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 While teaching my students about the recent research of prof. VOLTERRA on the 
distortions of elastic bodies, I was led to a simple proof of the formula that was at the 
basis (*) of that study, and now I believe that it would be useful to make that formula 
(slightly modified) known, either for the somewhat simpler and more symmetric aspect 
that I succeeded in giving to it or because it offered me a way of examining some results 
that were obtained by Volterra that persist independently of the Euclidian hypothesis. 
 Let u, v, w be the components of the displacement of an arbitrary point (x, y, z), and 
let: 
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be the components of a regular deformation.  These six functions are therefore assumed 
to be finite, continuous, and monodromic, as well as all of their first and second 
derivatives; however, one does not necessarily assume this for u, v, w, and the 
components of the rotations: 
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 In order to express u at an arbitrary point M, one can always write: 
 

u = u0 + 
u u u
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 ∂ ∂ ∂+ + ∂ ∂ ∂ 
∫ , 

 

                                                
 (*) Rendiconti dei Lincei, 1905, pp. 129.  
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in which u0 denotes the value of u at an arbitrary point M, and the integration is extended 
along an arc that goes from M0 to M1 .  Therefore: 
 

u = u0 + ∫ (a dx + h dy + g dz) + ∫ (q dz – r dy) . 
 

In order to make only the components of the deformation appear in it, the second integral 
is then given the form: 
 

∫ [r d(y1 – y) – r (z1 – z)] = q0 (z1 – z0) − r0 (y1 – y0) + ∫ [(z1 – z) dq − (y1 – y) dr]. 
 

and one notes that one has: 
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It will then follow that: 
 

u = u0 + q0 (z1 – z0) − r0 (y1 – y0) + ∫ (ξ dx + η dy + ζ dz),   (5) 
 

in which: 
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   (6) 

 
 Formula (5), and the analogous ones for v and w, are (with slight modifications) 
precisely Volterra’s formulas, which permit one to calculate the displacements (u, v, w) 
from the deformations (a, b, c, f, g, h).  In them, p0, q0, r0 are considered to be arbitrary 
constants that must then be equal to the values of p, q, r at M0.  In fact, if one 
differentiates (5) with respect to y1 and z1 then one will find that: 
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∫ , 

 
from which, it results by circular permutation and suppressing the index 1, in turn, that: 
 



Cesaro – On VOLTERRA’s formulas. 3 

0

0

0

,

,

,

g h f b c f
p p dx dy dz

y z y z y z

a g h f g c
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  (7) 

 
which indeed leads one to expect (4).  In order for the function u that is defined by (5) to 
be monodromic in an acyclic space, it is necessary and sufficient that one have: 
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and from (6), it will result that these conditions, and the analogous ones for v and w, are 
just the noted conditions of Saint-Venant, which are necessary and sufficient for the 
existence of the u, v, w.  When the space that the body occupies is cyclic instead (for 
simplicity, suppose that just one cut ς is sufficient to render it acyclic), the integral (5) 
will lead to different values u′ and u″ of u on the faces of the cut.  One thus has a 
discontinuity u′ − u″ = u  in u when one crosses ς, and the same thing will happen for the 
components of the rotation that were given by (7).  Therefore, when one takes this into 
account, one can give (5) the form: 
 

u + ry – qz = u0 + r0 y0 – q0 z0 + 
h a g a

a y z dx
x y x z

   ∂ ∂ ∂ ∂  + − + − +     ∂ ∂ ∂ ∂     
∫ ⋯ , 

 
and one will see that one has u = l qz ry+ − , etc., in which l  denotes the value of the 

last integral when taken along an arbitrary closed line that crosses ς just once inside of 
the space considered.  When one physically performs the cut ς, the last formula will 
define a rigid motion of one face of ς with respect to the other one that is equal and 
opposite to the distortion that is capable of constraining the body in the state of tension 
that determined by the sextuple a, b, c, f, g, h. 
 Now, if one takes stereographic coordinates x, y, z in a non-Euclidian space then the 
linear element will be represented by: 
 

Q 2 2 2dx dy dz+ + , where 1 / Q = 1 +1
4 K(x2 + y2 + z2), 

 
and one lets u, v, w be the variations in x, y, z that are produced by the deformation, 
namely, one lets Qu, Qv, Qw be the components of the infinitesimal displacement of each 
point (x, y, z).  The components f, g, h of the deformation are always given by (2), but (1) 
no longer applies to a, b, c.  Rather, one has: 
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u

z

∂
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where: 
ε = 1

2 KQ (uα + vy + wz), 

and consequently: 

u = u0 + ∫ (α dx + h dy + g dz) + ∫ (ε dx – γ dy + β dz).   (9) 
 
Here, one should note that the components of the rotation are not given by (3) – namely, 
α, β, γ – but rather by: 
 p = α + 1

2 KQ (vz − wy), 

 q = β + 1
2 KQ (wx − uz), 

 r = γ + 1
2 KQ (uy − vx), 

and that in place of (4), one has: 
 

x
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ε∂ ∂ ∂− +
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x
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, etc. 

Meanwhile: 

∫ (ε dx – γ dy + β dz) = ε0 (x1 – x0) − γ0 (y1 – y0) + β0 (z1 – z0) – 

∫ [(x1 – x) dα – (y1 – y) dγ + (z1 – z) dβ], 
 

and the last integral splits into one part: 
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and another one that depends upon just ε: 
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It remains for us to express the latter in terms of a, b, c, f, g, h.  Now, one has: 
 

x

ε∂
∂

 = 1
2 KQ(u + gy – bz + ax + hy + gz), etc., 

 
and consequently the expression (11), in turn, will split into one part: 
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and another one: 
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∫
 

 
which integration by parts will transform into: 
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∫

∫
  (13) 

 
Meanwhile, an easy calculation gives: 
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  (14) 

where 
ω = 1

2 (ax2 + by2 + cz2 + 2fyz + 2gzx + 2hxy), 

 
although the expression (13) can be considered to be known when one is given just the 
functions a, b, …, h.  Now, (9) becomes: 
 

0 0 1 0 0 1 0
2 2 21

0 1 0 1 0 1 0 0 0 0 0 04

1
0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 02

( ) ( )

[( ) ( ) ( ) ]( )

( )[ ( ) ( ) ( )]
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u u z z y y

KQ x x y y z z u y z
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β γ
γ β

γ β α γ γ α

ξ η ζ

= + − − −
− − + − + − + −

+ − + − + + − + + −

+ + +∫

 (15) 

 
where ξ, η, ζ are obtained by collecting the terms that are multiplied by dx, dy, dz, 
respectively, in the first integral (9), the integrals (10) and (12), and in the two integral 
(13). 
 The forms that the displacements assume in the case of a rigid motion result 
immediately from (15).  In fact, it suffices to suppose that all of the components of the 
deformation are zero (which implies that ξ, η, ζ will also reduce to zero) in order to find 
that: 

2 2 21 1
2 4

2 2 21 1
2 4

2 2 21 1
2 4

( ) ( ),

( ) ( ),

( ) ( ),

u l z y Kx lx my nz Kl x y z

v m x z Ky lx my nz Km x y z

w n y x Kz lx my nz Kn x y z

µ ν
ν λ
λ µ

 = + − + + + − + +
 = + − + + + − + +
 = + − + + + − + +

 (16) 

 
when one lets l, m, n, λ, µ, ν denote the values of the functions: 
 
 l   = Q (u + γ y – β z), λ = α + 1

2 K (ny – mz), 

 m = Q (v + α z – γ x), µ = β + 1
2 K (lz – nx), 

 n  = Q (w + β x – α y), ν = γ + 1
2 K (mx – ly) 
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at M0 .  One notes that if l, m, …, ν take on their expressions at the point M, instead, then 
(16) will be satisfied identically, because that would be equivalent to taking M0 to M.  
The rigid motion can thus be characterized by saying that the functions l, m, …, ν keep 
their values l0, m0, …, ν0 throughout.  One should also put (16) into the form: 
 

Qu = l + Q (mz – ny) + 1
2 KQ [x(lx + my + nz) – l (x2 + y2 + z2)], etc., (17) 

 
in order to exhibit the duality that exists between the displacements and the rotations: 
 

p = λ + KQ (mz – ny) + 1
2 KQ [x (λx + µy + νz) – λ (x2 + y2 + z2)], etc., 

 
and it is easy to convince oneself that simultaneously annulling a, b, …, h will insure the 
rigidity of the motion in all of space; that is, the distance r between two arbitrary points 
M and M0 will remain invariant.  In fact, starting with the formula: 
 

sin2 ( )1
2 Kρ  = 1

4  KQQ0 [(x − x0)
2 + (y − y0)

2 + (z − z0)
2], 

 
and observing that the deformation will produce the variation – εQ in Q, one easily finds 
that for rigidity, one must have that: 
 

(x – x0) (u – u0) + (y – y0) (v – v0) + (z – z0) (w – w0) 
= 1

2 (ε + ε0) [(x – x0)
2 + (y – y0)

2 + (z – z0)
2], 

 
and this relation, which makes the conditions a = b = … = h = 0 necessary for an 
infinitesimal ρ, is verified for an arbitrary ρ by (16).  Indeed, one arrives at this by 
integrating: 

u

x

∂
∂

= 
v

y

∂
∂
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w

z

∂
∂

 = ε,      
w

y

∂
∂

 = − 
v

z

∂
∂

 = α,      etc., 

 
and taking into account the relations: 
 

x

α∂
∂

= 
y

β∂
∂

 = 
z

γ∂
∂

 = 0,      
y

γ∂
∂

 = − 
z

β∂
∂

 = 
x

ε∂
∂

,      etc., 

 
from which, it is easy to deduce that all of the second derivatives of ε must be zero.  
Now, if one takes ε = 1

2 K (lx + my + nz) then one will have: 
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∂
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∂
∂
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x y

∂
∂ ∂

 = 1
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x z

∂
∂ ∂

 = 1
2 Kn,     

2u

y z

∂
∂ ∂

 = 0, 
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and if one develops u – u0 in a Taylor series then (after some transformations) one will 
recover the first of (16). 
 In order to give (15) a more compact form, one agrees to introduce the functions l, m, 
n, and their values at M0, and writes: 
 

  u = 0

0

l

Q
 + β0 z1 – γ0 y1 − 1

4 Kl0 [(x1 – x0)
2 + (y1 – y0)

2 + (z1 – z0)
2] 

+ 1
2  K(x1 – x0) (l0 x1 + m0 y1 + n0 z1) + ∫ (ξ dx + η dy + ζ dz),  etc. (18) 

 
where 

 ξ = 1 1

1 l a h a g
y z

Q x y x z x

 ∂ ∂ ∂ ∂ ∂ + − + −   ∂ ∂ ∂ ∂ ∂  
 

 + 1
2 KQ [(x1 – x) ωx + (y1 – y) ωy + (z1 – z) ωz] 

 − 1
4 K [(x1 – x0)

2 + (y1 – y0)
2 + (z1 – z0)

2] 
l

x

∂
∂

 

 + 1
2 K (x1 – x) 1 1 1( ) ( ) ( )

l m n
x x y y z z

x x x

∂ ∂ ∂ − + − + − ∂ ∂ ∂ 
, 

 

 η = 1 1

1 l h b h f
y z

Q y y x z x

 ∂ ∂ ∂ ∂ ∂ + − + −   ∂ ∂ ∂ ∂ ∂  
 

 + 1
2 KQ [(x1 – x) ωy + (y1 – y) ωx] 

 − 1
4 K [(x1 – x0)

2 + (y1 – y0)
2 + (z1 – z0)

2] 
l

y

∂
∂

 

 + 1
2 K (x1 – x) 1 1 1( ) ( ) ( )

l m n
x x y y z z

y y y

 ∂ ∂ ∂− + − + − ∂ ∂ ∂ 
, 

 

 ζ = 1 1

1 l g f g c
y z

Q z y x z x

 ∂ ∂ ∂ ∂ ∂ + − + −   ∂ ∂ ∂ ∂ ∂  
 

 + 1
2 KQ [(x1 – x) ωz − (z1 – z) ωx] 

 − 1
4 K [(x1 – x0)

2 + (y1 – y0)
2 + (z1 – z0)

2] 
l

z

∂
∂

 

 + 1
2 K (x1 – x) 1 1 1( ) ( ) ( )

l m n
x x y y z z

z z z

∂ ∂ ∂ − + − + − ∂ ∂ ∂ 
. 

 
The symbols ωx, ωy, ωz briefly represent the partial derivatives of ω, while leaving a, b, 
…, h constant.  Assuming the existence of the functions l, m, n, it is enough to apply (8) 
to the preceding expressions for ξ, η, ζ in order to find the conditions: 
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1 1

2 2

b c g h f
K f y z x

z y y z x

    ∂ ∂ ∂ ∂ ∂+ + + + −    ∂ ∂ ∂ ∂ ∂    
 + 

21 a g h f

Q y z x y z x

  ∂ ∂ ∂ ∂ ∂− + −  ∂ ∂ ∂ ∂ ∂ ∂  
 = 0, 

 

1 1

2 2

c a h f g
K g z x y

x z z x y

  ∂ ∂ ∂ ∂ ∂ + + + + −   ∂ ∂ ∂ ∂ ∂    
 + 

21 b h f g

Q z x y z x y

  ∂ ∂ ∂ ∂ ∂− + −  ∂ ∂ ∂ ∂ ∂ ∂  
 = 0, 

 

1 1

2 2

a b f g h
K h x y z

y x x y z

    ∂ ∂ ∂ ∂ ∂+ + + + −    ∂ ∂ ∂ ∂ ∂    
 + 

21 c f g h

Q x y z x y z

  ∂ ∂ ∂ ∂ ∂− + −  ∂ ∂ ∂ ∂ ∂ ∂  
 = 0 

 
that are necessary for the monodromy of the functions that are defined by the integrals 
(18).  In addition, for the existence of l, m, n – that is, for the integrability of (14) and the 
analogous relations that correspond to m and n – one must also satisfy the following 
conditions: 
 

1 1 1
( ) ( ) ( )

2 2 2

g h f f
K b c x b c y b c z b c

z y z z y y z

      ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + − + + + − + − −      ∂ ∂ ∂ ∂ ∂ ∂ ∂      
 

+ 
2 2 2

2 2

1
2

b c f

Q z y y z

 ∂ ∂ ∂+ − ∂ ∂ ∂ ∂ 
 = K2 Qω, 

 

1 1 1
( ) ( ) ( )

2 2 2

h f g g
K c a y c a z c a x c a

x z y x z z x

  ∂ ∂ ∂ ∂ ∂ ∂ ∂   + + + − + + + − + − −      ∂ ∂ ∂ ∂ ∂ ∂ ∂     
 

+ 
2 2 2

2 2

1
2

c a g

Q x z z x

 ∂ ∂ ∂+ − ∂ ∂ ∂ ∂ 
 = K2 Qω, 

 

1 1 1
( ) ( ) ( )

2 2 2

f g h h
K a b z a b x a b y a b

y x z y x x y

      ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + − + + + − + − −      ∂ ∂ ∂ ∂ ∂ ∂ ∂      
 

+ 
2 2 2

2 2

1
2

a b h

Q y x x y

 ∂ ∂ ∂+ − ∂ ∂ ∂ ∂ 
 = K2 Qω . 

 
These six conditions thus insure the existence of l, m, n, and then that of the 
displacements u, v, w, which are given by (18) in monodromic form in any acyclic part of 
space that one considers.  The predicted conditions reduce to those of Saint-Venant for K 
= 0, and for arbitrary K they will be included in the general conditions that were given by 
Padova.  If one assumes that they are satisfied in a cyclic region of space in which (18) 
continue to give the displacements then they will generally be expressed in a polydromic 
form.  Proceeding as for K = 0, one can immediately see by means of (14) that the 
discontinuities of the displacements upon crossing the surface of a cut ς are given by the 
formulas: 

Qu  = ( )l Q z yβ γ+ −  , etc.    (19) 



Cesaro – On VOLTERRA’s formulas. 10 

in which l  denotes the integral: 
 

1
2

1
2

1
2

( )

,

y y

x

x

h a h a
Q a y y KQ y z dx

x y x y

b h f h
h y z KQy dy

x y x z

f g c g
g y z KQz dz

x y x z

ω ω

ω

ω

    ∂ ∂ ∂ ∂ + − + − − +    ∂ ∂ ∂ ∂    

  ∂ ∂ ∂ ∂ + + − + − −    ∂ ∂ ∂ ∂   

  ∂ ∂ ∂ ∂  + + − + − −     ∂ ∂ ∂ ∂     

∫

 

 
which is extended over a closed line that can be continuously deformed inside the region 
considered without varying the integral.  If α , β , γ  also remain invariant then for K ≠ 

0, (19) will define a deformation of ς, but it is easy to see that the quantity above will 
depend upon the position of the point at which the line of integration crosses ς, and it is 
important to specify the form of that dependency.  It is easy to deduce α, β, γ from (18) 
by differentiating with respect to x1, y1, z1.  The value of α at M1 is: 
 

α1 = α0 + 1
2 K [m0 (z1 – z0) – n0 (y1 – y0)] 

+ 1 1 1
1 12 2 2( ) ( )

g h n m
K y y K z z dx

y z x x

 ∂ ∂ ∂ ∂− − − + − ∂ ∂ ∂ ∂ 
∫  

+ 1 1 1
1 12 2 2( ) ( ) z

f b n m
K y y K z z KQ dy

y z y y
ω ∂ ∂ ∂ ∂− − − + − − ∂ ∂ ∂ ∂ 

 

+ 1 1 1
1 12 2 2( ) ( ) y

c f n m
K y y K z z KQ dz

y z z z
ω

 ∂ ∂ ∂ ∂− − − + − +  ∂ ∂ ∂ ∂  
, 

 
namely, if one extends the integration to ends that include the coordinates of M1 then: 
 

α1 = α0 + 1
2 K [(m1 z1 – m0 z0) – (n1 y1 – n0 y0)] 

+ 1 1
2 2

g h n m
K y z dx

y z x x

 ∂ ∂ ∂ ∂ − − −   ∂ ∂ ∂ ∂  
∫  

+ 1 1
2 2 z

f b n m
K y z KQ dy

y z y y
ω

  ∂ ∂ ∂ ∂− + − −  ∂ ∂ ∂ ∂  
 

+ 1 1
2 2 y

c f n m
K y z KQ dz

y z z z
ω

 ∂ ∂ ∂ ∂ − + − +   ∂ ∂ ∂ ∂   
. 

 
Therefore, if one denotes the last part of this expression by λ  (i.e., the one that has the 
form of an integral) then if one assumes that the integration is extended along one of the 
usual closed lines then one will get: 
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α  = 1
2 ( )K mz ny λ− + , etc., 

 
at an arbitrary point (x, y, z) of ς, with λ , µ , ν  constants.  It is now sufficient to 
substitute these results into (19) in order to find that: 
 

Qu  = 2 2 21
2( ) [ ( ) ( )]l Q z y KQ x lx my nz l x y zµ ν+ − + + + − + + , etc., 

 
and to convince oneself by comparing this with (17) that the elastic distortions will imply 
only rigid motions even in non-Euclidian spaces.  Granted, this result can be considered 
to be an immediate consequence of the hypothesis that the deformation is regular, which 
is, in fact, expressed by setting a , b , …, h  simultaneously equal to 0, but it is still 
useful to see how the calculations that are developed by starting with the fundamental 
formulas lead to the same result, as well as to know how the constants of the distortion 
depend upon the components of the given deformation. 
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