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CHAPTER |

INTRINSIC DISCUSSION OF PLANE CURVES

1. Tangents and normals— Let M andM’be two points on a plane curve. MRk
and makeM’tend toM along the curve. If the lin®M’ tends to occupy a limiting
position then it will take on the nametahgent and the perpendicular to the tangent that
is raised aM will be called thenormalto the curve aM. Always suppose that if one is
given M then one can taki! ' close enough t® for the arcMM’ to admit a tangent at
any point, and in addition, the angtebetween the tangent & and a fixed line will
always vary in one sense whihis indefinitely close tdV”. Under those conditions, it
will be clear that the lengtbs of the arcMM’, which is greater than that of the chord
MM, will be less than the sum of the distangesdv from M “to the normal and tangent
atM, resp. in such a way that one will have:

JUR+HV < B<u+y,

and then, by the definition itself of the tangent, whkrtends tdM:

lim Y=o, (1)
u
one will also have:
lim §: 1. (2)
u

T
C

O

From now on, we shall always assume that the indepéenadeiable is the length of the
arc OM that is contacted in a given sense by starting frororagin O that is chosen
arbitrarily from the points of the curve in such a marthat it establishes the increment
that it experiences when one passes fio M’ as the principal infinitesimal — i.e., the
length Js of the ardVIM’— and one will see from (2) that one can repléswith u in the
search for the limits of the ratios. (1) will thelmow thatv is a higher-order infinitesimal.
Therefore, from the infinitude of lines that pass throligh

M
¢ T tang.
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The tangent is characterized by the fact that its distances to two pbattsare
infinitely-close to M are higher-order infinitesimals.

2. Curvature. — Suppose that the point of intersectidof the normals avl andM’
tends to a limiting positiol© whenM’tends toM. The pointC is called thecenter of
curvature and its distance froivl (when measured in a given sense) isrddius of
curvature which is habitually represented py Since it is natural for one to say that the
infinitesimal arcMM “is more or less curved according to whether the pdistmore or
less close taM, resp., one will be led to take lp/to bethe measure of the curvature
Meanwhile, one has:

MC = lim MN = lim (v + u cot o¢) = |im5i¢;
hence:
=lim @ (3)

Therefore, the curvature can also be considered tcebentit of the ratio of the anglég

to the arc lengtlds. Obviously,p will vary from one point to the other along thee

in general — i.e.the curvature is a function of the arc lengttand one quickly sees that
knowing that function will be enough to define tteem of the curve, but not to fix its
positionin the plane. For that reason, the relation:

f(sp=0

betweers andp that one has at any point of a curve will be chtleeintrinsic equation
of that curve.

3. — The angleg is also a function of, and the equality (3) then says that the
curvature is precisely the derivative of that fumet It then follows that if one computes
the angleg by starting from the tangent to the (arbitraryigior of the arc then one will

have:
_ sds
¢_ .[0;’

provided that the integral has been given a sehRsnce, one can always have that there
exists a tangent at any point of the @l along the curve that is under consideration,
because it is enough to assume that oi@iis sufficiently close taM. The functiong
has great importance for the discussion of plameesuwhen they are given by means of
their intrinsic equations. 1§ becomes infinite when tends to a finite or infinite limit
then the tangent at the corresponding pdihwill cease to exist. We shall always
suppose that this happens only at isolated points.
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4. For the moment, transport the origin of the arcd/it@nd takeM’to be close
enough taM that any point with an indeterminate tangent is excldosd the araVIM .
If one observes that one has:

du dv .
— = COS, —=5sIn 4
s ¢ s ¢ (4)

thenl’Hopital’'s rule will immediately give:
1.

==lim—— = — 5
> (5)

asM’tends toM. Hence, the distance from the tangdnto the points that are infinitely-
close toM is generally a second-order infinitesimal. Howewe will become an
infinitesimal of higher or lower orderaccording to whether the curvaturezisro or
infinite, respectively. Now, observe that if one is gitke intrinsic equation, and one
calculatesg then the integration of (4) will provide andv as functions o, and will
permit one to construct arbitrary arcs of the cutlat do not contain points with
indeterminate tangents. It is then proved thatvth@us pieces of a curve, when free of
tangents only at their extremes, are determinethéyorm of the intrinsic equations, and
also remain arbitrary in their mutual dispositigust like the situation for the whole
curve in the plane.

5. Examples:

a) If the curvature is zero at any point then onk kdve ¢ = 0,u =s, v =0, and the
line will be straight More generally, one can findcacumferenceof radiusa whenp =
a. In fact, one will have:

¢:

S .S S

—, u=asin—, v:a(l—cos—j,

a a a

and one will see immediately that all of the poiotshe curve are at a distanceadfom
the unigque center of curvature, and that all of eemals are concurrent at it. In
particular, one can considgr= 0 to be the intrinsic equation of an isolatechpo Any

arbitrary equation that contains only the variablevill represent a set of points and
circles, real or imaginary.

b) One calls the curve that is represented by theten:

2
p:a+s_
a
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acatenary

T A

One haso = a at the origin of the arc. Hence, wheimcreases indefinitelyy will also
increase to infinity, while:
$=| 95 _ arctan® (6)
0 p a

will increase from 0 torr/ 2. Therefore, the tangents will tend to arrangamdelves
perpendicularly to their initial positions, and meanwttiley will move to infinity, since:

u:ajyjﬂ =alog tan £+7—T
0 cosp 2 4

increases indefinitely witk. Things happen the same way for negasiv€he curve is
obviously symmetric with respect to the normallet origin. The parallel to the tangent
that goes through the origin at a distanceaaf such a way that it does not meet the
curve is called thdirectrix. Now:

_ ¢ sing _a
V_ajocosz¢d¢_cos¢ &

and if one then projectsl onto the directrix aP thenthe projection of MP onto the
normal will be constantly equal to dn addition, since one has, from (6} a tan g, the
projection of MP onto the tangent is equal to te @M. Finally, if one observes that
pcos ¢ = athen one will see thahe center of curvature at M is symmetric to th@po
at which the normal meets the directrix with regged\.

¢) Thecatenary of equal resistance:
,0: %(es/a+ e—sla)

resembles the preceding. The calculatiog &fads to the formula:
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a ¢ T
=—, s=alogtan| = +— |,
b= gtan( §+7]

from which, one sees thatand ¢ vary withs as they do for the catenary. In addition, the
first formula shows thathe projection of the radius of curvatuasmto the normal at the
origin of the ards constant One should also note the formulas a¢, v=a logp/ a,
which are obtained by integrating (4).

6. Inflection points and cusps.— Recall formula (5) and observe that when the
curvature has a finite, non-zero value at a pbinthe curve will be situated entirely on
just one side of the tangent (in the vicinityhd), since one can conclude thapreserves
the sign ofp asM’ tends toM, no matter what the sign of Moreover, suppose that
when p is measured along the arc when starting fMmt will tend to zero or increase
indefinitely like then™ power ofs. That will always be the case when an algebraic
relation intercedes betwesrand o, in which case, one can confirm thrais rational, in
addition. Now, if one supposes timet 1 then one will have:

im =L - 1 S )
u*" 2-n u™  (2-n)d-n) p

and one will again recognize that one will hav@gher-ordercontact between the curve
and the tangent only whemis infinite (h < 0) and dower-ordercontact wherp is zero
(0 <n < 1). In either case, the curve will have thealdorm around the point in
guestion ifn is the quotient of an even number by an odd numbtywever, whem is
the quotient of two odd numberswill change sign, along with — i.e., the curve will
cross the tangent 8 — and one can also see that more directly by wlogpthat o will
change sign witts. In that case, the poit will be called annflection or inflection
point. On the contrary, if is the quotient of an odd number by an even nurtiissr the
infinitesimalu will be capable of taking on only positive valués, each of whichy will
take on two values with opposite signs. Thereftire,curve will exist on just one side of
the normal, and it will admit two branches thataepe from the tangent. One then says
that one has euspatM or thatM is apoint of regression Cusps and inflections can then
be presented for only those values tfiat are roots of the equations:

and it is useful to note that if one considers ahly simple roots then the first equation
will yield cusps and the second one, inflections.
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7. Asymptotes.— If the functiong tends to a finite limia ass becomes infinite then
the curvature cannot tend to a non-zero limit, sinoméf assumes the existence of such a
limit then since one has:

a:IimS—Z = lim (¢+%} :a+lim%, (8)

one would necessarily see thramust increase to infinity wite One would then have a
point of higher-order contact whose coordinates with spe the tangent and the
normal at an arbitrary point (but which one supposes to bega chosen in such a way
that ¢ remains finite) would be obtained by integrating (4):

u:j:p cosgdg, vzj:p singdg.

It is possible that the preceding integrals are infirated the point considered will then
be at infinity, but the tangent to the curve at thamtpaill be well-defined in terms of the
anglea and the distance from the origin:

g=usina—vcosa= j:p sin (@—¢) dg,

which can have a well-defined value. The line thus-obdainéhich is the limiting
position of the tangent to a poikt that moves indefinitely along a given branch of the
curve, is called aasymptote.Now, observe that the final formula tells one vadie of
the distance) from the asymptote to any point of the curve. If amgpeses that it goes

back towards the closest point at whighecomes infinite then the expressiondowill
transform into:

j_‘;p sin (@— @) dg = j:p sin g dy
when one takeg — ¢ = . Hence, if one calculates:
» ds
=\ —,
=

and if one determines as a function ofy then the desired distance will be given by the
formula:

a= [ p singdy. 9)

However, if one supposes, in turn, that the point mavesfinitely along that branch of
the curve that was traversed already by the point ofact then it will be clear that
will tend to zero, and one can then also say thati.e., the distance from the moving
point on the curve to the asymptote — will tenddwm. Finally, observe that, by virtue of
(8), the asymptote can exist only whers infinitely large of a higher order, along wih
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If one finds that the order is measured by the quotiennoddd number by an even

number then one can say that the curve will behavefiity as it does around an

ordinary point, and it will then have two branches tietend to infinity in two senses

that give one part of the asymptote. However, if tlileois measured by the quotient of
an integer (odd or even) by an odd number then the twalearwill separate from the

asymptote and will extend in two senses or just one sdnsthe former case, one will

have arinflectional asymptote, while in the latter, one will haveuspidalasymptote.

il

8. Examples:

a) The curve that is represented by the equagbrs 2as will have a point of
regression at the origin. An infinite spiral will thenwind around the origin that that
extends to infinity with decreasing curvature. Indee, will havep = as and one will
then see thap and ¢, which go to zero witls, will increase indefinitely along witk.
The distance from any point to the cuspidal tangenttielh be:

v=a ¢ singdp=a(sing- g cosg).

Hence, the distance from the center of curvaturéaoline will bea sin ¢, and therthe
centers of curvature will be on a circumferermieradiusa. In addition, sinceMC is
precisely equal to the a©C of the circumference, one can imagine that the cigve
described by one of the two ends of an inextensible sthagis wrapped around the
circumference, while the other end is kept fixed and thegsts unwrapped while it is
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always kept tense. For that reason, the curve coesidggiven the name of tievolute
of the circle.

b) One calls the curve that is defined by the equatiera +/ €' - 1 thetractrix.
If one supposes tha is infinitesimal then one will see immediately tthae curve
behaves around the origin like the involute of the cirtlat tis represented by the
equationp = \/ZTIS. However, ass increases to infinity, the anglg (which always

increases) will tend tar/ 2, since one hgg=atang, and since:
u= j:pcos¢ dg =a (1 — cosp)

tends toa, one will see that an asymptote will exist at a ditanfrom the cusp and
perpendicular to the cuspidal tangent. In additionnfithe second formula that was
found,the segment of the tangent that is included betweepoint of the contact and the
asymptote is constantly equal tpaad the first formula leads to a simple constructibn
the center of curvature, which shows ttta center of curvature projects to the foot of
the tangent on the asymptote.Finally, in order to take into account the two
determinations thap has for each value & one needs to imagine that the curve is
composed of two infinite branches that are symmetrith wespect to the common
cuspidal tangent.

c) The class of curves that are defined by the equation:

s p?
PO

is very important. In order to satisfy it, take a sin 8, p = b cosg, in such a way thap

= %6’. An arc of length & that is symmetric with respect to the origin is coatgly

contained with the circle of radids which touches it at its origin viz4 = 0) and
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terminates at two cusp® € = 77/ 2). The coordinates of one cusp with respechéo t
tangent and the normal at the origin are:

2
u :aj lzcosa—ecosede :—%cos@,
0 b a - -b 2b
72 . a@ ba.2 ab2 .
v=a sin—cos@ddé = - sin—.
IO b a’-b* a*-n 2b

The cuspidal tangents then agree at a gothiat is situated at distances of:

ab? ba?
a’-b*’ a?-b?

from the cusp and the origin, respectively. Thewnference that is described by the
centerP and radiusit’ : (a® —b?) is called thalirectrix. In order to take into account the
change in sign op whens becomes equal ta, one needs to imagine that the curve is
composed of more arcs that are tangent to each attliee cusps; their locus is precisely
the directrix. Depending upon whether> b or a < b, the curve will beexternal or
internal to the directrix, respectively. In the former&asne calls it aepicycloid while

in the latter, it is daypocycloid

A A

ialz

O

Of particular note is theycloid. It is represented by the equatin+ o/ = a2 and it
is the curve that separates the hypocycloids from épicycloids, so to speak; its
directrices are rectilinear. In general, the nundfeusps is infinite, but for the cycloidal
lines that one usually considers the ratiob is rational, and for them the cusps must fall
upon a certain finite number of points that arevésices of a regular polygon. They can
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be encountered in the same order in which the diredtibows a point on the
circumference that traverses the curve in a continu@ys but it can also happen that the
moving point successively reaches the cusps in the other, ardkthen one will have a
stellatecycloidal line. The simplest epicycloids are theotieat have just one cusp. In
order for the moving point to return # without encountering any other cusps after
starting from the cusp, it is necessary that the angle between the poslireetions of
the cuspidal tangent and the tangent at the origin.—-az/ 2b — should be equal to an
odd number % 3) timessz/ 2. In the simplest case, one will haave 3b, and then one
will then have thecardioid, which is then represented by the equatibn+ 20 ? =
constant More generally, if is an odd number then the equatifr n? 2p? = constant
will represent a monocuspidal epicycloid, which will be even more complicated
stellate cardioidforn=5, 7, 9, ...

The simplest hypocycloids are the ones that have thrdour cusps. For them, the
angler— rra / b is the third or fourth part of72 and one will then havie = 3a for the
tricuspids, and = 2a for the others. Hence, the tricuspid is representetthdgquation
9’ + p? = constant For five cusps, in addition to the hypocycloid?5 9p? = constant
one also has the stellate hypocycloid?26 90 = constant etc.

d) Pseudo-cycloidare the curves that are represented by the equations:
- =a pf-s=d,

which can be satisfied by taking:

_a & - _a b -
=—(e"xe”), = — (€ e’),
2( o) 2( T e’
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in which ¢ has the usual meaning. The first curve has a guspd(s = a), around which

it behaves like the involute of a circle of radaiaround its cusps. By contrast, the other
2

one behaves almost like a caten%rq: a+;—j around the origing =0,p=a). Ass

a

increases, both of them will unwrap into an infinifgral that extends to infinity, and
they will tend to meet the lines that emanate fropoiat at an angle ofr/ 4. In fact, if
one chooses the origihof the coordinates andv suitably then one will have:

u=2(scosg¢ + psing), V= 1(ssing - pcosg)

for any point. It will then follow that the cuspidgteeudo-cycloid will meet the radius
vectors at an angle that will increase from O#o4, while that same angle must decrease
from 77/ 2 to 77/ 4 for the other one. In addition, theojections of the radius vector PM
onto the tangent and normal at M are equal to one-half the arc length and onééalf t
radius of curvature at M, respectively.

9. Asymptotic points.— We must further consider the roots pfthat make the
function ¢ infinite. No tangent will exist at the poiMM that corresponds to them.
However, by hypothesis, one will exist at a pdihtthat is sufficiently close t¥ and at
all intermediate points. WheN "’ tends toM, the tangent aM’, which executes an
infinitude of revolutions in one sense, will conclude bgdraing indeterminate. The
curve will then wind around the poiM indefinitely, and for that reason, it is called an
asymptotic point although it can also be reached fravii after traversing a finite
distance. The coordinates of such a point are calculatentegrating (4), which will
give:

u= j:p cosgdg, v= j:p sin ¢ dg, (10)

if one assumes that is the integration variable, provided that one chodsestigin in
such a way thap remains infinite in the course of integration, whichassay that no
other points with indeterminate tangents exist between difigin and the point
considered. One rapidly confirms the existence ofsymatotic point aM when one
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finds thatp is infinitesimal along witts of an order that is not less than 1, assuming that
one measures the arc length frbhras the origin. Indeed, one then has:

im -2 = imS 20,
logs P
instead of (7), and fan > 1:
imgst=——1 jimS%0:
n-1 o

i.e., ¢ will become infinite whers and o tends to zero. Hence, one see$) ghat the
tangent is determinate for< 1.

10. Asymptotic circles.— In order to consider all cases of points with tedeinate
tangents, one must look for all valuessof finite or infinite — that make the function
@ infinite, and that is why one will have:

¢ _

. 1
Iim & =Ilim —,
S P

if one measures from the origin e, and one sees that when the right-hand side exists
finite values will annujo, and it will then correspond to an asymptotic poi®nly when

s increases indefinitely along witlh can one say thgb tends to a non-zero lima.
Instead of wrapping around a point, the curve thiin revolve asymptotically around a
circumference of radius externally or internally according to whether #iesolute value
of p stays greater than or less than its limit, resfmwever, one can also say that the
curve will end up meandering near the circumfergsg does not cease to oscillate
near its limit. As a result, one sees that theéerenf the asymptotic circumference is the
limiting position to which the center of curvatue¢ M will tend whenM moves
indefinitely along the curve from the origin of itgc length. In order to find the
coordinates, one then needs to adopt these insegral

u= j: cosgpds —psing, v= j: sin ¢ ds+ pcosg,
instead of (4). As a consequence, one will have:

u:—jjg—';)sin¢ds v:jjg—';)cowds (11)

in the limit. The asymptotic circles obviously inde the asymptotic points as special
cases, and one easily verifies by integration lsyspanoreover, that formulas (11) reduce
to (10) whenp tends to zero fop infinite. It is cleara priori that it is only near a point
that it can happen that the curve then wraps $alyiground the point that it will arrive
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at it after traversing a finite distance. The asyotiptcircle will also be infinitely large
when p and ¢ increases indefinitely witk, and one can then express that by saying that
the curve wraps around the point at infinity asymptoticalfpr example, one can say (8
8, a, b) that the involute of the circle and the pseudo-cysldiave an asymptotic point at
infinity.

11. Examples:

a) The radius of curvature of the line that is represgtty the equatiop = a &'?
increases from zero to infinity whenncreases through the entire system of real number.
The angle:

however, decreases from infinity to zero, and the curlleten admit an asymptotic
point (s=- ) and an asymptote € «) that is at a distance of:

J’ smz// _m
2

from it. The curve is defined geometrically by theoperty thatoy = a. On the
circumference that passes throldtwith its center aC, the perpendicular that is based
at C will sweep out an arc of constant length altimg asymptotevhen one starts M.

b) A linear equation irs andpthat actually contains the two variables can alwagys
reduced to the fornp = kswhen one takes the origin of the arc to be thatpati whichp
is annulled. The functiog (which is proportional to log) will become infinite at that
point. The origin of the arc will then be an asyatjat point of the curve, such that the
radius of curvature will always become larger wbee starts from that point, and it will
increase indefinitely with the arc length, lige. Hence, the curve will revolve around
the origin in an infinite spiral that extends tdinity, where it will admit another
asymptotic point. One gives the namdogfarithmic spiralto that noteworthy curve, and
the asymptotic point at a finite distance is calleelpole of the spiral. A homogeneous
equation betweesandp represents a set of logarithmic spirals — reatnaginary — and
also points or circles. The latter would be timaiting cases of the logarithmic spiral that
correspond to the zero or infinite valuekpfesp., as one will see better in what follows.
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¢) The property of the logarithmic spiral is easily dedlftem the expressions for
andyv relative to the pole when calculated at any point efdbrve. One immediately
obtains:

. 2
u :ksj0 e cos¢d¢:—1k S

oo . k’s
_ = k¢ =
Tk v ksJ'0 €’ sing d¢ 1

+Kk?

so k = cot g, if one lets@ denote the acute angle that the spiral makes théhradius
vectorOM andM. Hencethe logarithmic spiral will meet all of the linekat emanate
from the pole at a constant angleln what follows, we will see that this property
characterizes the logarithmic spiral, as long asextludes the values 0 ard 2 from 6,
which correspond to the lines and circumferencesp.r and which it will take on at a
finite distance from the pole, as well. Meanwhdege will have:

JUW+V = 11(; =ssind=psiné.

C

Thereforethe perpendicular to the radius vector OM that gdesugh O will meet the
normal to the center of curvature and sweep ouegngent on the tangent that has a
length that is equal to the arc length OM when etagts from M This is also (as one
sees) a characteristic property of the logarithspical.

d) One calls the curve that is defined by the equatp = a® aclothoid It will be
finite for s= 0 whenp is infinite, and infinite fors = + o whenp = 0. Hence, the origin
of the arc will be an inflection point, and if ostarts from it in the two senses then the
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curvature will always become more pronounced in such w that the curve will
asymptotically wrap around its extremes, which are plageonetrically with respect to
the origin. Since one has:

4= JSdS a’ a

p:_:i
S

¥

the coordinates of an asymptotic point with respedhe tangent and the normal at the
origin will be:
co sin

€ g, 9 4.

I T

Now, if one observes that:

U+|V——j ¢—l/2 ,¢d¢ a\/—

then one will find immediately that=v = %a\/TT. Hence, the two asymptotic points are
opposite vertices of a square that is equivalethidaircle of radius.

O<n<1

€) More generally, consider the curve that hasuiwature proportional to a power
of the arc length. Write its equation in the forrm = ks', and one will recover the
logarithmic spiral fom = 1, the clothoid fon = — 1, and the involute of the circle far=
1 /2. If one omits the case @t 1 then one will see immediately thawaries likes™™,
and one agrees to give the coefficikntvhich can always be assumed to be positive, the
form:

a.l—n

k=+ .
1-n
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o9

Having done that, whemis between 0 and 1, and it is the quotient of an oddoeurtny
an even number, one will have a curve that is analogotl® involute of a circle — i.e., it
will be endowed with just one cusp at the origin of larmyth, around which it spirals
with ever less curvature and wraps asymptotically aroungboie at infinity. For the
other rational values af that are found between 0 and 1, the curve, while having a
lower-order contact with the tangent at the origwil behave like an ordinary point or
experience an inflection, in such a way that its gerferah will be quite diverse from
that of the involute of the circle. For negativéhat are equal to the quotient of two odd
numbers, one will have a curve that is analogous tolotleoad — i.e., it will be endowed
with an inflection at the origin of the arc and two apyotic points. However, ifi is the
guotient of an even number by an odd numbevjaa versathen the curve, while having
higher-order contact with the tangent at the origiill behave like an ordinary point
there or admit a cusp and cease to resemble a clothaid/bsle, although each half of it
will resemble half of a clothoid. In any case, if a@opts (10) then one will recognize
that the origin is at a distance of:

a r(ﬂj

1-n

from the asymptotic points, and the line that jaimsm is inclined from the tangent at the

origin by . Finally, forn > 1, as for the logarithmic spirat € 1), one will have

2(1-n)
an asymptotic point at the origin of the arc. Huere the asymptotic point at infinity
will disappear, since will not become infinite along witk. In order to see whether the
point at infinity becomes an asymptote, it is erfotggadopt formula (8) by setting:

One immediately obtains the distance to the asytegtoint:
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_oa e
q—n—_ljoz/l tsingdy.

In the vicinity of the upper limit, the integral ii@ves as if the asymptote were at a finite
distanceonly for n> 2, and in that case, one will find that:

n>2

Whenn increases indefinitely, the curve will tend to degrate into a point and a line
that is situated at a distanceqof a from it. For each branch, one will then have: a@he
of lengtha, with an extreme at the asymptotic point, tendadoumulate at that point,
while the remaining portion of the curve will exteto the asymptote.

f) The curves that are represented by the equation:

p=b-=
a

are analogous to the catenary5(®), as long as andb have opposite signs. Fbr=-
a, one will recover the catenary, since it is pesibie to change the sign pf Forb = K

a, however, one will obtain thpseudo-catenary Whens is less tharka in absolute
value, one will find that:

¢:J-s ads :ilogka+s
ok?a?-s> 2k ~ka-s
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Therefore, a first arc of lengthk& wraps asymptotically around the extremes. It is
symmetric with respect to the origin and included cotepfewithin the circle of radius
k°a, which touches the curve at it origin. Since one has:

gt —egh 4k?a

s=ka ——, pP= ————————,
ek¢+ek¢ (ek¢+ek¢)2

the coordinates of an asymptotic point with respedhe tangent and the normal to the
origin will be:

u:4k2aj: cospdg _ ma v:4k2aj: singdg _ ma

(ek¢ N e—k¢)2 - g%k _ g2k’ (ek¢ N e—k¢)2 - Z(err/4k _ e—n/4k)'

They then locate the asymptotic points, and therdio branches that extend to infinity,
analogously to those of the spigal= ap. Their points correspond to the values tiat

are greater thaka or less than ka. For each branch, the direction of the tangent is
determined by the angle:

—— =—Jo .
o s-Ka& 2k gs— ka

« ads 1 s+ ka
w= | =

The two branches have no asymptotes at a finitardis, since the distance from one
asymptote to the corresponding asymptotic poingmgiven by the formula (9), is:
q= 4k2aj°° singdg

0 (ek¢ _ e—k¢)2 !

and on the other hand, one confirms that this nailedpes not have a finite value, so one
will observe that it behaves like lag in the vicinity of the lower limit. Since the two
infinite branches are connected with the finitenotaat the asymptotic points, this does
not result from the preceding discussion (and faehat was said at the end of4§ it
cannot result). However, it is easy to see thatrsdl each asymptotic point the curve
behaves like the pair of logarithmic spirafs= 4k s* around the common pole.

g) One calls the curve that is defined by the equati

p:ka\/m
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a pseudo-tractrix It coincides withp = k,/ 2as in the vicinity of the origin, and
therefore the pseudo-tractrix begins to unfold like the ineobf a circle of radiuk®a.
However, it soon changes its behavior sinzedoes not increase indefinitely with
increasings, but it tends tka. Therefore, the curve will admit two asymptoticctas,
which correspond to the two ways of determinmgSince one will have:

@ = i|og ka+p
2k ka-p

upon starting from the cuspidal tangent, formulh) (ill give:

u=- — - _ ’
0 (ek¢ + ek¢)2 2(eﬂ/4k + eﬂ/4k)

Joo singdg ma

v:i4k2aj: cosp dp =+ ™

(ek¢ N e—k¢)2 g2k _ gk

for the coordinates of the asymptotic circles. Bkrgment that is traced out along the
cuspidal normal by an asymptotic circumferenceeisnsfrom its center to subtend an
angle that cannot be as small as one desires. afgge is a minimum for a value kf
that is roughly 0.665, in which case, the distafioen the centers of the asymptotic
circles to the normal and the cuspidal tangentdraotions of the radius that are close to
the values 0.663 and 0.439, resp.

A

Os¢

AI

h) What sort of curves are represented by a quadedigation in s angb that has no
term ing# ? Whensp is missing, the equation (if it does not represepair of points)
will be reducible to the formp = as® + 2bs + ¢, and will represent the pseudo-catenary or
a curve that is analogous to the catenary accordinghetherac — b* is negative or
positive, resp. I§ois not missing then the equation can always bergitie form:

2

p:b+ks+a—.
S

@ will increase indefinitely along witkandp as long ak is positive. In additiongp will
also become infinite at the origin of the arcs, anound that point, the curve will behave
like a clothoid ép = &) in the vicinity of the inflection point. The ote will then inflect
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at the origin, and its two parts will spiral to infyniand tend to coincide with a
logarithmic spiral = ks). The radius of curvature will take on the minimum value

2a./ k at two well-defined point®\ and A’, and the curve will behave almost like a
catenary(,o:a’+2kzi,j around each of them. However,kifis negative then the
a

curvature will become infinite along with at the point#\ andA’. Those two points will
then be asymptotes, and the curve will behave areach of them the way that the pair
of spiralsg = 4 s* does around their common pole. Finallyk {(but notb) is zero then
the equation will represent a curve that is endowal a pair of asymptotic circles of
radiusb (one internal, one external), besides an inflectibthe origin, sincg tends tdo
ass increases indefinitely in absolute value, andhendther hand:

s & bs
=>-Z log| 1+—
¢ b b’ g( azj

will increase indefinitely. In additionp also increases to infinity whentends to the
value —a* : b. One will then have an asymptotic point at adimistance from the origin,
around which the curve behaves as the pair of Ismfac® = b* s does around their
common pole.

i) Now, if the term¢? is not missinghen the equation will generally be reducible
(for a suitable choice of origin) to one of theldaling forms:

p=b+kstk,a’ -, po=b+kstk,s-&, po=b+kstk,s+a .

In the exceptional case (i.e., when the terms odis@ degree constitute a perfect square)
the equation can, however, be given the farmb + ks+ ,/ 2as. As special caseb €

0, k = 0), one recovers the cycloid, the two pseuddedays, and the involute of the
circle. We leave the task of carrying out the gtod all those curves and classifying
them by a minimum number of normal types as anoes@ffor the reader.



CHAPTER I

FUNDAMENTAL FORMULAS FOR
THE INTRINSIC ANALYSIS OF PLANE CURVES

1. — From now on, we shall always assume that the ar@ghe tangents and the
normals to a curve at an arbitrary pdiht We consider a poirR that moves wittM: Let
P’be its position when the origM is transferred t&1’, and letx andy be the coordinates
of P with respect to the axes whose origin i¢atwhile x + ox andy + dy are those oP”.

In general, the coordinatesandy will vary when the initial axes pass over to thene
whose origin isM’. They will then be functions & and it is clear that ¥ “is infinitely
close toM then the coordinates &f with respect to the axes at the origdiwill be x +

dx, y + dy. Now, if one represents the coordinated/dfwith respect to the first axes by
u, v and the angle through which tkeaxis rotates when it passes from the first position
to the second one 3y then one will have:

X+dx=u+ X+ K) cosop—(y+ dy)sindpg =u+x+ XK-y g,
y+dy=v+ X+ X sinog + (y+ Jy) cosop=v+y+ody+xdp;

i.e., if one divides bys = dsand recalls the first three equalities of the precgdirapter
then one will get:
5X: dx——y+l ﬂ: ﬂ+l(

)

ds ds p ds ds p’

These are théundamental formulagsrom which, if one takegx and oy to be equal to
zero (i.e., one supposes thatcoincides withP) then one will immediately derive the
important conditions:

dx_ y _ 1 dy __Xx

— , -, 2
ds p ds Yo )

which arenecessary and sufficient for the immobility of gant (x, y). In polar
coordinatesX=r cos@, y =r sin ), those conditions will become:
dr dg __1_sind .
S

9 oy 3)

=-cosé,

If one would prefer that the line that is definedits distanceg from the origin and the
angle ¢ through which its positive direction rotates imler to make it coincide with that
of the tangent should be immobile in the plane thea would need to express the idea
that the equation of the line:

xsing+ycosg+q=0
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should be satisfied by the infinitude of solutions to (83 since one will get:

dg 1

E_; ds

(xcos¢—ysin¢)( j —sin¢+% =0

upon derivation, that relation must split into the (obvigwgometrical) other ones:

dg _ 1 dg_ .

— =—, —=sing, 4
ds p ds ¢ “)
which are necessary and sufficient for the immobility of the(ling).

y y’ P’

R
-

<

<

2. — Before we go any further, let us note some apunseces of formulas (3) and (4).
Suppose that the distance frdnto a fixed pointP tends to a finite limia ass increases
to infinity. The coordinates and @ of P satisfy (3), and sincetends toa, its derivative
cannot tend to a limit that is different from zerblence, if such a limit exists then the
first of (3) must give lim@= 77/ 2. Now, one can apply the same consideratiof) emd
the second formula (3) will then give lim= a. Therefore, the circle of radiesand
center aP will be an asymptotic circle to the curve. Corsady, when the curve admits
an asymptotic circle, the distance frdfinto the center of the circle cannot tend to a limit
that is different from the radius of the circlenc@ otherwise, a limit tg that is different
from the first one would exist. If one then obg=rv¥hat the coordinates of the center of
curvature are = p, = 77/ 2, and the first one tendsadhen one will see thahe center
of curvature will tend to collocate with the center of the asymptotide whenr
increases to infinity. That observation fills gpghat was left open in the first chapter (8
10) and leads to a more precise knowledge of the ptio circles. Analogously, the
second formula (4) will permit one to make an otsgon that is useful in the search for
asymptotes, since ¢ tends to the limit zero fog infinite theng cannot have any other
limit; that is to sayif the tangent admits a limiting position then it will necessadréythe
fixed line considerect., |, 87).

3. — The following noteworthy fact will emerge fromrfulas (2) and (4), and it is
fundamental to intrinsic geometry: The parametieas serve to fix the points and lines in
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the plane are functions ef whose derivatives are expressed by means of those functions.
(2) will then show that the first derivatives of tbeordinatesx, y of a fixed point are
linear functions of those coordinates, and one caartate same thing for the successive
derivatives, as one will see when one differentiaied applies (2) repeatedly. Having
done that, when one seeks the curve that has a geeerty, one will generally be led to

a relation:

fxy,X,y,....6.0 0,4, ...,9 =0,

which includes a certain number of coordinates for p@ntslines that are fixed in the
plane and which must be true for ayNow, it is clear that it is enough to differentiate
that relation in order to obtain another one betweensdime coordinates immediately
that makes the derivatives of the coordinates disappbankg to the immobility
condition. In that way, one will discover not only enproperty of the unknown curve,
but if one continues to differentiate then one will @& succeed in constituting a system
of relations such that it is possible to eliminatedberdinates, y, X, ... One will then
need to integrate the differential equation that resudts the elimination in order to find
the intrinsic equation of the desired curve.

4. Geometric loci.— Suppose that the coordinatesy of a pointP are known as
functions ofs. How does one proceed in order to determine the locu®?0fThe
fundamental formulas will immediately provide the valoésx and dy. One can then
express the elementary arc lengthR)fify ds? = & + J/, that is:

s :j/(ds, (5

2 2
/(2: 2(—_)/+1 + E/+_X .
ds p ds p
If one determines the inclinatiofl of the tangent aP to the unknown lineR) with
respect to the-axis by means of the formula t#&~= dy . ox then one will observe that
the inclinations of the tangent tB)(at P’ with respect to the tangents to the i) @tM

andM’will be 8+ d¢p”and &+ dg, in such a way that one will havg’= d¢ + dg, and
then if one divides bgs one will get:

in which one has set:

i: 1-}-% (6)

P p ds’

as long as the positive sense of the normaPhais( established in such a way that one
rotates the positive direction of the tangent untdoincides with that of thg-axis, and
the positive direction of the normal also coincidgth that of they-axis. Finally, it is
enough to eliminate from (5) and (6) to obtain the intrinsic equatfon (P).
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5. Envelopes— The equatiof (X, y, s) = 0 generally represents a simple infinitude of
lines, each of which corresponds to a well-defined poongthe line {1). The lines
that correspond to the infinitely-close poiftsandM’ can have one or more points in
common, which can be regarded as fixed under the passége @figin fromM to M".
The coordinates of those points are then obtained Bréiffiating the equatidrn= 0 and
supposing that the conditions (2) are satisfied, so Wdythen be solutions to the

system:
y _,)of _xaf  of _
f(xy,s =0, RANEN LA A 7
¥, [p jax 3y s ©

If x andy are known as functions sfthen it will be enough to apply the procedure that
was posed in the preceding paragraph in order to obtainttimsic equation of the locus
of the aforementioned points of intersection. One call that locus thenvelopeof the
linesf = 0. Nonetheless, it can happen that (7) reducesttomgsequation, and one will
then have just one curve, such as, for example, Whef is also the equation d¥j.
That observation will prove useful in what follows.

6. — One easily shows that tle@velope touches all of the lines that are enveloped.
Indeed, letP be a point that is common to two linés= O that correspond to two
infinitely-close pointav andM “on the curvelfl). Let dand @’ be the inclinations of the
x-axis with respect to the tangentsPato the envelope and the evolute, resp. Obviously,
if one fixess then the value of ta@’will be given by the rati@y : &, which one will get
from the relation:

of of

—Ox+—0y=0.
0x oy

However,@is determined by the process that was indicated4inrgsuch a way that one

will have:
tan@d= dy X Q( y tan@’ = af af
ds Yo ds p X 6y

in which x andy satisfy (7). Now, if one forms tar6( 6’) then one will get the
expression:

dx vy af dy x)of_ of dx afdy _ylaf x0 f
0X p0 )

———=+1
ds p ax ds Yo ay axds dyds | p

in the numerator, and that will reduce to:

of dx_ of dy of_ df

— e T = o,

axds 6yds 0¢ ds
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by virtue of (7). Therefored= &'

7. Exercises:

a) Find the intrinsic equation of a circumferencéradiusa; i.e., the locus of points
that are at a distance from a fixed point (viz., theente). One can proceed in the
following way: Ifx andy are the coordinates of the center then one must akawesé +
y? = & differentiate that then and observe (2)xso0. Therefore, one will have, at the
same time, thatll of the normals are concurrent at the centérone differentiates again
then one will gey = p; hence, if one substitutesandy in the first relation then one will
havep =a.

b) Find all lines that have constant curvaturtt.is enough to observe that whets
constant, the conditions (2) will be satisfied by pgwnt x = 0,y = p). That point is
therefore fixed, and the curve will necessarily be euonference of radiug, since all of
its points will be found at theonstantdistanceo from the fixed point (0p).

¢) What curves will meet all of the lines that go through a point at a corestayte
&? 1If one applies (3) to the polar coordinates7/t— 6 of the fixed point then one will
get:
Ezcosa 0=—1 —Smg.
ds p T
One deduces from the first one that s cos g, if one agrees to measure the arc lengths
by starting from the fixed point. If one substésitthat in the second one then one will
find thatp = s cot § which is the equation (I, 1, b, c) of alogarithmic spiral.

d) What is the curve whose norm@between the points of incidence and the centers
of curvature)bisect a line2We need to express the idea that the poirt Q,y = p/ 2)
describes a line. Now, (1) gives:

ox_1  oy_1dp

ds 2 ds 2ds’
One will then have tafl=dp/ ds and (6) will show that one must have:

dé 1
—=-—, ®
ds Yo

which will, moreover, result immediately from thbservation that? will differ from the
usualg only in sign in the case of fixed line. Therefomee will have, in turn:
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tan 9% =- ld_p log cosf = log p + constant, p=acosé.
ds p ds

If one integrates (8), after inverting the sensevinch one measures the arc length and
conveniently fixing the origin, then will have:

S= jpde =asiné.

Therefores® + 7 = &, i.e. (I, §8, c) the stated property characterizesdpeloid.

e) Find a curve that has its centers of curvature symmetric witheatsto that
curve, such that the normals at its points meet a liNew, the pointX =0,y = - p)
must move along a line. If we repeat the calooitetiof the preceding exercise then we
will get, in turn:

Q: 2, ﬂ:—%’ tang:-i%.
ds ds ds 2 ds
Hence:
dé 1 dp a
tanf — =——, log cosf=-1lo + constant, = .
ds 2p ds g 9yp p cos 4

and finally, if one inverts the sense in which omeasures the arc length:

2

s:jpdezatane, p:a+S—.
a

That is (cf., I, 8, b) the equation of aatenary

f) Find a curve such that the segment of the tangent that is cut out g aten
one starts from the point of contact is constanhis is treated by expressing the idea that
the point k = a, y = 0) describes a line. Now, one has:

oX 1, Q:E, tang=2.
ds ds p P

When the last equality is put into the form:

0058%:—1,
ds a

thanks to (8), one will deduce, in turn:
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log sinez—g, p=acotf=a/ € -1 ;

i.e., one will get (I, 8, b) the intrinsic equation of @actrix.

g) Find a curve whose radius of curvature at any pa@rgqual to the segment that is
cut out from the normal by two parallel lineln other words, i& is the distance between
the two lines then the projection of the radiuscofvature onto a fixed line must be
constantly equal ta, in such a way tha = p sin @. In order to express the invariability
of the direction of the line, one has:

%ziz—sm¢'
s p a
hence:
_i%: 1, log tan? =3, -G TR}
sing ds a 2 a sing 2

The desired curve is then (158c) acatenary of equal resistance.

h) What curve has a point in its plane such that projection of the radius vector
onto the tangent is proportional to the arc lengthi?e need to have = ks for a solution
(%, y) of (2). Now, the first condition (2) shows tltate must also hawe= (k + 1) o, and
the second one leads to an equation that will give:

ks + (k + 1) &/ = constant

when integrated. If the constant is taken to heaktp zero then one will obtain a pair of
logarithmic spirals. Otherwise, one will have guicgcloid (k > 0), a hypocycloidi < -
1), or (fork found between 0 and — 1) a curve of pseudo-cyaldige (I, 88, d). If the
equation of the curve is given the form:

s p?
2l

then one will easily find the value &f one will then have:
_ b’s _a’s
X= a2-b’ y= a-b’
In order to show that these are the coordinatethefcenterP of the directrix of the
circumference (I, 8, ¢), it is enough to observe thais annulled along with, that is to

say, that the point that was found is the one atlwthe cuspidal tangents are concurrent.
One will find, in addition, thak becomes equal to precisely the radius of the tlirec
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i) In order tofind all curves that are similar to a given cunieis enough to observe
that if r and @ are the polar coordinates of the center of similitudié wespect to the
given curve then the first coordinate will be mulgaliby a constark, while the other
one will remain unaltered with respect to any similar eur¥he conditions (3) will then
become:

dr dé 1  sing.

k—=-cos@ —_— =t
ds ds o kr

it will then happen that one hds=ks p’=ko. One will therefore get the curves that are
similar to a given curve with and o multiplied by an arbitrary constant in the equasio
of those curves. In particular, note that if onegeeds in that way for the equatiqafs
2as & + (f = &, etc., then one will succeed in only changinguhkie ofa. Hence, the
involutes of the circle are all mutually-similarrgas, and one can say the same thing
about cycloids, catenaries, etc. However, anyalireguation ins and o will remain
essentially unaltered, and the curves that ardagina a given logarithmic spiral can all
be superimposed upon that spiral then. In othedsydhe logarithmic spirals have the
peculiar property thahey do not deform when they dilgégually in all directions) about
an arbitrary point. Dilatations resolve into angiation followed by a rotation around the
new position of the pole for them.

J) Just as two (similar) curves can be arranged theththe tangents aparallel at
two pointsM andM “along a straight line with a fixed poiRf it can also happen that the
tangents to two curves at poilftsandM’ that are collinear witl? are, on the contrary,
anti-parallel with respect ttMM . The curves are then calletverse andP is thecenter
of inversion. The polar coordinates &f are ¢, 6) with respect to the curvéM) and ¢,

6) with respect tM’. Obviously,8’= m— 8 when one agrees thisk andM ’can traverse
the respective curves in the same sense in suadydhat they preserve the straight line
throughP, and the normal td{”) is directed according to the convention that wasle

in 84. Now, if one observes that the inclination of thegent atN1’) with respect to the
tangent to ) is 26then formula (6) will give:

K 1,,00_ s do

F p ds r ds
On the other hand, the conditions (3) will become:

dr’ K _ ksing dé&
— = KCOS¥, =t
ds Yo r ds

and if one compares the last relation with the birge that was obtained then one will see
that xk = r’: r, which would result immediately from a simple gesint consideration,
moreover. Having done that, one will have:
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dar' r' r' dr
—=—c0sf=—- ——,
ds r r ds

and therefore, when one integrates thig:= a>. The circle of radiua with its center at
P is the fundamental circle of inversion: All of the pisi of intersection of the two curves
will necessarily fall along its circumference, sinceannot become equal sowith the
same thing being true fat. Finally, if one substitutes the value nofn the first relation
then one will get:

I

L+r—,: 2 siné,
P P

and the geometric interpretation of that equality wihs thatthe centers of curvature at
two corresponding points will also be collinear lwthe center of inversion.

k) Inversions do not differ essentially from the tramsfations with index — 1. The
transformation of index eonsists of making a given point correspond to anotheat poi
whose multiplier is proportional to thé” power of the multiplier of the first point.
Proceeding as for the inversions, one will easily sedde proving thathe tangents at
two corresponding points will be concurrent alomg ttircumference that is determined
by those points and the ppknd one will find the relations:

a.V—l Sr — V'[ r.V—lds, a.V—l p/: vr p : ,
r+(v-1)ppsind

from which, one can deduce the intrinsic equation ofttdwesform with indexs of any
curve when one eliminatess

I) Given a curvefind the base with respect to a poine., the locus of the feet of
the perpendiculars to the tangents to the curve thadrapped from a fixed poirR. If
one applies formulas (1) to the coordinatesr cos g, y = 0 of the projectiorM’ of P
onto the tangent then one will get:

Q :Lsina ﬂ :Lcose;

ds p ds p

hence,dy : & = cot €. It will then follow that the normal to the baseanti-parallel to
PM with respect to the tangents fd)( and it is thereforeivided by one-half the radius
vector PM In addition, one sees thatr : p, and if one is careful to chandgento 77/ 2
— @then formula (6) will become:

ro_1_dé _2_sind

o p ds p x
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Therefore, the intrinsic equation of the base willutedrom eliminatings from the
equalities:

r2

r

s = |—ds, (e
J,0 p 2r — psin@

If the given curve is, for example, a circumferedeadiusa, and if P belongs to the

circumference, in such a way that a, s= 2a8, r = 2a sin g, then the last formula will

imply, in turn:

S = 4ajsin9ds:—4acose, p’:4—:sin9, s?+90'?=164a%

Therefore (I, 88, c), the desired base will becardioid. To conclude, observe that the
expression fop’ leads to the following simple construction foe ttenter of curvature
C': If the projection H of the center of curvature bktgiven curve onto the radius
vector is projected onto the normal at N then time IPN will contain the center of
curvature of the foot.Indeed, ifL is the projection oP onto the normal an@ is the
point of intersection of the radius vector wittM’ (normal to the base) then the
transversaPCN to the triangleeMQ will give:

r-o _LC _PM DLN—Z r—psingd

, etc.

0-r/2 QC PQ MN ~ psind

m) The curves that hawbeir curvatures proportional to the length of thegment of
the normal that is found between the point of iene and a fixed linare important. In
other words, the ratigp : cos ¢ has a constant value for those curves. Firstllpf a
suppose that it is negative, in such a way thatcanewrite:
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8.2 2 d . 2d2q
=—-—cosg=—-a —sing=—-a—,
g Yo, 4 ds ¢ ds’

by virtue of (4). It will then follow that if one fixeshe origin of the arc length
conveniently therg = ka coss/ a, in whichk represents an arbitrary constant that can
always be assumed to be positive. Derivation wileggin ¢ the value kK sins/ a, and
these three relations:

2
q:kacosé, sin¢:—ksin§, p:—a—cos¢
a a P

will be enough to account for the form of the curvesie @asp = 0,g=ka, p=—a:kat
the origin 6= 0). Therefore, the curve will issue from the origiriwo senses in parallel
to the fixed line, and it will always approach that linerenclosely as increases. k<1
then one can varyuntil one has 7ra/ 2, and one will then have that = ¥k, q=0,

p = oo, that is to say, the curve terminates by crossingitigedf inflection. The line
therefore breaks into an infinitude of equal arcs of lemgtheach of which is bounded
on that line by two inflection points, and the tangeittshose points are constructed by
observing that its parallel to the chord (of leng}tihat goes from the origi® will have
intersection points of the line with the circumferemnloat is described by the radius of
curvature a0 for its diameter. 1k > 1 thens cannot attai 7a/ 2, since the value that
is associated with sigg cannot exceed unity. As soon as one has sm=+ 1 /k with
increasings, ¢ will become equal tar 77/ 2, andp will be annulled, whileg will take on

the valuea,/ k* =1. One will then have an infinitude of arcs, eaékvhich is bounded

by two cusps, and the locus of the infinitude odpuis a parallel to the given line. The
intrinsic equations can be easily obtained by @ptag andqg with their values in the
expression fop:
-k &

2k a’

a
= —+
k

viz., it has the behavior of a catenary of the fiind and a pseudo-catenary of the second
kind. The latter will then behave like the evolofea circle of radius : \/kz——l in the
vicinity of a cusp, while the former, on the comyrabehaves like the clothoigo =
(a*/ k)\/m in the vicinity of an inflection point.

n) If the constant is positive then one will findatlg must satisfy the differential
equationg = a® d ?q / d<’, and must consequently have the form:

q:/]esla_'_’ue—s/a’

with A and arbitrary constants. If one gives the value @hiconstants then one will
recover the tractrix. Suppose thhand i are not zero then. One will then change the
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values of the constants by an opportune choice of oagith make them become equal to
each other, at least in absolute value; it is enoughu® tipe origin the displacement

%alog(¢§j along the curve. One will then have two typescoifve according to
whether one takes the upper or lower sign in thedidas:

q:h_;‘(es’a$ e”?), Sin¢:g(63’ai e?), p:%zcow.

a\/ 1- K A

Au<0 Au>0

If one setss = then one will see that the curves of the fiistdkhave their origin on the
fixed line and an inflection point there. Howevas,for the second kind, the origin is not
on the line, but it is always the point that issest to it. The tangent to the curves of the
first kind at the origin make an angle with theelithat has a sine that is equaktand
one must then have< 1), while the tangents are parallel to the fiked for curves of
the second kind. Meanwhile,cannot increase indefinitely for any of those carsece
the absolute value of sghcannot exceed unity, arsctcan vary only up to the value:

1+./ 17 k?

s=alog Y

and one will then havg = a\/1Fk*, ¢ =+ 7/ 2,p=0 i.e., one will have a cusp at
which the tangent is perpendicular to the fixee liand the analogous infinitude of cusps

are all on the parallel in the direction of theefixline at a distance @ 1F K.

8. Parallel curves.— We say that two curves that have the same nerangparallel.
In order to express the idea that the poiny) describes a curve that is parallel to a curve
(M), it is enough to set= 0 anddy = 0. (1) will then become:
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—=1-=, — =U. (9)

The second equality shows thamust have a constant valagand two parallel curves
will therefore beequidistantas well. Conversely, if a curve cuts out segments equal t
on the normals to another one, when starting from thet pdiincidence, they will be
parallel, since when one applies (1) to the poirnt Q,y = a), one will getdy = 0. If one
observes thatls = & then the first equality in (9) will givé =s — &, and sinced= 0,
one can infer from (6) thad’= p—a. Therefore, two parallel curvedgll have the same
centers of curvatureln order to get the intrinsic equation for the infinitwdgarallels to

a given curve, it is enough to elimina&om the equations =s—ap, p’=p—a. Itis
useful to observe that the equation of a family of lfreurves can always be given the
form:

f(p+a)
s= j P (10)

when one determines the functibconveniently. Indeed, fax = 0, one will have:
f
s=[1(oap,  p=[~Lap;

hence:

«=s-@=[[1-2] (o) =[5 D50,

C1

fy

f

C

(

D | S M

9. Evolutes and involutes— One says thevoluteof a curve to mean the envelope of
its normals. Since they are also normals to ahgroparallel curve, one will see that
such a curve is the evolute of an entire familpafallel curves; they are call@d/olutes
of the curve considered. Having said that, whendtuation of the normax & 0) is
differentiated, it will givey = p. Thereforethe evolute of a plane curve is the locus of its
centers of curvaturethat is an obvious geometrical property (cf., )8 In order to find
the intrinsic equation of the evolute of a givemveu(M), one needs to apply (1) to the
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coordinatex = 0,y = p of the pointC, which is the center of curvature &Y atM. One
will get:

Q: O, ﬂ = %, (11)
ds ds ds

if one distinguishes everything that refers to the eediyt an index 1 then one will have
dsi = &y =dp. Therefore, if one conveniently fixes the origintieé arc length thes, =

p. It will then follow thatany arc of the curve is equal to the difference between the
extreme tangents that are bounded between the contact points and any inkaote,

it is clear that if an inextensible filament thatimtially wrapped along a curve is
unwrapped in the plane such a way as to always remasedethen its points will
describe the infinitude of involutes of the curve considefadally, if 8= 77/ 2 then one
can deduce from (6) that ds= p dp. Thereforethe intrinsic equation of the evolute of

a given curve is obtained by eliminating s from the equations:

d
SL=p, P = pd—p- (12)
S

10. — Here, we should observe that whemncreases to infinity, if the curve in
guestion gets wrapped asymptotically around a circle of céntkeen (11) will tend to
become the immobility conditions for its center ofvature; hence, it will conform to
what we saw in . In addition, the second of (12) gives ljpp = 0, and since the
function ¢ that relates to the evolute will increase indefiyitéée the one that relates to
the given curve (which differs from it by only a comg)athe evolute will hav® for an
asymptotic point. Thus, the centers of the asymptotadesirof a curve are asymptotic
points of the evolute. The identical analytical siwawill present itself wherp is a
minimum or a maximum at a point will a well-defineddant. In general, the evolute
will experience a regression then. It is easy t@awctfor all of that geometrically (cf., I,
886, 9).

11.- The evolute of the evolute of a curve is calledsgendevolute of that curve;
the evolute of the second evolute is thied evolute, etc. Les, andg, be the arc length
and radius of curvature, resp., of tifeevolute of W) at a given poinM. If one applies
(12) to the i — 1)" evolute then one will get:

dpn—l dsw
S = Oh-1, =0, = P, ,
-1 Pn=Pn d N P 1d$1_l
in such a way that:
ds, _ ds., ds,
Py Pos P’

hence:
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d
=9, 13
o= Py Prs (13)

Therefore, if one is given an arbitrary term in thgusnceo, o1, 02, 03, ... of functions
of s, it is enough to take the derivative and to multiplydin order to obtain the next
term. More simply, if one assumes that the independsable is the functiog that is
common to the curve and all of its evolutes then otlesee immediately when one takes
dsto bep ds(13), thato,, o, o3, ... are the successive derivatives of r with respedt to

12.— We conclude with an observation that is not devoittefest. If the centers of
curvatureC, Cy, Cy, C3, ... at a poinMM tend to a limiting poinP then the same thing will
be true for all other points oM), at least in all of a conveniently-determined arc agloun
M. Indeed, assuming the existence of the limiting posifors equivalent to the
supposing that the series:

X=—p+ps—p5+ ..., Y=Pp— Pt st ... (14)

are convergent. The sums of those series are psettisecoordinates d?. Meanwhile,
if one applies the formula (13) then one will have:

dx_ _ dX_ — .
O—=—o+s—ps+..=y—p, P =P—Psts— ... ==X,
ds ds

i.e., the conditions (1) are satisfied. Hence, thatg®will be fixed in the plane of the
curve.
13. Exercises

a) What is the evolute of the tractrixfPone writes the equation of the tractrix in the
form:

,02 + a2 — az eZSIa
and differentiates it then one will get:
,02

2
p=ad*=a+ 2 za+ 2
a a

The desired curve is therefore a catenary.

b) Operating analogously on the equatibm’ — of = k*a? €%'2, one will get:
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2

2
o= kKae®/a= kza——:kza—ia.

Therefore (I, 8.1, f, g), the pseudo-catenary is the evolute of a pseuddrixac

¢) We would like to find the curves that cross an infidé of equal circumferences
with their centers along a line at a constant angBbviously, the coordinates of the
center of a circle with respect to the tangent andhtinenal to the corresponding point of
the unknown curve have the constant vatuasdb. One will then deduce from (1) that:

5X— b Q:E, tang:ib;

ds P ds p foka
hence:

_ apdp
i Ll Frss s

Now, appeal to the formula (10) in order to detewrihe parallel in the direction of the
unknown curve at a distancelof One finds that:

de'o alog(,cf+a)+constant e, p=a/e&?-1,

o +a

and the desired curves will then be parallel toaattix. They are thuthe infinitude of
involutes of the catenary.

d) The evolute of the logarithmic spiral is obtainetdmediately by differentiating
the intrinsic equatiow = ks One will find thato, = ko = ks, and then analogouslg, =
ks, etc. Thereforethe logarithmic spiral is equal to all of its evéds. In addition, if
one observes that one has= k™ s then one will see that fdrless than 1 in absolute
value, formulas (14) will give:

k’s y= ks
’ 1-k*

The pointP that we spoke of in 82 is then the pole (I, 81, b) of that curve in the
present case.

e) The cycloid is also equal to its evoluttndeed, if one differentiates + o = a2
then one will gejo; = - s, and sinces; = p, one will haves’ + p?= a’. However, since’

— # = &, one will deduce that’ - p?= Fa?. Hence (I, 8, d), two pseudo-cycloids

with equal parameters and different types are shateach of them is the evolute of the
other. It will then follow thatany pseudo-cycloid is equal to its own evoluteswan
order.
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f) More generally, it is easy to deduce from the equdifost + a* # = a® b that
b? s+ & p2= a2k, in which, one has sei =b, b; =b”*: a. Since the equation of the

evolute can be obtained from that of the original cloyemultiplyings andp by a : b,

one will see thathe epicycloids and the hypocycloids are curves that are similar ito the
own evolutes.If one consider the geometric progression that begittstive termsa and

b then then™ evolute of the cycloidal line that is defined by the par@msa andb will

be defined by the™ and @ + 1)" terms of the progression. If it converges, which is what
happens (I, 8, c) only for the epicycloid, then the observation twas made in 82 will

be applicable, and one will find that:

_ b’s _a’p
X= =2 Y= 2=
a-b a-b
These are precisely (cf., |, h) the coordinates of the center of the directrix, hictv
the successive evolutes of the epicycloid tend to acledenu

g) Do there exist curves for whichny point and the corresponding center of
curvature of the evolute are in a straight linetwd fixed point? More generally, we
seek the envelope of thdC; . The equation of that line gx + o1y = 0. If one
differentiates that then one will ge ¢ 01) y = /. Thus, the coordinates of the contact
point P of MC; with its envelope will be:

2

20, y=_P

X=-= , = ,
P+ P, p+p,

(15)

and if one applies the procedure that was pointed outitoS8hem then that will yield
the equation of the evolute in any case. If one wishaisP should be fixed then one
would need to express the idea that the conditions r@)satisfied by the preceding
functionsx andy; however, it is preferable to continue the derivatiordsgat back to the
last equation that was obtained, namejy,+(p2) y = /. If one keeps in mind the
expressions for the coordinates then one will find grat= 01 0, , and one will see that
Cs belongs taMIC; . Meanwhile, it is easy to convince oneself thatpiat P belongs to
CC,, i.e., that the curveQ) has the same property dd)( andC4 will belong to CC,
then, etc. The curves that one must seek are themndsewhose&successive centers of
curvatureat an arbitrary poiny are collocated on two ling$at rotate around the fixed
point P when M traverses the curveM). What are those curves? If one writes the
equationpos = o1 o In the formp: o = o . p3, while recalling the relation (13) and
integrating, then one will deduce directly tlmat= ko ; integrating again will givg, = ks
and finally, & — k& = constant. Hence, the desired curves are the onegloidal or
pseudo-cycloidal type, and the logarithmic spirals. Initeag if one substitutes the
valuesp; = ks o = kothen one will get:

ks
X=- y=

XS P
1+k’ 1+k’
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and one will then see (cf., I, § h) that the fixed poinP is the center of the directrix.
One can also arrive at those curves by posing onlyaheéitton thatC,; andC, should be
on a straight line witi.

h) In order to find the involute of the circle of radiasit is enough to set, =a in
the second formula in (12). One ggtsdp = a ds so# = 2as and that will then justify
the name that given to the curve that is representeldabyuation in the beginning (I, 8
8, a). Now, if one would like to findneinvolute of the involute then one would need to

substitute the expressions (12) farand o in  p’= 2as , and upon integrating, one

would find thatg® is proportional tos”. In that way, one will be led to assume that the
equation of anr(— 1)" involute of the circle takes the forpf = k, "%, Meanwhile,
thanks to (12), one will find that the intrinsic equatiaf the evolute of that curve $*

n-1
= (1—%} ke s, and on the other hand, it is necessary pat = k.1 ™2 A

comparison of the two equations will permit one to cakak, (recalling thak; = a), and
one will then find that:

n! -
=— ag™
n

is the equation of then( 1J" involute of the circle of radius. The successive involutes
always tend to increasingly take the form of a lobgamit spiral, since the intrinsic
equation will tend to become= esasn increases indefinitely.

i) All of the curveso = ks' have evolutes of the same type. One knows {11, &)
that those curves belong to four different types, accgrairwhethemn falls in one of the
four intervals that are determined by the end points, 0, 1, 2,0. Recall that the
clothoid is a curve of the first kind and the involuteha circle is one of the second kind.
The curves of the fourth kind are characterized byptlesence of asymptotes at finite
distances, while those of the third kind extend to infinlike the curveap = &%, which
admits a known (I, 81, a) involute. If one applies (12) to the equatjor ks' then one
will get an analogous equation in which the expomentll becomen; = 2 — 1h. It will
then follow that the curves of the first kind haveletes of the fourth kind, and that is
explained by observing that the asymptotes arise from thetspwiith higher-order
contact than the tangent. The curves of the secqu ligve the evolutes of the same
kind or the first; the other ones have evolutes othivd kind. It is the last kind that one
always tends to appear when one takes successive eyelhils making an exception
for the involutes of the circle. Indeed, the expomefatr thev™" evolute has the value:

_ (v+)n-v
~vn—-(v-1)’

and one will easily see that one has i, < 2 forv> 2 and fom negative or greater than
1. Only the curves of the second kind have evelofeall kinds, since the" evolute is
of the third, fourth, first, or second kind accawglito whethem belongs to one of the
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intervals that are determined by the end pointg—_Q%, V—_l %1 1, respectively, not
V- vV oV

including the end points that correspond to the circle #mdnvolutes or to the
logarithmic spiral. However, since the intermediatemhers tend to unity whewm
increases indefinitely, it is obvious that the third kimitl eventually prevail in any case.
Moreover, one can arrive at that conclusion by obsemviagwhem is found between 0
and 1, it will be enough to take £ 1)(1 —n) > 1, sincen, falls between 1 and 2. Since
one will then have limm, = 1 in any case, it is clear that the tendency aéallutes is to
take the form of the logarithmic spiral.




CHAPTER IlI

NOTEWORTHY PLANE CURVES

1. Conics — One saysonicto mean any curve that is represented by an equation of
degree two in the coordinatgsandy of its points in the usual Cartesian system of
immobile axes. When the conic is referred to the tangedtthe normal at an arbitrary
point M, the constant term will be absent from the equatidance, one must have (I, 8
1.4):

im2=0  lim
X

asx tends to zero, so one will see that the equatiastralso be lacking terms i in
such a way that it can be given the form:

y=3(axX +BY +2yxy), (1)

in which a will represent the curvature &, for now. One should observe that from the
arbitrary choice of origitM, it will generally happen that ¥increases indefinitely then
will also be infinitely large of the same orderdaherefore the left-hand side of (1) will
become negligible compared to the right-hand sidech can always be decomposed
into linear factors:

axX + Y+ 2yxy= (AX+py) (A'x+ u'y).

Therefore, the infinitude of curves will tend tohbee like a pair of lines:
AX+uy=q, A'X+ 'y =dq, (2)

which will be conjugate imaginaries whén= a8 — y* and positive, real, and distinct
whenA < 0. In the first case, the conic will be calkatellipse while in the second case,
it will be called ahyperbola. Between the ellipses and hyperbolas, one fings th
parabola which is characterized ky= 0. One will then call the conic that behavés li

a pair of orthogonal lines at infinity aquilateral hyperbola It is characterized by the
orthogonality condition of (2), i.edA’+ yu’= 0, which reduces ta + 5= 0.

2. Asymptotes.— Imagine that one sexsandy equal to the coordinates of the points
of the curve in the left-hand sides of (2). Thedaiy between the left-hand sides and the
right-hand sides will be destroyed, but it will teto be reestablished when the poigt (
y) recedes indefinitely along the curve wigeandq’ are set to the limits in the left-hand
sides. Since the differences between the left-hsidds and the right-hand sides
represent the distances frory ¥) to the two lines, up to finite factors, they wbke (II, 8
2) asymptotes of the curve. Meanwhile, if one ekikbithe factoix in Ax + 1y andA’x +
K1’y then one will immediately see that if those quagitend to finite limits whex
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increases indefinitely then the ratio x will tend to —A : u for the first quantity and A" :
K’ for the second one. Consequently, if one takes irtoust the relations:

AM'=a, u’'= B, A+ A’ = 2y, A’ —pA’ =2

then one will find:
) ) 2y 2/ iA
= lim (Ax + = lim = =- ,

2y _ 2¢ i
Ax+upy  pA' =l [n

g =IlimAx+yy) =Ilim

These values will become infinite for the parab@a= 0), and in additiong ¢ + Sy +
2y xy and the square olix + py or A’x + 'y, i.e., whenA tends to zero, (2) will tend to
represent a pair of coincident lines that get pdighé to infinity.

3. Centers and diameters— If one solves (2) then one will find that thegmptotes
(whether real or imaginary) will always intersettltee real point:

a
x=-2 = 3
A y=2 (3

It is useful to observe that these coordinatesfyaiie equations:

ax+yy=0, yx+pBy=1, (4)

which one can substitute for (2) as the ones that appeals to in the search for that
point. Now, if (1) is written in the form:

2y = (ax+yy) x+(yx+By)y

then (4) will show that the left-hand side becomeand therefore the equation is not
satisfied for the values (3), but it is enoughdtmblethose values in order to verify the
equation. Therefore, the poi® which is defined by the coordinates (3), isemterof
the curve, which amounts to saying that it dividé®f the chords that pass through it in
half. In addition, if we fixy arbitrarily then equation (1) will provide two uals forx,
whose arithmetic mean will bejsy : a. Hence, the midpoint of any chord that is paralle
to the tangent ayl is such that one will have x + yy = 0; i.e., it will satisfy the first of
(4), which represents the lif@\Vl. Thus, if one calls the locus of midpoints ofyatem

of parallel chords diameterthen one will see thdahe diameters of a conic are the lines
that radiate from the center.
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4. Vertices and axes— One calls the normal diameters to a coni@xssand their
points of incidence are theertices. In order forM to be a vertex, from (3), one must
have thaty is zero, and then the segméd will have the lengtha = a: A =1 :p0.
Meanwhile, if one transports the origin @ for the moment, then the equation of the
conic will become:

ax2+,[>’y2+2yxy:%, (5)
and wherM is a vertex and one sd&is=a : a, it will reduce to:

ax + By =a’b? (6)

X
parabole/
ellipse ~“hyperbola
b
a y

.

That will permit one to rapidly account for the formtbe curve in various cases, and to
recognize the existence of two axes (bisectors ofdpmptotes) and four vertices, which
are all real for the ellipsé{ > 0) and two real and two imaginary for the hyperbbfa<(
0). As always, let denote the positive root @f and letb or b : i denote the positive
root ofb® or —b? and in the former case, suppose thatb, and switche with b if that
were not true. In both cases, with those conventib@saxis that cuts out the segment
2a, which is always real, from the conic is distinguglieom the other one by the name
of focal axis. Having assumed that, rotate the focal axiflayd 8, and assume that its
new positions are theandy axes, respectively. Equation (6) transforms into:

a? (xsin@+ysin &) +b* (x cos@+y cos@’ Y =a’ b’

and the ternxy will be missing if@is linked to#&’ in such a way that it will reduc sin
@sin @ +b?cos@cosd’ to zero; that is, if one poses the relation:

2

tanftan @’ = - % (7)

betweend and 8. The equation is therefore back to having the formglql, since for
any value that one attributes to one coordinate, the otherwill take values that are
equal and opposite, one will see that the diametercoh& can be associated in pairs in
such a way that for any paeach diameter will bisect the chord that is paratke the
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other one. Two such diameters are said todmmjugateto each other. One should note
that each asymptote is conjugate to itself, and that tlyepair of orthogonal conjugate
diameters is conjugate to the axes. One excludegjtiadity ofb anda from all of this,
since that will be true only when the conic reduces torde. It is then pointless to
observe thatt is only for the circle and the equilateral hyperbola that any orthogonal
pair of diameters will be conjugate to another orthogonal psiince in order to have:

b? b2
tanftand’'=- —, cotfcotd'=- —,
a a

it would be sufficient that one should haafe= b* (i.e.,a? = + b%), and one would quickly
see that if one takes the lower sign then that wouftheléhe equilateral hyperbola
precisely.

5. — The calculation of the semi-ax@andb follows easily upon observing that when
one passes from (5) to (6), an orthogonal form tkatléfined by the first of the
discriminants:

a0

a y b?A
y B 0‘2’
a’A

will be transformed orthogonally into another onetths defined by the second
discriminant. Such a transformation will leave orthegjanvariants unaltered, and one

will then have:
2

1 1\a 2 a
a+f=|=S+=|—, af-y°=———,
p (az bZJA By a’b’A?

from which, one infers that:

_a@+p) __a
a+b*= — ab= . (8)

These formulas show that tlegquilateral hyperbolas characterized by the relatibn=
ia, and that andb are infinite for the parabola. In addition, ifeotakes into account the

relation:

a.2 b2 a,l/2

(a2+b2)3/2: (a,+ﬁ)3/2 !

9

which is obtained by eliminating from (8), then one will see that if one fixasandb
and letsy? increase tazB then the ellipse that is defined by the semi-axesdb will
tend to be converted into a parabola, and thatvaiipen in such a way that when the
semi-axes increase indefinitely, the left-hand d€9) will always remain equal to a
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certain lengthp, which is called th@arameterof the parabola. It will then follow that
cannot be infinitely large of order since the left-hand side of (9) would then increase to
infinity like a. One must then suppose that negligible with respect ta, and (9) will
then become limkf : a) = p.

6. Intrinsic equation. — Let the origin move along a curve and differentiate #gua
(1), which expresses the idea that the immobility caobt are satisfied by andy, and
observe thatr, S5, yare functions 0§. The equations that one obtains:

a—i X+yy:£ d_a—z_y X2+} %-{-1 y2+ ﬂ/-}-a;ﬁ Xy
P ds p 2\ ds p ds p

must coincide with (1) (ll, &), and thereforer=1/p; hence:

d_a:(a-i-zjy, %: (’B_Ejy’ d—y: yz_a’;ﬁ . (10)
P ds P ds Yo

The first of these formulas immediately gives:

pdl_d w2_ _ P
=229 =-L
4 3dsp ds 9p 3p°

The substitution of the values @f and y in the first equation (4) will lead to the
construction thaMacLaurin pointed out of the center of curvat@eof the evolute of a

conic. Indeed, the aforementioned equation witidmee 3 x = 0, y, and one will deduce

from this that if the diameté&dM meets the normal to the evoluteCathen the segment
QGC; will be divided by the center of curvature of @@nic in the ratio of 1 to 3. Return
to (10) and observe that one has:

i(a+ﬂ)=(a+ﬁ)y, d—A=2yA,
ds ds
ie.
d d _1/3 d d i
—log(a+p=—1Io : —logA=— :
ds 9@+h ds 9p ds J ds'o
If one identifiesA andB with two arbitrary constants then:
a+B=Ap*"3 A=Bp?3 (11)

On the other hand:

yV’=—a’+a(@+pP-A=-a%@1-Ap*2+B "),
or
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do 3
Q(dsj -1+Ap*P-B " (12)

The intrinsic equation of the contherefore:

_.[\/ 1+A,02/3 4/3'

7. —In order to determine the constaAtandB as functions of the semi-axes, recall
(8 4) that whenM is a vertex, the normal will contain the cented #merefore, by virtue
of (3), one will havey= 0, and the value @ or b will be expressed by:

a 1
Bp

213 1/3

Bo

>|Q

As a consequence, if one sgf§ = 1 :B® zin the equation that one obtains by setting the
right-hand side of (12) equal to zero then the sgaodhus-transformed:

1-ABz+BZ=0

will admit the rootsa® andb?, precisely, and one will then have:

a®+b”= é‘z aZbZ:é;
hence:
A= (@2 +b% (ab ™3 B=(abh) (13)

In addition, one notes that the curvature will hthevalue®® a?=a : b*andB*b’=b :

a? on the focal axis and the other axis (but nowledse), resp. We could have arrived at
formula (13) much more rapidly by a different pasmce (11) is no different from (8).
However, the procedure that we used in order tgeaat (11) has the advantage that it is
always applicable, independently of the preliminknpwledge of the properties of the
curve. Thanks to (13), the intrinsic equationhef tonic will then become:

1

dp (14)

e

What are the particular forms that this equatidkesafor the parabola and the equilateral
hyperbola? In the case of the equilateral hypesbmhe will haveb = ia, and (13) will
giveA=0,B=-a ™3 However, one ha8 = 0 for the parabola, and the valuefotill

be obtained by recalling that the left-hand sid€)frepresents the paramepein such a
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way thatA = p 23, Hencethe intrinsic equations of the parabola and the equilateral
hyperbola are:

s=if— 92 sip o (15)
3 2/3 3 4/3
Y P
BRI
p a
respectively.
7
C
A\
N H
£
, T
r
M

8. Foci and curvature. — Let us look for those curves that ahe sums of the
distances from each point to two fixed, constamtgo If F (r, & andF (r’, 8") are the
two points then one must hawve r’= 2a, and if one differentiates this, while taking into
account the first immobility condition, then onenaafer thatd+ 8= 7z Thereforethe
normal bisects the angle between the radius vectioraddition, from the conditions:

%:_EJ,S”‘Q, E:—1+sm,€', (16)
ds o r ds p r
one can deduce:
2 :[Li,jsm o (17)
p \r r

when one sums them. If one draws a perpendicalaheé normal, which is ofF’,
through the poinN on that normal then that will determine segméiks andMH “along
its radius vectors, and the lengthvill be given by the formula:

|

2_1
—_= —+4
r r

.

-

Now, from (17), one will have = p sin § and therefor@ne constructs the center of
curvature byonce more raising the perpendicular to the radius vectothuntil it meets
the normal at C. Meanwhile, (17) will reduce to the form” = ap sin 6, and that will
give rise to an interesting observation: The radificurvature of the foot o) with
respect td- is (11, 87, 1):
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r2 ar

! — — —

2r — psin@ ~2a-r'

Thereforethe foot of(M) with respect to Kor toF”) is a circumference of radius dn
other words, the curveM) can always be considered to Hee envelope of the
perpendiculars that are raised from the lines oé sheaf to the points where they meet a
circumference.Turning to (16), observe that upon subtractiore can also deduce that:

dé? (1 1) r'—r
2—=——-—|sinf= ——,
ds \r r ap

and since + r’= 2a, one will have only:
(1 pdej r'= a(1+ p%j
d
so if one multiplies and integrates:

dé

e e
S 1-Psing
a

On the other hand, if one represents the disteRcédy 2 then:

§SII‘]9 1- p( (18)

A =r? +r'?+ 2ar’cos B=(r +r’)? = 4r’sirf =4 @ —apsirt ),
and as a consequeneep sirf 8will constantly keep the valus — ¢ = b?:

b2
P~ st e’ (19)

Now, if one substitute® as a function o in (18) then that will give equation (14),
under the hypothesis thiat > 0. Hence, the property that one will finallytain belongs

to theellipses. In order to get thayperbolasit is enough to imagine that one repeats the
preceding calculations by starting from the relatie- r’'= 2a, i.e., one supposes thae
difference between the distances to two fixed pommains constant. One will
immediately get?+ &’ = 27z which amounts to saying that for the hyperbalas tangent
bisects the angle between the radius vectdiise other property remains unaltered. The
pointsF andF’are calledoci of the conic, 2 is the focal distanceand the ratid of ¢ to

a is called thesccentricityof the conic. Obviouslyk < 1 for the ellipsesk > 1 for the
hyperbolas, and in particulak, = 0, 1, \/E for the circumference of the circle, the

parabola, and the equilateral hyperbola, resp. ldmwthe foci situated with respect to
the axes? The normal contains the foci wBens/ 2, and (19) will then show that one
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haso = b? : a, and one will see (§) that this can happen only on the focal axis. In
addition, the midpoint offF " will then be found at a distance é{r +r”) = a from M,

and it will then coincide with the center of the curvEhereforethe foci are situated on
the focal axes at equal distances from the center.

9. Application to the parabola:

a) The considerations of the preceding paragraph are applicapkrabola, but the
conclusions that are obtained are true for a comaicishdefined by arbitrarily-large semi-
axes, and consequently tend to be valid in a speciaf@ati®e parabola, as well. If one
fixes the focal axis of an ellipse and a vertex onakie then one can increageandb
indefinitely in such a way that the rati : a tends top. The other vertices, the center,
and a focus="will then get pushed out to infinity, but the fodasvill tend to a limiting
position at which its distance from the vertex wet b

2 2
lim(a—q9 =1Im b =Iimb—:%p.
atc

The base that one finds for the ellipse has tbeisa, and as becomes infinite, that
base will then tend to be converted into a ling thast be perpendicular to the axis, by
reason of symmetry. Since the foot of the perpmral to the tangent at the vertex that
is based afF is that vertex itself, one can then assert thatbase of a parabola with
respect to the focus is the tangent to the verfélre perpendicular to the tangenthvit
that is based &t will meet the tangent & and the parallel to the axis that is drawn
throughM at G. If one observes that this parallel is the ligifitthe radius vectoMF’
then one will see immediately théte tangent at M bisects the angle FMGherefore,
the triangleFMG, for which the bisector av is perpendicular to the base, will be
isosceles. It follows, among other things, tRdtisects the badeG, and therefore iQ is
the foot of the perpendicular to the tangent atviexA that is based ayl then the
trianglesPQG and PAF will be equal. HenceAP = PQ ; i.e.,in order to construct the
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tangent at M, it is sufficient to join M to the midpoint of AR.addition,QG =AF =p/

2, and therefore the poi@ will be on the perpendicular to the axis that isedifom the
symmetric image off with respect tAA. The line thus constructed is called thiectrix
of the parabola. One will arrive at a simpler congioacof the tangent (or normal) by
observing that the segment of the norid is equal to the parallel tGF, and that its
projection onto the axis will be equal to thatGf — viz., top. It is then enough to start
from the projection oM and measure out a segment of lengtalong the axis in the
sense in which one goes from the vertex to the fodie end point of that segment will
give the normal aM when it is joined taM. Finally, MF = MG, and as always that is
becausd~MG is isosceles. Thugach point of the parabola is at equal distances from
the directrix and the focus.

b) We now pass on to the construction of the centenviture. From what was said
in 8 8, we need to raise the perpendicular to the normalket@xis with its foot aN until
it meetsH on the radius vectdvlF. We then raise the perpendicular to the radiusovect
atH until it meetsC on the normal. Now, if we observe that the triasMFN, MFH are
isosceles then we will see immediately thadividesMH in half. It would therefore be
pointless to construdd, since it is enough to raise the perpendicular toddais vector
from F until it meetsR in the normal, and the center that we seek will ke ghint
symmetric toM with respect toR. In other wordsThe projection of the radius of
curvature onto the radius vector is twice that radilisS is the point at which the normal
meets the directrix then the rectangular triang/édR, MGSwill be equal because they
have equal angles Bt and on the other hand, we see &= MG. It then follows that
MR = MS and we will then obtain a second construction ofcéneter of curvature for
which we can say that the parabola is analogous toytheiat and the catenary (I, 8 d,
€): The radius of curvature is twice the segment of the normal that isutuby the
directrix when one starts from the point of incidence.

10. Cassini ovals— One calls the loci of points that haaeconstant product of the
distances to two fixed poin@assini ovalsor Cassinioids LetF andF’ be two fixed
points that will be calledoci, for brevity. Let ® be their distance), the midpoint of
FF’, and lety be the inclination o©M with respect td-F". It is clear thaD is thecenter
of the curve, since if a point satisfies the definitiben the same thing will be true for its
symmetric image with respect @ and by an analogous argument, one can add that the
curve will be symmetric with respect to the focal sl the perpendicular to that axis
that is raised fron®©. Now, if r and 8 are the polar coordinates of the center then the

distances from the origiM to the foci are given by\/ r’+2br cogy +b?, and the
definition of the curve translates into the eqyalit

r*— 2?r?cos 2 +b* =a*. (20)
If one differentiates this then one will get:

r? cos@=b? cos (/- 6), (21)
while one observes that:
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dy 1 _dé _sind

E——(¢ 6)—; Pl

Now, the elimination of from (20) and (21) will give:

a? cos@=b?sin 2y; (22)
(21) will then transform into:

r? = a® sin 8+ b? cos 2y,

and from that, along with (20), one will get thermfmlas:

r‘-a*+b* . r‘+a’-b*
COSZﬂzw, SIHHZW. (23)

Therefore, up to sign:

2a’radr

oo™ jJ[(a P+b)°-rlr*~(a’+b} T

(24)

However, if one differentiates (22) and expressesyhing as a function afthen one
will get:
2a°r®

"3 -atebt =

11. - The elimination is easy whe&w= b. The Cassinoid will then take the name of
lemniscate.Formulas (24) and (25) will become:

pP=—, (26)

J4at-r? 3r

and the elimination aof will give:

J 2a’dr 2a’?

_ do
S= 3I —,
(5]
c
after having set = %aﬁ. That isthe intrinsic equation of the lemniscateshows that
p increases constantly and indefinitely upon stgriiomec, its minimum value, while by

virtue of (26),r will decrease from the maximum/E down to zero. On the other hand,
formulas (23) will become:
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2

. r
Cos Y =sind=—,
a

(27)

and thereforgy = + 77/ 4 forr = 0, andd= 77/ 2 forr = a,/2. Thus, if one takes into

account the symmetry of the curve with respeché&focal axis then one will see that the
lemniscate passes through the center with two hesnthat intersect at right angles and
then go on to meet the focal axis orthogonallyvad bther points that are situated at

distances of,/2 from the center. In addition, (27) shows that alveays has & = 77/

2 — 6 so it will follow thatthe inclination of the normal from the focal axis is three times
that of the radius vectorThat property will permit one to construct themal at a point
when one is given the foci. If one would then ltkeget the center of curvature then it
will be sufficient to observe that by virtue of {2The second formula (26) will give=
3psin G, i.e.: The projection of the radius of curvature onto the radius vector MO is the
third part of MO. From that property, one can say that the lemtessaanalogous to the
parabola (cf., ®, b) and to the logarithmic spiral.

OA= b2, OB=h/2

12.— All of the points of any Cassinioid are at atérdistance. Indeed, in order for
the expression (24) to be real, one must haverthsmnot greater thaa’ + b? and never
less than the absolute valuesbf- b®>. Meanwhile, one sees from the first formula i8)(2
that sing is zero for? = a + b, as well as for? = b? - &%, and therefore the curve meets
the axis at four points whem< b and at only two whea >b. The same way of varying
r will then show that the curve consists of two daquaeals in the first case and just one
closed branch in the second. It will always méet focal axis at a right angle because
cos@is annulled, by virtue of (22), along with g In addition, from (21), one has=
+ b for = ¢ # 1/ 2, and therefore the more-distant points ofakis will belong to the
circumference that is described by the focal segmagits diameter. However, one needs
to observe that this circumference will not meet tarve if the value of is not found

between the limits that were found before; that thalppen whem > bﬁ. If one then

setsr? = b? — a? then, by virtue of (23)y will become equal tar/ 2, and one will then
obtain the points of intersection with the perpentir that is raised from the center of
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the focal axis. The circumferences of radiuhat are described by having those points
as centers cut the foci: That will permit one to stauct the foci in a way that is
analogous to the one that is used for the conic. Atso the second formula in (23),
one will see that the tangent contains the centérsfb® —a’, and that can happen only
for the Cassinioids with two ovala € b). The discussion of (25) will then show that the
curvature will then attain its minimum value. Finalyny the Cassinioids with just one
branch & > b), one will have four bends faf = (@* —b* / 2, since that value offalls

between the limits that were found, and for that, orels¢o have < b\/2. Whena >

b,/ 2, the Cassinioid is everywhere convex, like the elligsel its curvature will vary
between the limits:
a’-2b° a’+2b°

a’ya*-b’ ’ a’y a’+p’ '

All of those curves are easy to deduce by meamstainsformation (ll, §, k) of index
1/2 from a pair of circles that are described tgy/fdti as their centers and a radius’of
b. The two circles can possibly not meet at allmeret with their centers outside, or
finally meet in such a way that each center faieruthe other one. According to the
various cases, one will get all forms of the Caeglis that correspond to the hypotheses:

a<b, b<a<b/2, bJ2<a,

respectively. In particular, the lemniscate arsem a pair of tangent equal circles, and
the other special Cassinioid € b,/2) will give a pair of circles such that circumfecen
of each circle will pass through the center ofdtieer one.

13. Ribaucour curve and sinusoidal spirals— We propose to study the curves that
havetheir radius of curvature proportional to the segm#hat is cut out from the normal
by starting at the point of incidence by the pdiarthat point with respect to a fixed
circle. We call the circumference of the circle tiieectrix, and its center will be the
pole. Two particular cases present themselves immdgiatéhe directrix can reduce to
the pole, and we will then have the curve thahsracterized by the following property:
The projection of the center of curvature onto thdius vector divides that radius in a
constant ratio. Those curves are callsthusoidal spiralsFor example, the three curves
that were cited at the end of18 are such things. However, it can happen that the
directrix is rectilinear, and we will then have fRédaucour curvesexamples of them are
the three curves that were mentioned at the bottb§19. Their radius of curvature is
proportional to the segment of the normal thataarfd between the point of incidence
and a fixed line. Of particular note is the parabola, which belot@g®ne and the other
family by virtue of the two constructions that wdoeind in 89. Having assumed that,
let R be the radius and 1€ be the center of the directrix, whiteandy are the Cartesian
coordinates 0O, r and@are its polar coordinates, and letH 1) o represent the segment
of the normal that is found between the point aidenceM and the polar téM with
respect to the directrix. The segment that is dobetweerVl and the point of contact,
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which is the cathetus of a rectangular triangle thatllypotenuseand the other cathetus
is equal toR has ( + 1) p sin @for its projection on the hypotenuse, and therefore:

rF-R=n+1)py. (28)

If one differentiates this and takes into account theotility conditions then one will
get:
(n+1)px-M+1)my=0. (29)

Thereforethe radius vector divides the radius of curvature of the evolute ioothgtant
ratio— (n + 1) : . That is a characteristic property of the curves Weare studying,
since the integration of (29) will necessarily lead back(28) with R an arbitrary
constant. Another property is uncovered by considerirg dircumference that is
described along the segment of the normal that is foehaddenM and the polar tiv
with respect to the directrix. We already know frdm elements of geometry that this
circumference i®rthogonal to the directrix.Now, in order to find the envelope, we need
to differentiate the equatiot + y* = (n + 1) py, and we will then get back to (29). The
line that this equation represents meets the circunderatM and another poir¥1’, in
such a way that the envelope will consist M) @nd another curva[”). Meanwhile,
equation (29) will be satisfied by the coordinates of plde. Therefore, whem
traverses the curvéhe line MM will turn around the pole.In addition, the tangents to
the envelope aM andM’, which must (ll, 86) also touch the evolute circumference at
those points, will be anti-parallel with respectMd1’. Therefore (ll, &7, j), the curve
(M7)is inverse tdM).

14. Intrinsic equation. — From the immobility condition, one will have:

rdr=-xds=pdy. (30)
Dividing by (28) will then give:
rdr _ dy |
r’-R? (n+ly’

hence:

PR =(n+1)c? Gjl (31)

while n, which is finite, will be non-zero and give — $ubstituting the last result in (28),
one will get:

-1

p=cC (Xj_nﬂ. (32)

c

Now, if one deduces the valueyfrom this formula, then it will be enough to sutge
it in (31) in order to also get



54 Lessons on Intrinsic Geometry

T TR
c C ¢c\c C

Finally, from (30), one has that= - j(p/x) dy, i.e.

_n+l

do
: 34
- (34)

Jea{2) R (2]

That is the general intrinsic equation of our lin&/e can arrive at it more simply by

utilizing (29), which gives = n—{ijldp, immediately; etc.
n-1- x

15. — Before we go further, let us note some consempsenf the formulas (31) and
(32). If we pass over the case of a pole at ityfifor now then we will easily see that if
n? # 1 thenthe curve cannot meet the directrix obliquely ndtdct or regress outside of
it, since the curvature will become zero or infiratehe points at which the curve meets
the directrix ¢ = R), and only at those points. In addition, the esrthat have an index
less than — will not meet the directrixand therefor¢hey will have neither inflections
nor cusps. The curvaturewill never bezero at a finite distance for curves that have
indices greater than — 1, but less than 1, anduheatures of the ones that have indices
greater than Will always be finite. In particular,the curvature of a sinusoidal spiral
cannot be zero or infinite at a finite distancenfrohe pole at outside of that poinEor
example, it will follow that a sinusoidal spiralre@t have only one cusp, or only one
asymptotic point, or only one inflection point, ate pole will necessarily fall on such a
thing. The spirals with indices less than — 1 @egeoid of such points because they do
not contain the pole. Except for the sinusoidaladp (R = 0), the way that our curves
behave in the neighborhood of the directrix is dedueasily from their intrinsic
equations. Indeed, whembecomes zero or infinite, it will always be theddie terms
under the radical that ultimately prevail in eqaat(34). It will then follow that in the
domain of any of its real points of intersectiorttwihe directrix of the curve, it will
behave as if its equation has the fopms"™ = constant, and according to whether the
absolute value o is greater than unity or less than unity, one &seribe one of those
types (I, 83, i) of lines that have their curvature proportioratite arc length, and are
represented by the clothoid and the involute ofdihae, respectively. One can also add
(I, 811, e that ifn is rational, but not equal to the quotient of teax numbers, then the
curve will experience a regression any time thataets the directrix, and thereforevitl
be completely inside of that directrix or complgteutside of it. Obviously, the last
assertion will then be true for all curves with émch < — 1, precisely because those
curves do not meet the directrix.
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16. Examples:

a) Any value of the inder defines a family of lines that always includes a Ribaucour

curve and a sinusoidal spiral. The simplest of theantlae ones that are defined by an
index of 1: Equation (32) says directly that one is dealiiy avfamily of circles. Ifais
the distance from the pole to the center of a co€leadiusb then one can always choose
a point on the circumference of that circle such thatcoordinates of the pole ate a,
y = b, and (28) will then givé¥ = a®> —b®. Therefore, the directrix is orthogonal to the
given circumference, and that is the only case in Wwhicurve meets its own directrix
without the curvature becoming zero or infinite. In maar, one can consider any
circumference to be a sinusoidal spiral or a Ribaucourecaceording to whether the
pole is located on that circumference or is pushedooafinity.

b) The family that is defined by the index — 2 is interestiftgconsists of altonics.
In order to convince oneself of that, it is enough to ofes¢éhat forn = — 2, the first
property in 813 will lead to the MacLaurin construction , and in that way, one will
also see that the pole is at the center for the sordter all, equation (34) will reduce to
precisely the form (14) when one sets — 2, ¢ = ab, R? = a®> + b% and (33) will
become:

(ST 5T

These are the coordinates of the center, sineéll be annulled, whiley will become
equal tob or a at the vertices — viz., fgp=a: b or p=b®: a. If one observes the value
that is found foIR then one will see thahe directrix of a conic is the circumference that
circumscribes the rectangle that is constructeahrfiits axes.SinceR is annulled for the
equilateral hyperbola and becomes infinite for the pdmabone can add thathe
sinusoidal spiral and the Ribaucour curve of indeXare the equilateral hyperbola and
the parabolaespectively. No matter what the conic, the debnititself of our curves
will provide another construction of the center of ctuwe, since it says that this center
is symmetric to the point at which the normal méle¢spolar to the point of incidence
with respect to the directrix circumferencé&inally, the property that was proved at the
end of 813 will permit us to assert thalhe circumference that is symmetvwah respect
to the tangent® the one that is described by the radius of cumeaof a conic will meet
the directrix circumference orthogonally and enyp&laanother curve that is inverse to
the conic in question with respect to the center.

c) The family that answers to the value O for the indexven more interesting.
Formula (31) is not appropriate amy of the curves in the family, since the choice of the
constant is made in such a way that it will ceasestarbitrary for n = 0. However, it is
enough to multiply the left-hand side of (31) by a constaator k and then, from
formulas (31) and (28), one will have—R* =k y* = py; hence:

<
1

x:—%\/(k—l)p2+k2R2,

~|D
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Moreover, finding all of the curves of index O will mequire any new calculations, since
(29) will becomep x + p1 y = 0, and that will say thahe center of curvature of the
evolutes belongs to the radius vectddow, one knows (I, 83, g) that this property
characterizes theycloidal lines which is what one calls all of the lines that are
represented by the general intrinsic equation:

pi=as+2Bs+y.

One sees that far < - 1, this will represent thieypocycloidsfor a = 1, thecycloids for
— 1 <a <0, theepicycloids for a = 0, theinvolutes of the circlefor a < 0, two families
of pseudo-cycloidal linesvhich will or will not be cuspidal according to thgrsof 5% —
ay, and will be separate — so to speak — fromlagarithmic spirals for which one will
haveB? = ay. If one observes that:

p=as+ = ap*+(B2-ay)
then (29) will give:

— 1 — 1 2 2
x=-PLy=-_2 ap®*+(B*-ay),
y k\/ 0 +( ¥)

and a comparison of this with the preceding valie will yield k=1 +a, K¥ RF = 8% —
ay;, which is to say that the radius of the directiicle is given by the formula:

R VB -ay

1+a

and that explains (cf., I, § d) why one of the two families of pseudo-cycloidakk is
devoid of cusps. Indeed, it must belongl& to the directrix circumference, which is
imaginary whenB? < ay. Thereforethe Ribaucour curve and the sinusoidal spiral of
index0 are cycloid and logarithmic spirakrespectively. If one then observes that when
pis annulled, one will have= - R, y = 0 then one will see that the pole is preciskéy t
point of concurrence of the cuspidal tangents; ith&d say, the directrix circumference is
precisely the one that is given that name in ppilec{l, 88, ¢). Finally, the property that
was pointed out in 83 will assume a simple form for= 0: The center of curvature of a
cycloidal line at a point M belongs to the polar to M with respec¢h&odirectrix circle.

In addition,the circumference that is described by the radii of curvature ©fckidal
line will cut the directrix orthogonally and envelop a second line thatvsrse to the
first one.

17.—If one letsc tend to O at infinity according to the valuerothen one can do that
in such a way that®’ ® =% will increase indefinitely wittR. However, the ratio of that
quantity will have a finite, well-defined valee" * Y@~ if one sets:
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n+l

R= C(EJH.
a

Equation (34) will then become:

g= Nl dp (35)
n_l zlll
Y™
2

That isthe intrinsic equation of the Ribaucour lin&Ve already know that for = 1, one
will find a circle, for n = 0, acycloid for n = - 2, aparabola and, forn = 0, (35) will
effectively gives’ + ¢# = @% and forn = - 2, one will recover the first equation (15). For
n =3, and fom = -5, one will get the other curves:

resp., which are noteworthy because if one wisltelitain the equations of the
lemniscate or the equilateral hyperbola then it agl enough to changeinto 2/3s and
2s, respectively. Fon = - 1/3, one will get a curve that belongs to a systéiparallel
curves (I, 83) that are represented by the equation:

s=- 2 pdp |
27 /(b+p)(a-b-p)

and since one will find thatsi+ ¢ = constant fob = a / 2, one can say (I, § c) that
the Ribaucour curve with index1/3is parallel to an asteroid.Finally, if one increases
n to infinity then one will get a catenary of equakistance. However, that is not a
Ribaucour line, and that is explained immediatsglydralling that equation (34) is linked
to the assumption thatis finite.

18.— It is necessary to observe that for the Ribaucawes, one can even substitute
the directrix for the polar o1 with respect to the directrix circle. Indeed, nttat the
latter, and not the directrix, is the line that mbge determined on the normal to a
segment that is proportional ;o However, it is clear that one can just as wapli that of
the directrix, since it is situated at the meanasise betweeM and the limit of its polar.
Moreover, ifq is the segment of the normal that is determinedhleyperpendicular to
OM and situated at a distance— R from M, and consequently, it will touch the
circumference and tend to coincide with it whenncreases to infinity, then one will
have:

r-R=qsiné, IimLzl.
R
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Therefore, (28) will become:

(1+?qu: n+1)p;

hence, folR infinite, 29 = (n+ 1) po. In conclusion, observe that formula (32) wiligji

_n+1 i _n+l
p = lim == fim Zim R8N0 = visin g,
cnt RO o
hence:
- n+1 2
p=a(sing) ", Iim(r-R) = Ta(siné’)”ﬂ.

The discussion of these formulas will show tha directrix of a Ribaucour line is
normal to the curvat all points (real or imaginary) of lesser orajez contact between
the curve and its tangent3.he curves with index 1 — 1 do not meet the directrand

are therefor@evoid of inflections and cusp&or the ones that have index greater than 0
in absolute value, but less than 1, the curvaturehe directrix will become zero or
infinite, respectively. In the vicinity of the @ictrix, by virtue of (35), the curve will tend
to be represented by the equatjgfrs™ = constant, and therefore the observations that
were made at the end ofl$® can also be applied to the Ribaucour curves. Antbam,

the curves for which the ratjo : q is a whole number are important; viz., the curves
with index 2 — 1. Ribaucour has distributed them into fganera:For v > 0, one has
thecycloidalandcircular genera, and fov < 0, one will have thparabolic andcatenoid
genera, according to whetheris even or odd in each case. One notes thatintipEest
curves of the four types correspond to the valyes © 2, — 3 of the indexrf = 2, 1,- 2,

- 1), and are precisely the cycloid, circle, parapbahtenary, resp., which is how the
respective genera got their names.

19.— It is enough to sd&® = 0 in (34) to obtaithe intrinsic equation of the sinusoidal
spirals:
o= n+1 do
n-1 2n

-

One notes that if one multipliesby 1 + 1h then the preceding equation will represent a
Ribaucour curve of index2- 1. We already know that for= 1, we will have a&ircle,

for n = 0, alogarithmic spiral and forn = — 2, anequilateral hyperbola Forn = - 1/2
and forn = - 2, equations (36) will reduce to the two equatitit, which represent the
parabolaand the equilateral hyperbola. If one observasahthe vertex of the parabola,
the pole will be divided by one-half the radiuscafvature and that, on the other hapd,
will be the length of that radius then one will ¢bat in the case of the parabola, the pole
will be a focus. Fon = 1/2, equation (36) will give + 90 = constant, and fam = 2,

(36)
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one will find equation (8L1) for the lemniscate. Therefore, thmusoidal spirals that
are defined by the indicég2 and 2 are the cardioid(l, § 8, ¢) and the lemniscate, resp.
The observations that were made idSwill permit us to add that the pole of the first
one is at the one cusp that the curve possesses, apoléhef the other will be the
center, since the curve is inflected there, as orne semally, forn = 1/3, one will get a
curve that belongs to a system of parallel curves tleategresented by the equation:

pdp
==-2 ,
= b

and since that will becon® + 40 = constant fob = a / 3, which is the equation of an
epicycloid of two cusps, one will see thidwe sinusoidal spiral of inde&/3 will be
parallel to a certain epicycloid.

20. — The property that was found in18 will assume a simpler form in the case of
the sinusoidal spirals. For exampléie circumferences that are tangent to a sinusoidal
spiral that leads from the pole cut out segments from the normals that@wortional to
the radii of curvature. That results immediately from the equality of thérdgon (28),
which will becomer = (n + 1) p sin @ in the present case, and that will reveal another
property of the sinusoidal spiral with great facilityzor that, lety and ¢ denote the
inclinations of the normal and the radius vector, resjph respect to a fixed normal, and
write the aforementioned equality in the form:

1:(n+1) smH’
yo, r

from which, one will infer upon integrating, afteaving recalled that:

that y = (n + 1) ¢, and one will immediately recognize the extensidia known (811)
property of the lemniscate in that result. It tHettows thatwhen the radius vector
rotates uniformly around the pole, in the same way, the tangent wilerataund the
point of contact. One gives the (much-too-long) name aifrves with proportional
inflectionsto that property, which was proposed lbgquiere for the curves that are
habitually called sinusoidal spirals, but with tevithe impropriety. Now, foR = 0, one
n-1
takesc : a = (n+1)?", as we already did in the reduction of (34) to)(2td formulas
(31) and (33) will give:

_n

r:(n+1)a(£j n_l, y:(n+1)a(£jnl
a a
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Meanwhile, the intrinsic equation of the sinusoidatashows thap cannot be annulled
whenn is not found between 0 and 1. On the other hand, tteofithe two preceding
formulas says that when the curvature becomes zanfirty, the radiusr will become
infinite or be annulled according to whethreis or is not negative, resp. Therefore, it is
not just the spirals with indexx < - 1, as we said in 85, but all the sinusoidal spirals
with negative index that have the property that they do not containpibleir However,

it is always a point of the curve whare 0, and since (36) will take the foro=k s in

the neighborhood of the values 0 anmdor p, one will see (I, 81, e) thatthe sinusoidal
spirals with positive index inflect or regress at the pole accordingftether the index is
the quotient of an even number by an odd number or vice versa, resp., anchahen t
index is the quotient of two odd numbers, they behave as they do at an optimdry
although they will have a greater or lesser contact thithtangent according to whether
n is less than or greater than 1, resp. One finddothearithmic spiral § = 0) between
those spirals and the ones that do not contain the(ipel®). While the former have all
of their points at a finite distance, the latter agtéo infinity, and if one imagines that the
index decreases continually then its passage through zérsigvial the moment at
which the curve abandons its pole in order to expand taitinfinhat explains how it
happens that the curve is asymptotic to the pole at onyiribi@nt. Finally, it is only
whenn < 0 that the radius of curvature can become infinite, thenr ands will also
become infinite, whiley will tend to zero or infinity according to whether thbsolute
value ofn is greater than or less than 1, resp. It follows tina only sinusoidal spirals
with index n< — 1 are endowed with asymptotata finite distance, and those asymptotes
will leave the pole and determine just as many angulgiome of equal widthvz/ n.
Indeed, when the point is pushed out indefinitely alondgpranch that admits an
asymptote fwill tend to a multiple ofz Now, if lim &= - vrrthen one will have:

lim = %an—ej = (2v+ 1)2—’:],

and two similar values that correspond to two coutee values ofv that differ by
preciselys/ n.

21. Transformations:

a) The sinusoidal spirals are also noteworthy for gneat facility by which they
allow one to deduce one from another thanks toouaritransformations. Hence, for
example, if one projects the poleMtonto the tangent to a spiré) of indexn then one
will know that the coordinates of the pole withpest to M) will ber’ =y, 8’ = 6 and
on the other hand, the radius of curvature wilghven (II, 87, ) by the formula:

2 [

_ r _ n+l [ = r
2r—psind 2n+1  (n'+1)singd’

pl
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when one sets’=n/ (n + 1). Thereforethe pedal of a spiral of index n with respect to
pole is a spiral of index h(n + 1). For example, the pedals of the logarithmic $pira
(with respect to the asymptotic point), the parabola (wibpect to the focus), the
circumference of a circle (with respect to one opints), and the equilateral hyperbola
(with respect to the center) are a logarithmic spaadine, a cardioid, and a lemniscate,
respectively. The pedal of a cardioid with respectpoiat of regression is parallel to an
epicycloid, etc. More generally, ifis a whole number thehe spiral of indexX / n will

be the(n — 1)" pedal of a circumference of a circléth respect to one of its pointsie
spiral of index2 / (2 + 1) will be the ' pedal of an equilateral hyperboiaith respect

to the center, etc.

b) Similarly, if one applies the transformation (fl,k) of index v after observing that
Y r’=r"then one will have:

V-

a

vr'p _ vr' r'

p= r+(v-1)psind (n+v)sind (N +1)sind "’

when one sets’=n/ v. Hencethe transform of index of a spiral of index n is a spiral
of index r/ v. In particular, the pedal of a spiral of indegan also be deduced from that
curve by means of a transformation of index 1. Forv =- 1, one will see thatwo
sinusoidal spirals with equal and opposite indieges inverse curvesFor example, the
following lines are inverses of each other: Twodoipmic spirals, a line and a circle,
parabola and cardioid, equilateral hyperbola anghiscate. For other values f one
will see that the transform of index 2 of the liwed the circle will be a parabola and a
cardioid, resp., which are also transforms of indegf the equilateral hyperbola and
lemniscate, resp., etc. In conclusion, observedhaf those curves are easily deduced
from the circle by taking the pole to be a pointlad circumference and the tangent there
to be the polar axis. Indeeahy sinusoidal spiral of index n is derived frora tircle by

a transformation of indek /n.




CHAPTER IV

CONTACT AND OSCULATION

1. — When two curves touch at a poit— i.e., when their tangents coincidevat- it
can happen that their centers of curvature also coindidene transports the origin i
then the two curves can be considered to be repredeyntbe same intrinsic equation in
the vicinity ofM, up to infinitesimals. In that neighborhood, they thereforemore than
tangent since a well-defined intrinsic equation cannot represesttone curve, and since
that greater degree of contact will be obvious whenlitferencep — p’between the radii
of curvature at two well-defined points on two curves foe same value o$ is
infinitesimal along withs, it is quite natural to assume that the index of@cinis more or
less restricted to the order of p’as an infinitesimal. Singe— p’is not infinitesimal in
the general casesi(nple contact), we agree to say that the two cuhage contact of
order nwhenp — p’is infinitesimal of orden — 1, in such a way that simple contact can
be said to have order one. In all of this, it is iy supposed thab and o’ are finite.
We shall also suppose that they are developable in a nelgidab of M in positive
integer powers o, and we shall confine our study of contact at ordinaigtpon such a
way that the reader will not have to confront the mamyor difficulties that the
complete study of the contact of two curves can pregemt., inflections, cusps,
asymptotic points, etc.), around which the aforementiooed 6f the development is not
always possible.

2. — If one assigns the index 0 to all quantities that druileded atM then one will

have:
_ dp) ,S(dp) , [ dp
p"’”{dsjf 2[ g j0+ 6[ d%j:'”’

and an analogous equivalence can be writtefoiTherefore, in order fop — o’ to be
infinitesimal of ordemn — 1, it will be sufficient that one have:

B . dp 3 dplj dn—2p 3 dn—Zpr dn—lp dn—lpl
=0, —_— ==, .., = : * :
A= (dsje (ds 0 (ds”‘z . Lds? ) ds* ) ds™ )

On the other hand, the known law [II, form. (13)] foridefg the radii of curvaturg,
2, B3, ... Of the successive developments will easily showdhe has:

nd"o do_p

=p ——+.. ——="+ 1
M=P RER 1)

in which we have neglected to write all of the derivegiof order less thamin the first
equality and all of the terms that do not containn the second one. We will then see
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that 0, depends upon just the finstderivatives ofo, and certainly on the™ one, and that
the expression for the™ derivative ofp will contain g, , but notghi, G2, ..., €tc.
Given that, it is clear that the conditions will fmund to be equivalent to these other
ones:

14

P=p, PM=p, P=P, . P2=P,  P1Zp,, (atthe poinM).

Therefore:In order for two curves to have contact of order n at a given point, it is
necessary and sufficient that the first-rl centers of curvature of the one curve should
coincide with those of the other one at that point, although theenters should remain
distinct. It results from that proposition that if two curdesve contact of ordar then
their V" developments will have contact of oraer v, and therefore the latter proposition
can be stated al order for two curves to have contact of order n, it is necessady
sufficient that theifn — 1) developments should touch simply.

3. — It might seem obvious that the curvature of a line widfease in absolute value
when one starts from a point the more rapidly that approaches the tangent at that
point, and that of two tangent curves, the one thatthasgreater curvature at the
common point of contact will tend to diverge from thegent more than the other one.
Moreover, that can be justified completely with a enaccurate study of the behavior of
the two curves in the neighborhood of the contact gdiht. Now, ifn is odd then the
ratio of o — p’to s"* will eventually take on a definite sign, no matteraivthe sign o
is, and therefore one of the curves will be insidedtier one in the neighborhood Mf
obviously, that is the general case.n i even thers™ will change sign witts, and one
will then havep > p’on one side oM, while p < p”on the other, so the two curves will
cross. ThereforeTwo curves can cross at the same point at which they touch, but that
will be a clear hint that they have higher contacEurthermore, if the curves touch
without crossing, which will be true in general, one wik always have simple contact,
which is how one sees that one can also have high@aatoin exceptional cases.
However, in those cases, the order will be odd, and gineego’ keeps a certain sign
around zero, one can add thiae differencep — o’ will be a minimum or maximum at the
point in question.

4. Osculation.— Fix a pointM on a curve and let a second cufys, p) = 0 be given.
It is possible to find one or more poirl¥s’ on the second curve such thatMigends to
coincide withM’, and the tangent &' tends to coincide with the tangentMs their
contact, which generally has order one, will howeuen but to be of order two. In fact,
it is enough to solve the equation of the second cunvg fand replacep with the value
of the radius of curvature of the first curve at the pMn Instead of giving the curve
(M"), one tries to select it from the infinitude of cuntbst are represented by the

intrinsic equation (withn — 2 arbitrary parameters):

f(s p ay,a,...,a-2) =0, (2)
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in such a way that the order of contact will prove écab high as possible. One can also
deduce some relations from (2) that have the followamgnf

fi(s, o o, &, @ as, ...,ar1) =0,

f2(s, o o, o, &, @, a3, ...,8:-1) =0,
(3)

f2 (S 0 ooy Ph2, &1, ..., 80-1) =0

by n — 2 successive differentiations. Like (2), they mustrbe identically for the curve
(M”), but if one replacep, o, ..., o2 With the values that those quantities have at the
point M of the first curve then one will define a systermof 1 equations that provide
well-defined values fos, ai, ap, a3, ..., a-1. Any solution of the system of values #or
will serve to select a curve from the infinitude that @meresented by equation (2), and
the value ofs will define a pointM “in the curve ") thus-defined. If that point is made
to coincide withM in such a way that the two curves touch there theywhll have their
first n — 1 centers of curvature in common, and in generailwlheee no reason why the
n" center should also coincide so that contact wouldhreadem, and it is cleaa priori

that one cannot expect a higher degree of contact.ekwthat does not say that such a
contact might not be verified for some singularityttisanherent to the given curvij.

In the general case, one says that among the cuntesr¢hadefined by equation (2M()
osculateghe given curve, and when one finds, in the exceptionabkgcaéisat while trying

to produce contact of orderbetween two curves, one finds that they touch even more
strictly, one will say that the curvé(’) super-osculategM). Thereforein any family
that is n— 2-times infinite, there exists a simple infinitude of curves hiaae contact of
order n with a given curvéM), and it is only at special points dflf that one can have an
order of contact that exceeds

5. Osculating circle. — The preceding considerations are inapplicable whén
missing from (2), and thus, in the case of circles. iffiritude of circles that touch a
given curve at a poiril will have their center® on the normal to the curve lsk, but as
long asO is distinct fromC, the contact will be simple, and it will generallycbene of
order two only wherO coincides withC. Therefore, among the circles that touch the
curve atM, the osculating circle is the one that has its center at the cehteurvature,
Since the contact will then be of order twbe osculating circle crosses the curve
general, at the point of contact, and that is alsoopesty that characterizes it from
among the infinitude of circles that touch the curvehatdame point. If one imagines
that the centeD of a tangent circle traverses the normal in a givesesemoving in from
infinity and returning to infinity, then the circumferenwill cross the curve just once,
while all of the other positions @ on the curve in the neighborhoodMfwill either be
all internal to the corresponding circumference (whinbk would obviously have whéhn
goes off to infinity) or all external (as whéh tends to coincide witivl). Among the
simple infinitude of osculating circles to a curve, soaf them can super-osculate the
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curve at special points, and since the contact will eeigenerally of third order, from
the final observation in 8, one can assert that— o, and thereforgo, is a minimum or
maximum. Conversely, ip is a minimum or maximum then the contact must be of
higher odd order, and therefore if one imagines that theacbpoint traverses the curve
(always in one sense) themhenever the osculating circle becomes a minimum or
maximum, the contact will rise to order at least thraed in any case, it will have odd
order. The osculating circle will then cease to cribes curve. That is therefore a
definite hint that there is super-osculation, which wél obvious whenever the curve is
symmetric to the normal in the neighborhood of a point.

6. — Suppose that the curvi®l (), rather than being represented by (2), is given by
means of its Cartesian equation relative to the taregghinormal at a poitMl of a given
curve, and assume that it is possible to devgloppositive integer powers of in the
neighborhood oM:

y=AC+BxX +CxX + ... (4)

For an opportune determination of the coefficients, dleaelopment will agree with any
curve that is tangent to the given curvévatand will agree with that\), in particular.
In order to determine the coefficients that relateM, t is enough (11.5) to differentiate
(4) and identity the derived equation with (4). One gai:

A:i, B:Ed_A\’ C:Ed_B+_A’ s
20 3ds 4ds 2p
So:
2 2\ _
A:i, B:—Lls, C:3('0 +'011 '0'02, (5)
20 60 24p

The very law of formation for those coefficientslivehow that the/" coefficient will
depend upon only the first radii of curvature, and certainly upon th® radius.
Therefore, the firsh — 1 coefficients of the development (4) must héhessame values
for all curves that have a contact of ordewith (M) at M. Now, in order to determine
the curve 1”) that osculated\), it is enough to substitute the values (5) in éd then
substitute the development (4) in the equationfbf), while neglecting the powers nf
that have degree higher thanas well. In that way, one will get an equalitgtt must be
satisfied identically, and will then permit onedetermine the coefficients in the equation
for (M). Here, one should note that if one writes thesigment (4) for any curve that
has contact of orden with (M) then the first unequal coefficients of the two
developments will be the™ coefficients, since they certainly depend upmn and
P #% P . Hence, the differenog— y of the ordinates is infinitesimal of order+ 1;

i.e., the two curvegsan be regarded as coincidemt the neighborhood of the contact
point, up to infinitesimals of order higher than With that, it will be easy to make the
statements in 8 more precise. Finally, observe that, insteachefunique development
(4), it is sometimes preferable to use analogousldpments ok andy as functions o§.
One will deduce from the relations:
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%z COSg, ﬂ=

sin
ds ¢

by successive differentiations that:

dzx:_sin¢ d3x:_cos¢+plsin¢ d4x:3plcos¢+p2+pp2— P! sin ¢
ds o = ds 0° o ds o' 0° T
d’y_ cosp d’y__sing _pcosp d'y_3psing o’ +p00,- 3}

= , =——- —, == — : cosg, ...,
ds’ 0 ds’ 0 0 ds 0 0
S0

3 4 2 3 2 _ 2 4
x=s- > _+AS, - y=S _PAS _(p"+ pp, 3301)8 . ()
6p° 8p 20 6p 240

7. Applications:

a) The number of conics is doubly-infinite from tih@rinsic viewpoint. It then
follows that a conic can be said to osculate aeuwmen it has dourth-order contact
with it. Now, if the equation of the conic:

y=3(axX +BY + 2yxy) (7)

is substituted in the development (6), while neggcpowers of of degree higher than
four, then one will easily succeed in determiniags, y as functions of the radii of
curvaturep, o1, o, of the given curveM). Instead of the developments (6), it is perhaps
preferable in the present case to adopt just tleedenelopment (4) when it is limited to
the first three terms and to neglect the powers &om the fifth and up when one
substitutes it in (7). In one way or the othere avill arrive at the following results:

1 9p* + 507 - 30p, o)
a= =, g = , =- 1 8
0 90° 4 30° ®

Thereforethe equation of the osculating conic is:

Box—puy)’ + (90 + 407 - 300) Y’ = 184 y.

b) If one wishes that the contact should be of dhigd order then one will have an
infinitude of conics that are always representecegyation (7), in whichr and y have
the values (8), whilgg, which is the only coefficient that depends ugmn will remain
arbitrary. ForB = y? : a, one will get a parabola, and f®= — a , one will have an
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equilateral hyperbola. It will follow thahe equations of the osculating parabola and the
osculating equilateral hyperbola will be:

2
(3px —pwy)* = 180, xz—yz—s—f;xw 20y,

respectively.

¢) In order to determine the lengths of the axes of the osculating cor@aeedso
recall [Ill. form (8)] that one has:

a?+b?= a(ajﬁ), ab=-9_

A A¥?
in whichA = aff— y If one sets:
P=90+4p - 300, H =18 + 502 - 300,

for brevity, then the values (8) will give:

a+/;:91ps, A:97;4, )
and the preceding formula will become:

» o 9HpP* _270°

a +b°= Pz ab—W. (10)

That will imply that:

_ 3p° (22 —aprp? _
a—Pﬁ\/P+ H=-36Pp° , b

One should note that the inner radical is alwagésice one will have:

3\'72_2\/73—«/7{2—3673,02.

P

H* - 36P p* = (507 ~3pp,) +360°0;
identically.

8. Invariants. — For any curve of a family (2) that consists pia- 2-times infinite
number of lines, there will exist a function of tivst n radii of curvature that will remain
constantly equal to zero all along the curve. éufjaf one differentiates the last of (3)
then one will get another relation:

fo-1 (S, 0, o1 P2, ..y Ph-1, @1, @2, ..., @0-2) = 0,
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which must be true identically for all of the curves. (Now, if one eliminates, a;, a,,
.., an—2 from the system constructed, while combining the last exuatid (2) with the
system (3), then one will arrive at a relation:

F (s 0 ou 0 ... Pr-1) =0, (11)

whose left-hand side is precisely theariant of the family (2). Knowing that invariant
will permit one toconstruct the H center of curvature at any point when one knows the
first n — 1 centers and the construction that one obtains will charasethe curve (2).
Indeed, it is obvious that any invariant will pertain tovell-defined family of curves
whose equation can then be substituted for one’s knowledge of that invdnamter to
convince oneself, one should note that when one sutlestithe values (1) in (11), it will
become a differential equation of order— 1, and upon integrating, it will give an
equation ins andp that includes — 1 arbitrary constants. However, of those constants
— 2 of them constitute the system of parameters thateppeequation (2), and the last
one is determined by the choice of origin for the angths. However, the" center is
not the only one that can be constructed when one «rb® invariant, but all of the
successive centers, as well. In fact, one can diftate (11) indefinitely, and then
obtain many relations:

Fr(oo oo o) =0, Fo(0, 01, ..., oe1) =0, F3(0, 01, .., Ot2) =0, ..., (12)

which will yield the values opn, o1, B2, ... a@s functions ofp, o, oo, ..., P2,
successively. Annulling the invariahtat a given point of a curvéM( indicates that the
curve (2), which osculatesvij at that point, also has th&" center of curvature in
common with it, which is to say that the order of tewh exceeds — i.e., it super-
osculates. Finally, observe that one eliminatespo, ..., g-1 from (11) and the firsy
relations (12) then one will obtain a relation:

F(V) (la/, pv+]_, ...,ﬂqﬂ/—l) = 0,

and one can assert i (o, p1, ..., p-1) is theinvariant of the family that is composed
of the V' developmenof the curve of the given family (2). In order for amoif a given
curve to have contact of order+ v with a curve of the family (2), it is necessary and
sufficient that™, F’, F”, ..., F¥™ should be annulled at that point, but B&t.

9. Examples:

a) The cycloidal linegcf., 11.13, g) constitute a doubly-infinite family of curves that
is characterized by the invariaot o, — p p3. However, if those lines are specialized in
such a way that one selects a simple infinitude froamthole family then the invariant
cannot contaims, and one will effectively find that the invariantstbé developments of
the circle, the logarithmic spiral the cycloids the pseudo-cycloidsthe tricuspidal

hypocycloidsetc, areo,, 07— p0s, P+ P2, P— 22, Y+ P2, ELC.
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b) The invariants of th@arabola and theequilateral hyperbolaare precisely the
guantities that were denoted ByandH , resp. (87.c), because they are functionsayf

o, 2 that are annulled for any parabola and any equilaterakihylee respectively, by
virtue of (9). In addition, the second formula (10)whdhat the osculating conic to a

curve will be hyperbolic or elliptic according to whett® is negative or positive, resp.

The values of that annulP or H define points on any curve that super-osculate with a
parabola or an equilateral hyperbola.

¢) In order to find the invarianf of the whole family of conics, it is enough to

differentiate one or the other equality (10). In thaywane will obtainC in one of the
following forms:

C 8H,0_]_ 3 2 dH pl4/3 d 3/2 ’ C 1073,()1 3 2 dp p16/3 (;jsplO/z

If one performs the calculation in one way or trlieeo then one will find thathe
invariant of the conic is:

C=36p°p, + 400} - 4500,0,+ P°p..

Finally, formulas (10) also permit one to exprédsr an arbitrary curve as a function of
the semi-axes of the osculating conic:

—27p4r d a+b

d
, C - _27 16/3 aZ/%Z/S
ds(ab‘”3 P ( )

C=

As one knows thatab measures the area that is enclosed by the ellpsas defined by
the semi-axea andb, the final expression will lead one to observeahv@ravé, thatthe
osculating ellipse to a curvat a pointM cannot maintain a constant aresM traverses

the curve. One can add that the sig@ bklps one recognize whether that area increases

or decreases(C will be annulledwhen that area becomes a minimum or maxitamad
thenthe contact will rise to order at least five.

d) A noteworthy example is given by the curves #ratdefined by the invariant:
TAW=A0+u+1)o -

for each pair of values of andyx. For exampleZ (3, 1/3) andZ (6, 2/3) do not differ
from P and’H, resp., then. Theatenaries of equal resistaneee characterized i (1,
1), thelogarithmic spiralsby Z (0, 0), and more generallfy(0, 4) is the invariant of the
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curve that has an arc length that is proportional to the;@fh power of the radius of
curvature.Z (4, 0) is the invariant of the curve that is representechbyeguation:

s= [-——2£

J2AIn(pla)’

etc. WhenA and ¢ are non-zero, the integration @f= 0 will lead to the intrinsic
equations:

NEGE

which represent, in particular [lll, form. (35),6)3, theRibaucour curver thesinusoidal
spirals of indexn according to whether one makes one or the otheheffollowing
hypotheses:

n-1 _n+1 1= n(n-1) _n

net Mo C(n+1?° n-1

resp. If one observes that:

9L 2t pr—po+ (u+ 1) B2
ds P

then one will observe that whew 2 1 = 0, the invariant of the developed curveAg 2
0 , and since that is the invariant of the cycloiiteds /# = 245" + ..., each of which is,
in general the development of an analogous line, @an say thathe curves that are
defined by the invarianT (A, — 1/2) are certainly parallel to cycloidal lines.Some
examples (cf., Ill 8817, 19) are the Ribaucour curve of index — 1/3 and thesaidal
spiral of index 1/3. Foall of those curves, the geometric interpretatiorheféqualityZ

= 0 will lead to the following very simple consttion of the third center of curvature
when one is given the first twéf:one divides CM in a ratio of to1 — A, and CG in the
ratio of (u+ 1)Ato1l — ( + 1) A, and if the first division point leads to the penglicular
to the line that is conjugate to the second ona that perpendicular will pass through
C.

€) One can study the curve that was defined IB8®f the preceding chapter in an
analogous way. Set:

P=n-1f p?+ (n+ 1F o + (0" = 1)(0] - pp2),
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H=—_[(n—1F p?+ (n+ 1F p2] + (n* — 1)(0 - pp2) -
n+1

One will find that the invariant of the preceding cuisie
C=np[@n-1)P-20+1H]+(n-1) (0* - 1)p (o1 02~ pP3) ,

and that the directrix circle has its center atgbmt:

2 _ 2 2 _1\2 A3
X = (n 1)10 101 ’ y — (n 1) 10 (13)
P P

R= (n+1)’%2w/ —-(n+1H .

It will follow immediately thatP andH are the invariants of the Ribaucour curiRe=(w)
and the sinusoidal spiralR & 0), and that the equation of the directrix @risl:

and a radius of:

x2+y2—§(n—1),02[(n+ D px+ (=1 py] +(n-1F o =0.

For the Ribaucour curves, this will reduce to:

n+l n+1&X

—= 14
> P o1 p (14)

y:

10. Exercises.

a) Determine thdocus of centers of the osculating confiosa given curve. The
coordinates of the center can be deduced from fd3n = — 2, or from (3) in the
preceding chapter by substituting the values (§9)n If one applies the usual procedure

(11.4) to these coordinates:
30°0, 90°
X=—=, = 15
7 y=- (15)
then one will get:
x_Cp dy_%p

ds P2’ ds pP?’

and one will see thdhe tangent passes through dhe will then have:

_C =P
K=o 90"+ pf p'=rz 90"+ A
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For example, in the case of the tricuspid hypocyclo# {902 = constant), one will find
that P = 36a%, H = 45° C = - 3240a’ s. If one then fixes the sense and origin of the
arc-length in a convenient way then the preceding famil give:

_ 158 15sp

S = , =T
4a P 8a

and finally %2 + 40’2 = constant. The desired locus will then be a byploid with six
cusps, three of which coincide with those of theegicurve.

b) Find theenvelope of the directrices of the parabola thatutstesa given curve.
Forn=- 2, (14) will give the equation of the directrixhigh will give:

(02— 30) x+ 401y + 2000 =0

by differentiation, and from the two equations, evikgetx =0,y =— p/ 2. Therefore,
the directrixtouches its envelope along the normal to the cuitf@ne applies the usual
fundamental formulas to the coordinates of the tpoficontact then one will get:

[9 2+ 2 2 2\3/2
p pl ’ p/:(gp +101) ) (16)

20 2P

For the tricuspid hypocycloid, one has = 3a/ 8. ThereforeThe directrices of the
parabola that osculate a tricuspid hypocycloid atketangent to the directrix circle.

c) On the contrary, fof{ = 0, sinceP will then reduce to- (90°+ p7?), formula

(16) will become:
p’=%\/ 90" +pf s = j%ds,

ie..
213 213
p’=§p(£j ’ s=2[ 2P
2 a 2 /plls_al/s

and upon eliminating, one can infer that:

Hence:The directrices of the parabola that osculate anikderal hyperbola will touch
a sinusoidal spiral of index 2 / 3.
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d) Find thelocus of the foci of the osculating parabdta a given curve. If one
observes (111.9a) that the focus is symmetric with respect to the tangethe projection
of M onto its directrix then one will find that its coordieatare:

___ 3p°p _ 9"
X St 2 Y= So s 2
290"+ pr) 290" +p1)
thus:
ox_ 9p"-p)P oy__3Ppp
ds  2(90°+pl) ds (90°+p0)*

These formulas say that the normal to the locub®foci dividesvIC in the ratio of 1 to
3, and that the tangent divides in half the segrtteattis determined by the directrix on
the tangent to\]) when one starts frold. One will then get:

1 2(5—1) L 2(35—5)
K P P P

For example, if & + 7 = constant then one will hage= 2s, p’= 20/ 3, B2 + 250"% =
constant. Hencélhe foci to the osculating parabola of a tricuspid hypocycloid belong to

an epicycloid that has the same cus@anilarly, If H = 0 then the last formula will give
s =s/2 p =p/ 10, and it is easy to deduce thhe osculating parabola of an
equilateral hyperbola has its foci on a curve that is defined by the antafi(6/25, 2/3).
Finally: Any curve of the family that is defined by the invariaift 3/2,— 1/6) has the
foci of its osculating parabola along a straight line.

e) Determine the locus of the centers of the osculating equilateral hglpsito a
given curve. Fo# =0, (15) will give:

__ 3p ___ 9 .
XS 2 Y="5,24 2’
9p" + 9p" +
one then finds that:
ox_ (90" -P)H dy__ 6Hpp
ds (90°+p7)* " ds (90 +p7)"
and one deduces that:
1: 2—1, £’: 32—5
K H Jo, H

In particular, if @ + ¢ = constant thel = 5s, p’= 5/ 7, ¥? + 49’2 = constant, and
then the centers of the osculating equilateral hyperbolas to a tricuspid hypodycloi
belong to a stellate epicycloid that has the same cuBp=lly: The osculating curves to



74 Lessons on Intrinsic Geometry

the equilateral hyperbola that have their centers on a straight line are tiahe family
that is characterized by the invariant(3/2, 1/6).

f) The preceding calculations can be performed in a manergemanner on the
curves that are defined by the invariént One then deduces from (13) that:

ox _ (n+1)Cp, oy_ (n-1)Cp
e pz e T Pz (17)

ds P ds P
and one sees immediately that the tangent to the lottise centers of the directrix
circles will pass throughl. The curve that takes the place of the tricuspid hygoi is
always an hypocycloidn(< 0) or an epicycloidn > 0), which are represented by the
equation:

(n-17s+n+1)?F=a% (18)
One will have:
P 2n(n—13)2 2 H= (2n—1)(n3— 1y 2 C= 4n(2n- 1)(?— 1y s
(n+1) (n+1) (n+1)

for it. WhenH =0, (17) will lead to the formulas:

_P, p_n-1P_,
H

p  n+l1H

X |k

which are merely the ones that determineltioeis of poles of the sinusoidal spirad
indexn that osculates a given curve, and if that is tb&n one will find an analogous
curve that corresponds to the value 2nr-df/n.




CHAPTER V

THE ROULETTE

1. When a curveNlp) rolls without slipping along a curveMj that is fixed in the
plane, one says thatl() is developedilong (M), that the curve that is described by the
points that are rigidly linked with the moving curve isledlaroulette and that the fixed
curve is thebasefor that roulette. The name “roulette” is not metantefer to a special
curve [since any curve is a roulette when one choddgsiid Mo) conveniently], but
only to draw one’s attention to a mode of generatingctiree considered. As to the
properties that the roulette enjoys, one can oftameaat them by means of simple and
elegant geometric or kinematical considerations that hoavever, devoid of the
character of analytical uniformity that distinguishibe intrinsic procedures and makes
them suitable for the study of infinitesimal geomethy.regard to the tangent and normal
that the moving curve has in common with the fixed pointhatdontact poini, the
coordinatesc andy of a pointP that is rigidly linked with the moving curve must satisfy
the immobility condition:

x_y_ g y-__xX (1)

ds, o, ds, 0

On the other hand, the variations that its coordinatpsreence in the fixed plane are
given (I, 81) by the formulas:

—= —+ =4 l, —_— = = - (2)

provided that one inverts the sense of the directiohe@fibrmal to just the fixed curve.
By virtue of the definition, one will then hads = ds, and thanks to (1), formula (2) will
become:

OX fo) X
= l, _y: -, (3)
ds R ds R
in which one has set:
i: £+_1 (4)
R 0 P

Therefore, if one divides the one equation in (B)tte other then one will see that the
inclination of the tangent td”§ with respect to the tangent tl) is given by the formula
tand = —-x:y, thatis to say, if and@are the polar coordinates Bfthen$ = 6+ 1/ 2;
i.e.,the normal taP) at P passes through MIn addition, one also deduces from (3) that
the ratio of the elementary arc length Bf {0 that of M) is k=r : R; i.e., one has:

g = j%ds. (5)
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It is also known (Il, &) that if one fixes the positive directions of thegant and the
normal to P) in such a way that one can rotate both of them they coincide with the
ones that relate ta\) then one will have:

Meanwhile, the condition:

ds ds p, r

- (6)

If one expresses the right-hand sides of (5) andagsfunctions of (or s) then the
elimination of that variable will lead to the imtsic equation of the roulette in any case.

P

C/

2. — Formula (6) is also susceptible to a very singgdemetric interpretation. (T,
Co, C’ are the centers of curvature of the linkg,((Mo), (P), and if one project€ onto
PM atL and letsQ denote the point d?C, that is on the perpendicular RM at M then
the point C will belong to QC. Indeed, ifN is the point at whiclQC meetsPM then the
transversaPQG in the triangleCMN will give:

PN _ CC, EQN _ ,0+,00d\/IN zﬁiN—r_ iN—r

r
PM MC, QC p, ML R psind R vy

from which, one infers, in succession:
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2 3
PN _r | PN = r
PN-r Ry

== =PC’;
r’-Ry p

i.e., N is preciselyC"”. Therefore, in order to construct, it is enough tdrace out the
line PG until it meets the perpendicular to PM that is raised at M and to jowit@ the
point thus-obtained. That line from C to the latter point will meeta®Pka"

3. Applications:

a) A circumference of radius develops along another one that has raRiusVhat
is theroulette that is generated by a point P on the circumference of gteificle?One
needs to suppose that:

P=R, Po =T, 9:3, r=2rsin@
2r

in the preceding formulas. If the arc-lengths of thdetbe are measured in the opposite
sense when starting from the point at which the noimallso normal to the basé (
=77/ 2) then formulas (5) and (6) will give:

4r° 2
S =——cosé, p’= sin 6,
R 2r-R
and from (4), one will have:
R= L pr-p=R¥20,
R+T1 R+71
Therefore, if one sets:
2 2
a= _ 4l R+ b= 4 RHT
R R 2r-R R+2r

then the equation of the roulette will be:

s?
AR @

Conversely, if one is given that equation thea #ndb are the positive roots af and
b? resp., then one will have:

ab? 1
R=—, r=+=
a’-b? 2
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Therefore, there are two ways that any line (7) cacdnsidered to have been generated
by a point on a circumference that develops along thectdix circumference. In
particular,if a circumference develops along a line then any of its pointslesitribe a
cycloid. If a® > b? then one of the values @fwill be positive, likeR, while the other will
be negative, but its absolute value will be greater thansuch a way that the moving
circumference will always be external to the basewever, fora? < b®, the two values
of r will have the same sign, which is opposite to thaR,cdnd their absolute values will
be less thaiR. In that case, the moving circles are internal ier fixed circles, and the
algebraic sum of the two values bfwill be — R in all cases. One therefore has a
hypocycloidor anepicycloidaccording to whether the generating circle mamesnally

or externallyto the directrix circumference, resp.

b) One can also arrive at the preceding results widatgease by utilizing the
construction in 8. It results directly from that construction tihé center of curvature
of the roulette(P) is found upon the diameter of the fixed circle that passes through the
point on the moving circumference that is diametrically-opposite téi&ving said that,
let Q be that point, and Idd be the second point at which the norrRM meets the
directrix. It is easy to prove th&N is parallel toPQ. Now, if one projects from the
point C on the normal to the harmonic quadrupl€,Qw then one will getPMCN.
Therefore,C’is the harmonic conjugate Bowith respect taMN. It will then follow that
the center of curvature @P) belongs to the polar to P with respect to the directrix circle.
On the other hand, it is known (llI, 85, c) that this property characterizes the cycloidal
lines. If one is given such a line by means of equdfthen one calculatédand 7 by
recalling that the coordinates of the center of the tlixkecircle will be:

b’s y= a’p

X= - ’
a®-b’?

a’-b*’

(8)

and observing that the first one must take the vattR st the cuspsg= 0,s= xa), and

the second one must have the vadRue 2rat the origin $ = 0, p = = b), in such a way
that one will have immediately:

ab’ a’b
RTwr T TRy
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¢) Now develop a cycloidal line along a line and look fbe toulette that is
generated by the center of the directrix circl&incep is infinite, (4) will imply that one

hasR = m, and when (8) is applied to the curiy), one will get:

r2 b4§+a,00 _a2 b4+(a2—b2),002,

@-0Y @)

formula (6) will then become:

1 _(@-b)r’-a*p;_  a’b . L
F_ (aZ_bZ) r.2 _( b2)2 27 €., p T p2

Similarly, (5) will give:

j\/(r -R? )(a bzRZ);

hence, if one eliminatesfrom the last of the two formulas then:

U

j 2 -
2 \2/3 N\ 2/3
T
a’\ R R
Therefore (I, 87), the desired roulette is a conic that has its gteportional ta and
b, resp., and its parameter equal to the radiubeftlirectrix circle. In particulakyhen a
pseudo-cycloidl, 8 8, d) is developed along a line, its pole can describeequilateral
hyperbola. Another particular case is obtained by obsertag equation (7) will change
into the known equation for the development ofraleiof radiusR when one transports

the origin to a cusp and multiplissand o by b, and one then makesandb increase to
infinity in such a way that the ratio bf to a tends toR. Under those conditions, the last

! —_
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intrinsic equation will tend to represent a parabold, thereforef the evolute of a circle
is developed along a line then the center of the circle will desargmrabola.

d) For a sinusoidal spiral of index it is known [lll, form. (28)] that the coordinates
of the pole must satisfy the conditioh= (n + 1) & y, and therefore, if one supposes that
pis infinite, in such a way th& = o, then formula (6) will give:

3

4

r n+1
= r.

P ==
r =0y n

Therefore, the radius of curvature of the roulettet tkadescribed by the pole is
proportional to the segment of the normal that ligsvben the roulette and its base. On
the other hand, one knows (111,18) that this property characterizes the Ribaucour curve,
whose indexy' is coupled tan by the relation:

2 n+1 . ,_n-1
= —, ie., n=——.
n+1 n n+1

One then finds the following theorem®bnnet

If a sinusoidal spiral of index n is developed along a line then its pdleesgtribe a

Ribaucour curve of inde;r(];l.
n+1

For example, if one successively takes 0, -1, 4, etc. then one will see that if a

logarithmic spiral is developed along a line then its paledescribe a catenary. If a
cardioid is developed along a line then its cusp will mpaeallel to an asteroid, etc.
Bonnet’s theorem can also be deduced from the constuttad was given in &, by
virtue of which, the linePCy, will pass through the point of intersection of the
perpendiculars to the base aPil that go throughC’andM, resp. Indeed, iN is the
projection ofC, ontoPM then one will have, by the definition of the sinusoidaiadg:

_PN_PC,_ PM PM_ n _n+l1 . ,_n-1
n= = = : SO0 = = : if n=——,
NM QC, MC PC n+1 2 n+1

and the last proportion defines the Ribaucour curve of indprecisely.

€) What curve will a sinusoidal spiral develop into whisrpiole describes a line? In
that case, it ig/ that must become infinite, and therefore one mugt:ha

rP=Ry=n+1)my, SO pm=-——p
n+1

Therefore, if:
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_h+l do,

n—1I an
() -

is the equation of the spiral then that of the wvkm base will be:

n do

n—1I 2n
I(e-

Now, one should note that this is the equation &filzaucour curve whose index is
coupled withn by the relation:

Thereforethe line along which a sinusoidal spiral of indexnuist develop in order for
the pole to describe a line is a Ribaucour curvéendex2n — 1. Nonetheless, one needs
to take care to arrange the two curves in suchyathat they have opposite convexities
only for n between — 1 and 0O; in other words:

n n+1 2n+1
P=——P R = p=

= = , r,
n+1 2n+1’0b 2n

. . . . 2n-1
and the pole describes a Ribaucour line of méex:l.
n
f) The foci of the development of a conic alongree l[generate important curves, to
which one gives the name Delaunay curves.We have seen, moreover (111,88 that
the coordinates and @ of one focus will satisfy the relations:

r(2a—r)=amsiné, am sSit 9= (9)

By virtue of the first one, formula (6) will give:

1_1 psing_1_ ===, (10)

Meanwhile, from the intrinsic equation of the cqraae will have:

abdp,
3 (" - (b)) ((aboy) >~ 1)

dg =
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and o can be expressed as a functiom by eliminatingd from (9). One finds thatab
20?2 =r (2a—1). Formula (5) will then give:

S':.[ abdr

11
(2a—r)\/k2a2—(r—a)2 ()

when one denotes the eccentricitykoyThe elimination of from (10) and (11) leads to
the equation:

g = .[ abdr , (12)
(pr_za)\/ kZ(pr_ a)2_ a2
from which one will infer thentrinsic equation of the Delaunay curve:
1+k? - 2k cos>
a (13)

p'=a ;
k(k—co&sj
a

upon integrating. One has curves of two types #nat distinguished by whether the
positivek is less than or greater than 1 — i.e., whetheg#merating conic is an ellipse or
a hyperbola, resp. The curves of the first typeadso callecklliptical catenaries while
those of the second type drgperbolic catenariesThe case of = 1 (viz., parabola) was
considered before in the penultimate applicatiowl frthermore (10) giveg’=—r for

a infinite, which is a property that is charactadsof the catenary. Therefore, the
catenary, properly speaking, presents itself asiéirig curve of separation between the
elliptical catenary and the hyperbolic one. Theenmportant property that will be used
in what follows is given by formula (10). One knethat ifo” andr are augmented ey

in this formula then one will getp’ = a2, which is a characteristic property of the curves
that were studied before (II,8 m). One can also arrive at the same result by glvger
that the parallels to the curve (12) are represefites 8) by the equation:

S:I abpdp

(p+o)(p+c-2a) K(o+ - §°- &
which will become:

0= 3\/1+ (1-k?) tarf> (14)
k a

for c = a. In addition, one will get back to equation (1@) c = 2a; that is to sayany
Delaunay curve is parallel to an equal curve.
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k>1

g) The Delaunay curves are easily discussed (whemwoné& not like to make use
of their mode of generation) by availing oneself of folasu(9), (10), and (13), from
which one infers that:

J

ksin— S
cotg=——28 _ y = a\/1+ k? — 2k cos—, (15)

1-kcos— a
a

in which one is cautioned that the radical mustagbvbe taken to be positive in the
second formula. The tangent becomes paralleladixied line when one annuls cét;
l.e., fors =0,% ra, £ 2/7a, ... That therefore takes place on two parallelthtosame
line, between which the entire curve is found, sitlte second formula in (15) shows that
y will attain its minimum or maximum value for c@s/ a = £ 1, respectively. The
maximum value is (1 k) a, and the minimum is (1 k) a or (k — 1) a according to
whetherk < 1 ork > 1, resp. For the first series of points, form(l3) will give the
extreme valua —a / k, which can be negative or positive, and for theoed series, it
will give the other extreme valwe+ a / k, which is always positive. One sees that it is
only fork < 1 that the curvature will change sign, and thiithappen wherno becomes
infinite; i.e., for coss / a =k, by virtue of (13). One sees from (15) that ¢bthen

attains the valuek, which is a maximum, and that will take the valuea,/ 1-K’.

Therefore, the curve inflects an infinitude of tenat the distancen/1-k?> from the

fixed line, and that will determine segments thatequal ta on all inflectional normals,
which is also apparent from (10), which gives a for g = «. It is then clear that any
inflectional normal is also like that for all pded$ to the curve, from which, it will
follow, in particular, that the intersection poimtthe aforementioned normals with the
fixed line are the inflection points of that curid!), which, as one sees, is parallel to the
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curve considered and to another equal curve. Since theutwescare parallel and equal,
it is easy to explain that by imagining two equal ellipdes one develops along a line
while one keeps the ellipses symmetric with respetttabline. One focus of one ellipse
and the opposite focus of the other one will remairstaonly collinear with the contact
point, by virtue of a known property (lll, § of the ellipse, and they will then generate
two Delaunay curves that are equal and parallel. The lwehafvour curves will be quite
different whenk > 1. ¢ will then be always positive, while cof can increase
indefinitely; i.e., the curve is never inflected, and thngent can become perpendicular
to the fixed line. That will happen for cds/ a = 1 /k, in which case, one will haye=

a/ k* -1 in the second formula (15). Therefore, the patatiat goes through the fixed

line at a distancea,/ k? -1 will meet the curve orthogonally at an infinitudé points,

and it is clear that the infinite cusps of the eu(t4) that belong to the system of lines
that are parallel to the curve considered musofalihat parallel.

4. Circle of inflection. — Formula (6) shows that is infinite for all of the points that
satisfy the equality =R sin 8 That equality defines a circle that one calisdincle of

inflection Therefore, thesircle of inflection is the locus of points thateapoints of
inflection on their trajectory at a given instaiit.the normal at M) carries the segment

MH =R then the circle of inflection will be described tne diameteMH, and therefore,

by virtue of (4), it will be similar, with respetd Co, to the circle that is described by the
diametemMC. It is clear thathe inflectional tangents will be concurrent at {h@nt Hat
any instant. Note, in particular, thamy point that moves along a line must constantly
belong to the circle of inflectionand the line that is traversed by the point must
constantly pass throudgt. Conversely, if a point in the development ofuave over an
arbitrary base is rigidly coupled with the movingwe and it does not cease to be found
on the circle of inflection at any instant thentitajectory will be rectilinear, while the
equationg = « will define the line. As for the cusps of theiirife trajectory, one sees
from (6) thatg cannot, in general, be annulled without annullingThe cusps of the
roulette therefore fall upon the base. In exceticcases, they can be present in the

entire plane. That will happen wh@énis infinite — i.e., foro = - p. One will then have

merelyx = 0 ; that is to saywhen the moving curve osculates the fixed ¢uhes points
that are rigidly coupled with the first one willmain immobile for an instant, and the
trajectory will suffer a regression there. HowevefR is annulled (i.e., a cusp of one or
the other curve falls upon the contact point) thae will havex = o, p’=r ; that is to
say, the contact point will seem immobile with respto all points in the plane, and it
will be the center of curvature of all their tramces.

5. Theorems of Steiner and Habich— For the roulette with a rectilinear base,
formulas (5) and (6) will become:
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1_1_p,sind
o rz

s:ijOdsO,

On the other hand, the valuess@ndp that relate to the pedal d¥if) with respect to the
point P are given (ll, &, ) by the formulas:

L r 1 2 p,sinéd
S' —j—d%, —"——_ 0 2 .
Po P r r
Therefore:
g=s,  L-1.1
P P T

The first equality represengteiners theorem:

Any arc of a roulette with rectilinear base is efjt@the corresponding arc of the
pedal of the curve that moves with respect to #remting point.

The second equality leads ltabich’s theorem. If one changes the signobin order to
conform to the conventions that were made irl 8hen one will see that in the
development onR) of the foot of Mo) with respect td®, the diameter of the circle of
inflection will be precisely. Meanwhile, the coordinates Bfwith respect to the foot
arer =y, 8”= 6, and they satisfy the equality=r sin ; that is to say, the poiRt will
constantly belongs to the circle of inflection. eféfore,if a point P on the development
of a curve over a line is fixed in the plane of tueve then it will describe the roulette
(P), while the pedal of the first curve with respecPtavill describe a line with P when it
is developed ofP).

6. Examples:

a) If the curve M) is a sinusoidal spiral of indexthen one knows (8§, d) that the

roulette P) that is described by the pole will be a Ribaucounve of indexn,—;i, and
n

on the other hand, it is known (lIl, &L, a) that the pedal ofMy) with respect tdP is

another spiral of index,n—+1. One can then prove by another method (c3,,6§ that if a
n

sinusoidal spiral of |ndex,—1: n is developed along a Ribaucour curve of index
n -+

n-1
n+1

= 2n — 1 then the pole of the spiral will describereeli

b) If (Mp) is a conic then the roulett®)(that is generated by a focus will be a
Delaunay curve, and one knows (llI8gthat the pedal of the conic with respecPtwiill
be the circumference that is described with thalfexis as its diameter. Conversely,
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one should note that no matter how one fixes the pointthe plane of any circle, that
circle will be the foot of a well-defined conic thasha focus a@. Therefore, théne on
which one needs to develop a circle in order for a given point jplatse to traverse a
line will be a Delaunay curve.

7. — WhenP is not fixed in the plane oMp), one will first of all need to know the
trajectory that is described in that plane and the iposihat is occupied at any instant.
In order to do that, it is enough to give the radiusur¥atureg” of the trajectory and the
ratio xp of its elementary arc length to that d¥lg), which are quantities that can
consequently be considered to be known functionsy of We would like to limit our
study to the simplest case of a trajectory that ist@mly orthogonal to the radilv,
which is a condition that must represent a constriaativeens, and ©'. In order to
abbreviate the calculations somewhat, consider théigousM “andP’of M andP, resp.,
in the fixed plane after an infinitesimal developmeh{M,) on (M), in such a way that
MM’=ds PP’= xds The linesPM andP’M"are concurrent at the center of curvature
C’of the trajectory oP in the fixed plane, and it is clear that one has:

PP _MM' . . K _ sin@
—=——-5sing, ie, —=——r.
PC MC P p-r

The argument is also valid in the case where thplattement oP is considered in the
moving plane, and therefore:
'sin "sin
o= p'sin@ Ko = p"'sin@

pr_r ! pn_r *

(16)

Having said that, since the variations of the coateés ofP in the moving plane are the
products of the elementary arc lengttds with sin dand — cos9, one will have:

OX o X
= OX _y:_Ko_-

ds  °r’ ds, r

Hence, if one substitutes these values in the fmedéal formulas that relate to the
moving curve then one will get:

%:[ﬁ-{-ijy—l ﬂ:—[ﬁ-{-ijx'
ds, \r 5 ’ ds, (r p) "

thus, the formulas that relate to the fixed cur#hecome:

Q:(ﬁ-}-ijy, g:—(ﬁ-}-ijx
ds r R ds r R
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Therefore, the normal to the roulette also passesigifr the instantaneous contact point
in the present case; i.¢he two trajectories of P are mutually tangerih addition, one
sees from the last formula that the ratio of tler@ntary arc length of the roulette to that
of the base is:

K= Ko +%. a7

Given the functions , formula (17) will yield the arc length of the rouletéend the first
of (16) will permit one to calculate the curvature.

8. Savary’s formula. — If one sets« and xp in (17) equal to their values in (16) then
one will get:

11 - nl = 1 * (18)
p-r p'-r Rsind

That isSavary's important formula, which reduces to (6) fdr= 0, and one can always
substitute it for the first formula (16) for thetdemination ofp’, since if one is giverg
then the functiong’ will also be known by means of the second form(l&).
Geometrically interpreted, Savary's formula permitse to construct the center of
curvatureC’ of the roulette when one supposes that the cefteurvatureC" of the
trajectory of the generating point in the movingr# is known. In fact, that says tkia¢
perpendicular to PM and the tangent (@) at M go through M and C respectively,
which are concurrent on HC One can do withoud by observing thathe line CC and
CoC" are concurrent on the perpendicular to PM that gdbrough M. WhenC" is
coincident withP, one will recover the construction that was palrbet in 82.

9. Envelopes— When o) is developed on\), any line that is fixed in the plane of
(Mo) will envelop (I, 85) a certain lineR). Each poin can be regarded as a common
point to two infinitely-close positions of the lim®nsidered; i.e., as fixed in the plane of
the curve o) when it is developed infinitely little alongV). Therefore (81), the
normal to the envelope that is the trajectoraf the fixed plane passes throughi.e.,
the line considered touches its envelope at thedbthe perpendicular that is dropped
from M. Meanwhile, one can then realize the hypothes§ Gfi.e., the poinP moves
orthogonally toPM and also in the plane d¥ig). Hence, in order to find the coordinates
r and @ of P by projecting orthogonally from the origikl onto the lines that one
considers, it is enough to substitute them in fdasif16) and (17) and arrive, in any
case, at thantrinsic equation of the envelopelne finally applies Savary’'s formula to
that pointC” that is rigidly linked with o), and at a given instant, it coincides with the
center of curvature of the moving line at the pewhere it touches its envelope. df is
the radius of curvature of the trajectory@f then one will need to replagg ando’ in
(18) with ¢" and O, resp., and put— ©' in place ofr. With that, one succeeds in
changingg into o' + g". Thereforep’= o' + 0" ; i.e., the center of curvature of the



88 Lessons on Intrinsic Geometry

trajectory of the point consideredincides with the center of curvature of the envelope of
the moving line.

10. - In order to apply the preceding formulas to the line,ronst suppose that' =
o, Under that hypothesis, the second formula (16) will give sin 8. (17) will then
yield «, and one will gep’from (18). One will then obtain:

, . r , .
s'= j(sméHEjds, p’'=r+Rsing (29)

in whichr and @ are the coordinates of the projectiérof M onto the line considered.
Since that is given in the plane ®d), r and & can be expressed as functionsodnds.
The intrinsic equation of the roulette)(will then result from eliminating in (19).

11. Application. — If a Ribaucour curve of indaxis developed along a line then its
directrix, which is on the normal to a segmérth + 1) o that starts ai, will touch its

envelope at the fod? of the perpendicular that one drops frpand one will then have
r=+(n+1)msind. If one substitutes that value in the seconanéda in (19), in

which one ha®k = o, then one will find that:

[

, _n+3 2r : , ,_ h-
p=—r=—, in which n’= :
n+1 n+1 n+

w

and one will then arrive at the following theorefrDubois:

When a Ribaucour curve of index n is developedglanine, its directrix will

: . .n-1
envelope a Ribaucour curve of |ndex+—3.
n

For example, if one sets = 1, 0,—- 2, etc., then one will find that when a circle is
developed along a line, any of its diameters wiledope a cycloid. The directrix of a
cycloid that is developed along a line will stayglel to the tangents to an asteroid. The
directrix of a parabola that is developed alonma Will stay tangent to a catenary, etc.

12. Circle of regression— The second formula (19) shows that onedias0 whenr
=-"TR sin@; i.e., whenP belongs to the circumference that is symmetritheocircle of
inflection (84) with respect to the tangent ol at M. That circumference is called the
circle of regressionsince it is the locus of the cusps that are pteseat a given instant
along the roulette that is generated (tangentiddiyxhe line in the plane oMp). One
knows thatall of the cuspidal tangents are concurrenthe pointH’, which is symmetric
to H with respect taM. It will then follow that if a line that is fixeth the plane ofNlo)
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constantly passes throughf then it will contain a fixed point in the plane @), which

is a point that is common to all of the circles efression. Indeed, the second p&irat
which the line meets the circle of regression wilbate the point of contact of the line
with its envelope, and therefore one constantly p'as 0 atP, which means that the
envelope reduces to the single pdmt It is then useful to observe that in the inverse
development ofNl) along Mo), the circles of regression and inflection switcihveach
other. Now,if a point P in the development (W) along (M) is fixed in the plane of
(Mo) and describes a linesince that line must pass throudi{8 4), which takes the place
of H’in the inverse development, it is clear ttheg line considered in the development of
(M) along(My) rotates around P.

13. Examples:

a) One sees (8, e) that if a sinusoidal spiral of index is developed along a
Ribaucour curve of inder = 2n — 1 then the pole of the spiral will displace alohg t
directrix of the base. It then follows directly th&a Ribaucour curve of index n is
developed along a sinusoidal spiral then the ind¢r + 1) of its directrix will rotate

around the pole of the spiralFor example, if a line is developed along a catettey a
point of its plane will move in a straight line, arie tdirectrix of the catenary will pass
through a fixed point in the inverse development. If aio&tds developed along a
conveniently-chosen cycloid then its cusp will tragetise directrix of the cycloid, and
that line will not cease to pass through the cusp of ahelioid in the inverse
development. The curve along which one must developetend pedal of a circle with
respect to a point in its plane in order for that ptardescribe a line will be parallel to an
asteroid, and the line will rotate around the pointaninhverse development.

b) More generally, if one utilizes Habich’s theorenb{8hen one can assert thhe
line along which one must develop a curve in order for that line tdameepoint is the
pedal of the second curve with respect toThwus, for example, if one supposes that the
second curve is a conic with one focusPathen one will find (cf., 8, b) thatif a
Delaunay curve is developed along a conveniently-chosen circle then itsvilastate
around a fixed point.

14. — In conclusion, let us point out the utility that tiheory of the roulette has in
these lessons, since it provides us with ways of gengretirves that were so far known
only by their intrinsic equations. For example, we caw account more exactly for the
form of the Ribaucour curves that are defined with ind&caad — 5, and were previously
known (111, 87) for the resemblance between their intrinsic equations:

SZZI do o= 2'[ do
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resp., and those of the lemniscate and the equilatepatihyla, resp. One can now say
that the first curve is the locus of the center okgquilateral hyperbola that one develops
along a line or the envelope of the directrix of a watg that is developed (externally)
along an equal catenary. It is also the curve alomgwa lemniscate must be developed
in order for its center to traverse a line. Similatlye second equation represents the
curve along which one must develop an equilateral hyperbadader for its center to
describe a line. Conversely, when the two curves arelajgad along a lemniscate and
an equilateral hyperbola, respectively, their direc¢rieél rotate around fixed points.




CHAPTER VI

BARYCENTERS

1. — One can attribute coefficients that one callsnassego the pointsv; (i = 1, 2, 3,
...) that are defined in a plane by coordinatey; relative to an arbitrary pair of axes and
consider the poinG that is defined by the coordinates:

X = %ﬂ;{& s %ﬂﬂy | )

It is clear that any linear transformation that islegapto the coordinates of the poiik

will be repeated identically with the coordinatey, and therefore it is enough to exhibit
the uniquenes®f the point (1) — i.e., to show that it is alwaye same, no matter how
one chooses the axes. The p@nis called thébarycenterof the given system of points
or masses. In particular, one should note that theéater of the system of two masses
L1 and kb, which are assigned to the poMi andM;, resp., is the point that dividés;

M, with a ratio that is inverse @ and/». The barycenter of a system that is composed
of more systems of points is also the barycentehefsystem, because in each of them,
one proposes to place a mass that is equal to the fsiln@ masses of the corresponding
system. That property, along with some others, is ¢asgeduce from (1). More
especially, we would like to consider the case of nsats# are distributed continuously
along a curve and lgt dsdenote the infinitesimal mass that is placed alongtdment

of arcds If one wishes to know the law of mass distributiben it is enough to know
the functiony of s (which is called thedensity, so the barycenter of any arc is well-
defined. The coordinates of that barycenter will be givethbyormulas:

xj,udsz j,uuds, yj,udsz j,uvds, (2)

in which one supposes that the integrations extend fronewdgoint to the other of the
arc that one would like to consider, and thaandv represent the coordinates of the
points of the curve. One can simplify the hypotheseswie density is supposed to be
constant. One will then get thoarycentey properly speaking, which is what we shall
always speak of in what follows when we do not makerohypotheses explicitly. If
one takes the density to be equal (or proportional) tactineature of the line then one
will get the point that is calle8teiners barycenter of curvature.

2. — In order to determine the double infinitude of barycentémslldhe arcs of a
curve, it is enough to know the barycenters of the #ras have a given endpoi@
(which one can always take to be the origin of the, @iote the barycenter of any &g
M- , which is defined by the valusg ands, of s at the endpoints, divides the rectilinear
segment that goes from the barycentelOdd; to that ofOM; in the ratio —s, : s .
Therefore, letG be the barycenter of an a@M, and letx, y be its coordinates with
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respect to the tangent and normal of the moving endphinin the present case, (2) will
reduce to the form:

s x= Iosu ds, sy= IOSV ds,

in which each pair of valuas v satisfies the immobility conditions (ll.1), except ttia
= 0,v = 0) refers to the upper limits of the integrals. irtffollows that if p represents
the value ofo atM more simply then:

d ¢s _ 1 s 5 e d ps __1 s
d—sjouds—;jovds jo ds, d_S'[OVdS_ ;Luds,
ie.:
—d(S)Q = ﬂl— S, _d(Sw = —2(. (3)
ds Yo ds Yo

The coordinates db are determined by these equations and the condhat they must
go to zero withs, since the barycenter will i@ when the arc reduces to the single point
O. Those same equations (3) can show us the wdayGhands toO with greater
precision, since ifo is not zero at the (arbitrary) origin of the atben, by virtue of
'Hopital's theorem, one will have:

im X=tim =L Y] =-1 im Y= gim Y=-dim X =L
S S Yo 2 S S 3 sp 6p

and one will see that the equatidnt y* = 3/2 py will tend to be satisfied in the vicinity
of O; i.e., the barycenter will tend to locate itself on thecaimference that one obtains
by reducing the osculating circumfereram®undO by three-quarters.

3. — Knowing abarycentric linecan be very useful — i.e., the curve that is desdr
by the pointG whenM displaces along the given curve. Obviously, aveunas an
infinitude of barycenters, each of which takes ohigin to be an arbitrary point of that
curve, and it is clear from the observations thatemust made that not only does any
barycentric line touch the curve at the correspaomairigin, but also that its curvature at
the contact point is equal to four-thirds of théttlee given curve. Furthermore, any
curve will belong to the envelope of its barycemtiines, as one will also see more
clearly by observing that two arbitrary barycentines will meet at the barycenter of the
arc that is determined by their origins on the gicerve, whose barycenter will tend to
locate itself along the curve when the two origigisd to coincide. If the curve is closed
then two barycenters will have an infinitude of coan points that are barycenters of the
infinitude of arcs that are determined by the aisgon the curve, and since the difference
or sum of two such arcs will always be a multipfelee length of the entire curve, one
can add that the intersection of the two barycenimes will happen above a line that
passes through the poit, which is the barycenter of the entire closed euand the
point that is common to all of the barycentric $ne
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4. — Now take under consideration, more generally, the dhatels described by the
arbitrary pointI” whose coordinates satisfies (3). By virtue of (3), foanulas
immediately give:

and therefore the tangent 10) @tI" will pass througiM — i.e.,the pointl” will constantly
follow M — and the ratio of the elementary arc lengths of tleeduvves will bex =r : s.
The coordinates and@of I satisfy the single immobility condition:

dg__1_sind
ds p r

which will result immediately from the observatithat the lineMI” touches its envelope
atl", and since one can easily deduce it from (3), owae Therefore, (11.4) will give:

K _ 1+d6?: sind

I

,0_,0 ds r

for the calculation of the curvature @f)( and therefore the intrinsic equation fo) (vill
result from the elimination af from the equality:

2

r r
s’= | —ds, = —
I S p ssing
The second formula gives one the way to consthetcenter of curvature off . Draw
the segmentID = s along the tangent tdW) in the opposite sense and projpobnto the
normal to () atH: The center of curvature ¢&) will belong to the perpendicular to MH
that is raised at M From this fortunate property, in particular, agrycentric line @)

will be characterized among all of the) (by the fact that its passage fr@mmust touch
(M) and have the curvature:

. 3
Lo lim SN iy (fj jim Y= 4

p 50 r? r s? 3p

If one is guided by the first property then it wikké easy to account for the general form
of the barycentric line to any closed curve. Theybentric line that takes the origin@t
will pass through the poir®, which is the barycenter of the whole curve, dmitude of
times tangentially t@Q, and its curvature, which will take on an additeanstant with
every new passage, will conclude by exceeding amy.| The asymptotic point of the
barycentric line must therefore be confined indedig to the domain of), which is
nevertheless a lin@Q that does not meet the curve an infinitude of sm&he tangents
to the barycentric line at the infinitude of pointdere it meets any other line that
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emanates fronQ will intersect at a point, and when the line rotatesiadQ, the point
will describe the closed curve that admits the given leatyic line.

5. — The curve G) is not indispensible for the determination of theybanters; it is
enough to knovonearbitrary curve (). Indeed, le€ ands be the coordinates &f, and
take:

x=<¢+Rcosé, y=n+Rsiné

If one applies (3) to the poinfsandG then one will get:

E(sRcosé) :S—Rsina i(sRsinéD :—S—Rcose;
ds ds Yo
therefore:
d(sR _ do__1
ds ’ ds p

One sees from the first equality tis&must be constanand the second one says tifet
direction I'G is invariable. Therefore, if one knows a curv€)(and one wishes to
determine the entire barycentric lin@)(then it will suffice to know only one barycenter
Go . Indeed, iff o is the point that corresponds@g on the curvel{) then it is enough to
draw a segment through any poiinthat is parallel td  Go and whose length relates to
that ofp Gp inversely to the ratio dto s, . The endpoint of that segment is precisely
G. In particular, one can take the same orf@ifior Gy, except thal o will then be at
infinity; i.e., () will have an asymptote whose direction is prdgigbat of all the
segmentd G. However, the only thing that one knows about rtiegnitudes of those
segments is that they vary from one point to anoithenverse proportion tg, and in
order to determine them, one needs to remembewtiextM tends taO while increasing
the distance t indefinitely andG tends td”, MG must nonetheless tend to zero.

6. Applications:

a) Inthe case of aircle (o=a, s=a ¢), when (3) is put into the form:

d(xp) _ Y d(yg) _ _

X )

d¢ d¢ ¢
one can immediately glimpse the solutipr a, x¢ = — a. Although one can succeed in
finding that the coordinates &f are:

x:—%(l—cos¢), y= 8(1—%}
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with an easy integration, from the observations @, §f we are to also be able to
determineG then it will be enough for us to know the polntthat is defined by the
coordinatesx=—a/ ¢,y=a. The point” is at the intersection of the perpendiculars to
the raysQD andQM that go througtM andQ. Wheng tends to zero, the absolute value
of x will increase to infinity, and therefotdl" will tend to touch the circle. Therefore,
the barycenter of the arc OM belongs to the perpendicular to OQshetsed af™. In
order to see that, it is enough to const@ctvhich must also be found on the bisector of
the angleOQM, by reasons of symmetry. After all, it is easy tced®ine the length of
G if one observes that it must vary in inverse proport@ and that, on the other
hand, it will tend to behave like the length BM, which behaves likea : ¢ in a
neighborhood oD, in its own right. Thereford,;G =a : ¢ ='Q; that is to sayThe
barycenter also belongs to the circumference that is describedhdyceénter
tangentially to the ray QM Note that on that circumference, the @G has constant
lengtha. It will then follow that if an infinitely-thin inexterisle rod that is fixedn the
neighborhood of @5 bent into a circular form then its moving extremitiyl describe the
barycenter of the circle whose centerQsand whose origin is atl. Finally, if one
considers the similar trianglddOD, QGM with perpendicular homologous sides then
one will see that the sid@D is also perpendicular ©M, and in that way, one will be led
to a much simpler construction of the barycen@&helongs to the perpendicular to OD
that is based at M

b) Let us seek to see if we can satisfy (3) by takiagdy to be proportional tg, and
from that hypothesis, those coordinates will certainfndethe barycenter, since they are
annulled withs. Setx = as, y = 5, so (3) will give:

and therefore the curve islagarithmic spiral. Conversely, if one is given a similar
curve by means of the equatipr= ksthen one can always getand S as functions ok
from the preceding equations, since one is sutte(Bavill be satisfied byx = as, y = .
However, that determination is not necessary, siniseenough to put the equations into
the form:

P Y __ X
S 2x+s 2y
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in order to see that the barycenter of the@xtbelongs to the line:

s x+ 20y =0, px-s(y-p)=0.

Meanwhile, it is known (I. &1, c) that the perpendicular OM that is raised &b, which

is the pole of the spiral, will meet the normalathe center of curvature, and the tangent
atD at a distance from M. Now, the geometric interpretation of the last equnstiwill
show thatG is the projection of M onto the line that joins C to the midpdiMD. Here,

we observe thab, like O, belongs to the circumference that is described &ylihmeter
MC.

c) Forx = 0, (3) will becomey = p, d (sy) / ds= 0; thereforesp= a?>. Consequently,
in the case of thelothoid the center of curvature is a poiht that is to say, the
barycenter relative to the point of inflection candeeluced from the evolute of the curve,
thanks to the observations irb§ SinceM I" tends to become the normal@t viz., the
inflection point — wherM tends toO, the barycenter of the arc OM will belong to the
perpendicular to the inflexional tangent that is based at the center whtcwe at M. In
addition,'G varies in inverse proportion ®— i.e., proportional tgop — and sinceMG
tends to behave likeM —T' G in the vicinity ofO, one will necessarily have thaG = p,
since otherwiseMG would exceed any limit, instead of tending to zero. rétoge, the
barycenter of the arc OM also belongs to the circumference that assw@athe endpoint
M. Given that, one knows (& that the barycenter of any akt; M, will divide the
rectilinear segment that goes from the barycent@éf to that ofOM, in the ratio -s; :

s =-pom: o, and since those barycenters are the endpoints opawadlel radii of the
circles that osculate the curveMt andM,, one will see thaany arc of the clothoid will
have its barycenter at a center of similitude of the circlesdbatilate the endpointdt
will then be easy to prove that the clothoid is the a@nigye that has the barycenter of any
of its arcs in a straight line with the centers wivature at the endpoints of those arcs.

d) We would like to look for all of the curves for whitte barycenter of an arc OM
belongs to the osculating circumference at M, reduced or amplified by danbns
proportion around M In other words, we need to be able to find functioasdy of s
that are zero fos = 0 and satisfy (3) and the equation:

X +y=(n+1)py. (4)

If one differentiates both sides of this with respect after having multiplied them bs?
and observing (3) then one will get:

d(so)
ds

(n-1sx=(M+1)y )

If one then writes that equality in the form:

n—ld(sy)+ n1 CK$)):O
sy ds ® ds
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then upon integrating, one will get:

sy (o =a" (6)

as long as # 0. Forn =1, one will then find the clothoid, to which we woulgt ffike to
return. The elimination ado from (4) and (60 gives:

(s X)2 +(s y)z =(+1) a4n/(n+1)(sw2/(n+l), (7)

and sincesx andsy are infinitesimal withs, one cannot have + 1 > 0. One must also
have 2/ + 1)< 2 (i.e.,n = 0), if one does not wish that the absurd equafity y* = 0
would be true in the neighborhood®ffor real, non-zero values gfandy. Having said
that, one sets:

sp=a’t, r= \/(n+1)t2”’(”‘1’—1,

for brevity. Formulas (6) and (7) will then give:

n+l _n+l

sy=a’t ™, sx=#*ra’t ", (8)

and the first of these equalities will show thatsaends to zerot will tend to zero or
increase indefinitely according to whetlmex 1 orn > 1, resp. Finally, if one substitutes
the values (8) in (5) and integrates then onegeitt

g=_pM*tlpepdt o g_pntl oot (9)
n-1 Jr n-1 st r

in one case or the other, resp. In order to firihtrinsic equations of our curve, it is
enough for us to eliminatefroms p = a® t and one or the other of equations (9). If we
would like to examine the behavior of those cunvethe neighborhood of the origin then
we should observe that whetends to zera, will increase to infinity liket "’ ©~ %, so it
will follow that the integrals (9) will behave like"*’©~1: i.e., by virtue of (9) itselft

will tend to zero or increase indefinitely likd " in the casesn(< 1, n > 1, resp.).
Therefore, the curve develops in the neighborhddd as if its intrinsic equation were
=k 7 that is to say, it will attain a lesser or greatentact with the tangent at that
point according to whether< 1/2 orn > 1/2, resp. In order to specify that form better
we need to recall the preceding observations {1,&) and then recall that in any case,
the inflection will appear aD, instead. An asymptotic point is possible onlyhe case
of n = 0, which shall be examined last, but not leabhe final observation of 8 will
permit us to assert that it is only wher 1/2 that the curvature can have a finite, non-
zero value at the origin. In that case, the tfgt9) will essentially give:
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52:6a2.[; tat :68‘2(\/%_1/;_'[2)

§_t2
2

and one therefore infers thst+ 36 &# = constant, which is the equation (I8&c) of a
stellate bicuspid epicycloidFinally, if one would like to know the curves fahich it is
possible to have = 0, it is enough to substitute an arbitrary comtstar the right-hand
side of (6), which will cease to be arbitrary for 0, and for ease of calculation, one can
denote that constant by 1 ¥4 Formulas (4) and (6) will then give:

2kp y=_P_.
1+ 4k’ 1+ 4k’

if one integrates (5) then one will have:

!

p:ks+£.
S

Among those curves, it is only the clothokl £ 0) that cannot answer the question,
because one has= 1 for it; however, one should note thxaandy can be annulled with
s, and for that, it is necessary and sufficient gwahould be annulled; i.e., that one must
havek’= 0. Therefore, the property that was observethatend of the penultimate
application characterizes the logarithmic spiral.

7. The search for the barycenters of a curve is alwagsicible to that of the fixed
points in the plane of another curvelndeed, if one sets:

sXx=ax, sy=aWw, (10)
along with:
f=2a%, sp=am, (11)

then (3) will become the known conditions:

d_%:ﬁ—l %:—ﬁ (12)

ds, P, ds, o

which guarantee the immobility of the poin,(yo) in the plane of a curvevlp) whose
intrinsic equation will result from the eliminaticof s from (11). Meanwhile, (11) will
establish a correspondence between the pointMbfad those ofM), while (10)
relates a solutionx( y) of (3) with one Xo, Yo) of (12), and therefore, it makes a certain
point in the plane ofNly) correspond to angurve (). In particular, the barycenter that
takes the origin to be & will correspond to the origin of the arcs &), since from
(10), xo andyop will be annulled withs (and s, resp.) ifx andy remain finite. That
happens ($) at the origin only for the barycenter.
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8. Geometric construction of the barycenters— The arbitrariness ia permits one
to deduce a general construction for the barycentens fioomulas (10) and (11). If one
must find the barycenter of the &M then one can taka to be equal to precisely the
length ofOM, and that will determine the curvigl), thanks to (11). By virtue of (10), if
the two curves touch at the corresponding pdihtandMy, then the barycenter @M
and the origin ofNlp) will coincide, and the first of (11) will give, =a/ 2 whens = a.

It is then enough to measure out an arc aldag that isone-half of OMwhen starting
from the origin and to arrange that the other endhiould touch the at©M atM: The
origin will be placed at the desired barycentein the choice of the poirltlp, one can
also be guided by the considerations that the confattteotwo arcamust result at a
higher order(lV, 8 1), while for s = a, the second formula in (11) will give = o .
Finally, one can deduce a third determination of the pdifrom the equality:

ads_ al2 d%
0 p - .[0 70’

from which, one will see that if one measures thetamnof the two arcs in the
aforementioned wathen their tangents at the other endpoints wilpbeallel.

9. Kinematic construction of the barycenters— Suppose that the curvdd)(and
(Mp) are arranged such that they will touch at two corredipgnpoints, and one
considers another pai’, M, of similar points in the neighborhood of the contact

points. LetC andCy be the centers of curvature of the two curveg .atif one observes
(11) then one will deduce from (10) that:

and therefore the poirty will be found at the intersection of the lidd I with the
parallel toC I that goes througi®, . It will then follow that if the plane ofMo)
experiences a dilatation or a contraction aroMhthat take<C, to C then the effect of
that deformation will be to transfer the poitto I and the poinMg to M, and therefore,
the contact between the two curves will persist atesponding points when one of them
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rolls along the other. Therefore, if the curié) (s measured from the origin of the arcs
to the contact with the corresponding curMg)(at a conveniently-chosen poi@t and if
that develops on\) by dilating or contracting around the point of contactuch a way
that the two curves constantly preserve second-ordeaciotherthe point G will be the
barycenter of the arc OM at any instarttlence, one can construct the barycenter of any
arc for any given curve in the plane in a kinematicallgliiggible way, before one knows
another curve, which is very easy to determine, thank$1).

10. Examples:

a) In the figure (8, a), which showed how to construct the barycenter of aroba
circle, the arc of the involut€M, which constantly osculates the fixed circumfererice a

M, appeared clearly, and one got precisgfy= 2a s from (11) forp = a, which is the

equation for an involute of the circle, and is similathe one that contains the asd/.
One should also note that the cuspidal tangent will be paatllel to the tanger®@T as
long as the cusp does not cease to indicate the baryoétive arcOM .

b) One sees from (11) tha is proportional tas, whenp is proportional tcs, which
is to say that ifi¢1) is a logarithmic spiral theriMp) will also be a logarithmic spiral. If
the pointsC andD constructed (cf., &, b) relative to the first spiral then what will the
analogous point€, andDg be for the second spiral, which is tangent to thst tne at
M? Since the contact is of second ordey,will coincide with C, and from another
observation that was made inB8the arcGM of the second spiral, which rectifies it at
DoM precisely, must be one-half the arc lengit — i.e., ofDM — one will see thaD, is
the midpoint oDM. It is also clear now that, just @sis the projection oM ontoCD, G
will be the projection of M onto GD

c) In the case of a clothoid, the second formula (11l)gmie o = constant, which is
to say that if a variable circumference is developed @elothoid that constantly
osculates it then one of its points will describe litbeycenter of the clothoid that takes its
origin at the inflection point. Otherwise statedttisathe property that was found ir68
One can arrive at it more directly and with bettecgien by utilizing what was said in 8§
8. Indeed, after having confirmed thatM) is a clothoid thenM) will be a circle, one
can immediately add that it is the osculating cirdleVia and one then constructs the
barycentelG by drawing an ar1G along the circumference in the negative sense whose
length is one-half the arc lengthO of the clothoid, or merely upon observing that the
normal to the circumference @tand the inflectional normal to the clothoid are pakalle

d) If p=k ¢'is the equation of the curv#y then (11) will giveg = ko s for

(Mp). One will then recover the preceding results O, 1,— 1), and see, in addition, that
one requires a (2+ 1)th involute for the construction of the barycentersi*mzfnIh involute
of the circle. Similarly, one will find that an astel is required for a cycloid, a cycloid
for a bicuspidal epicycloid, a cardioid for the stell@gcycloid of 86, etc. More
generally, any cycloidal line implies an analogous linesuch a way that any vertex of
the fixed line will correspond to a cusp of the moving line.
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e) Formula (10) and the second of (11) allow one to see thatedy that when the
curve M) is defined by @aomogeneouselation between the radius of curvature and the
coordinates of the barycenter, that same relationd®tthe radius of curvature and the
coordinates of a fixed point will define the correspondingve (Mo). For example, it
follows that all of the curves that were studied in #pplication ¢) of 8§ 6 will
correspond to theinusoidal spiral Moreover, if one takes = 2a $ and = at in (9)
then one will get precisely (cf., lll, 9) the equation of the sinusoidal spiral:

g = n+1'[ do,

n-1 2n/(n-1)
R
B

The generating point of the barycenter is ploée of the spiral, since (lll, 85) one will
have o = 0 only at the pole. The pole must therefor@hglto the spiral, and it must
effectively belong to the spiral far> 0 (lll, 8§ 20).

11. - Each of the properties that were found so farcétain curves will persist for
an arbitrary curve, as long as one varies the teaking that curve conveniently. &
represents the mass that is deposited along tr@Mrten formulas (3) must be replaced
with:

=—=-g =-—, (13)

and if one sets:
X y a p ds

then they will reduce to (12). Therefore, if omeagines that the considerations o9 8
have been repeated then one will always succeednstructing, for any curvevl) and

for a given mass distribution, a curioj whose development alonlylf, while dilating

or contracting around the contact point in suchay what it preserves a higher-order
contact with M), and during its motion and deformation, it with¢e out the barycenter
of the mass distribution along that arc bf)(that has been the contact with the moving
curve from the beginning. Its equation is foundeligninatings from the relations:

asozjads, am=0p. (14)

The geometric interpretation of the results thusmied will provide a construction of
the barycenter in the individual cases that wibiwiever, pertain to an arbitrary curve, as
long one assumes thatis a special function
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12. Examples:

a) One can give the formrp = a® to the intrinsic equation of any curve by takjmtp
be proportional to the derivative of the curvature. $&eond formula in (14) will then
give ;» = a, and the barycentric property of the clothoid will thiem true for that
particular distribution. Hence center of similitude of the osculating circles at the end
points of any arc of any curve will be the barycenter of a mass thladtiguted along
the arc with a density that is proportional to the variation of the curvatimeparticular,
if one takeso = a ¢ then one will see that a curve that is already kntowns (I, 811, ¢)
is characterized by the property that the barycenteanrvhature of any arc and the centers
of curvature at the endpoints of that arc must always bestraight line.

b) Any way by which one can satisfy (13) will yield partiquleonstructions of
barycenters. We confine ourselves to pointing out theltref setting:

ox=—ay, oy=a(X+9 (15)

in (13), which will then reduce to the conditions of inbiity for the point &, yo) in the
plane M), as long as one hasp = a s One then sees, as in7§that the point in
guestion will be the origin of the arcs. Meanwhilenir@l5) and the condition that was
found, one will deduce that:

XX%+tYyY=="SX=0Yo,

upon eliminatingo. Therefore, for any curvéhe perpendiculars to OD and OM that are
based at M and C, resp., meet at the barycenter of a mass thstriisuied along the arc
OM with a density that is proportional to the variation of the produchefdrc length
with the curvature. In particular, if one considers the cume= k <' then one will find
that c = (n — 1) a ¢, and the preceding construction will then yield the tanyer of
curvature for that curve. In addition, if one obseryes in this case it will result from

(14) thatm = k, /™ then one will see (II, 83, i) that the curveNl) is an involute of
(M).



CHAPTER VII

BARYCENTRIC ANALYSIS

1. — The notion of barycenter serves as the basisnf@legant method of geometric
analysis that we cannot hope to go further into witheaving the field of pure intrinsic
geometry. We shall therefore confine ourselves to shgdgome light, by way of
examples, on some of the simplest and most essdinidal to the intrinsic analysis of
plane curves. First, recall (V1,8 that the barycentav of the masseg: and/s that are
deposited at the points, A, resp., belongs to the likg A, and is such that:

y7: MA; + j72) MA, = 0. (1)

Any pair of values fogs andy, will then correspond to an infinitude of other pajs (
L) that are obtained by multiplying one of them by an eabitnumber, since that will
not change (1) in fact. Even better, in order to makeiat correspond to just one pair
(14 , ), One agrees to sgt + 1L = 1. One can then generate the entire line by varying
the distribution of the unit masses between the fundtaheointsA;, A, . WhenM is
extended indefinitelglong the line, the ratio of its distance to the ameéntal points will
tend to unity, and one will see from (1) thlaé equalityts + 16 = Owill tend to become
valid. To abbreviate, we say thabe haswu + (& = 0 at the point at infinity.If N is the
point that is specified by the masses that are propoltiona 4 and & then (1) will
show that MNAA,) = — 1; that is to sayiN is the harmonic conjugate bf with respect
to the fundamental points. That explains once mdrg ane can say that one has+ (4

= 0 at infinity if 14 — 16 = 0 at the midpoint of; A;, which is conjugate to the point at
infinity.

2. — Analogously, ifA;, A, As are the vertices of a non-zero triangle (arrangetien
order in which they are encountered by starting at ond pathtraversing the perimeter
of the triangle while leaving the area to the lefgtthas unit masses variously distributed
among its vertices then that will give rise to a doubfeitude of triples of masses,

Lb, 15, and each triple will give rise to a point (viz., therycenter) that one can construct
by dividing Az Az in the ratiogs : & to givel and then dividinghiL in the ratio f& + (&)

. th . Conversely, any point in the plane will corresptma triple of valuegs, (o, 15
(viz., thebarycentric coordinatesf the point), such that:

ot ot =1, (2)

and it will correspond to just one such triple, becatifeeiline A;M dividesAjA; atL in
the ratiok andM dividesAsL in the ratiok’then one can always, and in just one way,
satisfy (2) and the conditions:

=Ko, o+ =K (4. ©))
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From the last one, whekitends to — 1, one will see thahen M extends indefinitely, the
equation:

M+ + s =0 (4)
will tend to be verified.

3. Straight line. — If one takes (2) into account then formula (1) &f pgreceding
chapter will become:

X=X+ X0+ 3 X3, Y=Y+ Y2+ [BY3, (5)

and then a linear relationship between the Cartesiammdr@tesx and y can be
transformed into a lineaand homogeneouselationship between the barycentric
coordinates. Conversely, if one is given such a relatipngien one can always
transform it into a linear relationship between the €aan coordinates by means of the
formulas:

& = (2 —y1) X— (e —X) Y + (2 Y2 — X Y2), etc., (6)

which are obtained by solving equations (2) and (5)f@nd lettinga® represent two
times the area of the fundamental triangle:

1 X ¥
a¥ =1 % Y. 7
1% VY

Therefore, any linear equation between the barycetiocdinates will represent a line.
For example, if one fixelsthen the first equation in (3) will represent that heoughA;
that dividesA; As in the ratiok. Similarly, when one supposes thais constant in the
second equality (3), it will become the equation for algrto the edgé\, As . That
equation can also be written in inhomogeneous forpn as constant, and one will see
that when a point is located parallel to an edge ofuhdamental triangle, its barycentric
coordinates with respect to the opposite vertex will dodnge. In particular, the
equation for the edge that is oppositeAtas 14 = 0. That permits one to directly write
down the condition for parallelism of two lines:

afh+ o+ azis=0,  [ipnt e+ s =0. (8)

In order for them be concurrent with a triple at anpait is necessary and sufficient that
the determinant that is composed of the coefficienthethree equations must be zero,
because that is precisely the necessary and suffimiedition for the existence of values
for the i that are not all zero and satisfy the system oktleguations. Having said that,
saying that two lines are parallel is equivalent to sayiat) tiiey are concurrent on the
line at infinity, and therefore theondition for parallelismis expressed by setting the
determinant of the system that is composed of equadyran( (8) to zero, namely:
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14 B
1 a, B|=0. ©)

1 a f

4. Distance between two points— Let d4 , d» , Jus be the variations that the
barycentric coordinates experience when one passedvirimanother arbitrary poiidl’,
and calculate the distan&ebetween the two points. Laf, a;, az be the lengths of the
edges of the triangle. If the segm@&M¥1’is parallel to an edge (for example,Ag As)
then its length, as well as its sign, can be expdebgey Jdus, or simply by —a; da
which would result easily from the similarity of theanglesAiMM ", A;LL". No matter
how M andM "’ are situated, consider the point of intersecbhof the parallels to the
edgesA; A; andAsz A; that go througM andM’, resp. Obviously, the coordinateshdf’
aretyh — ol , 1 + Jlk , 13, and therefore two edges of the triangls ‘M ” will have
lengthsa; gz and— az Jiu . If one now observes that the angle that is oppositae
edgeR is equal to the angls; then one will have:

R = a}(du,)” +ald(du,)*+(as+ a5~ a) du ,du ;
le., ifou + b+ ous = 0:
R == (& dt, Qs+ a5 I, + 5, ) (10)

In particular, when the two points are infinitely 4 the square of the distance between
them will be:

dsZ:—(afd,uzd,u3+a§<1ug ¢I1+ C)g dll dlz) (11)

5. — We are now in a position to also find ttendition for the perpendicularitgf
two lines: Let them be (8), in which one takes the pdhtendQ to be outside of the
point of intersectioM. Let the letterg and/ represent the variations of the coordinates
whenM passes t® andQ. Obviously,s and 7 satisfy (8), and in addition, because (2)
will be true at any point, one will have:

g+&+&=0, a+5+&5=0.
It will then follow that:

& - & - & A - 7, — UR . (12)
a,-a; a;-a, a,-—a, :82_:33 :33_:31 :31_,32

Having said that, apply formula (10) to the distar/d& MQ, PQ in the relation PQ)* =
(MP)? + (MQ)?, which is necessary and sufficient for the perpendiityl One will then
obtains:
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812(82—/72)(83—/73) +...= 61282 &+ ..+ 812 mns+ ...,

af(é‘z N3+ &)+ 85(53 m+ & ns) + a;(é‘l e+ & m) =0, (13)

in which £ andn must be replaced with the proportional quantities (12).

6. Pairs of lines.— If one multiplies the (8) together then one wiit @ quadratic
equation:

DGt 14 =0 (14)
1]

with a zero discriminanthat must always be satisfied by the two lines, bueneutside
of them. Conversely, if one is given an equation (#4)se discriminant:

Ci Gp Gy
A= CZl C22 C23

%1 C32 C33
is zerothen one will know from algebra that the equation idldecomposable into two
linear equations, so it will then represergaar of lines. What other conditions must the

coefficients satisfy in order for the lines to be gaetalr perpendicular? If one observes
that:

cu=2mpB, Cx=mB+afn, etc,
and consequently, that 775 + & 7, will be proportional to:

(n—@) (L-B)+ (- a3) (b= ) =Ci1—Ci2— C13 + Ca3,

then one will see immediately upon substituting this in (@8t the condition for
perpendicularitys:

(@ -a-&)c,+(g-&- &) ot (& - 4 ¢
+ 8’ G+ 8 Gyt & = 0. (15)

Similarly, in order to express the idea that the limesparallel, consider the determinant
oof the left-hand side of (9), and observe that:

1 al 181 1 181 al 1+ Cll 1+ C12 1+ Cl3
-0°=1 a, B,|1 B, a,|=|1+c, 1+c, 1+c,,
1 a3 183 1 183 aS 1+ C31 1+ C32 1+ C33
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i.e., if orepresents the sum of the algebraic complementsaléaents ofA then:
-d’=0g+A=0

Therefore, theondition of parallelisms o= 0. In addition, if one is given that (14) has
real coefficients then one will s¢ige lines are real or imaginary according to whetleer
<0or o> 0, resp.

7. Examples:

a) Let 15 =Kk 1 be the equation of the perpendicular that is dropped &Apto the
opposite edge. One determinkesoy expressing the idea that the condition (15) is
satisfied by the pair of lineg, 15 =k 4 1, and one will then find that the equation of
the line considered is:

(s +ai-a) = (] +a— &) k.

Hence, the perpendiculars that are dropped from theesmf a triangle to the opposite
edges will be concurrent at a point (viz., tbehocente) that is defined by the
coordinates that are inversely proportional to the dest

Era -, Ly -, A +E -4

b) From what was said at the end df, & pair of lines through; that harmonically
divides the opposite side is represented by the equation k* zZ. If one wishes that
those lines should be the bisectors of the aAgkhen one would need to determinen
such a way that the condition (15) is satisfied; bee would need to have& = k* a’.

The three pairs of bisectors of the angles of the domehtal triangle will then be
represented by the equations:

8 a & & & a
and therefore meet at four points that have baryceotrordinates that are proportional

to ai, ap, as in absolute value. In particular, the three intelnséctors are concurrent at
the point (viz.center of the inscribed cirgj¢hat is defined by the coordinates:

m=—2 =% =%
atat+a atat+a atat+a
¢) In order to find the points at which the line 14 + a» & + a5 15 = 0 meets the

edgeA; As, one needs to sgh = 0, and/, and 5 will then be determined from the
equationsty + b =1, a 15 + a3 1o = 0. However, if one would like to know the
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harmonic conjugate of the intersection point with respette pairA; Az then one would
have to replace the last equation withis — a5 (o = 0. It would then follow that the
point P that is defined by the equality 4 = o 1 = as 143 would be such that each edge
of the triangle would be divided harmonically by the lihattjoinsP to the opposite
vertex and the line considered. The pdinis called therilinear pole of the line, and
conversely, the line is thelinear polar of P. If ¢y, ¢y, c3 are the barycentric coordinates
of an arbitrary point then the barycentric equationsotrilinear polar will be:

ﬂ+&+&: 0.
G & G

In particular, it is known that the line at infinity $1é@s trilinear pole at the poict = ¢, =
C3 = 1, it is the point at which the medians are concurramd, which one calls simply the

barycenterof the triangle.

8. Conics.— Substituting the values (5) in the Cartesian equati@aoinic [, 81]
will produce a quadratic relation between the barycentrardinates that one can always
make into a homogeneous one by means of (2). Convevdedyn one substitutes the
values (6) in any equation (14), that will change it intoeguoation of degree two
betweenx andy, and it will then represent a conic that degenerattesa pair of lines
when the constrairk = 0 is imposed upon the coefficients. No matter whatvilue of
A might be, observe that the equation that is obtauyesettingc (¢4 + & + 16)% in the
right-hand side of (14) will represent a conic for eaeltue ofc. The conics that
correspond to the infinite values obehave like the conic (14) at infinity, since (4) will
tend to become valid at infinity. One then has paralighptotes, and therefore, in order
to know a pair of parallel lines to the asymptotes of ¢baic (14), it is enough to
investigate which values ofcorrespond to a degenerate conic. Meanwhile, one @sserv
that for an arbitrary value @f the discriminant is:

G.7C G,~C G,
A'=|c,,-Cc C,-C C;—q=A-co.

Cy;~C G,=C G,

The sum¢ of the algebraic complements of the elementd\'ois independent oft,
because if one imagines returning frdmto A by joining c to all of the elements af’
then one will find that:

A=N+cd=A+c(d-0), sod =g,

when one applies the last formula. Having said that#f0 then the value =A : owill

correspond to a pair of lines that are either paralléh¢écasymptotes of the conic (14) or
coincident with them, and from the final observatiothef preceding paragraph, one can
state that the aforementioned comudl be an ellipse or a hyperbola according to
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whetherog> 0or o< 0. If the coefficients are varied in such a way ihgends to zero
then the two lines will tend to become parallel, arefdforethe conditiong = 0 will
characterize the parabojaince it is (lll, 82) the only conic that behaves at infinity like
a pair of (coincident) parallel lines. When one then Ewalong withg, the parabola
will degenerate into a pair of parallel lines. The &qaral hyperbola is characterized by
expressing the idea that it has orthogonal asymptotespmne writes the condition (15)
for ¢; — ¢, not for thecj . In doing such substitutions, one will see direchgttc
disappears, and one will recognize that the same (16¢asssary and sufficient for
equation(14)to represent an equilateral hyperbola.

9. Tangents and normals, poles and polars, centers and asymmst pole of a
homology:

a) Since the tangent to a cur¥ds, Lo, 1) = 0 at the point 1, v», 1) can be
considered to be determined by that point and the infinilelsecpoint (1 + dvi, 1, +
dv,, 13 + dis) on the curve, it is clear that its equation is:

HV dVl
u, v, dv,|=0, (16)
Hy V3 dVa

and since ¥, 1, 13) = 0, this is merely:

idvl+idvz+i d/,=0, dwn+dw,+drs=0.
ov, ov, ov,

It will then follow thatv, dvs — v5 d, is proportional to:
of of of of |_ of of of of
Vi - —V; - - | Vi TV, TV ;
ov, o0v, ov, dv,) o0y, ov, ov, ov,

(16) will then become:

of of of
V) —+(U,=V,)—+(U;-v)—=0.
(1, —vy) o, (U,—V,) 3y (uy—vy 3

2 3

One then establishes the equation for the normapmying the condition (13). When
the functionf is homogeneous, the equation of the tangent wdluce to the much
simpler form:

of of of

+ + =0,
'ulavl 'u26|/2 'u36|/3
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by virtue of a known theorem &uler’s, and in the case of a conic, that will become:

Zc“.,q v, = 0. (17)
1]

b) Due to its bilinearity, the relation (17) translatesmetrically into a noteworthy
correspondence between the points and lines in the p\&hen one fixes the, without
supposing thatig, v, 1) is a point of the conic, the equation will represetina that
one callspolar to (11, W, vs) with respect to the conic (14), and the point is calkexd t
pole of that line. Now, if one fixes arbitrary values five 1 in (17) then they will
satisfy precisely the equation of the polar g, (&, 15), and therefor¢he poles of all of
the lines that pass through a point will be found on the polar to that ptintill then
follow that the polars of the two poingsandP’ meet at the pole tBP. For example, if
the vertices of a triangle are the poles and edgesather triangle then the edges of the
first one will be the polars of the vertices of tlee@nd. Two such triangles are called
mutually conjugatevith respect to the conic. Takingto be the successive coordinates
of the vertices of the fundamental triangle, ond gak that the equations of the edges of
the conjugate triangle with respect to the conic (14) are:

Ciifh +Ciofb +Cia 3 =0, Corf +Coo b +Co3 i3 =0, C31fh +Ca2 b+ Caztiz=0. (18)

These will reduce to equations in the edges when (14) i;mtpokctangular terms. The
triangle will then be conjugate to itself, and the conitt be calledconjugateto the
triangle. Therefore, the infinitude of conics that i@eresented by the equation:

QUL+ Cly+ Cls =0

are such that each edge of the fundamental triangleipdlar of the opposite vertex.
For tn = 0, one will find values of the ratja, : 15 that are equal only in absolute value.
Hence, from the final observation ofl§ any conic that is conjugate to a triangle will
divide its edges harmonicallylt will then follow from this that any rectilineaegment
with one end point & and the other one on the polaevith respect to a conic will be
divided harmonically by that conic. Indeed, in order to caewioneself of that, it is
enough to assume that the vertices of the fundamiistagle are the poir, the point
P”at which the polar t® meets the line considered, and the polBR6 In other words,
the polar to a point P with respect to a conic is the locus of harmaomicigates to P on
all of the chords that are determined by the conic on the lines thahategat P.

¢) In particular, if one observes (cf., Ill, 3 that the harmonic conjugate to the
center is at infinity on each diameter then one saé thathe center of a conic is the
pole of the line at infinity. Hence, ifvi, 1, 13 are the coordinates of the center then
equation (17) will reduce to (4), and one will then have:

Cit V1 +Cio o+ CiaV3=Co V1 +Cop b + Coz V3 =Ca1 V1 + C32 o + C33 3 = 0. (29)
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If ¢ is the common value of those three quantities thercan also write:
(Gi—Cn+ (C2—C)V2+ (Cz—C)1zs =0

fori =1, 2, 3, by virtue of (2). In order for that systenbéosatisfied by values of the
that are not all zero, it is enough that its determifanrtco) should be zero; i.e., that one
should have = A : . Meanwhile, ifg represents the sum of the algebraic complements
of the elements of thé' line in A then one will always have:

Ci101 + G20 + Cias = A,

and that will permit one to see immediately thatgheceding equations will be satisfied
by setting:

V=

SEAS

, szﬁ, V3:ﬁ. (20)
g g

These are theoordinates of the centerAs for the asymptotes, we have already seen (8
8) that they are parallel to the lines of the pair:

ZMM

and in order to show thahis is precisely the general equation of the adgtes it is
enough to see that it is satisfied by the values (20). , Moerhas:

S GuY = 53600, = 25 2.0 A=

1
i 0', g 5

Q>

One is finally in a position to assert that wher qutsc in place of zero in the right-
hand side of equation (14), as one vade# will represent the infinitude of conics that
are asymptotic to just one pair of lines.

d) If one setsy = 0 in thei™ equation (18) then one will get a point whose
coordinates satisfy the equation:

ﬂ+&+&:o, (2]_)
Cs G Gy

independently ofi. Hence, each edge of the fundamental trianglé méet the
corresponding edge of the conjugate triangle, dreteforetwo triangles that are
conjugate with respect to a conic will be homologand the homology axis will be
represented by equation (21). That homology cam laé established by considering the
vertices. The system that is composed of equat{ib8f when one replaces tif&one
with (2), will define the vertex of the fundamentahngle that corresponds £9. It will
then follow that the coordinates of that vertex preportional toy 1, W2, W3, if i
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represents the algebraic complementipfn A. Hence, the equations of the line that
joins the corresponding vertices of the two triangldkbe:

o 3= LB U2, M3 Vo1 = L o3, V2 = b s,

and therefore those lines will concur at the point (\tize center of homologythat is
defined by the equality:

L V3= b V1= B Yo, (22)

For brevity, that point is called thmle of the homologgf the conic with respect to the
triangle considered.

10. Examples:

a) In order forM (14, L&, L&) to be the trilinear pole of a line that passes thraugh
given pointP (¢, ¢, C3), it is necessary and sufficient T8c) that the condition:

&+&+&: 0
M M Hs

should be satisfied; i.e., that one will have:

CL b 3+ Co [d3 [ + C3 fh [ = 0. (23)

That is the most general equation for a conic thatr@mscribed bythe fundamental
triangle, because if one desires that (14) should tisfisd by the coordinates @§ then
one must setij = 0. Therefore, if a line rotates around one of itsgaihenits trilinear
pole with respect to a triangle will describe a mothat is circumscribed by that triangle.
If one then applies (22) then one will see tRat the pole of homology of the conic.
However, if one applies (20) then one will find that tdemterQ of the conic is defined
by the coordinates, v», 13, which are proportional to:

Ci(C2+C3— ), C (C3+C— ), Cz(CL+Cr—C3) .
Meanwhile, one observes that:
COW+CaWh=CG WVt Wz=CLWL+C V, (24)

which would result immediately from (19), moreover. eTlast relations, by their
symmetry, shed light upon the reciprocity constraiat gxists betweeR andQ. It will
then follow that the conic that is circumscribed btriangle can associated with pairs
such that for any pair, any of the two conics willthe locus of the trilinear poles of the
diameters of the other onelrhe two conics will coincide when the center faifgn the
barycenter (&, c) of the triangle. If one would then wish that theeemscribed conic is
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an equilateral hyperbola then one must express the idethéhcondition (15) is satisfied
by the coefficients of the equation; i.e., that one has

(@+a-a)g+(ad+d- & g+(d+ 3~ 4 ¢=0.

That equality says that the pole of homology is ontihiedar polar of the orthocenter (8
7, @), and thereforall of the circumscribed equilateral hyperbolas are concurrent at the
orthocenter.

b) Since in order for the conic (14) to mscribedin the fundamental triangle, one
needs to set, for examplgs = 0 in equation (14), the equality thus-obtained, namely,
C,, Mo+ Cy i+ 2C,,4 14 = 0, will have equal roots. Therefore, if we &t, ¢, , c3
denote the values of the coefficients, cs1, c12 then we must have’c, = ¢11 ¢ Cs3, and

consequently, if we take care to avoid annulling the ohscant then we will see that
Ci =— C1 C2 C3, that is to say, that an inscribed conic is represdntede equation:

L N DY Y DY Y Y LY
¢ & & GG GG GG

which is ultimately reducible to the very simple form:

& + & + & =0.
\/ ¢ Ve Vg
One easily deduces from (22) tleat c,, csare proportional to the coordinates of the pole
of homology, and (20) will show that the center is medi by coordinates that are
proportional toc; (c; + c3), C; (C3 + C1), C3 (€1 + ), It will now be easy to answer the
guestion:What is the locus of the poles of homology of the parabola that is inscnibed i
or circumscribed by a triangle?n one and the other case, the coordinates of tleegjol

homology must be such that the sum of the coordirtdté®e center proves to be equal to
zero, and one must then havc:

C2C3+C3C+C =0 or CG+C+c-200-200-20C=0;

i.e., the poles must belong to the circumscribed orilmsa ellipse that has its center (and
its pole of homology) at the barycenter of the trlang

¢) The equation of the circumscribed circle is easiguwted from formula (10),
which gives:

& (1 —V ) (Hs=V )+ a5(s=V Y~V )+ @ v ) (U 5V )+ R =0. (25)
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It is enough to observe that this equation must reduce ttothe(23), if one is to get
immediately:

RV tav,= v tay, = av,tay,,
and to conclude from a comparison of this with (24) thatpgole of homology is defined
by coordinates that are proportional to the squardseoédrresponding edges. Many call

such a point &emoine point. Meanwhile, since the equation of the circumscribecleci
must reduce to the form:

& Ly s+ 85 oyl + &t = 0,

one will see, even without further appealing to (25), but uparalling the known
relation:

4a' = 2ajal +2al &+ 28 &~ o~ &~ 4
S(@mtatay) (Cartaxtag) (au—ax+ag) (an+a— a),

that the coordinates of the center of the circumedritircle are given by the formula:
dat = @ (2+al- ), da'w=al(a+al-a), 4a'w=al(ai+ali-a).

Now, (25) gives:
R= \/812(/'12V3+/13V2)+”'+aivzv?,_"' =

3 & &
2a®>

As for the inscribed circle, since {8b) the coordinates of the center are proportional to
ay, &, ag , it is easy to deduce that thosg €, c3) of the pole of homology are inversely
proportional toa; +ax —az,as +a — &, a1 + & — ag, and one can immediately write
down the equation of the circle with that.

11. - Now take the usual moving axes — i.e., the tahged the normal to a point of
an arbitrary curve — and recall that the coordmateeach verte®d; of the fundamental
triangle satisfy the immobility conditions:

If 14, L&, 15 are the barycentric coordinates of the movingiotigen (6) will become:

=Xy —XaYo, @ [b=Xay1—X1Y3, & [B=X1Yo—Xo V1, (26)

and if one differentiates them, while taking theqeding conditions into account, then
one will infer directly that:
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%: Yo" ¥s %: Ys~ % %: iy, . (27)
ds a ds a® ds a®
hence:
Xy dea + X0 dis + X3 dis = ds yids +yodin +ysdis = 0. (28)

Having said that, in order to calculate the length oflkenentary arcone can make use
of the identity:

ke ks (02 B — 03 Bo)* + ks ku (a3 B — o ) + ka ke (01 o — a2 B)?
=Yka' X kg -(Xkag), (29)

which we will also appeal to in what follows, and whidsults immediately from the
multiplication of matrices:

a a, da,

ﬁl ﬁZ ﬁ3

‘klal k2a2 k3a3
| KB KB, KB

Fora,=1,3 =x, k =dy , if one observes the first equality (28) then the idg(#0)
will become:

(% —Xa)® db diss + (X —X0)? diss dza + (%o —X2)? dea dis = — dS

However, if theS are set equal to theand one takes the second equality in (28) into
account then one will get:

(Y2 —ys)? deeo s + (ys —y2)? diss dea + (1 —Ya)? dea dis = O;

upon summing, one will recover formula (11).

12. — The calculation of theurvatureis just as easy to do. If one differentiates (27)
then, by virtue of the immobility conditions, one vgit:

P __ %% & _x-x A X% (30)
ds’ a’p ds a’p ds a’p

On the other hand, if one takes the reciprocal of theratant (7) and takes (26) into

account then one will find:
H X=X Y, ¥,
2 _

a = X=X YT W)
M X =% Y=Y,
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hence, if one substitutes the values (27) and (30) inigie-mand side then one will

arrive at the formula:

dyy w4y

B ds a2

1_ dy,  d°u,
~=ga hulc) . 31
,0 luz dS d§ ( )

dyy A’

s Tdg

The intrinsic determination of any curve that ipresented by a barycentric equation
now proves to be simple. Along with (2), it wilbestitute a system that permits one to
express theu as functions of just one independent variablelf one then utilizes the
formulas (11) and (31) then one will see that & dnows the functions:

oo |3 9, dp & dps duy | & duy quy
a? dt dt & dt dt & dt dt)’

(32)
n e
wele G

then the intrinsic equation of the curve considesdtiresult from the elimination of
from the equalities:
ak’®

s:aj/(dt, p= W (33)

It is known that thanks to (2), the Wronskian detieant can be written more simply as:

we 3 &p _dpts Ppy _ dpsy &gy d &gty _ dpy &, dp,
dt d* dt df dt df dt df dt df dt df

(34)

It facilitates the calculation ol by observing that if thgr are only proportional (but not

equal) to the barycentric coordinates, and consgtyubave a sunk # 1 then their
Wronskian will have the valué W.
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13. — If the curve is given by means of the equafi¢m, (&, &) = 0 then one will
find directly three quantities that are proportionatte differentials of thes, since one
has:

of of of

din + dip +ds = 0, —dy, +—du, +—du,=0,
it + AL + Al M H L H, oL s

in which the variables in the partial differentiationshariespect to thgs are meant to be
free from the constraint (2), for the moment. Om tither hand, the coefficient of
proportionality depends upon the choice of independentblatiaand one can therefore
always determine it in such a way that one has:

du _ of _of dy, _ of _of dy, _ of _ of

- : - : : (35)
dt  du, Ou, dt  duy, oy dt  ou o,
After that, formula (32) will become:
of Y (ot . fof )
2 2 2 2
o5 (i) i
(6,ulj ou, OU,
of of of of of of
(@ - -a) (G- d- ) (4 g B
Ofh O, Ofds O, O, 0l
Similarly, if one substitutes the values (35) ireat (34) then one will get:
W= of of dz,us_ of of dz,uzzzaf d’u
o, Oy, ) dt® |0y, ou,) d* S oy dt® '
and if one introduces the operation:
d_duy o +d,u2 0 +d,u3 0 (36)

dt dt oy, dt oy, dt oy,

into the calculations then one can also write:

_d . of dy _zdyigaf :_z% o df __ d’f
dt<“ou dt < dt dtoy = dt 9y dt dt® -

Finally, if one observes that when the operati@) {8 repeated, it will give:

d2 d,u, d,uJ 62

dt* 45 dt dt oy oy,
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then one will get:
62 d/,lI d,uj

W= :
7 O 0y, dt dt

(37)

14.— When one substitutes the values (35) in the lastufia;nit will give usW as a
function of the first and second partial derivativesf afith respect to thes. It will
simplify noticeably when the functiohis homogeneoudt is enough to make the first
derivatives disappear by means of the known Euleriatioes:

(n— 1)__ Z H;

(38)
a,u, ay]

in which n is the degree of If one multiplies the two sides of (37) by € 1F, in
addition, then one will easily see that the secondspiits into:

2

T Ol OU,

(th + o + B)* H - UZ Iy

in which o represents the sum of the algebraic complementd| afleanents in the
determinantH, which is the Hessian dfwith respect tqz. Meanwhile, from (38), one
has:

0°f
26 3 U =n(n=1f (ta, 1o, 15) =0
i) OH Ol

Hence:
(n— 1 W=H.

The second formula in (33) will then finally give:

3/2
-1)? of of of
(nz ) {a{ j +or(@-d-d)——+

ap ot 0L, Ofs
(39)

9% f 92f 02f
Ol O, 0u, Op,0u,

_ | 0% 92f 02f
Op0uy, O Op,0u,|
9% f 92f 02f
Ops 0y Op,0u,  Ou;
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15. Application to conics— For conics, one has:

9°f
n=2, f=i>c uu, =G, H=A;

ZZ‘ o Ot 04

hence, (39) will take the form:
cD3/2
= , 40

in which the function:

o ) of of

o= L] -l .
0th O, Ops

is another quadratic form. The discriminant of that form will differ from éh

determinant:
2

a ;@-a-a) 3(a-&- 9
(8- - a) , 3(a-a- a)
3@-a-a) 3(&-a-a) Y

by only the facton\?. That determinant is zero, because the sum oélgraents of any
row is zero. With an easy calculation, one wiknhfind that the sum of the algebraic
complements of all the elements will ba'9 Hence (&), the equatio® = 0 represents a
pair of imaginary lines.One must then notice that these lines are diametehe conic,
because one has (cf.98c):

of _of _ of

= = , d=0
Oty Oy, Otk

at the center. Meanwhile, consider, along withfitst conic, all of the ones that have
the same asymptotes and that are representededsiows (89, c), by the equatioh =
<c. One must subtraat from eachc; . Any first partial derivative of will then be

diminished byc, and one will recognize directly that the funct®@mwill not be altered by
that. Therefore, since, on the one hand, thattimmcannot be annulled along witlif it

is not annulled whep is, one will arrive at the conclusion thedt of the conics that are
asymptotic to a given pair of lines will have cuspstwo common imaginary diameters.
Another interpretation o will result from the following observation: If orixes the
value ofp arbitrarily in (40) then the equation that oneaits — viz.,® = (@2 pA)?° —
represents a conic that meets the given conicat goints, at whichr will assume the
prescribed value. The conics that correspondearttinitude of value of are concentric
ellipses;their asymptotes are precisely the lides 0.

16. Symmetric triangular curves.— The curves that are defined by the equation:
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QM+ Gy + =0, (41)
which were calledsymmetric triangledy La Gournerie, are quite interesting because
they include the ways that the conics are situated e#pact to the fundamental triangle,
in the main. Indeed, far = 2, one will find (89, b; § 10, a, b) a conic that i€onjugate

to the triangle, fom = — 1, acircumscribedconic, and fom = 1/2, aninscribed conic.
The differentiation of equation (41) will give:

G (Y= W)+ GHLH (Y W+ e (Y- W=0, (42)
by virtue of (27). Hence, 14", ¢, 15, ¢, 45 are proportional to:

o (Y1—Y2) = 1= (Y3—Y1) = (l + 1B) Y1 — (Lo Y2 + L3 Y3) = V1,

Yo, andys , respectively. Having assumed that, when one diffetest(42), one will get:

1. . -1 .
S 0009 +41= Sles (9= 997+,
l.e.:
1 -1
—== oy, - ) e, (43)
p o a iy

after having observed that from formula (7):

(X2 —Xa) Y1+ (Xa —X1) Y2 + (K1 — %) Yo = — &

Now seta = 1, 8=y, ky = g while utilizing the identity (29). Obviously:
2KB=2 k=1, 2 KB =2 4 y,=0.

Hence:
M(yz—yg)2+”3”1(y3— y)2+Fte (g yye=

2y3 3yl 2

when one substitutes in (43), will get:

VY (44)
n-1y %%

Here, we observe that if two curves (41) that apoad to two values andn’ of the
exponent touch at a point then their curvaturethait point can be deduced from each
other directly, since, alamet has observed, (44) will give:
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(n-1p=M-1)p"

17.— In order to construct the expression (44), it is ugefadopt polar coordinates
(ri, ) for the vertice#\ . One hag; =r; sin g, and the formulas (26) also gig& /4 = -
r, r3 sin (& — &), etc.; if one confines oneself to the casaeaf — 1 then formula (44)
will become:
_ Nl ﬁin(ez‘93)Sin@3‘91)5in61‘92)

2a’ sing, sind, sirg, '

With this, Fouret, following Chasles and Mannheim, was able to easily solve the
problem:Construct the center of curvature at a point M afcaic when one knows three
points of the curve and the tangent at Mowever, if the three points are given three
tangents then the analogous problem will be immelyiaeducible to the preceding one.
Indeed, fom = -1 andn’' = 1/2,Jamets theorem will give 4 = ¢, that is to sayif one

of two tangent conics is circumscribed by a trianghbhile the other one is inscribed by it
then the curvature of the first one will be foundis that of the second oatkethe point of
contact. If one also considers the case of2 then one will find that i€, C’, C”are the
centers of curvature at a poikt of three conics that touch M, and the first one is
circumscribed by a given triangle, the second snadgcribed by it, while the third one is
conjugate to it the@”will be symmetric to the midpoint of M@ith respect to Mjust as

C is symmetric to the midpoint &iC”.

18. Anharmonic curves.— Following Halphen, they are the curves for whidhe
anharmonic ratio of quadruple that is composed loé point M and the points of
intersection of the tangent at M with three fixggk$ is constant.lf, when one takes the
edges of the fundamental triangle, they determamgnentd;, tp, t3 along the tangent at
M when one starts & then one can write the problem in the form ofefeation:

Citots+Cotaty +Caty o, =0, (45)

in whichc, ¢, cz3 are three constantghose sum is zercAs one knows, the anharmonic
ratio has one of the values:

6 G G _G G C

-2
G G C C G G

Meanwhile, one easily calculates the lendtled one finds:

2 2
hoo X B -
Y= Ys Ys— Y Yi= Y,

in such a way that (45) will become:
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S (yo—ys) +2 (y3—y2) +2 (y1 —y2) = O, (46)

h > 3
i.e., by virtue of (27):

Zc, dis log 1t = 0.
When this is integrated, it will give thearycentric equation of the anharmonic curves:

WUy (3= constant. (47)

19.—- The system that (46) forms with+ ¢, + ¢c; = 0 gives:

Cl = CZ = % . (48)
:ul yl luz y2 ,U3 y3

hence:
cicoté+c,coté +czecoté =0.

In that way, one will find the property that correlatath the one that was given as the
definition, namely:The anharmonic ratio of the quadruple that is cosgmb of any
tangent and the lines that join the point of cohtacthree fixed points is constan©ne
then knows how to construct the tangent at any poimtorder to construct the center of
curvature, one must first show thidile anharmonic curves are a limiting case of the
symmetric triangular curvesWhen the sum of theis zero, equation (41) can be written
as:

n
s =1
> H 722 constant,
: n

after one replaces the right-hand side of (41) whih producih with a constant. Now,
since:

n

1 -1

lim = log 4,

n=0

one will recover equation (47) asends to zero. Having said that, for 2 andn’= 0,
Jamet’s theorem will give = p’, that is to saythe center of curvature of an anharmonic

curve at a point M is symmetric with respect to dMthe center of curvature of the
conjugate tangent to the fundamental triangle tbathes the curve in question at M.

20. Examples:

a) An interesting example of an anharmonic lineffered by thepotential curveof
a triangle; i.e., the locus of pointé that have their barycentric coordinates propodion
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to the same powan of the corresponding edge. Among those points, oneawiays
find [8 7, (10)] thebarycenterof the triangleif = 0), thecenter of the inscribed circlg
= 1), theLemoine pointn = 2), etc. In order to fix ideas, always supposesahata, >
as, and sets:

clzlogﬁ, czzlogﬁ, cszlogﬁ,
as &

for brevity, while observing that; + ¢, + ¢ = 0. Having said that, it will result directly
from the definition:

%:iﬁ:%:% (49)
a ¥ G atrtaty

that the locus in question will be an anharmonicveusince one hagy py 3 =

Meanwhile, the formulas (49) show thatrasicreases to infinityzs will tend to unity,
while 16 and /s will tend to zero. However, astends to- o, £& will tend to unity, while

e and 4 will tend to zero. Hence, the verticds and A; that are opposite to the
maximum and minimum edge also belong to the pateatirves. How does the curve
behave in the vicinity of such points? Whentends toA;, the lineMA; will tend to
coincide with the tangent &4, and one must do likewise witiA, or MAs in order for
the anharmonic ratio of the four lines to keepvdkie. Hence, the curve must touch one
of the edges at the vertéx ; however, to answer the question that was posecigaly,
we need to recall formulas (48), which will become:

S (50)
qa" &' &'

in the present case, and will give directly, incassion:

Yoo &(&j imYz= 0.
Y: G\ & =% Y,

Now, sincey, cannot exceeeh, one must have lip, = 0; i.e., the tangent &4 is A A, .
One similarly shows that the tangentAgtis As A, . Thereforethe curve touches the
other edges at the end points of the middle edigeill then follow that forn infinite, the
limit of ys will be the distance from to the opposite edge, just as wimetends to— oo,
the limit ofy; will be the distance frorA; to the opposite edge; i.e.:

2 a.2

IimyZ:a—, limy =—.
n=oco as n=-oo al

Now, if one adopts the formulas (50) then one filll that as increases to infinity:
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. " a’ . " a’ : n a
|Im(%j y, = as—:, |Im(%j Y, = aZ—Z, |Im(aiza2j Y1 Y Y= agqg

Similarly, one deduces from (49) that:

n n 2 n
lim t4 = lim (ﬁj M, =lim [ij M= 1, Iim[ 4 j MM, =1
a, & a, &

On the other hand, if one ignores the sign then ftardd) will give:

_ gt bty
¥ Y Ys

for any anharmonic curve; hence, by virtue of the preceesgts:

2 2

n 3 2
"m[%j b B (51)
a, aqggG

Hence, in generathe curvature will be zero or infinitat the verteXs; it is zero if a2 >

a1 a and infinite if &2 <a; ag. One shows analogously that the curvatursatill be
infinite or zero, respectively, for the same situatiorThe only exception is the triangles
whose edges are in geometric progression. One will biwen; as, ¢; = ¢z = - ic, for
them. It results from the preceding discussion thatréldéus of curvature at the end
points of the middle edge will take values that are proapwt to the cubes of the

opposite edges, and it is then easy to show that thissravill become proportional to the
cube of the middle edge at the barycenter, where one has

333,
2a®

P 2a®

that is to say, at the barycenter, the osculatirgdecwill become equal to the circle that is
circumscribed by the triangle. Furthermore, in $pecial case that is being considered,
the potential curve will be a conic, since the ealthat are found for tlewill reduce the

barycentric equation to the forpe’ = 14 16 .

b) The potential curve can be prolonged outside h&f triangle by attributing
imaginary values ta. One changesn inton + m\/—_l, represents argument af”Fl
(which is obviously equal ton log a, by 8) letsr and 8 represent the modulus and
argument of the suma + &; + a;, resp., after one changesand observes that (49) will

givers = a" €4 V2 In order for the point , & , 145) to be real, it is necessary tiét
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— @must be a multiple ofz If one setf] — 8=m rrthen one will have 1 = (-1)"a";
hence:
R R - R 1
-)hay (-D™a (D& (-)Mar+(-)hag+ (-1ta

One can always suppose that all of the numbergre even or thgust one of them is
odd. Under the first hypothesis, one gets back topitiat M that was defined by (49);
under the second one, one will have a new pidinthat has a simple correspondence
with M: If the odd number isn, thenthe segment MKwill be divided harmonically by
the vertex pand the opposite edgédow does one determing? Observe that:

mag=6-6=M—-m)7g etc.

One then needs, above all, that the mutual rafitkeonumberg should be rational. |If
that is the case then one can find three integetbeuse;, e, e; that are relatively prime
and such that; = ¢, and a relation of the form:

at ey = gt (52)

will then exist between the edges of the triangl8ince the numbers;, e, e are
proportional tom, —mg, Mg —my, My — My, it is clear that only one of them will be even,
and it will bee, . It will then follow that the number will be known when one is given
the relation (52), since one has 2 whene; ande; are odd,v = 1 whene; is even ands

is odd, and’ = 3 whene; is odd anck; is even. Therefore, when the determination of the
numberse is possible, the curve will admit branch&$’{ that are external to the triangle
that can be deduced from the internal braridh Ify means of a harmonic homology
transformation with its pole at the vert@ and its axis through the opposite side.
Obviously, forn = 2, one will get just one brancM (), which constitutes a type of oval
along with M). The form of the curve when= 1 orv= 3 is quite different. Lev =1, to

fix ideas. The line that joins the midpoints of ttdges\; A2, A1 As meets /) at a point

P, and the poinf’, which corresponds te, is at infinity onA;P. The tangent aP
transforms into the tangent At; i.e., into an asymptote, which is easily condeddy
drawing homology axes that are paralleP#y; through the point at which the tangent at
P meetsA; A; . The arc$A; andPA; obviously transform into two branches that extend
to infinity asymptotically to the line that was jusonstructed and touch the internal
branch atA; andA,, respectively, in such a way th&t will have a cusp ané; will have

an inflection, without the curvature necessarilinganfinite at the first point and zero at
the second. Moreover, one can gain more precfeeniation about the behavior of the
curve at the end points of the middle edge witldificculty from formulas (32) and (51).
The former leads one to write= € "¢in the vicinity ofA; ands = €, while (51) can

be easily put into the asymptotic form= k&% % . It will then follow that in the
vicinity of Ay, the curve behaves as if its intrinsic equationeye= k s7%'%) and in the
vicinity of As, it will behave as if the equation wepe= ks~%’% It is now enough to
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recall what was said in the first chapter(§ c) in order to complete the discussion.
Hence, in summary, we conclude that the potential aofreetriangle can have three very
different forms depending upon the relation (52). If tlsahot verified by any pair of
integer numberg; andes then the curve, which is entirely internal to thargle, will
stop abruptly at the end points of the middle edge. Ifr@wea relation (52) between the
edges withe; ande; odd then the potential will be a closed curve. Finallyene; or e;

is even, the curve will be open and will consist a tevanches that start from a cusp and
extend to infinity asymptotically to that line. One brans completely external, while
the other, which is initially internal, will be infleed until it becomes external to the
triangle. The potential curve will be transcendentathe first case, and algebraic of
even or odd degree in the other two cases.




CHAPTER VI

SYSTEMS OF PLANE CURVES

1. — Consider a continuous function of the points in aglaamely, a variable that
takes a prescribed value at each pdMnand varies infinitely little whei suffers an
infinitesimal displacement in the plane. If thdues that one attributes toare all real
then their number will be simply-infinite, while thaeimber of points in the plane is
doubly-infinite. Assigning a constant valueuavill then be equivalent to singling out a
line in the plane, and changing that value will signifyspas from one line to another. It
will then follow that any real function of the poinis a plane includes the analytical
representation of a simply-infinite system of curvdsose properties are consequently
obtained by geometrically interpreting the propertiesheffunction. It is important to
observe that the infinitude of functions wfdo not define any new systems of curves:
They all represent the unique system that is defined, lajnd we shall shortly see that
there are no other functions that are capable of regmegehat system.

2. — If a displacemends of the pointM produces an incremedu in the functionu
then the ratiadu : ds will be called thedifferential quotientof u in the direction of the
displacement, and it will be representeddoy/ ds when it is referred to a particular
direction that one would like to distinguish from theeastlones. A function will then
have an infinitude of differential quotients at any pobut they will depend upon the
guotients relative tbwo arbitrary orthogonal directions in a very simple way, or upos
singlequotient that relates tone particulardirection. Indeed, le¥ be the projection of
the end pointM’ of the segmemtiM’ =dsonto a line that passes through and letds,
andds, be the lengths of the segmeM® ”, M” M, resp., in such a way that:

ds =—(_j% =ds
cosw Sinw

When one passes frolt to M”, the function will take on the value+g—udsl It will
S
then submit to an increment during the passage Mdito M ’that one can consider to be

equal tog—u ds, with g—ucalculated aM, if one disregards higher-order infinitesimals.
S, S,

Now, sinceu + duis the value of function a#l’, one will then see that:

du:ﬂdsl-l'ﬂdSz,

0s 0s,
hence:

%zcoswﬂ+ sinwﬂ. ()

ds 0s, 0s,
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(3] 52

for brevity, and consider the directidN, for which one has:

Set:

1 odu 16u

WE’ S|nab = \/7 a§ . (2)

Formula (1) will give,/ Au for the value of the differential quotient in thatedition. (1)
will then become:

cosay =

=/ Au Ckos - w),

by virtue of (2), and then one will see thia¢ direction MN is the direction of most rapid
variation of u. However, the differential quotient will be zero irttirectionMT that is
perpendicular tdVN; i.e.,the function will tend to remain constarithereforeMT is the
tangent, and consequentMN is the normal to the curve of the system along which
keeps the value that it hadMt

3. First differential parameter. — One calls the square of the maximum differential
guotient of a functioru at a point — viz. Au — thefirst differential parameteiof that
function. It is an invariant because it has (by defink a significance that is
independent of any reference system. In general, théidodu defines a new system of
curves that will coincide with the system that is defif®y u when it is composed of
parallel lines. Indeed, fix two infinitely-close valueandu + du for u, which define two
curves, so the segment that is cut out of the secone along the normal to the first one
when one starts from the point of incidence willdse= du :\/Au. Now, sinceds is

constant along the first curve, it is necessary aniicgift that it should not vary whan
does not vary; i.e., thatu should depend upon only Hence,in order for the system
that is defined by the function u to be composepaséllel curves, it is necessary and
sufficient thatiu should be a function of only u.

4. — The first differential parameter can be considereldet@ particular case of the
mixed differential parametef two functions:

A= udv, duov.

0s 05 0sds

This is also an invariant. Indeed, if one writes form@afor the normals to the two
curves:



Chapter VIl — Systems of plane curves 129

u = constant, v = constant

at a point that is common to those curves then alidimd immediately that the angle
between them — viz., the anglebetween the two curves — will be given by the formula:

A(u, V)

ﬂ/Aumv'

That will exhibit the invariant significance &f (u, v), and in addition one will show that
the annulment of the mixed differential parameter of two functions sss&y and
sufficient for the orthogonality of the curves that are representatidse functions.If
one then observes that one can also write:

cosy =

u o
. 1 0s, 0s
siny= —— ,
v JAulAv|ov  ov

s ds

and that in order for the right-hand side to be andultas necessary and sufficient thvat
should be a function af then one will see that this is also the sufficienit, (8 1) and
necessargondition for the functiona andv to represent the same system of curves.

5. Second differential parameter— Imagine that the operation:

d _ 0o, . d
— =cosw—+ sinw—,
ds 0s, 0s,

which provides the differential quotient in an arbitrary clien, is repeated in that
direction, which isassumed to be invariabld.et:

z 0 .0 0 .0
— = | cosw— + sinw— || cosv—+ sim— |.
ds’ 9s, s, as 9s

If one sets:
—=01, —=-0, (3)

2 9 9
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If that operation is also applied in the direction tisadefined by the angle+ 77/ 2, and
one then sums the two results then one will seecttiir¢hat the sum of the second
differential quotients in two directior{that are fixed in the plan&jill remain constant at
a point when the directions vary while remaining orthogon@lne calls that sum the
second differential parameterf the functionu in question, and it is represented /fy.
One then has:

0 0° .0
N? = g +G,—
o5 0% ‘05’
or.
e +G (4)
o5 Jos 6% ' 6§

One then calls the functions that have a secondréiff@al parameter that is constantly
zeroharmonic functions.

6. Isothermal systems.— One calls any system of curves that is defined by a
harmonic functionsothermaJ and one gives the name of tkemetric parameteof the
system to that function. How can one recognize vdretie system that is defined by a
functionu is isothermal? If one does not ha\ = 0 then that does not mean that the
system is not isothermal, but only thatannot be the isometric parameter. By virtue of
the final observation in 8, that parameter must by a functionwof Now, in order to
apply the operation (4) 6 (u), one must observe that:

dF _ ., du d’F_ . d’u F"(@T-
ds ds ds’ dg ds
hence:
A’F =F’A%u + F”Au. (5)

If the system is isothermal then there must existnation F such thatA\’F is zero, and
one will then have:

Au_  F'"(u).

Au F'(u)’

i.e., the ratio of the differential parameters vadl functions of only. Conversely, if it
happens that this ratio is found to be equal taratfonf (u) then when one substitutes
f (u) for the left-hand side of the preceding equalitgt antegrates, one will get:

F=[el*m

Obviously, if one imagines that this valueFofs substituted in (5) then one will see that
one must havA’F = 0 as a result, and therefore the system wilsbthermal and admit
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F for its isometric parameter. Therefore order for the system of curves that is defined
by the function u to be isothermal, it is necessary and sufficientthbatatio of the
differential parameters of u should be a function of only u.

7. Curvilinear coordinates. — Now, consider two systems of curves that are defined
by the functionsg: and gz . If they have no link between them — so 4g8the
corresponding systems do not coincide — then the numbpsirsf of values fog; anda.
will be doubly-infinite, like the number of points in tpéane, and each of thelh can be
considered to be represented by the pair of values ¢uizilinear coordinatesof g; and
02, which characterize the curves that pass thravigh the respective systems. It does
not matter if a paird, ) does or does not correspond to other points or whetteor
more points correspond to valuesgefandd,. Nonetheless, we shall suppose (but only
because it will make our considerations clearer and maeise) that the points in the
plane and the pairs|{, ¢z) are in one-to-one correspondence with each otHence, we
can think that just two curves (vizpordinate lines one from each system, will pass
through any poinM, and call the ling); the one that belongs to the system that is defined
by the functiong, , while the lineg, belongs to the other system, in such a way that the
line g will always be the onalong which only gvaries. If A (qi, o) = O then the two
systems will be orthogonal, and we shall always nibhkée hypothesis from now on. In
addition, we agree to direct the tangent along eaclyliard to measure the arc length
in the sense of increasimg. If we then direct the normal tp in the sense of the tangent
to g then we must, however, consider the directions ohtitenal tog, and the tangent
to g; to beoppositeto each other in order to make the positive directmmnhe tangent
and normal tay coincide with the ones that relatedop. Having said that, from what
was said in 8, the segment that is found between two infiniteysel linesg, will be —

ds. =da; :4/ Ag, , and we shall represent it k% dau, for brevity. Similarly, a segment

ds = Q; dg that is equal talg, :4/ Ag, along the lineg, will be found between two
infinitely-close linesq; , in such a way that we will have, by definition:

Jag = -+ A, = — (6)

Q Q)

and from the conventions that were made to begih, wheQ can take on onlpositive
values. It is important to observe that the squEréhe elementary arc lengtls =

{ ds’ + dg is given by the formula:
ds’ = Q2 d¢f + @ dd,

and since we can replace eagtwith a function ofq , it is clear that eacky); can be
multiplied by an arbitrary function of theg . Obviously:
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a_qlzi %:i a_%:% =0. (7)

Q: andQ,, like g; andq., are functions of the poiMdl : They are therefore functions of
the independent variables @nd g, . One can also say the same thing for arbitrary
functions of the points in the plane. The pardiativatives with respect to tlieare then
coupled in a simple way by the operations thatdytee differential quotients that were
defined in 8, since one has:

0 10 0 1 0
= == - (8)

s Qdq ' 0ds, Qdq

Therefore, the aforementioned quotiecasnot be considered to be true derivatiifed;

is not a function of onlg; andQ- is not a function of onlg, . We will soon see that this
will happen only when all of the coordinate line® atraight lines (viz.Cartesian
coordinate.

8. Fundamental formulas.— Take thex-axis to be the tangent Bt (moving origin)
to the lineq; and take thg-axis to be the tangent to the lige (which is normal tay,).
The Cartesian coordinates of a fixed pdintnust satisfy the immobility condition (Il, §
1) with respect to the first line, namely:

ox vy 1 ady X

s P s o

The coordinateg andy of P with respect ta), arey and -, and therefore the immobility
conditions will become:

oy __ X _4 x_y

o p s P

Meanwhile, if one observes that the functionhat was considered inSdiffers only in
sign from the function that was constantly représerby ¢ in the first chapter, so one
will therefore have:

09 __O0w _
=3 G .

S 0s,

1:%:—6_0):—9’1 i

o 0s 0s, £,

With that, one will see thahe necessary and sufficient conditions for the immobility of
the point(x, y) are:

Xe-gy-1, P=gx
0s, 0s ©)
a_:—g X-1 %:g y
o6, T 0s °
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If one wants to know the variations of the coordinafes mointP when the origin passes
from the positiorM to another ond1”along a direction that makes an arbitrary angle
with thex-axis then it will be clear that one will have:

OX 0x 0x .
—=|—++ +1|cosw+| —- sinw,
ds | as, Gy j 25 Glyj

oy oy . ay
—=|—+ +1(sinw+| — - cosw.
ds |(0ds, G2 X j ! 0s glxj

These are théundamental formulador the intrinsic analysis of pairs of orthogonal
systems of plane curves.

9. Integrability conditions. — Given the functionsi andv, we propose to find the
necessary and sufficient condition for the existence of a fundaiaehfthat one has:

of v=I (10)
0s, 0s,

From (8), that is equivalent to asking what the cooditvould be folQ; u andQ, v to be
the first partial derivatives of a functidriq:, ), and it is known that this condition is:

aQ_ZV: @ or iaQZV: ianu
oy, odq, Q ds Q 0s

i.e., upon developing:
ou _ov_ Valong _ua logQ

s, 0§ s s

If one substitutes the values (10) in this equalign one will see that for afiyone must
satisfy the condition:

0° _ 9° _0dlogQ, 0 _dlogQ a9
dsds 0sds 0s 0s 0s O0sS

(11)

That is applied to the functioq while taking (9) into account. One first has:

0°x oGy _ _0G

0°X _ 0Gy _ 95,
0s,03 0s 0s

y +G1G:X;
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hence, from (11):
oG, , 0G, 0logQ, 0dlogQ, - C. — al& Q 12
[_asz+6§ +G, 35 +G, 35 jy g1 3 . (12)

Operating analogously on the functigrone will find that:

0g,  0G, ., dlogQ, 010gQ, | _, _ 0dlogQ, 13
(6{6%% 0 " os jx T s )

These relations must be true for any values afidy. For example, if one considers the
instant of the passage from a given fixed p&imd M then one will havet = 0,y = 0, and
formulas (12) and (13) will give:

g, = 9199Q g, = 9109Q, (14)
0s, 0s

With that, the integrability condition can be puta the definitive form:

0 v lv=(2
(£+g2jv_(682 +glju,

and the condition (11) will become:
0 0 0 0
— —=— — 15
(681 +g2j6% (asz +glj6§ (o)

10. Lamé’s relation.— The curvatureg; andg, are not independent of each other.

Indeed, if one substitutes the values (14) in tipeabties (12) and (13) then they will
reduce to the single one:

9 , 99,

+G*+G2=0, 16
55, s G +4; (16)

which one calld.amé’s relation and which expresses (as a result of an easylattm)
the necessary and sufficient condition for the existence of two functicarsd % of o

and @ , such thatdx’ + dX represents the square of the elementary arc lenyten

put into the form:
0 0
_(£+g2jg2 = (g+gljgl, a7
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Lamé’s relationsays immediately tha§; and — G, are the differential quotients of a
function a3 which we already know from (3). One can give anotbem to (16) by
setting thej's equal to the values (14). If one observes that:

0 1 0Qu 1 6Q
. A = —2, gl —~2 18
(asfgj” QQ 0q [asz j QQ 9 (19)

then the relation (16), after being put into thenfq17), will become:

salaan ) oalasa)
06\ Q 04 ) 9gl Qg

It is also useful to know the form (which is dueLfimé) that the operation (4) will take,

11. — The operation (4) must giv¥u = 0 for a harmonic function; i.e., one must

have:
0 ou 0 ou
| —+G, |—=| —+G |—,
[681 gzjaq [asz glja%
ou ou . : . . .
and thereforea— and—a— will be the differential quotients of a function
S, S

ou__ov  0u_ov

ds 0s, 0s, 0y

Meanwhile, it is known that the systems that arBndd by the functionsi andv are
mutually-orthogonal, sinc& (u, v) = 0. Now, by virtue of (15):

av= [681 gzjaq [asz glja% )

Thereforey is harmonic; that is to saWwhen one system in a pair of orthogonal systems
of plane curves is isothermal, the other one wgbabe isothermal.One can also arrive

at this theorem by utilizing the rule that was give 86 for testing whether a system is
isothermal. Indeed, one applies the operationtd4}; andq. , while taking (7) into
account. Upon making use of (18), one will get:
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0 1 1 0Q 2 1 0 Q
A2 — _+gj ~2 A ( glj __1;
* [sl Q 2Q0qQ’ *71%s )0 QQig Q

if one recalls (6) then one will have:

Ng_ 9.9 Ko, 0,9 19)

Ag, 60& ’q Ad, 6q2 ’q’
and finally:
iAz_q1+iﬂ:
0g, Ag 0q Ag,

This formula shows clearly that if the conditiorathwas stated at the end of68is
satisfied for one of two systems then it will béisfeed by the other one. If one chooses
isometric parameters fap andq then it will result from (19) that the ratio @ to Q2
will be constant, and that conversely, that carvagipen unlesg; andg, are harmonic
functions. It will then follow that the isothermatthogonal pairs of plane curves are
characterized by the possibility of maki@g = Q. , since one can always multiply any
functionQ or g by a constant. The elementary arc length is tiamgoy the formula:

ds’ = Q*(d’ + dgf) ,

and it is enough to takidy = dg, since one hads = ds at any point. One can express
that by saying thathe curves of any doubly-isothermal orthogonal eaysidivide the
plane into infinitesimal squares.

12. — In order to insure that a double system of aqytimal coordinate lines is
isothermal, it is enough to see that one of théegys is isothermal, and if one applies the
criterion that was proved in@&to one of (19) then one must have:

2
g Iog& =0.

0400, ~Q

With two successive integrations, one will see thatratio of the functions Q must be
equal to the product of a function of only loy a function of only .g. That is the
characteristic property of the functio@sin the doubly-isothermal systems. In order to

express that in terms of tigés, observe that if one recalls (14) then:

5ngz

0’ Q -Q 0Q,G,

-Q
6%6% 2 s

- [agl—%j.

05 0s
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Hence,in order for the functiong; and G, (which are necessarily constrained by Lamé’s

relation) to define a doubly-isothermal system, it is necessary and sufftbiginbne
should have:
0s, O0s,

That is equivalent to saying that the functiarthat appears in formula (3) is harmonic,

since one has:
0 0 0G, 0G
AZ = = — — =1 _"72
“ (asfgzjgl (GJGJQZ o5 05

13. Bonnet’s formula. — That formula serves to make known the curvature at any
point M of the line that passes throulyhin the system that is defined by a functioan
The inclinationw of the tangent to that curve Bt is calculated, as we saw in2§ by
writing:

ou . ou _
cosw—+Sinw—=0,
0s 0s,
from which one infers that:
COSw= 1 ou sinw= 1 ou (21)

Jauss T aues

as long as one takes care to fix the sign in suchyatled when one takes formulas (6)
and (7) into account, one will have= 0 foru=q, andw= 77/ 2 foru=q; . Let¢ be the
inclination of the tangent to the lirgg with respect to a fixed line; the analogous angles
for the lineqg, and the curve considered will et 77/ 2 and¢g + «j respectively. Hence:

0 1 0 1 d 1
B Ll.og, 2-L.g Lpig=l
s p 0s, p, ds P
hence:
1 . dw
—=-0G) cosw+ G, sSinw—. (22)
Yo ds
On the other hand, one has:
dow _ ow . ow_ 0 _. 0
—=C0SW—+ Sinw— = —Ssin w—— cosw
ds 0s, 0s, 0s 0s,

Therefore:

1_(0 [0
;— (aSl+gzj5|nw [a%+glj Cow.
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Now, if one substitutes the values (21) in this equivadehen one will get:

_1:(i+gj ia_u + i+g _1ﬂ
p \os ) Jauos) (as )\Jauds

1 [(a ou (0 dul dud 1 Auad 1
=+

:WKEWZJE{E@E_ 250 85U 0 SDU

so one will finally have:

1 Au 1
-——= +Alu,—|.
P | Au \ Au
Thus, the curvature is known in an explicitly inaat form.

14. Examples:

a) Consider theonstant-angle trajectoriesf the lines of a system; i.e., the curves
that meet those lines (for example, the lqg at the constant angl& Obviously, an
infinitude of trajectories pass through any pdimt each of which corresponds to one
value ofw Formula (22) will give:

%: -G cosw+ G, sinw

and show thathe center of curvature of any trajectory at each point M will belong t
line that is represented by the equation:

Gox+G1y+1=0. (23)

Let ¢ be the angle that the tangent to a coordinate riakes with a fixed line, and
consider the system that is defined by the func#ign.e., the system in which any curve
is such that when one is given a point of the ottiex directions of the tangents to the
coordinate lines will not vary. The equation o¢ tfangent to a curve of the systenis
G1x =Gy, and therefore the line (23) that correspondsdven pointM will be parallel

to the normal to the curve of the system that magds®ughM. It will then follow that
such a curvavill touch the trajectories at their inflection points at a constant ahglie
coordinate lines. The systems that are defined by the functi@nandg,, to which the

loci of flexures and cusps of the coordinate libe®ng, are also noteworthy. Whighis
displaced in a direction that makes an angle/ith the x-axis, one will find when one
applies formulas (9) to equation (23) and recdiés tamé relation that the line (23) will
touch its envelope along the line:
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(%cosw—% sirwjx = (%cosw—% sirwj y. (24)

0s, 0s, 0, 03

That equation will be satisfied for amyandy and a certain value abonly when the
functional determinant of thg is zero. The double infinitude of lines (23) will then
reduce to a simple infinitude, but one needs to observettisawill also occur when a
system ofG does not exist — i.e., when one of the fundamentaésysthat makeg; or G,

constantis composed of equal circles or lines. In that cdmelines (23) will obviously
be the normals to the curve that envelopes the cirelélseolines of the system. That
explains the known constructions (118, c; Il, 8 13, ¢) of the center of curvature of the
logarithmic spiral, the involutes of the catenary, etn.the general case, one deduces
from (24) that whemM is displaced along a coordinate line, the lines (23)talch their

envelope along the normals to one of ¢heurves.

b) The osculating circles of the coordinate lines pbmt M are represented by the
equations:

x2+y2+g£y:0, x2+y2+£x:0.

1 2

If one differentiates the first one with respectgtcand the second one with respectjto
and observes (9) then one will get:

0
Gox+Gy+y L logGi=0,  Gox+Giy+1+x-"logG=0. (25)
s, 0s

Hence, each circumference will touch its enveldpega diameter of the other one. It is
then easy to see that, by virtue of the Lamé mlathe two diameters are perpendicular,
and that one of the two envelopes is real, whik dther one is imaginary. We now
propose to find the condition that must be satisfieorder for the osculating circles of
the linesq, along a lineq; to constitute a sheaf. Obviously, for that tothee, it is
necessary and sufficient that the line that isesg@nted by the second equation in (25)
should be fixed in the plane. Meanwhile, if onffedentiates that equation with respect
to g, while taking (9) into account, along with the Lamelations and its original

equation, then one will get:
0 0G, 0G,
X| —+ —=y=1
[asz wljas Vs,

and therefore the desired condition is tdashould be independent qf ; i.e., that any

line g; should be a circle. Hencie osculating circles to the orthogonal trajectsiof
any simple infinitude of circumferences along eaxfhthem will define a sheaf.
Moreover, that is an immediate consequence of tlosvk theoremThe circles that are
orthogonal to two given circles form a shedfiose axis is the common diameter to the
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two circles. In order to prove the theorem, it isugioto consider two infinitely-close
circles from a given system, and to see, in additluat, the axis of the sheaf of osculating
circles is the tangent to the locus of centers. illtthen follow from that theorem that
any double orthogonal system of circles will necessarily consisbashiteaves.The axes
of the two sheaves — i.e., the lines that are repiedeby equations (25) — are
perpendicular and contain the centers of all circl&ne will meet the corresponding
circumference at two real poingsandA’, while the other will meet it at two imaginary
points, and at two coincident real points in exceptieages. With an easy calculation,
one will find that if 2 is the length of the segme&A' then one will have:

SIS

1_ ., os,) _ 0s,

@ % "eg _og, % "eg _og, (6)
0s, 0s 0s, 0§

However, the length of the segment that is cut ooinfrthe other line by the
corresponding circle isa2,/ 1.

¢) We wish to study thdoubly-orthogonal systems of circlesmore detail, which
are obviously characterized by the equality:

W _, %G,

0, 27)
0s, 0s,

and consequently they will bsothermal since the condition (20) is satisfied. The

calculations that were mentioned in the preceding e>agh be repeated more rapidly

after one observes that from the Lamé conditionthedccondition (15), one can deduce

from (27) that:

G o  0G __;0G  10G_0G_,d
0s0s, 0s,03 0s, G os, 0s 0s
ds,05 s ds, s, G, 0 0s, 05

If we appeal to these relations then we will arripete easily at the fact that the lines
(25) are fixed in the plane. We would now likedetermine they, and in order to do

that, we suppose that andq, are isometric parameters and recalfL(§ that one can
always do that in such a way th@@at = Q. . (14) will then give:

01 01
G1=— ——, Ggy=— ——, 28
"7 99, Q *7 0g,Q (28)
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and the Lamé relation will become:

i[d_gd_g

>+G2=0. 29
ol dg dqj+gl +G, (29)

When that is differentiated with respectggoandq., that will give:

1d%G, _ p (dgl_dgzj 1d%G, _ g(dgz_dglj
Qdf “ldg dgq) Qd¢ T(dg dg)

SO
1 d2g1+i d’g, _

— 0.
G do; G, df

Since the first term is independentgefand the second one is independerng.pfve need
both of them to be constants, and in that way weheilled to set:

d’G,
dof

d%G,

2

:—kzgl, :—kzgz. (30)

If we assume that the lingg are the circumferences that pass throdgindA' then the
line AA will be a lineq; that we can always imagine to represented by the equgton

0. In order to satisfy the first equation in (30), we¢f@re need to takg, = A sink ¢ .
The other equation can only be satisfied by taking:

Go= e+ €',

with ¢ andy’ arbitrary constants, liké. Meanwhile, we infer from (28) upon integrating
that:

gz Acosk qp — (u€t — i €*%) + constant.

When one substitutes this in (29), one will then find tha last constant is zero and that
the relationd? + 4uu’ = 0 couples the other ones. If one of the consfantsy’ is zero
(for exampleu’) then one must also have= 0, and that will mak&:; = 0, G, = et
Thelines g form a sheaf of lines, and the linesage concentric circumferencedf u

andyu’ are non-zero then one knows (cf., II7,81) that one can always suppose that
+4, and in the present case, it is necessary thathmnddshavey=- y'= A/ 2. Hence:

Gi=Asink, gzzg(e'“’l—e"‘q). (31)
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In the limiting case in whick tends to zero, one will find th&; = ., G> = a1, which

one can deduce directly from (30) for 0, moreover. In that case, (26) will show that

is zero, and therefor¢ghe two systems are composed of circles that touch two
perpendicular line at their common pointn the general case, it is always legitimate to
takek = 1, and substituting the values (31) in (26) will ghze=+ 1. Hence:

sin eght—gt
01 = —qz G = :
a 2a

The geometric interpretation of the first formulowss thaty, is angleAMA' ; the second
one leads one to see tlogtis the logarithm of the ratiMA’ : MA.

d) Any plane curve gives rise to a double systerous¥es when any arc is made to
correspond to a point in the plane. Indeed, tlus af a curve are doubly-infinite in
number, and each of them is represented by pawvaloés{; and ¢, that the arc length
takes at the end points, when one starts measitirfiram a fixed origin. A simple way
of realizing such a corresponding consists of takire barycenteG of each ard; A; .
The two systems that are defined by the functigmisen constitute the only system of
barycentric lines (VI. 8) of the given curve. Two lines pass through anypG (viz.,
the two barycenters that touch the curve at thepemuts of the corresponding arc), and
we already know that the tangentdGto the two lines are preciseyA; andGA; . In
order to construct a doubbrthogonal system of lines, draw two orthogonal axes
through the origirG, which are oriented in such a way that of thedtequalities:

¢ _ <2 _ ¢ _
xds= 0, le yds=0, le xyds= 0, (32)

41

it is the third one that is true. The differentplotients relative to the new axes will be
expressed as follows:

0_094,0 3, 0 0 _04,0 3, 0
0s 0s 0, 050(, 0s, 0s,0{, 0s,0(,

(33)

If one letsD represent the functional determinant of ¢hevhich is necessarily non-zero,
then one will have simply:

0 1[04, 0 04, 0 0 104, 9 04,0 (34)
0/, Dl\ods, ds dsds) 0/, Dl\ods ds 0dsos)

It is enough to differentiate the first two relat$o(32) with respect to theand apply the
formulas (34) and (9) to get:
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%:2 - %:_RXZ’ %:2 » %:—Rxl’

os O 0s, g os, o 0s, g

in whichx; andy; are the coordinates éf , ando represents the length of the &«cA; .
Therefore, ifr once more represents twice the area of the trigdéieA, then one will
have:

D2

DZ
— — 1,
U

0.2

X Y
XZ y2

D=-

and finally, sinceD cannot always be zeraD = g% One will also arrive at this result
by observing that ity is the angle between the two barycenters that atdSsand ifr; is
the length of the edg8A then one will have, in succession:

D D . rr,D o?
AL = =T, A, = —r, T=rirsiny=-——A=2—_=—
Zl 0_2 Zz 0_1 172 7/ %Ailmiz D’
Having said that, (33) and (34) will become:
0 _ 0 0 0 g 0 0
i e A e R TR el (35)
ds, r( 293¢, 1azzj 3s, r( 292, Xlazzj
0 1 0 0 0 1 0 0
— === X—+Yy— |, —= X, —+y—|. 36
3¢, 0()&6% yl@%j 07, 0[ "0 yla%j 9

So far, the particular orientation of the axes thateined by the last equality in (32) has
yet to be taken into account. Now, if one applies &%) (8) and sets:
% 2 2
L (2 -y ds= k o
then one will find that:

2z, Ja '[ Xyds=-x1y1—k (G1 X1 —G2 Y1),
27, )¢ '[ Xyds= X y1+k(Gix—0Y);
so, from (35):

0 (%
L [Pxydss ZikrGi-yiye (-],
Sl &1 4

0 (%
—J'Z xy ds= L[k 7G— X1 % (1 —¥2)] -
asz G T
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Hence:
Gr = (X1 —Xo) N G = (y1—Y») X% (37)
KT KT

Meanwhile, it is useful to transform the conditions i®such a way that the derivatives
with respect to th& will appear. Thanks to (36), one easily finds that:

o _ (1_mjﬁ X _ _(1_&jﬁ
a7, K)o’ a7, K)o’
ﬂ: (1-{-&}& ﬂ: —(1-{-&}&
ac, K)o’ a7, K)o’

These are theecessary and sufficient conditions for the imniiybdf the point(x, y).
One needs to observe that the formulas on theefalso applicable t@, y» , since the
point A; remains immobile under the partial differentiatisith respect ta; . Similarly,

the formulas on the right are applicable toxhey; . If one would then like to know the
other derivatives (for example, the derivativesxpndy; with respect tad;) then one
would need to take the displacementgfinto account and to add to the expressions for

2% and —+ %, that are obtained by applying the formulas onl¢fieto the values ofy—
0¢, ¢, ¢,

and g—;l resp; i.e., the cosine and sine, resp., of thénation of the tangent to the
1
curve atA; with respect to the-axis.

e) The curve that gives rise to a barycentric pdisystems of orthogonal lines
belongs to one of those systems. Indeed, it igoob\vhat if one fixeg: by way of any
value ofs then if one makeg, tend tos, one axis will tend to become tangent to the
curve, while the other will tend to become normHlone chooses the first one to be the
X-axis then when one takes the relations:

into account, one will see that in order to sattbily previously-obtained formulas with a
series that proceeds in powersmbne must take:

o, o o*d1 o o°d 1,

X T Dt 4 L, V= F— 4 .,
2 48p° 120dsp 12p 30ds,0
o o'd 1 o’ a di1,

Xo =

N Q

T anme gz T Ves
48p° 80dsp 12,0 20ds ,0



Chapter VIl — Systems of plane curves 145

It is then easy to deduce that:

2 4

o’ a“dl+ o o

r= +———+ ..., K= - 5
12p 24dsp 12p 18Qp

+ ...

These formulas facilitate the discussion of thengetoic facts of the double system in the
vicinity of the curve considered. In particulasy &= 0, formulas (37) will give:

1 3d
SELY =-3%0gp
g1 P G2 c ds gp

and will show that not every doubly-orthogonal systcan be considered to barycentric
with respect to some curve, since one would nedtvte that along one of the lines that
comprise it (for example, along a certain lopg, the curvature of the ling; would take
the values:

30
=———1lo )
G2 50 g1

Furthermore, it is geometrically clear that the ybantric double systems are very
special. For example, a double system of orthdganaes is not generally barycentric,
since it can be true for only one of its circumfezes, while it is obvious that the double
barycentric system of a circumference is compogdteoconcentric circumferences and
the sheaf of common diameters.




CHAPTER IX

SKEW CURVES AND RULED SURFACES

1. Fundamental trihedron. — Thetangentto any curve in three-dimensional space at
a given pointM is defined (cf., I, 8) as it is for a plane curve. ThermalsatM are the
infinitude of perpendiculars to the tangent that aresedhifromM, which will be in a
plane that one calls thormal plane One of the infinitude of normals is parallel to the
polar axis, while the other one is perpendicular tohig; former is called thbinormal
while the latter is th@rincipal normal. One of the planes that pass through the tangent
also contains the binormal, while another containspttiecipal normal; the former is
called therectifying plane while the latter is th@sculating plane. Since the polar axis
can be considered to be the intersection of two infintdse normal planes, one can
also say that theinormal is perpendicular to two infinitely-close tangentlith that,
one would like to just briefly express the idea tha binormal atM is the limiting
position of the common perpendicular to the tangenk abhdM “when one fixe$ and
makesM “tend toM.

2. Curvature and intrinsic equations.— One puts the origin of the coordinates at the
point M, which moves along a curve while constantly taking amgént to be thg-axis,
the binormal to be thg-axis, and thez-axis to be the principal normal. Consider the
trihedron of the axes after the origin has been tramsfdromM to the infinitely-close
positionM’. From the observation that was made at the endegbrbceding paragraph,
it is clear that one will have cog, ') = 0. It will then follow that the tangert and the
binormaly can be considered to be parallel to the plamesdzy, respectively. Hence,
if o¢ is the angle between two infinitely-close tangents asd@; X') = d¢ and oy is the
angle between two infinitely-close binormals then onk kave cos %, y') = dy, up to
higher-order infinitesimals. The ratios of the diffetials of¢ and¢/to ds(i.e., the limits
of the ratios ofdgp and Jy to the arc-lengttiMM’” when M’ tends toM) measure the
curvatures of the line considered at the pMntand the first one is distinguished by the
nameflexion, while the other bears the nameafsion. If one then setds=pd¢ =r dy
then the numberg andr, which are the inverses of the curvatures, measure twthien
that one can call theadius of flexionand theradius of torsion. The flexion of a skew
curve, like that of the plane curve, then consists efrtiore or less rapid elongation of
the curve of the tangents, while the torsion measuness or less rapidly, the tendency
of the curve to leave the osculating plane. Obvioubly,plane curves are characterized
by the fact that their torsion is zero. Having said,timorder to complete the picture of
the direction cosines of the axes with their origirM” with respect to the ones at the
origin M, we would first like to observe that if one neglekigher-order infinitesimals
then the cosines of the anglesX), etc., can be regarded as being equal to unity, since
one will have, for example:

coS & X) = cosdp =1 —1(dg)* + ..., etc.,



Chapter IX — Skew curves and ruled surfaces 147

so from the perpendicularity of the axéandy’, X andzZ, y’andz, one will have:
cos & y’) =0, cosX, zZ)=-dg,  cosy, Z)=-dy

and one can then write out the table of the direat@sines in the following way:

| X y z
1 0O d
X' 0 1 d¢ @
W
Z|-dp -y 1

This table shows that in order to discuss the cumvéhe vicinity of each point, it is
enough to know the functiogsand¢ ; i.e., it is enough to give andr as functions o$.
The equations:

f(spr)=0, g(s,por =0,

from which one can infer the values of the curvesuait any point of the curve are called
the intrinsic equationsof the curve. One soon sees that knowing theralgb permit
one to determine the form of the entire curve uelguwip to the position that it occupies
in space.

3. Fundamental formulas.— Letx, y, z (which are functions of) be the coordinates
of a pointP, with respect to the trihedron at the oriyin whereP generally moves with
M, and letx + o, y + oy, z + d be the coordinates of the poMitthat corresponds with
M’ on the trajectory thad® describes. The coordinatesRfwith respect to the axes at the
origin M”arex + dx, y, dy, z+ dz and therefore, if one takes the table (1) intmoaat and
letsu, v, w denote the (infinitesimal) coordinateshéf then:

X+X=u+x+dx—(z+d2 dg,
ytdy=v+y+dy—(z+dzdy (2)
z+xZ=w+ (X+dx) dg + (y+dy) dg+z+dz.

We would like to confine our study to the curvesvidnich it is legitimate to assert, as we

can for plane curves, that the limit of the ratiadhe arcMM ’to the chord wheM ’tends
to M is equal to unity. Since we have:

u -1, lim v =0, lim w -0,

J UV W J UV W J UV W

by the definition of the tangents, and on the otfaerd, the hypothesis that was just made
will translate into:

lim
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o0s -1,

J UV W

im 2 =1 lim-—L=0 Im—=o.
os os os

lim

we will also have:

We can therefore suppressndw in (2) and substitutds for u; dividing bydswill then
give thefundamental formulas:

Q: dx Z, oy_dy z 0z dz x _y. 3)
ds ds p

Equations (2) are also applicable to the cosioeg3, ) which define an arbitrary
direction, provided that we suppress, w. It will then follow that we have:

&y—d_a—z %: %—Z Q/: d_y+£+£ (4)

ds ds p ds ds r’ ds ds p r

for the direction. We finally seek the fundamental formulas thaatesito the line. For
the coordinates of a straight line, we can assunaeits direction cosines, S, yand the
guantities:

$=yy-Bz n=az-yx {=px-ay (5)

are obviously coupled with the cosines by the itlgnélation:
aé+pn+ =0 (6)

and are independent of the position of the point/(2) along the line, since they will
remain unaltered wheny, z are replaced witk + a't, y + St, z+ yt for anyt. It is now
sufficient to apply formulas (3) and (4) to (6)arder to get:

g_dé ¢ o dp ¢ X_dd. &.n,,

: (7)
ds ds p ds ds r ds ds p r

Together with (4), these are the fundamental foasfor the line.

4. — It results from (3) thain order for the point(x, y, 2 to be immobile, it is
necessary and sufficient that one should have:

Y, @)
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Fix the origin of the arc length at an arbitrary pahthe curve at which the curvatures
(which we always suppose to be continuous functions efatit length) have finite
values, and lex, y, z be its coordinates with respect to the fundamenitadron at an
infinitely-close point. Obviously, y, z are infinitesimals relative tg, and since the
conditions (8) must be satisfied, one will have:

lim 2 = lim (E—ljz— 1, lim2Z=1im =0,
S 0 S r

upon applying I'Hopital’s theorem. It will then follovindt:

.z _ 1. 1(x vy 1, x_ 1
im —=-=Zlim=-] —+2 | == —Ilim—= —.
p r 20 s 2p

Now, since transferring the origin of the arc ldngh the pointM’ (s + dg), which is
infinitely close to M, is equivalent to setting + ds = 0, the expressions for the
coordinatesy, v, w of M” with respect to the axes at the origdhwill be obtained by
changings into —dsin the preceding results, in such a way that @ h

ds’ _dg
— W —_—

u=ds vV=——, = .
6or 20

(9)

Hence, the planes that contain the tangeM ate characterized from all of the ones that
pass througiM by the fact that their distances to the point$ #na infinitely-close tav

are higher-order infinitesimals, afdr just one of thenfviz., the osculating plandhat
distance will be infinitesimal of order at leastreélh. It will then follow that any
sufficiently-small arc that is taken aroui will be situated on the same part of any
plane that goes through the tangeritlaind the exception is the osculating plane, which
crosses the curyen general. When one drops third-order infinitess, one can suppose
that M’ is situated in the osculating plane, and if ors® alrops those of second-order
then one can even considel’ to be situated on the tangent. Consequentlyhase
guestions for which it is proper to drop the higbeder infinitesimals, it as also proper to
represent the curve with a polygonal linMM” ... with infinitely-small edges and
consider the tangent to be the line on whiclel@ment MMlies, the osculating plane to
be the plane that is determined by teansecutive elements MndM M ”, etc. If the
fundamental trihedron passes from one positiorhéosuccessive one then the vertex on
the tangent and the edges can rotate around ttexvarsuch a way they will acquire the
direction cosines (1). It will finally result frorf®) that if an observer moves along the
curve while keeping his head on the positive pathe normal and proceeds in the sense
of increasings then he will see the curvese or fall according to whethew is positiveor
negative resp., and he will see it turn to thght or left according to whethar has the
same sign ag or the opposite sign, resp.
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5. — One can now prove thahy pair of intrinsic equations will determine a unique
curve at least within convenient limits fer inside of which the curvatures are finite and
continuous functions of the arc length. It is knowat thnder those conditions there will
always exist a triple of functions y, z, and only one of them that satisfies (8) and
reduces taa, b, ¢ for s = 0. On the other hand, by virtue of (4he necessary and
sufficient conditions for the invariability of the directi¢am, 5, )) are:

d_a:Z %—Z d_y:—g—él (10)
ds p’ ds r’ ds p r

It is known that ifa, B, yanda’, ', y/ are two arbitrary triples of functions that satisfy
(1) then one will get, in succession:

dis(aa’+ BB +w)=0, aa’+ B+ yy = constant

by virtue of (10). It will then follow that if one detames the three triples of functions
that are contained in the first of the matrices:

a B W 1 0O
a, B, V.|, 0 1 0f,
a, B, Vs 0 0 1

in such a way that (10) is satisfied and they take orhtraologous values that are
depicted in the second matrix then one will constamilye:

1 if i=j
aatAAT NS { 0 if izj’
i.e., the determinant that represents the first ma&rocthogonal. It is now clear that the
elements of that determinant are precisely the dimeatbsines of the axes with their
origin at O with respect to the ones with their origin Mt because they give the
directions of the aforementioned axes $o+ 0, and on the other hand, satisfying the
conditions (10) is sufficient for the invariability tfose directions. Having said that, it is
always proper to set:

X=X tam +ba,+cas, y=yo+al +bs+chs, z=zx+apy +tby+cy,

and one will then see that if one substitutes thekesan (8) and takes (10) into account
then the new unknown functiors, Yo, Zo will satisfy (8) and that they must all reduce to
zero withs. It is therefore plainly determinate, and it is cléaat they represent the
coordinates 0D with respect to the axes with their originMt For each value f one

can now determine the constaaid, ¢ in such a way that they represent the coordinates
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of M with respect to the axes with their origin@t It is enough (if one imagines the
instant thatM passes through a fixed point) to get/, z equal to zero in the preceding
relations and solve the system with respect, i@ c:

a:_(alxo+ﬁly0+y120)’
b:_(azxo+:82yo+yszo)’ (11)
C:—(0'3X0+,32y0+y320)-

Hence, the curve that is defined by the given pair ofinsitt equations will be
determined uniquely, since the coordinase®, c of all of its points with respect to a
triple of immobile axes will be known asvaries.

6. — It is interesting to observe that one can rapitigiuce all of the usual theorems
of skew curves from (11) by means of the immobility ctiads (8) and (10). Indeed,
upon differentiating the former equations, one will fincttha

da db dc

—=m, — =, —=0as; 12

ds ds  ° ds ° (12)
hence:

da_y db_y dc_p (13)

g p' d o d o
and another differentiation will give:

3
da_,dl o b o (14)

E_yld_s; o pr’

Thus,when one makes use of immobile aXesfirst derivatives of the coordinates with
respect to the arc length will be equal to thedliom cosines of théangent and the
secondderivatives will be proportional to the directicosines of therincipal normal.
For the binormal, one has:

2
dcd’b_dbd i etc. (15)

- ————— |,
Azasp-a) [dsdé ds ds)”

If one squares and sums (12) then one will getahmaula:
ds’ = da’ + db” + dc,
which permits one to calculate thec lengthwhen the coordinates are given as functions

of an arbitrary variable. However, if one squaaes sums (13) then one will find the
formula:
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1 _(d%) (d?b) ( &b’
—= + + ,
o> L ds ds ds
which will give one theflexion whens is the independent variable. One operates
analogously on (15) with the general formula (i.e.,dhe that is not linked by a choice

of independent variable). If (14) is then multipliedfy /£, £ and summed then if one
observes (15), one will get:

da d°a 4
ds dg dd
1 do d°b b
rp° |ds d€ da|
dc d°c dc
ds d€¢ dd

That formula will help one calculate tt@rsionwhen one already knows the flexion.

7. Digression on lines:

a) It is known that the anglé between two directionsa( £, )) and @', B V) is
given by either of the following formulas:

cos@=aa’'+BB +yy, sifO=By-yB )+ (ya—ay) + (B -pa’y.

If the directions &, 5, )) and @ + oa, B + OB, y+ J)) define the infinitesimal angléd
then the second formula will give:

00*= (Bdy—yIB* + (yda—a O)? + (a IB- L da)> (16)
However, one can deduce from the first one that:
1-1060°+ ... =Y a(@+da)=1+Y ada=1-1> da’;
06° = oa® + IB% + y°. (17)
b) The cosinesl, y, v that determine the direction that is perpendiculath&bones
a, B, yanda’, B, y satisfy the conditions of perpendicularkyia = 0,2 Aa’= 0, from

which one infers that:

A _ 7, _ v _ 1
By -yB vya-ay apf-Ba siné’

(18)
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if one fixes the positive sense of the direction inhsaiavay that it will coincide with the
sense of the-axis when the given directions coincide with those efxlandy axes,
respectively. Obviously, the distancebetween two lines is the projection onto a
common perpendicular of the rectilinear segment thas jan arbitrary pointx(y, 2) of
one line to a pointq, y’, Z) of the other one. It will then follow that:

q=AX =) +uly’-y)+v(-2;

i.e., from (18):
a a X-X
qsind=|p8 B y-y| (19)
y Vv Z-z

in which the right-hand side can be given the form:

a a X| |a a X
B B YI|+HB B y=-D@&+a'§),
y VvV Z| |V Vv z

in such a way that when one recalls the relationqi@g, can also write:
qsing= > (a' -a)(&' -¢).

Therefore, if the two lines are infinitely close adg represents the distance between
them then:

X 30= O OF+ 9B Iy + dy & . (20)

Returning to (19), one observes that if one of the lisebax-axis then one will have
—qgsin@= ¢ and one will obtain the geometric interpretatadrthe coordinates, 77, {in
that way.

¢) The lines in space are quadruply-infinite in nemltsince one will always have
two relations between the six coordinates of a lid@y other constraint that is imposed
upon those coordinates will serve to cut out ddnpfinitude of lines from the space that
one calls acomplex A pair of distinct equations definescangruence or adouble
infinitude of lines which one can then consider to be the interseafawo complexes,
and it is the analogue ofsairface or double infinitude of pointsFinally, a set of three
distinct equations represents a simple infinituéldéines, which obviously constitutes a
particular surface that one callswded surface. We shall address the ruled surfaces and
congruences in what follows. We would like to anafourselves to exposing some of
the simplest complexes, which are representedlipgar equation:

aétbn+cl+la+mpB+ny=0, (21)
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and are calledinear complexedor that reason. Such a complex is calpecialwhen
the coefficients are subject to the constraint:

al+bm+cn=0, (22)

by virtue of which, it is proper to consider those coedfits to be proportional to the
coordinates of a line, in such a way that (21) will teap that the line will meet all of the
ones that belong to the complex. Henttee special complex is composed of the
infinitude of lines that meet a given lind.hat line might be infinitely distant, and that
will happen whera, b, c are zero. By virtue of (21), the lines of the compleatk all be
perpendicular to the direction that is defined by cosihast are proportional tb m, n
(i.e., they are all the lines of a sheaf of parallahps), and one can therefore indeed say
that they meet the common intersections of thoseegla For a general linear complex,
i.e., when (22) does not exist, it is not possible #éhat c will all be zero at once, and one
can then always consider the direction to be definetidgosines:

(23)

a b c
Q= —-——, ﬁ):—, W=,
’ Jai+bhi+c? Jai+pi+c? Jai+pi+c?

and one can assume that a certain line is in thattebn whose other coordinatés o,
{o one would like to determine opportunely. If one obse(2&¥then one will have from
(19) that:

_qsing:2a50+mz Sa {go_l—}, (24)

Jai+b?+c? Ja+pu+c

and the right-hand side will reduce t@-€os&when one sets:

| —ap flo = m-bp o= n-cp
T 0O —(FT7—mm—, 0o —F7—
Jat+bhi+c? Jat+bhi+c? Jati+bhi+c?

One then determines the constaily observing that the relation (6) must be true:

éo= (25)

a(l-ap+b(m-bp+c(n-cp=0.
It will then follow that:

al+bm+ cn
= 2
a+b’+ (26)
and the equality (24) will finally reduce to the simplemfo
gtan@=np. (27)

The line that is defined by the coordinates (23) and (23lliscctheaxis of the complex,
and the preceding considerations will show that any digceaplex is composed of the
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lines for which the relation (27) exists between distanca certain axis and the angle
that it makes with each line of the complex.

d) Thebilinear congruences or intersections of two linear complexes 0, x'=0
— also belong to the infinitude of complexes that corepitie sheak + A k"= 0. If one
writes out that the condition (22) is satisfied by thefficients ofk + A k¥’ then one will
find a second-degree equationinand therefore two special complexes will alwaystexis
in the that sheaf. Hencany linear congruence is composed of the lines that rest upon
two certain lines in spaceHowever, if considers the net of complexesA k" + ux”=0
in the sheaf then the condition (22) will lead to atieh betweerh andm, by virtue of
which there will always exist an infinitude of speciahgplexes in that net. Hence, the
ruled surface that is the intersection of the comgdex= 0, k<’ = 0, k” = 0 will also
belong to an infinitude of special complexes; i.e.,lites that comprise it will meet an
infinitude of other lines, which can likewise be consadketo be generators of the surface.
It will then follow that a surface like that can be geated in two very different ways by
one line that will successively occupy a simple infinitwfepositions in space. That
special ruled surface is calledqaadric and from the nature of its properties, which are
dealt with at length in ordinary analytic geometry, @copies the same place in the
geometry of space that the conic (llI1)gdoes in the geometry of the plane.

e) It is particular noteworthy got us that among the quadtlee hyperbolic
paraboloid— i.e., the surface that is generated by a line thaemparallel to a plane —
will be supported by two given lines. That surface cam the considered to be the
intersection of three special complexes:

>aa,=0, Y (a'é+ag)=0, Y (a"¢+ad)=0,
and therefore its generators (from one system) vatl Aklong to any complex of lines:
l(Aa' +pa") E+(ay+ A&+ péM al = 0. (28)

The generators of the second system are the axeseodpecial complexes that are
represented by the equation (28) when one establishes anmmtveelation between
Aandy;ie. :

D dag+pd a ay+Au) (a' &' +a'é)=0. (29)

Now, since those generators have directions cosia¢stl equal to linear combinations
of cosinesa’, B, y with a”, 5", y”, one will see thathey are also parallel to a certain
plane, like those of the first systefherefore, the surface will be generated in the same
way as the lines of one or the other system. Howewee can generally pose the
relation:

D aday+ud aa,=0
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betweend andy, which is generally distinct from (29) when the linbattwere given to
begin with do not intersect, which one supposes when tliaceuis not planar. The
equation (28) will then represent an infinitude of non-sgeaiear complexes, whose
axes are parallel to the director plane. Even bdtiat,plane can be fixed in such a way
that it contains one of the axes. Hence, the o#la(R7) must be satisfied, so the
generator that is situated in the plane will meetathis at a right angle, and that situation
shows clearly that all of the other axes will neee$slie in the same plane. If one fixes
two director planesin that way then their intersection will be calldte Bxis of the
paraboloid, and the two generators that meet the axiwgwonally will be called
principal, in order to distinguish them from the other ones ig ttespective systems.
They must meet, precisely because they do not belonget@ame system, and their
common point will necessarily be on the axis, and dalled thevertexof the paraboloid.

f) For an arbitrary generator that is situated at armbistefrom the director plane
that it relates to, ifr is, in addition, the angle that one finds between giemerator and
the principle direction then one will have:

tanr = i, (30)

p

by virtue of (27), since the angl@ is the complement of in the case that is being
considered. Hencehe hyperbolic paraboloid can be generated by @ lihat moves
parallel to a plane that rests upon a fixed linedantates around it according to the law
(30). The fixed lineOM s, if one so desires, the principal generator of géeond
system. Its projectio®P onto the first director plane will be, consequentig principal
generator of the first system. Now, if one raides perpendicular a®, which is the
projection ofM, to the generator that passes throMgtand similarly the perpendicular to
OP from the vertexO, then the two lines thus-constructedl concur at a fixed point F.
Indeed, the consideration of the rectangular trian@RB andMPF and the equality (30)
will give:
OF=0OP[Tosr=tcotg cotr=pcotg,

if one calls the inclination od®M with respect to the fixed plang Hence (lll, 89, c),

the projections of the generators onto the diregtiane envelop a parabolahose focus

is at F and whose vertex is &. Nonetheless, it is known that the envelope ofehos
projections will be the vertex when the principal geresaare perpendicular, in which
case, the paraboloid will be calleduilateral. However, if one makes the constaugts
andp go to zero in such a way thatot ¢ will remain equal to a non-zero constant then
the two systems of generators will tend to coincide, ted paraboloid will tend to
degenerate into the system of tangents to a paaabol

g) In conclusion, observe that the significance @fill result from (30), which gives
the equalities:

!

p= Iirg(')l;, p’= lim=, (31)
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which relate to the two systems of generators. It derstood that for both systems, one
must compute the anglesand 7’ by starting from the principal generators. For example,
if the direction @', £, )) is the one that one obtains by projecting (&, ) onto the
second director plane then one will have:

Y a'a,=sing, > a"a,=sing cosT, Y a'a"=cosr,

and one must takéd = — ¢ cos 7, in such a way that one will come to the following
result:
B Aut'sint’ _

A*+ 2 +2Aucost  tanr’

p:

thanks to formula (26). It is therefore irrelevambether one takes one or the other
system of generators in order to know the valuhefconstanp. Since one can then say
the same thing about the anghe it will then result that the two parabolas that¢ a
enveloped by the projections of the generators taespective director planes will be
equal.

h) Various noteworthy surfaces can be generatedogoasly to the way that
hyperbolic paraboloids are generated. If a poioves along a fixed line and one raises a
perpendicular to that point in such a way that whba point moves ta, the
perpendicular will rotate through an anglehat is coupled with by the relation (30)
then one will see that the moving line generatesauilateral paraboloid. However, if
one substituteg for tan 7 in the left-hand side of (30) then the line willrgerate another
noteworthy surface that one callsrided helicoid with a director plane.If one puts
sin2rin place of tanr or 7 then the surface that is generated will be cadléliicker
cylindroid or conoidand it is the locus of the axes of the linear clexgs of an arbitrary
sheatf.

8. Ruled surfaces— A ruled surface can be considered (cf4)8o be a simply-
infinite succession o$urface elementseach of which is the strip of the surface that is
found between two infinitely-close generatgrandg’. One says that the ruled surface is
adevelopablef the planar elements; i.e., the ones for whiaé proper to considey and
g to be situated in a plane, up to higher-ordemitdsimals. That can happen either
because the distan@dg between the two lines is infinitesimal with redpectheir angle
o6 or because one constantly li#s= 0 ; that is to say, the generators are all pzlrati
which case the surface will be callegydinder. The point ofg that is on the common
perpendicular tg andg’ will move along withg’' when one fixeg and makeg' tend to
g, and it might be true that it tends to a p@nthat is fixed org that is called theentral
pointofg. The locus of central points is called #age of regressiowhen the surface is
developable, and in particular, it is clear that fiee cylindrical surfaces, the edge of
regression will be completely at infinity. For tbéher ruled surfaces, which are called
skew the locus of central points is called thme of striction instead. If the rati@q : 56
then tends to a limip wheng' tends to the fixed positiog then one will give t@ the
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name ofdistributor parameterlong the generatgr. Obviously, the only ruled surfaces
for which one hap = 0 on all of the generators are the non-cylindricaletpables;
however,p is infinite for the cylindrical ones. Now, one tracast an infinitude of
curves that meed’ atM’, M”, ... through a poinM that is fixed org. Wheng' tends to
g, the linesMM’, MM~ ... will tend to touch the aforementioned curveMt and
thereforethe tangents at M to all of the curves in the surface that pass through b

in a planethat one calls theangent planat M, and is the limiting position of the plane
that is determined by the poikt and the lingy’. Thenormalto the surface al is the
perpendicular to the tangent plane that goes thréighHaving said that, observe that
the tangent to all of the curves in the surface aldmg dgeneratolg define a linear
congruence whose limit is composed of the lines tlatuppong and g'. In that
congruence, the lines that are perpendiculay wall then form a hyperbolic paraboloid,
and therefore their orientation will be governed by ltve (30), in which, by virtue of
(31), p is properly the distribution parameter, armépresents the distan@M. Hence, if
one knows the plane that touches a skew ruled surfacea@ntQ of the line of striction
then one will also know the tangent plane to any ofiltent M of the generator that
passes throughA by means of the equality (30). That is e of distribution of tangent
planesthat was discovered liyhasles If M traverseg and goes off indefinitely t@ in
one sense or the other then the tangent plane wdlttearrange itself perpendicularly to
the central position. The developables behave quitadliffly. Indeed, whep is zero,
one will haver = 7/ 2, and all of the tangent planes alanwill coincide with one of
them, and that will obviously happen for the cylindricalfaces, as well. Therefore,
among the ruled surfacebe developables are characterized by the fact that the tangent
plane at each point M will touch the surface along the generator that paseeghhi.
Finally, observe that it is enough to rotate all of tdvegents that are perpendiculargto
aroundg throughsz/ 2 in order to make them become normals to the syréaad to see
in that way thathe normals to a ruled surface along a generator define a hyperbolic
paraboloid. It will reduce to a system of parallel lines onlyle tcase of developables.

L o}
, M’
Q
P
Q P Y
Y
7 norm.
norm.
ctr.

9. Fundamental formulas.— When the distributor parameter of a ruled surface is
referred to the fundamental trihedron of an arbitraryweun space, it will be easy to
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express it in terms of the variations of the coordinates, y; & 7, { of the generators.
Indeed, if one divides (20) by (17) then one will obtain:

_oaok+opon+dyod
= 5 > —. (32)

oa“+9oB°+oy
If the curve is chosen from the ones that belong & dlrface ther€, 7, ¢ will be
constantly zero, and formulas (7) will give:

of=0, on=-yds O&=/pds;

hence, if one takgs d@for A then one will get the (obvious) equivalence:

oq_ oy OB
9q_ s _ 9B 33
as P Vs (33)

The normal to the surface at the central point is pelipalar to g and to the
perpendicular that is common ¢goandg’, and it is defined by direction cosines that are
proportional to:

BOoy—yop, yoa—ady, aof-Laoo.
The direction cosines are then proportional to agrflquantities, the first of which is:
(yda—ady)) y-(a dB-pB ) B=du+ 1367,

namely, da, if one ignores the higher-order infinitesimals. Ekenif one takes (17) into
account then one will see thdte direction of the central normal is defined by the
cosines:

oa  op oy

o6 o8 o8

Having said that, if one observes that the trihedronisheomposed of the parallel to the
central normal that goes throulyh the tangent to the fundamental curve at the pgdint
and the perpendicular gpthrough the tangent plane that is raised fidns the rectangle
along the third edge then one will immediately find th&t Df the equalities:

%z B+y° sint, %zwlﬁ%yzcosr; (34)

however, the other one is obtained by directing trst &dge perpendicular pandg'.
Meanwhile, the first equality will become:

2
Q: ’B—Wzﬂsin 7=

Sin 7 cosT, (35)
ds p ds

BE+y?
p
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thanks to the second. On the other hand, if one lpads to writing out (33) then one
will find:

¥ _ ﬁzi[@jzz_ﬁ“yz cod 7

ds ds plds p
and one will have just:

B, dy__ _ooa__ B+)y

—ty——=—-q—=- a sinTCOoST.
ds ds ds p
Hence:
ﬁz(— ycosr—apfsini) cost , ﬂ/=(,[3cosr—aysinzj ﬁ. (36)
ds p p
Finally, it is enough to set:
1 cosy_1
r p r’

and substitute the results (35) and (36) in fornfdijao find theconditions:

2 2
d_azz+usin21',

ds p 2p
9B_Y_Bginor (37)
ds 7 2p

d_y:—Z—é—ﬂ/szr,
ds p 1 2p

which are necessary and sufficient because theitunsca, £, yrepresent the direction
cosines of the generator of a ruled surface wipeet to the fundamental trihedron of a
curve that is traced out on the surface.

10. - The line of striction is characterized by th@ditiont = 0 or7 = 0, and also by
oa = 0, by virtue of the first equality (34); i.e.:

da vy

ds p

One sees from this thatf= 0 thena will be constant, and conversely. We now need to
know that what one calls geodeticon an arbitrary surface is a curve whose principal
normal at any point is the normal to the surfat¢taving said that, the last observation
permits one to assert, wiBonnet, thatif the line of striction is a geodetic then it will
meet the generators at a constant anglag converselyif the line of striction of a ruled
surface meets the generators at a constant angie ithwill necessarily be a geodetic of
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that surface. If one then hag’= 0 anda constant at the same time then one will also
haveda = 0, and thereforthe line of striction is the unique line that can be geodetic and
meet all of the generators at a constant angl/hen that line is assumed to be a

fundamental curve, formulas (37) will become:

da _y dg_y dy _

a
ds p’ ds 1 ds p

which express the idea that the directien £, J) is invariable with respect to another
curve that has the same flexion as the line of stricdind a torsion that is equal to & /
In other words, ibne twistghe given line (by means of successive infinitesimaltiaria

of the osculating plane around the tangents) in suctydhathe torsion passes from the
value 1 /r to 1 /t, while the flexion of the arc remains invariant, tiifeihe generators are
dragged along by the motion, they will remain rigidlyupted with the respective
trihedra and conclude by becoming parallel; i.e., the suxfaitde transformed into a
cylinder.

11. Developables- For developable surfaces, formulas (37) will become:

da_y F+y  df_y af dy__a_f_ay (38)

ds p t ' ds r t  ds p 1 t
However, in order for them to persist whetends to zero — i.e., (excluding the cylinders)
when the edge of regression tends to take the form afdafoental curve, it is necessary
that # and y must be zero. Hencany non-cylindrical developable is the locus of
tangents to a skew curvdn order to account for that in a more direct way, waild
first like to observe that the distandg, when it is not infinitesimal likedg, will be
infinitesimal like at leas®®?. Indeed, if one assumes th@is the independent variable
and one returns to writing out formula (20), while recaltinat:

o=d+id*+1id°+ ..,
then one will get:

& dg=(1+1d+1d*)Y do -4 o ff + ..,

and one will see immediately that the right-hardesifrom which the infinitesimals of
order higher than four have been dropped, is pegce at least that order, if it is not of
order two; that is to sayq has order three if it does not have order oneviridasaid
that, if one draws a plane throughthat is parallel tay then it will be clear that the
distance from the central poi@’ of g’ to that plane will also be infinitesimal of orcar
least three, and therefore 4% the plane thus-constructed will be precisely dhe that
osculates the edge of regressioiQatin order to prove thaj is the tangent to that edge
of regression, it is enough to see that the distérmong to the projection o@' onto the
osculating plane is infinitesimal of higher ordand since that distance is equal to the
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product ofQQ with an infinitesimal angle, the theorem is thusvei It is now clear
thatthe tangent planes to a developable surface are the osculating planes df¢hefe
regression.

12. — It is important to observe that any simply-infinitentouum of plane$ will
osculate a curve, and consequently, it will be the totalitwyll tangent planes to the
developable that has that curve for its edge of regressipas one would like to sagny
simply-infinite continuum of planes is enveloped by a developable suifatged, ifg is
the limiting position to which the intersection of thienesP andP’ tends wher®' tends
to the planeP, which is supposed to be fixed, then the locus of lgesll be a ruled
surface, because it admits the pld&has its unique tangent plane alogg In order to
convince oneself of that, it is enough to observe ithislt is an point ofy then the plane
Mg' will tend to coincide withP; one can arrive at that conclusion more rigorousty b
means of calculation. It is known (cf., II58that if one differentiates the equation Ryr
which express the idea thaty, z satisfy the immobility conditions (8) then one must
obtain the equation of another plane that passes thigpugdfhone fixes the fundamental
curve on the surface then it will follow that the tveguations must be devoid of
independent terms, and for that to happen, it is necetisaryhe term inx must also be
missing from the first.P will then contain the tangent, and it will theref@@ncide with
the tangent plane at the point considered.

13. — The surfaces that are enveloped by the faces of a fundamental triredron
important in the study of skew curves.

a) We have already seen that the osculating planesewiélop the surface that
admits that curve as its edge of regression. Onenhdm&t a rapid confirmation of the
calculations, since when one differentiates the equaticthe osculating plang € 0),
one will getz = 0 ; differentiating again will give = 0O; that is to say, the generator is the
tangent to the curve, and the edge of regression isuhag.c

b) From the definition (81) of the polar axis, the normal planes must envelop
precisely the surface that is generated by that line.e @wes the name ogbolar
developabldo that surface. The differentiation of the equatd the normal planex(=
0) will give z = p, and therefore the polar axis will meet the princigahmal at the point
(viz., thecenter of curvaturgthat is situated at the distaneérom M.

c) Finally, the envelope of the rectifying plane is calkb@ rectifying surface
because a curve on that surface will necessarilygeodetic, and on the other hand, one
proves that the geodetic of a surface will single oet shortest path between two
arbitrary points on that surface that are not too wlistaseparated. It will then follow
that when one wishes that the surface should map tare ph the way that was
described at the end ofl®, the curve will transform into a line because it treentinue
to single out the shortest path between two pointbenplane. One can infer a simple
confirmation of that fact from direct calculationt ohe differentiates the equation of the
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rectifying plane £ = 0) then one will find immediately that the inclinatienof the
generator of the rectifying developable on the tangenteatinve is determined by the
formula:

tane= L : (39)
P

If one applies formulas (4) to the direction cosinkthat generatorg = cosg, S = sing,
y=0) then one will get:

o . _de op _ de Oy _ cos¢ | sine
—=-sing —, ——=C0S¢ —, = —+t—
ds ds ds ds ds Yo r

=0

hence,dd” + JF° + J = ds". Thereforethe angle between two infinitely-close rectifying
generators isds. Having said that, if one imagines that one ratdbe rectifying plane
g'x around the generatgruntil it coincides with the preceding plage then it will be
clear that the tangent Bt’ will change until it coincides with the tangenth\t that is to
say, two arbitrary consecutive elementg)8vill be in a straight line.

d) It is useful to add the following considerationg/hen the three generataysg’,
g" of any developable are consecutive in the seng4pif one assumes that rotates
aroundg’' until it is found in the same plane @andg' then the poinM will not move,
and the anglegq(, g") will not vary. It will then follow that the edgef regression will
keep its flexion at any point unaltered when itdyaees planar. Hence, one can make any
curve in space correspond point-by-point with anelaurve, in such a way that two
arbitrary corresponding arcs are equal, and theofteat two corresponding points will
be the same. In order to do that, it is enougap the developable of the tangents onto
a plane. 1t is then clear that the intrinsic e@uratf the plane curve into which an
arbitrary curve is transformed is obtained by etating the torsion from the intrinsic
equations of the skew curve. Any other developdhkt goes through the curve
considered can be mapped into a plane while destrdlye torsionput at the same time,
it will alter the flexion of the curveéDoes there exist a developable such that mapping i
onto a plane will also totally destroy the flexiohthe curve;.e., transform the curve
into a line? Such a surface always exists, and because of wdmfjust said, it will be
precisely the one that has been called the reatjfgievelopable.

14. — If one starts with an arbitrary curve in a depable then it will be easy to
determine its edge of regressiott. will be generated by the point {a, — t5, —t)), and
indeed, when one observes (38), an applicatiomefdrmulas (3) to those coordinates
will give:

OX oy oz dt
—a=—=:f=— y=a- —.
ds ds d ds 4 ds

We then see, in addition, that the arc length efdtige of regression will be:
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£:jads—t,

and that this curve will reduce to a point when] a ds One therefore says that this is
an equality thatharacterizes the conic surfaceb particulart will be constant forr =

0, and therefore the orthogonal trajectories of #gmeegators of a cone are spherical lines.
Since one hag = 0, one will then have that= constant, so the conditiarr | a dswill

be satisfied, and therefore the surface will necdgdagiconic. In the general case, when
one takes (38) into account, formulas (4) will give:

Qz—ﬁ2+y2 %:—a_ﬁ Q/:—ay (40)

ds t ' ds t ' ds t

and that will say what the direction of the principatmal is. It will then follow that the
direction cosines, b, ¢ of the binormal are proportional to @,- 53, resp.; if one then
applies formulas (4) one more time then one will timak:

@:@ :@:L (41)

oaa B  B+y)p

It is now enough to square and sum (40) and (4byder to obtain the radii of curvature
of the edge of regression:

p/:;(dt—aj, r’= ﬁ2+yz(dt_aj. (42)

Jp+ylds g \ds

15. Evolutes and involutes= If (cf., I, 8 9) the tangents to a curve are normals to
another curve then former will be called téeoluteof the latter, and the latter will be
called theinvolute of the former. In other words, the orthogonalertories of the
generators of any developable are the involuteee&dge of regression. Take one of its
trajectories to be the fundamental curve. Sineedirection cosinesa(= 0, f=siny, y
= cosy) of the generator must satisfy the conditions ,(8&g will have:

—-tcosy=p, w_1 (43)

ds r

The second equality will continue to be satisfiduew one adds an arbitrary constant to
. 1t will then follow thatif the generators of a developable are rotated tigto the
same angle around one of their orthogonal trajei@®then it will not cease to constitute
a developable surfacetHowever, the first equality says that theoordinate of the point
of the edge of regression is equalaoThat is to say (83, b), that point will be on the
polar axis; i.e., its edge will belong to the potlvelopable. Hence, thefinitude of
evolutes of a curve are all situated on the polavelopable.In addition, if one observes
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that by virtue of (40)J8 and dy will be zero in the present case then one will see
immediately that the rectifying plane of the evolutencoes with the normal plane to
the involute. It will then follow thatvhen the polar developable of a curve is mapped to
the plane, all of the evolutes of that curve will be rectifyiRgnally, the curvatures of the
evolute are given by formulas (42), and if one takes (@®)account then one will find
that:

g=_P

_ ,_ p d p
cosw"o

= el r= __p d p (44)
cosy ds cog/

sing ds cogy

When one knowsp, r, and consequently, as functions o§, if one wishes to find the
intrinsic equations of an arbitrary evolute thewill be enough to eliminate from the
preceding equalities. By virtue of the equalityy=-s’, one can also consider the involutes
of skew curves as being described by the points ftéxible, inextensible filament that
was originally wrapped along the curve and thattbea unrolls while always keeping it
tense. It is then easy to explain what resultsnftbe first formula in (43) when one
observes that goes to zero with; i.e., thatthe edge of regression of a developable is the
locus of points of regression of the orthogonajetctories of the generators.

16. Central axis. — That is what one calls the common perpendictdartwo
infinitely-close principal normals. That line, whi is parallel to two infinitely-close
rectifying plane, is parallel to the rectifying gerator, and therefore If is its distance
from the pointM on the curve then its coordinates will be:

Q = COSE¢, [ =sing, y=0, {=-hsing n=hcosg ({=0. (45)

£ is given by formula (39), and is determined by expressing the idea that theihne
guestion will meet the principal normal to the pdih’, which is infinitely close tdM.
When one passes from one normal to the otherabelmates will experience variations
that are proportional to 1 ¢, 1 /r, O, O, 1, O, by virtue of (4) and (7). Hence, the
condition for them to meet is:

£+Q+ﬁ:0, |e’ l—&té‘: E’
p I p T h
and finally, if one observes (39) then:
2
h=— (46)

,02+I’2.

Therefore, the central axis will meet the principatmal between the poi and the
center of curvature and divide the rectilinear segirthat terminates at those points in
the ratios of sihe and coé ¢. If one applies formulas (4) and (7) to the camates of
the central axis then, thanks to formulas (17) @J, one will find immediately that:
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30=de, & = dh, (47)

and thereforalh : de is the distributor parameter of the surface that megeed by the
central axis. That line presents itself in variousrgggng questions. Thus, for example,
when one considers the motion of the fundamentaldrdrealong the curvehe central
axis in the space that is rigidly fixed with the trihedron will lhe instantaneous locus of
the points that displace less quickly than all of the other ohadeed, the displacement
ds’ of a point that is rigidly coupled with the fundameritdiedron is deduced directly
from formulas (3) by squaring and summing them and supposingxthgt z are

constants:
5 2 2
ﬁ: E—]_ +é+ _X+_y .
ds (p r> \p r

If one then sets the partial derivatives of thétdigand side with respect xpy, z equal to

zero then one will get:
2
l'f‘ll =0, [E—lj +i:0;

o r 0 re

l.e.,y =xtang z = h, whereh has the significance that it had in (46) and (8@ will
then see that one hds= cose¢ [tson the line thus-found. The preceding propertthef
central axis is explained by observing thia normals to the trajectories of all points
that are rigidly linked with the fundamental tritred constitute a linear complex whose
axis is the central axis of the trajectory of thvggim, and it is also obvious that it is the
central axis of all the other trajectories. Inde#dhe direction &, 5, )) is that of a
normal at X, y, 2) to the trajectory of that point then, by virtug(8), the perpendicularity
conditiona ox + B oy + y oz = 0 will become:

a(l_ij_/;_ﬁy(_)&_yj:o, e, $-Tiq=0
Yo, r o T r p

That will be (87, c) the equation of a linear complex for which one & — h cot & by
virtue of (26); that is to sayp is the distributor parameter of the principal nalsron the
surface, which would result from (33). One wilkkthget precisely the values (45) for the
coordinates of the axis from formulas (23) and (28)oreover, since the fundamental
curve can be chosen at random from the trajectofi¢se points of a rigid system, it is
clear that the line that was found is the centked af any other trajectory. It will then
follow that the principal normals to all of the trajectorieseathe lines that meet the
central axis orthogonally. One can also easily construct the tangents, imals; and
radii of curvature after one observes thabt € has a unique value for all trajectories.




CHAPTER X

NOTEWORTHY SKEW CURVES

1. Spherical curves— A line that is traced out on a sphere has all opdtists at a
constant distanck from a pointO, namely, the center of the sphere. The coordiraites
that point with respect to the fundamental trihedrbthe curve considered will then be
three functions, y, zthat are constantly coupled by the relation:

X +y +7 =R (1)

and satisfy the conditions (8) of the preceding chap#er.initial derivation of (1) will
give x = 0. Hencethe normal planes to all of the lines that are traced on a sphere will
concur at the center.The derivation ok = O will give z = p. Hence,the center of
curvature at an arbitrary point of a spherical line is obtained by projectiegcenter of
the sphere onto the osculating planEinally, if one differentiateg = p again then one
will find the value ofy, and one will see that the coordinates of the ceofténe sphere
will be:

x=0, y=—r%, z=p; (2)
ds
if one substitutes this in (1) then one will get:
2
RR=F+ (r d—pj . 3)
ds

That equalitycharacterizes the lines that are traced on a sphere of radiuké&eed, if
one applies formulas (3) of the preceding chapter todbedinates (2) then one will find

that:
Q: 0, ﬂ:_ £+£(r%j , g: 0, (4)
ds ds r ds\ ds ds

and the derivation of (3) will givédy = 0. Hence, when the condition (3) is satisfied,
there will exist dixed point O whose distance from the points of the curve is eortist
equal toR; i.e., the curve belongs to a sphere of raBad cente©. One can now add
thatthe necessary and sufficient condition for a curve to be spherical is:

B.}-i(r%jzo_ (5)
r ds\ ds

2. — For any curve, there always exists a spherical cureeigh each poinM that
has the same fundamental trihedron and curvaturesatbatqual to those of the curve
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considered. The second curve necessarily belongs $plieee that has radii&sthat was
given by (3), and its center at the poitthat is defined by its coordinates (2). That
sphere is said tosculatethe first curve at the poitd. The tangent to the curv®)atO

is determined directly from (4). It is parallel to thieormal to M) and is assumed to be
directed in the inverse sense, so one will have:

ds _p d( dpj_ )

Obviously, the tangent in question is the polar axidt (In other wordsthe locus of
centers of the osculating spheres is the edgegression of the polar developabl®&lo
further calculations will then be required in order to isemediately that the binormal to
(O) is parallel to the tangent td§, and that consequentithe principal normals to the
two curves will be parallelwe shall assume that they are directed in the opp@sises
In addition, we obviously have:

===, @)

Meanwhile, it is known that the coordinatesMfin the osculating plane td} arex
=-rdpl/ds, y = p. If one substitutes this in (6) then one will gist= (y/r) ds — dx
Hence:

dx_(z_d_éjis_y 1 dy_ _xds__x
dd rds p

ds (r ds)d$ po

It will then follow thatthe point M can be considered to be fixed in thrulaging plane

to (O). That will be obvious, moreover, if one obserthat whenM passes to the
successive positiond ’, etc., in the sense that was indicated above§K, the normal
plane to M) will rotate aroundO. In other words, the normal planes to the element
MM’ MM” M"M " concur alO. This makes a fact clearly understandable thatased

in full rigor by calculation, namely, that the ofating sphere aM is the limit of the
spheres that pass throulghand three other points of the curve when they temd.

3. Cylindrical helices.— One calls the curves that meet the generata<ylindrical
surface at a constant angtglindrical helices. It is clear that those curves are the
geodetics (IX, 810; 8§ 13, ¢) of similar surfaces because they will transfontoilines
when that surface is unwrapped onto a planeq, |, yare the direction cosines of the
generator then the invariability conditions [IXrfo (10)] must be satisfied for constant

B

. . a .
a, and one will therefore necessarily hgve 0, —+—= 0, in such a way that one can
p T

seta = cosg, B = sing in which € has the usual significance [I1X, form. (39)]. Irhet
words, as was predicted, the rectifying surfaddas cylinder. Meanwhileg is constant.
Conversely, where is constant, the invariability conditions will lsatisfied by the
cosinesa = cosg, [ =sing, y= 0, and the curve will be traced out on a cylmaled will
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meet the generators at a constant agghaz., it is a cylindrical helix. Hencen order
for a curve to be a cylindrical helix, it is necessary and defficthat the ratio of its
curvatures should be constant.

4. Puiseaux’s theorem.— Of all the cylindrical helices, the simplest onethe
circular helix— i.e., the one that is traced on a circular cylirdién all of its points at an
equal distance from a line (viz., thgisof the cylinder). It is clear that any normal to the
surface will meet the axis at a right angle, and @rethen say the same thing about the
principal normals of the curve, since it is a geoddtlence, all of the central axes (IX, 8
16) will coincide with the axis of the cylinder, which isetcommon perpendicular to all
of the principal normals. It will then follow thahe distanceh must be constant.
Formulas (39) and (46) of the preceding chapter will thee: gi

h h
p= , ==
cos & sine cose

and show thap andr are also constants. Conversely, wjgeandr are constants andh
will also be so, and therefore [IX, form. (47)] one hast 06 = 0, &4 = 0. The first
equality proves that the central axis remains constamtigllpl to itself; however, the
second one shows that the central axis is not digplacerally. It can only slide along a
line that is fixed in space, and therefore the pMintvhich stays at a constant distaihce
from that line, moves on a circular cylinder while désog a curve that meets the
generators at the constant angleHencejn order for a curve to be a circular helix, it is
necessary and sufficient that its curvatures should be constants.

5. Helices and geodetics of conical surfaces.One calls the curves that meet the
generators of a cone at a constant angfecal helices. They are never the geodetics of
that surface, because they do not rectify when thaseidf the cone is mapped onto the
plane, but rather transform (1,18, c) into logarithmic spirals. Under the conditions (38)
of the preceding chapter, suppose thas a non-zero constant, which then excludes a
case that was considered above (IX143. One must then hawe= a s. Hence, after

setting8 =/ 1-a” sin ¢, y=+/ 1—-a? cosy, those conditions will become:

2
COS[//:—l_—aﬁ, E: d_‘/’+ﬂ (8)
a S r ds S

If one is given an arbitrary plane curve then oam always twist it without flexing in
such a way that it will become a conical helix. eTirst equality (8) serves to calculate
the functiony. If one then substitutes that in the second éguaken one will determine
the torsion that one needs to give to the curveaah point in order for it to meet the
generators of a cone whose vertex has the cooedirata, —t 5, —t yat a constant
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angle. However, fogeodetics one needs to set = cos¢ S =sing y= 0 in the
conditions above (38). One will then get the secoriti@following equalities:

dt_ COS¢, de__sing : 9)
ds ds t

One knows (IX, 8L4) that the first of these equalities is the one tharacterizes conical
surfaces. One then deduces, in succession, that:

dt de ~0 a

4 _C = —t=_=

t tane sing’

that is to saythe projection of the vertex of the cone onto the normal plane at Mtayil

at a constant distance a from NFf. one substitutes the last result in the secon®pafd
integrates then one will get = ap. Hencethe torsion of geodetics on conical surfaces
will vary like the product of the flexion with the arc lengthhat property belongs to no
other curve, since if one assumes that it is satithed one will see immediately by
means of the usual immobility conditions that the potrd, @, 0) is fixed in space; that is
to say, the rectifying plane envelopes a cone.

6. Twisted circles.— A twisted circle is the curve that one obtains bigting a plane
circle without flexing it, in such a way that one ofiitrinsic equations will always be
= constant. Under that hypothesis, formula (3) willegR = r, and thereforehe
osculating spheres of a twisted circle will all be equal to eachrothéhat property
belongs to no other curve. Indeed, differentiating fdan8) will give:

®_[e,8(,90)), o
ds |r ds\ ds ds’

It will then follow that if R is constant and (5) is not satisfied (in which casefathe
spheres will coincide in one) them will also be necessarily constant. In addition,
formulas (6) and (7) give:

S:Rjd—s, o =R =R
r

Hence, aBouquet found, the locus of the centers of curvature of a twisted circle is
another twisted circléhat has the same flexion as the first circle atmrsion that varies
in inverse proportion to the torsion of the first circle



Chapter X — Noteworthy skew curves 171

7. Exercises:

a) Can a helix belong to a sphereth order for that to be true, the condition (5)
would have to be satisfied when one sets- p tan ¢, with € constant. In that way, one
would obtain, in succession:

i(p%j =-cof ¢ o+ cof £= constant.
ds\' ds

Hence (I, 88, c), the spherical helices are deduced from hypocycloidsydpids, and
cycloids €<t/ 4,e> 1l 4, = 1l 4, resp.) by simple torsion.

b) Do there existcylindro-conical helices;i.e., curves that are helices on either
cylinders or cones? One would need for the conditi@)sto be satisfied and to
simultaneously have = — p tan &, with € constant. One first observes that (8) can be
written in the following form:

scosw:—ip, E(SSinl/’):
a ds

J1-a?
a

cote .

If one integrates the second of these equations andtstdsstihe result in the first one
then one will find thatthe cylindro-conical helices have radii of curvatuthat are
proportional to the arc lengthwhen measured by starting from the vertex of the .cone
Conversely, any curve that is represented by the intratgiations = ks r = k’swill be

a cylindro-conical helix because if one determinesdmestantsy, & a thanks to the
relations:

, _ J1-a?
k=-cotycotg, k’= coty, siny=-~+——-—cot¢
a

then it will be clear that the conditions that wetated to begin with are satisfied, and
one can add that the curbelongs to a circular conbecause th@wvariable direction
(cosg, sing, 0) of the generators of the cylinder makeoastantangle with that €, 5, ))

of the radius vector. The cylindro-conical helices aceto speak, the logarithmic spirals
in three-dimensional space. They enjoy the singulgrgrtg that was pointed out before
(11, 8 7, 1) for those curves that they will not deform when they subjected to a uniform
dilatation around any point in space.

¢) What are thdnvolutes of the cylindrical helices™Recall the formulas of the
preceding chapter, while observing that if the rati@db r is assumed to be constant in
formulas (44) then it will be necessary tlgashould be constant, and the second formula
(43) will then show that the torsion of the involutezé&so. Hencethe involutes of the
cylindrical helices are plane curvedf one proceeds in the opposite sense then one will
easily see that there exist no other evolutes of Hrgepcurve. In addition, if one recalls
that the binormal to the involute and the rectifying gatwarof the evolute are parallel
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then one will see immediately that in the casealichsthe planes of the involutes are
perpendicular to the generators of the cylinddn the particular case of the circular
helix, formulas (44) will then become:

;12

o'r
p12+r12 !

p%: p’co§ Y=- r’sin Yyeosy=

i.e., /# = 2as if one calls the radius of the cylindzr Hence, thénvolutes of the circular
helices are involutes of the circle.

d) One of the evolutes of a spherical curve obviously rexlt@ehe center of the
sphere. The other one is deduced easily by rotating theofattie sphere around the
curves in the respective normal planes through the samke. In particular, if one
changesy into ¢y— 71/ 2 in the usual formulas (44), in whiap represents the angle
between the principal normal lsk and the radiu®M, in such a way thah = R sin ¢ then
one will get the formulas:

_ ,_Rd , _p2 d
S =Rcoty, p =——(cofy), r' =R —coty,
2 ds ds

which define theedge of regression of the developable that circuilvss the sphere
along the given curve. Since one hasr’ = Rp’, one will see (85) that the
aforementioned edge is a geodetic on a cone. prbaerty will seem obvious when one
ponders the fact that the polar developable oftersgal curve is necessarily a cone on
which all of the evolutes of the given curve aredgtics (IX, 8§15).

e) Construct a series of spheres that have their censdong a given line and
osculate that curveThis problem, which was posed bgmet, is easily solved when one
observes that by virtue of a knownZgproperty,any line will reduce to a point when its
polar developable is mapped to the plawith that, one would like to say that when the
normal planes are made to coincide with a fixechglay means of successive rotations
of the corresponding polar axes, the points ofdimee (which is rigidly fixed in that
plane) will ultimately conclude by coinciding insjuone point of the fixed plane. In
order to solve the Jamet problem, we need to coroenby transforming the given curve
(O) into a plane curved’) by altering its torsion. One can then constiuderies of
spheres that pass through an arbitrary pidirm the plane of@”) and have their centers
on (O"). It is enough to twist the curve () without flexing it until the original
configuration Q) is restored. The spheres that are rigidly drdgdeng with the motion
will not cease to osculate that curve, which isltdeais of the positions that are occupied
by M in osculating planes t@j. Henceany series of spheres can be made to osculate
an infinitude of curves by suitably deforming theelof centersand two arbitrary
configurations of that line can always be deducethfeach other by a simple torsion.
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8. Bertrand curves.— One calls any curve whose curvatures are linearlytreomsd
by:

a,b_y (10)

o r

a Bertrand curve. In particular, the twisted circled £ 0) and the curves with constant
torsion @ = 0) are Bertrand curves. Helices can also be comesiderbe Bertrand curves,
since if one increasesandb indefinitely in such a way their ratio tends torailicot £
then equation (10) will tend to be converted into theaxttaristic equation of the helix:

= —ptan & The Bertrand curves are characterized by the fallgwaroperty: Their
principal normals are principal normals of another curvd.ake the pointM; on the
principal normal of any curveM) that is at a distance affrom M. If one applies the
fundamental formulas to the coordinates (G3)@hen one will get:

Q:l—i, ﬂ:_ﬁ, g:d_a (11)
ds p ds r ds ds

Now, in order for i) to originally meet the principal normals tel), one will need to
have &z = 0; i.e.,a must be constant. Let = cosg [ =sin6, y= 0 be the direction
cosines of the tangent thl() atM;, in such a way that:

E—ilcotH: 1. (12)
pr

The fundamental formulas for those directions are:

a_a=—sin9%, ﬁzcoeﬁ Q/:W_Fﬂ,

— , (13)
ds ds ds ds ds P r

and one will see tha? must also be constant in order for the principabhmals to 1) to
coincide with those of\;) at any point. Now, it is known that equation t2fines a
Bertrand curve for which one hbs=—acot @ Itis cleara priori that (M;) will also be a
Bertrand curve for whicla andb must have the same values. Moreover, one deduces
from formulas (11) and (13) that:

d_%——“az-i_bz ﬂ—a_bL
ds r ’ - '

) p

Therefore, if one switches the two curves then rdi® ds : ds will have the value

\ a®+b*: r; and one will see that one must haxve= a* + b%, which is a property that is

known already in the case of twisted circles. @asily verifies that equation (10) also
belongs to M;). The correspondence between the two curvesbadbme illusory for
the curves with constant torsion, siné4) @nd (1) will coincide whena is zero. When
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one of the curves tends to become a helix, the otHeextend to infinity. Finally, it is
useful to observe that in the general célse fundamental trihedra of the two curves are
rigidly coupled to each other.

9. —The preceding question leads naturally to the study of ssrthat are composed
of the principal normals to a curve. If it is takerboa fundamental curve then formulas
(37) of the preceding chapter will be satisfieddor 5= 0, y= 1, and one will then have:

1__ sintcoy 1_cosSr

P p r p

i.e., 7= gandp = - h cot & which was observed before (IX,18) in a different way. In
order fortwo lines to exist on the surface that both admit ge@erators as principal
normals, it is necessary that each of them shoel@ Bertrand curve, and a third one
cannot exist, in general. However, if it does e#ien an infinitude of other ones must
exist that are all the circular helices that arenéel by the infinitude of pairs of constant
values forp andr that satisfy (1) for a given pair of values randb. One of the
infinitude of helices § = «, r = b) reduces to a line that is the common axis of the
infinitude of circular cylinders upon which thoselibes are traced, and the line of
striction of the surfacer(= 0). Meanwhile, since the distributor parameiehnas the
constant valud, the ratio of the distance to the angle betweem avbitrary generators
will stay constantly equal tb. Hence (IX, 87, h), the surface is a helicoid with a
director plane.

10. — One will arrive at another characteristic propef Bertrand curves when one
investigatesvhether it can happen that a line that is rigidigkied with the fundamental
trihedron of a curve remains normal to the trajeas of its points. Obviously, such a
line must belong to theomplex of normajswvhich was found in the last paragraph of the
preceding chapter, and therefore the relation:

Sy g=0 (14)
rop

must intercede between its coordinates, which aseiraed to be constants. If the
curvatures vary and one varies their ratio at #mestime (which generally happens) then
(14) will not be satisfied unless one sets 0, = 0,7 = 0. Those equations represent
the normals to the curve and the other perpendicularghe tangent situated on the
rectifying plane. A first exceptional case presents itself when t¢hevatures, while
varying, preserve a constant ratio, in which cdmedurve will be a non-circular helix.
(14) will then be satisfied by taking = 0, { cos¢ + n sin € = 0, and therefor¢he
parallels to the normal plane that meet the germrate the only lines that answer the
guestion. However, if the helix is circular thémw tcondition (14) will not split, andny
line of the complex of normall enjoy the stated property. Furthermore, tbase will
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once more enter the single exceptional case of &@wtticurves. Indeed, when the
constraint (10) intercedes between the curvatures, (1)ensatisfied by taking:

{=-ba, n=aa, (15)

and not otherwise. Of these equations, the second oreseeps the complex of lines
that meet the parallgl to the binormal toNl) that goes throught;, and one can replace
the first one with the equation:

aé+bn=0, (16)

which represents the complex of lines that are suppbsteéde parallefy to the binormal

to (My) that goes througiM. Hence,those lines that are rigidly coupled with the
fundamental trihedron of a Bertrand curve that ngeahdg; will remain normals to the
trajectories at all of their points. In particular, for any twisted circle, the lines that
answer the questionill be the ones that are supported by the tangent and the polar axis.
For the non-circular heliceg; will be at infinity in the normal plane, argdwill be the
generator of the cylinder. However, a circular hex ©e considered to be a Bertrand
curve in an infinitude of ways, and the infinitude of congnes that one will get in that
way constitute precisely the entire complex of normafsnally, in the case of curves
with constant torsion, one can no longer substitute tequgl6) for one of the ones in
(15). That would makey = 0,x = - ra, and that would not represent the lines that are
supported by two distinct lines. That will occur becauseerctdse consideredvi{) will
coincide with M), and the lineg andg; will tend to coincide with the binormal, in such
a way that the ratio of their angle to their diseamall tend to a limit that measures the
torsion of the curve. The lines that answer the queatienhereforall the tangents to a
certain twisted surface along the binormal.

11. — The Bertrand curves are very special lines that betordpe lines that are
defined intrinsically by the equation:

(17)

They present themselves as exceptions when one investigattber there exist
developables among the surfaces that are genefatdishes that are connected with the
fundamental trihedron. One knows from the preceding chapter that the (cobsta
coordinates of those lines satisfy the condition:

oaoE+ B on+oyd =0,

which will take precisely the form of (17) when one maksg of the fundamental
formulas, as long as one sets:
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Bn_aé__an+pi_ap_ By (18)
A B C P Q

If no constraints of the kind (17) exist between the cureattinen all of the numerators
in (18) should be annulled, and the conditiens 1, 5= 0, 7 = 0 will consequently be
satisfied, which define thearallels to the tangent that are traced on the rectifying plane.
Hence, they will generally béhe only generators of the developablest other similar
lines can exist when the curve belongs to the cladsishdefined by equation (17).
Effectively, if not all of the coefficients of thaguation are zero then eliminatiégnd 7
from (18) will give the relations:

Ad+BB*+CaB=0, P(B*+y)=Qap (19)

from which, one will see that in general there exwtir other generators of the
developables that are parallel to the intersections of a certain quadnie with a pair of
plane. The cone that has its vertex along the curve wilthothe osculating plane along
the tangent, and the planes pass through the principalahomNonetheless, one knows
that if A, B, C are zero then the first equation in (19) will vanisguation (17) will
represent a helix, and the generators of the conemsliver all questions, since one can
also infer from (18) thaf = 0,7 = 0.

12. — In the foregoing, in asserting that (19) admits a lenmember of common
solutions, it is tacitly supposed that the right-hand eid@ 7) is not a divisor of the left-
hand side, in the algebraic sense. In the contrag, ¢he equation would reduce to the
form (10), and would then represent a Bertrand curve. eSame could then attribute
arbitrary values t® andQ, as long as they are not both zero, an infinitudetioér lines
would answer the question that was posed for those casesell as for the helicesif
one writes (19) in the form:

(aag+bp) Pa+Qp) =0, a(Pa+QpP =P
then one will see immediately that one can satisifyin two very different ways: viz., by
annulling one or the other factor in the left-hand sidéheffirst equation. When one sets

the second factor equal to zero, one will Bet 0, by virtue of the second equation, and
one will then haves = 0, as well. In addition:

A=Pa=0, B=Qhb C=Pb+Qa=0Qa.

Having said that, (18) will become:

T ™
(VIS

_ Y
a

The numerators will all be zero when that is trugzahd ;. One will then get back to
the infinitude of parallels to the tangents that are traced in the rentifyalane. In the
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contrary case, the last equations will define a congrydra®a which, the conditio? =
0 will single out a hyperbolic parabolodthat is represented by the equations:

at+bn=0, {=-by £=0.
However, if one annuls the factao + bSthen one will infer from (18) that:
n=aa,  y({+b)=0.

For y= 0, one will getan infinitude of other parallel lines that are situated in a plane that
is parallel to the rectifying planelf yis not set equal to zero then the equations:

n=aa, {=-by aa+bB=0

will define the generators of another parabolaidthat is parallel to a plane that passes
through the principal normal. The Bertrand curves aren tlearacterized by the
existence of two hyperbolic paraboloids that are rigidly coupled to the fusdam
trihedron and are such that their generators of one system will remagent to certain
curves in space.The final observation in 8 is explained because in the preceding
search, we arrived &tvo paraboloids antvo systems of parallel lines. Indeed, it is clear
that the paraboloido is not, so to speak, the parabolaithat relates to that Bertrand
curve that has its principal normals on the curve intipresfrom what was said in &

To conclude, observe that the two paraboloids coincidé thie curves of constant
torsion and degenerate (1X,78f) into two parabolas in the case of twisted circl&ne
parabola is situated in the osculating plane, and sagitex on the curve and its focus at
the center of curvature. The other one is situatedemormal plane, and has its focus on
the curve and its vertex at the center of curvature.




CHAPTER Xl

GENERAL THEORY OF SURFACES

1. Geodetics and asymptotes— The intrinsic properties of a surface in the
neighborhood of each poiM are strictly linked with those of the curves that pass
throughM. It follows (XV, 8§ 1) that one will see that the tangents to all suclvesiur
belong to a plane that one calls thagent plando the surface d&1. Thenormalto the
surface — i.e., the perpendicular to the tangent plahn®tigaerects a¥l — is normal to all
curves that pass through and it can be the binormal for some of them angtireipal
normal for others. The curves that have their binbooecident with the normal to the
surface are calledsymptotesthe ones that admit that normal as a principal nb(afia
IX, 8 10) are calledgeodetics. In other words, if one considers the developable that is
circumscribed by a surface along a given curve — i.e., thel@pe of the planes that
touch the surface at the points of the curve — thercanesay that the developable that is
circumscribed along an asymptote will admit that curvetfedge of regression, while
the developable that is circumscribed along a geodetibwilhe rectifying curve of that
curve. In order to better account for the essentiérénce between the two types of
curves, it is useful to materialize the surface byitatting a thickness to it and to
imagine, on the other hand, that the curve is likeia Stat is cut from the developable of
the tangents — i.e., a succession of planes for whmehcan say (IX, &) that most of
them belong to the successive linear elements of thwe.ciWhen one wishes to locate a
geodetic on a surface, the strip can penetrate nornmadiythe thickness of that surface,
while in order to locate an asymptote, it will be enoughdtaw it upon a surface on
which it will lie like a planar strip in its plane. te/ be the angle through which the
normal to the surface must be rotated clockwise (ireyles of an observer that is located
on the positive part of the tangent) in order to makeincide with the principal normal.
One will soon see that the quantities:

N= cosy g:sinz/l

p p

which shall be called theormal curvatureandgeodetic curvatureresp., will frequently
appear in our calculations, and one must alwayp keenind that:The geodetics are
characterized by the constant vanishing of the geodetic curvatthite: The asymptotes
are characterized by the constant vanishing of the normal curvattiere, one must
note that only straight lines have the properth@hg both asymptotes and geodetics on
any surface.

2. Lines of curvature.— A line that is traced on a surface is calldish@ of curvature
if the normals to the surface along that line defndevelopable. We already saw (IX, 8§
15) that in order for that to be true, it is necegsamd sufficient that the derivative gf
with respect to the arc-length must be equal totdhgion of the curve, and if one calls
the quantity:
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_dy 1
ds r

the geodetic torsiorthen one can state thdthe lines of curvature are characterized by
the constant vanishing of the geodetic torsitmparticular, all of the lines that are traced
on a sphere are lines of curvature of that surface betaris®rmals are concurrent with
its center, and more particularly, any planar line idla line of curvature, along with all
asymptotes of the plane in which it lies. Turning todbeeral case, observe that (IX, §
15): If a curve is a line of curvature on two surfaces then they waitreach other at a
constant angle, so the line of intersection cannot be a line of curvatumne surface
without being one on the otheit will then follow that:If a line of curvature is planar
then its plane will cut the surface at a constant angiel one can also say that about any
spherical line and the sphere in which it lies. Coralgrdf a plane or sphere cuts a
surface at a constant angle then the intersection will be a line of cuevah the surface
in question. Finally, observe that if the angieis constant for a line of curvature then the
line will necessarily be planar. In particulag € 0): Any geodetic line of curvature will
be planar and its plane will cut the surface at a right angle.

3. Fundamental formulasfor the curves traced on a surface. — For the intrinsic
study of a line traced on a surface, it is useful to thkez-axis to be normal to the
surface at a moving poiM, while keeping the tangent to the curve asxthais. If, into
the immobility conditions (IX, &):

%:E—l ﬂ:i %: X' y
ds p s r ds p r

that relate to the fundamental trihedron of the curae,introduces the new coordinates:
X=X, y=y’cosy/—Z siny, zZ=y siny+Z cosy
then one will get the relations:

dx
ds

dz_

:Nz—gy—l, g—Z:gX—TZ, Ty—NX- (1)

Obviously, the fundamental formulas that serve to makesvkrthe absolute variations of
the coordinateg, y, z of any point that moves withl will be:
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ox dx

—=—-Nz+Gy+],

ds ds gy

oy _dy

—==—==-0Gz+T. 2
45 de Gz+7z, (2)
0z dz

—=—-Ty+ NX,

ds ds y

and it will be clear that they will also persist wheny, z have the significance of
direction cosines, as long as the constant terem®ved from the first one.

4. Theorems of Meusnier and Bonnet- When the poinM passes to an infinitely-
close pointM’, the variation of the coordinatesof any fixed point will have the same
value for all curves on the surface that touclMabecause it represents the difference
between the distances from the fixed point to thegsahat touch the surface Mtand
M’ and consequently the same thing will be true for all autivat have the elemeliM

in common. It will then follow from the third formula (1) that each of the quantitigs
and \ will preserve an invariant value for any curve on theamgrthat are tangent kix

at M. In the invariability ofZ; one findsBonnet’s theoremfrom which one deduces that
the geodetic torsion of a curve does not differ from the absolute torsitre dhngent
geodetic,up to sign On the contraryMeusnier’s theorenasserts the invariability oY/,

and has important consequences: First of alfy ifas the same valué ¢7/ 2) for two
tangent curves then the valuesaaiust also be equal; i.éwo curves that are osculated
by the same plane at a point of the surface will have equal curvafabsslute or
geodetic), as long as the common osculating planet ;hadangent plane to the surface.
Amongst all curves that touch a given curveMat one considers the normal planar
sections that are made in the surface byzih@lane. Ifg is its radius of curvature then
Meusnier’s theorem will give the value byffor N. HenceThe normal curvature of any
line that is traced on a surface is the curvature of the normal plamdiosethat is made

in the surface tangentially to that linéAs for the geodetic curvature, note that, by virtue
of Meusnier’s theorem, in the cylinder that orthogonalipjects the curve onto the
tangent plane, the curvature of the normal sectionishtangent to that curve will be
precisely (sing) / p. HenceThe geodetic curvature of a line that is traced on a surface
is the curvature of the projection of the curve onto the tangent pl&melly, for the
invariability of A/, one haso = g cos¢, and therthe center of curvature of any line on a

surface at a point M is obtained by projecting the center of curvatutbabfnormal
planar section that touches the curve at M onto the osculating plane of that durat

construction will not be valid for the curves that géaagent to the asymptotes, sinte
must be zero for the asymptotes in order to annulggolsut o will have an arbitrary
value. If a curve touches an asymptote at a point withsculating the tangent plane to

the surface then cagwill not be zero, and its flexion must then must bezeHowever,
when the curve is osculated by the tangent plane, x®flevill be capable of taking on
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any value, which is generally different from the one tthe flexion of the tangent
asymptote has.

5. — The invariability ofA/ and7 for all curves that have a given tangent will result
even more easily from a study of the normals to théaserin the neighborhood of a
point M. When formulas (2), which relate to the directioms, @pplied to the direction
(0, 0, 1), one will find that the normal lt’ has direction cosines A/ ds 7ds 1, and in

order for that to be true, it is enough to be suredhah of the quantitie” and7 has just

one value for all curves that admit the common eleéi®’. One sees, in addition, that
when one passes froM to M’ the angular displacement of the tangent plane ¢o th
surface will result from two infinitesimal rotationsne of which (namely, the one that is
proportional to the normal curvature) will happen with otation of the plane around
MM’ while the other one, which is proportional to the gé&odersion, will consist of
precisely a rotation around the tangent. One arrives amterpretation of the geodetic
curvature in an analogous manner by considering the diredti@y Q) instead. One will
find that the direction of the tangentMt is defined by the cosines 4,G ds N ds and
then the tangent, while participating in the motion of tAngent plane, will rotate
counterclockwise in that plane through an anglg d§ as viewed by an observer that is
located on the positive half of the normal. In otherds: the geodetic curvature is
proportional to the projection of the angle between two infinitely-dasgents onto the
tangent plangjust aghe geodetic torsion is proportional to the projection of the angular
displacement of the normal to the surface onto the normal plane of the dJove. it is

clear thatG depends upon not just the tangenMatas\ and7 do, but upon the tangent

at M’ as well; that is to say, the value @fis unique for all curves on the surface that
osculate aM with the same plane, but not for all curves that #na mutually tangent at
M. That situation must prevail if any point of a surfag®s out to be geodetic (viZ;,=

0) in all directions, while the lines of curvature (vizs 0) and the asymptotes (viV,=
0) that pass through a given potare, as we will soon see, limited in number, precisely
because fixing the value @for A/ atM for a curve will signify that one is imposing the

same value upon an infinitude of curves that touch thengiveveM, no matter what
plane osculates it.

6. — The considerations that were made in the first fraragraphs of the Chapter
VIII are applicable immediately to the systems of egrthat are traced on any surface,
and one can then say that the analytical represemtafi a simply-infinite system of
curves on a surface will arise from any function & ploints on that surface. If one then
defines the differential quotient of the function in atigection and establishes a basic
orthogonal system adurvilinear coordinatesaccording to & of the cited chapter then
the two systems of curves that are defined by functipiasdqg, will lead one to express
the distance between two infinitely-close points by medinke formula:
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d¢ = Q*dq’ + @ dd,

in which theQ are functions of thg, and one should recall that ttgferential quotients
in the directions of the coordinate lines depend wenvativeswith respect to the in
the following way:

s Qoq s, Qaq,

Having assumed that, and upon setting:

I I
glzaan, gzzm, (3)
0s, 0s
the condition:
0Q,v_ dQv
oq,  Oq,

which is necessary and sufficient for the existeoic@a function f whose differential
guotients are the prescribed functions u andill,transform into:

0 (o
(g*’glju_ (£+QZJV. (4)

It will then follow that one must have:

o 9’ d d
_ -—c Y _o Y 5
0s0s, 0s0S gzasz glaq ©)

for any function. This relation is very usefultive intrinsic analysis of surfaces.

7. — Now, establish a system of orthogonal curvilins@ordinates on a surface, such
that theMx andMy axes are directed along the tangents to the amtediinesy; andg,
that pass througM. WhenM displaces along the lirg, the conditions:

—=Nz-Gy-1, ﬂ:gx—Tz, E:Ty—/\/x (6)
0s, 0s)

will be necessary for the immobility of the poimt ¢, 2. In order to find the analogous
conditions under the hypothesis tivtdisplaces along the lirgp, one needs to change

andy intoy and —x, resp., and to attribute the valuesZiaoV, G that relate to the given
line gz in such a way that one will have:



Chapter XI — General theory of surfaces 183

%:g'y+7'z, ﬂ:/\/”z—g’x—l, EI—T’X—/\/"y. (7)
ds, 0s, 0s,

Here, it is important to notice that whery, andz are zero — i.e., when one considers the
instant thatM passes the fixed positior, {, z2) — formulas (6) and (7) will give:

If we continue to suppose thaty, z are zero and apply the operatbhds, to (6), while
taking (7) into account, then we will get:

2 2 2
0°X 0y 0 0“z _

6§6§: 656%2 0s0s

On the other hand, if we apply the opera@ohds; to (7) then we will find, by virtue of
(6), that:

ds,0s 0s,05 05,05

2 2 2
0°X 0 oy _ , 0°z T

Having said that, if one is to obtain the values ofgledetic curvatures of the two
lines then it is enough to express the idea that theamléb) must be satisfied by the
functionsx andy, which is expressed by means of (3), as:

g=0, G'=0,.

However, if one applies the same relatiorz tben one will geZ + 77 = 0, and that will

prove the following theorem d&onnet The geodetic torsions of two lines that touch at a
right angle are equal and opposite at the point where they meet.

8. — Observe that if one assumes that a geodetic isrdinate line (for example, the
line ;) then one will havgj; = 0, andQ; must then be a function of ondy, by virtue of
(3). 1t will then follow that when one replacgswith a convenient function af, one
can always suppose thgy = 1, and then the square of the linear element can be
expressed bydq +  dgf. The distance between two poifisandM’ of the geodetic
considered, when computed along that geodetic, is the absbftdrence between the
values ofg; at M andM’, and thertwo arbitrary orthogonal trajectories of a system of
geodetics cut out equal arcs from the infinitude of geodetibgh is just what happens
in the plane for the orthogonal trajectories of aggteam of lines. That and other
properties are due to the fact thia¢ geodetics arthe straight lines of the surfaceo to
speak Indeed, whem goes toM” along a line that is not a geodetic, it will travease
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path of greater length, becaugge will not be kept constant when it is not along a
geodetic. That will explain whthe geodetic symbolizes the shortest path between two
points on a surface that are not too distant from each otM®areover, that property will
seem obvious when one reflects upon the fact that fosithation was given in §, a

point that describes an arbitrary curve on a surfacebeifubjected to a deviation @fls
on that surface at any instant. Now, if one desiretstiiegpoint should proceed along the
shortest path then one will also need to suppose thatanmstantly hag/ = 0 if one is to

prevent that deviation. In that way, one also explaihg a filament that is tensed on a
surface will always arrange itself into a geodetic foand that is a remarkable fact that
suggests a simple and practical means for characterizéngdodetics on any surface.
However, if one materializes the surface then ithnigappen that at certain points, the
filament tends to stretch in space into the formaodine, and one will then need to
imagine that one has made just as many holes at thogs,po such a way as to permit
the filament to traverse the surface in order to resnume or the other of its faces.
How to allocate the places at which one must pundhwesurfacea priori will result
from an obvious observation — i.e., from noticing ttfa sign of the flexion of the
filament will change at those places, in such a way ihone also had/ = 0 then the

desired points will come from the or&swhich the geodetic touches some asymptote.

9. Fundamental formulasfor the intrinsic analysis of surfaces. — With the results
of 8 7, if one represents the curvaturdSand A/ in terms of V; and V> then the
conditions (6) and (7) will take on the definitive form:

%:le—gly—l, ﬂ=glx—72, E=Ty“/\/1 X

ds, 03 0%

oX oy 0z ©
gzglz—TZ E:le—gzx_l E:T)(_Nzy

These conditions amecessary for the immobility of the pofrty, 2), and also sufficient
since any infinitesimal displacement of the orijhon the surface can always result
from two displacements along the coordinate lines. né evishes to know, more
generally, the absolute variations in space of the coates of a moving point & when

M displaces on the surface in the direction that isnddfby the angleowith Mx then it
will be enough to take, as in (2), the difference betitbe left-hand and right-hand sides
of formulas (8) in order to apply the operation:

o _ o . . o
—= COSw—+sinw—. (9)
ds 0s, 0s,

Another set of three relations besides (8) has grgatriance, since they are necessary
and sufficient for (8) to be satisfied by three funesi®, y, zof g; andg, . For example,
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in order for the functiorz to exist, by virtue of (5), it is necessary and sufficigwatt one
must have:

O Ty-Mix) = L (T Nay) = Go (TX - Nay) Gr (Ty - N1 ),
0s, 0s,

no matter whax, y, z are, and since the left-hand side can be given the form

+Tgl—ngzjy—(%—/\;’l+a_7+7g2—/\/'2glj X,

0%

o, , T
0s 0s

by virtue of (8), one will see that the five curvaturds, N2, 7, G1, G», must satisfy the
first two relations of the following three:

oN, 0T

6_§2 +_a§ +27 G = (N,-N)G,,
N, oT

a_s:+E+27g2 =(N,-N)G,
0 0

éa—igg =T NN,

and also the set of three that one obtains by operataggously orx andy. Those are
the Codazzi formulasThe last one, in particular, bears the nam&alfiss and in the
planar case, it will reduce to the known Lamé relafiéinl, § 10).

10. Euler’'s theorem.— How do the normal curvatures and geodetic torsiong va
around a point? Let everything that refers to an arlitcarve that passes through
tangentially to a line that is inclined from the-axis by wbe distinguished by the index
w For that curve, the third formula (1) will become:

d_z: (- xsinw+ycosa) 7T,— X cosw+Yy sin ) Ny,

and on the other hand, if one observes (8), then dhbave:

g_z: (Ty-N1X) cosw+ (Tx-N2y) sinw.

Upon identifying them, one will get:

Ny cosw+ T, sin w= N7 cosw- 71 Sina
(10)
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Ny sin w— T, cosw= N> sin w— 71 cosw,
and one will infer that:
Nw=N1 cog w— 2T coswsin w+ N sirf w. (11)

One should note that such a form can always make tttangular term vanish (but
generally in just one way) by a suitable rotation of #ixes aroundM in the tangent

plane. Then and only then will one halie 0, so the two coordinate lines will be lines

of curvature. Hence, ablonge found, only two mutually-perpendicular lines of
curvature pass through any point of a surfad&e call thenprincipal rays of curvaturg
and always leR; andR; represent the radii of curvature of those normalicestthat
touch the lines of curvature. Of course, when the arke®riented tangentially to those
lines, (11) will become:

_ cog W, sifw

No
R R

(12)

This important formula b¥euler, which is a corollary to Meusnier’s theorem, showat th
if one wishes to know the curvatures of any curve atpigt of a surface then it is
enough to know them for two lines.

11. It can happen thad®; = R, at special points that one callsbilics and one will
then haveZ = 0 in any direction, whiléV,, will not depend upornw ; that is to sayan

infinitude of lines of curvature are concurrent at an umbiéind the normal curvature
will have the same value for all curves that pass thr@augh points. Can a surface be
composed of nothing but umbilics? In order to answer thastigune assume that the
coordinate lines are lines of curvature, and note thafirdteewo Codazzi formulas will

then become:
01, [i_ijgz, 01, (i__ljgl,
s R (R R o5, R (R R

which shows that the common valueRafandR; at any point where one hRs = R, will
be aconstantR. Having said that, it will be enough to obserattthe conditions (8) are
satisfied byx = 0,y = 0,z =R, to convince oneself that the points of the s@fae all at
a distanceR from a fixed point, i.e.the only surface upon which every point is umbdic
a sphere. It will then follow that, other than the sphed.( 8§ 2), no other surfaces exist
for which every line is a line of curvature.

12. Turning to (12), one should now observe th&,;ibndR, have the same sign then
N, will keep the same sign as varies, so it will never go to zero. Hence, nalre
asymptotes will pass through those points, which callselliptical. However, wheR;
andR; have opposite signd/, will go to zero in two directions, which are defthby the
formula:
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tanw= £ _R : (13)

Those points are then callégperbolic and one will see thdatwo real asymptotes will
pass through any hyperbolic pojrand they are inclined the same with respect to the
lines of curvature. Meanwhile, just as one deduces (1) fi®), one can also arrive at
Bonnets formula:

To=Tcos 2w+ $(N1-N2) sin 2 (14)

which says how the geodetic torsion varies around gaict. If the anglewis computed
by starting from a line of curvature then the law ofataon will take the simple form:

Tw= [i——lj Sin wcosw (15)
R

R

In particular, when one setsequal to the values that are defined by (13) in (15), one
will find that the radius of torsion of an asymptote gual to ./ —RR ; that is a
noteworthytheorem of Enneper.

13. Dupin indicatrix. — In order to account for the way that a surface behavound
each of its points, it is useful to recall a geometepresentation of formula (12). Along
the tangent that is defined by the anglg¢ake the segmeMP that is equal to the square
root of the absolute value of the radius of normal cureat The locus of (real) poinEs
is called theDupin indicatrix. The coordinates d? in the tangent plane are:

COSw _ Sinw

X =

and one will then have:

1
I+
H

(16)

0%
s

as the equation of the locus of poiRtswhich will be either real or imaginary. At the
elliptic points of the surface, equation (16) will représsvo ellipses (Ill, 84), one of

which is real, and is consequently the indicatrix, whicH vétluce to a circle at the
umbilics. However, at the hyperbolic points, equation (M) represent two real

hyperbolas with common centers, axes, and asymptotew, ifNis clear that the lines of
curvature can be defined as the ones that touch an athe &fupin indicatrix at any of
its points, while the asymptotes touch an asymptote ofrilatatrix at each point. That
explains why the asymptotes run through the only regions aha composed of
hyperbolic points, and how two angular regions are detednaround each of them,
such that the normal curvature will be positive for ohéhem, while it will be negative
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for the other. Meanwhile, if one fixes the origin oétarcs of any curve & for the
moment then formulas (1) will show that one has:

_z _1(... _dy : dyj
lim === 7Ilim=-Nlim = | =1/,
mg 2( ds ds) *?

andz will then have the sign of. Hencein the vicinity of an elliptic point, the surface

will be situated completely on one side of the éambgplane. However:In the vicinity of a
hyperbolic point, the surface will be cut by thadgant planeand the line of intersection
will have two branches that pass through that pamat touch the asymptotes.

14. — Conjugate tangentare any two conjugate diameters of the Dupin midic.
When the poinM displaces along the surface in the direction ihdefined by the angle
w with respect to the lines of curvature, the tang#ane ¢ = 0) will rotate around the
line that is defined by the equation:

0z ) 0z
cosw—+Sinw—=0;

0s 0s,
i.e., if one observes (8),= x tan ), then one will have:

R,

tanwtanw' = ——=.

Hence (lll, 84), two conjugate tangents are such that when & gdplaces along one of
them, the tangent plane will tend to rotate arothwdother one. In other wordShe
generators of the developable that is circumscribga surface along a given curve are
conjugate to the tangents of that curvin particular, the tangents to the two lines of
curvature are mutually conjugate, and any tangeanhtasymptotic line will be conjugate
to itself. The angl&that a tangent makes with its conjugate can beraed directly,
by virtue of (1), by differentiating the equatiohtbe tangent plane. One will get:

tang= (17)
T

and one will see anew that one ttas O for asymptotes, anl= 77/ 2 for the lines of
curvature.

15. For various questions, it is useful to recall 8gherical representatioof a
surface, which consists of putting the points efshrface into correspondence with those
of a sphere of radius 1, in such a way that thanatsy to the two surfaces at the
corresponding points will be parallel. Xfy, z are the coordinates with respect to the
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usual axes of the point of the sphere that corresporitie twrigin then the functions'y,
and z + 1, which are the coordinates of the center of theergy must satisfy the
conditions (1), and one will then have:

%INZ—gy—l+/\/', ﬂ:gx—Tz—T, d—ZzTy—/\/y;
ds ds ds
formulas (2) will then give:
OX oy oz
——=N, —==-17, —=0.
ds ds ds

It will then follow that the angle between the tangeto the two curves ¥+ 7/ 2,
where @ has the significance it had in (17). Hendére conjugate tangent and the
tangent to the spherical image of a curve are perpendicularparticular, note that in
the spherical representatidhe lines of curvature will not deviatehile the asymptotes
will deviate byrr/ 2.

16.— Just as we studied the way that the normal curvaturgeodetic torsion varied
in the infinitude of directions that one can consideruadba point in the preceding
paragraphs, we would now like to find the law of variataf the geodetic curvature,
which does not have (8 a unique value for all points of the tangent curvea point

and in the same direction either. ldetds, 0 / ds, G andG’ be what the operation8 /

0s;, 0/ 05, , and the curvaturegs andg,, resp., will become when the axes are rotated by
win the tangent plane. Obviously:
0

0 _ 0 : 0 _ 0 0
—=Cc0Sw— +Sinw—, — =-COSw— + CoOSw—. (18)
0s 0s 0s, 0s 0s 0s,

Meanwhile, if one applies the second operation (18)dadbult of the first one then:

9° 9° 9°
=co$ w—— -sif w
0s0s 05 0sS 0s,0s

. (az azj dw 0
— CoSwSsIn w

- 4 ——
0’ 0S5 ) 0395
However, if one applies the first one to the resuthefsecond one then one will get:

9° 9° 9°
—=co$ w——— -sif w
0s0s 0s,03 0s 0s,

. (az azj dw
— CoOSwSsSIn w -

o5 0%) 0sdc

One then subtracts them and recalls that the ral@fpmust be satisfied identically for
any pair of orthogonal curves:
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, 0w) 0 dw) 0 0 )
[ PR — +— = —_ - —_
(g as'jaé (g asjas gzasz glaq

=g (sina)i+ co&uij—g( cosui— siwij
2 ds 9s) ds a8

Hence:

g +%—Z: g1 cosw—Gz sinw G’—g—;‘f: G1 sin w+ G> cosw. (19)

One can also arrive at these relations by applthegorocess that was appliedztm the
beginning of 8L0to the coordinatesory. One needs to observe that when the formulas:

@:a_a—_/\/'ly+g2ﬁ, Q:a_a—glﬁ+’]'y
0s, 0s 0s, 0s,

are applied to the directiam= cosaw = sinw y= 0, they will become:

@:a_a)—g @:a_a)+g
s, 0s ds, os,

If one recalls (9) then one will have:

@:a—w— G1cosw+ G sinaw @:a—w+ G1sinw+ G cosw:;
0s 0s 0s 0s
i.e., by virtue of (19):
ow ow
==, =_— 20
g 3 g px (20)

These formulas, which follow immediately from thees that were given f@fin 85,

moreover, succeed in defining the geodetic cureatidra line on a given surface in the
same way that the curvature of a planar line isnddfin its plane. In addition, if the
curve is considered to be traced on the develogahleis circumscribed by the surface
then it will be clear that its geodetic curvaturél \wave the same value on the two
surfaces, and on the other hand, one will seetlirdat the given curvature will remain
unaltered when the developable is applied to thegl HenceThe geodetic curvature of
a line that is traced on a surface is equal to the curvature thatribenlill acquire when
the developable that is circumscribed by the surface along that line ige@gpl the
plane.

17. — We are now in a position talculate the flexions of the asymptotehist as
Enneper’s formula (82) gives the torsion of that curve, there is anrggéng formula
by Bonnet that will make known the flexion when one is giwbe principal curvatures.
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It is enough to substitute a value @fthat satisfies (13) in the first formula (19), and to
attribute the values:

5 1 v, 1 0N,

"N, -N, 0s, %= NN, o,

that result from the first two Codazzi formulas that way, one will obtain, from an easy
calculation:

Kl I A I
(g”aszjws‘”' ZNf[Nz—NJ 3s, 0s,

O Vginwms L (M) 00
(gﬁasljsm “= iZNZZ(/\/l—NJ ds, 0s

sO when one substitutes these values in:

1 (.. 0 (.0
57 [gl+aszjcosa) (g2+681jsm w,

one will arrive aBonnet's formula:

7/3 1/3 1/3
_1_4CRR) 1[— st iii st |
p (R-R)*|as| R 05 - R
Among the consequences of this formula, we, \Bitmnet, would like to point out the
one that follows when one supposes that the sufaaeuadric (IX, &, d). Two lines,
which can be real or imaginary, will then pass tiglo any point that belongs to the
surface, and since the lines are necessarily ymamstes, the two values of the flexion
that are give by the preceding formula must botlzdr®, and that will require that the

ratio R; : R’ must remain constant along any lipe while the ratioR; : R* must remain

constant along any lingg . Conversely, if that is the case then that sdly that all of the
asymptotes are lines, and the surface will them lpgiadric. Hencefhe quadrics are
characterized by the following property: Along each line of curvaturegahnesponding
principal curvature will vary proportionally to the cube of the other ppaticurvature.

18. Theorems of Laguerre and Darboux— When the operations (18) are applied to
functions that depend upanexplicitly, it is sometimes useful to exhibit therivatives
with respect to that variable by imagining that thygerationsd / ds; andd / ds, are
performed under the hypothesis tlaastays constant. If, in addition, one would like t
give the left-hand sides the significance of albsotlerivatives in space, then one must
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multiply the derivatives with respect toby dw/ ds anddw/ 0s’, whose values are given
by (20), and nod w/ 0s anddw/ ds’, resp. One will then have:

d _ o, . 0 0
—= cosw—+sinw—-G—,
ds 0s, 0s, ow
(21)
0

o 0 0 ,
—=-Sihw—+coSsw—+ G —.
ds 0s 0s, ow

Having assumed that, one easily deduces from formulasr§@ii()14) that:

0 07
Nw:_ﬂw, —w:Nw_Na»ﬂz,
Jw Jw

and if one then suppresses the indexvhich has become superfluous, then:

dN oN d7 07
W = 2’]’ T =T _ ’ )
ds s *arg, ds Odw W=N)G

Now, since the operatioth/ ds is supposed to leaww constant, which is a quantity that
can have a unique value for all of the curves that admiven tangent at the point in
guestion, the same result will always be obvious foofdhose curves, and one can then

say that, like\ and7, each of the quantities:

N:M_Z’[g’ T:d_T+(/\/’—/\/")g
ds ds

has just one value for all curves on the surfacat #touch at a given point. The
introduction of N and T into the calculations will often produce noteworthy
simplifications. Here, we shall confine ourselves tomoeg out the forms that the first
two Codazzi formulas will take when they are writtenany pair of orthogonal curves,

while H represents the sum of the curvatukéand A\, as usual, namely:

a—H:N+T', a—H,:N—T'.
0s 0s

19. - If one applies the first or second operation in (48}€ in succession then one
will get the relations:

2 _ 0> . ., 0? : 02 0° dw 0
— =08 W——+ Sif W— + CoSwWsIN + =
0s 0s 0s, 0s0s, 0sds) 0 sSO's



Chapter XI — General theory of surfaces 193

62 2 2

= sif w2+ cod w 62 —cosa)sina)(

9s? 0s’ 0s;

0° , 0° ) _dwd
0s0s, 0s0$ '

Summing them gives:
(2,000 (2 w00 O,
ds 0ds 05 0s/d's o 095’
i.e., by virtue of (19):
0. ,\0 0 0
—+G' | —+| —+G |—
(as gjas (aé gjas

_0° 62 0
—+ (G Sinw+ G cosa)—s+ (G1 cosw— G, sin a)—s

“og o
Meanwhile, the right-hand side can be given the form:

62 62 0
o5 o8 "9 g2 s (681 gzjaq (% glj%

That sheds light upon the invariant character of theatip@:

0 0 0 0
N =|=+G |=—+| —+G |—,
(as gjas (aé gja 5
which is why it is given the name sécond differential parameter.

20.— It is now easy to extend Bonnet’s formula, which wesved already (VIII, §
13) for the plane to systems of curves that are traced aparbitrary surfaceln order
to calculate the geodetic curvature of those littest pass through a given point in the
system that is defined by the functiome have the first formula in (19), which we agree
to write in the following way:

0 0 .
= —+ cosw— | —+ sin aw
’ (6% glj (681 gzj
If one sets:
1 oJu . 1 ou

—mg, Slnw:_—mg

in that formula then one will find immediateBonnet’s formula:

CosSw= (22)

)
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However, the second formula (19) will give:
0 0 .
= —+ cosw+| —+G, |sin
’ (631 gzj (6% glj “

and if one substitutes the values (22), while taking timelidons (5) into account, then
one will find that:

~ 0(s,8)

Here, one must notice that the constant vanishing ‘o is necessary and sufficient

because, on the one haid is a function ofi, and on the other hand, because the curves
of the system are the orthogonal trajectories ®fstem of geodetics — or, as one can say,
for a reason that is easy to explain (cf.8)8 because they are geodetically parallel.
Therefore:In order for the curves of the system that is defined by the functiorbe
geodetically parallel, it is necessary and sufficient thashould be a function of u

21. Isothermal systems-— The considerations that were made for planeesunv 88

6 and 11 of Chapter VIII are immediately applicable to tsgstems of curves that are
traced on an arbitrary surface, and one can theakspfisothermal systemsnd regard it
as having been proved thata doubly-orthogonal system, one system of curves cannot
be isothermal without the other one being that way, tdde calculations that were
performed in 812 of that chapter can be assumed to have been eepkeate in order to
assert that consequenthe condition:

99, _99,

23
35 3, (23)

is necessary and sufficient for the system of dpatd lines to be isothermal.For
example, the condition (23) is satisfied wh@nandg, are constant along the respective

lines. It will then follow that:Any doubly-orthogonal system that is composed of
geodetically-constant lines of curvature is isothat. In addition, one should note that if

the condition (23) is satisfied, andgf remains constant along any ligetheng, will

also be constant along any lige. Hence:lf the lines of one system in an isothermal
double system have constant geodetic curvature ttieeisame thing will be true for the
lines of the other system.

22.— Now suppose that one has determined a fungtguth that one has:

Ng=MN No—T? (24)
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and observe that Gauss’s formula (or the third Codazmuta) can be written in the

following way:
0 0
o (e oo =o

if one givesA? its expression then:

0 Jdg 0 Jg
—+ —+G, |+ —+ —+G, [=0.
(631 gzj(as gzj (6% glj(a $ gl]
It will then follow that the condition (4) is satisfl by the functions:

Jag Jag
=< 4 , vV=— —=-— ,
s, g1 5 G2

and there will then exist a functidrsuch that one can write:

of dg of dg
= — = -_= 25
G 0s, 0s ? s, 0§ (25)

That is therefore a form that one can always givihédunctionsj; andG, . Conversely,

if it happens, in an arbitrary way, th@thas been given in the form (25) then one can be

certain that the functiog satisfies (24). In order to convince oneself, it iswugh to
substitute the values (25) in Gauss’s formula. Finabgeove that:

0 ag 0 dg _0G, 0g
=2 99 g |-l 2 99 =99 _09
[6sl+g2j(6%+glj (6%%}[6%%] ds, 05

Thereforeiln order for the system of coordinate lines to $mhermal, it is necessary and
sufficient that the function f should be harmoni¢iowever, one will see that the
reduction ofg to a harmonic function is indicative of a considerapecialization of the
surface. Moreover, the formula (25) is true for any dowltiltogonal system, and one
will, in fact, deduce from (19), by virtue of (25) itselfath

0 Jag 0 Jdg
= (f - - = '=(f — - =
g as( «) 0s g as’( ) 0s

and consequently, if one desires that the system thigffised by the anglevshould be
isothermal then one would need to do that in suchag that the functiorfi — w was

harmonic. ThereforeThe determination of all isothermal systems of idase depends
upon the integration of the equation:
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Aza): %—%

ds 0s

23. Curvature. — We can infer a means for measuring the curvaturesofface at a
given point from considering the orthogonal invariants:

H:_/\/’+_/\/":i+_1, K:_/\/’_/\/"—TZ:L
R R RR

of the quadratic form (11). Thewean curvatureat M is the arithmetic mean of the
normal curvatures of all curves in the surface thads througi, if one imagines that
the orientations of those curves are distributadatty aroundM. If one associates any
curve with one that is perpendicular to it then swem of the normal curvatures will
remain constantly equal té when the pair of tangents rotates aroivhdand it will then

be clear the desired mearHd 2. ThereforeThe mean curvature is measured by
i.e., byone-half the surof the principal curvaturesOne says$otal curvature— or simply
curvature— of the surface to mean the limit of a certatiorghat is analogous to the one
that one considers in order to measure the curvatiia plane curve. One takebreear
elementon such a curve and constructs the normals @bitedary points. The ratio of
theanglebetween the normals to thengthof the element tends to measure the curvature
of the line considered at the potwhen the element tends to reduce to the singlat poi
M. Analogously, in order to measure the curvatura surface at a poiril, Gauss
imagined asurface elemenaroundM and constructed the normals to the surface along
the contour to the element. The sdiaglethat is subtended by those normals, divided
by thearea of the element will tend to measure the curvatatr when the element
tends to reduce tM. By definition, that solid angle will then be nseaed by the area
that is cut out from a spherical surface of radiusy the cone of rays that are parallel to
the line considered. Therefore, the curvatureaasured by the ratio of the area of the
spherical image of the surface element to the ef¢laat element. Suppose that it is the
rectangle that is constructed from the elementaryds, andds, of the lines of curvature
that pass throughl. Since those lines are not deviant in the spakerepresentation, the
spherical image of the rectangle will be anothetargle, and from what we saw irL§,

its edges will beVi ds =ds : Ry and N2 ds = ds : R, (since7 = 0), which results from

simple geometric considerations, moreover. Theeefts, ds andK ds, ds will be the
areas of the two rectangles, ahe total curvature will then be measured by Ke- by
the product of the principal curvaturedf the first rectangle is constructed from anyptw
orthogonal curves then one will arrive at that lesulittle less rapidly, but one will

succeed in exhibiting the invariant character @f éxpressioaV' A7 — 7%, in addition.
Here, one should observe that knowing that charadgtepermit one to immediate state
Enneper’s theorem, which was proved at the end1# 8In fact, one had/=0,7=-1

/ r for the asymptotes and consequer€ly= — 1 /r?. Hence, at any pointhe total
curvature (with the opposite sign) is equal to sag@are of the torsion of the asymptote.
To conclude, we shall point out the form tkzdussgave to the expression f&r It is
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enough to substitute the values (3) in the third Codazmuta in order to obtain (cf.,
VI, § 10):

e )
1 QQ|0qlQoq) gl Qag)|

A

(02=0)

24. — Consider aeodetic triangle- i.e., the figureABC that is determined by three
geodetics on a surface — anddetf, y’be the internal angles of that triangle. In oraer
determine the areaof the image oABCin the spherical representation, take the lopes
to be the outgoing geodetics at the verexand assume that the coordinajeandq, of
any pointM are the geodetic distané@ and the angle that geodefit makes withAB,
resp. Among the lineg that are orthogonal trajectories of the outgoiagdgtics at the
vertex A, the ones that are infinitely close Agocan be considered to be situated in the
plane that touches the surfacefatand their elementary arc-lengt@s dg can then
coincide withg; doz, up to higher-order infinitesimals. In other werd

lim—=2 Q. 1, lim—=2 0Q, _

%=0 %=0 Jg,
Having said that, observe that by virtue of Gauks'swula, one will have:

o= [[KQQ dq dg=- Ha % dq dg,

in which the integration extends over the entireaathat is enclosed BABC. On the
other hand, the first formula in (19) will give:

%—Z):—gzsincq e, dw=-GQdp=-do.

Now, turning tog; if one first performs the integration along a detic that is defined by
the values o€, that are found between 0 aadand if one can varg, from O toa, then
by virtue of the preceding observation, one will: ge

o= j( aQZjqu:a+j§w,
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in which w - viz., the inclination of the geodeti8C from the linesg; — has the value
T atB and the valugratC. Therefore:

o=a+y—(m-pP=a+p+y-mn

In particular, wherK is constant,o will represent the area &BC, multiplied byK.
Therefore, on a surface of constant curvature (whiclwillespeak of in the following
chapter),the area of a geodetic triangle will be proportional to the excess ofuheof
its angles over two right anglest follows that this sum will be greater than, I&san, or
equal to two right angles according to whether theature is positive, negative, or zero,
resp.

25. Mappability. — In this first attempt, we would like to limit ourselves a few
comments about the mappability of one surface onto anothieris possible to establish
a correspondence between the points of the two surfacesthat the geodetic distance
between two points, when taken at random on one syriacequal to the geodetic
distance between the points that they correspond toeasitier one then one will say that
the two surfaces ammappableto each other, because a material that one images to b
woven from flexible, inextensible filaments that atetshed in all directions on one of
them can obviously be mapped to the other one withoutléimeents (cf., 8) being torn
or broken; i.e., without the material being folded ontoin other words, the surfaces that
can be mapped onto a given surface can be considered theb@éfinitude of
configurations that they can assume when they are flex#dowy stretching or
contracting any of their parts. If the elementarylangth on a surface, when referred to
an arbitrary system of orthogonal curvilinear coordisate given by the formulds’ =

Q*dg’+ Q@ dg then one must be able to find a system of orthogonaliliogar

coordinates on any surface that can be mapped to the givéaces such that the
elementary arc-length can be represented by the samal& and it is obvious that one
will find precisely the necessary and sufficient conditionthe mappability of the two
surfaces in that possibility. It will then follow thé one writes down Gauss’s formula
for the two mappable surfaces at two corresponding pthiets one must find the same
value for K. Hence:In order for two surfaces to be mappable to each other, it is
necessary that the corresponding points must have the same curvatuwther words,
when a flexible, inextensible surface is deformed in spdege is something that does
not vary at each point, namely, the total curvature.

26. Evolutes and developments- The properties of the evolutes of plane curves
compel us to deal with them by analogy with the locusaters of principal curvature of
any surface, which is a locus that obviously composed tostveets, one of which is
generated by the cent€x, while the other is generated by the ce@gr Each sheet can
also be considered to be the locus of the edges ofsmgneof the infinitude of
developables that cut the given surface orthogonallygatbe lines of curvature of one
system. The two sheets constitute what one callsubluteof the proposed surface and
take the name of th@evelopmentvith respect to the evolute. Consider the first shee
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i.e., the one that is generated by the pGint- whose coordinates axe= 0,y =0,z=R; .
WhenM displaces along a line of curvatugg the fundamental formulas will give:

Q: O, ﬂ:o Q:G_Ri (26)

0s os ds 0s

and C; will then displace along the normal, which could h&een foreseen, sinc&
then traverses the edge of regression of the developatlés composed of the normals
to the surface along the given lige. However, whe displaces along the lirg, one
will find that:

OX _ 0 oy | 0z _ 0R

5% TR o5 o

in which | represents the length of the segménC, . Therefore, for an arbitrary
displacement oM that is defined by the inclinatios of the lineq,, from formulas (9),
one will have:

OX oy _ | 0z _ dR

—=0, —= —sin —=—. 27
ds R, “ ds ds @7

From the first of these equalities, one will see thattangent plane to one sheet of the
developable is normal to the corresponding linewifvature from which, it will follow
immediately that the tangent planes to the two shatetso corresponding points are
always mutually perpendicular. In addition, (27) shoved thone wishes that; should
displace perpendicularly to the normal tHdnmust move in such a way thef will
remain constant. In other words, those lines corresptite edges of regression of the
developables of the normals along the lines of curvatdrene system, sdheir
orthogonal trajectories will correspond to the dmmmnents along which the
corresponding radius of curvature will remain cargt Now, it is natural to assume that
those edges and their orthogonal trajectories are catediines on the surfac€).
Hence, alC,, the axex' andy’ are parallel to the andy axes, respectively, and tlze
axis must point in the opposite direction to #axis. Having said that, in order to find
all of the fundamental curvatures that relate to théaserC,), it is enough say that the
immobility conditions for the pointx(y, 2) that are satisfied with respect to the trihedron
of the surface Nl) are also satisfied with respect to the trihedro{(@) of the new
coordinates:

X=z2-R, Y=y, Z=-Xx (28)

First of all, in order to find the relations between thew and the old differential
guotients, one should note that it will result from thenulas (26) and (27) that:

ds :Z—Zldsi, ds, :ésina}ds

in which wis defined by the conditions:



200 Lessons on Intrinsic Geometry

OI—R‘:O, ie., cosa)a—R1+ Sinw—= oR _ =0.
ds 0s ds
It follows that:
RO _0 10R 09 _0RI ORI (29)
0s 09 03 R, 05038 0s0ds 0s0s

If the first of those operations is applied to thied coordinate (28) then one will get:

OR 07 o0x
1 = " == Njz+ +1,
0s 03 0s 12+ Gry

while on the other hand, if one distinguishes eteng that refers to the surfac€:f by
a prime then one must have:

a—Z—Ty NIX =T'y-N/z+ N, R;
0s,
therefore, upon identification:
M_T _ 1
NG R
0s

Hence, N/ and7"' will be known when the principal curvatures of tevelopment are
known, since from the Codazzi formula, one will &av

R IR __ROR
g1= R 05, G2 R, 35 (30)

Analogously, when one considers the equalities:

aRl ay, ay ay’ 1o ]
B g x = T'Z=T"x+ R,
35 ¢ 3 G1 X o< =G X- X+Gz-G,

one will recover the value df ', and get thag, = 0, in addition. ThusThe edges of

regression of the developable of normals to a surface are geodetics owadloée e
surface. If the first operation (29) is also applied tothen one will arrive at only a
confirmation of the preceding results. Now, aply second operation in (29)xo

TR _0R 9R)_9R R
Rzaa( XrG) S Sz[ 2X+6§j 6%( 2y+6§j'
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One will then get a value faf' that formulas (30) show will be equal to the preceding
one. In addition, one will find tha@, = — 1 /1, i.e., thatC; is the center of geodetic

curvature of that curve R= constanthat G passes through on the first shegist as,
converselyC; is the center of geodetic curvatureCatof the curve of the system that is
defined on the second sheet by the condian= constant. Finally, if the second
operation (29) is applied ¥ or toZ then one will find that:

1R \/_OR, -OR
RzasaNz g26§+g16$’

and one can then also expre§s in terms of just the functiori®, by virtue of (30).

27.— Conversely, any surface can be associated with aituadinof other ones, each
of which, along with the given surface, constitutes ¢lielute of an entire system of
parallel surfaces. Indeed, if one wishes that the peiht@, 0) should displace normally
to Mx arbitrarily in the direction of displacement fbf on the given surface then the
fundamental formulas will show that it is necessamy sufficient that one must hade:
oy = Qu, 0t : 0 = 05 i.e., t, and consequentl®; , must be functions of only the

parameten; , and the conditio/; = O will then be satisfied on the lingg which was

already found to be necessary in the preceding paragtaphce:In order for the lines
of one congruence to be normal to a surface, ihesessary and sufficient that they
should be the tangents to a simple infinitude oidgécs to another surfacéMleanwhile,

if one take9; = 1 then one must have that s; + constant, and therefore an infinitude
of points ofMx that are at a constant distance from each othedesctibe an infinitude
of surfaces whose normals are all tangents to thengsugface. Obviously, if one
considers the tangents to a ligethen they will be incident on lines of curvature on an
infinitude of parallel surfaces, and the point of contaiitdefine the centers of curvature
at any instant. One will then have tlaaty surface can be considered to be one of the two
sheets of the evolute of one system of paralldhees for each of its simply-infinite
systems of curvilinear geodetic¥he other sheet is said to t@mplementaryo the first
one, and it will clearly result from what was saidttiny surface will admit an infinitude
of complementary surfaces, each of which correspdnda simply-infinite system of
curvilinear geodetics that are traced arbitrarilynahe surface in questionNow, the
theorem that was proved at the end of the precedingnagta can be stated by saying
that the complementary surface that corresponds to amgsystem of geodetics is the
locus of centers of geodetic curvature of the aytmal trajectories to those geodetics
In conclusion, we say that one can mechanically ttaeedevelopment of a given
surface, in such a way that everything will be simiawhat we already know for the
plane or skew curves. One imagines a material thabven with inextensible filaments
that are stretched over the surface and intersectedgtit angle by an infinitude of other
complementary deformable filaments, in such a way @tlaparts of the material can
adhere to the surface without folding or tearing. Haviaig shat, if one unrolls the
material from the surface, while always taking caventaintain its tension in the
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directions of the inextensible filaments then itl\wé clear that the other filaments, which
describe the infinitude of parallel developables that cpoms to the system of geodetics
(cf., 88), will be the original filaments of the surfaces.



CHAPTER XIlI

EXERCISES ON SURFACES

1. — In order todetermine the edge of regression of the developable that is
circumscribedby a surface along a given line, we need to recall p¢inf (17)] that the
generator of that developable is defined in the tangane@tM by means of the ang@
= arctan (V : 7). We then find the distandefrom M to the corresponding point of the

edge of regression by differentiating the equayienx tan 8 and expressing the idea that
the coordinates of that point (vizt cosg -t sin 6, 0) satisfy the immobility condition
[XI, form. (1)]. Inthat way, one gets:

sin@
a9
9 ds

t= (1)

It is then easy to calculate the arc length andcthgatures by the usual process, thanks
to formulas (2) of the previous chapter. For thed of curvature, formula (1) shows that
—t reduces to the radius of geodetic curvature, antat case, it is clear, moreover, that
the edge that we seek is an evolute of the curvesuch a way that must vary, in
general, because it represents precisely the agtheof the evolute. However, tfis
constant (and that can happen wigeis constant) then that edge will reduce to a point

I.e., the circumscribed developable is a conicaagfwhose generators cross the curve in
guestion at a right angle. One then arrives atfoflewing proposition ofBrioschi,
which generalizes a known theorem (XR)8

Any line of curvature that has constant geodetiovawure will belong to a sphere
that cuts the surface orthogonally.

We return to (1) in order to observe that the linksg which the circumscribed surface
is cylindrical (these lines are interesting in thiay separate the part of the surface that
are illuminated in a sheaf of parallel rays frora time that remains in the shadow) are
characterized by the equalfy=dé&: ds which we can put into a form that expresses the
geodetic curvature at any poikt as a function of the quantity (XI, B3) that remain
invariant for all of the curves il that are tangent to the curve in question. Indéede
calculate the derivative @then we will transform the preceding conditioroitlis one:

KG=TN-ANT.

Therefore, if we are given the tangent then wealan determine the osculating plane at
any point.
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2. — The property oN that was just recalled permits onectdculate the curvature at
a point M of the intersection of a surface with the tangent plane aOlMe knows that
this curve has two branches that are tangents to thepéstes. Meanwhile, if one
distinguishes everything that refers to one asymptote loydax then one will have:

N =0, T:—l, g:i, N= 2

f'o Ao Polo

On the other hand, the geodetic torsion of all earthat are tangent to the asymptote will
have (XI, 84) just one value, and therefoet,the point M

d
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Hence, if the curve is the intersection of the acefwith the tangent plane, in particular,
in which case, one will hawy = 77/ 2, 1 /r = 0, then one also have:

Mzcosyii—ﬂd_w:i’ N:M—Z’]’Q’:i.
ds dsp p ds pr, ds pPr,

If one equates the two valuesthen one will find thap = 3 / 2, in general, and one
will discover the elegant theoremBéltrami from this:

The curvature of each branch of the intersectiom surface with the tangent plane
at a hyperbolic point is equal t8/2 of the curvature of the asymptotic tangent to the
branch in question at that point.

Here, recalling what was said at the end df@ the preceding chapter, we direct our
attention to the example of lines that touch anculade at one point, but do not have
equal flexion at the contact point.

3. — Any curve in a plane (XI, 8) is asymptotic to all lines of curvature, in such
way thatK is zero becaus#’1, N>, and7 are zero. More generally, the curvature of any

developable surface is zero because a line wils plaough any point of that surface
along which the normals to the surface will formplane. That line is therefore a line of
curvature, and on the other hand (XI1)g it is also an asymptote, from which, it will

follow that sinceN and7T are zero for any rectilinear generator, one waiéhK = 0 at
any point. Do there exist other surfaces with zero curvaturgzhe surface is indeed
referred to its lines of curvature th@mmust constantly be zero, and that must also lge tru
for one of the\ — for example 1 . Meanwhile, the second Codazzi formula (XB)§

will give N> G1 = 0. If that condition is satisfied by takig = 0 then a known formula
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(X1, 8 12) will show that one hag,, = 0 for anyw- i.e., all lines are lines of curvature —

and therefore (XI11), the surface will necessarily be spherical. Mpaeticularly, it is
alsoplanar, since a sphere of finite radius does not admit real pites. If one does
not haveN; = 0 then one must suppose that= 0. Hence (XI, 8l), any lineq, that is
geodetic and asymptotic will necessarily b&traight line that is to say, the surface will
be a ruled surface. It cannot be twisted, since otker@iX, 8§8), the generators would

not be lines of curvature. Hendke only surfaces with zero curvature are the plane and
the developable surfaces.

4. — Can a surface admit two systems of geodetics thatt @iconstant angle? If the
geodetics of a system are taken to be coordinate dinfgeen one will havey; = 0, and

the first formula (19) of the preceding chapter will shibvat one must also hayk = 0,

in such a way that any other system of trajectoriethefcurves of the given system will
be composed of geodetics. That will happen on the plade oandevelopables.
Meanwhile, Gauss’s formula giv&s= 0, and one can then state the following theorem of
Liouville :

Two systems of geodetics of a non-developable surface cannot cut at antconst
angle.

5. —What is the curvature of a ruled surfacd® a, S, yare the direction cosines of
the generator with respect to the fundamental trihedfamy curve on the surface then
the angley between the principal normal and the normal to tindase (which is
perpendicular to the tangent and the generator) willengoy the relationG sin ¢ + y
cos ¢ = 0, from which, when one differentiates and takeses&nown conditions [IX,
form. (37)] into account, one will deduce, in succesdibat;

d_1, aB o, oo COST

ds 7 (B°+y)p’ p

Now, if one assumes that the generator is a fundeahline then it will be clear that one
must haveV = 0, and therefore [IX, form. (30)]:

The distributor parameter of a twisted ruled sudaepresents the radius of geodetic
torsion of the generators along the line of stoat{up to sign).

SinceK = - 72, one will then see thahe absolute value of the curvature of a ruled

surface along the line of striction is the inveadéhe square of the distributor parameter.
However, the curvature will vary along a generdiee co$ 7, in such a way that it is
annulled at infinity. That explains the fact tlaaty ruled surface will admit aasymptotic
developable which will be the envelope of the planes thattgmugh the generators
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perpendicular to the central planes, and therefosdlialways behave like a developable
at infinity. Now, that we know the value @fand that\ and G are zero, the second

Codazzi formula will immediately give the geodetic atwre of any orthogonal
trajectory of the generators:

10 0
'=—_——log7=- —Ilog cosr= .
g 20s g s g t* + p?

SinceG’ will not be annulled at a finite distance unless #nsulled fort = 0, one will

see (cf., IX, 816) thatthe line of striction is the locus of points at which the geodetic
curvatures of the orthogonal trajectories to the generators are zero.

6. Surfaces of rotation.— One gives that name to the surface that is genebogtad
plane curve that rotates around a fixed line in its pléwa¢ one calls thexis The
generating curve in each of the infinitude of its positiansalled ameridian and the
circle that is described by any point of a meridianalled aparallel. Therefore, the
meridians and the parallels are the sections thahade in the surface by the planes that
pass through the axis and the perpendiculars to the r@sps, One sees no reason why
the normal to the surface at an arbitrary pdhshould be situated on one side of the
plane of the meridian that passes throdhrather than the other one, and that is why
that normal will always coincide with the normal tiee meridian atM. Hence, the
meridians are both lines of curvature and geodeticseasuface. It will then follow that
if one assumes that the lingsare meridians then one will have:

N = 1 : g1=0, 7=0. (2)
2

The other system of lines of curvature is compasethe orthogonal trajectories to the
meridians (i.e., the parallels) as one can seecttliremoreover, by observing that the
normals to the surface along each parallel willocwron the axis. 1§ is the inclination
of the axis with respect to the tangents to theidiars along a parallel of radigghen it
will be clear thatg andqg will be functions of onlyg; = s, and it is known (11, 8l) that
one has:

dp_1  da_

: sin ¢. (3)
ds o ds

Finally, observe that sinag is 77— ¢ in the present case, the definitions that werergat

the beginning of the preceding chapter will give

Ny =0 g, - SIng (@)
q g

One then sees that the principal radii of curvatuies
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R]_:Q]_, Rzz_é.

That is to say, the principal centers of curvatateany pointM are the centers of
curvature of the meridian that passes throMgand that point on the axis that is on the
normal to the surface that is raisedvat If one takes (3) into account then it is easy to
verify that the values (2) and (4) satisfy the Camlaelations. Having said that, a known
formula [XI, form. (19)] will give the value of thgeodetic curvature in any direction:

g=-G, sina)—a—w.
0s
On the other hand, one will have:

_sing _1dg _ 1 odq
Go=—— =—— = —
o} gds qcoswos
by virtue of (3). Hence:
1 0 .
G=- —(@sing. (5)
gcosw 0s

For G = 0, one will find the following theorem @lairaut:

Any geodetic of a surface of rotation will meet theridians at an angle whose sine
will value from one meridian to the other in propon to the curvature of the parallel.

7. — Determine the asymptotes of a surface of rotatiom; if one is given the
intrinsic equationf (s, p) = 0 of the meridian then find the intrinsic eqaas of the
asymptote. One first knows that the inclinatianof that curve with respect to the
meridians is given (XI, 82) by the formula:

tarf w=- =9 (6)
R pcosp

in whichg and ¢ are functions o§ that one can get from the given intrinsic equabgn
means of (3). It will then follow thawis a function of only the variabk in such a way
that it is enough to know one asymptote in orddatow all of them. Having said that, if
one appeals to (5) then it will be easy to caleuldte arc length and flexion of the
asymptotes:

ds 1

1d :
: —=-——(qsinw. (7)
cosw yoR gds

The torsion is then given immediately by Ennep#r&orem:
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izz—i: ﬂ, ro=ptanw (8)

n RR qp
Consider, for example, the surface that is gengriayea Ribaucour line of index that
rotates around its directrix. In order for thefaoe to have real asymptotes, one needs to
suppose thah < — 1 because only then will one have that the cuorestantly revolves
with its convexity towards the axis. Meanwhiler tp= -4 (n + 1) p cos ¢, the formula

(6) will give tarf w= -1(n+ 1) ; that is to saythe asymptotes meet the meridians at a
constant angle.Formulas (7) and (8) will then give:

S sinw

pcotg, ro=ptanw

cosw' co w

The most notable of all cases is that of the cayefme= — 3). Hence, the surface is called
acatenoid and it is characterized among the surfaces afioot by the fact thatw= 77/4;
i.e., by the fact thathe asymptotes also form a doubly-orthogonal systErom the last
formula, if one recalls that the equation of theenary isp = a + s / a then one will get
thatthe asymptotes of the catenoid are defined by the intrinsic equations:

2a® s?
p=s+—, r=a+—.
S 2a

8. — In order to study theurfaces that can be mappédl, 8 25) onto surfaces of
rotation, one needs to observe that one can always giveqinere of the elementary arc
length on those surfaces the fods + g d@? in whichds andq dé represent the
elementary arc lengths of the meridians and pédsatieradiusqg, resp. Whenever one
succeeds in establishing a system of coordina¢s lom a surface such that the square of
the elementary arc length takes the fodgi + f?(q) dcf, one can assert that the surface

can be mapped to a surface of rotation, and oneknalw, in addition, that under the
effective map of one surface to the other onelittes g, will stretch along the meridians
and theg, will stretch along the parallels. One will alsndf an infinitude of surfaces of
rotation onto which the given surface can be mapgiede one can talg =s, g1 = 6: k,

g =k f(9), if krepresents an arbitrary constant. In order tsnkwhat those surfaces are,
it is enough taletermine the intrinsic equation of the meridiand one can arrive at that
easily when one differentiates the equatity k f (s), while taking (3) into account:

sing =k f'(s), cosg =k pf”(9).

Hence the desired equation is:

o= J1-K*f' (s). )

k (9
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The two surfaces that correspond to the vakuasdk’> k can be mapped to each other.
However, it is easy to see that in order to coverfitst one completely, it is enough to
use a part of the second one that is terminated by twidiares.

9. Surfaces with constant total curvature— We already have one example of these
important surfaces in the ruled surfaces, since we s¢evthwill haveK = 0 at any point
of a developable. If the constant valuekois not zero then the surface cannot be ruled,
since the curvature of the ruled surface, which is non-aerbe line of striction, will be
bent to zero at infinity. However, there exist annitdide of surfaces with positive or
negative constant curvature among the surfaces ofaotand we can determine all of
them. Indeed, in order fd®; R, to be constanthe curvature of the meridian must be
proportional to the segment of the normal that is found between the point dérioei
and the axis of rotation.Hence, the meridian will belong to a class of cartleat was
studied before in the second chapte (&, n). We need to distinguish the surfaces of
constantpositive curvature (which have form that was pointed out abdren the
surfaces with constannegative curvature, among which, th@seudo-sphereis
particularly noteworthy; i.e., the surface is generdtga@ tractrix (I, 88, b) that rotates
around its asymptote. That surface separates, so to sheakyo types of surfaces of
negative curvature, just as tephereseparates the two types of surfaces with positive
curvature. Its asymptotes are determined directly by megahat ifa is the (constant)
segment of the tangent that is cut from the axis upamirgy from the contact point then
we will have:

e—s/a

sing =- , (Qg=asing, p=acotg,

in such a way that (6) will givew=+ ¢ ; we can then deduce from (7) and (8) that:

@ _a
=alog cot =, = ,
% 9 2 P 2sing

f[o=a.

Thereforethe asymptotes of the pseudo-sphere are defindtebgtrinsic equations:

p:%(es’a+es’a), r=a

Each of these curves touch the maximum paraflet (77/ 2), and when extended to
infinity (¢ = 0), they will tend to coincide with the axis amal which they turn
indefinitely. One can also deduce that from thsilggroved fact that any pair of
meridians will cut out equal arcs from any asymptahd the maximum parallel. One
needs to note that this parallel is a singular mewhich several propositions of the
general theory will cease to be valid, and in patér, the asymptotic lines will be bent
more that was indicated @ by Beltrami’s theorem at their points of contadgth that
parallel.



210 Lessons on Intrinsic Geometry

10. — The surfaces that were found in the preceding paragraphlso important
because they provide all of the surfaces of constant cwevélly just bending without
extending or contracting. Indeed, one soon sees thatdhdition of equality of the
curvatures at corresponding points, which was alreadly§25) found to benecessary
for the one surface to be mapped onto the other oatsasufficientwhen one treats the
surfaces of constant curvature. In other woAls; surface with constant curvature can
be mapped to any other surface that has the same curvadtuder to prove that, take
the lineq; from the geodetics of the surface and observe thatsGaosmula will reduce
to:

2
9, kQ,=0. (10)
g,

If the linesq; are chosen as in&} of the preceding chapter — i.e., they are concurrent at
real point — then one must have:

Iim&: 1, Iimﬂz 1. (11)
%=0 %=0 Jq,

Equation (10) cannot be satisfied #r= 0 under these conditions unless one t&kes
01, and the square of the elementary arc length présent itself in the form

dof + of df. However, that is precisely the form thsf takes in the plane when one

makes use of polar coordinates. Hence, if ondlsette proposition that was obtained in
8 3, one can state the following theorem:

In order for a surface to be mapped to the plandsienough that it should be
developable.

The developables are therefore the infinitude o that a flexible and inextensible
plane can take in space. However, if one suppise& has a positive value 1af then
one must tak€), = a sinq; / a in order to satisfy equation (10) and the condgi¢11).

The square of the elementary arc length will theketthe formdgf + a?sinzk dd,
a

which is unique for all surfaces whose curvature is?, among which, one will find the
sphere of radiug, as would also result from equation (9), moreowdrich will become
p=afork=1when one takdys) =asin (s/a) . Henceall surfaces with curvaturé /

a’ can be mapped to the sphere of radius In other words, any surface of constant
positive curvature can be obtained by deformingeailfle and inextensible sphere.
Finally, suppose that has the value 1 /a% In order to satisfy (10) in a more general
way, one will then need to take:

Q2= #(q) eV +y(q) €¥'?,

with ¢ and ¢ arbitrary functions that can always be arrangeduoh a way that the
surface proves to be mappable onto a surface afigotby either taking one of them
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equal to zero and incorporating the other one dao or by taking them to be equal to
each other, or also by settigg= — (. One will then arrive at the following forms Q&:

%(eoa/a_ e—qL/a) , ae—o&/a, %(eo&/a+ e—qL/a) ,

resp. Now, these are precisely (117,.81) the forms ofj that define the types of surfaces
with constant negative curvature that were found irptkeeding paragraph. Hence:

Any surface with constant negative curvature can be mapped in variogsomaya
pseudo-sphere and other surfaces of rotation that have the same curvature.

However, of the three forms that were found, onlyfitst one will satisfy the conditions
(11), and therefore one can only map the surface onidfacs of the corresponding type
if one desires that its meridians should stretch fathe geodetics that emanate from a
real point. However, if one attributes the secominfto Q. then one will see thaj is
annulled only wherg; is infinite, and that means that the point of concweeof the
geodetics must be supposed to be infinitely far from thaewr Finally,g (or Q) is also
annulled for anyg, when oneQ; assumes the third form, but it is annulled for an

imaginary value of;, = %a«/ —1. One will then come to see that:

A surface of constant negative curvature can always be mapped to anye sofifac
rotation with the same curvature in such a way that any system of cemnicgeodetics
will map to a system of meridians.

Furthermore, the surface of rotation must belong toajriee known types according to
whether the point of concurrence of the geodetics isargh situated at a finite distance,
real and infinitely distant, or pure imaginary, resp.tuxally, the surfaces of rotation that
belong to one type can also be mapped to those of angfieerbut, contrary to what
happened for the surfaces of positive curvature, the raasdvill not remain meridians,
but will transform into another system of concurrenbdgtics. That is due to the
possibility (which does not exist for the sphere) thegré might exist geodetics that
either do not meet or merely meet at infinity. Ifeodesires that the surface should
deform while preserving the meridians then it would beesgary that they should also
preserve their own type, as one can see easily by noég8% moreover. The pseudo-
sphere is particularly noteworthy, since it cannot be defdrmhbile preserving the
meridians unless it slides along itself; that is tg, $ais the unique surface of rotation
that can be mapped onto the pseudo-sphere in such a walgehmaeridians stretch into
meridians in the pseudo-sphere itself. Indeedf (or=a €2, equation (9) will become:

p=oe -k,

and that will always represent the tractrix of paramat as one will see immediately
upon changing into s + alog k. That is easily explained by observing that it is only in
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the case of the pseudo-sphere that the parallels wi#t bamstant geodetic curvature
-1/a, and that on the other hand, that curvature cannot wen the surface is
deformed by simple flexure.

11. Surfaces with constant mean curvature— Some interesting questions of
physics lead one to consider those surfaces, among wiheciastoidsare particular
noteworthy, or the surfaces of zero mean curvature efjualityH = 0 says immediately
that the Dupin indicatrix is an equilateral hyperbdlaray point, and consequently:

The elastoids are characterized by the fact that their asymptotettaetzna doubly-
orthogonal system.

Now, if one refers to the preceding result then ome assert thathe only elastoid of
rotation is the catenoidas one will also see by recalling (11,78€) that the catenary is
characterized by the property that its center of cureatiany poinM is symmetric with
respect taM to the point at which the normal meets the directitds easy to answer the
more general questioWnhich surfaces of rotation have constant mean curvatute?
—-1/a indicates the constant value ldfthen the curvature of the meridians must satisfy
the equality:

1 + 1 _cosy

p a q°’

from which (V, §3, ), one will grasp immediately thahe required surfaces are
generated by rotating Delaunay curves around thespective directrices.The surface
will be called anunduloid or anodoid according to whether the curve belongs to the
elliptic or hyperbolic type, resp. By virtue okaown property of Delaunay curves, it is
clear that the unduloid and the nodoids are anale@ifithe two surfaces of the first type
that were founs in ®. However, that property is true in a more genévah, and it
reveals an intimate connection between the surfaadsconstantmean curvatureand
those of constantotal curvature. Indeed, if one draws surfaces with principal radi
R Fa and R, ¥ a that are parallel to a surface upon which oneRaR, = a* at the

distances and —a, resp., and therefore:

1 1 1
+ = F—,
a

R¥a RTa

then one will see that the two surfaces have cohstaan curvature.

12. — All surfaces of constant mean curvature enjay hoperty thatThe lines of
curvature constitute an isothermal systetmdeed, from the first Codazzi formula, one
will immediately get the geodetic curvatures in fiwam:
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_of dg _of odg
=_—_ -—= =—— = 12
G 0s, 0s G2 s, 0§ (12)

in whichf = 0,g =%log (M1 —A>), and it is known (XI, 82) that the first equality is

sufficient § = 0, and even bettéf = 0), so the theorem is proved. The theorem will
also persist for an elastoid when one considers thepetes of the lines of curvature
instead. Indeed, if one takes the asymptotes to be coortimegdhen the values of the
geodetic curvature will result from the aforementionemtl&zzi formulas in the form
(12), withf = 0, g =%log 7. Therefore, theasymptotes of any elastoid constitute an
isothermal system. Furthermore, that theorem is an immediate consequehdbe
preceding one, sincev= 77/ 4 will certainly satisfy (cf., XI, 2) A’w= 0. One will
arrive at another characteristic property of the eldstvhen one demands to know:
Which doubly-orthogonal systems of curves will remain orthogonal in the spheric
representationhat is equivalent (XI, 884, 15) to wondering when an orthogonal pair
of diameters to a conic is conjugate to another orthdgmia Now, we know the only
axes that have that property, at least, as long ascah& is not an equilateral
hyperboloid, in which case (llII, 4, the property will belong to any pair of perpendicular
diameters. Hence, in general:

The lines of curvature constitute the only system that remains orthogortiaé
spherical representation, and it is only on the elastoids that any other deygikm will
remain orthogonal.

Moreover, if one observes that the deviations oftéhe perpendicular lines are defined
by the trigonometric tangentsZ N and7 : N’ then an easy calculation will show that
the increase in the angle between the two curvd®ispherical representation will have
the tangentR; + R;) 7. Hence, if one wishes that the angle should reeqimal tosz/ 4,

while 7# 0, then one would need to have= 0.

13. — We now askAre any ruled surfaces elastoids®ne of the two systems of
asymptotes will necessarily be composed of the rectiligeaerators that are also

geodetics, in such a way that one will have= G; = 0. The other system is composed
of the orthogonal trajectories of the generators, aachave already seen & that we
have:

Gr= 7=-_P (13)

for those curves. Meanwhile, since we must also Wéve 0, the first Codazzi formula

will show that7 is a function of only the parametgr, and therefor@ andt — ¢ , which
do not depend upoaqy, will be constants. Having said that, one hasO on the line of
striction, and consequentlg, = 0. Hence, that line, which is asymptotic and geodistic,
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a straight line; that is to say, the generators mefeted line in space orthogonally.
When one varies onlg, = s, t will keep a constant valug and formulas (13) will give
the constant values:

1 b 1_ a

o a‘+b*’ r a’+b’

for the measures of the curvatures of any trajgdtmat is orthogonal to the generators, in
which a represents the constant valugpofTherefore (X, &), the curvilinear asymptotes
of the surface are circular helices. Finally,necapplies the fundamental formulas to the
direction of the generatoo(= 1, 5= y= 0) under the hypothesis that the origin dispdace
along an arbitrary curvilinear asymptote then onléfind that oa = 3= 0,dy=-Tds
Fort = 0, one will then see that the angle through titie generator rotates around the
axis of striction iss: a; i.e., it varies in proportion to the length oeteegment that is
traversed by that axis from the foot of the getweraOne then arrives (IX, 8 h) at the
following theorem byCatalan:

The only ruled elastoid is the helicoid with director plane.

Furthermore, that theorem results immediately fribwa fact that the aforementioned
surface is the only one (X,9 that has more than two asymptotes that are cotiedo
the generators.

14. — In order to know on which ruled surfaces thenagbnal trajectories to the
generators are lines of constant geodetic curvgagdhey are with the helicoid with a

director plane), one needs to know when the curgafiy, which is given by the first

formula (13), reduces to a function of the singdegmeterg; . In order for that to be
true, it is necessary that the quantifieandt — i, which are always independent qaf
should remain constants. et a,t=0q;. The line of strictiont(= 0) is therefore a line

Oz, and it is a geodetigzt = 0), from which it will follow that the generatoadmit them

as binormals. In additior; 7, which keeps its value of 1& along the entire line of

striction, represents the torsion of that line.néts the desired surfaces are the ones that
are composed of the binormals to the lines with constant torsiéor all of those
surfaces, one has:
0logQ, _ g
aq, of +a’

and consequentl, =/ ¢ + &’ , so the square of the elementary arc length akit tthe

unique formdg’ +(of + &) dg. Hence, the surfaces that one deals wdth be mapped
to the helicoid with director planelt is then obvious that they can also be mappeal t
surface of rotation whose form one determines kinggf (s) = / s*+ & in (9). Fork =

1, that equation will become=a + & / a, and therefor¢he helicoid with director plane
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can be mapped onto the catenoilch other words, if one bends an inextensible catenoid
that rectifies the minimal parallel then the meardi will be adjusted to constitute a
helicoid with director plane.

15. Quadrics.— For the intrinsic study of a surface that is represg by an equation
of degree two in the coordinates relative to immobigs,aone begins with the
observation (cf., Ill, &) that if one sets the origin on the surface, de¢aez-axis along
the normal, and differentiates the equation that espsethe immobility of the poink,(

Yy, 2) under the usual conditions [XI, form. (8)] then ond wacover the equation from
which one started. Having said that, recall thatxfery = z = 0, only the quotientgx /

0s; andoay / 0s, will take the value — 1, while all of the other ones Ww# annulled, and
one will see immediately that the linear part of pneposed equation must reducezto
One then sees that far= 0, the surface will be cut by the tangent plane atamaglines,
which will be real or imaginaryit will then (IX, 8 7, d) be a quadric. We leave it to the
reader to prove the converse proposition. Ifxl@dy axes are directed tangentially to
the lines of curvature then the termsxinmust also be absent, in such a way that the
equation will finally reduce to the form:

2=3 (M1 + Na Y2 + yZ) + (ax + BY) z (14)
After differentiating this once with respect ¢o and another time with respectdg we

need to identify each of the two derived equations by corisigéne coefficients of?
for the first one and those %% for the other. In that way, one will get:

a:ia'/\/z ,
N, 0s

1w,
PN os,

(15)

However, if one compares the coefficientfin the first equation and that gt in the
second one with the analogous coefficients in tiigiral equation then one will get the
values:

1 0N,

B _ 1 0N,
3N, s, | p

3N, 0s,

and if one equates these to the preceding valugsnéegrates then one will recover a
characteristic property of the quadric (XI,18), namely, that the independence of the

ratios N2 : N1 and A : N> will give g, andap, respectively. One is now naturally led to
choose the parameters of the lines of curvatutakipg:

M=q¢q, MN=q0q,

after which, the values (15) will become:
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1 1
Qq’ ﬁ_ona'

a=

Meanwhile, it results from the first two Codazzirfoulas that:

2

ologQ _ g ologQ, . g (16)
an qZ(OuZ - q;) 60& Oa(oﬂz - q;)

and upon integrating, one will inf€; andQ; ; hence:

7=%%8(%) 5= %Y%)

JE-¢ JE-&

Here, one observes that the ratio@f to Q. proves to be equal to the product of a
function of g, with a function ofg,. Thereforethe lines of curvature on a quadric
constitute an isothermal systenin order to determing; it is enough to compare the
coefficient of Z in the original equation with the ones in the tderived ones, and
integrate the equations that one gets in that way:

%:a(y— 20, = B(y-2ny).
S s,

One will then find that:
y=-h G (F+g- A,

and in order to know all of the coefficients in thguations (14) completely as functions
of g, all that remains is to specify the functiopsnd¢. To that end, one compares the
coefficient ofxz in the first derived equation and thatyafin the second one with the
analogous coefficients in the original equation anbstitutes the preceding valuesopf

B, ¥, and in the equality thus-obtained to get:

90 2 _BGi+ YN N?,

9B - B2 g Gyt YN - N7
0s,

0s,
One sees from some simple considerations thakifsets:

f(x)=x-AxX +Bx-C

$(a) =+ -f(), @@=+ f(@),

and with that, one has what it takes for the isidrstudy of quadrics.

then one must take:
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16.— If one fixes an arbitrary value fathen equation (14) will represent a conic that
degenerates into a pair of lines for those valuestiudt annul the discriminant:

N, O az
0 N, Bz |=q¢¢ zCz-20 ),
az [z y7-2

i.e., forz=0andCz= 20; g . Henceany plane section of a quadric is a cqramd for
each direction there will exist two degenerate sestiwhose planes obviously touch the
surface. If one skips over the discussion of exceptioases then one will see that any
point M corresponds to a poiMi whose coordinates with respect to the fundamental
trihedron that has its origin & are defined by the conditions:

Nix+az=0, My+Bz=0, Cz=201 02,

and the correspondence between the two points is sathhe tangent planes to the
guadric will be parallel under it. With that, it is cleébat the surface possessaseater
which must divide the chorblIN in half, and one can therefore say that the cemistse
and that its coordinates will be:

_ G | () __ 9 | f(g) _4% (7
caVe-q- PTcayd-d *Tc 0

after having verified (as one can easily do) thasé coordinates satisfy the immobility
conditions. In order foM to be avertex one needs to hawg = 0,Yy, = 0, andzg will then
represent the length of the corresponding semi-abdience, ifA, y, v are the roots df,
which are assumed to be distinct, then one camel@ine of the three pairs of vertices,

and therefore one of the three axes, by taking ¢f@mple)q’ = A, ¢ = 4, in which

case the length of the semi-axis will be given bg? ¢? = Au. Hence, if one observes
thatC = Auv then one will see that the squares of the sens-are

X0:

and that consequently the value of the constantll be inverse to,/ abc. The fact that
the three axes constitute an orthogonal triplelte$tom the symmetry of the form that
equation (14) will take when the origin of the odioates is transferred to the center of
the surface. Indeed, when one chargjeso z+ ¢ and observes thétis equal tod + i +

v, one will obtain:

Xy 7
¥+§+?:1, (18)
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and it is then easy to appeal to that equation in ordeistoiss the various forms of real
guadrics that correspond to the hypothesethrafe or two pairs of real vertices or just
onepair. In the first case, one has #ilpsoid in the second, theyperboloid with one

sheet,and in the third case, theyperboloid of two sheetsMeanwhile, one knows that

the lines of curvature, which are defined by the equadjon, will pass through the two
pairs of vertices that correspond to the valpeand v of the other parametesy;, and

since one hag» = 0, the line considered will be planar (XI,28 Hence, the three

principal diametral sections — i.e., the sections thatnaade by principal planes (viz.,
planes that pass through two axes) — will be lines ofature and all of the geodetics of
the surface. That is obvious, moreover, if one reflaptn the fact that the normals to
the surface along a principal diametral section wilbalin the plane of the section, and
also if one observes that the principal planes custinéace at a right angle. However,
from what has been said before, it will also rehd the three curves are characterized
by the fact that, the square of a parameter will be &epstantly equal to one root bf
along each of them.

17.— One defines thembilics (V1 = N2) by taking ¢ = ¢Z= A, 4, v, in succession,
in which caseg andyp will become indeterminate, but:

C (G +13) == A +B-Z2=-1(),

in such a way that in order to fix the position of tenter with respect to the tangent
plane and the normal at an umbilic, one will haveftheulas:

Z2 =+ abc A, X2+ y2=+ abc (1)

then one will find that the distances from the cettethe tangent plane to the umbilic
(whether real or imaginary) arec : a, ca : b, ab : ¢, while the distance to the
corresponding normals are:

2JE-AE-0), @D, 21 - a).

Obviously, the umbilics are on three principal diameteations, but not all real. Hence,
for example, in the case of the ellipsoid, if one suppdbata > b > c then the only real

umbilics will be the four points that are defined § = ¢¢= . They belong to the
section that is determined by the minimum or maximum axid they are defined by that
situation, along with the fact that their distancete center is\/ a*+ ¢ - b*, which is

less thara and greater thaa The other umbilics are imaginary precisely becdbsg
belong to spheres that are concentric to the ellipsmd are described by radii
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\/bz +c’-a’<c, \/az +b*—c®> a, and consequently, the former will be too small to

cut the ellipsoid, while the latter will be too large. eTour real umbilics are associated
with two pairsF, G, andF’, G’ of diametrically-opposite points, and the tangent [ddoe
those points are all at a distanceagf: b from the ellipsoid. The only (real) circular
sections of the surface are obviously in planes thaparallel to those tangent planes,
and two of them (viz., the ones that are situated imelieal planes) will have a radius of
b. The hyperboloid with two sheets also has just twis g real umbilics — one for each
sheet; however, the umbilics of the other hyperboloichiienaginary.

18. —The curvature of a quadric at a point M is proportional to the fourth power of
the distance from the center to the tangent plane atrdeed:

4

_ _ - 4
K=MM=q g pperCICE

Here, one should note that only the hyperboloids wite sheeta b? ¢* < 0) have
negative curvature, and are consequently the only quadticc@nters that are generated
by real lines. We already know that whihdrifts indefinitely far from the central
position along a generataf will tend to zero, andy must also tend to zero; i.e., the
tangent plane will conclude by containing the centernddghe asymptotic developable
(8 5) of a quadric is a cone with its vertex at the centdrthe cone is referred to the
vertex and the principal planes then its equation will alshp be (18), in which one
replaces 1 with O in the right-hand side. With that aqoabne will see immediately
that the asymptotic cone, which is imaginary only in theecaf the ellipsoid, is
surrounded entirely by the hyperbola with one sheet, @&ind is surrounded separately
by the two sheets of the other hyperboloid. WMethen traverses a given generator
until it occupies the central position, the distamgewill become a maximum, and
thereforethe planes that touch a quadric along the line of striction are normalseto th
perpendiculars to the generators that are based at the cehtence, ifM belongs to the
line of striction (along the central points of the getors of theéwo systems) then one

will have yo = Xo tan &3 where wsatisfies the conditiol/ = 0 (viz., ¢f cos’ w+ ¢f sirf w
= 0), which defines the inclination of the generators witpeesto the lines of curvature.
It will then follow that the line of striction is anacterized by the relatiogf X2 + ¢; y =

0, and therefore, if one takes the values (17)xfoandy, then one will see thats
equation in curvilinear coordinates is:

% G(f+Eg-A+C=0. (19)

That is equivalent tgrzy = 1 and expresses the idea tifet projections of the center onto
the normals to the line of striction bisect the segments thatwdreut by the surface
along those normalsindeed, it results from (14) that the length of tlegfrsent will be 2
. y= 224y . By means of the equation (19), one can study theolirgriction with no
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difficulty, which passes through all of the verticesjnflected, and is symmetric with
respect to the principal plane.

19. — A noteworthy example of the curves that are traced quadric is that of the
poloids i.e., the curves that are defined by the following prgpé&rhe tangent planes
along a poloid are at equal distances from the centerom what was said before, it is
clear thatthe curvature of a quadric is constant along each poldidone observes that
the equation of that curve in curvilinear coordinateg: ig. = constant and that, on the
other hand, one has:

0 _ .
gIog 0L Q2 = acosw+ fsiny

then one will see that the inclinatienof a poloid with respect to a line of curvature is
given by the formula:

_#@)

tan w= .

W(a,)

The substitution of that value abin formulas (12), (15), and (19) of the preceding
chapter will yield all of the elements that are es=sary for the intrinsic study of the
poloids. One can arrive at another property os¢hourves if one observes that the
section that is made in the quadric by the diarheleme that is parallel to the tangent
plane is represented by the equatiérné + As y* = 7, in such a way that the squares of

the semi-axes of that section are:

X 1 5 _ 1
N Cq' N, Cg

It will then follow that the parameterg andqg, are inversely proportional to the semi-
axes of that section. It is a real ellipse in thse of the ellipsoid, and one can then say
thatif a point traverses a poloid then the diametrattgm that is parallel to the tangent
plane will preserve a constant areaFinally, an easy calculation will show thtite
normal sections that are made in the ellipsoid tamt@lly to any poloid have a vertex at
the contact point.

20. - If one multiplies the length of the semi-axiattis parallel taVl x by z, then one
will get a value that is independent @f. Hence:The product of the diameter that is
parallel to the tangent with the distance from tenter to the tangent plane will be
constant along the lines of curvature of a quadrit/e now ask: Is that a characteristic
property of the lines of curvature? From what wsagd (XI, § 13) about the Dupin
indicatrix, one will see immediately that the lemgtof the semi-diameter that is parallel
to any tangent that is inclined abdv& by wwill be given by the formula:
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1
C(¢f coS w+ ¢ sifw)

|2 :i:
N

and that consequently the stated property will hglm all of the curves along which one
has:

cos W, sirf w
2

> = constant.
3 G

Meanwhile, if one applies the operation:

i:q acosa)i+q ,[:’sina)i
s ag aq,

to the left-hand side then one will easily get:

a9 co§a)+ sifw)_ _ asinw+,8coza+qf—q§6_a)
osl ¢ q ; ¢ GG 0s

j sin 2w
G
and one can also give the quantity in parenthestiright-hand side the form:

2 _ 2
u(gzsina)—(j1 cosw+%—wj,

2 2
, S

since one has:
_ Bo _ aq;
gl - ) gZ - 2 )
% -G % -

by virtue of (16). Hence, if one recalls the fiigtmula in (19) of the preceding chapter:

)

then the stated property will not only belong te lihes of curvaturd w= 0, w= 77/ 2),
but asJoachimsthal observed, also to thgeodetic§G = 0). In any case, formula (20)
will serve to calculate the geodetic curvaturerf Bne that is traced on a quadric.

2_ 2
= qéﬂz % gsin2w (20)

2

21. — Some important consequences of Joachimsthase¢m were pointed out by
Roberts already. Consider an ellipsoid, and connect armigtpgM to two real umbilics
that are not diametrically opposite — for exampleand F. The produclz, keeps a
constant value along one or the other geodetictlzen from what was said at the end of
8 17, the value ofz, will be ac atF, as well ag-’, and thereforézy, and consequently
must have a unique value Mt as well. Now, if one ponders the significancd dien
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one will see immediately that the tangents to the gwodetics aM are inclined equally
with respect to the axes of the Dupin indicatrix. Hertbe lines of curvature of an
ellipsoid at any point M will bisect the angles between the geodeatsdnnect M to
two non-diametrically-opposite umbilicsConsequentlyMF and MG are arcs of that
geodetic, and sincll is a point on the surface that is taken arbitrarilye osill see that
the infinitude of geodetics that emanate from an umbilic will be coewsurat the
diametrically-opposite umbilic. In addition, it results from the essential propesty
geodetics that the distance between the two umbilidsaiwhys be the same when it is
computed along any geodetic. With that, it is clear thatflexible, but inextensible,
filament on an ellipsoid tends to become perfectly aimaalong the mean principal
section then the ellipsoid can rotate freely, liksphere, aroundrG or F” G, while
deforming the filament, but without it ceasing to remense on the surface at any
moment. However, in the general case, it can hapharhe filament leaves the surface,
or even that it is dragged along in such a way that it iremagidly fixed on it. We
would finally like to point out another important propettgt is limited to the statement:

The lines of curvature of an ellipsoid are the loci of the points avlgedetic
distances from two non-diametrically-opposite umbilics have a constant sum or
difference.

They will be, so to speak, the ellipses and the hypeshwiidhe surface then; the ones
that can be considered to be ellipses with resmethdfoci F andF’ are, at the same
time, hyperbolas with respect FbandG’, andvice versa. It will then follow that a pen
that moves while keeping a flexible, inextensible filamesmtse that is fixed at its end
points atF andF“will trace out a line of curvature on the surface, anguch a way that
when one increases or diminishes the length of tleanént, one will succeed In
mechanically tracing out all the lines of curvature ¢ gystem; for those of the other, it
is enough to fix the end points of the filamenEa&ndG’, or atF andG.

22. Weingarten surfaces— The surfaces of rotation, surfaces of constant mean
total curvature, and many other noteworthy surfaces belorg sogle class that is
characterized by the fact thatrelation exists between the principal curvaturesll of
those surfaces are call&feingarten surfaces, from the name of the geometer that
discovered their most important properties. We sl@dl nonfine ourselves to proving a
few theorems that relate to the evolutes of thoskaaes, in particular. Recall (X, Z5)
that the normal curvatures and the geodetic torsion diirgtesheet of the evolute of an
arbitrary surface are determined by means of the formulas

a_Rl ':i a_RlT': a_Rl ':& a_R a_Fi
s TR o5 ot T l[g2651+g1682j’

from which, one deduces that:
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K= NN -T2 = - L0108
e 12 0R,/0s,

when one takes formulas (30) of the preceding @napto account. In order to obtain
the valueK” of the curvature at the corresponding point of¢beond sheet, it is enough
to switchR; andR; ands; ands; in the preceding expression; one will then findtth

R OR
10s, 05
1“0R R’

0s 0s

Kl KII:

On the other hand, in order for a surface to bean@arten surface, by virtue of the
definition, it is necessary and sufficient that thiectional determinant of the should be
zero; i.e., that one should have:

0R dR, _0R 0R
ds 0s, 0s, 05

and consequentl’ K” =1 :1*. One will then find the following theorem B&lphen:

In order for a surface to belong to the class ofiyarten surfaces, it is necessary
and sufficient that the product of the curvaturdstlte sheets of the evolute at two
corresponding points should be the inverse of theth power of the distance between
those two points.

Another characteristic property was discoveredRilyaucour in his search for the
condition under which the asymptotes of one sheetidvcorrespond to those of the other
sheet. Letwbe the inclination of the lines of curvature bf)(with respect to the curve
thatM must traverse in order for the corresponding cedieo describe an asymptote of
(C1), and letw be the inclination of that asymptotic line witlspect to the tangeidz
A relation exists betweewand w' that one easily deduces from formulas (27) of the
preceding chapter by dividing the third one by$keond one:

I—COSC«)’ = a—RlCOICU+a—R .

R, 0s s

Now, if one would like to determinevin such a way that; describes an asymptote of
(Cy1) then one would need to have:

Ncot o/ = 27" coted + ;=0 ;

i.e., if one substitutes the values that were abthbefore for the\”, 77, and ' then:



224 Lessons on Intrinsic Geometry

cot w= i%«/ -K'.

In order for the asymptotes on two sheets to correspdhdt-is to say, since displacing
M in the direction that is defined by the anghvith Mx (or 77/ 2 —wwith My) will make
the center$; andC, tend to displace along the asymptotes of the respetteéat s one

will need to have:
cot (g—wj: 1%«/—K"

for that value oty soK’K”=1 ‘1. Hence:

In order for the asymptotes of a surface to correspond on the two siéstsvolute,
it is necessary and sufficient that it should belong to the Weinga#dss. cl

23. — One can look for the conditions under which lthes of curvature of the two
sheets might correspond in an analogous way, batt ahd other research can be
accomplished with greater facility by studying tberrespondence between the two
sheets directly, that is to say, between an arpitisurface ) and one of its

complementsN1”). Consider a system of curvilinear geodetis§ ¢ 0) on the first
surface and take them to be lirggs in such a way that one has:

if one letsl denote the distandédM’, and one meanwhile observes that from the third
Gauss formula, the functidrnwill be coupled with the curvature d¥ij by means of the
differential equation:

I 1=k P (21)

s

Having said that, when the fundamental formulas aplied to the poinM whose
coordinates arg =1, y =z = 0, that will give:

ox adl
= +

—=—+1, —=0, —=M,
0s 0s 0s, 0s,
Q:i’ ﬂ:o, Q:—Tl_
0s, 0s 0s, 0s,

Hence, the-axis, which is normal to the surfadd {, will be parallel to the-axis atM’,
and if they~axis is directed parallel tvlz and thex“-axis is directed in the opposite sense
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to Mx then if one proceeds as in2® of the preceding chapter, one will easily arrive at
the relations:

- ki: Ti+_/\/'li, k|i: ii_ i.{.l i,

os  0s 0s 0s, 0s,05 \0s )0s
in which one sets:

dl ol

k=7T| —+1|+N,—,

[6% j Mas

for brevity. It is then enough to write out the immia¥picondition for the point€ x + [,
z, y) with respect to the trihedroM("), while taking into account those conditions for the
point (X, y, 2) with respect to the trihedroMj, in order to arrive at the anticipated results:

G =0, G=- =,

as in the aforementioned2®, along with the other ones:

N_ T _ N, _1

N, Kl al a K’
/\/2(651+j+ o5,

Here, one should note that one has:

] ] il T'
K:/\/lNZ—TZ:—W, (22)
and consequently, when one uses (21):
=1 N, ol
1* KkI* ds,

from which, one will deduce that the condition thitiphen found for the evolute of the
Weingarten surface is equivalentdo: 0s, = 0, and that will say thaj, is a function of
only the parametey; . Hence:

In order for a surface to be one sheet of the @¢eobf a Weingarten surface, it is
necessary that it should admit a system of paragisldetic lines with constant geodetic
curvature.

The condition is not sufficient. Indeed, we haveays excluded the systems of
rectilinear geodetics, since it is indispensiblat tine tangents to the geodetics considered
should form a congruence, and on the other hang,1# we had occasion to consider
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the existence of ruled surfaces whose generators mavbkdgonally to the lines of
constant geodetic curvature.

24. — The observation that was made i8 &ill now permit us to assert thaach
sheet of the evolute of a Weingarten surface can be mapped onto a surtaeémi. If
one is given a relatioR, = ¢ (Ry) then if one observes thdty = dR,, one can infer from

Gg>=-1:1, in succession, that:

dlogQ, _ 1 [
0, R-R’

in such a way that it is enough to set:

,[ ds
f(9=¢e°79,

since (9) represents the meridian of a surfacetation onto which the first sheet of the
evolute of the Weingarten surface that is defing®b= ¢ (R;) will be mapped. As one
sees, the form of that surface of rotation will elegh uniquely upon the nature of the
constraint that intercedes betweBn andR, . Converselyany surface that can be
mapped onto a surface of rotation is one sheebh®®twolute of a Weingarten surfaees
long as it is not composed of the normals to a diheonstant torsion. That theorem is
due toWeingarten.

25.— To conclude, we return to the question that paeed at the beginning of23.
If we apply the fundamental formulas to the cosimes0, 5= 1, y= 0 then we will get:

, =—-Tcosw+ N> sin
ds ds 2 “

Q: sinw %:O Q/—
ds

I
and if we desire thatl’ z’ should generate a developable then we must Kf.farm.

(19)] determinewin such a way that the condition:

a oa OX

B 9B oy|=0
y oy oz

is satisfied; i.e., (from the calculations that &/erade) we must have:

Tw+ (Tcosw— N2 sina S—IS: 0.
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That is the equivalence that defines the inclinatoaf Mx with respect to the lines of
(M) that correspond to the lines of curvatureMf). In order for them to also be lines of

curvature onN1), one will need, in addition, thab should annulZ,,, and therefore the
conditions:
7 cos w+ 1 (N1 =) sin 2w= 0,

(Tcosw — N> sin @ [cosa)i+ sirwij 0
0s 0s,

must reduce to just one condition. Setting aside the @bdevelopable surfaces, it will
result from identification that:

o o 9,

03 ds,
i.e.,| must have a constant valae One can then state another theoreRib&ucour’s:

In order for the lines of curvature of one sheettloé evolute of a surface to
correspond to the lines of curvature on the otheres, it is necessary and sufficient that
the distance between the principal centers of dumeaof the surface in question should
be constant.

In other words, it must be a special Weingarten surfateaghdefined by the relatidr, —
R, = constant. Under that hypothesis, formulas (21) andvwjive:

,_ 1
K=K - =

a

I.e., the two sheets are surfaces with constant negativeature. Conversely, if one is
given a surface with curvature — 1a7 and one constructs, tangentially to a simple
infinitude of geodetics that are concurrent at an itdlgidistant point, rectilinear
segments that start from the contact point and rengtha in the direction in which the
geodetics point to the common point then the end pointease segments will be on
another surface of curvature — &%/that constitutes an evolute of a Weingarten surface,
along with the first one, and:

The lines of curvature, as well as the asymptateh)e given surface will correspond
to the analogous lines of the other one.




CHAPTER Xl

INFINITESIMAL DEFORMATION OF SURFACES

1. Imagine that the points of a surfad#)(are displaced infinitely little in such a way
that they constitute another surfadé’(). We propose to study the alteration that is
produced in the fundamental curvatures Mj.( Letu, v, w be the projections of the
displacemenMM 'onto two orthogonal tangents and the normaMp (esp., at the point
M. WhenM traverses a segmeds in the tangent plane that is inclined from taaxis

by a the coordinatex(=u, y = v, z =w) of the pointM’will experience variations that
are given by the usual fundamental formulas (X9):8

OX _ .
a4 (1+u,)cosw+u, sinw ,

%zvlcosaﬁ I+ v, )sinw, (D

Z .

ds =W, cosw+ W, Sinw,
S

in which we have set:

oau dJu
U =£+91V—le, uz=£+ﬂ#glv

0 0
Vl=£+7w—glu, szé'*'gzu_/vzw 2)

ow ow
w=—+AN.u-7y, =—+ N, vT
1 6% 1 V\é a% 2 u

for brevity. Squaring and summing (1), one will gét= (1 +®) ds in which:
® =u; cog w+ (V1 + Uy) COSwWSIN w+ Vs Sirf «

up to higher-order infinitesimals. Obviousi, which represents thenear dilatation
per unit length, reduces @ in the directionMx and tov, in the directionMy. The
surface elemends; ds then transforms into (1 t4)(1 +Vv,) ds; ds , so if one represents
the area of the deformed element by (D}ds ds — i.e., if © is the unitsurface

dilatation — then one will hav® = u; + v,, if one neglects higher-order infinitesimals, or,
by virtue of (2):

0 0
G:(£+gzju+(£+gljv—Hw. (3)

That formula shows that is only for the elastoidéH = 0) that the normal displacement
has no influence upon the dilatation8Vhen the surface is inextensible, the funcdon
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must reduce to zero identically, that is, one must hawe 0,v, = 0,v; + U, = 0, and
consequently, one will also ha@= 0.

2. Formula (3) gives us the right to exhibit an impatrfamoperty of the elastoids. A
closed planar line cuts out an area on any curved suHateéstcertainly greater than the
one that it bounds in the plane that contains it. Hewaef the line is skew then another
surface must take the place of the plane if the givenis to determine a minimal area
inside it. Such a surface is called asfeminimal area or simply, minimal. If one
deforms it infinitely little in such a way that it doestrcease to contain the given curve
then it will be necessary that the first variatidrilee area that is bounded by that curve
should be zero; i.e., that one should hB\@ ds; ds; = 0. Meanwhile, it is clea priori
that the tangential displacements cannot vary tha #mat is enclosed by the fixed
contour, and we can always suppose, moreover, thatnthswface passes to the other
by means of arbitrary normal displacemewnts Hence, by virtue of (3), the preceding
condition will becomd| Hw ds; ds, = 0, and in order for that to be satisfied for anyit
is necessary that we must have= 0 at each point. Therefor@y minimal surface is an
elastoid but since the stated condition is not sufficientaose the area is minimal, it is
clear that, exceptionally, an elastoid cannot havemaharea. In order to better see why
the tangential displacements have no influence ofirtesariation of area, observe that:

2o )ronoem [ L onsa=from

in which the last integral is meant to be taken overettitire contour. Hence, sing@and
v are zero on the contour:

.U(%+szud§ ds=0, ﬂ(%+g2jvd§ ds=0.

3. The direction cosines of the tangents to the trajgadd M’ obviously have the
values given in (1), either divided by 1d& or multiplied by 1- ® (up to higher-order
infinitesimals). Such a multiplication will lead tee results:

CoOsSw— ¢ sinw sinw+ ¢ cosw W1 COSw— W, Sin w
if one sets:
@ = V1 oS w— (U1 — L) COSWSIN w— U, Sit @

and because the first two expressions are equivaenst (w+ ¢) and sin @+ @), resp.,
one will see clearly thap is the angle through which the tangent plane to the line
considered has rotated. In particular, the rotated axesamd —u,, and thereforey; +

Uz, which is the coefficient of the rectangular ternsbinwill represent the mutual angular
displacement of the tangent axes. Now, siices generally reducible to a canonical



230 Lessons on Intrinsic Geometry

form in just one way, one can state tbaty one orthogonal pair of tangents will remain
orthogonal under the deformatipmand it will be rotated rigidly in the tangent plane
through an angle of = — u, =3 (vi —W). Sincev; — Uy is then an orthogonal invariant of
the form ¢, one will see that no matter how one orients thgdahaxes, thgeodetic

rotation of the surface particle is always expressed by melafissor, —u,. HenceAny
orthogonal pair of tangents, after having participated in a common rotation that is

measured by (vi — W), will generally become oblique by an angular displacemgwi
+ Up) that each of the two tangents exhibits with respect to the offte.expression for
Jresults from (2) in the simple form:

0 0
d=|—+G, |v-| —+G, |u,
(631 gzj (6% glj
which does not depend upon the normal displacement.

4. Before we go any further, we must observe that théusistionsus, Uy, V1, Vo, Wi,
W, are not arbitrary. Indeed, if we apply the knowngnadility condition:

0 0 0 0
-+ — = —+ -
[681 gzja% [6% gljaﬁ
to the derivatives of the displacements when wegiwven (2) then we will find the
relations:

ou, 0

6_; _i =G (U= V,) —G, (vt u) + T+ Ny w,

ov, o0V,

a_Sj_a_%l =G\, +U,) +G,(u - V2)_7W2_N2W2 ()
ow, 0

6512 _£ =GW, _gzwz_N1u1+N2Vl_T( Uy~ VQ'

Now, we can observe that if the valueswpfandw, are given the forms:
W]_:U./V’]_—V'Z: W2:VN2—UT (5)

then the first two relations will give:
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0
gl

0 0
KV :(g'*'gzj u, _(£+glj u1+g1 V2+g2 Va

(6)

I.e., by virtue of (2) and the Codazzi formulas:

U:u{&iiijw, Vev+ [N 0 +Zijw
K ds, Kadsg

If one then substitutes the values (5) in the third equétipthen one will see not only
thatw; andw, depend upon the other four functions, but that the diffedenelation:

[%+g2j(v-/\/’2 -UT) —[%ﬂLgJ UN=VT)+ Ml =Novi + T (e -Vv2) =0 (7)
will intercede among them.

5. In the case of the inextensible surface, if one sets:
up =v2 =0, V1:—U2:¢, 19:V1—U2:2¢

then the formulas (6) will give:

hence, (7) will becomB ¢ = 0 after one sets:

e e T s 2
0s, Kods Kos 0s Kdos KOs

Therefore, the angleg and ¢ will satisfy a second-order differential equation theat |
called thecharacteristic equation It is clear that conversely any solutignof the
characteristic equation will correspond to a possibferd®tion, since if (7) is satisfied
then the integrability conditions (4) will also be sa#id, and then the functions v, w
that are defined by (2) will exist. In particular,af £, y are the cosines that define an
invariable direction then one will easily verify thée characteristic equation is satisfied
by the functiony, and on the other hand, one can assert that thigidandoes not
correspond to a true deformation, but only to a changesfion of the whole surface in
space. Indeed, any infinitesimal rigid motion of thefesreg can be considered to be the
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result of a rotatiore around a certain linea( S, ¥, & n, {) and a translatios’ that is
parallel to that line in such a way that the displaeet® will take on the form:

u=eé+éa, v=en+ep w=el+ey,
(2) will then give:
UU=V=0, W“W=-W=¢=¢E) W=—-¢&) W =£a.
It then follows that for the study of a deformatigmoperly speaking, it will always be

legitimate to neglect terms in v, w that have the form that was indicated in the final
place.

6. Assume that the new axes in the plane that toutieedetformed surface Bt are
the lines that correspond to the valueg;-and 77/ 2 + u; for w Hence, by virtue of
formulas (1), the direction cosines of the new axitls respect to the old ones will be:

for thex' -axis: 1, 0, Wi,
n yl n : 1’ l, W2 ,
"oz "o —Wi, — W, 0.

One will then have the following relations betweea tfd and new coordinates:

X=x=(u=w3, y=y(uw wg 'z z( W wx Wy } ®)

x=X+(U-W32), y= yr(u W oz 2( W WK W)y

In addition, the differential coefficients that nelato the arc-lengtids that M’ can
traverse are expressed in terms of the old ones by mé#res formula:

i,: 1-9) (cosa)i+ sirwij :
0s 0s 0s

from which, when one takesto be —v; and7r/ 2 +u,, successively, one will deduce the
differential quotients relative to the new axes:

(1 —uy) (%—vl% : (1-w) (%—Uz%j
Thus:
LA (N O A (A
0s 0§ dg '0s 0s, 0s, dg “0s
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7. Given that, we propose to calculate the variatidva the various curvatures
experience as a result of the deformation. The ¢ostdition of the immobility of the
point X, Yy, Z) with respect to the deformed surface is:

g—; = (Vs +DA) Z - (G + DG y'— 1,

in which one adopts the symiblin order to indicate the variations that are produced by

the deformation, and one writBs instead ofD, when one passes from one surface to the

other by displacing along the coordinates lines. Meanwifhidme applies (9) to (8) then
one will have:

_:i(x—u-{- a— %-{- %
; W q6§ Ya%’

which will also make the new and old coordinates coinaiden one finds that they have
been multiplied by infinitesimals. Similarly, thetidand side of the formula in question
is equivalent to:

g—;—Nl(w+W1X+wly)+gl(V—wZz)+zDN1—yDgl .

Hence, if one observes (2) then one will see zlat; —y DG; must be identically equal

to:

+GIWe Z+ N (Wi X +Woy) — u{zﬂj—vl%.
0s 0s,

ow, z

One will get the values dN; andDG; by developing this and taking into account the
immobility condition that relates to the original ae by identification. One calculates
DA> andDG, by an analogous procedure when one starts with thedeéconobility
condition for the second set of three. One wilhtherive at the following results:

ow,
DN, =—-Nu,+7Tv,+Gw, DG =G N-GUu-Tw-N W,
0s
; (10)
W,
DN, = 6522 — NNV, +TU,+G,W, DG,=GU,~G U Tw-N W,

One should note that, by virtue of (4), the formulaghenright can also be written in the
following way:

0 0
Dgl = (g+gljul_(£+g2juz _@gly
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0 0
DG, = (£+g2jv2—(£+gljvl -0G6,.

As for the geodetic torsion, it is enough to operatdéogoasly on the second immobility
condition for the first set of three, or on thetfissach condition for the second set of three
in order to obtain:

DT:—%—TLM +Novi+Giwy
0s,
and also

DT:—%—TW +N1U+GoW, .
S

Those two expressions are equivalent by virtue of the ftvirdula in (4).

8. We can now calculate the variations that the dedtions produce in thenean
curvatureand thetotal curvature The formulas (10) on the left immediately give:

{2 o LMo T,

or also, upon substituting the values (2):

DH = ua—H+va—H+(N12+/\/22+272) w+A%w,

05 0s

If one applies (10) and the last formula that whtimed toK = A7 Az — 72 then one
will easily arrive at the result:

DK

=—K@+N26V\I1+N16W2+T oW oW, + MG —TG) Wi+ (N2 G1—TGo) We,
s s, s 0%

which can be put into various forms. For examiplene substitutes the values (5), while
keeping the Codazzi formulas in mind, then:

0 0
DK:—K@+(£+GZJKU +(£+glj|<v, (12)

and one will see immediately § that under the hypotheses of inextensibility, ouilé
have DK = 0; i.e. (cf., XlI, 825): The curvature of an inextensible surface will remain
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invariant at each point when the surface is flexéddone substitutes given in (2) fon
andw,, instead of (11), then one will find the formula:

DInK:(Ui+VijInK+DW,

o5 0s

from which, it will result, for example, that if oneould like to deform a surface with

constant curvature in such a way that the curvature nsniavariant then one will need

to give an infinitesimal normal displacement thatsdets the characteristic equation to
any point.

9. Among the infinitude of possible deformations, it isunat that the attention
should be focused on the ones for which the represemtainic of the forn® reduces to
a circle. The same thing will be true #grand one will have:

U1:V2:CD:%@, ViZ—Wp=¢g=13
independently otu (6) will then give:

_ 3¢ . 00,04

=__ -7 - =+

05 0s’ ds, 0s
and (12) will reduce to the simple form:
DK=- (K + 1A% 0, (13)

independently of the rotation. One will then have tiffer@ntial relation (7) between the
dilatations and rotations, which will assume the résalale form:

do+DF=0, (14)
if one sets:

- (iwzj[&ilij_(i%j(ﬂi_Zi],
0s, Kods Kads 0s Kos KIs

for brevity. As we saw in &, (14) will reduce to the characteristic equation for the
inextensible surfaces. However, that will hold for othigse values ob that satisfy the
equationd = 0, and in particular, that will persist whénhas a constant value, which by
virtue of (13) will measure the unit decrease in the totaVature. Furthermore, no
matter what the functio® is that satisfies the equatiodn= 0, it will always correspond
to a possible deformation that is characterized byatis®nce of geodetic rotation — i.e.,
one for which# = 0 — and consequently:
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u:a—w, v:a—w, A= 0 + Hw, etc.

10.Turning to the general case, we propose to determinetdr@ading products of
the deformations of the curvature of the various lindtenM is displaced in a definite
direction in the plane tangent tb) that is at an angley M’ will traverse a curve that is
inclined by & = w+ ¢ with respect to the-axis, which would be the effect of the
deformation if one ha® w= 0. Thus, if one recalls (XI, 88), 18) that:

No=Ni cof w— 2T coswsin w+ N5 sirf @

then one will obtain:
DN,=co$ w- DN; — 2 coswsin w- DT + sirf w- DN, — 29 Ty,

and, in particular:

DN, :g—\;vl—./\/’lul_TV]_‘FngZ, DN :g—vs\lzz—/\/zvz—TU2+92Wl-

Similarly, from the formulas:
. 07,
T =T cos v+ (N1 —N>) sin 2w a—a(;):Nw_Na»ﬂz,

one will deduce that:
D7, = cos 2v- DT+ sin 2w- (DN1 —DN2) + WNow— Nun2) §.

In particular, the alternating product of the geodetisitar of the lineg; is given by the
formula:

DT:—%—TUJ_*'NlVl‘Fngl,
S

and it is easy to verify that when the displaceméatge the form that was indicated at
the end of &, D7, as well aDN, will be zero. Conversely, if the surface is inexiieles
then the given formula will follow from the hypothesbat DN; = 0, DN> = 0,D7 = 0.
Indeed, one can deduce from that and (4) that:
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aa—V:lz:N1¢+g1W1’ g_\gz:_gzwl_7¢’

g_v; =-GWw, +79, g_\gl =-Ng+GW, (15)
9 0

£=—71W—N1W2, £:TW2+/\/'2W1;

hence:
%(Wiwfw"‘) =0, %(mé+vvf+¢2) -0,

Therefore, w? + W2 + ¢ will have aconstantvalue €. Now, if we setw, = £a, wy =

- &0, ¢ = gythen the relations (15) will be precisely the otied express thavariability
of the direction &, 5, )).

11.Finally, in order to know how the geodetic curvatwf any line will vary,
observe that the formula:
Gt %_a) = G1 cosw— G, sSinw
S

will become:
GuwtDGu+ (1 —CD)%(C«H $) = (G1 + DGy) cos w+ @) - (G2 + DG2) sin (w+ @)

on the surfaceM "). It then follows that:

ow

9 0 .
DGy= CDE-{Dgl _(E+g1j¢}cosw_{Dg2+(£+glj¢} Sinw.

If one distinguishes the derivative with respecthe directionw+ 77/2 by a prime then
one will come to the formula:

6= 2 46, )0 L+62)p-9)-o5,
0s Js

after a simple calculation, which we shall omity farevity. The right-hand side will
obviously reduce to zero when the surface is imesibde, and one will then recover the
fact, which is obvious moreover, of thevariability of the geodetic curvaturef a line
that is traced on a flexible, inextensible surface.




CHAPTER XIV

CONGRUENCES

1. — The intrinsic geometry of systems of lines can bedapon considerations that
are analogous to the ones in the preceding chaptepéhatitted us to undertake the
infinitesimal study of systems of points. In a congiees or doubly-infinite system of
lines, one considers two of thegmandg' that are infinitely close. One takggo be the
z-axis, and the-axis also meetg' orthogonally. Letds andr ds be the angle and the
distance, resp., between the lines considered, in suety dhatp will represent (cf., IX,

8 7, c; 8 8) thedistributor parameteof the tangent planes to the elemggtof the ruled
surface. When the axes go to the positions thatpe@fed by another surface element
g'g’, the variationsX, dy, & that the coordinates y, z of a point suffer with respect to
the initial position will be equal to the possible viaasdx, dy, dzrelative to the moving
axes, augmented by the variations that are due solellgetanotion of the reference
trihedron — i.e., to the translatiop o, h do) and the rotationdg; 0, k dog). One will
then have the formulas:

Q=%—ky+p, ﬂ:ﬂ+kx—z, E=£+y+h,
do 00 do 00 do 00

which are also true in the case wherg, z are direction cosines, as long as one ignpres
and h, which are characteristic of translations. Whenymane rotates aroungl the
origin (viz., central poiny will be displaced along the generator. If one imagithat it is
transported to a fixed point @f that is at a distancg from the central point then the
preceding formulas will become:

OX _ 0X oy _ oy 0z _ 0z
—=_—-ky+p, —2=—-—"2+kx-z+q, ——=——4y+r, 1
do 00 y*Pp do 00 g do 00 y @D

in which, we have set:
r=h-—, (2)

for brevity. Having done that, let the index 1 distinguiBe quantities that relate to a
given position (which is arbitrary, moreover) of th@lane, and demand that the ones
that do not include that index should refer to the positi@mt is occupied by the plane
itself after a rotatiory in such a way:

X =X COSw+Y; SinQ y=—X Sinw+Yy; cosq zZ=27.

However, if one lets the index 2 distinguish everythirag tlefers to the positiow= 77/
2 then one will see that =1, y» = — X1, z =z, and therefore formulas (1) will become:
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OX _ 0OX
—=—-ky+p—-0, —=—+KX+p, —=—-X+r
do 00 y*p—qa do 00 P og 00

for a position of they-plane that is perpendicular to the original one. Hericde y-
plane is fixed in the initial positiornd= 0) then the necessary and sufficient condition for
the immobility of the pointX, y, 2) will result from (1) and (3 in the following form:

0x oy 0z
—-— = - y — =7 x= y _ g
20, ky-n o0 kx g o0, Y 1 “
0x oy z
=-z+ + Q, =KX R, =X {
20, k y+ g o0, kx R 20, £

These are the fundamental formulas for the intriasalysis of the congruence.

2. — The differential quotients / do that relate to an arbitrary angleare composed
very simply in terms of the quotierdd 01 andd / dc» . Indeed, it is enough to observe
that the direction cosines gf which are obviously equal to:

sin wdg;, —-coswdo, 1,

prove to be equal tdo , — dai, 1, resp., from formulas (10). Therefore:

0 _ 0 . 0
—=Co0Sw—+ Sinw : (4)
0o 00, 00,

Having said that, the first of (1) will show thatp-is the value omy of the differential
guotient ofx with respect tag, and in this one must understantb mearx cosw+y sin
a in such a way that if one takes formulas (3) and (4)account:

p = (P2 coOsw— Q1 Sin &) cosw+ (02 COSw+ Pz SiN &) Sin w;
p = p1 co$ w+ (O — Q) COSWSIN W+ ps Sirf @ (5)
Operating analogously on the second formula in (1)yeld:
q =0 cos w— (P —P,) COSwsin w+ o sirf w (6)
These two relationsriz., Hamilton’s formulg@scomprise the fundamental properties of a

congruence. Whewis eliminated, they will allow one will arrive at thery simple rule
that exists betwegmandq:

(P-p)P-p)+@-a)a-a@)=0.
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3. — When one adds/ 2 to wy one will get valuep’' andq’ for p andq, resp., such
that:

pP+p =pL+pe, q+q =0+ 0.

The first equality leads (cf., Xl, 83) to the notion of thenean distributor parameteryp
= 1(p:1 + p2) of the congruence arould The second one shows that there exists a point

(viz., themidpoin) ong at a distancep = 5(q: + o) from the origin, with respect to

which the central points are symmetric relative to ashitrary orthogonal planes. One
also deduces from the same formulas (5) and (6) that:

P=p = (Pr—P2) COS 2o+ (0h — O) SiN 2w g~ = (Ch — G2) COS Zu— (P1 — P2) SiN 2

and therefore, if one sets:
p-p =2Acos2w, gq-q =2 sin 2w

then one will see that one has, more generally:

p-p =2cos2w - &, g-qg=2Asin2w- o . (7)

Another invariant is therefore:
W=pP-pY+@-9q) =@Er-p) + (-®)7;

however, one can substitute:
K=pp +qq =p1 P2+ 01 02

for this, sincex =p?+¢’— 12 The three orthogonal invariants that were mentione

above then make up the discriminagrts p; and«— ¢ in the forms (5) and (6).

4. — The discussion of (7) leads one to distinguish thes pdiorthogonal planes that
pass througly that correspond to the values andw + 77/ 4 of wfrom the infinitude of
all of such pairs. For the first one, the central fgoaoincide with the midpoint, and the
distributor parameters attain the extreme valpes |. For the second one, which is
composed oprincipal planes one will havep = p', and the central points will become
the limit points i.e., they will be the end points of the segmenteagth 2 that includes
all of the central points. When the figure referghfirst pair, for example, formula (5)
will give p = po — | cos 2y and one will havg = 0 in the two directions (real or
imaginary) that are defined by coswz po : | ; i.e., g will meetg. The planes that
correspond to those directions are tbeal planes and the relative central points (i.e.,
foci), which are also symmetric with respect to the midpoamd at a distance of

|?—pZ from it. That situation will emerge even more clgdrbm the geometric

interpretation of the relations that were found betweandg, which can be considered
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to be the equations of a circle of radiusenter o, o), and powelk with respect to the
origin. We have already encountered the preceding pxofeem, = 0 in the congruence
that is composed of the normals to an arbitrary surtaoe moreover, one will see that it
is only for those congruences that one calismal congruenceshat one can have a
mean distributor parameter that is zero. For themhasehat the foci fall upon the limit
points, and theprincipal surface which is the locus of all the limit points, will bete
the evolute of the surface that one considers.

5. — We now turn to (3) in order to apply the integrability ditian to the normal
congruences, and that condition will always have onef

2 2
0 - 0 = Azi_Ali’ (8)
do,00, 00,00, 00, 00,

as long as one determines theonveniently. In order for to exist, it is necessary and
sufficient that one should have:

0 0
A>—ko) x+ (A1 + k + + =|—+A |, - +A Ir., 9
(A2—ka) X+ (A1 + K1) y + (p1 + p2) (601 zj ) (602 1} 1 9)

no matter whak andy are. Therefored; = — ki, A2 = k» , and the condition (8) will
become:
9° 9° 0 0
= k—+k—, (10)

00,00, B 602601_ 00, 00,

while the relations (9) will reduce to:

0 0
L_L_(pﬁpz):klrﬁkzrz_ (0)
00, 00,

Similarly, if one applies the condition (10) to thedtionsx andy on the generator then
one will get:

0 0

Py T =k (oL o) + ke (O - ), @)
0o, 00,

0 0

_q1+&+ r = ki (0h — @) — ka2 (P1 — p2), (2)
0o, 00,

and it is easy to insure by means of the equality (2)these formulas are not linked to a
choice of origin. If one then considers the coeffitseof x or y, respectively, in the
conditions (10) that apply tpor x then one will find that:
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L ) 3)

0o, 00,

The last four relations are, so to spedlte Cozazzi formulador the theory of
congruences, and they will essentially reduce to tleetknown Codazzi formulas (XI, 8
9) when the congruence is composed of normals to a surfdoreover, if you carry out
the spherical representationf the congruence — i.e., if (cf., XlI, ) you consider the
radii in a sphere of radius 1 that are parallel tdittess of the congruence — then it will be
easy to see thaf; = k;, G» = kg, either by writing the integrability condition and
comparing it to (10) or by transforming (3) into the immaypitonditions that relate to a
spherical surface (and observing thét = N> = 1,7 = 0). If one interprets thk by
observing that, in addition:

0 0 0 0

then one will see directly th@B) is precisely the Gauss formula that relates to thergp
while the other two Codazzi formulas are satisfied idahy.

6. — In order to better exhibit the aforementioned redudtiat we would like to

carry out, we replace the differential quotiedty do with other quotients that are
determined by the relations:

i 2 ql— 92 —qiﬂoa
a0, ag ds, do,  2ds 20s,’

and replace thie with other quantities that are defined in the followingywa
ki=-p1G1+01 G2, kk=02G1+p2G>.

The transformation of formulgd) and(2) presents no difficulties. If one combines the
transformed relations conveniently then one will a@ the formulas:

280 Py L) Gi- (o) G+ (s + G2 = O
ds K0S K K

06,0 P, [(Ql—QZ) G1+ (p1—p2) Gz]+—(p1f2 CGury) =0
0s, Kk 0§ K

when one takefl) and(2) into account(3) will be easily transformed into:
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2 2 1
=2 (Giri—Gara—1).
35, 95 +0,+G,; K(glrl Gara—1)

Having said that, if one sets:

pr=—kT, pP2=—-kKT1, Q1:K/\/1, Q2:KN2

and observes that:

SN N+ T T

then the preceding relations will take on the definifosen:

‘2_/\%/2+g—2+(71—72)gl—(/\/1—/\/2)92=(NN2+7173(T{ ~NTY,
%‘%*(N;M)@—m—mgf(NN ATITNT 5+ N 1) (11)

0 0
£+T%+g12 'i'gz2 :(/\/’1/\/’2'i'lzillziz)(glrl_gzr 2_1)-

If one also introduces the new notation in formulagi{@n they will become:

0X 0X

gz-/\/’lx_gly_li Ezgz y+TZZ’

ﬂ:g X_TZ, ﬂ:/\/’ Z—g X—l, (12)
6§ il 1 6% 2 2

0z 0z

£271(y+r1)—/\/’1(x—r2)’ Ez_ 2(X_r1)+N2(y+rl)'

7. — How does one characterize the normal congruencesstdér for the lines of a
congruence to all be normal to a surface, it is necgsnd sufficient that one must have
oz = 0 for (at least) one point of the generator O,y = 0); i.e., if one recalls (4):

[az j [az j o
—+1, |COSw+ +r, | sinw =0,
00, 00,

for any a It is therefore necessary and sufficient thatelshould exist a functionthat
admits the differential quotientsr-and —, , and by virtue of (10), for that to happen, it
is enough that one should have:
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o —£=k1f1+k2f2,
0o, 00,

i.e., from(0), thatthe mean distributor parameter should be zenmowhat amounts to the
same thing, thahe focal planes should be perpendicular simply thathe foci must fall

upon the limit points.That will permit one to také, = — 7, =7, and therefore, when one
also chooses the origin to be on the surface, form{das will become the known

fundamental formulas for the intrinsic analysis offaces, while (11) will finally reduce
to the Codazzi formulas.

8. — We conclude with just one application of formulast@3he determination of the
surface that is enveloped by the planes perpendiculdrettiries of the congruence. If
we differentiate the equatiaw 0 then we will immediately get, by means of the (133,
coordinatex = ry, y = — r; of the contact point of the-plane with its own envelope.
When the same formulas are applied to that point, whihttell us, for any s the
direction of a tangent that is defined in thplane by direction cosinag and S that are
proportional to:

P, cosw—Q. sinw Q1 cosw+ P, sinw

resp., in which we set:

P1=p1+k1r1+£, Po=p2t+kora— arl,
00, o,
or or

Qi=utkirp——1, Q=C-kr-—%,
00, oo,

for brevity. We then need to note that by virtue of (0g, @an takeP; = — P, = P.
Having done that, let:

a=A(Pcosw-Q;sind), B=A(Qicosw—-Psina),
and consequently:
A Cosw:w’ A sin Q:M.
Ql Qz - P Q]_ Qz - P

The curvature of the normal section is determined byatitldesw and A dy : dg, and
therefore, by virtue of (3), it can be expressed in theviing way:

_ .. Qa*-2PaB+Qp?
N=A — = > :
(Bcosw—-asin @ 2.0 -

Hence, if one adopts the usual notation:
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Q Q P
Np= — No= —=2 T=—" .
' Qle_P2 ’ Qle_P2 Qle_P2

Thetotal curvature(NV; N> — T2) is then inverse t@; Q. — P?, and the ratio of thmean
curvatureto the total curvature is one-halfQf + Q. ; i.e.:

0 0
200— | — +k, |, — -k |r,. 13
o [60’1 zj 1 [60’2 1} 2 ( )

The case ofsotropic congruencess noteworthy, which are the ones for whighs
constant on each generator. By virtue of (byyill also have a constant value at each
point ofg then, and formulagl) and(2) will give:

%, 0q__, % 0

0o, 00, 0o, 00,

=TIs.

Therefore, if one takes (10) into account then the egmeq13) will change into the
left-hand side of the equation:

0 0 0 0
+k + - +2|09=0,
(s

which will then characterize the envelopes withozeean curvature. On the other hand,
if the preceding values of andr; are substituted i(0) then that will become:

0 0 0 0
+k + - +2| p=0.
L

Hence, one will get an infinitude of elastoids bkihg q to be proportional t@, and in
particular, forg = 0, one will arrive at the following theorem Bybaucour:

The mean envelope of an isotropic congruence eastoid.




