
Excerpted from E. Cesàro, Lezioni di geometria intrinseca, from the author-publisher, Naples, 1896. 
“Sull’equilibrio dei fili flessibili ed inestendibili,” pp. 254-257. 

 
 

On the equilibrium of flexible, inextensible strings 
 

 Given a string that is completely deformable in an n-dimensional linear space, take 
the axes to be the tangent, (n – 1)-normal, …, principal normal at a moving point of the 
string.  It is assumed to be infinitely thin, but in such a way that each element ds 
nevertheless has a certain mass q ds.  Let Xi be the components along the i axis of the 
force per unit mass that acts upon q ds, and let ui be the projection of the displacement 
onto that axis.  The direction cosines of the element of the string after deformation will 
obviously be proportional to ds + δu1, δu2, δu3, …, δun , and therefore if one calls the 
tension per unit length T then one will have: 
 

q Xi ds + δ iu
T

ds

δ 
 
 

 = 0 

 
for the equilibrium of the external force, if one takes care to append T δs and T δsi when i 
= 1.  At the same time, it is important to note that the fundamental formulas (XVI, 4) that 
relate to the direction (α1, α2, …, αn), when written in the form: 
 

i
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and if one agrees to set: 

αi+n = − αi , ρi+n = ρi, 
0

1

ρ
= 0, 

 
can, as always, still persist when one considers the projections of an arbitrary variable 
segment onto the axes, instead of α.  Indeed: 
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One can then write: 
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and the equations of equilibrium will become, in general: 
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Finally, after totally eliminating the δ sign: 
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 = 0. 

 
Hence, for i = 1, 2, 3, …, n, if one takes into account all of the conventions that were 
made, one will arrive at the intrinsic fundamental equations for the equilibrium of a 
string in an n-dimensional linear space: 
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T
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………………………………………………………………………………………….. 
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In particular, for n = 3, if one lets X, Y, Z, u, v, w denote the components of the 
accelerating force and displacement, resp., and lets ρ and r be the radii of flexure and 
torsion, resp., then one will get the equations: 
 

1 0,

0,

1 0,

d du w T dw u v
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ρ ρ ρ
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which were pointed out by Maggi.  If the string is inextensible then it will be enough to 
observe that the variation of the element ds results from the relation: 
 

(ds + δ ds)2 = (ds + δu1)
2 + (δu2)

2 + … + (δun)
2, 

 
from which it will follow that δ ds = δu1 in the case of infinitesimal displacements, in 
order for one to see that inextensibility is always expressed by the equality: 
 

1du

ds
= 

1

nu

ρ
. 

 
 When one omits the displacements, the equations that were found will reduce to the 
simpler form: 
 

q X1 + 
dT

ds
 = 0, q Xn + 

1

T

ρ
 = 0, X2 = X3 = … = Xn−1 = 0, 

 
and one will see that the string is always arranged in such a way that the osculating plane 
contain the accelerating force at any point.  The equilibrium curve is then planar in the 
case of forces that emanate from a center.  If the accelerating force X has an invariable 
direction then what was expressed in (II, 1) can be written: 
 

d

ds

ϕ
 = 

1

ρ
, 

 
in which ϕ is the inclination of the tangent to the string with respect to the direction of X.  
The first two equations of equilibrium, which are the only ones that we agree to take into 
account, become: 

q X cos ϕ +
dT

ds
= 0, q X sin ϕ =

T

ρ
, 

 
and when one eliminates X and integrates, it will be easy to deduce that T sin ϕ keeps a 
constant value T0 all along the string, in such a way that one has: 
 

T = 0

sin

T

ϕ
, X = 0

2sin

T

qρ ϕ
. 

 
That presents two noteworthy special cases: If the string is homogeneous (i.e., q is 
constant) then the last equation will give: 
 

X = 2sin

a

ρ ϕ
,  ∫ X ds = − a cot ϕ, 
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after one sets T0 = aq.  It then follows that the intrinsic equation of the equilibrium curve 
will be: 

ρ = ( )21 1
a X ds

X a
 +  

∫ . 

 
Hence, if the string is inhomogeneous (but one can still vary the density from one 
extreme to the other in such a way that one has equal resistance to the action of 
deformation everywhere) then one will need to set T = aq, with a constant, in which case, 
one can deduce from the second equation of equilibrium that: 
 

X = 
sin

a

ρ ϕ
,  ∫ X ds = a log tan 

2

ϕ
; 

hence: 

ρ = 
1 1

2
a aX ds X dsa

e e
X

− ∫ ∫+ 
 

. 

 
For example, when X is constant (and one can always suppose that X = 1 then), as one has 
for a ponderous string that is fixed at two points and is in equilibrium under the action of 
gravity, the two preceding intrinsic equations that were obtained will become: 
 

ρ = a +
2s

a
, ρ = ( )/ /

2
s a s aa

e e−+ , 

 
which represent the ordinary catenary and the catenary of equal resistance, resp.  That 
explains the reason for the names that are given to those curves (I, 5, b, c). 
 One can treat other known questions of mechanics with equal rapidity and simplicity 
of means, and we encourage the reader to attempt to apply the method that was discussed 
to the study of the deformations of fibers or material lines that run through an elastic 
body and consider, in place of tension, the internal forces that act on each element of the 
fiber in all directions.  The formulas that one obtains in that way can offer advantages in 
the treatment of special problems that are analogous to those of curvilinear coordinates. 
 
 

__________ 
 
 

Additional note: 
 

 The theorem that was stated above (viz., the string is always arranged in such a way 
that the osculating plane contain the accelerating force at any point) is another way of 
explaining (XI, 8) why a string that is stretched on a surface will take the form of a 
geodetic.  Indeed, the surface tends to oppose the tendency of the string to rectify with a 
normal reaction F, which must also lie in the osculating plane of the equilibrium curve.  
It is then such that the osculating plane at each point will be normal to the surface, and 
therefore a geodetic.  In addition, one will see that: 
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ρ q F = T = constant, 
 

i.e., the reaction, when computed per unit length, is proportional to the curvature of the 
string, and that will also explain why the reaction is missing from the points of contact 
between the string and the asymptotes of the surface. 


