Excerpted from E. Cesardezoni di geometria intrinseca, from the author-publisher, Naples, 1896.
“Sulle equazioni della elasticita negli iperspazii,” pp. 250-26

On the equations of easticity in hyper spaces

The calculations thaBeltrami carried out in the paper “Sulle equazioni generali
dell'elasticita” can also be done with a certain expealieand without loss of elegance,
for a curved space of as many dimensions as one desiraakiyg use of the notations
that we adopted in the first chapter. First, reCgWlIl, 6, 7) that if up = 1 then the
coefficients of elongation and unitary solid dilatatwii be given by the formulas:
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In addition, one has to consider the mutual slidéh@f the linear coordinate elements,
and the doubled componenfs of the rotation of the medium. Their expressions loa
obtained from the formulas:
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which will reduce to just one [XVII, form. (15)], in subsice, if one observes that:
8=, dj=-3i.
Given that, when one assumes that:
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is the only effective part of the potential in the forimatof the indefinite equations, one
will arrive at the equations
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by the usual process, which are free of the last terth@rneft-hand side. That term is
the one that one needs to calculate in order folo(Betthe general equations of elasticity
for isotropic media in any curved space or hyperspace ibarits the variations of the
isotropy constants. Meanwhile, if one follows the psscthatBeltrami used to find
formula (4) in his paper then one will obtain the equmstio
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in place of our (3), in whicfl; andT;; are the tensions in the (linear and surface, resp.)
coordinate elements. The indexhat is placed in the final summation sign serves to
remind one that one needs to exclude terms with distimicies ofi andj from that
corresponding sum. Formulas (4) are independent of theeggo nature of the space,
as well as the physical constitution of the medium. eWthat peculiarity is introduced
with the isotropy hypothesis, one will have:

:_(A—B)@—Ba, Tij:_Bajy

and equations (4) will become:
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Now, a comparison with (3) will give immediatelypan observing (1):
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Meanwhile:
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On the other hand, by virtue of the integrabilipnditions [XVII, form. (16)], one also
has:
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If one substitutes this in (5) then one will get:
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That proves thag; is a linear form in the:

a=au,.

If one collects the terms that are multipliedupyhen one will get:
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fori #j. Moreover:
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Now, we can express the coefficieatby means of the functiorf3. However, it is more
convenient to introduce thmrmal curvature A/ andgeodetic torsion 7, bearing mind the

groups §) and @) of general Codazzi formulas (XVII, 4). Formula €8n be written in
the following way:
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The second sum is equal to:
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Hence:
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or, from ()):
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Similarly, one can give (6) the form:
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i.e., by virtue of §):
- Z(Nh,]:, +,Zthh) . (9)
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This formula shows that; = a; . One is then led to consider the quadratic form:
U=41>auu,, (10)

whose first partial derivatives are precisely éheln order to understand the significance
of U, note that one can also arrive at equations (3) synaimg that the effective part of
the potential is the expression (2), augmentedBly.2That can be expressed by saying
that the curvature of space producdesa of elastic energy, as if one part of that energy
were expended by the body to overcome the difficulty thancountered by deforming
in anonlinear space. However, it can happen that 0, and then the elastic energy will
be, by contrast, more intense than what one haslimear space, as if the form of the
space is such that it tends to facilitate, rather twantradict, the elastic deformation. In
other words, if one imagines the space to be non-nmgis$ igeometric essence, and on the
other hand, one supposes that the matter is endowed wjige afinertia, by virtue of
which it will always tend to deforrasif it were found in a linear space, then one can say
that the space reacts to that tendency with a fbeteatdmits the potentiaB2.

For example, in the case of a two-dimensional spawe hasy; = ax = K, az2 = 0.

Hence,U = 1K (u/ +u?), and equations (3) will become:

X1+AZ—G—B% + 2BKu; = 0, X2+Aa—@+Bg+BKU2:O,
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and will remain unchanged under deformations of the surfelgsieh one assumes to be
flexible, but inextensible. Hence, for a surface, tiss lof elastic energy is proportional
to the square of the displacement and to the curvatutedurface at the point that one
considers. One will have an analogous state of affair an arbitrary space. Indeed,

imagine that the space is referred tosytgem of curvatures. All of the torsions7 will

then be zero, and from (9), one will have that 0, while from (8), one will see thaj
is the sum of the total curvatures of all coordinateasad that contain the limg. Now,
if one represents the projections of the displacemgrgsonto the surface by, and
represents its total curvature Ky then the equality (10) will become:

U=1> K, uZ.

The loss of elastic energy in ardimensional curved space is then equal to the sum of
the losses that are due to the (n — 1) surfaces of curvature.




