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PREFACE

The idea behind this book is expressed in its title:ddgl is the study of fixed or
variable electrical states, and my method is the nmechkinterpretation of experimental
laws. My main conclusion is the statement of twodlamental laws that generalize the
two laws of Kirchhoff and which will base an electrié&ld on a system of constraints
that obey the principle of virtual work.

All physicists are in agreement on the necessitynpfoving the theory of electricity,
because although Maxwell's work has earned their deserviohgiration, they
nonetheless recognize that is it obscure and that hisneotators have not sufficiently
clarified it.

Now, in the work of the master, one theory thatalen from it has my unreserved
admiration, namely, the theory of induced currents #rat treated by the Lagrange
equations. It is one of the much-too-rare theorieshithivone can say that it does not
contain any other hypothesis than the mechanical irtion of experimental laws. A
system of electrical circuits is associated with ystesn with constraints whose
coordinates are of two types: On the one hand, therg@metric coordinates that fix
the form and position of the circuits, and on the Qthee quantities of electricity that
they lose. In all cases, the Lagrange equations gy # that system give equations
that determine a system of functions of time, and thember is equal to that of the
coordinates. That is the theory. It is satisfying, louited to the particular case of
filamentary conductors that are embedded in a homogeneaelestdc. Can it be
extended to the electrical manifestations of an ariggstem?

Here are the ideas that | was led to in my studiatfproblem:

Do electrical phenomena satisfy a general law o$ramt? That is the first question
that one poses, and Maxwell has answered it in thienative, although in an indirect
and somewhat confused fashion in which one does not cldiatigguish the parts that
correspond to observation, calculation, and hypothé&di& constraint resides in the law
of total current flux, which is analogous to the incompbaigy constraint in
hydrodynamics. Can one simply borrow it from experite@n | will show that the
answer is yes. That is the generalized first lawiofhhoff.

Does the principle of virtual work apply to the systehtonstraints that will define
the electric field from now on? Experiments showt ttiee answer to that second
guestion is also yes. That is the generalized secondfl&wchhoff.

The foundations of the theory have been laid. Witht day? The theory is done,
because all that remains is to present its mathemalgealopment. One sees that it is
borrowed exclusively from observation with no other hypeit than the mechanical
interpretation of the observed results. That is tleatgst degree of certainty that one can
demand in the physical sciences.

The plan of the book resulted from what one just rdadontains two parts: In the
first, | shall present the known theory of the phencanehinduction that filamentary
conductors present. In the second part, | shall extendtudy to all of the electrical
manifestations of an arbitrary system. The method agmtation is the same in the two
parts: | observe and state the experimental laws andlItgive the interpretation in the
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language of rational mechanics. If the observationsw@sing from some difficult cases
then the mechanical interpretation will show the gelimation that it imposes upon the
law that is observed in the simple cases.

Let me say a few more words about the details ofptiesentation, due to their
importance. What obscures the work of Maxwell is theltiplicity of theories and
viewpoints, the absence of unity in the definitions, andlly the lack of a distinction
between the purely-experimental truths and then on¢sathadeduced from the theory.
My main preoccupation has been to avoid that obscurity.th@t end, | have isolated
each part of the subject in a special paragraph. Eadgnagh is preceded by an
introduction and followed with some conclusions in whicé tesults that were obtained
are recorded. On the other hand, each notion has b&eaddprecisely and uniquely.
That has sometimes obliged me to reproduce some thiagththreader knows well. He
can pass over them, but he can refer back to them tifaimeof thought seems to demand
that. In principle, | assume that one knows about ei@gn, electrostatics, and the
elementary laws of currents (Ohm’s law). Meanwhilejll not hesitate to recall certain
points from those theories when clarity seems to ddntarand notably as it concerns
flux.

| have adopted Maxwell's notations and conventionsegard to senses and signs.
Nonetheless, in order to simplify the writing and horgen the treatise, | shall employ the
same letter to denote each vector that also servestaedits first component. That is
why a will denote the magnetic force, as well as the fifsiks components, 5, y. No
confusion should result from that. | have also regdaithe quaternion notation with that
of Grassmann, which is more advantageous. | think th#tad it will imply is much
greater ease for the reader.

March 1902

Since 1903, the ideas that one just read about havedsas/the basis for some
lectures that | taught at Charliat’s 'Ecole pratique difficité industrielle and that | set
down in a book that was published in 198y (They have also passed from the realm of
Science to that of elementary teaching and practice.

March 1907.

() E. CARVALLO, Lecons d’ElectricitéParis, Béranger, 1904.



PART ONE

Theory of induction currents according to Helmholtz and Maxvell.

INTRODUCTION

1. — The theory of induction currents that is generally adbistéhat of Helmholtz. It
is very simple in the case of the relative disptaest of a permanent magnet and a
circuit with no battery, but its development will udyddecome more obscure, sometimes
erroneous, and always less satisfying for the more @agases in which the circuits
contain batteries. Another theory exists that hasunmgserved admiration, namely, that
of Maxwell, although it is less known, much less apptted, and even wrongly accused
of inexactitude 9. The two theories are so different that theynmsemposite to each
other, on first glance, since the authors have folibWelmholtz by generally regarding
the intrinsic energy of currents as a potential eneniple Maxwell considered it to be a
kinetic energy. The opposition is only apparent. Theoprs in the fact that | take
Helmholtz’'s theory to be an introduction to Maxwelllgeory. In reality, Helmholtz’s
theory, when presented correctly, includes no hypothesibeonature of the energy in
guestion. Might one say that is an advantage? Motlicly as a starting point, and that
is the reason why | took the method of Helmholtz to beirdroduction to that of
Maxwell. However, as a stopping point, | think not. tieat the goal of the physicist to
penetrate the nature of things by any means necessarygsegperiments and inductive
and deductive reasoning? The Helmholtz method consistsifigvdown only the
equation of energy, which is a method that is sacroshuctnsufficient, because it gives
only one equation for the problem, whereas one reatgsiseveral. One succeeds in
developing the theory by a sequence of hypotheses thatftare disguised by faulty
arguments. Furthermore, they do not give a completatiyaformulated, general
solution; or rather, that solution will be Maxwell'®lgtion. That is why | came to
present Maxwell's theory as the complement and thenation of Helmholtz's theory. |
think that one of the interesting aspects of my pretients to show how one can start
along the Helmholtz path with no hypothesis and be lethbyfacts and the aspects of
some formulas to specify the nature of the forces emefgies that come into play in
conclusions such as this one:

The intrinsic energy of currents is kinetic energy. The aeuitive forces of
induction, the electrodynamical, electromagnetic, and magnetic forceseatil forces.

(® Vaschy Théorie de I'Electricité Baudry, 1896, pp. Xl of the Introduction) declared that Maksvel
explanations were insufficient (t. I, 8§ 573). | havenped out that error to some authors who had followed
Helmholtz in my theory of the unicycle and the bieyf). Ec. Poly. (2) Cahiers VI and VII]. It resulted
clearly from two articles by Sarrau [C. R. Acadi. 383 (August-September 1901), pp. 402 and 421]
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Once those facts have been established, Maxwellsytlean be developed with no
hypothesis by a simple application of Lagrange’s equatioisgerything will become
clear, and all formulas will appear to be necessatyleweverything in Helmholtz’s
theory will become inexplicable when one regards theggnef currents as potential
energy.

Take the simplest case, namely, induction by the appm@a@tipermanent magnet to
a circuit with no battery. The energy equation indgeds the total quantity of induced
electricity, but nothing else. One needs a hypothesisrderoto find the induced
electromotive force. One must ask a very serious questVhy does current arise in the
circuit? It is a phenomenon that the theory doesexplain and which will remain
incomprehensible when one appeals to the idea of potengady. In Maxwell's theory,
it becomes as natural as the effects of centrifugakfm rational mechanics.

As | said, the Lagrange equations are the basis fotlibary. To be clear, it seems
to me necessary to recall it before embarking upon MdswbkEory. | have reduced the
presentation to only that which is most essential aost mppropriate to my goal. What
will result is a very personal and suggestive form Linatpe will not be devoid of interest
for the reader.



CHAPTER |

HELMHOLTZ'S THEORY

8 1. —Electromagnetic force function. Magnetic induction.

2. Introduction. — Experiments show that a magnetic needle is sutgeatdirector
couple. If it is very small then the couple will depemgon only two vectors: the
magnetic momerihat is attached to the needle andrtagnetic forcehat is determined
at each point in space by the surrounding currents oret&gn

Experiments with a broken magnet show that magnesisrproperty of the particles
like gravity, in such a way that the magnetic momerthefneedle is the resultant of the
magnetic moments of its elements. If we divide ti@gnetic moment of an element by
its volume then we will have thmagnetizationA at the point of the matter where that
element is taken.

The vectora suffices to define the action of the field, not only thhe magnetic
needle, but also on a conducting element that is thefta current. The law of the fields
that are due to magnets was discovered by Laplace amatHer the fields that are due
to currents was discovered by Ampere. Maxwell stateih ifull generality in the
following form:

An element dx of a circuit where the intensity of the currentaisd the magnetic
force is a is subject to a force that is called tlectromagnetic force. It can be
represented by the same vector as the oriented area of the paralleldgedams
constructed from the two vectors i dx amd

Conforming to Grassmann’s notation, | shall denote it[bgx a].

One deduces the expression for the elementary work lipmelectromagnetic forces
for a displacement of the circuit (with or withoutfalenation) from that law. It is the
exact differential of a function that is called tfe@ce function and which we shall
establish. However, before we do that, we must reoatie indispensible notions.

3. The flux law of the magnetic force—~ The distribution of the vectar depends
upon the magnets and currents that are present. One&aathat distribution by one’s
choice of those elements, but not in an entirely @it fashion. It must obey this
fundamental law:

The flux of the vectamr will be zero when it crosses any closed surface that does not
contain a magnet.

| would like to make the meaning of that more precise: {dens surface elemedt
and the vectorr at the point where one finds the elemd& and then construct the
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cylinder that haslSfor its base andr for its generator. That cylinder is tfiex of a that
crosseslS It is interesting to learn not only the size af ttylinder, but also the edge of
the surface where it is found. In order to do that, gimes a sense to the surface and a
sign to the flux, as | would like to explain: Tlsenseof the elementlSis the one in
which one agrees to traverse its contour. That contatlr,its sense, is what | shall call
the circuit of the elementdS With Maxwell, | agree to define the normalto that
element to have a sense such that an observer wheisaréeondS and whose head is
towards the poinv will see his circuit as being traversed from rightetth. The flux of
the vectora upon crossing dS will be the volume of the cylifd& a], preceded with
the + sign if the cylinder is on the same side as the nomntd the element dS and
preceded with the sign in the contrary caseln other words, the flux of the vectaris
the product otiSwith the projection otr onto v; | shall denote it bydSa] . The flux
of a upon crossing a finite surface is the integral of teeentary flux [dS ).

C.S 41 C

S
Figure 1. Figure 2.

When one considers a closed surf&@-ig. 1), continuity will lead one to always
carry the normal on the same side of the surfacehelhormal points to the interior of
the volume that is enclosed by the surface themitlegrial will represent th@award flux
On the contrary, it will be theutward fluxwhen the normal points to the exterior.

When one considers two surfaceéaind S, that are bounded by the same cirdDit
(Fig. 2), the sense of the surface will be determined &ydhthe circuit, in such a way
that if the normab to the first one is interior to the volume thaeisclosed bys and$S
then the normais to the second one will be exterior to that samemwel The flux that
leaves the volume that is bounded 3§ is equal to the excess — ¢ of the flux that
crossesS;, over the flux that crossés If the vector considered is the magnetic foace
then® will be zero, which is the law. In other words, = ¢ : The flux of the magnetic
force is the same upon crossing all surfaces that are bounded by theciseunte We
can call that invariant thBux of the magnetic force upon crossing the circuithat is
rightfully the electromagnetic force function thavduld like to explain.

4. Electromagnetic force function.— Since electromagnetic forces are proportional
to the intensity (no2), it will suffice to treat the case of a circuitat is traversed by the
currenti = 1. That is what | mean by an electrical circuitthe following statements,
which are consequences of the elementary law of elaemnetic actior’} (no.2).

() The proofs are classical. They have a purely-ge@neharacter, in such a way that the reader can,
if desired, establish them or assume the results witbgsoof clarity to the subject for him.
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1. If the elementix of an electric circuit submits to an infinitely-smdisplacement
o then the work done by the electromagnetic force bellequal to the volume of the
parallelepipeddx Oa J) = (0 dx Oa). From our definition in no3, it is the flux of the
vectora that crosses the surfac@dX) that is swept out by the elemehxt

2. For an infinitely-small displacement of the citoiwith or without deformation),
the work done by electromagnetic forces is equal tofithe of the vectora upon
crossing the area that is swept out by the contouredgitiuit.

3. As a consequence of the properties of the flux efrtlagnetic force that was
studied in no3, it is the differential of the flux ofr when it crosses the circuit.

Hence, the flux of the magnetic force upon crossing tircuit is indeed the
electromagnetic force function that the neighboringymeds and currents exert upon the
electric circuit.

5. Magnetic induction. — The surfaces that one envisions in the study of magneti
flux upon crossing a circuit must not meet the magmetest is necessary for the vector
a to be defined there. It is important to lift that riesion, which can be awkward,
especially when the magnet has the form of a ring amehwhe circuit and magnet are
linked like two consecutive rings of a chain. Therefauppose that a surface cuts the
magnet. Along the geometric section, imagine thanénitely-thin cut has been made
in the material, but which does not change the magnetizat the two remaining parts
of the magnet. The electromagnetic forces are nahgdd by that infinitely-small
suppression of magnetized matter. Hencefoahwill be defined in the cut. An
inconvenience in the vectar thus-defined is that it varies with the obliquity of e
with respect to the magnetization. On the contridugy,vectora that corresponds to a cut
that is normal to the magnetization will be an imsmar. Now, it will imply the same
result for the flux, as one can show. There is atgadvantage to introducing the vector
a in preference to the other.

Therefore, imagine a vectarthat is equal to the existing magnetic fox®utside
the magnet, but equal to the magnetic force that oserads in an infinitely-thin cut that
is normal to the magnetization inside the magnetat ™Maxwell’smagnetic induction
vector. From its definition, it will satisfy the & law asa, namely:The flux of the
magnetic induction is zero across any closed surfatmwever, although one must
consider only surfaces that do not cut the magneticefarahe law will apply to all
surfaces, without restriction, fa . The new vector will permit one to state Laplace’
law in this form:

The electromagnetic force function that is exerted on an eleatcgitcis equal to the
flux of the magnetic induction that crosses the circuit.
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6. Conclusions— | recalled:

1. The definitions of the magnetic moment, magneatimatmagnetic force, the
elementary law of electromagnetic action in the fahat was given by Maxwell, the
definitions that relate to flux, and the fundamentaperoy of magnetic flux.

2. How | concluded the electromagnetic force functicat @icts upon an electric
circuit from the elementary law.

3. The generalization of the expression that was fdahatl led me to Maxwell's
notion of magnetic induction. The fundamental law @t tvector is that its flux upon
crossing any closed surface is zero. It permits os¢ate the second of our conclusions
thus:

4. The electromagnetic force function that is exeripon a circuit that is traversed
by a current is equal to the intensity of the currentfiptied by the flux of the magnetic
induction that crosses the circuit.

8 2. —Energy equation. Induced electromotive force. Self-induction.

7. Introduction. — When an observer displaces a cirddithat is a filamentary
conductor with no battery in the field of a magAet current will manifest itself in the
circuit during the duration of the motion. It will berb before and after it. That is the
induction currentwhich is the topic of the present chapter. Like anyegurit is subject
to the two laws of energy:

First law. — The electromagnetic force function that is exkme the circuit is the
producti @ of the current intensity with the flux of the magnoetiduction upon crossing
the circuit. That is the law that was stated inghexeding paragraph.

Second law= In a circuit of resistancethat is traversed by a curranthe heat that
is released is called tHeule heat It is equal ta i? per unit time. That idoule’s law.

Moreover, the induced current satisfies a qualitatiwed&its own: The sense of the
current is always such that the electromagnetic faypgsse the motion that the observer
imposes upon the circuit. Thatlienz's law.

There are three energies in effect: the work producethdybserver, that of the
electromagnetic forces that resist him, and thahefloule heat. In addition, there is the
vis vivaof the conductor, and we see that the current possaspeoper energy that is
analogous twis viva but those two energies will be zero when the dirsuat rest and
when it is no longer traversed by any current.

Those are the energies that experiments reveanelfassumes that they are the only
ones then one can apply to the system: on the amd kizevis vivatheorem of rational
mechanics, and on the other, the more general pringf@eergy. Upon eliminating the
work done by the observer from the two equations oldainee will get a relation
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between the Joule heat and the work done by electromagneces. That is the
Helmholtz equation.

8. Energy equation according to Helmholtz.— | consider the system that is
composed of the magnet and the conductor. It startatoest and ends at rest. The
vivadoes not change. Therefore, the sum of the works loptiee forces that are applied

to the system will be zero. That is the work donehayedlectromagnetic forc&sand the
work done by the observéi :

(1) T+T,=0.

| let the Joule heat dissipate. The system retortise initial temperature. Its energy
has not changed, moreover. Therefore, the sum adrtbgies provided to the system is

zero. They are the work done by the obsefiieand the Joule heat, with the opposite

sign —J. As for the electromagnetic forces, they mustb®taken into account, since
those forces are internal forces that are exertedele® the magnet and the circuit:

(2 T1-J=0.

When one subtracts corresponding sides of equatiomg®) équation (1), one will
get:

(3) 7+J=0.
The values of andJ are defined by the two laws that were stated irvnthey are:
7= [ido, J=[ri*dt.
Equation (3) is then written:

(4) ﬁd¢+jn%n=o.

That is the Helmholtz equation; it shows tljadCD IS negative. In other words, the

electromagnetic forces oppose the motion; that iz'lsdaw.

Nothing allows us to conclude from the fact that the twegrals in equation (4) are
equal, up to sign, that the corresponding elementiseointegrals will be equal. In fact,
they are not, since the currans endowed with a type of energy. At the beginning, the
work done by the observer is partially expended in ovemegrthat inertia, so for that
reason, it will be greater than the Joule heat. hateénd, the energy that was stored is
expended as Joule heat, which comes, in turn, from dhke done by the operator.
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9. Proper inertia of a current. Self-induction. — Experiments have shown the
following (¥):

A double circutANBCRDA(Fig. 3) has a brancANB that is composed of a key (i.e.,
a switch) that moves around the poMitwhich permits one to establish the current in
eitherA or B. The three parallel branches contain:

BC, a batteryp,
NR, a coil of wireb,
AD, a galvanomete®,

respectively.

A T ) -—B
; N 1
G b —p
N’
D R C
Figure 3.

One establishes the current in the circuit on thbtrand then presses the k&yn
such a fashion as to cut the circuit on the right andbésh one on the left. One
confirms with the galvanomet& that there is an impulse that has the opposite sense to
the deviation that the galvanometer would get from thigehaif the contacts were
simultaneously established AtandB. That impulse shows that the current in the boll
will continue for some time after the battd?yhas ceased to act. The magnitude of the
impulse depends upon the constitution of the lgoilf it is wound in the natural fashion
from its extremityN to its extremityN’then the deviation will be larger when the colil has
more turns. Moreover, the effect increases if oivegythe coil a core of soft iron.
However, if one winds the wire in pairs by startingnfrits middleM (Fig. 4) and in such
a fashion that the two extremiti®é and N” are at the same end of the coil then the
deviation ofG will be zero. One then perceives that the inertithe current depends
upon the induction flux that crosses its circuit by reasfotme current itself. That self
induction

10. Induced electromotive force— The type of inertia that we just observed opposes
the equality of the corresponding elements in the integrikhe Helmholtz equation.
However, if the regime is established at a given nmrtieen the elements will be equal
at that moment, and one will have:

(Y That form of theFaraday experimeris due to Cornu. It provoked a criticism from Potitiris easy
to substitute the form that Potier preferred for theaffay form; that is what | did in miecons
d’Electricité. However, due to the schematic character of that pamphkeemed preferable to me to
preserve Cornu’s more intuitive form here.
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-
'

Figure 4.
1) —idd =ri*dt
from which, one infers that:

do _ .
(2) - rrs =n.

If one recalls Ohm’s formula = ri then one will see that the quantity (2) is an
electromotive force. It is theduced electromotive forcdt was calculated by supposing
that the current has been established; however, it exists independehtty One can
show that by means of a dynamo in an open circuit winenconnects the two poles to
an electrometer, or more practically, by opposing theaohpo in a closed circuit with a
battery of accumulators. The latter experiment hlbw, moreover, that the induced
electromotive force is independent of the other elemdtore forces that can be found in
the same circuit; experimental verifications of tteat abound. The law that is expressed
by the formula:

3) S do

dt

will then have a degree of generality that is greatan tthat of the proof. One can
observe its generality along a different path as vadloInstead of approaching the
induced circuit with a permanent magnet from a greatraisteone creates an equivalent

electromagnet in its place by passing a current througlite total impulsejedt =

jridt will be the same. One can verify that with thé af a ballistic galvanometer. It

will give the same deviation in both cases. Therefibwetotal impulse of induction will
depend upon only the variation of the induction flzxas one sees from formula (3).

11. — Electromotive force of self-induction.— If one assumes the complete
generality of formula (3) then one can deduce the elsxditive force that is due to the
induction of a current itself thus: Letbe the induction flux that is caused by the current
itself and which crosses its circuit when the intgnisiequal to + 1; that is the coefficient
of self-induction. Its value depends upon only the fornthefcircuit. Moreover, it is
essentially positive, which is a consequence of Ampéndés about the sense of the
magnetic field that is due to a current, as well ascoarentions in regard to the sense
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and sign of the magnetic induction flux (18). For an intensity of, the flux will be® =
Li. If one assumes the generality of formula (3) ttienelectromotive force that is due
to the variation of will then be:

do di
=——=-L—.

dt dt

That electromotive force has the opposite sigditadt. It opposes the establishment
and stopping of the current. In summary, it behavesalikaertial force.

That is the electromotive force of self-inductionttf@mula (3) will lead to when
one assumes that it is complete general.

12. Conclusions:

1. | have defined the integral equation of the energlyrtiates to the displacement
of a circuit that starts out at rest and returngsd in the presence of a magnet.

2. | have exhibited a property of currents that is analo¢gmursertia that one calls
self-induction. It opposes the differentiation of the integral equatin the variable
regime.

3. Differentiation is permissible when the derivatofethe intensity is zero. It will
lead to the notion and the expression for the induasctreimotive force. Although the
expression was proved only in that particular case nhibetheless general. Experiments
bear witness to that fact.

8 3. —Currents in the variable regime. Mechanical interpretation.

13. Introduction. — The general law of induction that was recalled inpteeeding
paragraph is stated thuEhe induced electromotive force in a filamentary circuit is equal
to the derivative of the magnetic induction flux that crosses theitcigth the sign
changed. As an application, | would like to establish the equatiohthe currents in the
variable regime and give them a dynamical interpretatio

14. Equation for the current induced in a circuit with no battery. Experiments
that are independent of the self-induction— The magnetic induction flux that crosses
the circuit is the sum of two termist, which is due to the current itself, afd which is
due to other effects of the magnetic field. The etaunttive force of induction is the

o . . i do
derivative of that sum with the sign changed;%—%—t. From Ohm’s law, that
electromotive force is equal to The equation of the current is then:

_Lﬂ—d_q): i
dt dt
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| suppose that the circuit is displaced without deforomati| then consider an instant
before the displacement and an instant after a grifig-long time when the current has
ceasedi is zero at those two limits. The first term when disappear in the integration.
What will remain is:

—Acb:rjidt.

Now, ji dt is the quantity of electricitg that is lost by the circuit: A® will then be the
decrease in the induction flux. Therefore:

The total quantity of induced electricity is equalthe quotient of the decrease in
induction flux that crosses that circuit over tlesistance of the circuit.

Since the ballistic galvanometer recogigrecisely, that formula will give rise to
some easy ways to verify it, and notably by experimentzero. For example, if one
creates a flux by exciting an electromagnet and thenlsutrtay displacing the circuit or
electromagnet then the galvanometer will not budge.

15. Currents from batteries in the variable regime.— Keeping the preceding
notations, | consider a circuit that is equipped withtdvees and electrolytes whose
resultant electromotive force E One must add to that the electromotive force ihat

. . . i .
due to the induction of the current on |tseII% in order to get the total electromotive

forceE - L%. It is equal tai, which is Ohm’s law. The equation of the current enth

di .
[ E-L—-r=0.
() ot

| have supposed that the current is isolated from any etagvariation other than the
one that comes from the current itself.

Now let two currents be present. | shall distinguishgivens for the two circuits by
the indices 1 and 2. For each current, one must adel¢ctromotive force that is
induced by the variations of the other current to thengethat correspond to the ones in
equation (1). LeM;, be the induction flux that crosses the first cireuiten the second
one is traversed by the current + 1. That coefficient depends solely upon the fofm o
the figure that is presented by the totality of the twouds. It will be the same when
one inverts the roles of the two circuitdi = My;); that is a consequence of Laplace’s
law that relates to the magnetic field of a currdfaitom it, the electromotive force that is

induced by the second current on the first one wil+bm12%, and the electromotive
force that is induced by the first current on the secome will be - Mu%. The

simultaneous equations of the two currents will then be:
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di di .
@ E1_L1d_:_M12F:_r1|1: 0,
(1)
di, di, . _
(2 E,- LZE_ Mlza_ ri,=0.

Upon writing the equations that relate to when an amyitnumber of fixed currents
are present similarly, one will have as many equatisnsnknowns. If the currents are
moving and their form is invariable then the coefficiemitgnutual inductionM will be
functions of the position coordinates. One must addg¢hat come from the variation
of M to the current equation. On the other hand, one mutgt the equations of motion
of the circuits that move under the action of inérfiimces, electromagnetic forces, and
forces of a purely-mechanical origin. One will thewéha system of equations whose
number is equal to the number of unknowns.

16. Mechanical interpretation. Principles of energy and virtudwork. — In order
to interpret equation (1), I must first choose the tnappropriate definition of the
intensityi. | shall adopt = dq/ dt, which is the rate of dissolution of zinc in thetbag
or the rate of decomposition of an electrolyte thatlaged in the circuit. The quantity
will then be regarded as tleeordinate of the circujtand it indeed has the character of a
coordinate, because the state of the circuit wilkibewn when one giveg anddq/ dt.
Findingq as a function of time is the problem that correspdaadbke problem of finding
the coordinatex of a machine with complete constraints. With theoituction of the
coordinateg, equation (1) will be written:

2
E- LM—r% =0
dt®  dt

The analogy between that equation and the equatiorsmhge machine is obvioug&
2

. . d
corresponds to the applied forces, power, and reS|stance—q corresponds to the

dt?
inertial force, and- r% corresponds to the force of friction. As in mechanibe

power, resistance, inertial force, and passive stesices are in equilibrium. As in
mechanics, one forms the energy equation by the myittgpthe sides of the equation of
dynamical equilibrium by the differential of theectric displacement dg i dt. | will

then get:
2 2
Edg-d %L(%j —r(@j dt =0.
dt dt

E dqis the excess of the energy that is provided by therg&ors over the energy that is

2
absorbed by the receivers%L(%j Is Maxwell's electro-kinetic energywhich is
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analogous to theis viva Like thevis vivg it is proportional to the square of the velocity
dg/dt. Like thevis vivaof a flywheel, it opposes the starting and stoppinit, @ihd it is
stored during the first period to be released during thendespe. Finallyy i dt is the
energy released to Joule heat by the passive resistahe¢ is analogous to friction:

The work done by power is equal to the work done by the resistasci@luncrease
in kinetic energy and the energy that is lost to heat by the effpesssive resistance.

Hence, a single circuit that is endowed with a sirggderdinateq is completely
analogous to a machine with complete constraints.

Similarly, a system of two or more fixed or movingcaits of variable or invariable
form that presents a number of coordinates that isegréaan 1 will be analogous to a
system with incomplete constraints. In order to notplmate the explanations, | shall
confine myself to examining the case that was developew.il5 of a system of two
fixed circuits. Equations (Il) of the system must bsoagted with the twdagrange
equationghat correspond to the coordinatgsandg, . Indeed, they express the idea that
the total work done by electromagnetic forces will berozfor the two virtual
displacementg; anddy, . As in mechanics, the energy equation will be olethiby
multiplying the first equation bgg: and the second one bigp and adding them, which
will give:

(3) (El—rlil) dql+ (Ez—rziz) dQ2:dT,

with
di di di  d
dT=| L=+M.—2|da+| M. —+ L=21|d
) b Ve dtj 1 ( 2t detj

The left-hand side of equation (3) represents the work dign@pplied forces:
namely, powers, resistances, and passive resistandesefdre, the expressiohn must
be analogous to the kinetic energy; it is Maxweklkectro-kinetic energy. The
expression for that energy is found to be precisely etjuahe electromagnetic force
function that is exerted on the particles of the teumuits. It then results that the
electromagnetic forces must be analogous to inediaks, as well as the electromotive
induction forces themselves.

17. Conclusions:
1. | showed how the general law of induced electromddik@ge permits one to form

the equations of a system of fixed currents. | indicabedl it will permit one to also
solve the problem of moving currents.
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2. | gave the dynamical interpretation of such a system:analogous to a system
of constraints in rational mechanics that obeydateof virtual work. One can apply the
Lagrange equations to it by means of the following intégions:

a. The Lagrangian coordinatgsare the quantities of electricity that are lost by the
circuits.

b. The electro-kinetic energy is the electromagneticédunction that is exerted on
the particles of the circuits.

c. Lagrange’s resultant applied forc€sare the electromotive forcds — ri that
result from the generators, the receivers, and thé Jesistance. The electromagnetic
forces of induction and the electromagnetic forcesreeial forces.

Taking those principles as the point of departure doiss Maxwell's theory. That
is the theory that we must present in full generalidpwever, we must meanwhile recall
the principle of virtual work and the Lagrange equations.




CHAPTER I

GENERAL EQUATION OF DYNAMICS

8 1. —Theorem of virtual work.

18. Introduction. — The components of a machine interact with eachr.otHence, a
solid that is pushed by another one will be deformed bptéssure until the elastic force
that is due to the deformation equilibrates the presswe dtts upon it. When the
deformation is negligible, the work done by the elasaction will also be negligible. |
call:

The elastic forces that limit the deformations &mywsmall values so that the work
they do will be negligible théorces of constraint.

A system whose elastic forces are forces of caimstasystem with constraints.

Displacements for which the deformations that produeefdrces of constraint are
zerodisplacements that are compatible with the constraints.

As a result of those definitions, the work done bgds of constraint will be zero for
all displacements that are compatible with the cairgs f).

In a natural system, the material points are uncowntaGine must then give up on
writing out all of their equilibrium equations under theti@n of applied forces, inertial
forces, and elastic forces. The problem will be sifigali if one neglects the
deformations of the components. The position of théesywill then depend upon a
small number of parameters. For example, the positi@nsolid that can slide along one
axis and turn around that axis depends upon two paramgi@ndg,, namely, the sliding
and the rotation; thdegree of freedoraf the system is 2. Two equations will suffice to
exhibit the two parameters as functions of time, provided they do not contain
unknown constraint forces, but only the forces thatagaied to the system, which are
supposed to be given. Those equations are produced byltiariglmethod:

19. Theorem of virtual work. General equation of dynamics— From d’Alembert’s
principle, each particle in the system is in equilibriunder the action of its inertial
force, the given forces that are applied to it, anchamk elastic forces. The total work
done by those forces will then be zero for arbitraspldcement of the particles of the
system. Such a displacement is calletlal. The work done by forces of constraint is
non-zero for all of those displacements, and notdblythe ones that deform the solid
pieces. However, it will be zero for the displaests that are compatible with the
constraints. Now, give the system the virtual disptaent that corresponds to the set of
valuesdg and dg; of the two parameters that were chosen to defirq@sgion. The total
work done by forces will then have the foRwq + P, & . | write that it is zero:

() | shall intentionally exclude the cases in which ¢oastraints are unilateral or depend upon time
from my study.
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(1) Pdﬁ{*‘Pldl{l:O.

That equation must be verified for any arbitrary displacentéy, Jo). It will then
imply the two necessary equations:

() P=0, P, = 0.

They do not include the constraint forces, since tbhekwlone by the constraints is
zero because the displacemedd, (&) is compatible with the constraints. Moreover,
equations (2) determine the variable coordingtaadq; as functions of time. They are
then the equations of motion. Thus:

The equations of motion are obtained by writing down that the total work done by
applied forces and inertial forces is zero for any virtual displacenieitis compatible
with the constraints.

That is thetheorem of virtual work The equation (1) that provides it is theneral
equation of dynamics Equations (2), when written in a less specialized fdyear the
name of Lagrange.

The equilibrium equations are deduced by setting:

n

q':q”:ql =q =0.

In the particular case of equilibriufd,andP; depend upon only the applied forces.

We have assumed that there are two degrees of freedbmsgstem. If that number
of n then the method will give equations that determine theparameterg) that the
position of the system depends upon. In order to simfiigywriting and the language,
we shall continue to suppose that the number of degrefesenom is 2. That will not
impair the generality of the arguments and formulas.

20. Extending the idea of force that is deduced from the nioh of energy.
Electromotive force. — The work done by the forces for the displacemémtis
proportional todq, namely,P &g. The dimensions of the coefficielatwith respect to the
fundamental quantities (length, time, and mass) depend umomimensions of the
coordinateqg in such a fashion th& Jg will have the dimensions of energy. Whegis a
length,P will be force, properly speaking, which is equal to thedpob of a mass with an
acceleration. When is an angleP will be a moment, which has the dimensions of
energy. Although those two quantities — viz., force andnent — do not have the same
dimensions with respect to fundamental quantities, @amat deny that they have a
commonality of origin and nature: WhetHeiis a force or a moment, it is the coefficient
of a displacement in the expression for energy; ihésquotient of the energy over the
variation & of the coordinate. In the two cas@simeasures the weight of the forces in
the system (momentum), which is tendency to displacégbyThat is why the moments
play the same role in the study of rotations thatahees do in the study of translations.
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If g is now the quantity of electricity that is lost bycecuit then it will be the
Faraday-Maxwellelectro-kinetic displacementas one will see later. The factér
measures the tendency of that coordinate to displadg.bit then deserves the name of
electromotive force From that, the electromotive force of a generatoa oeceiver of
electrical energy is indeed defined by the coefficientdpfin the expression for the
energy that it produces or absorbs. It is the quotiethefnergy in play byqg. That
definition of the electromotive force seems to us taheeonly one that does not lead to
contradictions and inextricable difficulties, notablyfas as the electromotive forces of
contact and the Peltier effed} are concerned.

21. Conclusions:

1. | considered a system with constraints to be thitilig case of a natural system
in which the elastic deformations do negligible work.

2. | deduced the theorem of virtual work and the generalieguaitdynamics.

3. | showed how the notion of energy leads to aarsibn of the idea of force that
includes the electromotive force.

8 2. —Work done by inertial forces. Lagrange equations.

22. Introduction. — In § 1, we saw that the left-hand side of the geregpahtion of
dynamics is the work done by forces for the displacegn(éy, Joi), namely,P A& +
P dq. That work will include the work done by inertia, which dees a special study

because it often presents great difficulties. Whenneeaaling with only a machine that
is composed of solid pieces whose particular constitutte indeed know, the direct
calculation of the inertial forces from the integodlits elements is already very difficult
and can become inextricable. However, when we arendealith systems in which
electricity enters into play, the direct calculatiai the inertial forces becomes
impossible, due to our ignorance of the nature of etdtgtriLagrange made an important
discovery on that subject by giving some formulas thamped one to easily calculate
the work done by inertial forces when one knows thgression for thesis vivaas a
function of the coordinates of the system and thdooiges, without it being necessary
to know anything else about the mechanism under study. thatvis precisely the case
for electrical currents in filamentary circuits. Fhetmore, we understand the great
interest that the Lagrange equations attract in they stbiélectricity. Unfortunately, their
application involves a restriction that is really quitgportant (no.25): It is necessary
that the mobility parameters must be true coordinatespranit one to fix the state of
the system when one knows those parameters at theembdd That is not the case for
the parameters that are natural to the study of rattiagjons, in general, and notably for
the hoop. That also does not seem to be the cadbéd experiments with the Barlow

®) Congrés de Physique in 1900. Papers by Arrhénius, Chsitiaand L. Poincaré.
g
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wheel (n0.83). That remark is essential to this book. It explairis/ the Lagrange
equations lead to two results that are contrary to ttts f&hen they are applied to the
Barlow wheel, and it reestablishes the agreement bettheeheory and the experiments.

23. Lagrange’s expression for the work done by inertial force — Let M be a
particle of the system, and ketbe its massl suppose that its coordinates x, y, z depend
upon only two parameters g and.g In other words, | suppose that the giveig ahdag:
imply the positions of all the points of the system.

The variationdq of the parameteq implies a displacement of the poikt whose

components areg—xdq, %&I, %&I- Since the components of the inertial force are
q q q

-mX,-myYy,-mZ, the work that is due to the inertial of the partileunder the

displacementq will be:
- m x'dx+ydy+z 4zl 5
dq dq d

The total work done by inertial forces is the sumhefworks over all particles of the
system, namely:

(1) | & = Zm(X’ )7 335(.

It is the presence of acceleratiotfisy’, ' that makes the calculation difficult and
Lagrange avoided them by means of the following transfoomat It consists of an
integration by parts:

@ oD (G Ox) (o)
dg do dq
The hypothesis is that x is a function of only plaeameters q andigwhich are
functions of time t.Moreover, one can invert the order of derivation$wispect ta

andt in the right-hand side of formula (2). The second team then be transformed
thus:

(3) x| 3] = X o 9 (1x2).
dq dg dq

| would now like to show that one can replabce dq with dX / dq in the first term.
In order to do that, | remark thatdepends upotonly by the intermediary af andq; .
One will then have:

(4) X =g+,



Chapter | — Helmholtz’s theory. 21

That formula shows thatis a linear function 0§’ and g;, and that from a purely-
formal standpoint, the derivative gfwith respect t@’isdx/dg. One will then have:

dx dX

dg dq -

Furthermore, the first term on the right-hand sid®ohula (2) is the derivative of:

W d (0
dg dq‘?
and formula (2) will then be written:
dx [ d " d
5 X'— = | —(ix?) | ——(L X?).
©) = {dq(z )} 3 2%)

If one performs the same transformation on the dtherterms of the expression (1)
then one will get:

2 2 27T 2, 42
X,,gw,gy”,gz{d;(x +y +z)}_o%(k+ Y+ 9

dg ° dg dq dg dq

It will suffice to multiply this bym in order to exhibit theis vivaof the particleM in
the right-hand side. The sum over all particles thdnbés the kinetic energy of the
system; hence:

dx ,dy ,d2) (dT) dT
6 m X—+y—+72—|=|—| -—.
© 2 ( dqg ydq dq] (ddj dq

That is (up to sign) the particularly advantageous ftivaih Lagrange gave to the part
of P that comes from the inertia, and which | have denoted [eg. (1)]. If I, with
Lagrange, call the part &t that comes from the applied forc€then | will get the
equations of motion [eq. (2), nb9] in the form of:

Q:(de_dT’

dq ) dg

(7) ,
_[(dT) _dT
Ql_(dqj dq’

Those are theagrange equations.
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24. Vis viva theorem. — If one replaces the arbitrary virtual displacemeXy €q:)
with the real displacemendq = q dt, do, = g, dt in the equation of virtual work:

(1) Pdﬁ{*‘P]_d:{l:O

then the left-hand side will represent the total workeddy the applied and inertial
forces. Now, one knows that the work done by ineftiedes is equal to the decrease in
vis viva The equation:

(2) Pdg+P,dg =0

then means that the work done by applied forces is ¢gjtiaé¢ increase in thes viva

25. Modifying the Lagrange equations when the mobility parametersare not
coordinates, properly speaking(’). — | take the motion of the hoop as an example.

The natural mobility parameters are the tilt angléhe conversion anglg and the
rolling angle o (}). Their velocitiesd, y; o suffice to determined the velocityof a
Cartesian coordinate of any arbitrary particle of theteap. Meanwhilex cannot be
calculated as a function & ); 0. Indeed, if one says that the hoop starts from Paris
with the angle€d , v and rolls througho until the former angles have beco#eythen
one cannot say whether the hoop has arrived in Bordegowr, or any other place. It is
necessary that one must know, in addition, what theesee of correlated values pf
and owere if one is to be able to trace the trajectorshefcontact point with the ground
and determine the present position of the hoop. Toluwdethe parameterg’and o are
not coordinates, properly speaking is not a function of jus#, y; o; it is a function of@
and the sequence of correlated valuegarido. In other words, the expression tbras
a function ofdg, dy; anddo is not integrable. (Refer to n@3 and the hypothesis that is

!

emphasized there.) The transformation of the lash te formula (2) from x(%}
q

into x’i—x Is once more permissible for the variaBléut not the variablegando. The
q

corresponding Lagrange equation is still valid #rbut for y and g, the equation of
Lagrange type must be replaced with this one:

() E. CARVALLO, “Théorie du monocycle et de la bicytéet nos.71and72, J. Ec. Poly. (2) Cahiers
VI and VII.

¢) Namely:
8 is the angle between the plane of the hoop andrthend
y is the angle between the tangent to the lowest poahttee initial position of that line

o is the angle through which the hoop has rolled fronotign.
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(5] 222

Those are the modifications that must be made td.dlggange equations when the
mobility parameters are not coordinates, properly speaking.
26. Conclusions:

1. | gave the expression that Lagrange discoveredhtarwiork done by inertial
forces.

2. | showed how the Lagrange equations must be corredted thie parameterp
are not coordinates, properly speaking.

We are now in a position to begin the study of inducedeats according to
Maxwell.




CHAPTER IlI

MAXWELL'S THEORY.

8 1. —Induced currents according to Maxwell.

27. Introduction. — In Chapter Il, | established the Lagrange equations. nlitvder
of them is equal to the number of parametgitsat define the system and have the type:

_(dTY) _dT
Q_[ddj dg

In order to be able to write them, it is necessary to

1. Define the coordinatepthat fix the configuration of the system.
2. Know the expression for the kinetic enefiggs a function off andq”.
3. Know the coefficient®.

One can form the Lagrange equations with those givensy Wil determine the as
functions of time.

Recall thaQQ is the coefficient ogq in the expression for the work that is done on the
system under the displacemeit With the extension that | gave to the idea ofdoit
is the resultant of the applied forces and will tendisplace the system Ly (no. 20).

As for T, it is the kinetic energ;éva2 . It is a homogeneous function of degree

two — viz., aquadratic form— in the velocitiesy” For two variables, it will be an
expression of the ford (Aq?+2Bd d+ A ¢).

The coefficientsA andB are functions of theg that are well-defined for each system
and which can be reduced to constants, moreover.

Those are the results that pertain to the Lagrangdieqsia On the other hand, in
Chapter I, | deduced the simultaneous equations of the cundr@n two fixed circuits
are present from the experimental laws of induced cwremd | saw that they are
precisely the two Lagrange equations that relate to tseersy by means of some
analogies that | shall recall (nb?).

a. The coordinateg are the two quantities of electricity that are losth®y circuits.

b. The kinetic energy is the electromagnetic forogction:
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T= %(Lli12+2M phd oL 22)

c. The applied force® are the electromotive forcds — ir that result from the
generators, the receivers, and the resistanceodhe tloule effect.

So much for fixed circuits. We shall now begirttwmnoving circuits.

28. Maxwell's theory. — In order to study currents in moving circuitsh@ther
deformable or not), one can follow the same aradjtioute as in Chapter I: Write out
the expression for the experimental laws and no&¢ the equations obtained are the
Lagrange equations that relate to the system. Wakwell, | would like to follow the
opposite route: | assuma, priori, that the Lagrange equations are applicable. plyap
them and then compare the formulas to the fadtshere is any disagreement then the
theory must be rejected,; if there is agreement tthewist be accepted.

As in Chapter I, | will treat only the simplestses. The argument will be no less
general. The language and notation will be ligaterand the spirit will rest upon a
concrete example that is easy to imagine.

29. Lagrange’s equations for moving filamentary circuits of invaable form. —
As in no. 15, | will consider two circuitsC; and C, and preserve the same notations.
Moreover, | shall suppose th@t is moving with a rectilinear translatory motiokVhat
are the quantities that must be considered in #ggdnge equation?

a. Coordinates g-— These are, first of all, the coordinates th&etthe form of the
currentsg; andg (no.27) and then the mobility coordinaxeof the circuitC; .

b. Kinetic energy T= When the circuiC; is immobile, we saw (nd.6) that one must
take the kinetic energy to g = %(Llif +2M i, L 22) That is the electromagnetic
force function. Since that energy is due exclugite the electric motions, Maxwell

called itelectro-kinetic In regard to the expression fbg, the intensities; andi, are
equal to the rateq, and g, of the electric displacemengs andq, , respectively.L; and

L, depend upon only the form of the circuits, so theg constants. The coefficievit,
depends upon the relative position of the circuntgddition, so it will be a function of
We must add theis viva T, of the matter in the circui; to the termil, ; if mis the

mass of that circuit i then thevis vivawill be 1mX?. In total, one has:
T=Te+Tn=3[MxX*+ L P +2M,,i,i,+L,i5).
Maxwell was struck by a peculiarity of this: Thepeession forT indeed contains

terms in the squares of the velociti€s i2, i2, but also the produdt i, of the electrical
velocities.
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Why does it not contain any termsxni; andx’ i, ? We shall return to that point (8
2).

c. Applied forces Q- For the electric displacementy anddg, , those forces ar@,
=Ei1-ri1i1,Q=Ex—r2i2(n0.17). For the material displacemedy, it will be the force
F that the observer’'s hand, for example, applies @ocitcuit C; in order to displace it.
As for the electromotive forces of induction, on thee dyand, and the electromagnetic
forces, on the other, there is no reason to introdbem into the expressions f@y,
because they can be regarded as inertial forced ho.

With those givens, one will have the left-hand sidad® Lagrange equations:
Q=F, Qi=E1-r1i1, Q2=Ex—r2l2.

The right-hand sides will be:

(de —mx dT _ dM,, .

dx dx dx 7%
dat) d. . . dT

— | = —[Liig + Mpois], —=0,
(dqu dt[ll 122] dql

dat)  d . . dT

— | = —[ Mjpoig +L1is], —=0
(doéj dt[ 1211 12] doa

In summary, the Lagrange equations are:

M F :mx'—d(';";z i,
.d . .

(I) (2) El_rlllza[Llll+M 12 J1
. d . .

(3) Ez_rzlzza[lvl 12|1+LJ J

What if we want to deduce the energy equations®ill suffice to add the latter
together after multiplying them kg, day , dop , respectively. After simplifying, we will
get:

(1 Fdx+ (Ep—rpi) do + (Ex —r2i2) dop =dT.
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30. Comparison of Lagrange’s equations with experiments- Equations (1) will
then indeed satisfy the principle of the conservatiorerdrgy. They determine the
motion of the system from the purely mechanical standpagtvell as the standpoint of
electricity, by telling one the coordinatesa: , gz as functions of time. Do they agree
with experiments? Yes, because they give the eleemostic force and the induced
electromotive force that are revealed by experimestbwall now explain.

1. Electromagnetic force- Equation (1) means that the applied fdfcis added to
two forces that will be in equilibrium with it: nanyelthe inertial force -m X' and the

force dMlZii, which is the derivative with respect tox of T =
dX 1°2

%[Lllf +L,i5+2M i 2] Now Te is the electromagnetic force functlon,ggflll2 IS

indeed the electromagnetic force that is givemipeement and was studied by Ampere.

2. Induced electromotive force. Equation (2), for example, means that the agplie
electromotive forceE; — r; i1 must be combined with an electromotive force

—%[LliﬁM 1l that brings about equilibrium with it. Now; i1 + M1z iz is (nos.14

and15) the flux of magnetic induction that crosses theuit C; , so —%[LliﬁM 1l

will be the derivative of that flux with the sigmanged. That is, in fact, the induced
electromotive force that is verified by experimefmss.9 and10).

B B
C1
A a
D
Figure 5.

31. Lagrange’s equations for deformable filamentary circuits.— Once more,
consider two circuit$C; andC, . However, instead of supposing that the cir€litis
moving and has an invariable form, suppose thabmposed as follows: One p&dtis
fixed, open, and extends along two raglsand 8. An elementAB forms the bridge
between those two rails and can be displaced bynslation parallel to the rails (Fig. 5).
The notations are the same as in 21@).except tham andx represent the mass and the
coordinate of the moving elemefB. F will be the force that the observer, for example,
applies to the eleme@B. The kinetic energy of the system will again be:

T=Te+Tn=3[MxX*+ L P +2M,,i,i,+L,i5).



28 Electricity — deduced from experiment and reduced to theijplerof virtual work

The only difference is that now; is a function ofx, as isM;, . The three Lagrange

equations are:
, 1[dy ., dM,, . .
1) F=mX-=|—=2i+2—% ,
@ m 2[o|xh dx '1'2}

() (2) E1_r1i1:%[|—1i1+M 13. J1

(3 Ez_rzizzi[lvllzilﬂ—ﬂ. J

As in nos.29 and30, those equations determine the unknowrg, . . They lead to
the energy equation and to the experimental lawsexftromagnetic forces and induced
electromotive forces.

32. Conclusions— | have specified the analogies that permit oneegard a system
of filamentary conductors that are traversed byenis as a system with constraints, as in
rational mechanics, namely:

1. Thecoordinates care of two types: the geometric coordinates thathie form
and position of the circuits and the quantitieglettricity that are lost by each of them.

2. Thekinetic energy Tcontains two parts: theis vivaof the moving parts of the
circuit and the electromagnetic force function.

3. Theapplied forces Qare of two types: the purely-mechanical forcese like
effort exerted by the observer’'s hand and the eatitive forceE — r i that is due to
generators, receivers, and Joule resistance.

4. With those analogies, | applied the Lagrangeaggns to moving filamentary
circuits, whether deformable or not.

They determine the system as a function of tiragisfy the law of energy, and agree
with experiments by giving two types of forces, mdynthe electromagnetic forces and
the induced electromotive forces.

Those forces must be regarded as inertial forces.

8 2. —Maxwell's research on the kinetic energy of cursantth moving conductors.

33. Introduction. — In no.29, | treated the case of two circui® andC, that are
traversed by currenig = day / dt, i =dgp / dt. One of them was fixed, while the other
one was moving and had a coordinatd assumed that the kinetic enefywas the sum
of two terms, namely, theis viva T, of the matter and the moving circuit and the
electromagnetic force functioh, so in total:
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T=Te+Tn=3[mxX*+ L P+ LiZ+2M,iji,|.

That quadratic form i, iy, i> indeed contains the squares of the three varialds
the product; i of the intensities. Why does not contain terrkes: i

Al X ip + A X 1= The,

which are products of a velocity with an intensag, well? That is the question that was
posed in no29 and which we shall now examine. Of course, |Ishssume that the
coefficientsA; andA, can depend upog but not org; andg, , as | was led to assume for
Mi2 (no.15). Following Maxwell's method, | shall supposetthiae termsi; X' i3 + Ap X

i exist; inertial forces will result that can beadated by Lagrange’s formulas. Are they
verified by experiments? If that were true them éixistence ofme would be established.
If, on the contrary, the inertial forces that aadcalated do not exist then the coefficients
A; andA; of Tme Would have to be zero, as we assumed in § 1.

34. Calculating inertial forces by the Lagrange equations— There are three
inertial forces that come from the part of the kimenergy:

Tme=A1 X 11 +A X >,

corresponding to the three displacemesda:, 0g. . They are, up to sign:

dT_\ dT . . d . .
OX Me | —— M= (Ag X i1 +Ao X 1) —— (A1 X i1+ A X 1),
(0%) (de dx ArX i1 +AxX 1) dx(l 1A X 1)
dt.)
(o) (ij = (A X)',
dq
dt. )
(o) (—”}ej = (A2X)'.
dg,

The first one is a force in the usual sense ofwibed, namely, thggponderomotive
force. The other two are electromotive forces. We shalimine those two types of
forces.

35. Electromotive force.— From its very expression:
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(3a1) [‘fjij = (ALX),
q

the electromotive force is independent of the interssittdd as a result, of the magnetic
field. It depends upon only the motion of the conductorwNw induction phenomenon
has ever been observed in moving conductors that are@uofsachy magnetic field. One
must then conclude the non-existence of the t@ima the expression for energy.

That experimental proof has great value due to theeregtrsensitivity of the
galvanometers that permit one to observe extraortiramall electromotive forces.

Although that is sufficient and indeed better than tesult of considering the
ponderomotive force, we shall nonetheless examinddies.

36. Ponderomotive force— From its expression:
dx dx

(0%) (di} L (ArX i1+ Ap X ip) —di(Al X i1+ A X i),
X

the ponderomotive force consists of two parts:

Fi= AL+ AT,
( AiXI +—éx i j (%x’i +%x'i j
dx dx dx dx

The second patff; is found to be zero here when one reduces the pasesthieut
that particular situation is due to the fact that orethken a system that is endowed with
only one moving coordinate If there are more than one then the same reduwatilbn
not take place; some terms will remain that are ptapwl to both the velocities” and
the intensities. In order to make them noticeable, one must empidly large velocities
and large intensities. The character of those tesnsich that they must change sign
when one changes the signs of the velocities ongities.

The first partF; gives forces that are proportional to the ratesasfation of the
intensities. One must seek them in the opening andnglash circuits. They must
change sign when one passes from one of those opsratidche other. Maxwell tried
two experiments that were intended to exhibitand F, , respectively. They gave
negative results. Since they have a less compellingactea than the experiments on
electromotive forces (n@5) due to their difficulty, | shall dispense with a dission of
them here.

37. Conclusion.— The kinetic energy of a system of moving circuits (Wwaet
deformable or not) is composed of ths viva of the matter in the circuits and the
electro-kinetic energy, which is the function of tHectromagnetic forces that are applied
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to the circuits. It does not contain terms in thedpicts of the velocities of the circuits
with the intensities of the currents that travehsant.

8 3. —On the role of magnets in Maxwell’s theory according to Sarrau.

38. Introduction. — In his theory of induced currents, Maxwell excluded magnets
from the Lagrange equations, which is a curious, if hobst paradoxical, fact, because
the experiment in which one brings a magnet close toramt had served as the basis for
Helmholtz’s theory, which led to Maxwell's theory. oW would he not understand that
fundamental experiment?

Despite all appearances, there is nothing abnormal in thdeed, when the energy
equation is applied to the experiment in question, it do¢establish the general law of
induction. It only permits one to guess the law by a bold inkiargument. The law is
verified by experiments, and for that reason, we sisslime it. It is very good, but then
it is borrowed from direct experiments, and not frtmoretical consequences of the
fundamental experiment. That is not to be foundchentheory, and it would by unjust to
reproach Maxwell for such an oversight.

Meanwhile, the question is most important and desemvelset addressed, if not
solved. | shall examine the case of permanent magndtthat of temporary magnets.

39. Ampere’s hypothesis— The fields that are produced by magnets are in no way
distinguished from the fields that are produced by thesatsr(no2). On the other hand,
magnetization is special property (r®). Those two laws lead thmpére’s hypothesis:
Each magnetic particle is analogous to a small close@mt whose plane is normal to
the magnetization vector. Moreover, the electro-kenehergy of a system of currents
and magnets is composed of three parts: The first omes from only the currents, so
one knows its expression. The second one comes frermombination of currents with
the magnets. One must then assume that it isutmeo$ the products of the intensities
with the induction flux of magnetic origin that crosgesThe third part comes from only
the magnets. To say that a magnet is permanemts@ytthat its particular currents have
constant intensities.

40. Moving a permanent magnet towards a circuit— | shall preserve the previous
notations (no29). In addition, I shall letb denote the induction flux that is due to the
magnet that crosses the circuit and JeA denote the electro-kinetic energy of the

magnet; by hypothesig A is constant and depends solely upoq so the kinetic energy

of the system is:
T=1[mX*+Li?+2 d+A]

If E is the electromotive force of the battery in thewir andF is the force that is
applied by the observer’s hand, for example, then tigearge equations that correspond
to dx andoq will be:



32 Electricity — deduced from experiment and reduced to theijplerof virtual work

(5%) F=mx-i9%
dx

(30) E—ri=Li'+®.

They determine the two unknowxgndi as functions of time. That is the theory that
Sarrau proposed)(

Equations § X) and © q) an indeed verified by experiments: The first one gihes
electromagnetic force, while the second one givesibetromotive force of induction.
In that regard, the theory is satisfying. Howeveriffecdlty remains in regard to energy,
and it should be studied.

41. Remark concerning energy— There is an erroneous argument that | believe is
worth pointing out because it will serve as an introducto the exact argument in the
following number, which will exhibit certain characteist of permanents magnets,
notably their coercive force:

Equations § X) and © q) of no.40 define the system of two necessary and sufficient
equations for determining the two unknowxsand q of the problem. Can one not
conclude, from no24, that they satisfy the law of energy?

No. Indeed, recall the calculation that served to frasa Lagrange’s equations to
that of energy. One must multiply the first onedxy= x' dt and the second one dg =i
dt. Inthat way, | will get:

Fdx+ (E-r)dg=d[imx*+1 LF].

The work done by applied forces is not equal to the &s&rén kinetic energy.

The error? It is this: Equation® ) and @ g) indeed form the system of two
Lagrange equations that determine tilwe unknowns of the physical problenamely,x
andg. However, although they are the equations and unknofithe @hysical problem,
they are nofall of the variables and equations of the mechdngystem Those are
uncountable, since each particle has at leaselmotrical coordinatehat corresponds to
the current that traverses it, from Ampere. Henoe siystem [§X), (0)] is incomplete
from the mechanical standpoint. It does not have tisfgdhe law of energy then. In
order to recover the energy equations, it will be reargsto add a line to it that would
account for the equations of magnetization. Thathatwe shall do.

42. Coercive force of the magnet- In order to avoid the complication of particle
currents, | shall compare the magnet to a single durrendca, / dt . What must the
peculiarities of our fictitious current be?

1. The intensity; is constant, since the magnet is assumed to be pemnta

() SARRAU, C. R. Acad. Scil33(2 September 1901), pp. 421.
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2. The applied electromotive forég varies in such a fashion that it will keep the
intensityi; reasonably constant.

3. The resistance; is zero, because magnets do not give rise to anything that
resembles Joule heat.

4. The energy of self-inductiofiL, i is constant. The energy of mutual induction is
i®=Mii;. Mis a function of onl.

In summary, the fictitious current exhibits the chtenof a perfect machine without
friction this is endowed with an ideal regulator.

Under those conditions, the system under study ofrthgnet and the current will
have three equations in the form of:

(X) F:mX’—iild—M,

dx
(aq) E-ri=Li’"+(Miy),
(o) Ei=(Mi)"

If I multiply the three equations lix =x' dt, dq =i dt, dos =i, dt, respectively, then |
will get the equation:

Fdx+ (E-r)dg+Erdg =d[imx’ +3 L+ Mii].

It means that the work done by the forces is indeed egjtiadtincrease in the kinetic
energy. The law of energy is now verified. Howewdgt is only true thanks to the
electromotive forcds; ; that is thecoercive forcehat the physicists imagined. Its value
will be provided by the formulad g;) as soon as one knows the valuevbE ® /i, ,
which is a given that characterizes the magnet.

If the magnet is not permanent, but varies with timeents that are present, then the
fictitious currenti; can only be regarded as a constant. What is morepdabeetization
of each particle varies in its own way, and it widl mpossible to replace the particle
currents, even fictitiously, with a single currenthisltopic presents great complexity,
moreover; it has not been addressed up to now. Bashatnay, the two equationdX)
and © ) will remain true, but they will no longer suffice tietermine the system, which
depends upon an uncountable number of unknowns. It reffiainsie to establish the
equations that relate to the electric coordinates dbatespond to the magnetization of
the particles. That remark is quite important, soilit dominate all of Part Two of this
book.
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43. Conclusions:

1. Maxwell excluded magnets from his theory of inducedecis, and one cannot
logically grieve for him because of that fact.

2. Sarrau assumed that magnets are composed of panclents; that was
Ampere’s hypothesis. With that hypothesis, when the lragraquations are applied to
a system of permanent magnets and currents, theygwél results that conform to
experiments. They determine all of the unknowns, whighthe position coordinates
and electric coordinates.

3. Those equations will lead to the equation of energyibolye adds equations for
the magnets. They will determine the coercive farftde permanent magnets.

4. The equations of soft iron have not been addressed ngaobut the Lagrange
equations that relate to position coordinates and edectrordinates can always be
written out: They are necessary, but not sufficieqtiations for the problem.



CONCLUSIONS FROM PART ONE

44. The electromagnetic and magnetic forces are inertial foes, like the
electromotive force of induction.— We have seen how Helmholtz’'s theory, aided by
experiments, led us to two truths: that the electromofiorces of induction are inertial
forces and that the proper energy of a system of dsrren

%[Llllz +2M 12ili 2+L J 22]

is a kinetic energy. Those results led me to Maxwethgory, in which the
electromagnetic forces also appear to be inertigefar That was an important discovery
by Maxwell. Unfortunately, it is still unknown, andrfthat reason | would like to stop
there in my conclusions. Why is it unknown? Perhtdp is due to the name of
electrodynamical potentiathat was given to the energy with the sign changddciw
might lead one to think that it is a form of poteh&éaergy. Meanwhile, whether or not
one accepts Maxwell's remarkable theory, it is harddny the kinetic character of the
proper energy of currents: Like that of flywheels,sitstored in the beginning to be
released as work during the period when things stop. MN@w.energy is precisely the
electromagnetic force function. A necessary conseampués that the electromagnetic
forces are inertial forces. Having misunderstood thatsipisys frequently made sign
errors with the induced electromotive forces in thewretigoment of Helmholtz's theory.
From the ideas of Ampére and Sarrau, one must alsodregagnetic forces as inertial
forces.

Since that is quite remarkable, it will suffice toamine the magnetic and
electromagnetic forces in order to recognize the charattnertial forces. Indeed, what
is Laplace’s law, which is, as we have seen, tha&eyl of the theory?

A South magnetic pole exerts a force on a curremenht that is perpendicular to the
plane of the element and the pole, and proportionddeanass of the pole, the length and
intensity of the current element, the sine of thglametween the element and the line
that connects it to the pole, and inversely proportibmalhe square of the distance. The
sense of the force is such that it carries the elemoethe left of an observer that turns his
back to the pole and is traversed by the current fronebistd his head.

This strange fictitious law is almost as unacceptalsiehe elementary law: It is
fictitious since it introduces the notion of isolatedgmetic pole, which is an unrealizable
object, and strange since it gives a force that is nottdolealong the line that connects
the elements. By virtue of the principle of the edualif action and reaction, one must
suppose that the action of the current element on tleeip@applied, not to the location
whether the pole is, but to the location where theettirelement is. Forces of that type
are unacceptable as applied forces that act from eleame@ment.

On the contrary, recall the expression that we g@avile transformed Laplace law.

The force that is exerted on an element of thautidsthat is traversed by a currant
at a point where the magnetic fieldass represented by the same vector that represents
the oriented area of the parallelograndg Oa] = — [a 0 dg. It is, if one prefers, the
velocity (with the sign changed) of the extremitytloé vecton dsunder a rotation that is
represented by the vectar. In that expression, one recognizes (up to a fact@j tie
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composite centrifugal force — Z2[V,], in which the vectoQ represents the guiding
velocity andV, represents the relative velocity. Is there harmaonyhe signs of that
double analogy? Certainly, and here is wihgs is analogous to a velocity, so we must
choose a sense for that velocity. We choose the samse as the current. What is the
sense of the rotatiof2 that one must associate with the veatrahen? In order to see it,
we examine what the magnetic force of that curremtt ithe center of a small circular
currentC. It is perpendicular to the plane ©fand has a sense such that we will see the
currentC turn in the opposite sense to the hands of a wdltcis. the axis of rotatioiC
that is described in astronomy, and also with Maxweliaventions. Q will then have
the same sense as Hence, a current elemdrds that is placed in a magnetic fiedds
analogous to a material point that is animated withrétetive velocityV, =i dsin a
medium whose guiding rotation @ = a . The composite centrifugal force has the
opposite sense to the composite acceleration; i.¢heteelocity of the extremity of the
vectorV, =i dsthat is due to the rotatioR = @ . That is precisely the sense of the
electromagnetic force that acts on the elemeid In summary, the electromagnetic
force indeed presents all of character, magnitude, direciind sense of a composite
centrifugal force; i.e., an inertial force. The sarthing will be true for the
electrodynamical force, which is not distinguished fromn ¢lectromagnetic force.

The coherence of the analogies that we just eeritontinues into the magnetic
forces. The gyroscope always tends to make its axisllgato that of the Earth.
Similarly, the magnet will tend to make its magnet@ataxis parallel to the magnetic
field. There is more: The director couple has the saxpeession in both cases. It is
represented by the oriented parallelogram that is cotstr@iom the two corresponding
vectors, namely, the rotation of the Earth and thatinot of the gyroscope, on the one
hand, and the magnetic field and magnetization vectoth® other.

Hence, the magnetic forces, like the electromagietées and the electrodynamical
forces, as well as the electromotive forces of inductiodeed present all of the character
of inertial forces.




PART TWO

Electricity reduced to the principle of virtual wor k

INTRODUCTION

45. — In Part One of this book, we saw how the interpiceteof the experimental
laws led us to regard a system of currents that cheutafilamentary conductors as a
system of constraints that satisfy the principleidgtial work in rational mechanics.

1. There are two types of Lagrangian coordingteshe geometric coordinates that
fix the forms and position of the circuit and the quardiod electricity that are lost by
each of them.

2. The kinetic energy contains two parts: the sewis vivaof the moving parts of
the circuits and the electromagnetic force function.

3. There are two types of applied for€@s the purely-mechanical forces, such as
the effort exerted by the observer’'s hand, and thérelmotive force€ — ri, which come
from the generators and receivers and the Joule effect.

4. As for the electromagnetic forces and the elewttove induction forces, they
must be regarded as inertial forces and must be caldullgtemeans ofl using the
Lagrange formula, like the inertial forces of ration&atanics.

Those are the principles of Maxwell's theory. slimportant to point out that they are
based upon Faraday’'s lav1 a monofilament circuit, the quantity of electricity that is
lost g (viz., the quantity of electrolyte that has decomposed) sathe in all parts of the
circuit. That is the fundamental law of constraint thatarelsterizes electrical
phenomena, which is a constraint that is analogous tcotigraint that a fluid should be
incompressible, and for that reason, one can cak intompressibility constraint.

The law of currents that is derived from Faraday’s i@ first extension of that law,
which was further generalized by Kirchhoff into this staént:

In a network of filamentary conductors that are traversed by currémdsalgebraic
sum of the current intensities that terminate at an arbitrary poith@hetwork is zero.

Maxwell understood that this law is even more generdlcam first be extended to
three-dimensional conductors and then to dielectricskshemhis brilliant notion of the
displacement current.l will show how the experimental laws that oneelss in the
charging of a condensor by a current from a batteryleadl to Maxwell's results in the
simplest and most natural way.
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The law of incompressibility is completely genesalimoreover, so the principle of
virtual work must be applicable to all imaginable electigplcements, not only the
ones that traverse conductors, but also the onesrtwarde dielectrics, provided that
they are compatible with the incompressibility constraiNow, displacements that are
compatible with incompressibility can take place onlyngloclosed contours. The
following law is then imposed:

The total work done by electric forcdapplied and inertiallunder an electric
displacementq along an arbitrary closed contour is zero.

In particular, perform the displacemedq along one of the closed circuits that one
borrows from a filamentary network, and that will gkiechhoff's second law:

The sum of the electromotive fordelsie to generators and receivers and the Joule
effect)that one meets along the contour will be zero.

Hence, it is the extension of Kirchhoff's laws theg shall pursue, and which will
reduce electricity to the principle of virtual work. Hadl carry out that generalization in
only one experiment. Once the two general laws haga bstablished — viz., the law of
incompressibility and the law of virtual work — | will peoirout the analytical
developments that result from them for bodies dtaed bodies in motion.

An unexpected difficulty arises from bodies in matio

Experiments with the Barlow wheel prove that the bage equations are not
applicable to three-dimensional conductors. Nonethefbesfundamental idea of this
book remains intact: | will show that the Barlow whpessents a remarkable analogy
with the rolling of the hoop. The Lagrange formul@&ase to be applicable, but the
principle of virtual work will remain true. There is aw difficulty: Whereas rational
mechanics further permits one to calculate the irdaiaes of the hoop (for example, by
the formulas that | have given), that calculatiorioibidden with the Barlow wheel by
our ignorance of the elementary constitution of elemficurrents. One must borrow the
inertial forces of electricity from experiments. Thidy of the experimental laws of
electrical inertia must precede the equations of electeodis, just as the study of
moments of inertia must precede the dynamics of sotiieso




CHAPTER |

THEORY OF ELECTRICITY IN BODIES AT REST

8 1. —Extending Kirchhoff's laws to three-dimensional conductors.

46. Introduction. — The problem of the distribution of currents in the E@aremt
regime in a network of filamentary conductors that emdowed with given generators
and receivers can be solved entirely by using Kirchhoff'slam:

First law. — The algebraic sum of the intensities of the currémas terminate at a
point of the network is zero.

Second law— The algebraic sum of the electromagnetic forcedHe generators,
receivers, and Joule heat that one meets along adclosntour that belongs to the
network is zero.

Figure 6.

47. Kirchhoff's experiment with a plate. — With Kirchhoff, consider (Fig. 6) a thin
metallic plateCC’ of circular form. We connect the two poles of tiagtéry to two points
C andC’on the circumference. Current flows throughout alihef plate. (One can see
that by means of an electrometer or galvanometer.)hdnexperiment, the points that
gave the same voltage are sketched on the plagugsotential lines, or level lines.

Trace out an orthogonal trajecto®AC’ to the level lines and cut the plate with a
knife along that line; that operation will change nothingegard to the output of the
battery or the distribution of the potentials. The agie situation will take place for a
section that is oblique to the level lines. For tleason, the lin€AC’is called acurrent
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line. The plate is cut into filamentary conductors alorggdhrrent lines. One calls them
current tubes because in the plate that has not been cut, thentarwill distribute
themselves in the same way as in the filamentary n&tthat is obtained by cutting the
plate. One understands, moreover, that Kirchhoff'sslapply to the plate. They
therefore extend to three-dimensional conductors,usecaf one considers a fluid mass,
instead of a plate, then exploring the points with thenes voltage will produce
equipotential surfaces whose orthogonal trajectomgggsnacut the medium into current
tubes.
Let us therefore develop the consequences of Kirchhaléte experiment.

48. The current vector and its flux. — At each point of the plate, the current
possesses two qualities: isrection, which is the same as the current line, and its
density which is the current intensity per unit cross-sectibhe current tube at that
point.

Maxwell was then led to represent the current bychovg that he called theurrent
vector Its direction is that of the current and its lengthis density. When one gives the
vectorp at a point, one will know the intensity in a currare whose cross-section is an
arbitrary surface elemeno that passes through that point. That will be the fuxlo]
of the vectorp that crosses the elemeaid:

49. Extending Kirchhoff's first law. — | consider a poir® of a network. | surround
it with a surfaceS. To say that the algebraic sum of the intensitiesthe currents that
terminate at the poir® is zero is to say that the total flux of the cursgnthat cross the
surface is zero.

In that form, it is clear that the law is generacéuse if one traces out a surface on
Kirchhoff's plate then the current tubes that entewiit leave with the same content, in
such a fashion that the total flux that enters it iaéllzero. Hence:

The total flux of the current that crosses an arbitrary closed suttzateis traced in
the system will be zero.

50. Counter-electromotive force of the Joule effect- It is always resistive; i.e.,
contrary to the current like the forces of frictioAs for its magnitude, we shall calculate
it by Ohm’s law. Consider a cylindrical elemévilN that is defined thus: Its generators
are parallel to the curreptand have lengtls Its cross-section ido. By the definition
of the vectomp, the elementlo dsis traversed in the sense of the generators by anturre
of intensity:

i=pdo.

From Ohm’s law, it possesses a resistantbat is proportional to its lengttis
inversely proportional to its cross-sectidar and has a conductanCesuch that:
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The counter-electromotive force of the Joule effest én absolute value of:

ri=

S ><pda:B ds.
Cdo C

That expression appears to be the product of the vepctd® with the lengthds
However, the elemerds was taken to have the same direction as the vectohat
expression must one take if the elemast MP is oblique top ? The answer is found
by exploring the Kirchhoff plate with an electromet(@o. 47): Indeed, displace the
contact with the electrometer along the equipotehtialfrom the pointP to the pointN
where the current linp that issues frorM meets the equipotential line. The electrometer
will not be influenced by that displacement frdmto M. Therefore, the counter-
electromotive Joule force will bg ( C) x MN. It is the product of the vectpr/ C with
the projection ofis onto it, which is a product that we, with Grassmanti, deinote by

g ds. The magnitude and sign of the counter-electromotiuee Jorce from a poinA

ds.

to a pointB of a conductor are then represented by the integf%lg

51. Electromotive force of the Peltier effect— It has an invariable sense that is
contrary to that of the Joule effect. On the othand, if the electromotive force that
results when a current that traverses the separstidace between two metals is to have
a constant magnitude then it will suffice that the entrshould be normal or oblique to
the separation surface. The measure of that consthrstuffice in our formulas, but it
would be appropriate to explain the paradoxical appearandatoforce and to make it
comparable to the Joule force that is spread througheutalnme. Imagine a vecter
with the same physical dimensionsggsC, is normal to the interface surfaé®, and has
a well-defined magnitude at each distance @By but has measurable values only in a
transition layer of very small thickness The integral of the vect@along an arbitrary
line CD that is oblique t&AB is:

E= I:e| ds.

The same thing will be true for any path that one falaypon crossing the transition
layer, provided that one crosses it completely. Tihigggral will be an electromotive
force. It enjoys all of the properties of the elentodive force that corresponds to the
Peltier effect.

What was just said in the context of the Joule agltdeP effects can be repeated for
the Thomson effect and for electromotive forces @inaical origin.
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52. Extending Kirchhoff's second law.— As a result of nos50 and51, one can
define two vectors at each point that represent electreenfutrces: the vectoe for the
generators and receivers and the vectpr € for the Joule effect. With those notations,
the electromotive force between two points will be ittegral of the sura—p / C, and
Kirchhoff's second law can be state thus:

The integral of the electromotive force along any closed contour thi@tcisct out in
a conductor is zero.

It is easy to confirm that the law applies to KircHlsoplate and three-dimensional
conductors, just as it does to networks of filamentanductors.
53. Conclusions:

1. | defined acurrent vectorand anelectromotive forcevector at each point in a
conductor.

2. The current flux across an arbitrary surface is zefidhat is Kirchhoff's first law.
3. The integral of the electromotive force along an arbitrary contour thataced
in the conductors is zeroThat is Kirchhoff's second law.
§ 2. —Extending Kirchhoff's laws to the variable regime and to dielectrics
54. Introduction. — The two generalized Kirchhoff laws are:
1. The current flux across an arbitrary surface is.zer

2. The integral of the electromotive force along antiaty contour that is traced in
the conductors is zero.

| would like to extend those laws to currents in thealde regime and to dielectrics
by means of two new notions that relate to dielestrithe displacement current for the
first law and the electrostatic electromagnetic dofar the second law. It will suffice for
me to analyze a well-known experiment.
G

P —

> lw

o«

Figure 7.
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55. Charge on a condensor from the current from a battery— Place a ke, a
condensoAB, and a ballistic galvanometérin the circuitPCABGPof a batteryP. (Fig.
7)

Leti be its intensity, when measured positively in the s@fiBAB.

During its total duration, the current output will be argiig of electricity:

q= j i dt
that is measured by the galvanometer.

A first experimental law is this one:

The facesA and B of the condensor will take on charges that are pesiind
negative, respectively, and which will prove to be prtipoal to the outpug that is
recorded by the galvanometer when they are measured loslatic procedures (for
example, the attraction of two armatures).

Those charges will be exactlygrand —q when one adopts thedectromagnetic unit
for the quantity of electricity.

They are distributed over the surfé&ef the condensor in such a way that the surface
density isq/ S In that system of units (viz, tleectromagnetic systgrthe coefficienk

of Coulomb’s Iaw(viz.,F = kgj will have the dimensions of the square of a vé&joci
r

and experiments show that this velocity will bettbilight. 1 shall replace the constdnt
with 1 /K in order to conform to Maxwell's notations. Moxeo, the electric forcX of
the field between the two faces of the condensopigled to its charge, as measured
by the galvanometer, by the electrostatic formula:

41T q
1 X=——=.
(1) S

A second experimental law is that the current sttlp when the difference in values

of the potentialp between the armaturdsandB is equal to the electromotive forEeof
the battery with a charge thatnmeasured by dynamical processes:

(2 E=0n—¢s.

Those two laws contain the generalization of Kineffis laws, as | will explain.

56. Extending Kirchhoff's first law. — | consider a closed surfakZethat surrounds
the positive armaturéd of the condensor, but leaves the armatirexterior to it. |
consider two fluxes across that surface at the moiduring the charging period: the
flux of the currenp thatpenetrateshe charge conductor, namely:

. _ dq
1 fluxp=i=—",
1) p ot
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and then the flux of the electric forethatleavesit through the part of the surface that is
located between the two armatures of the condensarm Formula (1) of no55, that
will be:

X[B=—0q.
Kq

The flux thatentersfrom the bossdhel) into = will then be:
) fluxX = - 4?” q,

so when one differentiates that with respedt tme can infer that:

(2) flux d_X: - 4—7T%
dt K dt

One then deduces this from the relations (1) af)d (2

(3) qux(p+4£d—xj =0

Hence, the vecto%?j—f = p, completes the vectqrin such a fashion that the total
Vg

flux of those two vectors will be zergy is Maxwell’s displacement currentwhile p +
p. is thetotal current which reduces t@ in a perfect conductor and @ in a perfect
dielectric. Kirchhoff's first law then generalizesthis:

The total current flux that crosses an arbitrargsd surface is zero.

57. Extending Kirchhoff's second law.— Formula (2), which represents the second
law of no.55, is written:

0:E+¢B—¢A-

Therefore,@s — @a iS an electromotive force that equilibrates By the definition of the
potential, it is the integral (with the sign chadpef the electric forc& along the path
AB. From that,if a closed contour contains a piece AB that istamed inside a
dielectric in which the electric force X prevailseh an electromotive force will result
along that contour that is equal to the integral-oX = P, along AB It will equilibrate
the other electromotive forceE on the contour that are measured by dynamical
processes.

Therefore, one finds an electromotive force ahgamnt: viz.,P in the conductor and
P, in the dielectric. If the magnetic field varideh the study of induction currents will
teach us that one must add the derivative (with dig;em changed) of the magnetic
inductiona that crosses a contour to the integral of thetelawtive forces along the



Chapter | — Theory of electricity in bodies at rest. 45

contour. Those are the electromotive forces thateiperiment will reveal. Provided
that one takes them into account, the statemeneafdbond law will remain unchanged:

The total electromotive force that prevails in any closed conto@rds z

Figure 8.

58. Experimental verification of the generalized Kirchhoff lavs. — This will result
from the well-known exploration of the circuit widln electrometer. One establishes a
derived circuitDABE that contains an electrome®®B (Fig. 8) at the two point®, E of
the circuit PDEP of the batteryP. At the moment when one establishes the derived
circuit, an instantaneous current will traverse it;ildoium will soon be established. At
that moment, the laws of n64 will give the following results:

First law:
1. The current in the conductdd# andBE is zero.
2. The intensity is the same in the brandPBsDE, EP.
Second lawThe equilibrium equations of the circuR®EP andDEBAD are:
1) E-Ri=0.
(2) ga—gs—ri=0.
The notations in those formulas are the same dseiprteceding ones, with the one

modification thatR is the resistance of the circtiDEP andr is that of the portioDE.
It needs to be pointed out that those results arBegeby experiments.

59. Electrostatic field created by currents— In the experiment of n@8, nothing
prevented one from progressively lengthening the two aresmtfrthe condens@B that
forms the electrometer and diminishing their areas ashnas one desires, until the
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metallic partDA andBE disappear. The entire pa@ABE will then be traced inside the
dielectric, and equation (2) of n68 will become:

¢D—¢E—ri =0.

Hence, ¢p — ¢e is not zero. That will show that, even in the abseonf any
condensor, in any open derived circuit, the existencag afrrent will imply an electric
field in the surrounding medium. That fact is quite obsiin experiments, because in
high-tension currents, it is not rare to see sparkteunirom one part of a conductor and
another.

60. Conclusions:

1. When a condensor is charged by the current from a haktdrew upon two
notions that relate to dielectrics: the displacenoeintent and the electromotive force that
is due to the potential difference.

| found these two laws:

2. The total current flux across any closed surfaceris.z
3. The total electromotive force that prevails in aloged contour is zero.

The notion of electric displacement is due to Maxweélkité d’Electricité nos.60
and6l). However, since it was introduced in the early ddyslectrostatics, it does not
exhibit the same clarity that it does here, and itrsequite arbitrary in the work of that
great physicist. The law of total current flux is likeaifound there. In ndl, it
appeared with its true significance. In equation (E) of @07, it appears as a
mathematical consequence of a hypothesis on the madieddi¢hat is due to an open
current; nowhere does it appear as directly-observalpleriexental fact. As for the law
of electromotive forces, Maxwell's formulas do notdda it. | believe that it is new. It
is interesting to confirm that the two laws are onlieagions of Kirchhoff's laws.

8 3. —General equations of electricity for bodies at rest.
61. Introduction. — | have arrived at the two fundamental laws of edelytnamics:
First law: The total current flux across any closed surface is zero.
Second law:The total electromotive force in any closed circuit is zero.
| would like to explain their mechanical interpretati@msl formulate their analytical
expressions. | will then have the two fundamental lafvelectromagnetism. | shall

apply them to the particular case of perfect condu@ndsperfect dielectrics. Finally, |
shall compare my results to those of Maxwell.
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62. Mechanical interpretation of the two fundamental laws— The elements that
enter into the two laws are interpreted thus:

The total current of the first law is the velocity of the electricardinateq. It is
equal to the conduction currgmin perfect conductors and to the displacement cupient
in perfect dielectrics, anpl+ p; = u in all cases.

We pass on to the second law.

The applied electromotive force vectdrconsists of several parts: The Joule part,
which is equal to the quotient of the current by the condoefr —p/C; it is found in
conductors and correspond to friction. The electricdpwith the sign changeB; = - X

=- 4?71 p, dtis found in dielectrics and corresponds to the reactfoa spring. The

electromotive force of the generators and receifereorresponds to the applied force
that is due to dynamical generators and receivers sualat@sfalls and machine tools.
The integral of those forces along a closed circytragents the total work done by
applied forces for the virtual electric displacemémt 1 along the circuit.

One must add the work done by inertial forces. Thetrédal inertial forces are the
electromotive forces of induction (nd5, 4.). Their virtual work is d @ / dt (no.10); it
is the derivative (with the sign changed) of the magneduction fluxa (no. 5) that
crosses the circuit. In other words, it is the veéhax — da / dt or —a’, which is the
derivative (with the sign changed) of the magnetic indactectora.

The total virtual work thus-calculated for the displaeathdg = 1 along a closed
contour must be equal to zero, and that equality must tfiesh for all imaginable
closed contours. It is the generalization of Kirchtw$écond law.

The interpretation of the two laws is obvious: Thestfilaw corresponds to the
incompressibility constraint in hydrodynamics. The sectaw expresses that the total
work done by forces is zero for any displaceméqtthat is compatible with the
incompressibility constraint.

They must then contain the general equations of edégtfor bodies at rest. There
are two types of equations according to whether oneidgrssthe mass of a continuous
medium or the separation surface between two differedian | would like to establish
those equations.

63. Indefinite equations in a continuous medium— Apply the first law to the
surface of the parallelepipatk dy dz whose first summiO has the coordinates y, z
(Fig. 9), and calculate the flux of the vector ¢, w) that leavesthat surface. Upon
crossing the surfac®BC = dy dx the flux is —u dy dz Upon crossing the parallel face

that is drawn througl, the flux will be +(u +% dxj dy dz so in total, du / d¥ dy dy

dz One will likewise find the flux across the pairsfatesdz dxanddx dy When one
equates the sum to zero and suppresses the cothtriyndz one will find:

(1) —+—+="=0.
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That expresses the law of incompressibility. Upon apglyhe second law to the
contours that bound each of the three fa@a8 OBC, OCA of the same parallelepiped,
one will find by a similar argument that:

daw dv
——-a' =0,
dy dz
(2) d_U—d_Vv—b':O,
dz dx
dav. du
_—————=Cc =
dx dy
z
|C
,‘“'“"B—>y
A
X
Figure 9.

In Grassmann’s notation, equations (1) and (2) are writte

d
1 —|u =0,
(1) ix
(cf., MAXWELL, no. 607),
d
2 —U | —-a’=0,
@ I=d

resp. (cf., MAXWELL, eq. (A), (B), (I); no$H9], 598 611).
According to whether the body that is taken at thentp® is a conductor or a
dielectric, those equations will become:

d u=0, i(——pﬂgj =a’ (conductor),
dx dx\ C

d|Kdx _ 0, i(—X+ R) =a’ (dielectric),
dx| 4 dt dx

respectively.
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If the mass is homogeneous, one must suppose, in additaai, is zero andC (or
K) are constant.

64. Equations for the separation surface between two media.Take the axe®x,
Oy to be parallel to the surface and the &sto be perpendicular to it, and then apply
the two laws to the elemedk dy dzas in the previous number, and upon putting a prime
on the letters that relate to the second medium, Wget the equations:

(1 U=u/ V=V W= W,

They are stated thuShe tangential components of the electromotive force are
continuous. The normal components of the total current are continubliee cases
present themselves according to whether the mediabatle conductors, or both
dielectrics, or one is a conductor and the other igladric. The equations are written:

p _p o q _qd .,
1 —=-P:==-F, —-Q==-Q,, r=r,
(1) c PR C Q o Q,

dz dz’

2 X—-PB=X'-P. Y-Q=Y-0Q, = =K'—,
(2) R A Q2 Q, p p

p v o q o _K'dZ
3 Pop=x-P, 2-Q,=YV'-0Q, r= 22
3) c 2 @ Q A7 dt

respectively.
In particular, if each of the media is homogeneoesfi , R, Q,, Q, will be zero.

If the initial field (X, Y, Z) is zero then the integration of last two equationhénlast
column will give:

KZ=K’Z, jrdtzﬁzz

4

respectively.

65. Equivalence of the two fundamental laws with the systemf equations(l),
(I, (1. — As we have seen, the two laws imply egoas (1), (II), and (llI).
Conversely, when those equations are extended to alhoésghey will suffice to insure
that the laws are verified. One sees that by a cssigument that | shall not reproduce
here. If they are extended over only a volume suchnasllipsoid then they will once
more insure that the two laws are verified in therentiterior of the ellipsoid, but if the
volume has the form of a torus, for example, then oust further express the idea that
the second law is verified for a contour that is takethe volume and goes completely
around the torus. For example, one can choose thaierence that is described by the
center of the meridian circle of the torus. The mettg of verifying the Kirchhoff's
second equation on that contour will amount to the tlaat such a contour cannot be
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replaced with a set of infinitely-small contours thate taken in the torus (cf.,
MAXWELL, v. I, nos. 18, et seq).

66. Comparison of our theory with Maxwell's. — Equation (I) is in Maxwell.
Although formula (1) deviates from Maxwell, it will &l to the same equations as the
ones that one can deduce from formula (A), (B), (IMexwell (nos.591, 598 611) for
conductors, on the one hand, and dielectrics, on the.oth®netheless, there is a
fundamental difference in the interpretation of treious electromotive forces that
Maxwell seems to have confused with each other.

The differences are accentuated in the formulas o6#i0Equations (1) agree with
the ones that one finds in M&10 of Maxwell, but one does not find formulas (2) and (3),
which | believe to be new.

Two characteristics distinguish our theory from MaxiseDn the one hand, there is
the exclusive consideration of closed contours in ondemwrite the equations of
dynamical equilibrium for electricity, and on the othand, the distinction between and
localization of the various electromotive forcesonly associate the Joule electromotive
force with the conductors, and that comes from thenpialedifferences in dielectrics.
Both types of forces are found in timeperfectdielectrics.

Our method seems to suggest itself by its simplicity,absence of hypotheses, and
finally by the mechanical interpretation that | presenin no.62, and which introduces
the laws of electromagnetism into the general prieayb virtual work.

67. Conclusions:
1. | gave the mechanical interpretation of the two furetdal laws of electricity:

The first one is the condition of incompressibilithat relates to electrical
displacements.

The second one is the expression for the principlgirtdial work for the electric
displacements that are compatible with the incompoiisgs condition.

Here, as in Part One, one is no longer dealing wislgshem of constraints with a
finite number of degrees of freedom. One is dealing witlindefinite medium that is
analogous to an incompressible fluid with the followamglogies:

a. The unknowns, which are infinite in number, are tladues of the electric
displacement] = ju dt at each point of the medium, which are displace minatismust

satisfy the laws of incompressibility.

b. The kinetic energyl is a volume integral that we shall determine late5)8
Here, it suffices to know the work done by inertial &gdor the displacememniq = 1
and along a closed contour. Experiments teach ud thahe flux of the vector a’that
crosses the contour.
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c. The applied force® are the electromotive forces of the generators, veceiand
the Joule effect of the dielectric.

2. | gave an analytical expression for the two lawscontinuous media. They
consist of two partial differential equations:

The numerical equation (1) for the law of incompretisyb
The vectorial equation (lI) for the law of virtual vkor

3. For the discontinuities, they are the equation} (lmely:

The continuity of the normal component of the totatrent, which relates to
incompressibility.

The continuity of the tangential components of thdieggelectromotive force, which
relates to virtual work.

4. | compared both the results and methodology of theepteéheory to Maxwell’s.

8 4. —The problem of electromagnetism and electro-optics.

68. Introduction. — | was led to two fundamental laws that give the g¢mepaations
of electricity, whether one defines them indefinitetyon the separation surface between
two media. They contain the currgnthe electric forc&, and the magnetic inducti@n
One of the first two vectors will be zero in perfgatbnducting or isolated bodies, and
two unknown vectors will remain at each point. Anoth&ugrof relations is necessary
to determine the phenomena. One can obtain them icaseewhere the bodies are not
magnetic: The inductioa then agrees with the magnetic fieldand it will be given by
the generalized Biot-Savart law. | would like to pregéat topic and show its links to
optics, and infer a consequence of it that relatelsemature of dielectrics.

G

K
Figure 10.

69. The Biot-Savart law.— One way of formulating that law is this:

If one follows a line K that links a conducting circuit G in whicha@sed current of
intensity i circulategFig. 10)then the integral of the magnetic force that is due to the
current will be4rri.
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Now, i is the current fluxp upon crossing an arbitrary surface that is bounded by the
contourK. Assume that the law is also true for open conduciorents. | can deform
the arbitrary surface until is found entirely within tkeelectric. In order for the
expression to keep the same value, one must then rép&acenduction currerg with

the displacement currept . In a word:

The integral of the magnetic flux along any closed contour is equal tootale t
current flux, multiplied byiz

The analytical expression for that law was obtaime@aragraptB; for continuous
media, it is:

q u=p in conductors
—a =4y, Kdx . . .
dx u=p =—— indielectrics,
477 dt
and for discontinuity surfaces, it is:
a=a, B=p.

It is suitable to add to these equations the egumif the incompressibility of the
magnetic induction vector, which is an incompresigiithat was recalled in nc ; as in
nos.63 and64:

d£| a=0, forcontinuous media,
X

c=c’ for adiscontinuity surface.

With our hypothesis of a non-magnetic mediua,b, ¢ are equal toa, 5
respectively.

70. Equations of the conduction current and the electric fce. — We have
obtained two vectorial equations:

i ia = 477U
dx

U=a,
dx

In order to eliminatey, | perform an operation on the first one that dlshepresent

by di | will then replac%dia in the right-hand side by its valuer4 that is derived
X X

from the second equation. | will then get:

d

dx

iU =4mu’.
dx
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According to whether the medium is a conductor oregediric, that equation can be
written:

" 419 Pip)e an®
dx|dxi, C dt
d| d d?X

2 — | =(-X+B)= K—,

) dx dx( ) dt?

respectively.

If the medium is homogeneous thenwill be zero, whileC (or K) will be constant.
If the medium is crystalline then that constant nagsteplaced with a system of constant,
namely, dinear systenthat defines a linear vectorial function.

71. Determining the problem of electromagnetism- For a surface, | shall isolate a
system of perfect, non-magnetic conductors and diedsctmi a field. In that medium,
one knows the indefinite vector equations for the conduatignentp or the electric
forceX (eq. 1 or 2 in no70). It has order two in the coordinates. In additmme knows
the vector equation of each discontinuity surface G4p. That will yield the following
givens:

1. porXat each point at the initial time.

2. Those vectors and their derivatives along the nor#id boundary surface at
each moment in time,

and the problem of calculatingandX in all of space and every moment will have been
well-defined.

72. Comparison with light. Constitution of dielectrics.— The problem is posed in
the same way in optics. Now, my research on the vgaviace and the dispersion of
colors in crystals has led me to precisely the sagnate®n that is obtained for dielectrics
that are either isotropic or crystalline. One theantdies the two theories. The equation
of dielectrics gives the theory of the propagatiotigift and diffraction. The equations
of two dielectrics, combined with the equation at the is¢jman surface, gives reflection
and refraction. The equations of a dielectric andralgctor, combined with the equation
on the surface, give metallic reflection.

Meanwhile, there is this remarkable anomaly: Whereas electricity, K is a
characteristic constant of the medium itself, in @gtit is a function of the wave length,
except in the ether of the vacuum. Moreover, cetigoas of radiation are absorbed, and
the body will heat up. That phenomenon correspondsedilberation of Joule heat.
Meanwhile, a dielectric does not allow any measurable@eent current to pass through
it. One must then assume that the dielectric ispom®d of conducting corpuscles that
are separated by an isolating medium. That systenagtilike a complex condensor. In
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the context of electricity, that configuration explathe greater capacity of a condensor
with an arbitrary dielectric in it when compared t@anvacua In optics, it explains:

1. The heating of the body by alternating currentserpirticular conductors.

2. The necessity of considering two vectors at eadtit pzamely, the mean value of
the conduction currenp and the mean value of the electrostatic faxgcewhich is a
necessity that led me to the direct study of the dispeiof colors ).

73. Conclusions:

1. | gave the partial differential equations of the cotidaccurrent in conductors
and the electric force in perfect dielectrics.

2. | explained that those equations, when combined withetfuations on each
discontinuity surface, will permit one to calculdtese vectors when one knows the
initial conditions and the boundary conditions on ib&lf

3. | showed the link between those equations and thasgatio$.

4. From a comparison of the results of the two tlesodi deduced a consequence in
regard to the constitution of dielectrics.

The last remark is new, | believe. Since the otim¢ions are known, it is good to add
them here when they have specialized by using our formulas.

8 5. —Electric energy.

74. Introduction. — The equations of motion for a system with constsamte
expressed by writing down that the total work done by agh@lied inertial forces is zero
for any virtual displacement that is compatible with to@straints. In order to get the
differential equation of energy, one writes the samedition, not only for an arbitrary
virtual displacement, but for one that is effectivptpduced during the time intervei.
We applied the first of those rules in paragraph 2;hedl sow apply the second one.

The displacement that is produced can be decomposednnidinitude of others:
They correspond to all of the effective displacemeltgghat are produced during the
time intervaldt along the various current tubes that one finds at theemot. It will
suffice for me to consider one of those tubes and contheneesult with the ones that are
found by considering the other tubes.

(% In most imperfect dielectrics, that conduction, whenitéith to particles and which forms the
polarization of the dielectric, is accompanied by a conadluthat is very weak, properly speaking.
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75. Energy equation— Consider a current lin@ whose element idx and a surfac8&
that is bounded bf. Letn be the normal to the elemed®& From paragraph 1, the
equation of equilibrium of the forces on the contGus:

(1) jcu |dx—jsu|aids: 0.

The second integral is taken over an arbitraryaser It requires a prior study in
order to arrive at the choice of surfaces thatespond to the various current tubes in
such a fashion that one will avoid ones that i@etrseach other, which would be
necessary in order to perform the summation tHategto those tubes. One circumvents
the difficulty by transforming the surface integiatio a line integral. In order to do that,
| observe that, by definition, the magnetic indota satisfies the incompressibility

.. d e
condltlond— a = 0. In that case, one knows that one can fiddstibution (and even
X

an infinitude of distributions) of vectoFsthat satisfies the relation:

az| 9
dx
from which, one will deduce that:
d
3 a.I: _FI
(3) ix

upon differentiating with respect to time.
| substitute that value af in the surface integral and get:

. e d_, . ,
|J'Sv|adS— IL(V&F de =i LF [dx.
Equation (2) can then be written:
dtjC(U—F)|idx =0.

Now, i dx is the product of the current vecand the volume elemedt of the part
of the current tube that has lengilk Hence, the part of the energy equation that
corresponds to a current tube is expressed bytagral over only the elemends of that
tube. One will get the complete equation by extgnthe integrals over all of space. In
summary, the differential equation of energy isithe

@) 0O=dt| U-F)udr =dt([Ujudr-| Fluc).

76. Various types of electric energy— From the ideas that were presented in
paragrapt, the first term in equation (4) represents thekwdone by applied forces.
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The second term represents the work done by inertiadgord@ he product of the second
integral bydt then represents the variatidi of the kinetic energy. The first integral is
the power that results from the various applied forcésat power itself contain two

parts: The first oné® comes from the exchange of energy between thermsystel its

exterior. It contains the energy of the batterms] the Peltier, Thomson, and Joule
effects. It is analogous to the power that resultsfgenerators, receivers, and passive
resistances in ordinary mechanics. The second patheofpower comes from the
potential energyW) that is due to the electric force, and which we caegb#o that of a
spring strip in no52. We shall calculate those three parts to the energy

() P dt — dW — dT

77. Work done by applied forces. Power of generators. Potenti@nergy of a
dielectric. — The power of the applied forces is:

a7

o = jU ludr.

If the bodies that are present are perfect condsi@nd dielectrics then the integral
will split into two others, namely:

P= J(—g+ |:>2j| pLor, which is extended over the conductors,
(5)
- d_W:J'[—X +B]| KdX Ldr , which is extended over the dielectrics.
d 4rr dt

The first integral represents the total powethat is provided to the system by the

generators, receivers, and the Joule effect. €bersl one is the derivative of the work
that is produced by the reactions of the dielecttias derived from the potential:

K K
6 W= —|X|Xd-—— | B| Xd.
(6) - X1 =) B

In general, the electromotive ford@sthat reside in dielectrics are negligible, and the
potential energy reduces to the first term:

K K
6 W= _—|X|Xdr=—|(X*+Y?+ 2% o.
(8) o X o) ( )

78. Work done by inertial forces. Electro-kinetic energy— We have found (no.
75) that the differential of the kinetic energy is:
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dT = dt[ F'|udr.

One must eliminate the auxiliary vectérand return to the vectoesand a , which
are the ones that are detected by experiment&rder to achieve that goal, | shall first
replaceu with its value:

u:i ia (no.69).
47| dx
| will then get:
a_1 F’iadr.
dt  4m dx

In that formula, the derivations with the symbiol dxapply toa. Upon integrating
by parts, one will apply them #"and obtain:

a_1 aiF’dr,
dt 47 dx

or, upon replacing#%( F' with a’[equation (3) in no74] :

dT 1
7 —_—= ‘dr.
0 dt 4n.|.a|a f

If there are no magnets in the field therwill be equal toa’, and formula (7) will
give the kinetic energy in the form:

1
7 T=—|a%dr.
(7) 8ﬂj

79. Conclusions:

1. | deduced the equation of electric energy ftbenequations of electromagnetism,
just one deduces the energy equation in rationathem@cs from the equations of
dynamics.

2. | gave an expression for each of the electdoalgies. It is composed of, first of
all, the power that is provided to system fromatdernal environment or conversely,
then the potential energy that is called electt@stand finally the electro-kinetic energy.
Those expressions are represented by formulag(>r (8), (7) or (7), resp.




CHAPTER I

THEORY OF ELECTRICITY IN MOVING BODIES

8 1. —-Maxwell's theory and the Barlow wheel

80. Introduction. — In Part One of this book (Chap. Ill, § 1), | have Sjetithe
analogies that permit one to regard a system of fiiang conductors that are traversed
by currents as a system of constraints in rationahar@cs, namely:

1. There are two types a@bordinates:the ones that fix the displacements of the
moving parts in the circuits and the ones that fix teetat displacements.

2. Thekinetic energy Tcontains two parts: the sewis vivaof the moving parts of
the circuits and the electromagnetic force functioelectro-kinetic energy.

3. There are two types @pplied forces:the purely-mechanical forces, like the
effort of the observer’s hand, and the electromotmed E — ri that comes from the
generators, electric receivers, and the Joule resestan

With those analogies, | applied the Lagrange equationsndwing filamentary
circuits, whether deformable or not. They deterningesystem as a function of time and
agree with experiments.

The Lagrange equations then give entirely satisfacesyitis for filamentary circuits.
That will not be true when the conductors are not #atary. | would like to show that.

Figure 11.

81. The Lagrange equations break down in experiments with ¢nBarlow wheel.
— Consider two electric circuits that are composedenfaliowing manner (Fig. 11): The
first oneABCDis in the plane of diagramAB andCD are two horizontal wiresDA is a
vertical wire on which there is a battePy Finally, the second vertical eddC is
composed of the vertical radius of a whBethat is perpendicular t€D, is planar and
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metallic and moves around its aXxiC. The second circuit is composed of a solenoid
that creates a magnetic fieddin the direction oDC. From that fact, the magnetic flux
that crosses the circkBCD s zero. As a result, the mutual induction of the tivouits

is zero, and the electro-kinetic energy of the systeinaes to the sum of their self-
induction energies, namely, while keeping the previous ooisti

(L +L,i5).

| further suppose that the wheRlturns. Leté be its angle of rotation, counted
positively in the trigonometric sense for an observerithplaced alon@a, which is an
extension oDC. That is the sense of the arrébwLet| be the moment of inertia of the
wheel; its semisis vivais 11 8. The total kinetic energy of the system is then:

T=i[18%+LiZ+L,i7].

The mobility parameters of the system, which areghin number, aré, qi, Op,
whose velocities ar@’=d@/ dt, i, =dé /dt, i, =d6& /dt. The forces that correspond to
01 andq; areE; —ry i3 andE; — 1z iz . | let Q denote the moment of the external forces
(the observer’s hand, for example) with respect to wheel. The three Lagrange
equations are:

@ Q=186",

0 @ E-ni=L,%
dy

oy dip

(3) Ez_rzlz_l-zdy-

That includes two results that are contrary tceeixpents:
1. No electromagnetic force will tend to make wiesel turn [eq. (1)].

2. The motion of the wheel will not produce anguced electromotive force [eq.

(2)].
These are the facts:
1. The wheel turns spontaneously under the acfi@ectromagnetic forces.

2. The rotation of the wheel produces an indudedt®motive force in its own
circuit.

As for the magnitude of each of those forcess ieasy to guess by the following
fiction:
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The element of the circuC is borrowed from the plane of the wheel, in suchay
that the trajectory of the currentfiged in spaceind moves with respect to the whéé).(
Instead of that, suppose that the eleni&@tis borrowed from a wire that has the same
position andthe same velocitgs the radiu8C at that same instant. The wiB& will
then be the site of an electromagnetic force antchduced electromotive force that the
laws of filamentary conductors permit us to calculate.

Those forces are precisely the ones that affeatathiesBC of the wheel. That is the
experimental fact that must be expressed in order thhgebdact equations of the Barlow
wheel.

82. True equations for the Barlow wheel.— We must first examine the
electromagnetic forces that are exerted on the wdnaeltheir moments with respect to
the rotational axis. Those forces are given by Lapdalzt. Letr be the distanc€EM
from a pointM of the radiu<CB to the center, and lelr be the length of an element that
is situated at that point. The force that is exetredhe elementlr has a magnitude of
aidr. Its direction is that of the axi®y that is normal to the plane of the diagram

ABCD, to the left of an observer that is standing alB&@and looking ata. It has the
same direction as the displacement of the péintunder the rotationdd. That
displacement has a value ofof . The work done by electromagnetic forces is then
ai,rdrod. The sum of the works done by the forces that ardéieapf the various

points of the wheel will then be:
2

ai,o6[ rdr = ail%de.

The coefficient 008 is the moment of the electromagnetic forces wa$pect to the
axis Ca, and that moment must be added to the momenedfblied forces (observer’s
hand, for example).

The first equation of virtual work, which is thaethat relates to the parametelis
then:

(1) Q+ai,—=18"

_—

Figure 12.

() Seemy response to Liénard on that subject in a footmot®i81.
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Now examine the induced electromotive force in thetibbeis partBC of the circuit,
which is a filamentary part that moves with the whéé. 12). Under the real
displacementdd, the radiusBC goes toB’ C, in such a way that the circlBCDA is
replaced withABB’ CDA. The magnetic flux of the vectar that crosses the circuit is
zero in the initial position; in the final positionwill have the value:

RZ
axCBB'C= +a7d€.

The increasd @ in the flux results in an induced electromotivecta

_do__aR
dt 2

That must be added to the applied electromotiveefa; — r; i1, in such a way that
the second equation of virtual work, which is time ¢hat relates to the electric coordinate
01 in the first circuit, will be:

. aR? di
2 Ei—nip-— g=1L—-"2.
(2 1—hh=— let
As for the third equation:
. di
(3) Eo—-nix = Lz—d: :

it is not true with no modifications.

All that remains is to replace the magnetic fielavith its value in equations (1) and
(2). Now, the magnetic fieldr is proportional to the curremnt and to a coefficient that
depends upon only the geometric dimensions of pparatus. | can then denote the field

a by ZR—fiz, in such a fashion that one will have:

2
”S:Kg.

One sees that without a doubt | have neglecte@duhenti; itself in the calculation
of the two forces that act up&cC, but that part of the field is normal to the plaki&CD
and gives zero as a result for the two forcesdtaevaluated here.

To conclude by virtue of the experimentshe three dynamical equations for the
system are:

@ Q=-Kii,+I &,
0 (2 E-ri=+KigL0,
dy

@3) E,-ni,= Y

dy
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The energy equations are deduced from these equations by atiem, after
multiplying by d@ = &’ dt, dgu = i; dt, anddcp =i, dt, respectively. That addition will
eliminate the two terms iK that we have to add to equations (1) and (2), in such a way
that one will indeed recover the expression for kinetiergy in no.81, as if those
additional terms did not exist, namely:

T=3[18%+LiZ+L,i7].

Equations (I1) are incompatible with the system (§.@1) of Lagrange equations.

Must Maxwell's theory be abandoned then? In the formcbasists of applying the
Lagrange equations, the answer must necessarily beH@sever, at its basis, | do not
think that this must be the case, since the Lagrange eqgsiaie not always applicable to
systems with constraints. On the subject of the hbghowed that they break down
when the mobility parameters are not true coordindtes (et us examine things from
that viewpoint.

83. Adapting Maxwell's theory to the Barlow wheel.— Is the state of the system
well-known when one gives the three parametéig, o ? Yes, if one is dealing with
filamentary conductors in which the current always trse® the same material particles,
but no in the case of the Barlow wheel, in which aurdisplaces in the wheel.

Pass a quantity of electricity through the wheel and then turn it throu@hso the
Joule heat will be released along the first verticalusad On the contrary, turn the wheel
through & before passing the current through it. The heat wiltddeased along another
radius that makes an angle 8fwith the first one. In order to know the state of the
system at the momehntit will not suffice to giveg, qi, g2, since one must further give
the law of the simultaneous values of the two parareé&tandq; .

Similarly, in order to know the absolute position of lo®p (e.g., in order to know if
one will arrive at Bordeaux, Lyon, or any other placeewlone starts from Paris), one
must give not only the present values of the angleslwdrace, conversion, and tilt, but
also the law of the simultaneous values of the fwst parameters when one starts from
the origin.

The analogy is obvious, and there is good reason to apphgmarks in regard to the
hoop to the Barlow wheeThe third Lagrange equation persists, but one must complete
the first two with certain terms in the products of the velaitie

Those are precisely the peculiarities that the syglé) presents that are deduced
from experiments. Unfortunately, while the theory pe&none to calculate the
complementary terms that modify the Lagrange equafimnghe hoop, here, one must
borrow from the experimental laws of electromagnetige to our ignorance of the
elementary constitution of the mechanical system wetare dealing with. We know
only its mobility parameterg, its kinetic energyl, and the applied forcg3. That will
suffice when the Lagrange equations are applicable, bun tie¢ contrary case.

(*3) E. CARVALLO, “Théorie du monocycle et de la bicywe” J. Ec. Poly. (2) Cahiers VI and VII.
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84. Conclusiong*?):

1. The experiments with the Barlow wheel show thatltagrange equations are not
always applicable to electromagnetic phenomena, arablyah the case of two or three-
dimensional conductors.

2. It presents a close analogy with the rolling oftthep, for which the Lagrange
equations break down.

3. Consequently, the fact that the Lagrange equationsot@apply to the Barlow
wheel, far from invalidating the principle of virtual woik,actually a confirmation of the
that principle.

4. The Barlow experiments then seem to confirm theftmudamental principles, as
well as their Maxwell correlates: The energy ofyatem of currents is a kinetic energy.
The electromagnetic forces and the electromotive imolstforces are inertial forces.

8 2. —Laws of electric inertia.

85. Introduction. — In the preceding paragraph, | showed that one willinla false
result when one calculates the electromagnetic phenanthat are provided by the
Barlow wheel by means of Lagrange’s equations, followiraxwell's idea. | gave the
correction terms that one must add to the equationsdier do make them agree with
experiments. Finally, | showed the dynamical analbgtveen the case of the Barlow
wheel and that of the rolling hoop and the modificatlmat one must consequently make
to Maxwell’'s idea in regard to the application of the gahequation to the dynamics of
electrical currents.

Now, Maxwell deduced the electromagnetic forces amdetactromotive induction
forces, when considered aertial forces from Lagrange’s equations. Moreover, the
author did not at all give a sufficiently correct and gahstatement of that. It is then
necessary to return to the subject in order to spec#fyeitperimental laws of electric
inertia.

(*) LIENARD [C. R. Acad. Sci134 (20 January 1903), pp. 163] declared that | committed an error by
applying the virtual electric displacement to a currebetthat is fixed in space. It is necessary that the
current tube must move with the wheel. | do not, in,taccuse him of committing an error, because | do
not pretend that nature has unveiled its secrets talome, and his way of looking at things might very
well be justifiable, but | do claim to have correctlgpied the theorem of virtual work by imagining
everything to be at rest, except for the virtual disptessg that is envisioned (see 194).

LUIGI TRAFELLI (L’Elettricista, t. VI, no. 1; 1907) also claimed that | was wrong. GCamtto
Liénard, he adopted the analysis of my8®. Contrary to what | said, he concluded from thatathaysis
that the Lagrange equations are applicable, but he didppdy them. He said that | was wrong to adopt

the expressior%(l_lif + inz) for electro-kinetic energy in n&1, but he did not say why, nor did he say
what the right expression for that energy would be.
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86. Critique of Maxwell's statements. Two forces of eleadmotive induction. —
Here are Maxwell's statements, condensed and modifiémtin, but basically respected:

FIRST LAW. —An element of a three-dimensional conductor in which the current is
p and the magnetic induction is a is subject to a ponderomotive force that, whe
expressed per unit volume, is expressed by the same \efporad (**) as the
parallelogram that is constructed from the two vectors p and a.

SECOND LAW. —The induced electromotive force in a moving filamentary
conductor circuit is the derivative of the magnetic induction flux thadses the moving
circuit, with the sign changed).

In the first statement, Maxwell indeed understood ®arlow wheel: The
electromagnetic force is attached, not to the curreat to the conductor, in such a
fashion that it displaces the wheel, not the curreAs for the second statement, it is
exact for filamentary conductors, but defective, becausmnfuses two essentially-
distinct parts of the electromotive force, in suctvay that it will become false if one
applies it to the Barlow wheel. The first part of thduced electromotive force is due to
the motion of the conductolt:is the integral along the circuit of the veci{dx' a], which
represents the area of the parallelogram that is mmbstl from the velocityx' of the
conductor and the magnetic inductian The second part of the electromotive force is
due to the magnetic variations of the fielt:is the rate of variation, with the sign
changed, of the magnetic induction flux a that is enclosed by the civduith is
considered to be fixedThe sum of those two parts represents the inducettateutive
force in the circuit, in any case. It is not alwaygial to the derivative that enters into the
second statement above when the conductors are noefitarg. The study of the
Barlow wheel then leads us to the following three stetdgs, in which we agree to first
confine ourselves to the case of non-magnetic bodies. thab reason, instead of the
magnetic induction vecta, we write the magnetic foraa

87. Three laws of electric inertia:

FIRST LAW. —A non-magnetic conducting element in which the current is p and the
magnetic force is a is subject to an electromagnetic force thegpiesented by the
vector|[pa].

SECOND LAW. —A moving, non-magnetic conducting element whoseiglis x
and the magnetic field is a is the site of an etgobtive induction force that is
represented by the vectpx' a.

THIRD LAW. — The electromotive induction force in a closed canis the sum of
two terms, one of which is the integral of the @e¢tx' a] along the contour, and the

(Y MAXWELL, Traité d’Electricité nos.490and501 (French edition). Grassmann’s notation.
(*) MAXWELL, ibid., no.531



Chapter Il — Theory of electricity in moving bodies. 65

other of which is the derivative (with the sign changed) of the magnatiction flux a
that crosses the contour, which is supposed to be fixed.

Experiments with the Barlow wheel authorize us toesthbse laws only for non-
magnetic conductors. What will they become when ooesiders bodies that enjoy
(together or separately) properties that make then canducehagnetic, dielectric, or
electrolytic? It is due to Maxwell's divinations thame knows that in those bodies, the
magnetic induction vector must replace the magnetic fieddd and the total current
must replace the conducting currgnt From Maxwell, that is the change that one must
make to the statements in order to generalize thenms ithportant for experiments to
control the legitimacy of that extension of the lawat were established for the Barlow
wheel.

88. Experimental verifications:

1. Replace the Barlow wheel with a wheel of safhjrso the electromagnetic force
that is applied to the wheel will be increased due to rtiagnetic induction being
increased by the presence of iron. The electromatthection force that the wheel is the
site of will also be increased. That increase walirelate with the first one, by virtue of
the principle of energy, and conforming to HelmholtzZfcalation.

2. When the wheel is made of steel and magnetized a®maxis, we can suppress
the current or induction magnetic: The wheel will stilin, and its rotation will once
more produce electromotive induction forces along the o&dhe wheel.

3. Establish a magnetic field in the N-S directiomtigh a vertical jet of electrolytic
liquid and a socket for the circuiprise de circui} in the E-O direction. An electrical
current will traverse the circuit.

4. When the fluid jet is air, charges will distributertiselves on the two electrodes,
which are supposed to be isolated.

The second experiment is classical, namely, it istdugmpére, in which a vertical
magnet is embedded in a test tube containing mercury anduorit around its axis
such that one will arrive at a current at the uppereexity of the axis. It dispenses with
the rigor of the first experiment, which is hardly inubd The third one was successfully
realized by Bouty. The fourth one was realized in aiBlpndlot; he gave a negative
result. What | said about dielectrics leads one tctthat the forces |u[d and | k' a]
exist only in the conducting parts for those bodies thatf@und to be truly distributed
throughout them. Be that as it may, we can assuatethle expressions| [u g and
fJ[x a] are valid, in which the coefficiefits equal to 1 for conductors and electrolytes,
roughly zero for air, and has a value that musddiermined by experiments for the other
dielectrics.
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89. Conclusions— If the coefficientf has the value that | just said then the laws of
electric inertia are these:

1. An element in which the total currentusand the magnetic induction & is
subject to an electromagnetic force per unit volume #haepresented by the vector

fdual,

2. An element whose velocity ssand in which the induction ia is the site of an
electromotive induction force that is representgdhie vectorf [J[X a] .

3. The electromotive induction force in a closeshtour is the sum of two terms,
one of which is the integral of the preceding vealong the contour, and the other of
which is the derivative (with the sign changedjhaf magnetic induction flux that crosses
the contour, which is supposed to be fixed.

8 3. —Electromagnetism in moving bodies.

90. Introduction. — My analysis of the charging of a condensor bltaic current
(no.53) has led me to these two laws for bodies at rest:

FIRST LAW: The total current flux that crosses any closedauefis zero.
SECOND LAW:The total electromotive force in any closed coniswuzero.

| have deduced the equations of electromagnetishodies at rest. | would like to
extend those results to bodies in motion.

91. Extending the two fundamental laws to moving bodies: The first law is a
constraint that is analogous to the incompresgthaonstraint for liquids. Like the law
for liquids, it extends to moving surfaces. Thefate across which one measures the
flux can be either fixed or moving with the body.

As for the second law, it is the law of virtual rkofor displacements that are
compatible with the incompressibility constrainHHow must one apply it to moving
bodies? As one knows, one must take displacentbatsare compatible with the
constraints on the systemhich is fictitiously considered to be at ra@stits configuration
at the moment (*°). They are the electric displacements that omeirmagine along all
of the closed contours. Hence, the second laWwagtlies to alffixed closed contours
Only the expression for the work done by inert@iceés will be changed: For bodies at
rest, it will be the flux (across the fixed contpof a vector -a’, which is the rate of
variation of the magnetic induction, with the sigranged. For moving bodies, it results
from paragrapl2 that it will be the same flux, but increased bg thtegral of the vector
fJ[x a] along the contour.

(*%) Cf., footnote in no84, in response to Liénard.
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92. Equations of electromagnetism for moving bodies-= One obtains those
equations as one did for bodies at rest @®). They are, first of all for continuous
media:

d
1 —|u =0,
(1) ix
d d
2 —|U=a’'-|—fx a.
@) dx dx q

For the discontinuity surfaces, the normal compormd the current is continuous.
The tangential components of the electromotivedare-f [J X'a are continuous.

Equation (1) is that of incompressibility. Eqoati(2) expresses the principle of
virtual work for electric displacements that arenpatible with the incompressibility
constraint. In addition, one must write the equabf virtual work for displacements that
are compatible with the mechanical mobility of slthat comprise the system. In order
to do that, | shall call theis viva properly speakingl; and one of its purely-mechanical
mobility parameters; . The virtual workdg, will then be composed of two terms: The
work done by electric forces with a potentid| which is -dW/ da., and the work done
by other applied forces (the observer’s hand, kamgple), which | denote b§; . The

work done by inertial forces, which has a purelyeh@mnical origin, is- (d;j :3

when Lagrange’s formula is applicable. Finally #ectromagnetic forces that are due
to electric inertia per unit volume, namely]] [u &g , have the integral:

[f [E%u a} dr,
dg
which extends over the entire electromagnetic figdd their virtual work. The function
under thef sign is the product that one obtains by multipdythe constant in no. 88

times the volume of the parallelepiped that is tatsed from the three vectods/ da, ,
u, a. The equation of virtual work that corresporml$hie coordinate; will then be:

aw _
(3) Q- dql (Ej '[ f EE—U a} dr.

One must append the equations that are concertiedhe magnetic field (nd&9) to
equations (1), (2), (3). For continuous mediay téuee:

(4)

ia = 4770,
dx
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d
5 —a =0.
(5 ix

For the discontinuity surfaces, the tangential comepits ofa are continuous, and the
normal components @fare continuous.

If the bodies are not magnetic thewill be equal toa. Moreover, equations (1), (2),
(3), (4), and the conditions at the discontinuity swe$awill determine the electric motion
and the mechanical motion of the system, since thégedthe complete expression for
the general principle of virtual work.

93. Energy equation.— It is the equation of virtual work, in which one haglaeed
the virtual displacement with the actual displacem&w, the elementary displacement
is composed of the electric displacemaiqghat are produced in the current tubes and
the displacementdq, of the body. The first ones lead to the work thatdluated in no.
76. ltis:

Pdt-owW-dT [formula (4)],

in which, from now ong will denote the partial differential that is due toyodty andod;
will denote the partial differential that is duedq., sod =9 +09; .

One can add to that work the work that is done by theimertial force |{[X a] ; as
in no.75, one will find that:

zidtjf[x'adg o= dtjf[x ay o .

Upon adding that result to the preceding one, Il oltain the work done by both
applied and inertial forces in the form of:

(1) Pdt—aw—dT+dtjf[>(aq o

That is the work done by real electric displacetmelg . One must add the work
done by the displacemerds; of matter. The applied forces of mechanical arigive a

work d 7; that one will have to calculate in every case ynagithe principles of rational
mechanics. Il 77, there is good reason to distinguish the work dmnéorces that are
derived from a potential -dW; and the work done by other forc@y dt . The

electrostatic forces give the WOHQZ—W dq , which I shall denote by é; W.
G

| pass on to the inertial forces: They are thesarfeourely-mechanical origin, and are
given by —dT;, as one knows. Finally, the electromagnetic o work equal to:

Zdtjftﬁg—:lua}qdr =dt[ fixud o.
G
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The total resultant of the displacemeahs of matter is, in summary:
(2) Pdt—dV\/l—alw—dT1+dtjf[>(aq o

The energy equation is obtained by equating the gilthe works (1) and (2) to zero.
In addition, the last term in the expression (I)ceds the last term in the expression (2),
because the volumeg'[u g and K u g are equal and opposite. That is the same
reduction that we observed in the case of the Bavibeel by means of equations (I1) of
no.82 The energy equation is then:

Pdt+Pdt=dW+dW, +dT+dT; .

It signifies that the energy that is providedhe system is equal to the increase in its
total energy, which is composed of two potentiadérgres and two kinetic energies,
namely, the electric energy and the energy of guredchanical origin.

94. Conclusions:

1. | extended the fundamental laws of electromagmethat were established in
Chapter | for bodies at rest to moving bodies. Tir& one is the incompressibility
constraint, while the second one is the manifestatif the principle of virtual work in

the particular form that is appropriate to eledtyic

2. | gave the general equations of electromagnefis bodies in motion. They are
the equations of virtual work.

3. The energy equation is deduced from them eational mechanics.



GENERAL CONCLUSION

95. My conclusion is the idea of this book itself- A system that exhibits electrical
manifestations can be associated with a system wittiramts in rational mechanics. It
iS not a system with a finite number of degrees addoem. It is an indefinite medium
that is analogous to an incompressible fluid in which poruderaodies with the usual
constraints of rational mechanics are embedded.

There are two types of equations of constraint and emsadf virtual work that
relate to the motions of the matter, on the one hand,to the electricity, on the other.
The equations that relate to electricity result from fundamental laws, and Kirchhoff
stated a particular case of them, namely, the lainaafmpressibility and the equilibrium
of the electromotive forces in any closed contouthe Dther equations are the usual
equations of rational mechanics.

One knows that the theory of virtual work provides eyathe necessary and
sufficient equations for determining an arbitrary systera asction of time. One might
be tempted to conclude that the problem of electricityoised completely by the two
generalized Kirchhoff laws. Meanwhile, it is not, famtreasons that | have pointed out
and which result from our ignorance of the constitubdbmagnets, on the one hand (no.
42), and of dielectrics, on the other. Our ignorancena@inets prevents us from writing
the equations of virtual work that relate to the pardéicuturrents that constitute
magnetization, from Ampere’s ideas, and were adopte®diyau (no.39). We can
replace them with the largely defective equations of retization {).

As for dielectrics other than the vacuum, the phemamenf the dispersion of colors
reveals to us that they have a complex constitution4{2) whose electric displacement
involves not just one unknown vector — \ize displacement current p- at each point,
but also a second unknown, namely, to@duction current p What is the law that is
necessary for us to determine the second unknown? Wetdawve it. We only have to
replace it with the very inadequate theories and very mmpsults of the dispersion of
colors f).

A vast landscape remains open to experimental resaactiheories along the two
paths that | just indicated. In that research, itilddseem that it would be advantageous
to take the mechanical ideas that were presented ibabk as a guide. They might
possibly help one to find a more complete truth, like dmes that led Maxwell to the
partial truth for filamentary circuits and the ortbat have led me, | think, to a higher
truth for the totality of all electric phenomena.

() MAXWELL, Traité d’Electricité Part 3, Chap. IV.
() E. CARVALLO, “Rapport sur les théories et formulesdispersion,” presented to the Congrés de
Physique in 1900, t. II, pp. 175.



