ON THE EQUILIBRIUM

OF

ELASTIC SYSTEMS

MEMOIR
BY

CASTIGLIANNO ALBERTO

ENGINEER OF THE RAILWAYS
OF HIGH ITALY

Translated by D. H. Delphenich

ROYAL PRINTSHOP IN TURIN
OF G. B. PARAVIA, AND CO.

1875



INTRODUCTION

In the year 1857, General Luigi Federico MENABREA readoaper to the
Accademia delle Scienze di Torino, in which he propcmedl sought to prove a new
theorem that he called thpginciple of elasticityor minimum work according to which,
whenever an elastic system is deformed by the actiemtefnal forces, the final tensions
that exist in the system will be the ones that readeinimum for the expression for the
molecular work that is done during the deformation. Tdlowing year, the Paris
Academy communicated his research on that subject.

However, the proof that General MENABREA gave did se#m acceptable, and he
published another paper in the year 1867 in which, after haxmbieed some particular
examples in which his theorem led to exact resultthase cases, he proposed a new
general proof. Nonetheless, it still did not seenbéoany more rigorous than the first
one, because despite the great beauty and obvious ufilityeaheorem of minimum
work, no one that | know of was able to attend theedaaegle Ingegnieri ed industriali
do Torino in the year 1872 when the engineer Giovanni SATHEad a paper in which
he proved that theorem and applied it to the examptheoktability of the ribs in the
great canopy of the seaport of Arezzo. However, laiaged to say anything about that
paper, since it contained only a numerical example, bunati, in fact, go on to prove the
theorem.

Early in the year 1873, in which | studied the equilibriumelafstic systems, after
having thought of a method that would certainly have to leakaot results, | proposed
to compare it with the theorem of minimum work, thimkithat if it were false then |
could easily recognize that with some examples, anidwere true then I might have
found in that comparison the way to prove it in a gdmaemner.

While pursuing that idea, | seemed to find myself in thedacase, and | published
the result of my research in my Laurea dissertation.

| must now add, out of impartiality, that it was &@¢neral MENABREA that was the
first to propose the theorem of minimum work (or aiste he did not found the program)
by mentioning that the theorem was preceded by some analdgmusms. Already in
1827, Captain VENE had proposeginciple according to which, whea rigid body
(i.e., an inelastic one) is supported by more than twotgoin a line or more than three
points in a plane, the pressure of the body on thedmplane is distributed over the
various support points in such a manner as to render theo$uhe squares of the
pressures a minimum. If one says “an elastic bodstead of “a rigid one,” then
VENE'’s principle will be true sometimes and can be régdras a special case of
MENABREA's.

In the year 1828, A. COURNOT published a paper in the Bodeti matematiche di
FERUSSAC in which he extended VENE’s principle and sougptdee it, although, to
be sure, his proof was nothing but a vicious cycle. Sawe twanted to see the theorem
of minimum work in full generality in that paper by COURN. However, one should
be warned that COURNOT spoke first of all of the wagetermining the pressures in a
rigid body that is supported by another one at several paimiisthen considered the case
of two absolutely-rigid bodies that are coupled kbsolutely-rigid rods; finally, he
extended his theorem to the case aba bodythat is supported bglastic supports.in
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the last case, COURNOT’s theorem was true and wasaiced within that of
MENABREA. However, COURNOT did not go any further; ,i.ee did not attempt to
state a theorem of general applicability to all elasystems.

In fact, almost at the end of his paper, he spoke ahtpertance of knowing how the
pressure of a body is distributed on its supports, whidxpeessed as follows:

“The knowledge of the manner by which the pressures #extigely and
individually distributed is then indispensible, amithough our formulas give it only for
the abstract case of absolute rigidityjs clear that the solution of that abstract cagke
shed light upon the solutions of the various cases ineattrs in that way that all of the
theories of pure mathematics are applicable to the rafgqatactice.”

After all, it does not matter who was the first iadfthe theorem of minimum work.
In this, as in all of the other discoveries, one prdsd®/ degrees, and there is merit to all
that have contributed. Therefore, VENE and COURNOfd also PAGANI and
MOSSOTTI, but most of all MENABREA, deserve the ctefdr having intuited the
theorem, and although | will be able to give a rigorous fpaoal to show its utility, |
considered myself to have been justly compensated by witeiphrt of the credit that
intelligent people believe that | deserve.

Now let me tell you why | wrote this: Since | published lgsdrtation, | have been
meditating upon it (when that was possible), and althoogihquest has been diverted for
whole months by the many occupations of my career anda otiseellaneous things, |
also think that |1 have found some new proofs that arplesmor more rigorous than the
one that | gave originally. In addition, in order t@ke the contribution that can be
inferred from the theorem of minimum work more obvitaishe engineers, | shall apply
it to the example of the stability of the ribs of t@opy in the seaport of Bra. | have not
reproduced any of the important applications that made inissgmation, in order to not
overextend things.

I do not know if this paper contains anything good, but negtass, | hope that | will
be excused for having published it, because with my resebaozigh it might be a trifle,
| might as well have paved the way for others oretmave all doubt in the truth of the
theorem of minimum work and to infer consequences tieayet unknown, or to prove
its falsity, which would still be a truth that is acagdrby science.




EQUILIBRIUM
OF
ELASTIC SYSTEMS

1. — Consider a system that is composed of elastic rotisategoined at articulated
joints and subjected to forces that are applied tovémtices. Refer them to three
orthogonal axes whose origin is at one vertex, wi&x-axis passes through another
vertex and they-plane passes through a third vertex that is not onahme dine as the
first two. Suppose that the three axes move alory thé three aforementioned vertices
when the system is deformed. In that way, if onesictans only the deformation of the
system and not its absolute motion in space then itoeikhs if the axes were immobile,
with the vertex that is at their origin fixed, and angththat is found along theaxis can
move only along that axis, while anything that is inxjaplane cannot leave that plane.

Call an arbitrary vertex of the systafy and letx,, Yy, 7, be its coordinates before the
deformation, whileX,, Y,, Z, are the components of the applied force parallel¢caies.
Let &, 7 ¢p be the increments in its coordinates due to the defwm or its
displacements parallel to the axes. Furthermore/JeV, the rod that joins the two
verticesV,, Vg, let Qpq be the area of its section, Igibe its length, leEy, be the elastic
coefficient of the substance that it is composed aifA}, be its elongation due to the
deformation, and I€T,q be its final tension. Furthermore, @&y, S, Jq, aNdQ,,, B,y

V. D€ the angles that it makes with the axes beforetiedthe deformation.

Takep = O for the vertex that is at the origin and is regaral fixed, take = 1 for
the one that is on theaxis, and takg = 2 for the one that is contained in theplane;
one will have:

$%=0,70=0,{%=0,6=0,m=0,4=0. 1)

In addition, set:

qu Q Pg

= &q, (2)
pq
in general, so one will have:

Toq = &g Apq »

lpg = \/(Xq_xp)2+(yq_ v’ +(z,- 2)%,

and

|pq+}|pq:\/(Xq—xp+fq—5p)2+(yq— Yotn,—n )’ +(z- z+{ ~ ).

If the differencesly — &, g — o, {q — {p are very small in comparison to the other
onesxXq — Xp, Yq — Yp, Zg — Z then one can develofq in a convergent series in ascending
powers of those small differences, which will give us:
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| (& -E)+ . Yo oy —py+ | 9 %7.-0) + B

pq pq pq

qu -

in which &, comprises all of the terms in the development thatato powers o, - &,
. that are higher than the first, such that its ratith w,, tends to zero when the
differencesé; — &, ... tends to zero.
Now, one has:

X =X _

Yo— ¥ -
=C0SApq, ——L=cosBy, e COSMq,
pq IPq IPq

so:
Apq = (&g = &p) COSApq + (17q = 7p) COSLoq + ({q = &p) COSJpq - (3)

The anglesa,,, B,,, V,, that the rod/, V; make with the axes after the deformation are
given by the equations:

XQX+EE
|+

pq Pq
or, if one develops that in a convergent series thairdered in positive, increasing

powers oféq — &, g — o, {g— &p:

Cos 0’ etc.,

cosa, =%"% +af) = cosapg +afy
pq

cos = 20 4 fY) = cosppq+a)

| pq pg ’
pq

i

pq

_ 7) — z)
cosy,,= +af? = cosppg +ak

pq ’

in which o, o

pq pq
when the difference&; — & , 79 — v, {4 — {p tend to zero.

w;f]) are functions that contain no constant terms and te zero

2. — After the deformation, the system will be in equililbn, and it is clear that the
tensions in all of the rods that are concurrent tovéineexV, must equilibrate the external
forceX,, Yp, Zp ; one will then have the equations:

X +ZT cosa’,,
Yp+z quOS,B pa — 0, (4)
Zp+szqCOSqu: 0,
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in which the sum that is indicated by the symbolrelates to all values ad that
correspond to the vertices that are joined to the x&fféy rods.

One will have three equations that are analogous tpréeeding ones for each vertex
of the system except for the three vertiggsVi, V> . There is no equation fo , which
can be regarded as fixed. One has only one of thei; fowhich cannot leave the
axis, and one will have two of them g5, which can move only in thex~plane. It will
then follow that if one has as many equations as ter@isplacement&,, 77p, ¢, &,

..., then the latter can be determined, and thereforéetisgons in all of the rods after the
deformation, as well.

However, equations (4) and their analogues are very amatgd, and solving them
rigorously is practically impossible. On the contrattye solution will become very
simple if one is content with approximate results,dpproximate in such a way that one
can generally regard them as exact.

In fact, one has:

Tpq COSQ,
= g,[(&,=&)cosa .+ @ ,—n ,)coB + { .~ )coy +6  1(cos +af,

[(5(1 —EP)COSO’pq+ (,7q_’7 p)COSqu+ 4 q_Z p)C0$( nq ]cos pq
=€p) T [(5q_5p)cosapq+ (’711_’7 p)COSG pat 4 q_Z p)C0$( pq@rfxgq
+ epq Cosapq+(‘fr;2 qu,

in whose right-hand side, one sees that of the tewms that are contained in the outer
brackets, the first one has degree one with respetie differencegq — &, 74 — 7, {4
- {» , while the other three contain only powers of thalfferences that have degree
greater than one. Therefore, the ratio of the sfitine last three terms to the first one
will tend to zero when those differences tend t@ze

Hence, if they are very small, as they alwaysimmgractice, then the last three terms
can be neglected in comparison to the first, windhgive:

Tpq COS A, = &q[(Sq = &p) COSApq + (17q = /7p) COSBoq + ({q = ¢p) COSJpq| COS Gpq-
However, one will see in that way that one can sspphat:
Tpq = &q[(&g = &) COSApq + (17g = M) COSLGog + ({q— ¢p) COShl, COS a’pq: COSOpqy; (5)

i.e., in the expression for the tensions, one takdg the terms of first degree in the
displacements and the directions of the rods amsidered to be unvarying under the
deformation.

One will also have that if one wishes to expréssténsions by formulas (5) then one
will necessarily need to suppose tleg}, = apq, B,,= B, €tc.; i.e., one must suppose

that the directions of the rods are unvarying, beeaf one accepts that formula, and one
would still like to take into account the changedmection of the rods, which are
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meaningless in it, then in the expressionTgycosa,,, one must take into account the

terms:

pq’
&a [(&a = &) COSApq + (17q = 1) COSPq + ({5 — &) COSYpd &y,

which translate into:
&q bhq COSApq,

which has the same order of magnitude.
Therefore, in order to determine, first of all, détdisplacements in the rods of the
system and then the final tensions in them, one wililbe equations:

X+ T, cosay,

X, +D T, cosa2q = O, Y,+> T, cof,,= O,
.................................................................. 6)
X, +> T, cosa,, Yoqt D Tpq €OB .= O,
qu+szqcosypq: O’

in place of equations (4) and their analogues.

3. Theorem of minimum work. — The molecular work that is produced by the
deformation of the rod, V, can be expressed by the formula:

1Ty
2¢&, ’

so the molecular work that is done by the deformatibralbof the system can be
expressed by the formula:
1w To

EZS—ZZ. (7

| shall now say that:

The tensions in the rods of the system after the deformation are théhahasatisfy
equation(6) and render the expression for the molecular work of the system aumnim

In order to comprehend the significance of that theprebserve that equations (6)
are 31— 6 in number, if one calls the number of vertinesTherefore, if the number of
rods is 3 — 6 (one can never have less if the system, which wsra$ to be rigid, is to
have an unvarying form) then equations (6) will serve terdene the tensions of all of
the rodsindependently of the deformationgiowever, if the number of rods is greater
than 3 — 6, as is generally the case, then the number ofowiknensions will exceed



Castigliano — On the equilibrium of elastic bodies. 7

the number of equations (6), which will not suffice toedetine the tensions without first
expression them as functions of the displacementshef vertices. Lacking that,
equations (6) can be satisfied by an infinitude of systinvalues of the tensions, and
each of them will correspond to a different value efélpression:

EZT_qu
2%%,,

Now, the stated theorem consists of saying that dfhalsystems of tensions, the one that
will exist effectively after the deformation of theds will be the one that gives a
minimum to the expression (7).

In fact, in order to find the values of the tensidpsthat satisfy that condition, one
has the equation:

Z qu dTPq =0 (8)

Spq

in which the differential§iTpq are coupled with each other by the equations:

> dT,, cosa,,
> dT,, cosa2q = O, > dT,, coB,,= 0,
........................................................... (9)

which are obtained by differentiating (6).

Multiply each of equations (9) by a constant coefficiamd generally lef,, By, Cp,
denote the coefficients by which the three equations rilate to the verteX/, are
multiplied, and then sum the left-hand sides of equat(9), multiplied by the constant
coefficients in the left-hand side of equation (8), and egtla coefficients of all of the
differentials of the tensions to zero. One will tlitain as many equations as tensions.
For example, equate the coefficientsTgfto zero and obtain the equation:

T
g_ = (Aq — A) COSOpq + By — B) cosBoq+ (Cq— G) COSKyq

which will be no different fror{b) if one changes the symbdss, { into the symbols A,
B, C.

If one now combines the equations thus-obtained with emsa{6) then one will
first obtain the values of the constaAts By, C,, ..., and then those of the tensidig.
However, since the preceding equation and its analogudsewib different from (5) and
its analogues when one changes the symbplg, ¢ into the symbolsA, B, C it is
obvious that one will find the same values for the amistd,, By, Cp, etc., that were
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obtained for the displacemen§s 77,, {,, ..., and therefore the values of the tensions that
one obtains will be effectively the ones that eaiter the deformation.

One then proves the theorem of minimum work focaléited systems, which echoes
the one that | stated in the text, i.e., that:

The constants by which one multiplies equatiq® are nothing but the
displacements of the vertices parallel to the axes.

4. Expression for the molecular work done on an articulate system.— Recall
formula (5), which can be put into the form:

T
M+ & COSQpq + 1Jp COS Lo + {p COS Jpg + &q COSApq + 1Jq COSLHhgq + {q COSJpg = O.
pPq

If one multiplies this byl,q then one will get:

2
—2 + & Tpq COSApg + 7 Tpq COS Lo + ¢p Tpq COS Jpq
pq
+ &g Tpq COSOpq + 1]g Tpq COSSpg + g Tpq COS Jpq = 0.

If one applies that equation to all of the rods ofdis&tem, sums the corresponding sides
of the equations thus-obtained, and collects all of #greng that contain the same
displacement then one will get:

-I-Z
ﬂ+51ZT1 cosm +<‘22Tz cosa: +/722 Toq COSLBog + ...
£ q q q q q q

pq

.+ Z Tpq COSApq + M Z Tpq COSOpq + ¢ Z Tpq COSpq

Now, from equations (6), one has:
2. Tiq COSaG = — X1, D T2q COSOq =~ Xz, D Taq COSQsq = — X,
S Tcosam=-Yo: T Twcosdmz-Yp, 3 TagcoSapa=-Zp.

so the preceding equation will become:

2

-
g—pq =X+ X &+ X3S+ X Yot L Gt

pq

or, more briefly:
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T2
Z‘g—pq: 2. Xo S+ Yo 170 + Zp &)

pq

If R, is the resultant of the three forc¥s, Y, , Z,, andr, is the projection of the
displacement of the vertés onto the direction of the ford&, then one will have:

XpSp+ Yoo+ 2Zp o =Rplp,
o)

T2
Zg_pq :ZRprp-
pq

The left-hand side of that equation expresses twicembkcular work that is
provided by the deformation of the system, so that work alao be expres§ed as a
function of the external force and the displacemehtke vertices by the formula){

%ZRprp-

5. — I shall now pass on to an examination of the casehioh a system is found to
already be in equilibrium under the action of extefoades, and one applies a new force
whose effect one wishes to study. That is preciselyribie common case in nature.

One can also have that the various parts of a syateralready found to be tensed or
compressed before the application of the externaéfo&uch will be the case, e.g., in an
articulated quadrilateral that is composed of six rodsatetrranged along the sides and
diagonals when one of the rods does not have preciselgrigth in its natural state that
the natural length of the other five require. Nows ijust that case that is also included
in the one that shall | treat.

Perhaps the present section will seem pointless e¢oylevdy. However, | do not
know how to suppress it, since it seems that it settvesake my proof more complete
and rigorous.

Let X7, Y7, Z) be the components parallel to the axes of the fdwaeis initially

applied to the verteX, . LetX,, Yp, Z, be the components of the force that is applied to
that same vertex afterwards, whig, 7,, {, are its displacements that are produced by
the application of the new force to the system, ands, ) are the angles that the rog
Vy; makes with the axes before the new deformati@fl.is the tension in the rod, V,

before the application of the foreg, Yy, Z,, etc., andlq is the increment in that tension
that is produced by that force.

Since the system is equilibrium before the appbeatf the forcex,, Y,, Z,, etc.,
and returns to it afterwards, one will have two groupsjab&ons:

() It seems to me that the argument by which | have médtaihat formula leaves nothing to be desired
in terms of simplicity or rigor.
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X} +ZT°cosalq =0,

X3+ TaCOSa,y, Yo+ T coB,, = 0,
X?° +ZTO cosa Yo+ D T, coB = 0,

XP+ X+ (Tg + T, )cosa,, = 0,
X3+ X, + D (Ty + Tp,) €08f3,, = O,
Y, +Y, +> (Tp+ T,)cosy,, = 0,

xg+ XPQ+Z(TF?Q+TPQ)COSG Pq: O’
Y+ Y, +> (T, + T)cosy .= 0,
Z°+Z +> (T, +T,)cosy, = 0,

and if the first of them is subtracted from the secomel then one will get another one:

X, +> T, cosa,,
X, +> T, cosa2q 0, Y,+> T, cof, = O,

(10)

(11)

(12)

10

Now, the molecular work that is done on the ¥pd/q while its tension passes from

T, to T + Tpqis expressed by:

0 2 0y2
(T +qu) _(qu)
2¢,,

T
- (TF?q +%qu)£—pq,
pPq

so the molecular work done on the entire systerbeil

T
Z(Tr?q +%qu)£_pq '
pq
One will then have:
T
g—pq = (p — &q) COSOpq + (1o — 11q) COSLpq + ({p — {g) COSJpq »
pq

or
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T
g—pq =— & COSApgq— 1o COSLBog— p COS Jpq— &4 COS pg— /Jq COSBog— {q COS g -
pa

Multiply that equation byT,fq+%qu and take the sum of all the equations that one
obtains from all of the rods of the system and get:

T
Z (Tl?q +%TPQ)£_pq =
pq

_5pZ(TO + ;qu)cosa pq_’7 pZ(T?Jq+ 3T <) cog

3 (12 4T, Joosa

or, if one eliminates the sum that is contained inghke parentheses by means of
equations (10) and (12):

2

(Mo i) =R (xee X, )+ (Br i +(Be2 )¢ ] @

pq

That is therefore the expression for the moleculark done as a function of the
external force.

If the external forcesX}, Y7, Z> are zero then the expression for the molecular force
will reduce to:

D (T *3T, );‘* = D (XE+Yy1,+ 24 ). (14)

pq

no matter what the initial tensioﬂ':;‘j in the rods are.

6. — If one supposes that the foregs Yy, Z, in formula (13) are infinitely small, so
the incrementd,q in the tensions in the rods will be, as well, and tispldcements,,
o, {p, €tc., of the vertices will be infinitely small, éuif one changeX,, Yy, Zp, ..., &,
Mo pr -y Tpg, - by dX0, dY], dZ3, ..., d&), dng, dZ7, ..., dT,, ... then suppresses

pg’ -
the index O everywhere, for simplicity, and neglescetsond-order infinitesimals then one
will get the formula:

2 Ton Ton 2 (X 0+ Yo by Z, )

q

for the increment of the molecular work that is produbg the given increments in the
external forces.
Now, if one differentiates formula (14) then theiednd side will give:
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0
(Toq + Toq) ATy

qu

2

and sinceT, + T expresses the tension in the MV, after the external forc,, Y,,
Z,, ... is applied to the system when the tension in thequling formula is represented in
it by Tpq, in order to keep the same symbols in the formulascanevriteT,q, instead of
T,fq +T,,- Hence, after differentiating equation (14), one witt ge

T,dT
D= YU X e+ Y dy + Z,d ) 45D (6, Ak A+, d).

Spq

i i o dqu it wi
If one equates the two expressions that are obtalmeEf-e— then it will result

pPq
that:

D2 (X, dE + Y, dy + Zd ) = ) (E,dX, +p,dY,+ 7 dZ), (15)
so the increment in the molecular work that is produmethe given incrementbX,, dY,,
dz, ... in the external forces can be expressed by eftigeteft-hand side of equation
(15) or the right-hand side.

If the external forces have constant directigmgich is the only case that | find

important enough to consider) thenmgtdenote the resultant of the foroés Y,, Z,, and
let Ay, L4, Vp be the angles that they make with the axes, andvdineave:

X, dé +Y, 7 + Z, &, =Ry (d$p [EosA, + drgp [EOS L4 + d [LOoS L),

or, if one letsdr, denote the projection of the elementary displaceraétite vertexv,
onto the direction of the forde, :

Xpdep + Y, 7, + Z,d7 =Ry drp .
However, if one further has:
dX =dR, [kosA,, dY,=dR,[kosi,, dZ,=dR,Tosy,
then:

$,dX +n,dY,+{  dZ=dR, 0 coSAp + 775 COSLp + { COSVp) =T ARy,

and since equation (15) can also be written:

YR dr=2r,dR,. (16)
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However, one should be cautioned that one that equ@t®rwill always be true, while
(16) is true only when the direction of the externaldsris constant.

Observation. — When the formula:

T

— = (& — &) coSapg + (1o — 17g) 0SS+ (& — {a) COS g

Spq

is applied to all of the rods of the system and combwmigldl equations (12) in the same
way as in the no4, that will lead to the formula:

-I-z
32BN Yt 24 )

pq

so from (13), one will have:

T°T
2B X0, 2 ).

pq

T2 _
Now, 1) — expresses the molecular work that is done on the sybtemnly the
£
pq

incrementsTyq in the tensions of the rods, as if the initial tensi were zero, and
0

To T, : -
D - expresses the molecular work that is done on the mybte the original
pq
tensionsT, due to the elongations of the rods by the increm@gntén their tensions.

Hence, the right-hand sides of the two preceding eq&tioll give those two works as
functions of the external forces and the displacesefithe vertices.

One will see easily from the preceding that the theosé& minimum work will also
be true for an articulated system in which the iniggisions are not zero, or one that is
already found in equilibrium under the action of arbytréorces when one applies the
forces whose effect one wishes to study and then takesxpression for the molecular
work to be the one that is produced by the latter foasasthe former ones did not exist,
and the initial tensions in the rods were zero.

7. Principal property of the theorem of minimum work. — In an arbitrary
articulated system, imagine a surfé&that encloses a certain number of vertices within

it. Some rods will be cut by the surfaBgi.e., connect the verticag, V', ... that are
inside that surface to some vertidés V,, ... that are external to it and represent their
tensions byl,s, T, etc.

rs?
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The molecular work that is produced by the deformatioth@fsystem is expressed
2

T . . :
by the formulaézﬂ, which can be put into the form+ L', if one letsL denote the
pq
sum of all the terms that relate to the rods thatirgide the surfacg andL’ is the sum
of all the ones that relate to the rods outside tiniaseS or cut it.
If one equates the molecular work that is done oisysem to zero then one will get:

dL+dL =0.

Now, differentiate equations (6) as in n8, multiply each of them by an
undetermined constant, and sum the products with the pngceduation. One can
divide those equations into two groups, one of which ispos®ad of the equations of
equilibrium that relate to the vertices that arecethinside the surfac® and the other
one relates to the vertices that are placed outsitie. sim of the terms that are provided
by the first group is represented by:

dM + 2 (Ar cosas + By cosfs + G cos i) dTis

which thus ignores all of the terms that contain tdesions in the rods that cut the
surfaceS. The sum of the terms that are provided by the segooa is represented by
dM’ One then obtains the equation:

dL+dL +dM+dM’+ 2 (Ar cosas + B cosfs + C; cosis) dTis = 0.

In order to find the tensions in all of the rods af Hystem, one needs to equate the
coefficients of the differentials of all the tensiothet are contained in the preceding
equation to zero and combine the equation thus-obtained hethot equilibrium at all
vertices. Now, it is easy to see that the tedingdiM contain only the tensions in the rods
that are enclosed by the surfé&and can contain no other ones, and that the othes term
cannot contain any of those tensions. Thereforeedjo@ation that one finds immediately
splits into two:

dL+dM =0,

dL' +dM’+X (Ar cosas + B cosfBs + C; cosys) dTis = 0.

The first one is precisely the one that would be obthif one considered the system
that is contained inside the surfé&&éo be a free system and regarded the tensions in the
rods that cut the surfa&as external forces. Hence, if one equates the ceeitfs of all
the differentials that are contained in the equatdins dM = 0 to zero and combines the
equations thus-obtained with those of equilibrium at falhe vertices that are contained
inside the surfac& then it will be clear that one has obtained the vabidhe constants
A, B, C;, and the tensions in all of the rods that are coathinside the surfacB as
functions of the tensions in the rods that do noitcut

However, it will result from no3 that if the three verticegy, Vi, V2 — the first of
which is regarded as fixed and placed at the originseélsend of which is constrained to
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remain on thex-axis, and the third of which must remain in theplane — are three
vertices that are contained inside the surfateen the values of the constaAsB,, C,
will be nothing but the displacements of the veNgxyarallel to the axes. Therefore, if
one lets; denote the projection of the displacement of théexey, onto the direction of
the rodV, Vs then one will have:

tr = A cosars + B, cosfs + C; coSys
so the second of the equations above will become:
dL' +dM’+ X t, dT,s = 0, (a7)

and since it results from n@.that the direction of the rod must be regarded as aoinst
during the deformation, as was proved in @oit will follow that the sum of the, dTs
will be nothing but the differential of the work th& done on the system that is
contained inside the surfa&dy the tensions in the rods that cut it. Hencesthme:

dL' +> t, dT;s

will express the differential of the molecular wdhat is done on the whole system as a
function of the tensions in the rods that are extemene surfacé or cut it.

Therefore, equation (17) is the same as the one thaklvbe obtained if one had
expressed the idea that the molecular work that is donéhe whole system, when
expressed as a function of only the rods that arerettés the surfac& or cut it, is a
minimum and take into account the equations of equilbrat the vertices that are
external to the surfac®

Since, on the other hand, we know that when we edqoaero the coefficients of all
the differentials that are contained in equation (17) andbine the equations that are
then obtained with those of equilibrium at the vediteat are external to the surfége
we will obtain the tensions in all of the rods thed external to that surface and cut it, we
conclude that:

If an articulated system is deformed by given forces and one exptiesseslecular
work that is done by one part that is contained inside a certain surfaseaSunction of
the tensions in the rods that connect that part with the remaining oneotieemill
obtain the tensions in those rods and the ones that are external suttaee S by
expressing that the molecular work that is done on the whole sygemsinimum,
taking into account the equations of equilibrium that relate to all of thigcesrthat are
external to the surface S.

8. Displacements of the vertices as functions of the erbal forces.— We have
seen that the molecular work that is done by the defbom of a system can be
expressed by:

T2 (Ko ot Yo 7o+ 25 &),
and its differential by:
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Y (& A% +175 Ay + & dZ).

Now, when we have found the tensions in all of the e=d&inctions of the external
forces, we can easily obtain the molecular work danalbof the system as a function of
those forces, as well. If we call that workthen its differential with respect to the
variations of the external forces will be:

5 L + 9t gy gz |
ax, Pldy, ? dz

so we will have:

dL dL dL
2 (G dXp +77p dYp + G dZ) = z{deXp v +d_Zp dej,
p p

and since that equation must be true for any incrente@tslY,, dz, ..., it will generally
follow that:

dL _ dL _ dL _

P T g

p p p

Let R, be the resultant of the forc&sg, Y,, Z,, and leta, B, y be the angles that an
arbitrary line makes with those axes. If one Rtdenote the projection of the forég
onto the line &, 5, )) then one will have:

P =X, cosa +Y, cosf+Z, cosy.

Now, since the forc,, Yy, Z, is equal taR,, multiplied by the cosines of the angles that
it makes with the axes, we see that the wodan be expressed as a function of the single
external forceR,, and therefore also as a function of only its pragestP. Suppose that

it is expressed in such a way that one obtains:

dL _ dL dP _dL dL _dL dL _dL
— = _—_—_— =—"¢c0sq, —=—co0spf3 ———=—=COSy
dX, dPdx, dpP dy, dP dz, dP

and if one sums those equations, after having multipliechthy cosa, cosg, cosy in
succession, it will result that:

dL dL dL dL
——C0Sa +——cosf+—— cosy=—,
dX, dy, dz, dP
or

% = ¢ cosa + 1), cosf+ {, cosy.
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Let g, denote the projection of the displacement of the xérgeonto the directior,
so one will have:
Op = & cosa + 1, cosf+ {, cosy,
so we will further have:
ap *
That is:

If one differentiates the molecular work done on an articulated reysthen it is
expressed as a function of the forces that are applied to itses&eith respect to the
force that is applied at one vertex, projected onto a given direction,ttieederivative
that one will obtain will express the projection of the displacementhef vertex
considered onto the given direction.

It will then follow that the derivative of the exgaon for the molecular work with
respect to the resultaf, is the projection of the displacement of the vemeko the
directionRy.

Do not forget that all of this will be true only if thdirections of the forces are
constants, since otherwise the anglgs/f, y that the forceR, makes with those axes
will be functions of that force, and when one takes dlerivatives, one will get other
terms from the ones that were written down.

9. Articulated systems that contain fixed points.— Suppose that some of the
vertices in an articulated system are fixed. Vebe one of them: If one letsX:, -,

-Z, be the components parallel to the pressure that thexvexerts upon a point of the

constraint then it will be clear that one can consitle vertexV, to be free and subjected
to forcesX,, Y;, Z that are parallel to the axes. Now, suppose thatasebtained the
expression for the molecular work that is done on ys&es as a function of the external
forces, the reaction%,, Y, Z, etc., of the fixed points, and the tensions in any rad, b
none of the ones that are concurrent at the fixedtpoiRepresent the expression for the
molecular work done on all of the systemm{X;, Y;, Z, ..., Tpq, ...).

| say that the values of the reactiofisY;, Z,, ..., and of the unknown tensioiig,
are the ones that will give a minimum to the moleculark, if one takes into account the
condition equations between the tensidgs.

In fact, if one equates the differential of the noalar force to zero then one will get:

dL dL dL dL
ax + dy + dZ + ... +——dTy,;=0.
ax. % ay 9" dz, “ ar, ™

r r pq

Now, since none of the tensioffig, belong to the rods that are concurrent at the fixed
points, it will be clear that the reactioKs etc., will not enter into any of the condition
equations, so the preceding equation will split into thgsat@®ns:
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9P 9Flo 9P g et > 9 g1 =0,
dX, dy, dz, dT

pq

If one combines the latter in the usual way with thedatons equations then one will
obviously get the same equations as if the foXgesr;, Z: , ... were known; i.e., one can
determine all of the unknown tensiofig, as functions of the unknown reactions at the
fixed points. It is then necessary to augment those eqsatiith ones that express the
idea that the displacements of the fixed vertices are. zNow, according to the theorem
that was stated in nd.Q, the functiondF / dX , dF / dY; , dF / dZ , etc., express the
displacements of the vert®&k parallel to the axes. Therefore, if one equates tloezero
then one will have expressed precisely the notionthgavertexV; is fixed.

One can arrive at this result more directly by imagy that each fixed vertex is
detained by three perfectly-rigid rods that are paralléhé axes. In fact, if one imagines
a surfaceS that cuts all of those rigid rods and in such a way itheontains all of that
part of the system in which one expresses the workrasidms of the external forces and
tensions in the other rods (whether compressed or rd) if one represents, as we just
did, the molecular work in the entire system by:

F (X0 Yo Zo oo Tog -2)

then it will be clear that the values of the unknownslgding the ones in the added rigid
rods) can be obtained by rendering a minimum to thetibmdé=, while taking into
account the condition equations. Now, since one lm&amdition equations at the
verticesV, besides the one that was proved in hoone will see that one first has the
equations:

—=0, —=0, —=0, etc.,

and then, the equation:

which must be combined with the condition equations.

One should note that the three orthogonal rods dhatsubstituted for each fixed
vertex are supposed to be rigid, since the molecular wiirke zero then, and therefore
the molecular work that is done on the system willbwaltered. Nevertheless, one will
obtain the same result by supposing that one substitutes orthogonal elastic rods at
each fixed vertex and then reduces their elasticity inttefy.

10. Utility of the theorem of minimum work. — In practice, it almost never happens
that one employs simply-articulated elastic systeimss, systems that are composed of
nothing but elastic rods that are coupled at nodes. Ratheris continually employing
systems that one calimixed which are composed of beams that are reinforced by tie-
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rods or crossbars; i.e., of elastic rods that areledup junction points on the beams at
various points along their length and between them.

Therefore, in order for a theorem that concernstielaystems to have any practical
utility, it must be applicable tanixed systems. The theorem of minimum work has
precisely that character, and it is for just that oeafat | have adopted it, when | could,
to show its accuracy and utility.

However, since the property of that theorem thattes|to simply-articulated systems
is also maintained for mixed ones, as will be showntshd shall now speak of some
advantages that it presents in other methods for ctfgylarticulated systems.

It is initially clear that it is permissible to det@ne the tensions in all of the rods of
the system with any method that serves to find thanmim of a function of several
variables when one is given some condition equatietwden those variables.

In addition, from what was proved in ng. it will result that if one obtains, in any
manner, the expression for the molecular work thebrse on an articulated system as a
function of the tensions in only some of the rods tloaarise it then one will obtain the
values of those tensions by expressing the notion thahdlecular work that is done on
the system is a minimum, if one takes into accouatcthndition equations between the
unknowns.

Finally, if one has expressed the molecular work iaréinulated system by means of
the tensions in some of the rods, and if those teasian be expressed as functions of the
other quantitiesn, ny, ... then it will be clear that the molecular workttisadone on the
system can also be expressed as a function ohthey, ..., and the condition equations
between the unknown tensions can be converted into otiesrin the quantitiasy, my,
etc., or better yet, the valuesrmof, m,, ... that are obtained from the condition that the
molecular work that is done on the system will be aimum when it is expressed in
terms of them, if one takes into account the conaligiquations that constrain them. That
last observation has great importance.

11. Observations in regard to the theorem of minimum work— There are some
cases in which one can doubt that the theorem of minimark is applicable. 1 will
choose one of them, and the argument that one makie<ém also serve as norm for the
other ones.

Let a body be perfectly rigid, and apply elastic radg in such a way they define a
system that is arbitrary, except that it has an unmgryiorm, apart from small
deformations that are due to the elasticity of the axes.

It is clear that it would not change the conditiomstioe system if one replaces the
rigid rods that connected the points of the rigid badih elastic rods in all possible
ways. Now, imagine a surfa@that encloses all of the rigid rods, and cuts theielast
rods that connect with them.

Next, consider another system that does not diffemfthe one that was just
considered, except for the fact that one substituteti@leods for the rigid ones, and
supposes that the sum of the molecular works that ane dao those rods that are
contained inside the surfaBds expressed as function of the tensions in the rodsitba
cut by that surface and the external forces, and themthe molecular work that is done
on the system as a function of the tensions indls that are external to the surf&er
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cut it. It will result from no.7 that the values of those tensions are the onesatilat
render a minimum to the molecular work that is donetlee system if one takes into
account the condition equation between those tensidhat proposition will be true no
matter degree of elasticity exists in the rods thatcamgained inside the surfac®
provided that the deformations of the system are alwayg small. Therefore, it will
also be true when that rod is rigid, in which casemidecular work will be zero, and
therefore the molecular work that is done on all & #gystem will reduce to just the
molecular work that is done on the elastic rod.

If one is therefore cautioned that the tensionshe rods that are enclosed by the
surfaceS cannot enter into the condition equations then onecoaolude that in the case
of a rigid body that is constrained by elastic rod® wsill obtain the tensions in those
rods by expressing the idea that the sum of their ma@eeubrks is a minimum, if one
takes into account the condition equation between theamk tensions.

The case that | considered obviously includes that dfid, pplanar panel that leans
on an arbitrary number of elastic supports.

12. Considerations pertaining to perfectly-rigid systems-— Imagine an articulated
system that is composed of perfectly-rigid beams. dieiar that it can be regarded as the
limit of another one that is composed of elastic mwtese degree of elasticity diminishes
indefinitely, or the coefficient of elasticitly increases indefinitely. Therefore, suppose,
first of all, that the system whose vertices an@ number is elastic and then determine
the tensions in all of the rods.

We saw in no2 that we have 13— 6 equations (6) between the unknown tensions and
that they can be expressed as functions of the 8 displacements of the vertices by
means of formula (5), so we can take those displacenterite the unknowns, and we
will have just as many first-degree equations as unknowierefore, they can all be
expressed in the same way; i.e., by the ratio of twerahants whose denominator will
be the same for all of them and have order &, and therefore it will be a homogeneous
function of degree 83— 6 in the coefficients,q . The numerator can be deduced from the
determinant of the denominator when one replaces ancowith the constant terms in
equations (6) or the componets Xo, Yo, ..., Xp, Yp, Zp, ... Of the external forces. One
will again have determinants of order 3 6, but they will be homogeneous functions of
degree 8 — 7 in the coefficientsy .

Therefore, if the expressions that were found fordiplacements of the vertices are
substituted in equation (5) in order to obtain the tensioiise rod then we will see that
each of the tensions will be expressed by the ratibwof homogeneous functions of
degree 8 — 6 with respect to the coefficierts,, and therefore, it will depend upon only
the ratios of those coefficients, and not at all ugh@mr absolute values.

If one varies those ratios then one will vary theugalof the tensions. Now, if one
supposes that the elasticity coefficients of all tbdsrincrease indefinitely then the
system will become ever more rigid, but in such a way the ratios of the elasticity
coefficients will remain complete arbitrary, and tHere the values of the tensions will
not tend to any finite limit, but will remain indeterminate

Therefore, in a perfectly-rigid system, it is impbksto determine the tensions in the
rods unless their number is onlp 3 6, and their arrangement is such that it gives an
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unvarying form to the system, in which case, equations {bbevsatisfied independently
of formula (5).

As | said in the introduction, VENE and COURNOT beli@vthat they had
discovered a principle for determining the pressures ansioten in perfectly-rigid
systems, and the illustrious Prof. MOSSOTTI found ttheas of those two authors
confusing, so he believed that it would be difficult to judgeether that principle could
exist. VENE and COURNOT started with the idea thabrié is given a system of
arbitrary form that is perfectly rigid then the temsicand pressures in the various parts of
it will necessarily have well-determined values that banfound, and their opinion is
confirmed by regarding rigid systems as the limit of &aststems.

Now, there exist no perfectly-rigid systems in natuteleast, not on the Earth’'s
surface. However, in their place, as one can deriven the preceding proof, it can
happen that it is impossible to determine the tensiotizein parts, although it is obvious
that those tensions can have perfectly-determined valwessch particular case.

13. Non-simply articulated systems— So far, | have spoken only of articulated
systems — i.e., ones that are composed of elastichatisre connected to each other at
nodes. They have the peculiarity that the rods canlenfpund to be subject to tensions
or compressions — i.e., forces that are directed alargakes — so they can rotate freely
around their extremities during the deformation of each rHowever, such systems are
never used in constructions, so the research that eowed with them can arrive at
doctrines that will be rich and elegant, but useless ictipea unless their results can also
be extended to the systems that one effectively uses.

Now, | propose to show that the theorem of minimwork is applicable to all
systems.

Assume, above all, that the bodies are composed @fcek of dimensions that are
very small in comparison to their separation distanadsch are also extremely small,
and that in a body in equilibrium, those molecules kapt at a well-defined distance
from each other as a result of attractions and remdsihat they exert upon each other.
Call the masses of two moleculasnt, and the distance between thegnso their mutual
attraction can be expressed moyni f (r), in whichf (r) is an unknown function of the
distancer. If external forces are applied to the body themilitbe deformed, and it will
assume a new equilibrium condition in which the distdreteieen the two molecules
m will becomer + Ar, and therefore their mutual attraction will become:

mmf(r)+mmf’(r) Ar,

if one supposes thalr is very small in comparison to
Therefore the attraction of the two molecules Wdlaugmented by:

m m f/(r) Ar ;

i.e., it will be proportional to the incremeat in the distance, which is precisely what
one will have for the increment of the tensionha tod.
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It will then follow that an arbitrary body can beyeeded as a system of very small
rods that are connected at nodes that are, perhaps,tdolgecain pressures or tensions,
even while the system is also not subjected to any exfercas.

One should note that it is not necessary for tinetfanf (r) to have the same form
for all pairs of molecules, but it is enough thatsicontinuous for each pair, at least, for
very small variations of when one starts from the value that corresponds togheal
equilibrium of the body. That observation will becessary, because so far little is
k*nown about the molecular constitution of bodies, @&s loe seen in the best treatments
()

We conclude that the theorem of minimum work is apple#o a body or a system
of bodies that exhibits very small deformations underatttion of external forces, so the
separation of any two molecules is very small with respe their original distance.
Therefore, if the state of the system after the mhedtion can depend upon a small
number of quantities that are linked with each other loyesoondition equations, and if
the molecular work done on the system during the defoom is expressed by means of
only those quantities then one will get their values dysaering them to be variables
that are linked by condition equations and seeking the mysfevalues for them that
gives a minimum to the expression for the moleculatkwo

Suppose, e.g., that an elastic body is subject t@gon€ any sort that are applied to
the nodes, which are also connected with each othear@tus points of the elastic rods
or with other elastic rods. The mathematical thedrglasticity for solid bodies teaches
us how to find the equilibrium condition for the body untlex action of the forces that
are applied, including the tensions in the rods thatiaked to it directly. Hence, by
means of CLAPEYRON'’s formula, one can get the mokacwlork that is done during
the deformation of the body as a function of the meteforces and the tensions in any
rod, and therefore the molecular work that is done upemntire system as a function of
the tensions in all of the rods.

Imagine a surfac& that envelops the given body and cuts the rods thatppleed
directly, so the case that was just considered is qelycthe one that was studied in
number?, and therefore one can find the unknown tensionserdds of the system by
expressing the idea that the molecular work that is dona tige a minimum, if one
takes into account the equations of equilibrium at ailsovertices where only the elastic
forces are concurrent.

14. Caveat.— | gave the proof in numb@&rprecisely in order to be able to pass to the
consequences that | treated there by a rigorous argument

It might seem to some that | could have also provethd@em in number in fewer
words. The molecular work that is done on the enttiewdated system, when expressed
as a function of the tensions in the rods that ardoyuhe surface or external to it, is
such that one will obtain the molecular work dondlensystem, expressed as a function
of all of the tensions, after eliminating the tensiamshe rods that are internal to the
surfaceS. One will then find the values of the tensions tied £xpression contains,

() LAME, Théorie mathématique de I'élasticité des corps salidesture 24, no. 134.
See also the note and Appendices IV and V of SAINT-VENANn Trattato della resistenza dei
solidi di Navier.
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moreover, by seeking its minimum when one takes intmwadcthe equations of
equilibrium at the vertices that are external todidaceS,

The argument will be sound if the equations of equilibriainthe vertices that are
internal to the surfac8 are sufficient to express the tensions in the rodsateinternal
to that surface as functions of the tensions in the thasare cut by it. However, since
they are not generally sufficient, the eliminatioatttvas just described cannot be done.

To some, it might see that the theorem inhoan be deduced from the one in 8o.
intuitively. However, | believe that is it is not enoughmathematics that something
must present the appearance of truth to the mind, buit tkatecessary that it should be
proved rigorously, and that is all the more true whentogets theorems that have been
shown to be exact and will be used continually in practielence, | would prefer to be
lengthy and precise, rather than brief and confused.

15. Applications. — In my Laurea dissertation, which was published in Nder
1873, | proposed to show the utility of the theorem afimum work by showing how
simply one could derive the conditions of elastic efjudim from it for those systems
that are used most frequently in practice, and that had less-perfectly studied until
then. In that dissertation, | saw that by applying temtem of minimum work, one will
easily obtain either the CLAPEYRON equation that esddb beams that are supported at
various points or the known formula for the calculatef POLONCEAU roof timbers,
English roof timbers, and reinforced beams. | gave ditogtween which those formulas
would be exact, and what terms would need to be addednoitherder to make them
rigorous.

| shall not repeat what they were, but rather, | gile an example of how to apply
the theorem of minimum work to the study of the stgbdif ribs of arbitrary form, and
perhaps that study will not prove to be pointless, eeao far | have always been seen
to start from arbitrary hypotheses that sometimes conto the facts of reality very
little, and by which one can hope for neither progresiance nor results that one can
trust.

I know well that many believe that it is sufficientpractice to have a sound criterion
for construction that is aided all the more by someigocap formulas, and nonetheless
believe that for many projects (such as, e.g., theaildarge canopies), none of which
can generally be taken to be the norm for all otherdogoas constructions, it is
indispensible to determine by an exact calculation trenst that one finds the various
parts to have been subjected to in order to be ablssigradimensions to each of them
that will ensure an indefinite lifespan for the work.

16. Ribs of the canopy in Bra. Those ribs are composed of wooden arcs, to which
are connected five rods and two crossbars, as is reprdsanthe figure. Suppose that
the rib is loaded uniformly along its horizontal projest which is regarded as
permanent weight, as well as overload, and that bhis plated with zinc, which gives 70
kg distributed along each meter of the horizontal prajectihich is composed of the
proper weight of the rib, the weight of snow, and wimdssure. Therefore, if one calls
the distance between two ribsthen one will have:
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p=70D

for the weight in Kg that is distributed over a meaikthe horizontal projection of the rib.

Suppose further that the rib is supported at its extresniiver a horizontal plane
without friction, so each support will exert only a veat pressure that is equal in Kg to
6.15x 70D = 430.5D, which we shall cal.

AA =12.30 m CE=2.10 Dd=0.60 AD=1.20
BD'=DB' =1.19 BD=1.25 DD' =4.00

If we would like to see whether the rib is in a gooddition of stability then we must
first determine the unknown tensions in the rods andsbess. We must therefore
express the molecular work that is done on the whgdées as a function of those
unknown tensions, and then look for the values of therléhat will give a minimum to
that expression, taking into account the equilibrium eqoatat the vertice® andD’, or
rather, only the verte®, since it is enough to consider only the half of theteay, by
symmetry.

Lett, ti, tp, t3 denote the tensions in the rddB’, AD, DB', DB, respectively, which
will be equal to the tensions in their symmetric imagest|,U;, I, 13 denote the lengths
of those rods, whilew @, @, a3 denote the areas of their sectioass the elastic
coefficient of the three rod3D’, AD, DB', which are made of iron, are is that of the
cast-iron rodDB; a andb are the angleBAE, B'DD’.

As we just said, consider only half the system, sontbiecular work that is done on
the four rods will be expressed by:

2 2 2 2
i t_l_.i.tL|l.+.t_2|2 +iti|3. (18)
w2 W w 26 w,

One must add the molecular work that is done by the miefoyn of the aréMC to
this. Then, if one letg denote the flexural moment with respect to the pdintvhile N
denotes the sum of the components parallel to the naag® of all the forces that are
applied to the arc to the left of that point, includthg reaction of the suppoft,denotes
the sum of the components perpendicular to the aforeomed tangent (being careful
that all of the forces are contained in a verticahp),s, S denote the lengths of the arcs
AB, AC, resp., andisis the infinitesimal element of arc length € then the molecular
work that is done by the deformation of that arc balexpressed by the formula:
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SEl D,Uzda I,u da} 1Q D: N2d0+J;S N? Cb}+ 1Q HSTZ (117+J;S‘|'2 dr}, (19)

in whichQ andl denote the area of the section of the arc and iteanb of inertia with
respect to the horizontal that passes through thercehggavity, resp., while andE;
are the longitudinal and transversal elastic coeffits, resp., of the substance that the arc
is made of ().

Now, if one bases the perpendiculits, Nnto AE, AD, resp., at the poirl and the
perpendicular$1’m, M’r, M’sto AE, BD', DB', resp., at the poiri¥l, and if one let%,
@’ denote the angles between the tangent4, & “and the horizontal, resp., then one will
have:

U= (Q—% pDE‘)Tm— LM,
(Q— pDﬂ')sin¢+ tlcosp—-a ),

T= (Q pDAn')cos¢ tsingp-a ),

at the pointM and:
p=(Q-4 pCAm) Arh- M th- 4I{ M & Mk,
N = (Q pCA )S|n¢ + (t+ 2t cosB )cog’,
T=(Q- pOAm)cosp' - (t+ 24 cogs )sig

at the pointM”,

One can eliminate, from the last three expressions, and one can elienitia
tensiondy, t3 in formula (18), since the tensions in the four rods dre concurrent at the
point D must be in equilibrium, and will have two equations:

t +t, cosf—t; cosa=0,
l1sina—-Ils—Il,sing=0,

() The third term in this formula expresses the work thdoig by the transversal sliding, but in a non-
rigorous form, and the coefficiefitis measured in any special case precisely by assignaogaenient
value to it that would allow one to obtain exact resulibat coefficient will depend upon either the form
of the section of the solid or the distribution law foe forces. However, so far, the value has not been
found exactly, except in some cases that are very sirhptenonetheless quite important, which were
solved for the first time by SAINT-VENANT.

Therefore, Professors BRESSE and CURIONI started fiee hypothesis that the sections of the solid
are kept planar during the deformation and obtafrred. However, from the work of SAINT-VENANT,
it results in that way that one can commit an emdhe calculation of the transverse sliding that wilvda
the same order of magnitude as the quantity that one wi@aldbl calculate, and that, on the contrary, one
can already obtain much better approximations by takitagaiocount the flexure of the sections, but while
assuming that the flexion happens along cylindrical sesfa Starting from that idea, | have obtained the
third term in formula (19) in order to express the molecwtark that is due to transversal sliding, in which
the coefficient must therefore be regarded as a function of only the ébtime section. | found:

6
=3
for the arc, which was considered to be rectangular tioeeavith a horizontal side.
That research, along with some other analogous orlebewreated at another time.
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or, if one substitutes the values of the angles:

tz = 1.035t1 — 1.05 t,
[, =0.3131 —0.153;.

If one replaces the letters with the numbers infdheulas just obtained and performs
the integrations then one will get:

[ *do = 2650000D° + 3.44t7 - 6070D 1y ,
0

S
[ *do = 324000007 + 15617 + 0.052; — 7700D t; + 755Dt - 0.92t t,
[N?do = 10200007 + 4.207 + 1120D 1 ,
0
S
[N?do= 370D+ 6.90t7 + 1.68t, + 59D t; ~ 20.3Dt — 6.62t t,
[T?do = 33000007 - 710D t + 0.408;,
0

S
[T?do=13800D% + 0.0627 +0.0142, - 46.50D t; + 21.0Dt - 0.058 1 ,

One can now substitute those expressions in forni®y (hen add that formula to
(18) and equate the derivatives of the sum with respettido zero. However, one
should observe that the section of the arc is tangte with horizontal sides of 0.12 m,
while the other sides are 0.20 m, so one will have:

Q =0.024, 1 =0.00008,
so if one supposes that the arc is made of larch, andaoninen take:

E =1,500,000,000, E;= 500, 000,000,
then one will get:

E Q = 36,000,000, E:Q =12,000,000, EI =120,000.
One will therefore see that the quantitiesCl E, 1 /E; Q will both be equal to only

1/300, and that 1l will be equal to 1 / 100. It will then follows that, withdegree of
approximation that is much greater than the one that ®aeysractice, one can neglect
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the two terms in the molecular work that is done tbe arc by compression and
transversal sliding in comparison with the work thatdse by flexion. Therefore, | have
neglected them, but | have not seen that any diffiauéiuld arise from that.

In regard to formula (18), one has that the rhBsDB’', DD’ are all made of iron and
have circular sections with a diameter of 0.035 m, wihiéecrossbaBD is made of cast
iron and has a cruciform section whose two branclaee lhengths 0.08 m and area of
0.00215 . One then has:

e = 15,000,000,000, e, = 12,000,000,000
for iron and cast iron, resp., so one will have:
ew=ew =ea = 14,400,000, e a = 25,800,000,
resp., and if one replaces the letters with numbersdhe will get:

12 +t71, +t21, = 8.67t + 6.60t, — 8.85t t;
t?l, = 0.02927 + 0.122t, — 0.120t t; ,

in addition.

If one substitutes of all these numerical resuitéormula (18) and is cautioned that
the quantities 1 éw, 1 /e; ) are much less than 1/ 100 in the quantityEl then one
will see that all of the terms that yield the molkecworks that are done on the rods can
be neglected in comparison to the work that is donédyléxion of the arc.

If one then takes only the last term into account andhtes the partial derivatives
with respect td, t; to zero then one will get two equations:

16t; — 0.92t =13770D,
0.92t; — 0.104t = 755D,
from which, one infers that:
t; = 900D, t=615D,
and therefore:
tz = 285D, t3 = 50.5D.

If the distance between the ribs is 5 meters timenvall have:

t; = 4500, t = 3075,
L= 1435, 3= 2525,

and if one then supposes, as one usually does, thasibe&ance of the iron to the tension
strains is 6 kg per nfithen one will find that the diameter of the B is 30.7 mm, that
of DD’ is 25.6 mm, and that @B’ is 17.4 mm.

The resistance of cast iron to the tension streémsbe taken to be 1.5 kg per fam
Thereforr(%, it is sufficient that the area of thet®m of the crossbar should be 252.5/ 1.5
=168 mm.
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The builders of the canopy at Bra made the crod8bairom cast iron and gave it a
cruciform section, since they probably believed that it ldvdse found to be compressed,
while the result of the preceding calculation was thatould be tensed. However, a
closer examination of things will show that it is not idifft to show the reason why that
crossbar if found to be tensed. In fact, the morettlearodDD’ approaches the lingB'

— i.e., the shorter that the two crossliais B'D’ become — the more the tensions in them
must increase, as would result from the dispositiothefrods that are concurrent to the
point D. However, if the rodDD’ approaches the choA' then the tension in the
crossbaBD will diminish, and will become zero when the temsio the rodAD becomes
equal to the resultant of the tensions in the two ®@s DD’'. If one starts from the
point and the rodD’ continues to approach the chofdN then the tension in the
crossbaBD will become negative — i.e., the pressure will change.

Having determined the tensions in all of the rods of #fstes, one will have no
difficulty in evaluating the maximum tension and thexmaum pressure that is generated
in the arc, and thus, its degree of stability.

| have not performed that calculation, although it igeghbrief, because it would not
add to what | have wished to show by way of example, nartied great utility of the
theorem of minimum work. Rather, | will add that Simplifications that occurred for
the ribs of the canopy at Bra that originated in tmaless of some of the terms with
respect to others will occur in almost all casesis itery useful to know how and why
once can greatly abbreviate calculations without commygiterrors that might have a
pernicious influence in practice.

Turin, 27 December 1874
CASTIGLIANO ALBERTO




