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On the equations of elasticity in hyperspaces 
 

 The calculations that Beltrami carried out in the paper “Sulle equazioni generali 
dell’elasticità” can also be done with a certain expediency, and without loss of elegance, 
for a curved space of as many dimensions as one desires by making use of the notations 
that we adopted in the first chapter.  First, recall (XVII, 6, 7) that if u0 = 1 then the 
coefficients of elongation and unitary solid dilatation will be given by the formulas: 
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In addition, one has to consider the mutual sliding θij of the linear coordinate elements, 
and the doubled components ϑij of the rotation of the medium.  Their expressions can be 
obtained from the formulas: 
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which will reduce to just one [XVII, form. (15)], in substance, if one observes that: 
 

θij = θji , ϑij = −ϑji . 

 
Given that, when one assumes that: 
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is the only effective part of the potential in the formation of the indefinite equations, one 
will arrive at the equations 
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by the usual process, which are free of the last term on the left-hand side.  That term is 
the one that one needs to calculate in order for (3) to be the general equations of elasticity 
for isotropic media in any curved space or hyperspace if one omits the variations of the 
isotropy constants.  Meanwhile, if one follows the process that Beltrami used to find 
formula (4) in his paper then one will obtain the equations: 
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in place of our (3), in which Ti and Tij are the tensions in the (linear and surface, resp.) 
coordinate elements.  The index i that is placed in the final summation sign serves to 
remind one that one needs to exclude terms with distinct values of i and j from that 
corresponding sum.  Formulas (4) are independent of the geometric nature of the space, 
as well as the physical constitution of the medium.  When that peculiarity is introduced 
with the isotropy hypothesis, one will have: 
 

Ti = − (A – 2B) Θ – 2B θi , Tij = − B θij , 
 
and equations (4) will become: 
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Now, a comparison with (3) will give immediately, upon observing (1): 
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On the other hand, by virtue of the integrability conditions [XVII, form. (16)], one also 
has: 
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If one substitutes this in (5) then one will get: 
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That proves that ai is a linear form in the u: 
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If one collects the terms that are multiplied by uj then one will get: 
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Now, we can express the coefficients a by means of the functions Q.  However, it is more 
convenient to introduce the normal curvature N and geodetic torsion T, bearing mind the 

groups (γ) and (δ) of general Codazzi formulas (XVII, 4).  Formula (7) can be written in 
the following way: 
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The second sum is equal to: 
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Similarly, one can give (6) the form: 
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i.e., by virtue of (δ): 

aij = − ( )h ij ih jh+∑ N T T T  .    (9) 
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This formula shows that aij = aji .  One is then led to consider the quadratic form: 
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2 ij i ja u u∑ ,     (10) 

 
whose first partial derivatives are precisely the ai.  In order to understand the significance 
of U, note that one can also arrive at equations (3) by assuming that the effective part of 
the potential is the expression (2), augmented by 2BU.  That can be expressed by saying 
that the curvature of space produces a loss of elastic energy, as if one part of that energy 
were expended by the body to overcome the difficulty that it encountered by deforming 
in a nonlinear space.  However, it can happen that U < 0, and then the elastic energy will 
be, by contrast, more intense than what one has in a linear space, as if the form of the 
space is such that it tends to facilitate, rather than contradict, the elastic deformation.  In 
other words, if one imagines the space to be non-rigid in its geometric essence, and on the 
other hand, one supposes that the matter is endowed with a type of inertia, by virtue of 
which it will always tend to deform as if it were found in a linear space, then one can say 
that the space reacts to that tendency with a force that admits the potential 2BU. 
 For example, in the case of a two-dimensional space, one has a11 = a22 = K, a12 = 0.  
Hence, U = 2 21

1 22 ( )K u u+ , and equations (3) will become: 
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and will remain unchanged under deformations of the surface, which one assumes to be 
flexible, but inextensible.  Hence, for a surface, the loss of elastic energy is proportional 
to the square of the displacement and to the curvature of the surface at the point that one 
considers.  One will have an analogous state of affairs for an arbitrary space.  Indeed, 
imagine that the space is referred to its system of curvatures.  All of the torsions T will 

then be zero, and from (9), one will have that aij = 0, while from (8), one will see that aii 
is the sum of the total curvatures of all coordinate surfaces that contain the line qi .  Now, 
if one represents the projections of the displacements qi qj onto the surface by uij , and 
represents its total curvature by Kij then the equality (10) will become: 
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The loss of elastic energy in an n-dimensional curved space is then equal to the sum of 
the losses that are due to the 1

2 n (n – 1) surfaces of curvature. 
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