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INTRODUCTION  

 

 In the year 1857, General Luigi Federico MENABREA read a paper to the 
Accademia delle Scienze di Torino, in which he proposed and sought to prove a new 
theorem that he called the principle of elasticity or minimum work, according to which, 
whenever an elastic system is deformed by the action of external forces, the final tensions 
that exist in the system will be the ones that render a minimum for the expression for the 
molecular work that is done during the deformation.  The following year, the Paris 
Academy communicated his research on that subject. 
 However, the proof that General MENABREA gave did not seem acceptable, and he 
published another paper in the year 1867 in which, after having exhibited some particular 
examples in which his theorem led to exact results in those cases, he proposed a new 
general proof.  Nonetheless, it still did not seem to be any more rigorous than the first 
one, because despite the great beauty and obvious utility of the theorem of minimum 
work, no one that I know of was able to attend the Societa degle Ingegnieri ed industriali 
do Torino in the year 1872 when the engineer Giovanni SACHERI read a paper in which 
he proved that theorem and applied it to the example of the stability of the ribs in the 
great canopy of the seaport of Arezzo.  However, I do not need to say anything about that 
paper, since it contained only a numerical example, but did not, in fact, go on to prove the 
theorem. 
 Early in the year 1873, in which I studied the equilibrium of elastic systems, after 
having thought of a method that would certainly have to lead to exact results, I proposed 
to compare it with the theorem of minimum work, thinking that if it were false then I 
could easily recognize that with some examples, and if it were true then I might have 
found in that comparison the way to prove it in a general manner. 
 While pursuing that idea, I seemed to find myself in the latter case, and I published 
the result of my research in my Laurea dissertation. 
 I must now add, out of impartiality, that it was not General MENABREA that was the 
first to propose the theorem of minimum work (or at least, he did not found the program) 
by mentioning that the theorem was preceded by some analogous theorems.  Already in 
1827, Captain VÉNE had proposed a principle according to which, when a rigid body 
(i.e., an inelastic one) is supported by more than two points on a line or more than three 
points in a plane, the pressure of the body on the line or plane is distributed over the 
various support points in such a manner as to render the sum of the squares of the 
pressures a minimum.  If one says “an elastic body,” instead of “a rigid one,” then 
VÉNE’s principle will be true sometimes and can be regarded as a special case of 
MENABREA’s. 
 In the year 1828, A. COURNOT published a paper in the Bolletino di matematiche di 
FÉRUSSAC in which he extended VÉNE’s principle and sought to prove it, although, to 
be sure, his proof was nothing but a vicious cycle.  Some have wanted to see the theorem 
of minimum work in full generality in that paper by COURNOT.  However, one should 
be warned that COURNOT spoke first of all of the way of determining the pressures in a 
rigid body that is supported by another one at several points, and then considered the case 
of two absolutely-rigid bodies that are coupled by absolutely-rigid rods; finally, he 
extended his theorem to the case of a rigid body that is supported by elastic supports.  In 
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the last case, COURNOT’s theorem was true and was contained within that of 
MENABREA.  However, COURNOT did not go any further; i.e., he did not attempt to 
state a theorem of general applicability to all elastic systems. 
 In fact, almost at the end of his paper, he spoke of the importance of knowing how the 
pressure of a body is distributed on its supports, which he expressed as follows: 
 
 “The knowledge of the manner by which the pressures are effectively and 
individually distributed is then indispensible, and although our formulas give it only for 
the abstract case of absolute rigidity, it is clear that the solution of that abstract case will 
shed light upon the solutions of the various cases in nature.  It is in that way that all of the 
theories of pure mathematics are applicable to the needs of practice.” 
 
 After all, it does not matter who was the first to find the theorem of minimum work.  
In this, as in all of the other discoveries, one proceeds by degrees, and there is merit to all 
that have contributed.  Therefore, VÉNE and COURNOT, and also PAGANI and 
MOSSOTTI, but most of all MENABREA, deserve the credit for having intuited the 
theorem, and although I will be able to give a rigorous proof and to show its utility, I 
considered myself to have been justly compensated by what little part of the credit that 
intelligent people believe that I deserve. 
 Now let me tell you why I wrote this: Since I published by dissertation, I have been 
meditating upon it (when that was possible), and although that quest has been diverted for 
whole months by the many occupations of my career and other miscellaneous things, I 
also think that I have found some new proofs that are simpler or more rigorous than the 
one that I gave originally.  In addition, in order to make the contribution that can be 
inferred from the theorem of minimum work more obvious to the engineers, I shall apply 
it to the example of the stability of the ribs of the canopy in the seaport of Bra.  I have not 
reproduced any of the important applications that made in my dissertation, in order to not 
overextend things. 
 I do not know if this paper contains anything good, but nevertheless, I hope that I will 
be excused for having published it, because with my research, though it might be a trifle, 
I might as well have paved the way for others or to remove all doubt in the truth of the 
theorem of minimum work and to infer consequences that are yet unknown, or to prove 
its falsity, which would still be a truth that is acquired by science. 
 

____________ 
 



 

EQUILIBRIUM  
 

OF 
 

ELASTIC SYSTEMS 
______ 

 
 

 1. – Consider a system that is composed of elastic rods that are joined at articulated 
joints and subjected to forces that are applied to the vertices. Refer them to three 
orthogonal axes whose origin is at one vertex, while the x-axis passes through another 
vertex and the xy-plane passes through a third vertex that is not on the same line as the 
first two.  Suppose that the three axes move along with the three aforementioned vertices 
when the system is deformed.  In that way, if one considers only the deformation of the 
system and not its absolute motion in space then it will be as if the axes were immobile, 
with the vertex that is at their origin fixed, and anything that is found along the x-axis can 
move only along that axis, while anything that is in the xy-plane cannot leave that plane. 
 Call an arbitrary vertex of the system Vp, and let xp, yp, zp be its coordinates before the 
deformation, while Xp, Yp, Zp are the components of the applied force parallel to the axes.  
Let ξp, ηp, ζp be the increments in its coordinates due to the deformation, or its 
displacements parallel to the axes.  Furthermore let Vp Vq the rod that joins the two 
vertices Vp, Vq, let Ωpq be the area of its section, let lpq be its length, let Epq be the elastic 
coefficient of the substance that it is composed of, let λpq be its elongation due to the 
deformation, and let Tpq be its final tension.  Furthermore, let αpq , βpq , γpq , and pqα ′ , pqβ ′ , 

pqγ ′  be the angles that it makes with the axes before and after the deformation. 

 Take p = 0 for the vertex that is at the origin and is regarded as fixed, take p = 1 for 
the one that is on the x-axis, and take p = 2 for the one that is contained in the xy-plane; 
one will have: 

ξ0 = 0, η0 = 0, ζ0 = 0, ξ1 = 0, η1 = 0, ζ1 = 0.   (1) 
 In addition, set: 

pq pq

pq

E

l

Ω
= εpq ,    (2) 

in general, so one will have: 
Tpq = εpq λpq , 

 

lpq = 2 2 2( ) ( ) ( )q p q p q px x y y z z− + − + − , 

and 

lpq + λpq = 2 2 2( ) ( ) ( )q p q p q p q p q p q px x y y z zξ ξ η η ζ ζ− + − + − + − + − + − . 

 
 If the differences ξq − ξp , ηq − ηp , ζq − ζp are very small in comparison to the other 
ones xq − xp , yq − yp , zq − zp  then one can develop λpq in a convergent series in ascending 
powers of those small differences, which will give us:  
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λpq = ( ) ( ) ( )q p q p q p
q p q p q p

pq pq pq

x x y y z z

l l l
ξ ξ η η ζ ζ

− − −
− + − + −  + θpq , 

 
in which θpq comprises all of the terms in the development that contain powers of ξq − ξp , 
… that are higher than the first, such that its ratio with λpq tends to zero when the 
differences ξq − ξp , … tends to zero. 
 Now, one has: 
 

q p

pq

x x

l

−
= cos αpq , 

q p

pq

y y

l

−
= cos βpq , 

q p

pq

z z

l

−
= cos γpq , 

so: 
λpq = (ξq − ξp) cos αpq + (ηq − ηp) cos βpq + (ζq − ζp) cos γpq .  (3) 

 
The angles pqα ′ , pqβ ′ , pqγ ′  that the rod Vp Vq make with the axes after the deformation are 

given by the equations: 

cos pqα ′ = q p q p

pq pq

x x

l

ξ ξ
λ

− + −
+

, etc., 

or, if one develops that in a convergent series that is ordered in positive, increasing 
powers of ξq − ξp , ηq − ηp , ζq − ζp : 
 

 cos pqα ′ = ( )q p x
pq

pq

x x

l
ω

−
+  = cos αpq +

( )x
pqω , 

 

 cos pqβ ′ = ( )q p y
pq

pq

y y

l
ω

−
+  = cos βpq +

( )y
pqω , 

 

 cos pqγ ′ = ( )q p z
pq

pq

z z

l
ω

−
+  = cos γpq +

( )z
pqω , 

 
in which ( )x

pqω , ( )y
pqω , ( )z

pqω  are functions that contain no constant terms and tend to zero 

when the differences ξq − ξp , ηq − ηp , ζq − ζp tend to zero. 
 
 
 2. – After the deformation, the system will be in equilibrium, and it is clear that the 
tensions in all of the rods that are concurrent to the vertex Vp must equilibrate the external 
force Xp, Yp, Zp ; one will then have the equations: 
 

cos 0,

cos 0,

cos 0,

p pq pq

p pq pq

p pq pq

X T

Y T

Z T

α
β
γ

′ + =
′+ = 
′+ = 

∑
∑
∑

    (4) 
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in which the sum that is indicated by the symbol ∑ relates to all values of q that 
correspond to the vertices that are joined to the vertex Vp by rods. 
 One will have three equations that are analogous to the preceding ones for each vertex 
of the system except for the three vertices V0, V1, V2 .  There is no equation for V0 , which 
can be regarded as fixed.  One has only one of them for V1 , which cannot leave the x-
axis, and one will have two of them for V2 , which can move only in the xy-plane.  It will 
then follow that if one has as many equations as there are displacements ξp , ηp , ζp , ξq , 
…, then the latter can be determined, and therefore, the tensions in all of the rods after the 
deformation, as well. 
 However, equations (4) and their analogues are very complicated, and solving them 
rigorously is practically impossible.  On the contrary, the solution will become very 
simple if one is content with approximate results, but approximate in such a way that one 
can generally regard them as exact. 
 In fact, one has: 
 
Tpq cos pqα ′  

 = ( )[( ) cos ( )cos ( )cos ](cos )x
pq q p pq q p pq q p pq pq pq pqε ξ ξ α η η β ζ ζ γ θ α ω− + − + − + +  

 

 = ( )

( )

[( )cos ( )cos ( )cos ]cos

[( )cos ( )cos ( )cos ]

cos ,

q p pq q p pq q p pq pq

x
pq q p pq q p pq q p pq pq

x
pq pq pq pq

ξ ξ α η η β ζ ζ γ α
ε ξ ξ α η η β ζ ζ γ ω

θ α ω θ

 − + − + −
 + − + − + − 
 + + 

 

 
in whose right-hand side, one sees that of the four terms that are contained in the outer 
brackets, the first one has degree one with respect to the differences ξq − ξp , ηq − ηp , ζq 
− ζp , while the other three contain only powers of those differences that have degree 
greater than one.  Therefore, the ratio of the sum of the last three terms to the first one 
will tend to zero when those differences tend to zero. 
  Hence, if they are very small, as they always are in practice, then the last three terms 
can be neglected in comparison to the first, which will give: 
 

Tpq cos pqα ′  = εpq [(ξq − ξp) cos αpq + (ηq − ηp) cos βpq + (ζq − ζp) cos γpq] cos αpq . 

 
However, one will see in that way that one can suppose that: 
 
Tpq = εpq [(ξq − ξp) cos αpq + (ηq − ηp) cos βpq + (ζq − ζp) cos γpq], cos pqα ′ = cos αpq ;  (5) 

 
i.e., in the expression for the tensions, one takes only the terms of first degree in the 
displacements and the directions of the rods are considered to be unvarying under the 
deformation. 
 One will also have that if one wishes to express the tensions by formulas (5) then one 
will necessarily need to suppose that pqα ′ = αpq , pqβ ′ = βpq , etc.; i.e., one must suppose 

that the directions of the rods are unvarying, because if one accepts that formula, and one 
would still like to take into account the change in direction of the rods, which are 
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meaningless in it, then in the expression for Tpq cos pqα ′ , one must take into account the 

terms: 
εpq [(ξq − ξp) cos αpq + (ηq − ηp) cos βpq + (ζq − ζp) cos γpq]

( )x
pqω , 

 
which translate into: 

εpq θpq cos αpq , 
 
which has the same order of magnitude. 
 Therefore, in order to determine, first of all, all the displacements in the rods of the 
system and then the final tensions in them, one will have the equations: 
 

1 1 1

2 2 2 2 2 2

cos 0,

cos 0, cos 0,

.................................... ...................................

cos 0, cos 0,

cos 0,

...............................

q q

q q q q

p pq pq pq pq pq

pq pq pq

X T

X T Y T

X T Y T

Z T

α
α β

α β
γ

+ =
+ = + =

+ = + =
+ =

∑
∑ ∑

∑ ∑
∑

..... ....................................











  (6) 

 
in place of equations (4) and their analogues. 
 
 
 3. Theorem of minimum work. – The molecular work that is produced by the 
deformation of the rod Vp Vq can be expressed by the formula: 
 

2
1

2
pq

pq

T

ε
, 

 
so the molecular work that is done by the deformation of all of the system can be 
expressed by the formula: 

2
1

2
pq

pq

T

ε∑ .     (7) 

I shall now say that: 
 
 The tensions in the rods of the system after the deformation are the ones that satisfy 
equation (6) and render the expression for the molecular work of the system a minimum. 
 
 In order to comprehend the significance of that theorem, observe that equations (6) 
are 3n – 6 in number, if one calls the number of vertices n.  Therefore, if the number of 
rods is 3n − 6 (one can never have less if the system, which is assumed to be rigid, is to 
have an unvarying form) then equations (6) will serve to determine the tensions of all of 
the rods independently of the deformations.  However, if the number of rods is greater 
than 3n – 6, as is generally the case, then the number of unknown tensions will exceed 
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the number of equations (6), which will not suffice to determine the tensions without first 
expression them as functions of the displacements of the vertices.  Lacking that, 
equations (6) can be satisfied by an infinitude of systems of values of the tensions, and 
each of them will correspond to a different value of the expression: 
 

2
1

2
pq

pq

T

ε∑ . 

 
Now, the stated theorem consists of saying that of all the systems of tensions, the one that 
will exist effectively after the deformation of the rods will be the one that gives a 
minimum to the expression (7). 
 In fact, in order to find the values of the tensions Tpq that satisfy that condition, one 
has the equation: 

pq pq

pq

T dT

ε∑ = 0,     (8) 

 
in which the differentials dTpq are coupled with each other by the equations: 
 

1 1

2 2 2 2

cos 0,

cos 0, cos 0,

................................................................

cos 0, cos 0, cos 0,

....................................................

q q

q q q q

pq pq pq pq pq pq

dT

dT dT

dT dT dT

α
α β

α β γ

=
= =

= = =

∑
∑ ∑

∑ ∑ ∑
.............................................









  (9) 

 
which are obtained by differentiating (6). 
 Multiply each of equations (9) by a constant coefficient and generally let Ap, Bp, Cp 
denote the coefficients by which the three equations that relate to the vertex Vp are 
multiplied, and then sum the left-hand sides of equations (9), multiplied by the constant 
coefficients in the left-hand side of equation (8), and equate the coefficients of all of the 
differentials of the tensions to zero.  One will then obtain as many equations as tensions.  
For example, equate the coefficients of Tpq to zero and obtain the equation: 
 

pq

pq

T

ε
 = (Aq – Ap) cos αpq + (Bq – Bp) cos βpq + (Cq – Cp) cos γpq , 

 
which will be no different from (5) if one changes the symbols ξ, η, ζ into the symbols A, 
B, C. 
 If one now combines the equations thus-obtained with equations (6) then one will 
first obtain the values of the constants Ap , Bp , Cp , …, and then those of the tensions Tpq .  
However, since the preceding equation and its analogues will be no different from (5) and 
its analogues when one changes the symbols ξ, η, ζ into the symbols A, B, C, it is 
obvious that one will find the same values for the constants Ap , Bp , Cp , etc., that were 
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obtained for the displacements ξp, ηp, ζp, …, and therefore the values of the tensions that 
one obtains will be effectively the ones that exist after the deformation. 
 One then proves the theorem of minimum work for articulated systems, which echoes 
the one that I stated in the text, i.e., that: 
 
 The constants by which one multiplies equations (9) are nothing but the 
displacements of the vertices parallel to the axes. 
 
 
 4. Expression for the molecular work done on an articulated system. – Recall 
formula (5), which can be put into the form: 
 

pq

pq

T

ε
+ ξp cos αpq + ηp cos βpq + ζp cos γpq + ξq cos αpq + ηq cos βpq + ζq cos γpq = 0. 

 
If one multiplies this by Tpq then one will get: 
 

 
2
pq

pq

T

ε
 + ξp Tpq cos αpq + ηp Tpq cos βpq + ζp Tpq cos γpq  

 + ξq Tpq cos αpq + ηq Tpq cos βpq + ζq Tpq cos γpq = 0. 
 
If one applies that equation to all of the rods of the system, sums the corresponding sides 
of the equations thus-obtained, and collects all of the terms that contain the same 
displacement then one will get: 
 

 
2
pq

pq

T

ε∑  + ξ1 ∑ T1q cos α1q + ξ2 ∑ T2q cos α2q + η2 ∑ T2q cos β2q + … 

 …  + ξp ∑ Tpq cos αpq + ηp ∑ Tpq cos αpq + ζp ∑ Tpq cos γpq  
  + …………………………………………………………. = 0. 
 
Now, from equations (6), one has: 
 

∑ T1q cos α1q = − X1 ,  ∑ T2q cos α2q = − X2 ,  ∑ T3q cos α3q = − X3 , 
……………………………………………………………………………………… 

∑ Tpq cos αpq = − Xp ,  ∑ Tpq cos αpq = − Yp ,  ∑ Tpq cos αpq = − Zp , 
 

so the preceding equation will become: 
 

2
pq

pq

T

ε∑  = X1 ξ1 + X2 ξ2 + X3 ξ3 + … + Xp ξp + Yp ηp + Zp ζp + …, 

 
or, more briefly: 
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2
pq

pq

T

ε∑ = ∑ (Xp ξp + Yp ηp + Zp ζp). 

 
If Rp is the resultant of the three forces Xp , Yp , Zp , and rp is the projection of the 
displacement of the vertex Vp onto the direction of the force Rp then one will have: 
 

Xp ξp + Yp ηp + Zp ζp = Rp rp , 
so 

2
pq

pq

T

ε∑  = ∑ Rp rp . 

 
 The left-hand side of that equation expresses twice the molecular work that is 
provided by the deformation of the system, so that work can also be expressed as a 
function of the external force and the displacements of the vertices by the formula (*): 
 

1
2∑ Rp rp . 

 
 
 5. – I shall now pass on to an examination of the case in which a system is found to 
already be in equilibrium under the action of external forces, and one applies a new force 
whose effect one wishes to study.  That is precisely the most common case in nature. 
 One can also have that the various parts of a system are already found to be tensed or 
compressed before the application of the external force.  Such will be the case, e.g., in an 
articulated quadrilateral that is composed of six rods that are arranged along the sides and 
diagonals when one of the rods does not have precisely the length in its natural state that 
the natural length of the other five require.  Now, it is just that case that is also included 
in the one that shall I treat. 
 Perhaps the present section will seem pointless to everybody.  However, I do not 
know how to suppress it, since it seems that it serves to make my proof more complete 
and rigorous. 
 Let 0

pX , 0
pY , 0

pZ  be the components parallel to the axes of the force that is initially 

applied to the vertex Vp .  Let Xp, Yp, Zp be the components of the force that is applied to 
that same vertex afterwards, while ξp , ηp , ζp are its displacements that are produced by 
the application of the new force to the system, and αp , βp, γp are the angles that the rod Vp 
Vq makes with the axes before the new deformation.  0

pT  is the tension in the rod Vp Vq 

before the application of the force Xp , Yp , Zp, etc., and Tpq is the increment in that tension 
that is produced by that force. 
 Since the system is equilibrium before the application of the force Xp , Yp , Zp , etc., 
and returns to it afterwards, one will have two groups of equations: 
 

                                                
 (*) It seems to me that the argument by which I have obtained that formula leaves nothing to be desired 
in terms of simplicity or rigor. 
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0 0
1 1 1
0 0 0 0
2 2 2 0 2 2

0 0 0 0

0 0

cos 0,

cos 0, cos 0,

.................................... ...................................

cos 0, cos 0,

cos 0,

q q

q q q q

p pq pq pq pq pq

p pq pq

X T

X T Y T

X T Y T

Z T

α
α β

α β
γ

+ =
+ = + = 


+ = + =


+ = 

∑
∑ ∑

∑ ∑
∑

   (10) 

 
0 0
1 1 1 1 1

0 0
2 2 2 2 2
0 0

2 2 2 2 2

0 0

0 0

0

( )cos 0,

( )cos 0,

( )cos 0,

.........................................................

( ) cos 0,

( )cos 0,

q q q

q q q

q q q

p pq pq pq pq

p pq pq pq pq

p p

X X T T

X X T T

Y Y T T

X X T T

Y Y T T

Z Z

α
β
γ

α
γ

+ + + =
+ + + =
+ + + =

+ + + =
+ + + =
+

∑
∑
∑

∑
∑

0( ) cos 0,

........................................................
q pq pq pqT T γ












+ + = 



∑

   (11) 

 
and if the first of them is subtracted from the second one then one will get another one: 
 

1 1 1

2 2 2 2 2 2

cos 0,

cos 0, cos 0,

.................................... ...................................

cos 0, cos 0,

cos 0, ................................

q q

q q q q

p pq pq pq pq pq

p pq pq

X T

X T Y T

X T Y T

Z T

α
α β

α β
γ

+ =
+ = + =

+ = + =
+ =

∑
∑ ∑

∑ ∑
∑ ....










  (12) 

 
 Now, the molecular work that is done on the rod Vp Vq while its tension passes from  

0
pqT  to 0

pqT + Tpq is expressed by: 

 
0 2 0 2( ) ( )

2
pq pq pq

pq

T T T

ε
+ −

 = ( )0 1
2

pq
pq pq

pq

T
T T

ε
+ , 

 
so the molecular work done on the entire system will be: 
 

( )0 1
2

pq
pq pq

pq

T
T T

ε
+∑ . 

One will then have: 
 

pq

pq

T

ε
= (ξp – ξq) cos αpq + (ηp – ηq) cos βpq + (ζp – ζq) cos γpq , 

or 
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pq

pq

T

ε
= – ξp cos αpq – ηp cos βpq – ζp cos γpq – ξq cos αpq – ηq cos βpq – ζq cos γpq . 

 
  Multiply that equation by 0

pqT + 1
2 Tpq and take the sum of all the equations that one 

obtains from all of the rods of the system and get: 
 

( )0 1
2

pq
pq pq

pq

T
T T

ε
+∑ = 

 

( ) ( )
( )

0 01 1
2 2

0 1
2

cos cos

cos ,

p pq pq pq p pq pq pq

p pq pq pq

T T T T

T T

ξ α η β

ξ α

 − + − +
 
 − + 

∑ ∑
∑

∑
 

 
or, if one eliminates the sum that is contained inside the parentheses by means of 
equations (10) and (12): 
 

( )0 1
2

pq
pq pq

pq

T
T T

ε
+∑ = ( ) ( ) ( )0 0 01 1 1

2 2 2p p p p p p p p pX X Y Y Z Zξ η ζ + + + + + ∑ .  (13) 

 
 That is therefore the expression for the molecular work done as a function of the 
external force. 
 If the external forces 0

pX , 0
pY , 0

pZ  are zero then the expression for the molecular force 

will reduce to: 

( )0 1
2

pq
pq pq

pq

T
T T

ε
+∑ = ( )p p p p p pX Y Zξ η ζ+ +∑ ,   (14) 

 
no matter what the initial tensions 0pT  in the rods are. 

 
 
 6. – If one supposes that the forces Xp, Yp, Zp in formula (13) are infinitely small, so 
the increments Tpq in the tensions in the rods will be, as well, and the displacements ξp, 
ηp, ζp, etc., of the vertices will be infinitely small, and if one changes Xp, Yp, Zp, …, ξp, 
ηp, ζp, …, Tpq , … by 0

pdX , 0
pdY , 0

pdZ , …, 0
pdξ , 0

pdη , 0
pdζ , …, 0

pqdT , … then suppresses 

the index 0 everywhere, for simplicity, and neglects second-order infinitesimals then one 
will get the formula: 

pq pq

pq

T dT

ε∑ = ( )p p p p p pX d Y d Z dξ η ζ+ +∑   

 
for the increment of the molecular work that is produced by the given increments in the 
external forces. 
 Now, if one differentiates formula (14) then the left-hand side will give: 
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0( )pq pq pq

pq

T T dT

ε
+

∑ , 

 
and since 0

pq pqT T+  expresses the tension in the rod Vp Vq after the external force Xp, Yp, 

Zp, … is applied to the system when the tension in the preceding formula is represented in 
it by Tpq, in order to keep the same symbols in the formulas, one can write Tpq , instead of 

0
pq pqT T+ .  Hence, after differentiating equation (14), one will get: 

 

pq pq

pq

T dT

ε∑ = 1 1
2 2( ) ( )p p p p p p p p p p p pX d Y d Z d dX dY dZξ η ζ ξ η ζ+ + + + +∑ ∑ . 

 

 If one equates the two expressions that are obtained for pq pq

pq

T dT

ε∑  then it will result 

that: 
( )p p p p p pX d Y d Z dξ η ζ+ +∑  = ( )p p p p p pdX dY dZξ η ζ+ +∑ , (15) 

 
so the increment in the molecular work that is produced by the given increments dXp, dYp, 
dZp, … in the external forces can be expressed by either the left-hand side of equation 
(15) or the right-hand side. 
 If the external forces have constant directions (which is the only case that I find 
important enough to consider) then let Rp denote the resultant of the forces Xp, Yp, Zp, and 
let λp, µp, vp be the angles that they make with the axes, and one will have: 
 

p p p p p pX d Y d Z dξ η ζ+ +  = Rp (dξp ⋅⋅⋅⋅ cos λp + dηp ⋅⋅⋅⋅ cos µp + dζp ⋅⋅⋅⋅ cos νp), 

 
or, if one lets drp denote the projection of the elementary displacement of the vertex Vp 
onto the direction of the force Rp : 
 

p p p p p pX d Y d Z dξ η ζ+ +  = Rp drp . 

 
However, if one further has: 
 

dXp = dRp ⋅⋅⋅⋅ cos λp ,  dYp = dRp ⋅⋅⋅⋅ cos µp ,  dZp = dRp ⋅⋅⋅⋅ cos νp 
then: 

p p p p p pdX dY dZξ η ζ+ + = dRp ⋅⋅⋅⋅ (ξp cos λp + ηp cos µp + ζp cos νp) = rp dRp , 

 
and since equation (15) can also be written: 
 

∑ Rp drp = ∑ rp dRp .     (16) 
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However, one should be cautioned that one that equation (15) will always be true, while 
(16) is true only when the direction of the external forces is constant. 
 
 Observation. – When the formula: 
 

pq

pq

T

ε
= (ξp – ξq) cos αpq + (ηp – ηq) cos βpq + (ζp – ζq) cos γpq 

 
is applied to all of the rods of the system and combined with equations (12) in the same 
way as in the no. 4, that will lead to the formula: 
 

2

1
2

pq

pq

T

ε∑ = 1
2 ( )p p p p p pX Y Zξ η ζ+ +∑  

 
so from (13), one will have: 
 

0
pq pq

pq

T T

ε∑ = 0 0 0( )p p p p p pX Y Zξ η ζ+ +∑ . 

 

Now, 
2

1
2

pq

pq

T

ε∑ expresses the molecular work that is done on the system by only the 

increments Tpq in the tensions of the rods, as if the initial tensions were zero, and  
0
pq pq

pq

T T

ε∑  expresses the molecular work that is done on the system by the original 

tensions 0
pqT  due to the elongations of the rods by the increments Tpq in their tensions.  

Hence, the right-hand sides of the two preceding equations will give those two works as 
functions of the external forces and the displacements of the vertices. 
 One will see easily from the preceding that the theorem of minimum work will also 
be true for an articulated system in which the initial tensions are not zero, or one that is 
already found in equilibrium under the action of arbitrary forces when one applies the 
forces whose effect one wishes to study and then takes the expression for the molecular 
work to be the one that is produced by the latter forces as if the former ones did not exist, 
and the initial tensions in the rods were zero. 
 
 
 7. Principal property of the theorem of minimum work. – In an arbitrary 
articulated system, imagine a surface S that encloses a certain number of vertices within 
it.  Some rods will be cut by the surface S; i.e., connect the vertices Vr, rV′ , … that are 

inside that surface to some vertices Vs, 2V′ , … that are external to it and represent their 

tensions by Trs, rsT′ , etc. 
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 The molecular work that is produced by the deformation of the system is expressed 

by the formula 
2

1
2

pq

pq

T

ε∑ , which can be put into the form L + L′, if one lets L denote the 

sum of all the terms that relate to the rods that are inside the surface S, and L′ is the sum 
of all the ones that relate to the rods outside the surface S or cut it. 
 If one equates the molecular work that is done on the system to zero then one will get: 
 

dL + dL′ = 0. 
  
 Now, differentiate equations (6) as in no. 3, multiply each of them by an 
undetermined constant, and sum the products with the preceding equation.  One can 
divide those equations into two groups, one of which is composed of the equations of 
equilibrium that relate to the vertices that are placed inside the surface S, and the other 
one relates to the vertices that are placed outside.  The sum of the terms that are provided 
by the first group is represented by: 
 

dM + ∑ (Ar cos αrs + Br cos βrs + Cr cos γrs) dTrs , 
 
which thus ignores all of the terms that contain the tensions in the rods that cut the 
surface S.  The sum of the terms that are provided by the second group is represented by 
dM′.  One then obtains the equation: 
 

dL + dL′ + dM + dM′ + ∑ (Ar cos αrs + Br cos βrs + Cr cos γrs) dTrs = 0. 
 
 In order to find the tensions in all of the rods of the system, one needs to equate the 
coefficients of the differentials of all the tensions that are contained in the preceding 
equation to zero and combine the equation thus-obtained with that of equilibrium at all 
vertices.  Now, it is easy to see that the terms dL, dM contain only the tensions in the rods 
that are enclosed by the surface S and can contain no other ones, and that the other terms 
cannot contain any of those tensions.  Therefore, the equation that one finds immediately 
splits into two: 

dL + dM = 0, 
 

dL′ + dM′ +∑ (Ar cos αrs + Br cos βrs + Cr cos γrs) dTrs = 0. 
 
 The first one is precisely the one that would be obtained if one considered the system 
that is contained inside the surface S to be a free system and regarded the tensions in the 
rods that cut the surface S as external forces.  Hence, if one equates the coefficients of all 
the differentials that are contained in the equations dL + dM = 0 to zero and combines the 
equations thus-obtained with those of equilibrium at all of the vertices that are contained 
inside the surface S then it will be clear that one has obtained the values of the constants 
Ar, Br, Cr, and the tensions in all of the rods that are contained inside the surface S as 
functions of the tensions in the rods that do not cut it. 
 However, it will result from no. 3 that if the three vertices V0, V1, V2 – the first of 
which is regarded as fixed and placed at the origin, the second of which is constrained to 
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remain on the x-axis, and the third of which must remain in the xy-plane – are three 
vertices that are contained inside the surface S then the values of the constants Ar, Br, Cr 
will be nothing but the displacements of the vertex Vr parallel to the axes.  Therefore, if 
one lets tr denote the projection of the displacement of the vertex Vr onto the direction of 
the rod Vr Vs then one will have: 
 

tr = Ar cos αrs + Br cos βrs + Cr cos γrs , 
 
so the second of the equations above will become: 
 

dL′ + dM′ + ∑ tr dTrs = 0,    (17) 
 
and since it results from no. 2 that the direction of the rod must be regarded as constant 
during the deformation, as was proved in no. 6, it will follow that the sum of the tr dTrs 
will be nothing but the differential of the work that is done on the system that is 
contained inside the surface S by the tensions in the rods that cut it.  Hence, the sum: 
 

dL′ + ∑ tr dTrs  
 
will express the differential of the molecular work that is done on the whole system as a 
function of the tensions in the rods that are external to the surface S or cut it. 
 Therefore, equation (17) is the same as the one that would be obtained if one had 
expressed the idea that the molecular work that is done on the whole system, when 
expressed as a function of only the rods that are external to the surface S or cut it, is a 
minimum and take into account the equations of equilibrium at the vertices that are 
external to the surface S.  
 Since, on the other hand, we know that when we equate to zero the coefficients of all 
the differentials that are contained in equation (17) and combine the equations that are 
then obtained with those of equilibrium at the vertices that are external to the surface S, 
we will obtain the tensions in all of the rods that are external to that surface and cut it, we 
conclude that: 
 
 If an articulated system is deformed by given forces and one expresses the molecular 
work that is done by one part that is contained inside a certain surface S as a function of 
the tensions in the rods that connect that part with the remaining ones then one will 
obtain the tensions in those rods and the ones that are external to the surface S by 
expressing that the molecular work that is done on the whole systems is a minimum, 
taking into account the equations of equilibrium that relate to all of the vertices that are 
external to the surface S. 
 
 
 8. Displacements of the vertices as functions of the external forces. – We have 
seen that the molecular work that is done by the deformation of a system can be 
expressed by: 

1
2 ∑ (Xp ξp + Yp ηp + Zp ζp), 

and its differential by: 
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∑ (ξp dXp +ηp dYp + ζp dZp). 
 
 Now, when we have found the tensions in all of the rods as functions of the external 
forces, we can easily obtain the molecular work done on all of the system as a function of 
those forces, as well.  If we call that work L then its differential with respect to the 
variations of the external forces will be: 
 

p p p
p p p

dL dL dL
dX dY dZ

dX dY dZ

 
+ +  

 
∑ , 

so we will have: 

∑ (ξp dXp +ηp dYp + ζp dZp) = p p p
p p p

dL dL dL
dX dY dZ

dX dY dZ

 
+ +  

 
∑ , 

 
and since that equation must be true for any increments dXp, dYp, dZp, …, it will generally 
follow that: 

p

dL

dX
= ξp , 

p

dL

dY
= ηp , 

p

dL

dZ
= ζp . 

 
 Let Rp be the resultant of the forces Xp, Yp, Zp, and let α, β, γ be the angles that an 
arbitrary line makes with those axes.  If one lets P denote the projection of the force Rp 
onto the line (α, β, γ) then one will have: 
 

P = Xp cos α + Yp cos β + Zp cos γ. 
 
Now, since the force Xp, Yp, Zp is equal to Rp, multiplied by the cosines of the angles that 
it makes with the axes, we see that the work L can be expressed as a function of the single 
external force Rp, and therefore also as a function of only its projections P.  Suppose that 
it is expressed in such a way that one obtains: 
 

p

dL

dX
= 

p

dL dP

dP dX
=

dL

dP
cos α, 

p

dL

dY
=

dL

dP
cos β, 

p

dL

dZ
=

dL

dP
cos γ, 

 
and if one sums those equations, after having multiplied them by cos α, cos β, cos γ, in 
succession, it will result that: 
 

p

dL

dX
cos α +

p

dL

dY
cos β +

p

dL

dZ
 cos γ = 

dL

dP
, 

or 
dL

dP
 = ξp cos α + ηp cos β + ζp cos γ . 
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 Let σp denote the projection of the displacement of the vertex Vp onto the direction P, 
so one will have: 

σp = ξp cos α + ηp cos β + ζp cos γ , 
so we will further have: 

dL

dP
= σp . 

That is: 
 
 If one differentiates the molecular work done on an articulated system when it is 
expressed as a function of the forces that are applied to its vertices with respect to the 
force that is applied at one vertex, projected onto a given direction, then the derivative 
that one will obtain will express the projection of the displacement of the vertex 
considered onto the given direction. 
 
 It will then follow that the derivative of the expression for the molecular work with 
respect to the resultant Rp is the projection of the displacement of the vertex onto the 
direction Rp . 
 Do not forget that all of this will be true only if the directions of the forces are 
constants, since otherwise the angles αp, βp, γp that the force Rp makes with those axes 
will be functions of that force, and when one takes the derivatives, one will get other 
terms from the ones that were written down. 
 
 
 9. Articulated systems that contain fixed points. – Suppose that some of the 
vertices in an articulated system are fixed.  Let Vr be one of them: If one lets – Xr, – Yr, 

rZ− be the components parallel to the pressure that the vertex exerts upon a point of the 

constraint then it will be clear that one can consider the vertex Vr to be free and subjected 
to forces Xr, Yr, Zr that are parallel to the axes.  Now, suppose that one has obtained the 
expression for the molecular work that is done on the system as a function of the external 
forces, the reactions Xr, Yr, Zr , etc., of the fixed points, and the tensions in any rod, but 
none of the ones that are concurrent at the fixed points.  Represent the expression for the 
molecular work done on all of the system by F (Xr, Yr, Zr, …, Tpq, …). 
 I say that the values of the reactions Xr, Yr, Zr, …, and of the unknown tensions Tpq 
are the ones that will give a minimum to the molecular work, if one takes into account the 
condition equations between the tensions Tpq . 
 In fact, if one equates the differential of the molecular force to zero then one will get: 
 

r

dL

dX
dXr +

r

dL

dY
 dYr +

r

dL

dZ
dZr + … + 

pq

dL

dT
dTpq = 0. 

 
Now, since none of the tensions Tpq belong to the rods that are concurrent at the fixed 
points, it will be clear that the reactions Xr, etc., will not enter into any of the condition 
equations, so the preceding equation will split into these equations: 
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r

dF

dX
= 0, 

r

dF

dY
= 0, 

r

dF

dZ
= 0, etc.,  pq

pq

dF
dT

dT∑ = 0. 

 
If one combines the latter in the usual way with the conditions equations then one will 
obviously get the same equations as if the forces Xr , Yr, Zr , … were known; i.e., one can 
determine all of the unknown tensions Tpq as functions of the unknown reactions at the 
fixed points.  It is then necessary to augment those equations with ones that express the 
idea that the displacements of the fixed vertices are zero.  Now, according to the theorem 
that was stated in no. 10, the functions dF / dXr , dF / dYr , dF / dZr , etc., express the 
displacements of the vertex Vr parallel to the axes.  Therefore, if one equates them to zero 
then one will have expressed precisely the notion that the vertex Vr is fixed. 
 One can arrive at this result more directly by imagining that each fixed vertex is 
detained by three perfectly-rigid rods that are parallel to the axes.  In fact, if one imagines 
a surface S that cuts all of those rigid rods and in such a way that it contains all of that 
part of the system in which one expresses the work as functions of the external forces and 
tensions in the other rods (whether compressed or rigid), and if one represents, as we just 
did, the molecular work in the entire system by: 
 

F (Xr, Yr, Zr, …, Tpq, …) 
  
then it will be clear that the values of the unknowns (including the ones in the added rigid 
rods) can be obtained by rendering a minimum to the function F, while taking into 
account the condition equations.  Now, since one has no condition equations at the 
vertices Vr besides the one that was proved in no. 7, one will see that one first has the 
equations: 

r

dF

dX
= 0, 

r

dF

dY
= 0, 

r

dF

dZ
= 0,  etc., 

 
and then, the equation: 

pq
pq

dF
dT

dT∑ = 0, 

 
which must be combined with the condition equations. 
 One should note that the three orthogonal rods that are substituted for each fixed 
vertex are supposed to be rigid, since the molecular work will be zero then, and therefore 
the molecular work that is done on the system will not be altered.  Nevertheless, one will 
obtain the same result by supposing that one substitutes three orthogonal elastic rods at 
each fixed vertex and then reduces their elasticity indefinitely. 
 
 
 10. Utility of the theorem of minimum work. – In practice, it almost never happens 
that one employs simply-articulated elastic systems; i.e., systems that are composed of 
nothing but elastic rods that are coupled at nodes.  Rather, one is continually employing 
systems that one calls mixed, which are composed of beams that are reinforced by tie-
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rods or crossbars; i.e., of elastic rods that are coupled to junction points on the beams at 
various points along their length and between them. 
 Therefore, in order for a theorem that concerns elastic systems to have any practical 
utility, it must be applicable to mixed systems.  The theorem of minimum work has 
precisely that character, and it is for just that reason that I have adopted it, when I could, 
to show its accuracy and utility. 
 However, since the property of that theorem that relates to simply-articulated systems 
is also maintained for mixed ones, as will be shown shortly, I shall now speak of some 
advantages that it presents in other methods for calculating articulated systems. 
 It is initially clear that it is permissible to determine the tensions in all of the rods of 
the system with any method that serves to find the minimum of a function of several 
variables when one is given some condition equations between those variables. 
 In addition, from what was proved in no. 7, it will result that if one obtains, in any 
manner, the expression for the molecular work that is done on an articulated system as a 
function of the tensions in only some of the rods that comprise it then one will obtain the 
values of those tensions by expressing the notion that the molecular work that is done on 
the system is a minimum, if one takes into account the condition equations between the 
unknowns. 
 Finally, if one has expressed the molecular work in an articulated system by means of 
the tensions in some of the rods, and if those tensions can be expressed as functions of the 
other quantities m1, m2, … then it will be clear that the molecular work that is done on the 
system can also be expressed as a function of the m1, m2, …, and the condition equations 
between the unknown tensions can be converted into other ones in the quantities m1, m2, 
etc., or better yet, the values of m1, m2, … that are obtained from the condition that the 
molecular work that is done on the system will be a minimum when it is expressed in 
terms of them, if one takes into account the condition equations that constrain them.  That 
last observation has great importance. 
 
 
 11. Observations in regard to the theorem of minimum work. – There are some 
cases in which one can doubt that the theorem of minimum work is applicable.  I will 
choose one of them, and the argument that one makes for it can also serve as norm for the 
other ones. 
 Let a body be perfectly rigid, and apply elastic rods to it in such a way they define a 
system that is arbitrary, except that it has an unvarying form, apart from small 
deformations that are due to the elasticity of the axes. 
 It is clear that it would not change the conditions on the system if one replaces the 
rigid rods that connected the points of the rigid body with elastic rods in all possible 
ways.  Now, imagine a surface S that encloses all of the rigid rods, and cuts the elastic 
rods that connect with them. 
 Next, consider another system that does not differ from the one that was just 
considered, except for the fact that one substitutes elastic rods for the rigid ones, and 
supposes that the sum of the molecular works that are done on those rods that are 
contained inside the surface S is expressed as function of the tensions in the rods that are 
cut by that surface and the external forces, and then have the molecular work that is done 
on the system as a function of the tensions in the rods that are external to the surface S or 
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cut it.  It will result from no. 7 that the values of those tensions are the ones that will 
render a minimum to the molecular work that is done on the system if one takes into 
account the condition equation between those tensions.  That proposition will be true no 
matter degree of elasticity exists in the rods that are contained inside the surface S, 
provided that the deformations of the system are always very small.  Therefore, it will 
also be true when that rod is rigid, in which case, its molecular work will be zero, and 
therefore the molecular work that is done on all of the system will reduce to just the 
molecular work that is done on the elastic rod. 
 If one is therefore cautioned that the tensions in the rods that are enclosed by the 
surface S cannot enter into the condition equations then one can conclude that in the case 
of a rigid body that is constrained by elastic rods, one will obtain the tensions in those 
rods by expressing the idea that the sum of their molecular works is a minimum, if one 
takes into account the condition equation between the unknown tensions. 
 The case that I considered obviously includes that of a rigid, planar panel that leans 
on an arbitrary number of elastic supports. 
 
 
 12. Considerations pertaining to perfectly-rigid systems. – Imagine an articulated 
system that is composed of perfectly-rigid beams.  It is clear that it can be regarded as the 
limit of another one that is composed of elastic rods whose degree of elasticity diminishes 
indefinitely, or the coefficient of elasticity E increases indefinitely.  Therefore, suppose, 
first of all, that the system whose vertices are n in number is elastic and then determine 
the tensions in all of the rods. 
 We saw in no. 2 that we have 3n – 6 equations (6) between the unknown tensions and 
that they can be expressed as functions of the 3n – 6 displacements of the vertices by 
means of formula (5), so we can take those displacements to be the unknowns, and we 
will have just as many first-degree equations as unknowns.  Therefore, they can all be 
expressed in the same way; i.e., by the ratio of two determinants whose denominator will 
be the same for all of them and have order 3n – 6, and therefore it will be a homogeneous 
function of degree 3n – 6 in the coefficients εpq .  The numerator can be deduced from the 
determinant of the denominator when one replaces a column with the constant terms in 
equations (6) or the components X1, X2, Y2, …, Xp, Yp, Zp, … of the external forces.  One 
will again have determinants of order 3n – 6, but they will be homogeneous functions of 
degree 3n – 7 in the coefficients εpq . 
 Therefore, if the expressions that were found for the displacements of the vertices are 
substituted in equation (5) in order to obtain the tensions in the rod then we will see that 
each of the tensions will be expressed by the ratio of two homogeneous functions of 
degree 3n – 6 with respect to the coefficients εpq , and therefore, it will depend upon only 
the ratios of those coefficients, and not at all upon their absolute values. 
 If one varies those ratios then one will vary the values of the tensions.  Now, if one 
supposes that the elasticity coefficients of all the rods increase indefinitely then the 
system will become ever more rigid, but in such a way that the ratios of the elasticity 
coefficients will remain complete arbitrary, and therefore the values of the tensions will 
not tend to any finite limit, but will remain indeterminate. 
 Therefore, in a perfectly-rigid system, it is impossible to determine the tensions in the 
rods unless their number is only 3n – 6, and their arrangement is such that it gives an 
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unvarying form to the system, in which case, equations (6) will be satisfied independently 
of formula (5). 
 As I said in the introduction, VÉNE and COURNOT believed that they had 
discovered a principle for determining the pressures and tensions in perfectly-rigid 
systems, and the illustrious Prof. MOSSOTTI found the ideas of those two authors 
confusing, so he believed that it would be difficult to judge whether that principle could 
exist.  VÉNE and COURNOT started with the idea that if one is given a system of 
arbitrary form that is perfectly rigid then the tensions and pressures in the various parts of 
it will necessarily have well-determined values that can be found, and their opinion is 
confirmed by regarding rigid systems as the limit of elastic systems. 
 Now, there exist no perfectly-rigid systems in nature, at least, not on the Earth’s 
surface.  However, in their place, as one can derive from the preceding proof, it can 
happen that it is impossible to determine the tensions in their parts, although it is obvious 
that those tensions can have perfectly-determined values in each particular case.  
 
 
 13. Non-simply articulated systems. – So far, I have spoken only of articulated 
systems – i.e., ones that are composed of elastic rods that are connected to each other at 
nodes.  They have the peculiarity that the rods can only be found to be subject to tensions 
or compressions – i.e., forces that are directed along their axes – so they can rotate freely 
around their extremities during the deformation of each rod.  However, such systems are 
never used in constructions, so the research that is concerned with them can arrive at 
doctrines that will be rich and elegant, but useless in practice, unless their results can also 
be extended to the systems that one effectively uses. 
 Now, I propose to show that the theorem of minimum work is applicable to all 
systems. 
 Assume, above all, that the bodies are composed of molecules of dimensions that are 
very small in comparison to their separation distances, which are also extremely small, 
and that in a body in equilibrium, those molecules are kept at a well-defined distance 
from each other as a result of attractions and repulsions that they exert upon each other.  
Call the masses of two molecules m, m′, and the distance between them r, so their mutual 
attraction can be expressed by m m′ f (r), in which f (r) is an unknown function of the 
distance r.  If external forces are applied to the body then it will be deformed, and it will 
assume a new equilibrium condition in which the distance between the two molecules m, 
m′ will become r + ∆r, and therefore their mutual attraction will become: 
 

m m′ f (r) + m m′ f′ (r) ∆r, 
 
if one supposes that ∆r is very small in comparison to r. 
 Therefore the attraction of the two molecules will be augmented by: 
 

m m′ f′ (r) ∆r ; 
 

i.e., it will be proportional to the increment ∆r in the distance, which is precisely what 
one will have for the increment of the tension in the rod. 
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 It will then follow that an arbitrary body can be regarded as a system of very small 
rods that are connected at nodes that are, perhaps, subject to certain pressures or tensions, 
even while the system is also not subjected to any external forces. 
 One should note that it is not necessary for the function f (r) to have the same form 
for all pairs of molecules, but it is enough that it is continuous for each pair, at least, for 
very small variations of r when one starts from the value that corresponds to the natural 
equilibrium of the body.  That observation will be necessary, because so far little is 
known about the molecular constitution of bodies, as can be seen in the best treatments 
(*). 
 We conclude that the theorem of minimum work is applicable to a body or a system 
of bodies that exhibits very small deformations under the action of external forces, so the 
separation of any two molecules is very small with respect to their original distance.  
Therefore, if the state of the system after the deformation can depend upon a small 
number of quantities that are linked with each other by some condition equations, and if 
the molecular work done on the system during the deformation is expressed by means of 
only those quantities then one will get their values by considering them to be variables 
that are linked by condition equations and seeking the system of values for them that 
gives a minimum to the expression for the molecular work. 
 Suppose, e.g., that an elastic body is subject to forces of any sort that are applied to 
the nodes, which are also connected with each other at various points of the elastic rods 
or with other elastic rods.  The mathematical theory of elasticity for solid bodies teaches 
us how to find the equilibrium condition for the body under the action of the forces that 
are applied, including the tensions in the rods that are linked to it directly.  Hence, by 
means of CLAPEYRON’s formula, one can get the molecular work that is done during 
the deformation of the body as a function of the external forces and the tensions in any 
rod, and therefore the molecular work that is done upon the entire system as a function of 
the tensions in all of the rods. 
 Imagine a surface S that envelops the given body and cuts the rods that are applied 
directly, so the case that was just considered is precisely the one that was studied in 
number 7, and therefore one can find the unknown tensions in the rods of the system by 
expressing the idea that the molecular work that is done upon it is a minimum, if one 
takes into account the equations of equilibrium at all of its vertices where only the elastic 
forces are concurrent. 
 
 
 14. Caveat. – I gave the proof in number 7 precisely in order to be able to pass to the 
consequences that I treated there by a rigorous argument. 
 It might seem to some that I could have also proved the theorem in number 7 in fewer 
words.  The molecular work that is done on the entire articulated system, when expressed 
as a function of the tensions in the rods that are cut by the surface S or external to it, is 
such that one will obtain the molecular work done on the system, expressed as a function 
of all of the tensions, after eliminating the tensions in the rods that are internal to the 
surface S.  One will then find the values of the tensions that this expression contains, 

                                                
 (*) LAMÉ, Théorie mathématique de l’élasticité des corps solides, Lecture 24, no. 134. 
  See also the note and Appendices IV and V of SAINT-VENANT in Trattato della resistenza dei 
solidi di Navier. 
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moreover, by seeking its minimum when one takes into account the equations of 
equilibrium at the vertices that are external to the surface S. 
 The argument will be sound if the equations of equilibrium at the vertices that are 
internal to the surface S are sufficient to express the tensions in the rods that are internal 
to that surface as functions of the tensions in the ones that are cut by it.  However, since 
they are not generally sufficient, the elimination that was just described cannot be done. 
 To some, it might see that the theorem in no. 7 can be deduced from the one in no. 3 
intuitively.  However, I believe that is it is not enough in mathematics that something 
must present the appearance of truth to the mind, but that it is necessary that it should be 
proved rigorously, and that is all the more true when one treats theorems that have been 
shown to be exact and will be used continually in practice.  Hence, I would prefer to be 
lengthy and precise, rather than brief and confused. 
 
 
 15. Applications. – In my Laurea dissertation, which was published in November 
1873, I proposed to show the utility of the theorem of minimum work by showing how 
simply one could derive the conditions of elastic equilibrium from it for those systems 
that are used most frequently in practice, and that had been less-perfectly studied until 
then.  In that dissertation, I saw that by applying the theorem of minimum work, one will 
easily obtain either the CLAPEYRON equation that relates to beams that are supported at 
various points or the known formula for the calculation of POLONCEAU roof timbers, 
English roof timbers, and reinforced beams.  I gave limits between which those formulas 
would be exact, and what terms would need to be added to them in order to make them 
rigorous. 
 I shall not repeat what they were, but rather, I will give an example of how to apply 
the theorem of minimum work to the study of the stability of ribs of arbitrary form, and 
perhaps that study will not prove to be pointless, because so far I have always been seen 
to start from arbitrary hypotheses that sometimes conform to the facts of reality very 
little, and by which one can hope for neither progress in science nor results that one can 
trust. 
 I know well that many believe that it is sufficient in practice to have a sound criterion 
for construction that is aided all the more by some empirical formulas, and nonetheless 
believe that for many projects (such as, e.g., the ribs of large canopies), none of which 
can generally be taken to be the norm for all other analogous constructions, it is 
indispensible to determine by an exact calculation the strains that one finds the various 
parts to have been subjected to in order to be able to assign dimensions to each of them 
that will ensure an indefinite lifespan for the work. 
 
 
 16. Ribs of the canopy in Bra. – Those ribs are composed of wooden arcs, to which 
are connected five rods and two crossbars, as is represented in the figure.  Suppose that 
the rib is loaded uniformly along its horizontal projection, which is regarded as 
permanent weight, as well as overload, and that the rib is plated with zinc, which gives 70 
kg distributed along each meter of the horizontal projection, which is composed of the 
proper weight of the rib, the weight of snow, and wind pressure.  Therefore, if one calls 
the distance between two ribs D then one will have: 
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p = 70 D 
 

for the weight in Kg that is distributed over a meter of the horizontal projection of the rib. 
 Suppose further that the rib is supported at its extremities over a horizontal plane 
without friction, so each support will exert only a vertical pressure that is equal in Kg to 
6.15 × 70D = 430.5 D, which we shall call Q. 
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AA′ = 12.30 m 
BD′ = DB′ = 1.19 

CE = 2.10 Dd = 0.60 
BD = 1.25 

AD = 1.20 
DD′ = 4.00  

 
 If we would like to see whether the rib is in a good condition of stability then we must 
first determine the unknown tensions in the rods and crossbars.  We must therefore 
express the molecular work that is done on the whole system as a function of those 
unknown tensions, and then look for the values of the latter that will give a minimum to 
that expression, taking into account the equilibrium equations at the vertices D and D′, or 
rather, only the vertex D, since it is enough to consider only the half of the system, by 
symmetry. 
  Let t, t1, t2, t3 denote the tensions in the rods DD′, AD, DB′, DB, respectively, which 
will be equal to the tensions in their symmetric images.  Let l, l1, l2, l3 denote the lengths 
of those rods, while ω, ω1, ω2, ω3 denote the areas of their sections, e is the elastic 
coefficient of the three rods DD′, AD, DB′, which are made of iron, and e1 is that of the 
cast-iron rod DB; a and b are the angles DAE, B′DD′. 
 As we just said, consider only half the system, so the molecular work that is done on 
the four rods will be expressed by: 
 

22 22
31 2

1 2 3
1 2 1 3

1 1

2 2 2

tt tt l
l l l

e eω ω ω ω
 

+ + + 
 

.    (18) 

 
 One must add the molecular work that is done by the deformation of the arc AMC to 
this .  Then, if one lets µ denote the flexural moment with respect to the point M, while N 
denotes the sum of the components parallel to the tangent at M of all the forces that are 
applied to the arc to the left of that point, including the reaction of the support, T denotes 
the sum of the components perpendicular to the aforementioned tangent (being careful 
that all of the forces are contained in a vertical plane), s, S denote the lengths of the arcs 
AB, AC, resp., and ds is the infinitesimal element of arc length for AC then the molecular 
work that is done by the deformation of that arc will be expressed by the formula: 
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2 2 2 2 2 2
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+ + + + +     Ω Ω     
∫ ∫ ∫ ∫ ∫ ∫ , (19) 

 
in which Ω and I denote the area of the section of the arc and its moment of inertia with 
respect to the horizontal that passes through the center of gravity, resp., while E and E1 
are the longitudinal and transversal elastic coefficients, resp., of the substance that the arc 
is made of (*). 
 Now, if one bases the perpendiculars Mm, Nn to AE, AD, resp., at the point M and the 
perpendiculars M′ m′, M′ r, M′ s to AE, BD′, DB′, resp., at the point M′, and if one lets ϕ, 
ϕ′ denote the angles between the tangents at M, M′ and the horizontal, resp., then one will 
have: 

 µ = ( )1
12Q p Am Am t Mm− ⋅ − ⋅ , 

 N = ( ) 1sin cos( )Q p Am tϕ ϕ α− ⋅ + ⋅ − , 

 T = ( ) 1cos sin ( )Q p Am tϕ ϕ α− ⋅ − ⋅ − , 

at the point M and: 

 µ = ( )1
22 ( )Q p Am Am t M m t M r M s′ ′ ′ ′′ ′ ′− ⋅ − ⋅ − ⋅ + , 

 N = ( ) 2sin ( 2 cos )cosQ p Am t tϕ β ϕ′ ′ ′− ⋅ + + , 

 T = ( ) 2cos ( 2 cos )sinQ p Am t tϕ β ϕ′ ′ ′− ⋅ − +  

at the point M′. 
 One can eliminate t2 from the last three expressions, and one can eliminate the 
tensions t2, t3 in formula (18), since the tensions in the four rods that are concurrent at the 
point D must be in equilibrium, and will have two equations: 
 
 t + t2 cos β – t1 cos α = 0, 
 l1 sin α − l3 – l2 sin β = 0, 

                                                
 (*) The third term in this formula expresses the work that is done by the transversal sliding, but in a non-
rigorous form, and the coefficient f is measured in any special case precisely by assigning a convenient 
value to it that would allow one to obtain exact results.  That coefficient will depend upon either the form 
of the section of the solid or the distribution law for the forces.  However, so far, the value has not been 
found exactly, except in some cases that are very simple, but nonetheless quite important, which were 
solved for the first time by SAINT-VENANT. 
 Therefore, Professors BRESSE and CURIONI started from the hypothesis that the sections of the solid 
are kept planar during the deformation and obtained f = 1.  However, from the work of SAINT-VENANT, 
it results in that way that one can commit an error in the calculation of the transverse sliding that will have 
the same order of magnitude as the quantity that one would like to calculate, and that, on the contrary, one 
can already obtain much better approximations by taking into account the flexure of the sections, but while 
assuming that the flexion happens along cylindrical surfaces.  Starting from that idea, I have obtained the 
third term in formula (19) in order to express the molecular work that is due to transversal sliding, in which 
the coefficient f must therefore be regarded as a function of only the form of the section.  I found: 

f = 
6
5

 

for the arc, which was considered to be rectangular in section, with a horizontal side. 
 That research, along with some other analogous ones, will be treated at another time. 
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or, if one substitutes the values of the angles: 
 
 t2 = 1.035 t1 –  1.05  t, 
 l2 = 0.313 l    – 0.153 l1 . 
 
 If one replaces the letters with the numbers in the formulas just obtained and performs 
the integrations then one will get: 
 

2

0

s

dµ σ∫ = 2650000 D2 + 2
13.44t − 6070 D t1 , 

2
S

s

dµ σ∫ = 3240000 D2 + 2
11.56t  + 0.052 t2 – 7700 D t1 + 755 Dt – 0.92 t t1 , 

 

2

0

s

N dσ∫  = 102000 D2 + 2
14.20t + 1120 D t1 , 

 

 2
S

s

N dσ∫ = 370 D2 + 2
16.90t  + 1.68 t2 + 59 D t1 − 20.3 Dt – 6.62 t t1 , 

 

2

0

s

T dσ∫  = 330000 D2 − 710 D t1 + 2
10.408t , 

 

 2
S

s

T dσ∫ = 13800 D2 + 2
10.062t  + 0.0142 t2 − 46.50 D t1 + 21.0 Dt – 0.058 t t1 , 

 
 One can now substitute those expressions in formula (19), then add that formula to 
(18) and equate the derivatives of the sum with respect to t, t1 to zero.  However, one 
should observe that the section of the arc is a rectangle with horizontal sides of 0.12 m, 
while the other sides are 0.20 m, so one will have: 
 

Ω = 0.024, I = 0.00008, 
 
so if one supposes that the arc is made of larch, and one can then take: 
 

E = 1,500,000,000, Et = 500, 000,000, 
then one will get: 
 

E Ω = 36,000,000,  Et Ω = 12,000,000, EI = 120,000. 
 
 One will therefore see that the quantities 1 / Ω E, 1 / Et Ω will both be equal to only 
1/300, and that 1 / EI will be equal to 1 / 100.  It will then follows that, with a degree of 
approximation that is much greater than the one that occurs in practice, one can neglect 



Castigliano – On the equilibrium of elastic bodies. 27 

the two terms in the molecular work that is done on the arc by compression and 
transversal sliding in comparison with the work that is done by flexion.  Therefore, I have 
neglected them, but I have not seen that any difficulty would arise from that. 
 In regard to formula (18), one has that the rods AD, DB′, DD′ are all made of iron and 
have circular sections with a diameter of 0.035 m, while the crossbar BD is made of cast 
iron and has a cruciform section whose two branches have lengths 0.08 m and area of 
0.00215 m2.  One then has: 
 

e = 15,000,000,000,  e1 = 12,000,000,000 
 
for iron and cast iron, resp., so one will have: 
 

e ω = e ω1 = e ω1 = 14,400,000, e1 ω1 = 25,800,000, 
 
resp., and if one replaces the letters with numbers then one will get: 
 
 2 2 21

1 1 2 22 t l t l t l+ +  = 2
18.67t  + 6.60 t2 – 8.85 t t1 , 

 2
3 3t l  = 2

10.0292t + 0.122 t2 – 0.120 t t1 , 

in addition. 
 If one substitutes of all these numerical results in formula (18) and is cautioned that 
the quantities 1 / eω , 1 / e1 ω1 are much less than 1 / 100 in the quantity 1 / EI then one 
will see that all of the terms that yield the molecular works that are done on the rods can 
be neglected in comparison to the work that is done by the flexion of the arc. 
 If one then takes only the last term into account and equates the partial derivatives 
with respect to t, t1 to zero then one will get two equations: 
 
    16 t1 – 0.92 t  = 13770 D, 
 0.92 t1 – 0.104 t = 755 D, 
from which, one infers that: 

t1 = 900 D, t = 615 D, 
and therefore: 

t2 = 285 D, t3 = 50.5 D. 
 
 If the distance between the ribs is 5 meters then one will have: 
 
 t1 = 4500, t = 3075, 
 t2 = 1435, t3 = 252.5, 
 
and if one then supposes, as one usually does, that the resistance of the iron to the tension 
strains is 6 kg per mm2 then one will find that the diameter of the rod AD is 30.7 mm, that 
of DD′ is 25.6 mm, and that of DB′ is 17.4 mm. 
 The resistance of cast iron to the tension strains can be taken to be 1.5 kg per mm2.  
Therefore, it is sufficient that the area of the section of the crossbar should be 252.5 / 1.5 
= 168 mm2. 
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 The builders of the canopy at Bra made the crossbar BD from cast iron and gave it a 
cruciform section, since they probably believed that it would be found to be compressed, 
while the result of the preceding calculation was that it would be tensed.  However, a 
closer examination of things will show that it is not difficult to show the reason why that 
crossbar if found to be tensed.  In fact, the more that the rod DD′ approaches the line BB′ 
– i.e., the shorter that the two crossbars BD, B′D′ become – the more the tensions in them 
must increase, as would result from the disposition of the rods that are concurrent to the 
point D.  However, if the rod DD′ approaches the chord AA′ then the tension in the 
crossbar BD will diminish, and will become zero when the tension in the rod AD becomes 
equal to the resultant of the tensions in the two rods B′D, DD′.  If one starts from the 
point and the rod DD′ continues to approach the chord AA′ then the tension in the 
crossbar BD will become negative – i.e., the pressure will change. 
 Having determined the tensions in all of the rods of the system, one will have no 
difficulty in evaluating the maximum tension and the maximum pressure that is generated 
in the arc, and thus, its degree of stability. 
 I have not performed that calculation, although it is quite brief, because it would not 
add to what I have wished to show by way of example, namely, the great utility of the 
theorem of minimum work.  Rather, I will add that the simplifications that occurred for 
the ribs of the canopy at Bra that originated in the smallness of some of the terms with 
respect to others will occur in almost all cases.  It is very useful to know how and why 
once can greatly abbreviate calculations without committing errors that might have a 
pernicious influence in practice. 
 
Turin, 27 December 1874 
  CASTIGLIANO ALBERTO 

_____________ 
 

 
 

 

 


