B, that tend toA and B, respectively, then the infinite sequence of

elementsA, B, will tend toAB. Finally, if A, tends to 1 therA ™ will tend to 1. 1\, is a
neighborhood of the group manifold that contains the akhdn its interior then the set
of elementsA), that is obtained by multiplyindh times the elements ofy can be
regarded as another neighborhood that contains the mléma its interior; the same
thing will be true for the set of elemenisA.

A finite, continuous group will be callesbnnectedr mixedaccording to whether its
manifold is connected or composed of a finite or denubheranfinite number of
connected manifolds, respectively. One of the comdetamilies of elements that it is
composed of will define a group in its own right, namehg one that contains the
element 1.

9. The manifold of an abstract, finite, continuous group génsatisfies hypothesis F
by itself: It can be covered by a denumerable infinitude of neighborhogds iA which

Vo denotes any of the neighborhoods that contain the eleherits interior.

We shall first show that any element of the group (lwhome can assume to be
connected) can be obtained by multiplying a finite nuntfexlements in the interior of

Vo . Indeed, join the element 1 to a given elem&rity a continuous path, where a

variable element of the path will depend upon a pararhétet varies from 0O to 1. L&

be the lower limit of the set of valuestahat correspond to the elements of the path that
cannot be obtained by the indicated process, andyléle the corresponding element.
The elementd, itself cannot be the product of a finite numigeof elements that are

interior to ), since for all of the values ofthat are greater thampand sufficiently close
to to, one will have an element that will be the produaf f1 elements that are interior
to Vo . Now, consider the neighborho@d), . It contains elements of the curve that

correspond to values othat are less thap and are also as closettoas one desires, for
example, an elemend, = Ags, wheres is as close to 1 as one desires; for example, close
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enough to 1 fos ' to belong toV, . It will then result that the elemeAs = A s™ is the

product of a finite number of elements that are intetam)),, which contradicts the
hypothesis.
Now, take an integep. By hypothesis, one can put the elementg/pfinto a

continuous, one-to-one correspondence with the pofrashgperspher& of radiusR in
ordinary n-dimensional space. One can find a numpethat enjoys the following
property: IfAq, A, ..., Ap arep points that are interior t&, and ifM1, My, ..., M, are
likewise interior toZ, but interior to the hyperspheres of radaushose centers are At,
A, ..., Ay then the producM;:M,...M, will belong to the neighborhood;A,...Ap)o .

When the numbep has been determined in that way, we can find a fisitpisnce of
points in the interior ok — say,Cy, Cy, ..., CNp - such that any point that is interior to S

will be interior to at least one of the hyperspherep whose centers are @4, C,, ...,
CNp. It will then result that any element that is capabf being obtained by the

multiplication ofp elements that are interior ¥ will be interior to at least of theNg)®
neighborhood<C, C, - C%VO. Since that property is true for apyone will thus arrive

at a denumerable sequence of neighborhdqis such that any element of the group is
interior to at least one of these neighborhoodsZ2df.pp. 19].

lll. — Subgroups.

10. A subgroupof an abstract grou@ is a group whose elements all belongsto A
subgroup might contain just a finite number of elemetitd. contains an infinitude then
it might or might not be continuous. In the lattesesathere is yet another distinction to
be made. The subgroup is called properly discontinuous in Gf one can find a

neighborhood/ in G that contains 1 in its interior and contains no el@nod g that is

not 1. In the contrary case, the subgroup will béedamproperly discontinuous in G
Each element af will then be an accumulation point @Gfor the set of elements gf

The subgroum is calledclosed in Gif any accumulation point i of the set of
elements of also belongs tg. Any properly discontinuous subgroup is close.inin
the contrary case, the subgroup will be catipen in G.

The set of elements of a subgrogiphat is closed s and its accumulation points
will define a new subgroug that is closed .

If the groupG is closed then the subgrougshat are closed i will be the closed
subgroups.

11.One calls the elemeAMA™ thetransformof an elemenM of the groupG by an
elementA of that group. One says that a subgraus invariant underG if the
transforms of the elements gfby the various elements & again belong t@. In that
case, the set of elemerfig that are obtained by multiplying a given elemantf G by
the various elements dfis identical to the set of elemem8. If one regards such sets as
being composed of new elements then one can define an éissotialtiplication upon
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them by agreeing that the productAgfwith Bg will be ABg These new elements define
an abstract group whose unity elemert; isne denotes it by the syml@l/ g.

One calls the set of elements of a group that commitibeall elements of the group
the centerof the group. These elements form an invariant commatatibgroup irG.
The center o6 will agree withG whenG is commutative.

IV. — The abstract groups of order 1.

12.0One can easily determine all of the finite, contimsjoconnected groups of order
1. Let), be a neighborhood that contains the element 1 intésian. One can represent
it by a line segment along which one takes the pointatwaesponds to 1 to be the origin.
The abscissas of the points of the segment vary, for examplemfrea to +a. If x and

X are the abscissas of the two points that are serffiyi close to the origin — for
example, between b and +b — then the product of two corresponding elements will

belong toV,. If X" is the abscissa of the point that represents thaluptdhen one will
have a relation:

X" = @(x, X),

in which ¢ is a continuous function. One easily proves that an increasing function of
its two arguments.
One can then find one and only one root in the intef@ab) of the successive
equations:
¢ (a0, 1) =3,
@ (an, an) = &,

The numbersy, ay, ..., a, ... decrease while remaining positive; they thus tend to a
limit a= 0. However, since one has:

#(a, a) < #(a, an) < #(an, a) = an-1,

it will then result that in the limit:

p(aa)<sa=¢(0,a);

that will be possible only & = 0.

Let S, be the element of the parameggr. Assign a new parametpy / 2" to an
elementS™. The new parameters of elements of that naturefalibw in the same
order as the old ones, and the multiplication of tvemneints whose new parameterstare
andt’ will give an element whose new parametet #st'. The assignment of a new
parametet extends, by continuity, to all of the elements wholseparametex is found
between 0 and, and the multiplication formula will become:
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t"=t-t (O<t, t,t" < 1).

If we agree to se = Z; then we can defing, to be &;)" for any positive integen,
and thenX,.; to be the produck, Z; for t between 0 and 1. The multiplication law is
extended to these new group elements. Finally, one défines be &)™ for positivet
and again extends the multiplication law.

One is sure to obtain all of the elements of theugrioy this process (n®), but one
might possibly get each of them several times. df thtrue ana is the smallest positive
value oft for which Z; is the element 1 then the elemeént will be the same as the
elementY; . The group that is obtained will then dlesed while in the contrary case,
can vary from- o to +c without the elements of the group being obtained two tlaad
group isopen

The connected groups of ordeare therefore all commutative; one type is open and
the other is closed.

One can add that all of the open groups are basicaliticdé as well as all the
closed groups. Indeed, in the case of a closed group, ona@lways take a new
parametet’ whose period is 1 instead of

V. — Isomorphism.

13. A groupG is calledisomorphicto a groupG’if it is possible to make an element
of G correspond to a well-defined element&fin such a way that ', B, C”are three
elements of5’that satisfyA’ B’ = C’then the three corresponding elemektB, C of G
will satisfy AB = C. The unity element’ Iof G’ will necessarily correspond to the unity
element 1 of>.

The isomorphism is calledolohedralif any element ofs corresponds to one and
only one element o&’; it is hemihedralin the contrary case. The elementdtthat
have the unity element & for their correspondent define an invariant subgroup 'of

Two finite, continuous groups of the same ord&rand G’ are calledlocally
isomorphicif one can establish a one-to-one, continuous corregmoe between the
elements of a neighborhodd, of G that contains unity in its interior and those of a
neighborhood)) of G’ that contains the unity element in its interior, atft
correspondence will satisfy the condition thah,iB, andC are three elements ®% such
thatAB = C then the corresponding elementsiff must satisiyA’B’=C".

Suppose that the manifold of one of the group&,—for example — issimply
connected. That means that any closed, continuous contour cadefmed in a
continuous manner until it reduces to a point. TheB ket an arbitrary element & that
does not belong td, . Join the unity element 1 ®by a continuous path that belongs to

(C) and take some intermediate poiBisS, ..., S,-1 on that path such that the elements
S, §'S, ..., S;4S belong toly ; denote them bgy, s, ..., 5. Lets, s, ..., s, be
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the corresponding elements ¥f , and consider the eleme$t= s s,...s, of G ltis

easy to see that if one takes another sequence ohed&te points in the patld)(then
one will always arrive at the same elem&nt One finally arrives at the same element
again by deforming the patfi)(that joins 1 tdS sufficiently little.

Since the manifold o is simply connected, one can thus make any ele®ehG
correspond to a well-defined elem&iof G

An analogous argument will show that any elenenvf G’ provides at least one
elementS of G, and one easily sees that one has an isomorphiespomdence between
the two groups, s&’will be isomorphic tdG.

14.1f the isomorphism is not holohedral then several el@sofG will correspond
to the unity element’lof G’ that can be finite or infinite in number and which will
generate groperly-discontinuousubgroup ofG. Let 1,Ty, Ty, ... be the elements of
that subgroup. If the elemeS8tof G corresponds to the eleme®itof G’ then all of the
other elements o& that enjoy the same property will have the foFn§ and also the
form ST,. However, the equality; S= ST, would demand that & were very close to 1
thenT; would have to be equal I, and therefore if one displaces them by continuity in
the manifold of the group then the indewould only remain equal to the index The
elementsT; would thus belong to the center (dd) of the groupG.

Hence,if the group Gis locally isomorphic to the simply-connected group G then a
properly-discontinuous subgroup of the center of G will correspond to the eleihent
of G’.

15. This theorem admits a converse. bdbe a properly-discontinuowsibgroup of
the center ofG. Take the setSg= gSto be new elements, whek&is fixed, andg
successively denotes all of the elements that comghaé group. Define the
multiplication of these new elements by the relation:

SgB’'g=SSg.

One sees immediately that the new elem&ggenerate a finite, continuous abstract
groupG“that is locally isomorphic t& and is such that the unity element@f(namely,
g) corresponds to the given subgraup

The search for groups that are locally-isomorphic to G thus amounts todtah Ser
properly-discontinuous subgroups of the center of G.

For example, ifG is the group of translations of the line then it wdree with its
own center, and any properly-discontinuous subgroup will beeteby the powers with
integer exponents of a particular translation; oneaotihin the closed group of order 1.
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The group ofG of similitudes of the line is simply connected, andcéster reduces
to the identity element. Any group that is locallymswphic to it is then integrally
isomorphic.

16. Given a finite, continuous, connected, abstract gféuiive problem of the search
for groups that are locally isomorphic to it is thervedlwhenG is simply-connected. In

the contrary case, one can construct a simply-corthegteup G that is locally
isomorphic toG. In order to do thatlf3, 25, introduce new elements, each of which will

be the set$ (C),] of an element of G and a continuous patlf)(that joins 1 toS. We
continue to say that the two elemer&s([),] and |5, (C’),] are identical ifS"= Sand one
can pass fromd) to (C’) by a continuous deformation. One will define the proadct

two elements$ (C),] and 5 (C’),] by imagining an elemem that moves along’f and
considering the produ@Pthat, when one follows it by starting wig will describe a
certain path@”). The desired product will b&1 (C) + (C”)]. One easily verifies that

this definition satisfies the conditions for the neweneénts § (C)] to constitute an

abstract groupG. That group will obviously be simply connected, and, an dther
hand, it will be locally isomorphic t&. The unity element o6 will corresponds to
many elements o6 that are closed contours in the manifoldothat are irreducible to
each other. The properly-discontinuous commutative swipgof the center o6 that
corresponds to the unity element@will be thefundamental groupin the sense of the
analysis situsof the manifold of. We shall give preference to the nameafnection
group, while reserving an entirely different significance fbe expression “fundamental
group,” as we shall do in the following number.

VI. — Homogeneous spaces.

17.0ne calls a connected;dimensional manifold upon which a finite, continuous
group operates transitivelyrmmogeneous spacd hat can say that there exists a finite,
continuous group of point-like transformations of the riedabithat satisfies the following
conditions:

1. Any transformation of G makes a well-defined pMritcorrespond to a point M
of the manifold.

2. Given two arbitrary points M and WMof the manifold, there exists at least one
transformation of the group that takes M td M

3. If the sequence of points;M,, ..., My, ... of the manifold tends to a limit point
M, and if the sequence of transformations &, ..., S, ... of the group tends to a
transformation S then the poiM |, that is the transform of Moy S will tend to the point

M “that is the transform of M by S.
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The latter condition expresses the idea that théragty in the manifold of the group
(when considered as an abstract group) assures the agnbofuhe effects that are
produced in the points of space.

A homogeneous space must therefore be regarded as tifeassbnnected manifold
and a groupG that operates transitively on that manifold. We say thais the
fundamental groupf the space.

One can define the neighborhoods of a homogeneous spalse bgttof points that
are transforms of a fixed poi@ by the transformations of an arbitrary neighborhood of
the fundamental groupA homogeneous space can thus be covered by a denumerable
infinitude of neighborhoodsA homogeneous space whose fundamental group is closed
is obviously closed, but the converse is not true. Famg¥e, the projective line, which
is a closed, one-dimensional space, is transformeditikeaty by the homographic group
of one variable, which is open.

18. The set of transformations Gfthat leave invariant a particular given podhof
space defines a subgrogpof G that is obviouslyclosed in G since if an infinite
sequence of transformationsgtend to a transformatid@of G then that transformation
will leave the pointO invariant; later on (no29), we shall return to that important
property.

It can happen tha admits transformations that leave all points of sgaasl; they
will necessarily belong tg and generate a subgrouphat isinvariant in G. In reality,
the group of transformations of the space is tBéry. If one excludes the possibility that
was envisioned before then the subgrgupill contain no subgroup that is invariant in
the total group.



CHAPTER I
LIE GROUPS
|. — Definition and review of some fundamental theorems [1]

19. We say that a finite, continuous, abstract groupLliagroupif one can find a
system of coordinates or (real) parametegs a,, ..., & in a sufficiently small

neighborhood/, of the unity element such that the parameteos the elemenC = AB

result from the multiplication of the elemeftwith the parameters by the elemenB
whose parameters apeare expressed by functions:

G =¢(ab)

that admit continuous partial derivatives of the fivgd brders.

In short, the problem of knowing whether there exisitdi continuous groups of
orderr > 1 that are mot Lie groups has never been addresseel drafno26), we shall
confirm the only precise result that one knows reggrthat question.

If one is dealing with a Lie group then one can choosgrigp parameters in such a
manner that the; areanalytic functions of their argument&][ The operations of each
group of parameters (no7) are, moreover, generated by linearly-independent
infinitesimal transformations XX, ..., X .

The brackets of pairs of infinitesimal transformatisaisfy relations of the form:

(1) X (XJ) —Xj (XI) = (X| XJ) = z(:ljs Xs .
The (real) constants;s satisfy the algebraic relations:

(2) Z(Qipcpl(h+cjkp(:;>ih+ Qip (;‘jjh) =0 G,j,k,hzl, 2, ...,I’)
P

that are deduced from tldacobi identity:
[(Xi X5) Xid + [(X X Xi] + [(Xk Xi) X{] = O.

If a group of transformations other than a grofiparametersealizesthe abstract
group, and if that group admits infinitesimal triamsations then they will also satisfy
the relation (1) with the same constamits.

20.0ne can add the following propertids] to the preceding ones, which constitute
the first two fundamental theorems of S. Lie: Iearhooses a system of coordinadgs

..., & in a certain neighborhood of a group then thenitésimal elemens* S, ., can be

represented by the symbﬂ ax X« , where the Pfaff formsu satisfy the relations
(Maurer-Cartan equations
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(3) dax(9) - () = Y. G,@(d) ) (3)

Likewise, the infinitesimal transformatid®.4.S,* can be represented by the symbol

Z ak X, with the relations:

(4) de(9) - da(d) =~ Y. 6, ()@, (3) .

The formsa, are invariant under the first group of parametets|e the formsz are
invariant under the second one.
Finally, the group can be defined by a@nonical parameterg a sufficiently small

neighborhood), of the unity element, where an operation is charaed by the

parameters; of the infinitesimal transformatio, & X that generates it. With these
canonical parameters, the formgcan be obtainedl]] by integrating the differential

equations:

()

daw
> =da+ ) ¢34
dt i

while assuming that they are annulled for O, and then setting= 1 in it. In these
equations, one must regard the argumangmdda as constant parameters, while the
are unknown functions of the independent variable

The formsaz can likewise be obtained by integrating the equasti

d
2 =da- Y c,am;

()

All of these results can be regarded as classical.

21.The third fundamental theorermof S. Lie expresses the idea that if one has a
system of constantsy that satisfy the relations (2) then there will s¢xa finite,
continuous group of order whose independent infinitesimal transformationssga
relations (1). In order to prove it, one can, éxample, integrate equations (5), as we
said above. By virtue of the relations (2), thafPéquations:

(7 @ (U'; du) = @ (u; du)

arecompletely integrablend give theu' as functions of the; andr parametersy that
define a group of orderthat satisfies the desired conditions; for exampie can take
the parameters to be the values af foru; = ... =u, = 0.

In reality, the preceding proof, like the otheolam proofs, moreover, except for the
first proof of Lie that we shall discuss soon, @npletely unsatisfactory. They are



Cartan — The theory of finite, continuous groups anattaysis situs 13

linear forms indu, dw, ..., du whose coefficients arentire analyticfunctions of the
variableu;, but the determinant of the coefficientsdaf is non-zero only in a certain
neighborhood of the origio; = 0. Moreover, the determinant will be everywhera-no
zero, which will not suffice to assure the existencehef finite transformations of the
group that are valid in the entire space ofuhe In order to convince oneself of that, it
will suffice to consider the simple equation:

du _ du
1+u?  1+u®’

which does not providany finite transformation that valid in the entire domaih o
existence of the real variahle

One has thus proved definitively the existence of a set of traregfons that are
defined for sufficiently small values of the parameters in acgerftly small region of the
Euclidian space of the,uand that the product of two transformations of thenglégain
will belong to the sein the case where that product is defined in the region considered
In short, one obtains piece of the groughat operates upon @ece of space.lt is
necessary to prove that one can prolong that pieggacksand that piece of the group in
such a manner that one would obtain a manifold in whiptoap operates.

22.Lie’s first proof, when it is valid from théocal viewpoint, easily provides the
basis for a rigorous proof. It consists of startinghwiinfinitesimal transformations:

of
8 Es= E C. 68—
®) = "Qaej

that satisfy the relations (1). For sufficiently dmeaalues of the parameters, they
generate a piece of the groupwhich all of the operations are valid in the ieatspace
of the ¢. Upon multiplying them together a finite number ofdégnand in all possible
ways, one will obtain a group of well-defined linear sfanmations of the entire
Euclidian space of variables. The argument is valid only if thetransformations (8)
are linearly independent, which demands that the infinitdsignaup admit no
distinguishedinfinitesimal transformation; i.e., one that commutath all of the other
ones. That will be true, for example, if the form:

#O)= D €€ g, Gy

i,jkh

which gives the sum of the squares of the roots oKiliag equation:

Sec -04|=0 5o Lifi=]
SeSC*SJ' i ) oifizj)
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has a non-zero discriminant. The groups that satisfy ¢bndition are thaimple or
semi-simplegroups 8.

In the general case, one can prove the theorem lglilgcbeginning with the case of
anintegrablegroup. One can choose the infinitesimal basis for tagiable group and
the parametens, ..., U in such a manner that the matrix of coefficientdwf ..., du in
a, ..., @ will have the form:

10 0. 0
Oe2 0 -+ 0
O O e* 0
............ |
oo g..er

in which U; is a linear form in the variablas, ...u-1 , and the terms that appear as
asterisks are, for tH& row, entire analytic functions of they, ...u— (). The integration
of equations (7) will then give entire, analytia@iions of they; and theg; for theu, that

are initial values of theu'. One thus has directly a group whose manifold is

homeomorphic to Euclidian space and which operatea space that is homeomorphic
to Euclidian space. That group is simply connected

In the case of a non-integrable infinitesimal grd@a that admits a larger invariant,
integrable subgroum, one can, in order to obtain a finite group withe tgiven
infinitesimal structure, come down to the integratof a Pfaff system:

a: (U du) =aq(@) w (u; du) + ... +ada) @ (U; du),

in which thea, are the forms that were just in question for titegrable groups, and the
aij(a) are the coefficients of a semi-simpleear group with a known infinitesimal
structure. The conclusion is the same, so the foldrof the group that is obtained will
be composed of pointg,(u), each of which is the set of a poabf the manifold of a
semi-simple linear group and a poinbf the Euclidian space of thg.

() Meanwhile, it can happen that one has:

ai = eY cosU

i+1?

Ui
81 =-e'siny

i+17

Ui - Uj
., =€ siny, s = € COSU,,

i+17

for two consecutive rows — for example, tfleand thei(+ 1)™ — in which the elements; andai,y ; (j < i)
are entire functions of the, ..., u_; .
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Il. — Adjoint group.
Generating a group by its infinitesimal transformations.

23.1f S is a particular operation of a gro@) andS, is a variable operation then the
equation:

S$=5%¢

will define an operatiom, that makesS, go to thetransform § of S by S . These
operationsT, are automorphismsof the group, in the sense that3f and S, have
transforms ofS; andS;, , resp., then the produgt S, will have the transform o%, S, .
Moreover, they form a group, which is thdjoint Lie group In particular, they leave
invariant the identity transformation and transform thénitesimal transformations
linearly amongst themselves. From this viewpoint, thegstitute thelinear adjoint
groupl” of G. The infinitesimal transformations bfare given precisely by the formulas

(8): In fact, the transformatiody, & X;, when transformed by Xs becomes:
2eaX +5(zq>§ DK) :Zejxj +£Z¢Sie>l('
J 1)

The coefficients of the infinitesimal transfornmtiZesEs are the elements of the
S

matrix Hj :

zascsn z a,Co; - z a,Cy

D.8Cq D, &Ce, D A,
this matrix plays a fundamental role in the questibthe generation of a group by its
infinitesimal transformations.

(9) Ha

24.1n a sufficiently small neighborhodd, of the identity operation, any operation of

the group will admit a system of well-defined canonicabpaatersd, ..., &), which are
those of the infinitesimal transformation that it gextes. Now, follow a continuous path
in the manifold of the group that starts at the identiigration; letSt) be the operation
that corresponds to point a of the path, which oneasanme depends upon a parameter
t. One then follows the canonical parameters tha assigns tdt), step-by-step.
Indeed, if theg; are the parameters &ft) then one can calculate the parameterda of

St + dt) if the parametersy of [S(t)] ™ Kt + dt) are independent linear formsday, ...,

da . Now, integrating equations (5) will show that tlgeare deduced from theg by
performing the linear substitution that is representedhéymatrix:

Ha_
1+iHa+iH§+...+iH§‘l+...:e 1,
2! 3! n! H

a
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whose determinant is annulled only if one of the charistits roots of the matri,
(viz., the Killing roots) is anon-zerointeger multiple of 2z Consequentlypne can
pursue the determination of the canonical parameters as long as one does reatgiv
transformation S whose canonical parameters (which are obtained by conttepiigys
step) give a Killing root to the matrix ;Hhat is a non-zero integer multiple 24i.

The transformationS of the group that one will conclude with are the onesviaich
the substitution corresponding of the linear adjoint group will admit a characteristic
root " that is equal to lhut which is provided from a root that is different frarby
continuity. If one knows in advance that thesiegulartransformations define a manifold
of dimension greater than- 2 in the group manifold then one can always arrivenaina
singular transformation without encountering a singtdansformation, and in turrhe
group (or at least the set of its non-singular transforomsjwill be generated completely
by its infinitesimal transformations.

In the contrary case, and contrary to what H. Ro#éds] believed that he had
proved, it can happen that the infinitesimal transfaiona generate only a portion of the
group. The simplest case is provided by the group of reamadhilar, linear
substitutions in two variables:
(10) { X=ax+by

y=dx+ By

The substitutions for which the equatian+{ A) (b' — A) —ba = 0 admits twadistinct,
negativereal roots & + b’ < - 2) cannot be generated by any infinitesimal transfoomati
of the group.

25. One can arrive at a very interesting result in thiqudar case of a grou@ of
real linear substitutions. Any substitution of the group tratnot be generated by an
infinitesimal transformation can be regarded as the ptoalutvo substitutions of the
group that commute with each other, one of whidhvuslutive and the other of which is
generated by an infinitesimal substitution. The prodfased upon the consideration of
the groupG’that is obtained by regarding the real parametersedbtascomplex In a
more precise manneG’is the linear group ofr2real parameters that are generated by
infinitesimal substitutionX, ..., X; of G and by the substitutionX, iX», ..., iX; .

In that regard, it is important to remark that if asgiven a grougs of orderr then
there will never exish groupG’ of order 2 that hass as a subgroup and is such that the
2r real, canonical parameters®fare obtained by giving arbitrappmplexvalues to the
r canonical parameters & As an example, we cite tilsamply-connectedlie groupG
that is infinitesimally isomorphic to the homographic grofipne real variable.

lll. — The subgroups of a Lie group.

26. One can prove two fundamental theorems that relatketsubgroups of a Lie
group.



Cartan — The theory of finite, continuous groups anattaysis situs 17

The first theorem is the following onAny continuous subgroup of a Lie group is a
Lie group More precisely, one can find two neighborhoddsand vy of the unity
elements in the manifolds & andg, resp., that are sufficiently small that the various
operations of/y that are interior td/, are the ones that are generated by a certain linear

family of infinitesimal transformations @. A particular case of that theorem that refers
to the subgroups of the linear groumimariables was proved by J. von Neuma2ig].[

Let N andn be the order of5 and g, respectively. Take a hyperspheren the
Euclidian spacéy of dimensiorN of canonical parameters Gfthat has the origin for its
center and a radiurR that is small enough that two distinct, interior psioff > will
represent two distinct elements@f We agree to call the distance from the origin & th
representative point of an element®that is interior tax its modulus Now, consider a
neighborhoods in g that surrounds the unity element such that all of ésnehts have
moduli that are less thaR. It is legitimate to suppose that it is representedaby
hyperspherer of radiusr in Euclidian spacéy of dimensiom, the center represents the

unity element. LeR’< R be the lower bound of the moduli of the elemantbat are
represented by frontier points af Take a numbeaR” <R’ We can find a hypersphere
o’ in &y, whose radius ' is sufficiently close ta that the elements @f that are exterior
to g’ and interior toowill all have modulus greater th&f. Finally, determine a number
£ that is small enough that the product of an elergehtt is interior to the hypersphere
o of radiuse with an element of that interior too” will itself be interior toc:

Having said that, consider an infinite sequence of pamig that converge to the
origin; let As, Ay, ..., A, ... be the corresponding points ©f The half-lines infy that
join the origin to these points will admit at leastaaccumulation half-lind\; take an
arbitrary pointH on that half-line that is situated at a given distaRge R’ from the
origin. If s, is the element af that is represented & by A, then determine the largest

integerpn such thata, and all of its powers up tg™ inclusively have moduli that are

less tharR, . If nis large enough tha, is interior too; then the representative point of
s? in the spacey will be interior tog; and it will likewise be interior tar, since its

n

modulus if less thaiR"; the same thing will be true for all of the other pasvefThe
representative points in the spate will all be interior to the hypersphere whose radius
is Ry, and they will obviously admit the poikt as an accumulation point. One can then
extract a partial infinite sequence of points that conwetgél from that sequence. The
sequence of corresponding pointsé&i which are all interior tas”, admits at least one

accumulation elements iy, and since it cannot admit more than on&jrthe pointH

must therefore represent an elemengdhat is interior too. The reasoning that was
made forH is valid for all points oA whose modulus is less th&, and in turnR’. In
other words, th@eighborhood yof g contains all elements of modulus less thaoffa
subgroup that is generated by an infinitesimal transformation. of G

One easily sees then that all of the infinitesitrexisformations o6 that belong t@
generate a Lie subgrouy that is contained iig, and whose elements of modulus less
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thanR’all belong to the neighborhoad of g. No other element that belongswocan be
interior to the hyperspheof radiusvp in g. Indeed, such an elementan be joined to
the unity element ofj by a continuous path that belongsvgpand whose elements will
all be of modulus less thaR Let A be the representative point of that element that is
interior to 2. Interior toZ, the manifold that is the locus of elemesgt will be an
analytic manifold that passes throughand has the same dimensigras the order of'.
The planar manifold of dimensidw — ' that issues from the origin and is orthogonal to
g will meet that manifold at a well-defined point. Ondlwhen have a sequence of
points that converges to the origin at the same tinfeaasl is such that the lines that join
the origin to these points form angles with the line$ eneratg' that converge taer/ 2.

It then results that there exist infinitesimal tramsfation ing that are distinct from those
of @', which is contrary to hypothesis. The theorem is grened completely.

In particular, one deduces the following consequeAow:. finite, continuous, linear
group is a Lie group The same thing will be true for any projective, comfak etc.,
group. Therefore, if there exists a finite, continuous group that is noeataup then it
cannot be isomorphic to any linear grouprhe question of knowing whether any Lie
group is isomorphic to a linear group is, as one knowspgkh.

27.The second fundamental theorem relates to subgroupard@osed in G It is
stated in the following mannelf. a subgroup g of a Lie group G is closed in G without

being properly discontinuous then one can find a neighborhigad the unity element in

G that is sufficiently small that all of the elements of g thatiraexior to V, will be the

ones that are generated by a certain linear family of infinitesinagistiormation of G

The proof is analogous to the preceding, but simplerjtarstiarting point is again the
consideration of an infinite sequence of elements thiat converge to the unity element
in G.

In particular, it results from the second theorent #wy improperly-discontinuous
subgroup g is open in G, so the subgroup that is composed of g and its accumulation
points in G will be a continuous Lie graup

IV. — Homogeneous spaces whose fundamental group is a Lie group.

28. Among the homogeneous spaces whose fundamental grougeisgeoup (viz.,
Lie homogeneous spaces), one finds, in particular, tegtoups in which one or the
other of the parameter groups operate transitively. eltsgmces are not arbitrary
manifolds from the viewpoint of thanalysis situs as the examination of the two-
dimensional case will show. The two-parameter Ligugs are either commutative or
isomorphic to the group of similitudes of the line. The radahiof a commutative group
is homeomorphic to either the Euclidian plane (viz., giheup of translations of the
plane), a cylinder of revolution, or a torus. As foe tmanifold of the group of
similitudes of the lineX =ax+ b (a> 0), it is homeomorphic to the Euclidian plane (or to
a half-plane, which is the same thing). That group will thersimply connected, and
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since its center reduces to the identity operationethalt exist no other group that has
the same infinitesimal structureWe thus obtain the Euclidian plane, the cylinder of
revolution, and the torus as the only Lie group manifolds of d2der

29. Now consider an arbitrary Lie homogeneous sgadbat admits a connected,
continuous groups for its fundamental group. The largest subgraguphat leaves
invariant a particular poir® of space is, as we saw (@), closed inG, and in turn (no.
27), properly discontinuous, or even continuous, and conthentenixed. Moreover, it
admits no invariant subgroup @

Conversely, letg be an arbitrary closed subgroup @ that admits no invariant
subgroup inG. Letr — nandn be the orders a andG, respectively. If there exists a
homogeneous space that is transformed transitivelg agpd is such tha is the largest
subgroup that leaves a pofdtof space invariant then one can associate each Moaft
space with the s&gof transformations o& that takeO to M, and which are all obtained
by multiplying a particular transformatidhtimes all of the transformations gf Then,
consider the set of “elements” or “pointSy It defines am-dimensional manifold that
satisfies the desired conditions.

Indeed, define the neighborhood of a “poiBtjto be the set of “pointssSg wheres

is an arbitrary element of a neighborhotigl of the unity element irG. Choosen

infinitesimal transformationX;, ..., X, arbitrarily that define a basis for the gro@pvith
ther — ninfinitesimal transformationSgS*. Any elemensis, in one and only manner,

the product of a transformatidnof V), that is generated b X; + ... + &, X, and a
transformation ol that belongs t&gS". One will then have:

SSg=tSg

One can thus make any “point” of the neighborhd@8g considered correspond to a

point (e, ..., &) of ann-dimensional Euclidian space that is interior to a hsjpleere of
sufficiently small radius. On the other hand, twstidct points of that hypersphere will
correspond to two distinct “pointdSg If that were not the case then no matter how

small one took the neighborhodd one could find an infinite sequence of pairs of
elements,, t, that converged to the unity element and were suchtfl&iad the form
t.SR,, where the elemeR, belongs tay. One would then have:

tt =SRS",

in which R, could converge to the unity elemenithout belonging to the immediate
neighborhood of the unity element in gHowever, that would contradict the second
fundamental theorem (no. 27) that relates to subgrgtipst are closed i®. Postulatéd

is then verified. The other postulates present no difficexcept perhaps the last dae
which is proved in the following manner: If one is giter distinct “points”SgandSqg
such that one cannot find two neighborhoods of these “‘@othat have no point in
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common then one can find an infinite sequence of pairslerhentss,, s, of G that
converge to the unity element, and are such that:

$Sg=s, Sg.
One will then have:
S=s'sSR,

in whichR, belongs tay. The elemenR, will converge toS™ S’, which does not belong
to g, which contradicts the hypothesis tigas closed irG.

It is indeed clear that one can start with any other suipy& gS;* that is
homologougo g in G.

30. Instead of supposing that the sp&ces transformed transitively under a group
that is holohedrally isomorphic 1@, one can suppose simply that it is transformed by a
group that ignfinitesimally isomorphido G. In that case, the subgrogpcan contain
elements that define a subgropthat is invariant irG, but not continuous. On the other
hand, since/is composed of the set of transformation&dhat leave all of the points of
space invariant, it is closed @& and in turn, irg; it is thusproperly discontinuous in.g
Each of its elements is then invariant by itsel{Gn- in other words, it belongs to the
center ofG. The homogeneous spaces that are transformed transitively under G, with the
possibility that there exists a non-continuous subgroup in G that leavesaimvall of
the points of space, are thus associated with the various closed subgraui tpat,
like the possible subgroups that are invariant in G, admit only one preperly
discontinuous subgroup of the center of G

If G is simply-connectethen one can construct all of the homogeneous spaaes th
admit a group that is infinitesimally isomorphicGdor their fundamental group.

31. Suppose that the gro@pis simply connected. The subgrogipan be connected
or mixed. In the latter case, the connected faulgf g that contains the unity element
will be invariant under all transformations gf

If g is connected then the homogeneous space E will be simply connbudedd,

take a closed contou€)in E that starts a® and returns to it, and associate each pgdint
of that contour by continuity with one of the transfiations ofG that takeO to M,
starting with the identity transformation. The conta@)rwill correspond to a pattC()

in the manifoldG that starts with the unity element and ends at anezleofg, which is
a path one can close without leavingsinceg is connected.One can deform the closed

contour C”) thus obtained in a continuous manner in such a wayittlatluces to a
point. That deformation will imply a corresponding contins deformation of the
contour (), which can thus be reduced to a point.

Q. E.D.
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If g is not connected then every connected faigithat constituteg will correspond
to a set of closed contours in sp&cé¢hat are all reducible to each other by continuous
deformations. In order to obtain them, one connectsinitg element in the manifold of
G to an element ofy by a closed path. The elements of that path will yield
transformations that will give a closed contouEimvhen they are applied to the poit
In a general manner, there are many closed contouEghat are not reducible to each
other that give distinct, connected familieggin Theconnection groupf the spac&, in
the sense of thanalysis situsis the abstract group whose elemeajsdan be identified
with the familyg;, where the productef(g) will be equal to &) if the products of the
elements ofy with the elements dj give elements od .

32. An interesting consequence results from the precediliglonger suppose thét
is simply connected. If the homogeneous sgasesimply connected then one can assert
that the subgroug of G that is associated with the spdg€eis connected. On the
contrary, if the spac& is not simply connected then one can assert thaerethe
subgroupg is not connected or that the groGpis not simply connected. That is what
happens, for example, in the case of the projectivenimen it is transformed transitively
by the (connected) homographic group of one variable. Thegpir@ line is not simply
connected, but the subgrogphat leaves the point= c invariant is the groug’ = ax +
b (a > 0), which is connectetherefore, the homographic group is not simply connected
One can infer the same conclusion for the unimoduiaafl group in two real variables,
which transforms the pointed Euclidian plane (in whizhe has singled out the origin)
transitively, and for which the subgrogpthat leaves the point (1, 0) invariant is the
connected group:

X =X+ay,

y =Y

These remarks show how the topological study of theldmental group of a
homogeneous space can be quite interesting in the tppalstudy of that space.

33. In conclusion, we point out that the knowledge bbathe types of Lie groups in
two variables will permit one to determine all of teetdimensional Lie homogeneous
spaces. We content ourselves by pointing out the result

Any two-dimensional Lie homogeneous space is homeomorphic to one of the
following spaces:

The Euclidian plane

The cylinder of revolution.
The pointed projective plane.
The sphere.

The projective plane.

The torus.



Cartan — The theory of finite, continuous groups anattaysis situs 22

The first three are open, while the last three &sed. One sees thtite Riemann
surface of an algebraic curve of genus greater thaannot be transformed transitively
by any Lie group An analogous theorem, which is less restrictiveaaas the nature of
the group is concerned, was proved by D. van Dantzig and &ar.der Waerder2f)].

V. — Orientable and non-orientable homogeneous space. Volume.
Metric homogeneous spaces.

34. Let G be the fundamental group of a homogeneous spaagbéthe associated
subgroup, and ley be the subgroup of the linear adjoint group that correlgpomg.
Suppose that the last— n infinitesimal transformations in the infinitesimaldis for G
are the ones that generaeor at least, the connected partgothat contains the unity
element. The linear substitutions @fsubsume the parametegsof the most general
infinitesimal transformatiort. & X; of the group, but sincg obviously leaves invariant
the set of transformations gf these substitutions will transform the parameggrs.., e,
between themselves. We |t denote the linear group that indicates how these
parameters are transformed.

Suppose that the determinants of the various substsubibir are always positive:
The spacd will then beorientable Consider a parallelepiped that is constructed fnom
infinitely small vectordOA that issue from the point of origi@. Each pointd can be

obtained by applying an infinitesimal transformatignel” X, to O. Arrange then
k=1

vectors into a certain order, and agree to say tleafp#nallelepiped has positive or
negativesense according to whether the determidaﬂi‘ is positive or negative, resp.

The parallelepiped will be changed into another one by ramgformation ofy that will
have the same sense as the first one, since onesgemsethe valueg!”, &V, ..., &)
to the transformed values by a substitution of fheand similarly for the indicels One
can likewise define the sense of an infinitely small lelepiped of originA that is
different fromO by moving its origin taD by a transformation db, andthe sense will be
conserved by any transformation of G

On the contrary, if certain substitutions pf have negative determinants then the
space will not be orientable.

If the subgroupg is connected then it will be clear that the determmanit the
substitutions of theonnectedinear groupy will always be positive; the space will then

be orientable.In particular, the manifold of a group is then alygaorientable.

35. The preceding considerations permit one to define themmlof an infinitely
small parallelepiped of a homogeneous space if all oliibar substitutions oy have
determinants that are equal to 1 (viz., orientable spaceterminants that are equal to
+ 1 (viz., non-orientable spaces). The volume thus-defmiédoe conserved by any
transformation o6.
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In particular, take the manifold of a gro@ when considered to be a space that is
transformed transitively by the first parameter grogpwill reduce to the identity
transformation here. Define the volume of the palgfiiped whose origin is & (viz.,
the unity element) and is constructed from the vectoas tlefine the infinitesimal
transformation®g; X;, & Xz, ..., & X to be equal t@,e,...e . The volume element of
the space will bel2, 13):

dr=aw w ... @,

in which the right-hand side is an exterior product.

On the contrary, if one regards the manifold of theugras a space is transformed
transitively by the second group of parameters then oliehawve a second volume
element 12, 13]:

dr'=o o ... @ .

36.If the linear groupy leaves invariant a positive-definite quadratic form & fo
example, € + €+ ...+ € - then there will exist a Riemannian metric in the
homogeneous spaé&ethat is invariant undeé. Indeed, leA be a point that is infinitely

close to the origirD. Call the quantity\/ef +6&+---+ & thedistance OAin whiche,

.., &, denote the parameters of the infinitesimal transfoomae X; + ...+ e, X, that
takesO to A. If A goes toA' under a transformation af then one will see that the
distanceOA is equal to the distanc@A. One then defines the distaridé&l between two
infinitely close pointdM andN by takingM to O by a transformation d&. If N then goes
to A then one can séIN = OA. The distance that is obtained is independent of the
transformation that taked to O. It is preserved by an arbitrary transformatioGof

Analytically, if S; andS.+qa are two transformations & that takeO to two infinitely
close pointsM andN, respectively, and i5;* S, ., has the symbota X; + ... + @ X

+da
then one will have:

MN = af+a? + ... +af.

In particular, the space of the gro@ when considered as being transformed
transitively by the first parameter group, admits an infole of metrics that are invariant
under that group; it will suffice to take a positive-déénmetric with arbitrary constant
coefficients ina, @, ..., a . If one takes a finite, properly-discontinuous subgroup fo
g, in place of the identity transformation, thgnwill be a finite, linear group that always
leaves invariant at least one positive-definite quadrfdren, and in turn, ther-
dimensional spack that is associated widpwill always admit at least one metric that is
invariant undefG.



CHAPTER NI
CLOSED, LIE GROUPS
|. — Volume of a closed group.

37. We saw (no35) that one can define two different volumes in the riadahiof a
Lie group. It is obvious that each of them will be ténif the group is closed, since the
manifold can be covered by a finite number of neighballkpeach of which has a finite
volume.

On the contrary, if the group is open then one and ther aif the volumes of its

manifold will be infinite. Indeed, leYy be a neighborhood of the unity element, and let
), be a neighborhood that is interior e and sufficiently small that § ands are two
arbitrary elements of) then the elemerss™ will belong toV,. We know that ip is an
arbitrary integer then there will exist elements Gfthat cannot be obtained by
multiplying p elements that are interior 1%, since otherwise the manifold Gfcould be
covered by a finite number of neighborhoods. $be an element of that nature, so:

S=a .. @>p);

we can suppose thgtis the minimum number of factors that one can takéeninterior
of Vo in order to obtairs. Consider the neighborhoods:

W, a2, 198, s

one easily sees that no pair of them has an elemeatmmon. On the other hand, they
all have the primary volumé, which is the volume o¥,. One can thus find as many

regions in the group manifold as one desires that all halenev' and have no point in
common.
Q. E.D.

The two volumes that one can define on the manifoll@dbsed group are identical.

Il. — A theorem of H. Weyl.

38. There exists a fundamental theorem that is due Wey! [8, pp. 289] for closed,
linear groups<G that are connected or mixed, namely, thath a group leaves invariant
at least one positive-definite Hermite form

First, suppose that the groGas connected and defined by the equations:

X =D A (=12 ..n),
k
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where the coefficientayx naturally depend upon the substitut®f the groupG. We
denote the right-hand sides I8x and their complex conjugates b$x. For the
following integral that is taken over the entire grougnifold:

[ (SxSx+ Sx -+ Sx Fxrg

it is a positive-definite Hermitian forma(xy, ..., X,). It is invariant unde, since if one
performs the particular substituti® on the variables; then the form will become:

[(SS xSEp--+ $S,x §9 1.

Upon settingSS = S’ and remarking thatizs = dzs, if one takesdr to be thesecond
volume element then one will prove the theorem.

If the groupG is mixed then it will necessarily be formed ofiaite number of
connected families; it will then suffice to defitlee formF by the sum of as many
integrals as their families in the group.

If the closed, linear grou@ has real coefficients then one can substitutesttipe-
definite quadratic form for the Hermitian form.

39. A particular consequence of Weyl's theorem id tihe coefficientss; of the
substitutions of a closed, linear group &a@unded because if one supposes that the
invariant formF is, for example:

F= X+ 063+t XX,
then one will have:
(1) Y8 =1
k,i

This property can be proved directly, moreoverall @he quantity /quaj the
i

modulusof a linear substitution. If the coefficients warot bounded then one could find
an infinite sequence of substitutios S, ..., S, ... in the group such that the modulus
of each of them is greater than twice the modufukepreceding one, and that sequence
would have no accumulation element in the group.

One can add another essential property that fslivam the preceding one, namely,
that the rootsl of the characteristic equation §fnamely:

a11_/] &, &
= a'zz_/] Ay -0

ay a, - ann_/]
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are all of modulus equal to 1. Indeed, one can, by aquswhange of variables,
suppose that one of the equations of the substitGtisn

X =A%

the substitutiors, will thus haveA, for its coefficient, and that quantity can be bounded
only if A has modulus 1. Finally, it results from this that teterminantA of the
substitution, which is the product of the characterisi@s, has a modulus that is equal
to 1. One can say directly that each substituiggassociated with the substitutign=

Av that shows hovs changes the volume; these substitutions can genecidseal group
only if A has a modulus that is equal to 1. That is, moreovemeidson for the fact that
there can be only kind of volume in the manifold of ctbgeoup.

40. One can attach the following important theorem eogteceding considerations:
Any bounded, linear, algebraic group is closedllinear groupG will be calledbounded
if the coefficients of its equations are bounded, agebraicif it is defined by a system
of entire algebraic relations between the coeffidenThe theorem is almost obvious,
since if the coefficients are bounded then any infinitedEsubstitutions of the group will
admit at least one accumulation elemEni the group ofll linear substitutions that act
upon the given variables, addwill belong to the groufs, since its coefficients satisfy
the given entire algebraic relations.

The orthogonal group of real variables, the linear group of a positive-definite
Hermitian form, and the unimodular linear group of suchranfare thus closed groups.
However, their subgroups are not all closeds one proves with the example of the
group: _ _

X' — ela X, y; - emla y,

in the real parameter, while m s a reairrational constant; that group is not closed, and
yet it leaves invariant the Hermitian forrx + yy.
lll. — The structure of closed groups.

41.1f a groupG is closed then its adjoint grodp will also be so. It thus leaves
invariant at least one positive-define quadratic form, mame

F@=e+e+..+e;

upon expressing the idea that the infinitesimal transfoomd; (no. 22) of the adjoint
group leave$ invariant, one will obtain the relations:

Gk + Cix = 0.

One can thus choose the basis for a closed group irasual that one has:
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(2) Cijk = Ciki = C«ij = — Cij = — Ckji = — Ciik -

One deduces that one has:

zcljkclkj == zclzjk
ik ik

for the coefficients o€’ in the formg(e) that was defined in n@2

The form ¢(e) is therefore negative-definite or negative semiritef That is,
moreover, a property that results immediately fromfect that it represents the sum of
the squares of the characteristic roots of the infimitalk substitutions of the adjoint
group, and that these roots are purely imaginary, sinewaite the characteristic roots
of the finite substitutions of the adjoint would havedulois 1.

42.Regardey, &, ..., & as the rectangular coordinates of a point im-dimensional
Euclidian space. [ leaves invariant a planar manifold in that space thategatrough
the origin then it will also leave invariant the orthogbmanifold. One can thus suppose
that an infinitesimal basis for the group has beenamas such a manner thitleaves
separately invariant the planar manifolds that are ddfinghe firstp; coordinate axes,
then the nexip,, then the nexps, and so on, such thétleaves invariant no smaller
planar manifold that is contained in one of the pregethanifolds. A simple calculation
will then show that the constagj can be non-zero only if all three indiaes, k belong
to the firstp; indices, or the next, indices, and so on. The infinitesimal transformations
of each sequence generate a group tldjroup Gs (at least, in a neighborhood of the
identity element}he direct product of a certain number of othergpe G, G, ..., Gy .
That must say that any transformatiorGofhat is sufficiently close to the identity can be
regarded, in one and only one manner, as the product of sfotraation ofG;, a
transformation ofG,, etc., such that thedecomponent transformations commute with
each other (and each taken in a neighborhood of the y#atisformation).

The component groups GGy, ..., Gy are simple because they obviously cannot
admit any continuous, invariant subgroup, so such an invasudogroup will correspond
to a planar manifold that is invariant undier

43. Some of the component groups can have one parametst, skppose that they
all enjoy that property. The constartg are then all zero, and one haslased,
commutative group The simply-connected group with the same infiniteSignaup is
the group of translations of ardimensional Euclidian space. In order to pass from the
latter to a closed group, it is necessary to determipeperly-discontinuous subgroup.
One sees immediately that the closed group can alwaysbtaéned by regarding two
translations as identical when their projections difby integers. Such a group is
therefore always holohedrally isomorphic to the lirgraup:

! =% ! 1a,

X =€rX, X =€7X, .. X =% x
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in the parametera, ay, ..., & .
Any linear group that is isomorphic to the preceding oné be reducible to the
form:

Yi - eizmlkak Y, y'2 - eizmzkak Y, . y; - eizmnkak e

in which themy, are arbitraryntegers. In order for the isomorphism to be holohedral, it
is necessary and sufficient that one can converselessqyr ay, ..., a in terms of linear

combinations with integer coefficients in thdorms kaaK i=1,2,..n).
k

It is interesting to remark that the gro@admits a continuous infinitude ddcal
isomorphisms that one obtains by performing an arbitragali substitution on tha .
However, such a local automorphism can be prolonged anto group only if the
substitution has integer coefficients and a determitnattis equal ta: 1.

44. Any closed group is (infinitesimally) the direct prodo€ia commutative group
and another group for which the forgn(e) is negative-definite. The groups for which
the form¢ (e) has a non-zero discriminant are the simple and senple groups. We
shall briefly study the groups for which the foghte) is definite.

IV. — Closed, semi-simple groups.

45. Let G be a connected group for which the fogr(e) is definite:
) =t(f+e++¢).
The structure constantg then satisfy the relations (2), and in turn, the fefite) will
be negative definite. We shall show th#te adjoint linear grough is closed.

Indeed, consider9| 21] the set oflinear automorphismef G; viz., the set of linear
substitutions:

€ =) a8,
k

which, when performed on the parameters of an infinitalshnansformatioan X,

will preserve the structure relations:
(Xi X) = zcljk Xy
k
They are defined by the entire algebraic relations:

(3) zakiql'k%s:zc.jkask (,j,s=1,2,..r).
k.n K
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The group of linear automorphisms is therefore algebaaid,also bounded, since it
leaves the fornp (e) invariant; it is therefore closed (nd0). Now, the linear adjoint
groupl is a subgroup, and similarly, an invariant subgroup, sinceéramsform by an
automorphisnmd of the transformatioi, of the adjoint group:

(Ta) S=%% S

will be the transformatioiy, that is provided by the eleme®i of G that is the transform
of S, by the automorphismd. The groud is therefore (no42) (at least, infinitesimally)

the direct product of with a groupl’; that commutes witli; however, it is impossible
for that groupl; to not reduce to the identity operation, because it gwle linear
automorphisms that leave invariant each transformatioof the adjoint group, and in
turn, each element @.

The group is therefore identical tb’, or at least, it constitutes one of the connected
families (which are finite in number) thatis composed of. It is therefore closed.

46.We shall now show that the gro@pitself is closed; in order to do that, it will
suffice to prove, with H. Weyld, pp. 380], that the simply-connected group of the same
infinitesimal structure can cover the adjoint groupyamlffinite number of times, or even
that there exist finite number of closed contours in the adjoint group thathate
reducible to each other by continuous deformatiod$at number will be that of the
elements of the center of the simply-connected group theh given infinitesimal
structure.

In order to prove that theorem, it is necessarystaldish previously some properties
of the adjoint groupl’. Suppose that one can find independent infinitesimal
transformations of that commute with each other and which do not all samelbusly
commute with any other infinitesimal transformation; wan suppose that these
transformations arg;, E,, ..., E;. The subgrougof I' that they generate edosed since
it is one of the connected subsets of a bounded group, sndrimed algebraically from
the substitutions df “that leave invariant the variables e, ..., & . On the other hand,
that subgroupyis commutative; as a result (3), the characteristics roots of its most
general infinitesimal transformatiam E; + a, E; + ... +a E have the fornt i w, , In
which the w, are linear combinations with integer coefficients oé thcanonical
parametersp,, @, ..., ¢ that are each defined up terand depend linearly upon the,
likewise canonical, parameteais a,, ..., & . The characteristic roots are pair-wise equal
and opposite because the grgthas real coefficients.

47.Since the infinitesimal transformations pthat are nosingular— i.e., the ones
for which, one of the quantitiesy, is annulled — are invariant undgrthey each admit
«"? homologues inl, and since they depend upbrparameters, one sees that the
transformations ofy and the homologues depend upormparameters. The singular
transformations oj/that are invariant under a subgroup of at leas2 parameters each
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admit at mosto"?? homologues, and since they depend upon at medt parameters,
the singular transformations &fwill depend upon at most:

r-1-2+(-1)=r-3

parameters. In particular (no.24), it then resultsall of the non-singular, finite
transformations of’, and also of Gadmit infinitesimal transformations as generators.
Moreover, the same thing will be true for the singutansformations that are limits of
non-singular transformations, because one can always seifipat the parametegs, ¢.,

..., ¢ 10f a generating infinitesimal transformation are foundveen O and Z— i.e., they
are bounded — and under these conditions, the generatingesifnal transformation of
an infinite sequence of non-singular, finite transforomet that converge to a singular,
finite transformation will admit at least one accuation point, which will provide a
generating infinitesimal transformation of the singufansformation. Any semi-simple
group of the definite forn® () is therefore generated completely by its infinitesimal
transformations.

48.Now, consider the hyperplanes:
wy = 0, Wy =217

in the I-dimensional Euclidian space whose rectangular coosdinate the canonical
parametersy, ..., & of a transformation of.

The first of them delimit a certain number of polyhédnagles D1), (D), ... around
the origin. The last ones, along with the firsesndelimit a certain number of polyhedra
(P1), (P2), ... in the interior of these angles that have thegirfor their vertices.

Describe a path(]j in the manifold that takes the unity element to an arbitrary element
T; we can always, if needed, suppose that this path meetmgular element. Follow
the parameterg:, @, ..., ¢, of the variable element alon@)(by continuity. Starting
from the origin, we enter into one of the polyhedPx \ithout ever leaving it. As a
result,any element df is homologous to an elementjahat has its image in the interior
or on the frontier of one of the polyhedi@. Now, suppose that the contod) (eturns

to the identity element. The interior image point BY, (starting from the origin, will
necessarily end at one of the summits &) that corresponds to the identity
transformation of . (The w;, are all multiples of Zrfor the identity transformation 67).

If the image point returns to the origin then the etbsontour that it describes can be
reduced to the origin by a sequence of homothetiesratittis ofk that decrease from 1
to 0, and the closed contou€)(can be correspondingly reduced to a point by a
continuous deformation. On the contrary, if the impgmt interior to P) goes from the
origin to another summit then the contodd (annot be reduced to a point by a

continuous deformation, since if it could then it wouldlaays be possible to realize the
reduction without ever encountering singular elememsich only define r— 3-
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dimensional manifoldout then the image point, which does not led)e Will always be
the origin at the same summit &)( which is absurd.

There are thud15 as many closed contours in the manifoldlothat are not
reducible to each other as there are summits in the polyhe@pthat represent the
identity transformation.Since that number is finite, the theorem is proved.

49.The various polyhedraP] that emanate from the origin Iadimensional space
each represent transformations of the group. In pdatictwo neighboring polyhedr&)
and @1), which are contiguous along a lateral face that is$tees the origin, are
mutually symmetric with respect to that face. Therstexa transformation of the adjoint
group that transforms the infinitesimal transformatia y that are interior toR) into
infinitesimal transformations gfthat are interior toH;). All of these transformations of
yinto itself generate a finite grouf®)( Moreover, there is no other transformation that
leavesy invariant in the adjoint group; indeed, otherwise, one of those transformations
T would leave invariant the polyhedral ang®).( As a result, there will exist @on-
singular infinitesimal transformationX of y that is invariant undef. Now, the
transformationT can always be generated by an infinitesimal transfoomadf I" that
leavesX invariant. However, the only infinitesimal transformas of ' that commute
with X all belong toy The transformationl will thus leave invariant all of the
transformations o, which is absurd.

The polyhedral angleD|) thusthe fundamental regioof the finite group $ whose
generating operations are symmetric with respect ttatbeal faces off§). The number
of polyhedra P) that emanate from the origin is equal to the numbepefations of%).
The number of lateral faces @) is equal to the rankof the group 16].

50. The search for automorphisms & can be attached to the preceding
considerations. It comes down to the search for acotstand symmetries about the
origin that leave invariant the figure that is defined Iy polyhedral angledDj, (D),
etc. The number of these operations is a multipth@humber of operations d)( Its
knowledge immediately gives the number of distinct, eated families into which the
total groupl of automorphisms o& is decomposed. For simple groups, that number is
equal to 1, 2, or 6, as was determined by E. Cait@n [

51.There exist four general classes of closed, simple graogsfive exceptional
groups, in addition. The general classes of groups ar®rghic to:

A. The unimodular linear group of a positive-definite Hermitlarm inl + 1
variables. That group is simply connected, and it coieradjoint group + 1 times.
Forl > 1, it will admit two distinct families of automorphism

B andD. The orthogonal group of real variables(=2 + 1 orn =2 > 8). That
group covers its adjoint group twicenifis even and once if is odd. It is covered twice
by the simply-connected group of the same structure. nithraber of its distinct,
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connected families of automorphisms is 1 for ogl®, forn = 8, and 2, fon even and
greater than 8.

C. The linear group that leaves invariant the Hermitiamfor

XX+ XX XK
and the exterior quadratic form:

[X1 X2 + [Xa Xq] + ... + [Xa-1 Xal].

That group is simply connected and covers its adjoint giwige. Its automorphisms all
belong to the adjoint group.

V. — Constructing the most general closed group.

52. Return to an arbitrary, closed, connected gr@uplnfinitesimally (no.42), it is
the direct product of a commutative group and several sigppups. The simply-
connected grou with the same infinitesimal structure @sis thus the direct product
of a group of translation§, of orderro and several simply-connected, closed, simple
groupsG,, G,, ..., G,.

In order to pass fron& to G, one must (nol4) construct a properly-discontinuous
subgroupg of the center ifG , which is a subgroup that will provide the unity element o
G. Now, the center o6 is the direct product of the centers of the compogemtips.
On the other hand, since the center of the gi@yfs G, itself, if one denotes the centers

of G, G, ..., G, byC, Cy, ..., Cqthen one will have:
C= C_SOXC1><...>< Ch.

Any element ofC is the product oh + 1 elements that are taken fro@), Cy, ..., Ch,

respectively. It can happen that the subgrgisthe direct product of a subgroup@f,
a subgroup o€, ..., and a subgroup @& . In that case will be the direct product of
a closed, commutative group amdlosed, simple groups.

In the general case, we denote the largest subgroGp, @;, ..., C, that belongs tg

by go, 01, ..., gn, respectively. The grougp X g1 X ...X gn iS a subgroup of. It defines a
groupG’that coverss an integer number of times, and that number is fisitge it is
equal to at most the number of operation€pk ...x Cy; the groupG’is then closed.
On the other hand, one passes frGhto G by constructing a finite subgroup of its
center.

As a result, one can obtain any closed group Gthstisg with a closed group G
that is the direct product of a closed, commutagjx@up and a certain number of closed,
simple groups. It will suffice to take a finitebguoup g of the center of Gto be the
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unity element of G, wherée lgas only the unity element in common with each of the factor
groups that the center of ‘G a direct product of. If g does not reduce to the unity
element theri will not bethe direct product of commutative or simple groups.

53. A classical example of a closed, semi-simple groupishaot the direct product
of simple groups is furnished by the connected orthogonal gnofgoir variables, which
is covered twice by the direct product of two simply-axtad simple groups of order 3,
and which covers its adjoint group twice. Similarlye tinear group of a positive-
definite Hermitian formxX + ... + X X, is covered times by the direct product of the

closed commutative group: _
X =€% (k=1,2,..n)

and unimodular linear group of the Hermitian form.

VI. — Homogeneous spaces with closed fundamental groups.

54.1f G is a closed group then any homogeneous sjgadbat is transformed
transitively byG will be associated with a closed subgraupf G. The space itself is
closed. There exists at least one Riemannian metric on the space that immvander
the group. That amounts to saying that the subgrgupf the adjoint group that
corresponds t@ is closed, and in turn, will leave invariant a positikedinite quadratic
form. That form will permit us to define the metrit the neighborhood of the origin,
and in turn, in all of space (n86).

Moreover, the preceding reasoning that makes the fungtahgroupG closed or
open applies to any homogeneous space for which the grisugdosed. One can easily
prove that if the spac& admits a metric invariant undé€, and if G is the largest
continuous group that leaves that metric invariant theil be closed.

The property of a closed space that transforms treslsitunder a closed group
that it must admit a metric that is invariant un@eis very important. One can appeal to
it in order to prove the possibility of constructingcampleteorthogonal system of
functions in space by starting with linear groups thatismeorphic toG. However, that
is a theory that, due to its importance, exceedsdiesof this fascicle.



CHAPTER IV

SYMMETRIC RIEMANNIAN SPACES ( 1)

|. — Definition and first properties.

55. Consider a Riemannian manifold with an everywhere-regugdric on which we
suppose that any infinite, bounded set of distinct pointstadat least one accumulation
point. (A set is calledoundedif the distance from all of its points to a fixed poi
remains bounded, where the distance between two psid&dined to be the lower bound
of the lengths of the arcs of the curve that jointtie points.)

The Riemannian manifold will be callesgmmetridf the symmetry with respect to an
arbitrary pointA of the space preserves the metric. (Thahmetryis defined in the
following manner: One can make any pdihthat is sufficiently close té correspond to
the pointM’that is obtained by joining the geode®a to the prolongation of an arc
AM’that has the same length as the Alkt) The property of a Riemannian manifold
being symmetric is equivalent to the following: Levi-Civgiarallel transport preserves
the Riemannian curvature; however, shall ignore this vientmoimpletely.

Any symmetric, Riemannian manifold admits a transitive, continuous group
isometric transformations. Indeed, ifM and N are two arbitrary (sufficiently close)
points then one only has to join them with the geodé®icand successively perform the
symmetry with respect t9l and the symmetry with respect to the midp&mtf MN: The
point M will then be taken tdN. That isometric transformation belongs to a contirsuo
family of isometries that are obtained by leaving thantpM fixed and describing a
geodesic that issues fovhto the point\.

If G is the largest connected, continuous group of isometrig® ananifold then that
manifold can be considered to be a homogeneous space winosenental groufs is
endowed with a metric that invariant under The largest subgroupof G that leaves
invariant a given poin©O of space is theolosed(no. 54). We assume that G is a Lie

group.

56. Let g be the symmetry with respect@ That symmetry defines anvolutive
automorphisnof groupG that makes the displacemetorrespond to the displacement:

S=0gDot=0Do;

if StakesM to N then S will take the symmetric poinM of M with respect td to the
symmetric pointN of N with respect ta.

of

The transformations af are obviously invariant under that automorphism. On the

other hand, if there are other ones then each of thesh takeO to a point that must be

() In this chapter, we shall summarize and simplify theoties that were presented in the memoirs
[14], [15], [16], [17], [2]] of E. Cartanseealso [L2] and [L3].
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its proper symmetric point with respect @ so if they exist then they must define a
family of displacements that one cannot linkgtdy continuity. In particular, the only
infinitesimal transformation that are invariant untlee automorphism are the ones that
belong tog.

57. Conversely, start with a connected, continuous grGupnd an involutive
automorphismA in that group such that the infinitesimal transformaiahat are

invariant undet4 generate a closed subgrogip We shall show that the homogeneous

space€ that is associated wittp can be endowed with a symmetric Riemannian metric
that is invariant undeg.
The automorphisml effects a linear substitution of the form:

(1) { §=-¢ (i=12...n)
€= & (@=ml..n

in the parameters of the infinitesimal transformations &; in what follows, we shall
denote the firsh indices by Latin letters and the last nones by Greek letters.

By hypothesis, the infinitesimal transformatiods generate a closed, continuous
subgroupg. The subgroup of the adjoint groupg that corresponds tg is closed. It
transforms they, ..., &, amongst themselves. It then leaves invariant38pat least one
positive-definite quadratic form, namely:

Q= +&++g

58. Let O be the origin that is invariant undgr Let S be the transformation @
that is the transform o% under the automorphismd. Finally, let Sg be the set of
transformations o6 that takeO to a pointM in space. The conjugate transformations
Sg define another well-defined poitdl . One thus obtains a point-like transformation
of the spacef that leaves the poinD fixed; we denote it by the symbat That
transformation is isometricIndeed, ifS, and S.+q4a take O to two infinitely close points
M andM ’then their transform&1 and M’ underowill be the transformed points &f
underS, and S respectively. The distand¢M ’is obtained (no36) by considering

a+da’

the infinitesimal transformatio,* S, ,, whose symbol i§ (a X + @ Xa), and one will

have:
MM’ = \/ﬁ
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The distanceM M' is obtained, in its own right, by considering the conjaga
infinitesimal transformatiot. (—aw X + ax X3). One then sees that the distaMid ’ is
not altered by the operatian

The trajectories of the infinitesimal transformati@ne X, when applied to the point
O are obviously invariant undeo (with a different sense of traversal). The
transformationo then preserves the directions that issue f@mwith a change in sense.
In particular, thegeodesicghat issue fron®© are invariant under the isometoy It then
results immediately that one can pass from a pdit the pointM that is the transform
of M under gby performing the symmetry with respect@ at least as long as there
exists a geodesic that joisto M.

The spac€ thus admits an isometric symmetry with respe@.to

59. The existence of an isometric symmedgywith respect to an arbitrary poiAtin
space follows immediately from the preceding. Two owill be calledsymmetriovith
respect toA if one can, by a displacement @f simultaneously také to O and the two
given points to two points that are symmetric wigspect tdO. The symmetryoa will
obviously be isometric.

If S is one of the transformations that taketo A, and if S is one of the
transformations that tak@ to a pointM then the symmetric point & with respect tA
will be defined by the transformation:

() S=5S'<

One immediately verifies that this point does not graif one multipliess, andS by an
arbitrary transformation af.

60. We agree to say that a transformatiotsaé arotation if it belongs tog, and that
it is atransvectionif one can generate it by means of an infinitesitraisformatior®. e
Xi. We denote a rotation by the letieand a transvection by the letfer One has:

R =R, T=T2L

Let (C) be a line that links the points that are obtained byyamgpto the pointO the
transformationd(t) of the one-parameter group of transvections that arerged by a
given infinitesimal transvection:

e X1+ ...+en X,

We taket to be the canonical parameter of the subgroup, whichanesgppose to be
equal to the length of the arc that separates the @aomt (C) from the pointM that is the
transform ofO by T(t).

From (2), the symmetric point to the poMtwhose abscissa ion the line C) with
respect to the poik whose abscisda is given by:
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S'=T(to) [T(-t)] ™" T(- 1) = T(2to - 1);

it will again be a point of ). The trajectory is then its own symmetric image with
respect to any of its points.

Having said that, lefA be a point that is close  along the line €). The geodesic
OA is its own symmetric image with respectApit thus contains the poim; that is the
symmetric image oD with respect tdA, which is a point that will belong t&C]. It will
thus likewise contain the poinfs, As, ... that are obtained by successively measuring
out constant lengths o). If A approache® indefinitely then one will get the geodesic
that is tangent toQ) at O in the limit, which must contain all of the points(@). The
geodesics that issue from O are thus the trajectories of transmscti

61. One can add a remarkable theorem. Take two pAirisdA’ on the geodesic
(C) whose abscissas atgand t,, respectively; upon taking the symmetric point to a

point Swith respect taA andA’in succession, one will obtain the points:
T(2to) S and T(2t)T(-2t)S=T (2, —-2,)S.
The result of the two symmetries is then the treactgsn whose amplitude is twice the
distance AA it does not change if one slides the AR along the geodesic that carries it
without changing its length or sense.

It is important to remark thalhe trajectory of a one-parameter group of transiets
is a geodesic only if the trajectory starts frora goint Q

Il. — Reducible and irreducible homogeneous spaces.

62. Formulas (1), which define the involutive automorphis#nshow immediately
that the bracketsX( X)) and ¥, Xg depend upon only thé,, while the bracketsX X,)

depend upon only thg . One thus has structure formulas of the form:
(X X)=2.6,%,,
P
3) (X X2) =D G X
k

(XgX,) = Z Gy X,
P

The subgrouprof the adjoint group that corresponds to the subgraupansforms
the @ amongst themselves. It transforms the variableamongst themselves, singe
leaves invariant the linear family of infinitesimal nedormations)Y. e X, . Since the
subgroupyis closed, it will leave invariant not only the fofte) =€ + ... + €, but also
a positive-definite form such as:
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(4) Fle=e’ +...+e +&,+..+¢e.
One immediately deduces the relations:

(5) Caij + c:a]'i = O, Caﬂy"’ Cayﬂ: 0.

63. Consider the forng(e) that relates to the grouwp. Since it is invariant under the
automorphisnm®(, one can suppose that the infinitesimal basis for tbeipghas been

chosen in such a manner that one has:
(6) .CEDWCEDW RS

The coefficientsl, are all positive; indeed, one has:
Aa= D Coy+ 2 Cpy -
i By

If A, is zero then the infinitesimal transformati&p will be distinguished;the subgroup
g will thus contain a continuous subgroup that is invarnamerG, which is impossible

(no. 18). Since the subgroupleaves the formZ)Iaeﬁ invariant, nothing prevents us
from assuming that it is the one that one appealsdoder to defind=, which amounts to
assuming that thé, are equal to 1.

Upon now expressing the idea that the infinitesimalsftamationskE; andE,, of the
adjoint group leave the forge) invariant, one will get the relations:

(7) Cija = A Caij = Ai Caij

64. Having made these preliminaries, suppose that the destd; are not all equal
to each other. For example, separate therfinstlices into two series, with the letters,
... being reserved for the first series, the letiérg', ..., for the second series, and
suppose that th& are all different from thel’. The relations (7) then give:

Ci'a = Cqiir = 0.

One sees immediately that the infinitesimal tramsfiionsX; and X, generate a
group Gy; similarly, the transformationX; and X, generate a grouf,. Finally, the

transformationsX; commute with theX; . Any transvection of5, in turn, will be the
product of a transvection @, and a transvection d&, that commute with each other.

The groupG; gives rise to a symmetric spagethat is associated witlp and the group
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Gy, to a symmetric spac€& . Any point of€ (that is sufficiently close t®) can be
defined by a transvectiom = TT'. There then exist a one-to-one correspondence
between the points of and the pairs of points ¢h and £ . On the other hand, the

distance between two infinitely close pointse and Terde e+de Of £ IS given by the
consideration of the infinitesimal transformation:

TsT = (Tl;lTle+ dg(Tllgl T 0

e € "erdee de

If the first factor on the right-hand side has thekgl:

Za)lxl +Zwaxa !

and if the second one has the symbol:
Z a)| xi’ + Z Cda xa

then one will see immediately that tti€ of £ is the sum of thds” of & and & .

We say thathe spacef results from the composition of symmetric spatesnd & ;
it will be calledreducible

One will arrive at an analogous conclusion if the sulpgrg when considered as
operating on the, leaves invariant a plane manifold of dimension at leasb one can
assume that = 0.

65. If the space is irreducible then then coefficientsA; of the form —g(e) are then
all equal to each other. However, there are threesdasdistinguish:

1. If theA; are all zero then relations (7) show that the trastgmes commute with
each other. The space is Euclidianor more precisely, it is the manifold of a
commutative group in which one has taldsh to be a positive-definite quadratic form
with constant coefficients in the differentials oéth canonical parameters. For= 2,
the space will be homeomorphic to the Euclidian plaméhe cylinder of revolution, or
to the torus.

2. If the common valud of the 4; is negative then the group will be openand
simple or semi-simple. The spa€avill itself be open, as one can prove by appealing to
the property ofj being closed.

3. If the common valud of the A; is positive then the grou@ will be closedand
simple or semi-simple. The spa€avill likewise be closed.
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66.One can deduce the open irreducible symmetric spacée afdsed spaces by a
very simple procedure. Indeed, introduce the symbols:

Y =1 Xy, Yo=Xa;
we obtain:

(3) )= 6 Y,

which are formulas that define a new structure for tlougg that admit the involutive
automorphism (1). The corresponding new forng(e) is obviously deduced from the
preceding by changing into —A. As a resultany open, non-Euclidian, irreducible
symmetric space is associated with a closed, non-Euclidian, irreduciyinmetric
space, and conversely.

The search for the irreducible, symmetric spacefeas reduced to the search for
closed ones.

67. Before beginning that search, we shall prove thah irreducible, symmetric
space is furnished by a semi-simple group G then G will be thestacgatinuous group
of displacements of the space.

First, observe that the bracketX; (X)) must yield r — n linearly-independent
combinations of theX,; indeed, otherwise these brackets would generate ananvari
subgroupy’ of g, as the Jacobi identity shows when it is appliedto(Xi Xj)]. Since the
subgroupg is closed, it will be the direct product gf and another subgroug'.
However, ifX, belongs tog” then formulas (7) will show that sineg, is zero, thec;
will be zero;g"” is therefore invariant i, which is impossible.

Having said that, suppose that there is a continuous dggbtipat contaings as a
subgroup and leaves invariant the metric on the spad®.inipossible foilG' to be semi-
simple, since theX X)) would not provide all of the transformations of thevrseibgroup
g that leave the origin invariant then. On the otleerd) since space is irreducible, it can
only be Euclidian, which is contrary to hypothesis. Thetbus a contradiction.

lll. — Closed, irreducible, symmetric spaces.

68.Let us pass over the locally-Euclidian spaces. Them® is then closed and
simple or semi-simple.

If a closed groups is simple and admits an involutive automorphignthat leaves
invariant the transformations of a continuous subgptien one can easily see tlgat
closed. The associated symmetric spacevill necessarily be irreducible.Indeed, ify
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leaves invariant a linear famig X; + ... + e, X, (v <n) then the transformation§ and
(Xi X), where the indices and] take the values 1, 2, ..v, will generate an invariant
subgroup of5, which is impossible. One will thus have a very largss of irreducible,
symmetric spaces.

Now, suppose thds is (at least, infinitesimally) the direct product elveral simple

groups G;, Gy, ..., Gc . The automorphism4 will transform G; into one of the

component groups. Since it is involutive, it will perfoan involutive permutation of the
component groups. His greater than 2 then one can redards the direct product of

two groupsG,, G,, each of which is invariant undgt. The corresponding subgroup g
will be the direct product of the two subgrougs and g, of G/ and G,,. One sees
immediately that the spacé results from the composition of the spaces that are
associated with the subgrougs and g, ; it is then reducible.

The only case in which space is irreducible with a sample groupG is the one in
which G is the direct product of two simple grou@s, G, that are isomorphic to each

other, and in which the automorphistd transforms each element @&; into the
corresponding element & .

69. In the case where the group is semi-simple, letS, and ¥, denote two
corresponding elements of the two component groups. Tagorts, which are invariant

under A4, are the transformatiorts, Z,, while the transvections are the transformations

S, that are inverse to their conjugat8ss, .
Amongst all of the transformations Gfthat have the form:

S2h0=S 2 S 2,

and which takeé to a pointM in space, one and only one of them belongS;tamamely,
S, S'; one can thus regard the spafeas the space of the simple group G If one

applies the transformatio®, Z, to the pointS, of the space then one will obtain the
transformatior, ¥, S, or rather, the set of transformations:

S S9=5% S'g.
Let X3, Xz, ..., X, denote the infinitesimal transformations of the gr@ipand letY;,
Yz, ..., Y; denote the corresponding transformation&gf The infinitesimal rotations
are:
Ui=X+Y,

while the infinitesimal transvections are:

Vi=Xi—Yi.
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The form —¢ (e) that relates td& is the sum of the forms ¢ (e) that relate to the two
groupsG; andG,, and each of them is the sum of the squares of plaegameters. It then

results that thels’ of the spacé;, when considered to be the spac&gfis:

Symmetry with respect to the origin replaGgg with =,g or S;* g; it is then defined

by:
S =S

The formsa are changed by that operation into the fornig,~which are parameters of
S, S!,.; one will then hve the relation:

wf+...+(urz :m12+...+mr2.

There exist two remarkable families of displaceméentbe space&, namely, thdeft

translations $ = § S, and theight translations = S S, . In the particular case in
which G; is the group of rotations in ordinary space, the sgaegll be the three-

dimensional elliptical space, which, in fact, admit® tfamilies of translations in the
Clifford sense.

70. The geodesics that issue from the origin in a spaeectifsed, simple group are
lines that represent one-parameter subgrolifs [If the rankl of the group is greater
than 1 then an arbitrary geodesic is not closed, butpagk infinitely close to all of the
points of anl-dimensional, locally-Euclidian manifold. That manifoldrépresented by
the polyhedron that is defined by the set of polyheBjdr{o. 48) that emanate from the
origin in I-dimensional Euclidian space; the opposite faces ofata polyhedron must
be regarded as identicdlq. Any point of space admits differeanhtipodal manifolds

[15].

71. Closed, irreducible symmetric spaces whose gr@uis simple [L7] present
analogous peculiarities. Here, the rank of the spat®e imaximum numbérof linearly-
independent, infinitesimal transvections that commute edtith other. One introduces
polyhedra P) that are analogous to the polyhedR, (whose interior points serve to
represent the transvections of the gr&@uplf that group is simply connected, which one
can always assume (n80), then one can prove, as in @&, that the manifold of finite
transvections is simply connected.

Now, suppose that the subgrogps connected: The spacewill then be simply

connected (na31). One proves that any transformat®of G can be put into the form
of the producfTR of a transvection and a rotation in at least one wdych amounts to
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saying that any poiri¥l can be related to the origih by at least one geodesic. No matter

what the transformatios might be that take® to M, the productSS* = T ? will always
be the same; any poiM will thus correspond to a well-defined transvectibh As a

result, the space& will be the simply-connected covering space of thenifol of
transvections, which we have seen to be simply coedeat its own right. There thus
exists a one-to-one correspondence between thespoiif and the transvections .
From the viewpoint of displacements of space, thastates into the formula:

(8) T?2=STS".

That formula shows that if one considers the manibid the space of the group G
of transvections, which one can regard as the imag¢jgecdpace, then on the manifold

V the displacements of that spa€ewill translate into the displacements of all of the
ambient group space. There is more: The metric thatlicced onV by its presence in
the group space is identical to the proper metricc.of The manifoldV is a totally
geodesid¢13] of the group space.

72. If the subgroup that leaves invariant the origin ofgpmmetric space is mixed
then it will be composed of a connected subgrguand a certain number of other
families ©1g, ©.g, ..., in which the®; are conveniently-chosen transvections. Since the
transvectionsd; are finite in number, they will belong to the centéiGo Conversely,
any subgroup of transvections that belongs to the ceh@mill correspond to what one

can call &lein formof the simply-connected spa€gone can obtain them by regarding

the pointsT ?, ©2T?, @2T?, ... of £ as being identical. The transformationsGfhat

yield a zero identity displacement are the transfoonatthat belong to the center Gf
and which leave the origin fixed.

IV. — Closed, reducible, symmetric spaces.

73. If a closed, symmetric spaéeis reduciblethen that will say (no64) thatin a

neighborhood of Qany point of€ is in one-to-one correspondence with a pair of points

of two other symmetric spaces. However, that corredgrace cannot be prolonged to all
of space.
Start with a certain number of closed, simply-cotegc irreducible, symmetric

space<, &, ..., &, and consider the closadtegrally reducible symmetric spacé that

results from the composition of the preceding spad@se will get Klein form that is
likewise symmetric by considering the finite, Abelian gudups in each of the simply-
connected group8i, G, ..., G, that are defined by the transvections that belongeo th
center of the group considered. Lef)((c), ..., (Cn) be these groups, respectively. One
takes an arbitrary subgroup of the group:
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(C1) X (C2) X....x (Cn).

If that subgroup is the direct productlo$ubgroups that belong toy), (c2), ..., (Cn),
respectively, then the symmetric space that is obtaunkde integrally reducible; in the
contrary case, it will be only Hecally reducible. One then has that the four-dimensional
space whose points are each defined by a pair of pointscospheres will be integrally
reducible, but will cease to be so if one regards twotpaas identical when they
correspond to two pairs of pointdN, M“N’, whereM ' is the antipode d¥1 on the first
sphere, and\’ is the antipode oN on the second one. That space is nothing but the
manifold of lines in three-dimensional elliptical space

V. — Open, irreducible, symmetric spaces.

74. Any open, irreducible, symmetric spa€as associatedno. 66) with a closed,
irreducible, symmetric spacg .

First, suppose that the closed sp&¢és the space of a closed, simple gr@up The

infinitesimal rotations and the infinitesimal transtrens of the group of displacements
will be:
X Y,
k=1,2,..0n,
X =Y

respectively, when one introduces the infinitesimal df@mationsXy and Yy of two
groups that are isomorphic @ Set:

Uk = X + Yk, Vic=1 (Xk— Y);
we will have:

Uiy)=-MVV) = zcljkuk ,

Uv) = (viy) = zcljk\/k -

These formulas define the structure of the graigh complex parameterthat is
generated by the infinitesimal transformatigngax + i by) Ux . The open spacé thus
has a fundamental group that consists of the sigpep with complex parameters that
has the same structure as Ghe involutive automorphism that gives rise to the space
and which makes any transformation of the complex grougsond to the conjugate
imaginary transformation will change (ax + i by) Uk into 2. (ax — i by) Uy .

If the closed spacé&, admits a simple grouf, for a larger group of displacements
then the associated open spdtavill admit an open, simple grou@ with the same
complex structurebut a different real structure for a larger group sptiicements.
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75. In one and the other case, in order to realizéuhdamental group of the open
space, take the corresponding open, linear, adjoint gfoupTlhe real, infinitesimal
transvections of space correspond to the purely imagindmyitesimal transvections of

the associated closed space; the characteristic rbat$irite transvection of are thus

all real or all positive. One easily proves that aaypsformation of” can be put into the
form TRin one and only one wayn whichT is a transvection, arfd is a rotation. One
and only one geodesic will then pass through any two poingpace. Moreover, the
canonical parameters are valid in the entire domaimaosvections, in such a way that

the space is simply connected and homeomorphic to Euclidian spaaedmits no non-

simply-connected Klein form.

Two locally reducible, symmetric spaces that are redeidibl several other open,
symmetric spaces are integrally reducible.

Finally, we remark that the subgrowp of rotations is connected for an open,
irreducible, symmetric space, and the same thing will be for the closed, simply-
connected space it is associated with.

76. One might wonder whether the adjoint grdupf an arbitrarily-given, open,
simple group can always be regarded as the group of displatseofean irreducible,
symmetric space. The answer is in the affirmativeer@ls more: All of the involutive
automorphisms of an open, simple group that can be gethdnate symmetric space are
mutually homologous in the continuous, adjoint grolfy R1]. In other wordsif one is
given a space with an open, simple, fundamental group then there wilbegishd only
one choice of generating element of the space that can make the geaintleéryspace
Riemannian symmetric.

In particular, the preceding theorem asserts the exstef a closed form with real
parameters for any simple group with complex parametdfsone can prove that
theorem,a priori, without, like E. Cartan, verifying it for each partiaulstructure, or
without, like H. Weyl B, pp. 371], appealing to the previously-established theory of
simple groups then that will permit a considerable simoption in the presentation of
the theory of simple group27].

VI. — Applications to the topology of open, simple groups.

77. Letl be the adjoint group of an open, simple gr&pvith real or complex
parameters. There exists an open, irreducible, symnsgaices that is homeomorphic
to Euclidian space that admifsfor the group of displacements. Lgtbe the closed,
connected subgroup of rotations in space. Any transfam@bf " can, in one and only
one manner, can be put into the form of a prodiRbf a transvection and a rotation.

Any closed manifold that is traced in the manifold o#ill correspond to the set of two
closed manifolds in a one-to-one way, one of whichrasdad in the manifold of the

closed groum, while the other one is traced in the spé&ceThe latter is reducible to a
point by continuous deformations. It then resultg P1] that the Betti numbers of the
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manifold of the open group will be the same as those of the manifold of the closed
group g One can add a Betti number to them that is equikiad corresponds precisely
to the manifold ofj, which is closed in the spacelaf The last non-zero Betti number of
the manifold of an open, simple group is thus equal tand, itarefers to refers to the
closed manifolds that have the same number of dimensasnghe symmetric,
Riemannian space that Hagor its group of displacements.

The first Betti number of the closed grogps, moreover, equal to 0 or to 1. In the
former case, the covering grouplofvill cover " only a finite number of times, while in
the latter case it will cover it an infinite numbertomes, but there will exist only one
category of closed curves insuch that no integer multiple of the is reducible fmant
by continuous deformation. The real projective group In2 variables belongs to the
former case, along with the complex projective groupni@ or more variables. The real
projective group in one variable will belong to the lattase, and its manifold will be
homeomorphic to the interior of a torus.

78. One sees that any progress in the topology of theedlgroups will imply
progress in the topology of open groups. As far asaimer are concerned, if one has
information about the first Betti number, and likewike second one, then one will know
almost nothing about the other Betti numbers. Neversiselone is certair2(] that the
third Betti number is non-zero, at least, if the grouposcommutative, since there exists

a triple integral of an exact differenttalnamely, the invariant integrgl.[ 2 Cik W &) Gk

- that admits non-zero periods; for example, the onalsdne obtains by extending the
integral over the manifold of a three-dimensional, $&mgubgroup of a given group.
That is a very important subject of research thatocamesay has been almost unexplored.
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