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While teaching my students about the recent researchobf\WOLTERRA on the
distortions of elastic bodies, | was led to a simmieof of the formula that was at the
basis () of that study, and now | believe that it would be ustfumake that formula
(slightly modified) known, either for the somewhat gler and more symmetric aspect
that | succeeded in giving to it or because it offered mayof examining some results
that were obtained by Volterra that persist independeitlye Euclidian hypothesis.

Let u, v, w be the components of the displacement of an arbigamt , y, z), and

let:
azM N W (1)
0x oy 0z
pdfow 0v) g (c‘w 6wj = 3(2v, 0 2
2{dy o0z 0z 0x ox oy

be the components ofragular deformation. These six functions are thereforeassl
to be finite, continuous, and monodromic, as wall &l of their first and second
derivatives; however, one does not necessarily nassthis foru, v, w, and the
components of the rotations:

ow _ov 1(0u 6W ov_du
p== , q= r=— : (3)
2 ay 0z 9z ax 2| ax 6y
In order to express at an arbitrary pointl, one can always write:

us= uo+J'( dx+g—§dy+%J dj

() Rendiconti dei Lincei, 1905, pp. 129.
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in whichug denotes the value afat an arbitrary poinl, and the integration is extended
along an arc that goes fraviy to M1 . Therefore:

u:uo+j(adx+hdy+g d? +j(q dz—rdy).

In order to make only the components of the deformatpypear in it, the second integral
is then given the form:

.[[f diyr=y) =1 (zz—2)] = o (22 —20) = ro (Y1 —Yo) +j [(z2 —2) dg = (y1 —y) dr].

and one notes that one has:

% :%—a_g, ﬁ :@—%, % :@—ﬂ, etc. (4)
ox 0z O0X ox ox ody dy 0z O0x
It will then follow that:
U=Uo+ o (2—20) —To (ya —y0) +) (Edx+ 7 dy+ £l (5)
in which:
da o0h da 0g
—a+t(y,—- YW ——— |+(z— 2| ——=— |,
F=a+(y, w(ay axj (2 z[az axj
oh o0b oh of
=h+(y-YW ——|+(z2- 2| ——— |, 6
n (% y)(ay 6xj (z 2)(62 axj (6)
og of dg dc
=g+(y -y =—|+(z- 2| =——|.
C=g+(y w[ay axj (2 z(az axj

Formula (5), and the analogous ones \foand w, are (with slight modifications)
precisely Volterra’s formulas, which permit one tocoddte the displacements, v, w)
from the deformationsa( b, c, f, g, h). In them,po, Qo, ro are considered to be arbitrary
constants that must then be equal to the valuep, @f r at My. In fact, if one
differentiates (5) with respect @ andz then one will find that:

ﬂ :hl_r0+J. %—% dx+ ﬂ]—@ dy+ a_g—ﬂ dZ,
oy, dy O0x dy 0x oy 0X

ou da 0g oh of dg aj
A ocgirq+ || Z2-2 dx+| 22-Z | ay+| 22-25) 44,
oy nT% jKaz axj (62 axj Y (62 d }

from which, it results by circular permutation and suppnestie index 1, in turn, that:
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dg oh of adb dc Of
=p+ ||| —=——— |dX+| ——— | dy| — —— | dZ,
TR IHay azj " (ay azj y{ay azj %

da 0g oh of 0g 6(3
=q¢,+||| ——— |dx+| — —— | dy| ——-—| dZ, 7
9= % J‘Kaz axj X (az axj y{ z 0 % 0
r:r0+J' oh_oa dx + 9b_oh dy+ ot_9g dz|,

ox oay ox ady ox 0y

which indeed leads one to expect (4). In order for thetimmu that is defined by (5) to
be monodromic in an acyclic space, it is necessatsafficient that one have:

6_0:% %:ﬁ g:a_n (8)
0z o9y  ox 90z oy OX

and from (6), it will result that these conditionsdahe analogous ones ferandw, are
just the noted conditions daint-Venant which are necessary and sufficient for the
existence of thes, v, w. When the space that the body occupies is cyclieads(for
simplicity, suppose that just one cgiis sufficient to render it acyclic), the integral (5)
will lead to different values/ andu” of u on the faces of the cut. One thus has a
discontinuityu’ —u” = U in u when one crosses and the same thing will happen for the
components of the rotation that were given by (7). r@loee, when one takes this into
account, one can give (5) the form:

_ oh oJa 0g da
u+ry—qz—uo+royo—qozo+J' a+ &_a_y y+ 2322 dxcke-- b

and one will see that one hass | +gz—Ty, etc., in whichl denotes the value of the

last integral when taken along an arbitrary closed lia¢ ¢hosseg just once inside of
the space considered. When one physically performsuhe, ¢he last formula will
define arigid motion of one face of with respect to the other one that is equal and
opposite to the distortion that is capable of constrairiegbbdy in the state of tension
that determined by the sextugleb, c, f, g, h.

Now, if one takes stereographic coordinateg z in a non-Euclidian space then the
linear element will be represented by:

Q Jd@+dy+ dZ, where 1Q=1+K(E+y +2),

and one letsy, v, w be the variations ix, y, z that are produced by the deformation,
namely, one letQu, Qv, Qw be the components of the infinitesimal displacememiach
point (X, y, 2. The components g, h of the deformation are always given by (2), but (1)
no longer applies ta, b, c. Rather, one has:
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Ju ou Ju
— =za+¢g — =h-)y, — =g+
ox oy K 5 T9rA
where:
£=1KQ (ua+vy+wa,

and consequently:
u:uo+j(adx+hdy+gd3 +j(£dx—ydy+ﬁdz). (9)

Here, one should note that the components of theantate not given by (3) — namely,
a, B, y— but rather by:

p=a+3KQ (vz-wy),
q=p+;KQ (wx-u3,
= y+3KQ (uy - vx),
and that in place of (4), one has:

6,8 oa 6g o€ oy _ oh oda o0&

==+ =—-—"-—", efc

ox 08z ox 0z ox o0x ady oay
Meanwhile:

[ (edx—ydy+ B2 = & 0 —%0) = 16 (v —Y0) + /o (21— 20) —
J 106 =) dar— g1 —y) dy+ @ 2 dA,

and the last integral splits into one part:
aa 6h da dh
oh adb oh of
{( Yo, )[——a—xj (- 3(&‘&)} dy (10)

{(yl y)[ag g‘;}(a—z[f)—g—g—iﬂ d%

and another one that depends upon4ust

J

os oc oc | |
j{(xl—x)&ﬂyl— Moy +(a za—z} d:

{(xl—x)‘;—iﬂyl— w‘ﬂ dy (11)

{(xl—x)g—}(a— zg—j d%
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It remains for us to express the latter in terma, &f c, f, g, h. Now, one has:

o€

Fy =1KQ(u +gy—bz+ax+hy+g2, etc.,
X

and consequently the expression (11), in turn, will sglit one part:

SK[QI( %= 3 ax+ hyr gz+( y- )¢ hx by )fz( ,z)(z &x +y)cz
+(x - X(hx+ byt fy+( y= ¥ hx by Ya(,z )z ax by )pz dy (12)
(% = N(gx+ fy+ cp+( y= Y hx by ¥z2(,z )z ax hy )oz dz

and another one:

“3K[QU( % =Y uryy=-Br+( y= ¥ wa zy)e( 2 )z w3 »a)]y( dx)
H(x = J(vtay-y3-(y- Xuwy yS R Ay )y
H(x-R(w+By-a3-(z- X vy ¥} (d,2 )z

which integration by parts will transform into:

—4KQI(% = %) +(%= W’ +( 2= I Wyo%-Bo %
+3KQ (4 =X ( X = 9( Wt Vo %503
(Y= Yo) (% + 0% = Yo%)
2z - ) (W+Bo%—a o W}
“3K[ 106 =X%+(%- 9 +(2- ¥IHQuy ypB)Ek
K[ g x=9 d Qury y-B 1R
+( = Yo dQAy+a,z-V, %) (13)
+(z-2)d Q w+ B, x—a, Y-

Meanwhile, an easy calculation gives:
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iix[Q(uwy—ﬁz)]

a0, (ag aajz+1KQ)(ax+ hy dz- K@,
ox oy ox 0

56—[Q(u yy-£B83]

b oh) (of oh
=h+| ——— —-——|z+3 KQY ax h
(ax ayjy (ax 5 jz Q ax hy gz

(14)

i—Z[Q(uwy—ﬁz)]

of dg Jc adg 1
= z+2KQz(ax+ h
-9 [ax ayjy (ax azj R y- oF

where
w=1(ax + by +cZ + Ayz+ 29zx+ 2hxy),

although the expression (13) can be considered to be kwben one is given just the
functionsa, b, ..., h. Now, (9) becomes:

U=t +5(z2-2) -V %~ ¥
—4KQI(% = %) +(%= W +( 2= I Wy, %-Bo %
+%KQ0(X1_)%)[X1(L{)+V0yo_IBOZ)+ X \6+ao%_yo)%+ g WVy.85a ON (15)
+[(Edx+n dy+¢ d3,

where &, 1, { are obtained by collecting the terms that are ipligd by dx, dy, dz
respectively, in the first integral (9), the intalgr (10) and (12), and in the two integral
(13).

The forms that the displacements assume in the o#sa rigid motion result
immediately from (15). In fact, it suffices to fgse that all of the components of the

deformation are zero (which implies th@tr, will also reduce to zero) in order to find
that:

u=l+puz-vy+i K(Ix+ my+ ng-1 Kl k+ §+ 2,
v=m+v x=A z+1 Ky b my N1 K> °y g (16)
=n+Ay-pux+i KL b my np-1 Kn> % %y,

when one lets m, n, A, 1, vdenote the values of the functions:

I =Q(u+yy-p2), A=a+ 3K (ny -myg
m=Q (V+az-yx), U=pB+3K(z-ny,
=Q(w+ Bx—ay), v=y+ K (mx-1y
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atMo . One notes that if m, ..., vtake on their expressions at the pdmtinstead, then
(16) will be satisfied identically, because that wouldeogiivalent to takindgvp to M.
The rigid motion can thus be characterized by sayingthieatunctiond, m, ..., v keep
their valuedo, my, ..., W throughout. One should also put (16) into the form:

Qu=1+Q Mz —ny+iKQ[x(Ix +my+n2 —I (C+y*+7)], etc., (17)
in order to exhibit the duality that exists betweendisplacements and the rotations:
P=A+KQ Mz —ny+1KQ[x (Ax+ y +v2) —A (¢ +y* +Z)], etc,,
and it is easy to convince oneself that simultaneoustyling a, b, ..., h will insure the

rigidity of the motion in all of space; that is, tHestancer between two arbitrary points
M andMg will remain invariant. In fact, starting with therfoula:

sirf (307K =4 KQQu [(x= %) + (v = y0)° + (2= 2],

and observing that the deformation will produce the variatie@ in Q, one easily finds
that for rigidity, one must have that:

X=—p) (U-w)+ - (V-1 *+Z-3) (W-w)
=1(e+a) [(x—0)°+ - +@2-3)7,

and this relation, which makes the conditiams= b = ... = h = 0 necessary for an
infinitesimal p, is verified for an arbitrary by (16). Indeed, one arrives at this by
integrating:

and taking into account the relations:

a_a:%:a_y:() a—y:—%:% etc.

ox oy 90z oy 0z  ox’

from which, it is easy to deduce that all of the secdedvatives ofs must be zero.
Now, if one takeg = 1K (Ix + my+ n2) then one will have:

0°u _ 0% _ 9% _ |
> =752 =7 o = 2Kl
0x oy 0z
2 2 2
ou = 1Km, au:%Kn, au_’
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and if one developa — w in a Taylor series then (after some transformatiomg) will
recover the first of (16).

In order to give (15) a more compact form, one agreegrmduce the functionls m,
n, and their values aflp, and writes:

4= 4oz sy~ HKlol0a -0+ 0430’ + (@ 2]

0

+ 1 K(Xt —%o) (lo X1 + Mo y1 + No z1) +j(fdx+ ndy+ d2, etc. (18)

where

& :iﬂ.{. a_a_% y+(%_@j
Qax lay oax) " 3z ax™

+ IKQ[(X1—X) i+ 1—Y) i+ (& -2 W]
- 2K [ =) + b2~y + (@ —20)] %

+ 3K (4 —%) [(xl—x)%w— w%—”;m— zg—ﬂ

p =133 ), (o0 o0
Qay |ay oax) " 3z ax?
+ IKQ[Ou—X) & + (1 —Y)
— 1K [k =X + (1~ Y02 + (@~ 20)] g—'y

+ 1K (x4 —X) {(xl—x)g—'yﬂyl— »g—”y"+(4— ag—ﬂ

10 (og of ag 60))
= = +| =—-—
¢ Qaz (6y axjyl (62 9%

+ 2KQ[(x1—X) - (z1—2) wy
- 3K [ =07 + 62— + (21—~ 20)] %

1 B _a0 _ g 0m _,0n
+ 2K (X x)[(x1 X)az+(y1 y)az+(4 ;az]

The symbolsw, @}, aw briefly represent the partial derivatives @fwhile leavinga, b,
..., h constant. Assuming the existence of the functipnsg n, it is enough to apply (8)
to the preceding expressions ®, in order to find the conditions:
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[ 1( ab  _ac dg, oh_ of\| 1[ o%a a(ag oh af)] _
K| f+=| y—+2z— + —+t——— | + = -——| —=+—-—1| =0,
270z 0y 6y oz 0x/| Q|dyoz dX 0y 0z 0 ¥|

Kg+

o0x 0z

. _
;( o, aaj+ ah, of _ag)], 1[ 0% ay(ah of 09| _q

1
9z 0x dy)| Q|9zdx oW dz dax 0y,
Kln+l X%+y@+ of ,0g_oh)| 1] d°c 9 (of og oh
2\ dy ~0x o0x 0y 0z Q| Oxdy 0zZ(dx 0y 02z
that are necessary for the monodromy of the functibat are defined by the integrals
(18). In addition, for the existence lpim, n — that is, for the integrability of (14) and the

analogous relations that correspondmaandn — one must also satisfy the following
conditions:

SN RN
9z 0y 20z 9z 26y oy 2

1(0%, % %) _

+Q[6zz+6yz 26y62j Qa

K|lc+a+ @.{_ﬂ Ea {ag Ei j E@__li e hj
ox 0z 26y 0z 20 X

d0’c 0d%a 0°g 2
+ -2 =K
Q(ax 07 azaxj Qu

of ag 10 oh 19 oh 19
a+b+ -———(at+t B |+ xX—+=—— + y————
{ 6y ox 20z bj {ay 20 x (& bj Eax 26y( bﬂ

d0’a 0%b 0°h 2
-2 =K Qw.
(ayz 3% axayj Q

These six conditions thus insure the existencel,ofm, n, and then that of the
displacements, v, w, which are given by (18) in monodromic form in any acyphrt of
space that one considers. The predicted conditions rédubese oSaint-Venanfor K

= 0, and for arbitrari they will be included in the general conditions thatengiven by
Padova If one assumes that they are satisfied in a cyeticon of space in which (18)
continue to give the displacements then they will gihebe expressed in a polydromic
form. Proceeding as fd = 0, one can immediately see by means of (14) that the
discontinuities of the displacements upon crossiegstirface of a cug are given by the
formulas:

Qu =1 +Q(Bz-yy) , etc. (19)
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in which I denotes the integral:

oh oa oh oOda 1 ‘
J‘Q{a{& a_yj y+[& a_yjy 3 KQ o, + zuy)} d

+{h+[@—%j y+[ﬂ—ﬂlj z—3 KQWX} dy
z

which is extended over a closed line that can be momtisly deformed inside the region

considered without varying the integral. df, 5, y also remain invariant then fét #
0, (19) will define a deformation af but it is easy to see that the quantity above will
depend upon the position of the point at which the linetefgration crosseg and it is
important to specify the form of that dependency. Hasy to deduce, g, yfrom (18)

by differentiating with respect ta, y1, zz. The value otrat M is:
o= ao + 5K [Mo (22 —20) —No (Y1 —Yo)]

dg _oh an om
+if{—g———lK(yl—y)$(+—§ K(z- Z)EJ d>

2

2oy oz

of ab on am
+H————1K(y,-y)—+1K(z- 3—-2 K d
{ay 37 2 (%1 y)ay ; K(z 2)ay 2 Qv} )
oc of on aom
+ | ——-—-31K(n-yY)—+3K(z-2—+3 K dz,
{ay P AN i L C A ety Quy} %

namely, if one extends the integration to ends thdudecthe coordinates ™, then:

o= a0+ 5K [(my 2 — Mo 20) — (M Y1 — o Yo)]

dg oh on _dm
#1199 sy yon_,0m iy
ZI{ay 9z ? (yax Zaxﬂ X

{i%;,{ @_Za_mj_% KQ,‘,Z} "

dy 0z ° yay ay

oc of on _dm
+| —=——-—+3K|y—-z—|+3K dz.
{Gy 9z 2 (yaz Zazj g wa} Z}

Therefore, if one denotes the last part of this exjmedsy A (i.e., the one that has the
form of an integral) then if one assumes that tiegiration is extended along one of the

usual closed lines then one will get:
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a =iK(mz-ny+A, etc,

N

at an arbitrary pointx( y, 2) of ¢, with A, 7, 7 constants. It is now sufficient to
substitute these results into (19) in order to find that:

QU =1 +Q(az-vy)+4 KQ X Ix+ Tyr - ( k+ ¥+ 3], etc,

and to convince oneself by comparing this with (17) thaetastic distortions will imply
only rigid motions even in non-Euclidian spaces. Granted, thidtrean be considered
to be an immediate consequence of the hypothesishhateformation isegular, which
is, in fact, expressed by settir@, b, ..., h simultaneously equal to 0, but it is still
useful to see how the calculations that are developestaniing with the fundamental
formulas lead to the same result, as well as to know the constants of the distortion
depend upon the components of the given deformation.



