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§ 1. 
 

 In a previous article (this journal, v. 54, pp. 254), I developed a theorem that reduced 
the integration of the hydrodynamical equations for stationary motion to a system of two 
second-order partial differential equations or to the problem of finding a minimum to a 
certain integral, in which the function to be integrated represents the vis viva.  That was 
achieved by expressing the velocities in terms of two new functions that would give 
integrals of the ordinary differential equations that come about and which would fulfill 
the equation of continuity identically.  The extension of this process to the case of non-
stationary motion led to very complicated equations that did not admit any reduction to a 
problem in the calculus of variations. 
 Since then, I have found that this general case can also be always reduced to such a 
problem, and indeed to the integral of a function that differs from the vis viva only by an 
additional term.  The substitution that leads to that result is essentially different from the 
one that was applies in the aforementioned article.  However, both of them have in 
common that they single out the determination of the pressure from the treatment of the 
rest of problem and lead to equations that represent motions of the most general nature 
that the fluid is capable of when it is independent of external forces.  Finally, they have in 
common that the new dependent variables that are employed will define integrals of the 
resulting system of ordinary differential equations when they are set equal to constants.  
However, whereas that substitution leads to two second-order partial differential 
equations for stationary motion, in the present problem, the problem comes down to three 
differential equations, two of which are first order, and one of which is second order. 
 The substitution that is employed links to the usual methods of treating 
hydrodynamical equations.  In fact, one ordinarily makes the assumption that the 
expression: 

u dx + v dy + w dz 
 
should be a complete differential.  However, the u, v, w can always be arranged in such a 
way that this expression reduces to a two-term, differential; i.e., to the form: 
 

dϕ + m dψ, 
which yields the equations: 
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 u = m
x x

ϕ ψ∂ ∂+
∂ ∂

, 

 v = m
y y

ϕ ψ∂ ∂+
∂ ∂

, 

 w = m
z z

ϕ ψ∂ ∂+
∂ ∂

, 

 
which are just the substitutions that are applied.  I remark that this has a certain 
relationship to the consideration of vortex motions that Helmholtz (this journal, v. 55, pp. 
25) introduced into the theory.  Here, the velocities split into one part that is represented 
by corresponding differential quotients of one function and a second one that does not 
admit such a representation in the slightest.  Those vortex motions now depend upon that 
second part alone – i.e., upon the functions m, ψ.  If one then defines the rotational 
velocities of a fluid particle according to the equations (formula 2) that were given there 
then one will have: 

 2ξ = 
m m

z y y z

ψ ψ∂ ∂ ∂ ∂−
∂ ∂ ∂ ∂

, 

 2η = 
m m

x z z x

ψ ψ∂ ∂ ∂ ∂−
∂ ∂ ∂ ∂

, 

 2ζ = 
m m

y x x y

ψ ψ∂ ∂ ∂ ∂−
∂ ∂ ∂ ∂

, 

 
in which the function ϕ vanishes completely (*). 

                                                
 (*) In passing, that yields the problem of putting the expression u dx + v dy + w dz into the form dϕ + m 
dψ when u, v, w are any given functions.  As is already known from the Pfaff problem, from the equations 
above, m, ϕ are integrals of the equations: 
 

dx : dy : dz = : :
v w w u v w

z y x z y x

∂ ∂ ∂ ∂ ∂ ∂
− − −

∂ ∂ ∂ ∂ ∂ ∂
. 

 
Since the multiplier of the equations is 1, if one knows one integral ψ then one can find the second one m 
by the principle of the last multiplier.  However, one will actually have: 
 

v w

z y

∂ ∂
−

∂ ∂
=

m m

z y z y

ψ ψ∂ ∂ ∂ ∂
−

∂ ∂ ∂ ∂
 , etc., 

 
then, and ϕ will actually be a complete differential.  However, ϕ satisfies the differential equation: 
 

v w w u u v

z y x z y xx y z

ϕ ϕ ϕ   ∂ ∂ ∂ ∂ ∂ ∂ − − + −    ∂ ∂ ∂ ∂ ∂ ∂    

∂ ∂ ∂
+

∂ ∂ ∂
 = v w w u u v

w
z y x z y x

u v
   ∂ ∂ ∂ ∂ ∂ ∂ − − + −    ∂ ∂ ∂ ∂ ∂ ∂    

+ . 

 
If one introduces m, ψ, ϑ, in place of x, y, z, as new variables then one will obtain: 
 



Clebsch – On the integration of the equations of hydrodynamics. 3 

 I shall next turn to a general system of equations that exhibits properties that are 
analogous to the system of hydrodynamics. 
 
 

§ 2. 
 

 Suppose that one has the system of equations: 
 

(1)    

1 2
1 2

1 1 1 1
1 2

1 1 2

2 2 2 2
1 2

2 1 2

,

,

,

n
n

n
n

n n n n
n

n n

V u u u u
u u u

x t x x x

u u u uV
u u u

x t x x x

u u u uV
u u u

x t x x x

∂ ∂ ∂ ∂ ∂ = + + + + ∂ ∂ ∂ ∂ ∂


∂ ∂ ∂ ∂∂ = + + + + ∂ ∂ ∂ ∂ ∂



∂ ∂ ∂ ∂∂ = + + + + ∂ ∂ ∂ ∂ ∂

⋯

⋯

⋯⋯

⋯

 

 

(2)      21

1 2

n

n

uuu

x x x

∂∂∂ + + +
∂ ∂ ∂

⋯ = 0, 

 
which should be coupled with the ordinary differential equations: 
 

(3)    
dx

dt
 = u, 1dx

dt
 = u1,  …, 2ndx

dt
 = u2n . 

 
 Equations (1) can be summarized in a symbolic form.  Namely, if the symbol δ 
implies that only the x, but not t, are considered to be variable then: 
 

(4)    δV = 2
2

k k k
k n

k n

u u u
x u u

t x x
δ

 ∂ ∂ ∂+ + + ∂ ∂ ∂ 
∑ ⋯ , 

or also, when one sets: 
(5)      2T = u2 + 2

1u + … + 2
2nu , 

one will get the following: 
 

(6)   δ (V – T) = 
1

2
k k i

k
k i k i k

u u u
x

t x x
δ

 ∂ ∂ ∂+ − ∂ ∂ ∂ 
∑ ∑∑  (ui δxk – uk δxi). 

                                                                                                                                            

ϕ = 

v w w u u v
u v w

z y x z y x

v w w u u v

x z y y x z z y x

ϑ ϑ ϑ

   ∂ ∂ ∂ ∂ ∂ ∂ − + − + −    ∂ ∂ ∂ ∂ ∂ ∂    ∫
   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ − + − + −    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

 dϑ  

 
by integration (cf., Jacobi, Math. W., v. I, pp. 144). 
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We now remark that one can always give the expression: 
 

u δx + u1 δx1 + … + u2n δx2n 
the following form: 

δϕ + m1 δϕ1 + … + m2n δϕ2n , 
 
so we will be led to make the substitutions: 
 

(7)    uk = 1 2
1 2

n
n

k k k k

m m m
x x x x

ϕϕ ϕϕ ∂∂ ∂∂ + + + +
∂ ∂ ∂ ∂

⋯  

 

for the u.  One can then represent the expressions k i

i k

u u

x x

∂ ∂−
∂ ∂

 as sums of determinants 

with the help of these substitutions, namely: 
 

k i

i k

u u

x x

∂ ∂−
∂ ∂

 = r r r r

r i k k i

m m

x x x x

ϕ ϕ ∂ ∂ ∂ ∂− ∂ ∂ ∂ ∂ 
∑ . 

 
However, if one multiplies this expression by the determinant (ui δxk – uk δxi) and then 
sums over k, i then one will get, from known theorems: 
 

1

2
k i

i k i k

u u

x x

 ∂ ∂− ∂ ∂ 
∑∑  (ui δxk – uk δxi) = 

1 1
1 1

1 1
1 1

r r r r

r r r r r

m m m m
u u x x

x x x x

u u x x
x x x x

δ δ

ϕ ϕ ϕ ϕδ δ

∂ ∂ ∂ ∂+ + + +
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂+ + + +
∂ ∂ ∂ ∂

∑
⋯ ⋯

⋯ ⋯

. 

 
 With consideration given to equations (3), one can employ the briefer notation for 
this: 

r r r r
r r

r

dm m d
m

dt t dt t

ϕ ϕδϕ δ ∂ ∂    − − −    ∂ ∂    
∑ . 

 
If we now introduce this into equation (6) then the sum: 
 

k
k

k

u
u

t
δ∂

∂∑ = r r
r r

r

m
m

t t t

ϕϕδ δ δϕ∂ ∂∂  + + ∂ ∂ ∂ 
∑  

 
will combine with the part: 

r r
r r

r

m
m

t t

ϕ δ δϕ∂ ∂ − ∂ ∂ 
∑  

 
in the sum above to give the complete variation of the expression: 
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r
r

r

m
t t

ϕϕ ∂∂ +
∂ ∂∑ , 

 
and equation (6) will then assume the following form: 
 

(8)    r
r

r

V T m
t t

ϕϕδ ∂∂ − − − ∂ ∂ 
∑  = r r

r r
r

dm d
m

dt dt

ϕδϕ δ − 
 

∑ . 

 
 However, this equation contains only 2r variations δm, δϕ on the right-hand side, 
while 2n + 1 variables x will be varied on the left-hand side.  The expression on the left 
that is to be varied must then be an arbitrary function of the 2n + 1 arguments ϕ, m, t, and 
when we once more eliminate the symbols dm / dt, dϕ / dt, we can state the following 
theorem: 

Theorem 1 
 

 Equations (1), (2) can be replaced with the system: 
 

(9)    

1
1

1
1

21

1 2

,

,

0,

r r r
r

r r r
r

n

n

m m m
u u

t x x

u u m
t x x

uuu

x x x

ϕ

ϕ ϕ ϕ

 ∂ ∂ ∂ ′+ + + = Π ∂ ∂ ∂
 ∂ ∂ ∂ ′+ + + = −Π ∂ ∂ ∂
 ∂∂∂ + + + =

∂ ∂ ∂

⋯

⋯

⋯

 

in which: 

uk = 1 2
1 2

n
n

k k k k

m m m
x x x x

ϕϕ ϕϕ ∂∂ ∂∂ + + + +
∂ ∂ ∂ ∂

⋯ , 

 
and in which Π means an arbitrary function of t, ϕ1, …, ϕn, m1, …, mn . 
 This system contains 2n equations of first order and one of second order.  After it has 
been integrated, the u are themselves given by the equation above.  V is determined from 
the equation: 

(10)   V = 
2

1
2

r r
r r

r k rk k

m m
t t x x

ϕ ϕϕ ϕ ∂ ∂∂ ∂ + + +  ∂ ∂ ∂ ∂   
∑ ∑ ∑ + Π. 

 
Equations (3) finally come down to the system: 
 

(11)    rd

dt

ϕ
= − Π′ mr , rdm

dt
= Π′ ϕr . 

 
The missing integral of the system (3), which includes one equation more than the present 
one, gives the principle of the last multipler. 
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 One can add that theorem to the following one, which can be verified with no further 
discussion: 

Theorem 2 
 

 When V is thought of as being expressed by equation (10), equations (9) will make the 
integral: 

2 2

1 2

n

nV dx dx dx dt
+

∫ …  

assume a maximum or minimum. 
 
 These equations include an arbitrary function Π.  Meanwhile, one can assume that the 
integral of a system of 2n equations of the first order and one equation of second order 
must include just as many arbitrary constants as the integral of a system of 2n + 2 
equations of first order.  It then seems that equations (9) − into which Π enters, in 
addition − will lead to more arbitrary constants than the nature of the problem permits.  
This surplus of arbitrary constants can then have no effect on the dependent functions of 
the original problem; it must vanish from the expressions for V, u, u1, …, u2n .  I will now 
show that, in fact: 
 
 One can set the function Π equal to zero without compromising the generality of the 
values of V, u, u1, …, u2n . 
 

§ 3. 
 

 Equations (11) have the canonical form, which, as is known, allows one to give the 
integrals of these equations a corresponding form, and to express them by the complete 
solution of a partial differential equation.  In fact, one can always determine a function 
(W) of t, ϕ1, ϕ2, …, ϕn, and n constants a1, a2, …, an such that: 
 

(12)   
1 2

1 2

1 2
1 2

, , ,

, ,

n
n

n
n

W W W
m m m

W W W

a a a

ϕ ϕ ϕ

α α α

     ∂ ∂ ∂= = =     ∂ ∂ ∂     


    ∂ ∂ ∂ − = − = − =      ∂ ∂ ∂     

…

…

 

 
are the integrals of equations (11), while the α mean new constants, and one has: 
 

(13)     
W

t

∂ 
 ∂ 

 = Π, 

 
from which the partial differential equations for W will emerge when one eliminates the 
m from Π with the help of the first of equations (12). 
 One can now obviously introduce the function (W), which includes just one arbitrary 
constant, into the calculations in place of the function Π, in which the a, α are no longer 
to be regarded as constants, but as functions of t, x, x1, …, x2n when one goes from the 
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ordinary differential equations to the partial ones.  At the same time, one can also think of 
these functions a, α as dependent variables in the equations, instead of m, ϕ , in which the 
ϕ are also replaced with these functions in (W).  We see how the functions V, u can be 
expressed in terms of these new dependent variables. 
 If one introduces equations (12) into the expressions for the u then they will go to: 
 

uk = 1 2

1 2

n

k k k n k

W W W

x x x x

ϕϕ ϕϕ
ϕ ϕ ϕ

     ∂∂ ∂∂ ∂ ∂ ∂+ + + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂     
⋯ . 

 
However, if we let W denote the function (W), when we consider it to be a function of the 
t, x, x1, …, x2n, then we will obviously have: 
 

k

W

x

∂
∂

 = 1 2 1 2

1 2 1 2k k k k

a aW W W W

x x a x a x

ϕ ϕ
ϕ ϕ

       ∂ ∂ ∂ ∂∂ ∂ ∂ ∂+ + + +       ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂       
⋯ + … , 

 
and we can then (again with the help of equations (12)) once more replace the expression 
above for u with the following one: 
 

(14)   uk = 1 2
1 2

( ) n
n

k k k k

aa aW

x x x x

ϕ α α α ∂∂ ∂∂ + + + + +
∂ ∂ ∂ ∂

⋯ . 

 
If we further remark that we also have: 
 

W

t

∂
∂

 = 1 2 1 2

1 2 1 2

a aW W W W W

t t t a t a t

ϕ ϕ
ϕ ϕ

       ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ + + + + +        ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂         
⋯ + …  

 
then the expression: 

Π + r
r

r

m
t t

ϕϕ ∂∂ +
∂ ∂∑  = r

r r

W W

t t t

ϕϕ
ϕ

  ∂∂ ∂ ∂  + +   ∂ ∂ ∂ ∂   
∑  

 
will go to the following one: 
 

1 2
1 2

( ) n
n

aa aW

t t t t

ϕ α α α ∂∂ ∂∂ + + + + +
∂ ∂ ∂ ∂

⋯ . 

 
Therefore, equation (10) will immediately assume the form: 
 

(15)  V  = 1 2
1 2

( ) n
n

aa aW

t t t t

ϕ α α α ∂∂ ∂∂ + + + + +
∂ ∂ ∂ ∂

⋯ + …  

+ 
2

1 21
1 22

( )

k k k k

a aW

x x x

ϕ α α
 ∂ ∂∂ + + + + ∂ ∂ ∂ 

∑ ⋯ . 
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 We now compare equations (14), (15) with equations (7), (10).  We see directly that 
the function ϕ + W enters in place of ϕ, while the α enter in place of m, the a, in place of 
the ϕ, and finally, that the function Π vanishes.  Now, equations (11) obviously 
correspond to the following ones, moreover: 
 

(16)    rda

dt
 = 0, rd

dt

α
 = 0, 

 
which will yield equations that are entirely similar to equations (9) when they are solved.  
One then recognizes that the reduced problem to which we have now arrived differs from 
the one that was contained in Theorem 1 only by the facts that the function Π is set to 
zero, and that m other symbols enter in place of the ϕ .  However, at the same time, the 
ordinary differential equations will become integrable, and when we then revert to the 
previous notation, we can pose the following theorem: 
 

Theorem 3 
 

 Equations (1), (2) can be replaced with the system: 
 

(17)   

1 2
1 2

1 2
1 2

21

1 2

0,

0,

0,

r r r r
n

n

r r r r
n

n

n

n

m m m m
u u u

t x x x

u u u
t x x x

uuu

x x x

ϕ ϕ ϕ ϕ

 ∂ ∂ ∂ ∂+ + + + = ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂+ + + + = ∂ ∂ ∂ ∂
 ∂∂∂ + + + =

∂ ∂ ∂

⋯

⋯

⋯

 

in which: 

uk = 1 2
1 2

n
n

k k k k

m m m
x x x x

ϕϕ ϕϕ ∂∂ ∂∂ + + + +
∂ ∂ ∂ ∂

⋯ . 

 
Two of these equations are of first order, and one of them is of second order.  Once they 
are integrated, the u will be given by the formula above, but V will be given by the 
formula: 

(18)  V = 1 2
1 2

n
nm m m

t t t t

ϕϕ ϕϕ ∂∂ ∂∂ + + + +
∂ ∂ ∂ ∂

⋯  

+ 
2

1 21
1 22

n
n

k k k k k

m m m
x x x x

ϕϕ ϕϕ ∂∂ ∂∂ + + + + ∂ ∂ ∂ ∂ 
∑ ⋯ , 

 
and equations (3) will have the equations: 
 
(19)    mr = const., ϕr = const. 
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for their integrals, into which, a last integral enters that is obtained from equations (3) 
and (19) with the help of the last multiplier. 
 
Thus, in that way, the present system is reduced to another one that includes no more 
arbitrary constants in its general solution than the original one did, and which has the 
property that the integrals yield the additional ordinary differential equations with no 
further assumptions.  One easily infers the following theorem: 
 

Theorem 4 
 

 Equations (17) make the integral: 
 

(2 2)

1 2

n

nV dxdx dx dt
+

∫ …  

 
assume a maximum or a minimum, in which V is thought of as being expressed by 
equation (18). 
 

§ 4. 
 

 Nothing remains for us to do but to express the results that we have arrived at in the 
case of hydrodynamics, for which one has n = 1.  Let U be the force function, p, the 
pressure, and let q be the density, so one has the following theorem: 
 

Theorem 5 
 

 Equations: 

(20)   

,

,

,

0

p u u u u
U u v w

x q t x y z

p v v v v
U u v w

y q t x y z

p w w w w
U u v w

z q t x y z

u v w

x y z

  ∂ ∂ ∂ ∂ ∂− = + + +  ∂ ∂ ∂ ∂ ∂ 
  ∂ ∂ ∂ ∂ ∂
 − = + + + ∂ ∂ ∂ ∂ ∂  


 ∂ ∂ ∂ ∂ ∂ − = + + +  ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂+ + = ∂ ∂ ∂

 

 
can be linked with the problem of finding a minimum or maximum for the integral: 
 

p
U dt dx dy dz

q

 
− 

 
∫∫∫ ∫  

in which one sets: 

(21)    U − 
p

q
 = 

2 2 2

2

u v w
m

t t

ϕ ψ∂ ∂ + ++ +
∂ ∂

, 
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and the following expressions are true for the u, v, w: 
 

(22)    

,

,

.

u m
x x

v m
y y

w m
z z

ϕ ψ

ϕ ψ

ϕ ψ

 ∂ ∂= + ∂ ∂
∂ ∂ = + ∂ ∂

 ∂ ∂= + ∂ ∂

 

 
The integrals of the equations: 
 

dx

dt
= u,  

dy

dt
= v,  

dz

dt
= w  

will then be: 
(23)     m = const., ψ = const., 
 
and a third one that the theory of the last multiplier implies. 
 
 The equations to which the problem reduces will then be: 
 

 0 = 
m m m m m m m

m
t x x y y z z x x y y z z

ϕ ϕ ϕ ψ ψ ψ   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
, 

 

 0 = m
t x x y y z z x x y y z z

ψ ψ ϕ ψ ϕ ψ ϕ ψ ψ ψ ψ ψ ψ   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
, 

 

 0 = m m m
x x x y y y z z z

ϕ ψ ϕ ψ ϕ ψ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   + + + + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    
. 

 
It is very easy to go from these equations for the stationary state to the ones that I 
developed in the cited place.  One only remarks that it follows from the consideration that 
was presented in the beginning of § 3 that one can choose only one of the m, ψ to be 
completely free of t, while the other one will be of the form tf + F. 
 I further point out that equation (21) will become that of the vis viva in a well-known 
form when one lets m vanish, which reverts to the usual assumption. 
 
 Berlin, 1 March 1858. 
 

____________ 
 


