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On theintegration of the equations of hydrodynamics

(By A. Clebschat Carlsruhe)

Translated by D. H. Delphenich

§1.

In a previous article (this journal, %4, pp. 254), | developed a theorem that reduced
the integration of the hydrodynamical equations for statip motion to a system of two
second-order partial differential equations or to theblera of finding a minimum to a
certain integral, in which the function to be integdatepresents theis viva That was
achieved by expressing the velocities in terms of two newetions that would give
integrals of the ordinary differential equations thateoabout and which would fulfill
the equation of continuity identically. The extensafrthis process to the case of non-
stationary motion led to very complicated equations diich not admit any reduction to a
problem in the calculus of variations.

Since then, | have found that this general caseatssnbe always reduced to such a
problem, and indeed to the integral of a function thdeiffrom thevis vivaonly by an
additional term. The substitution that leads to tkeault is essentially different from the
one that was applies in the aforementioned artidkowever, both of them have in
common that they single out the determination of thesume from the treatment of the
rest of problem and lead to equations that represent modibthe most general nature
that the fluid is capable of when it is independentwémnal forces. Finally, they have in
common that the new dependent variables that are eatpleifl define integrals of the
resulting system of ordinary differential equations whieey are set equal to constants.
However, whereas that substitution leads to two seooder partial differential
equations for stationary motioim, the present problem, the problem comes down to three
differential equations, two of which are first order, and one of whiskee®nd order.

The substitution that is employed links to the usual howt of treating
hydrodynamical equations. In fact, one ordinarily makes degumption that the
expression:

u dx+vdy+wdz

should be a complete differential. However, theg, w can always be arranged in such a
way that this expression reduces to a two-term, diffeene., to the form:

dg + m dy,

which yields the equations:
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which are just the substitutions that are applied. nhar& that this has a certain
relationship to the consideration of vortex motiong Hemholtz(this journal, v.55, pp.
25) introduced into the theory. Here, the velocities sfib one part that is represented
by corresponding differential quotients afe function and a second one that does not
admit such a representation in the slightest. Thogex motions now depend upon that
second part alone — i.e., upon the functiomsy. If one then defines the rotational
velocities of a fluid particle according to the equasigformula 2) that were given there
then one will have:
_o0maoy omoy

0z 0y 0y 0z
_o0maoy omoy

0x 0z 0z dX
_o0maoy omoy

dy 0x O0x Ay’

2§

2¢

in which the functionp vanishes completely)(

() In passing, that yields the problem of putting the exgwasi dx+ v dy+ w dzinto the formdg + m
d¢ whenu, v, w are any given functions. As is already known fromRFedf problem, from the equations
above,m, ¢ are integrals of the equations:

ov ow ow Jdu dv 0w
dx:dy:dz= —-— ! ———1——-——.
0z 0y 0x 0z 0y 09X

Since the multiplier of the equations is 1, if onewsoneintegral ¢ then one can find the second ane
by the principle of the last multiplier. However, ond actually have:

ov_ow_omdy 9y om

——— , etc.,
0z 0y 0z 0y 0z dy

then, andp will actually be a complete differential. Howeversatisfies the differential equation:
v_ow %+(M_@j%+ duov|99 _ fov_ow +v(ﬂv_@j+w dudv|
0z 0y) 9x 0x 0z ay 0y ox gz 0z dy 0x 0z oy ad

If one introducesn, ¢, J, in place ok, y, z, as new variables then one will obtain:
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| shall next turn to a general system of equations ¢katbits properties that are
analogous to the system of hydrodynamics.

§2.

Suppose that one has the system of equations:

6_V:6u Ju Jdu + Ju

—4+U—+ U —+-
x ot “ox 3 0x% LE”G)gn’
a_V:%+ua_ul+ul Lﬁ u2n ul

Q) ox, ot [6)4 a>g 0%,
oV :6U2n +uau2”+ul 2n+ U, auZn,
0x,, Ot [6)4 0x% 0%,

(2) @+%+...+aui: 0,

oxX 0% 0%,
which should be coupled with the ordinary diffei@ahéquations:

dx dx dx,,
3 — = — = Uy, —=n = .
@) at a at o

Equations (1) can be summarized in a symbolic fordamely, if the symbob
implies that only the, but nott, are considered to be variable then:

ou oy ou,
4 N = }5 Ry
@ Xk(a Tox LE”axmj

or also, when one sets:
(5) =0+ U2+ ... +U2,
one will get the following:

(6) 5(V—1):Zaa‘ik5 Zz(g;k p j(u.&k Ui OK).

u(av_awj v(aw auj m{au aJ
o= 0z 0y 0x 0z oy o
03 dv_ow aw ou), 08(0uodv
2l e )

by integration (cf.Jacobj Math. W., v. |, pp. 144).



Clebsch — On the integration of the equations of hydradicga 4

We now remark that one can always give the expression:

UX+Up K+ ... + Uy Oon
the following form:

5¢+m15¢1+ +m2n5¢2n,

so we will be led to make the substitutions:

0p . 04 04 ¢
7 U= —+m 22+ 2 4.4 n
) ‘ 0, mlaxk mzaxk ma&
ou._ 0u, :
for theu. One can then represent the express%ﬁ‘s——a as sums of determinants
X 0%

with the help of these substitutions, namely:

ou, _o0u _ > om 0¢, _0om 04,
ox  0X ox 0x 0% 0x )

However, if one multiplies this expression by the dateant (i &« — ux ) and then
sums ovek, i then one will get, from known theorems:

u
—ZZ( k- j(U.c‘i(k ukCX)—Z :
a)ﬂ 0 r a¢r +Ula¢r %5X+%5)$+
ax 0% 0Xx 0%

With consideration given to equations (3), one can eyniie briefer notation for
this:
dm _om &, _9¢, j
—_r_-r | = T 5 .
Z{( dt ot j5¢r ( a ot )M
If we now introduce this into equation (6) then the sum:

6uk _ 509 6¢ 6m
Z _56t+z( ot 5¢fj

r

will combine with the part:

9¢: 50 _9M
Z( ot om ot 5¢fj

in the sum above to give the complete variation efetkpression:
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and equation (6) will then assume the following form:
04, | _ (dm LA j
ot } Z‘( %~ dt om .

However, this equation contains only Zariationsdm, d¢ on the right-hand side,
while 2n + 1 variables< will be varied on the left-hand side. The expressinrihe left
that is to be varied must then be an arbitrary funodiothe 2 + 1 argumentg, m, t, and
when we once more eliminate the symbais / dt, d¢ / dt, we can state the following
theorem:

(8) 1) {V

r

Theorem 1

Equationg(1), (2)can be replaced with the system:

om  .9m_ om_ _
~=M'g,
ot T ox ul X% g
op. .., 99 . 98 . ,
9 Lyt + ==M'm,
®) ot ! 0X ul ><1 m
%-}-%-}- ..+auzn =0
0X 0x 0%,
in which:
_0¢p 04 09, 09,
= + +m—-—LZ2+...+ m1o
“ X, mlaxk m aX m %

and in whichll means an arbitrary function of ¢, ..., @n, My, ..., M,.

This system contair# equations of first order and one of second ordgfter it has
been integrated, the u are themselves given bgdhation above. V is determined from
the equation:

2
_(0¢ 0¢ 0¢ 0¢
10 V=|—/+ —L+1y | ——+ L1 +1
(o) (at 2.m atj Zg[ém Z”’axkj
Equationg(3) finally come down to the system:

d¢ dm
11 “r=-'m,  —t=M'¢.
() dt m a 7

The missing integral of the syst€8), which includes one equation more than the present
one, gives the principle of the last multipler.
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One can add that theorem to the following one, whichbeaverified with no further
discussion:
Theorem 2

When V is thought of as being expressed by equétinequationg9) will make the
integral:

2n+2
[77vdxdy... dx, d
assume a maximum or minimum.

These equations include an arbitrary funcfibnMeanwhile, one can assume that the
integral of a system ofrRequations of the first order and one equation of second orde
must include just as many arbitrary constants as thgraitef a system ofr2 + 2
equations of first order. It then seems that equations- (B)to which 1 enters, in
addition— will lead to more arbitrary constants than the natdréh@ problem permits.
This surplus of arbitrary constants can then have featedn the dependent functions of
the original problem; it must vanish from the expression¥, u, u, ..., Uz, . | will now
show that, in fact:

One can set the functidim equal to zero without compromising the generality of the
values of Vu, ug, ..., U .

§3.
Equations (11) have the canonical form, which, as is kn@ows one to give the
integrals of these equations a corresponding form, amageess them by the complete

solution of a partial differential equation. In faohe can always determine a function
(W) oft, ¢1, ¢, ..., @, andn constantsy, ay, ..., a, such that:

_[ow _[ow _[oW
M%) ™ og, ) M g, )

_[0W _[OW (OW
_al—(aj, _az—(aj, _a'n —(Hj

are the integrals of equations (11), while thenean new constants, and one has:

(13) ij:n

(12)

ot

from which the partial differential equations #f will emerge when one eliminates the
m from 1 with the help of the first of equations (12).

One can now obviously introduce the functid) (which includes just one arbitrary
constant, into the calculations in place of the fiomcEl, in which thea, a are no longer
to be regarded as constants, but as functionsxpf, ..., Xon when one goes from the
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ordinary differential equations to the partial one$.th® same time, one can also think of
these functions, a as dependent variables in the equations, insteax @f in which the
@ are also replaced with these functions\W).( We see how the functiong u can be
expressed in terms of these new dependent variables.

If one introduces equations (12) into the expression$ér then they will go to:

_ 99 (6Wj6¢1+[6wj6¢2+,,,+(6_Wj6¢n

ox (04, )ox, | ag,)ax, 09, ) 0%
However, if we letW denote the functionX)), when we consider it to be a function of the
t, X, X1, ..., Xon, then we will obviously have:

ow :{avvjm{awjacffu...{a_vvjaﬁ{a_vvy&
ox |\ 0@, Jox |09, ) 0x 0a )Jox (0a&)0X%

and we can then (again with the help of equations (12p avore replace the expression
above foru with the following one:

(14) Uk = 6(¢+W) a a2+ +ara;an

0X, 6><K i "0x,

If we further remark that we also have:

ow :(awj+ ow 6¢1+ ow 6¢2+“ oW 6a1 6a
ot ot 0¢, ) ot | 0¢,) ot 6a1 6a 6t
then the expression:

Y dp, (oW AW g,
H+E+Zm ot (atj o Z[ j

will go to the following one:

a(¢+W)+a'—+a';az aa;a“

ot ot ot ot

Therefore, equation (10) will immediately assume form:

og+W) | +a 93, totg 9a,
ot ! at ot " ot

+ 12[—6(¢+W) +a, aii+azai'2+..-j :

(15) V =

’ 0X, Lox T 0%

k
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We now compare equations (14), (15) with equations (7), (\¥.see directly that
the functiong + W enters in place op, while thea enter in place ofn, thea, in place of
the ¢, and finally, that the functiodl vanishes. Now, equations (11) obviously
correspond to the following ones, moreover:

(16) — =0,

which will yield equations that are entirely similar@quations (9) when they are solved.
One then recognizes that the reduced problem to which wenbawarrived differs from
the one that was contained in Theorem 1 only by the thatsthe functiorfl is set to
zero, and thain other symbols enter in place of tihe However, at the same time, the

ordinary differential equations will become integralded when we then revert to the
previous notation, we can pose the following theorem:
Theorem 3

Equationg(1), (2)can be replaced with the system:

om 6m om om_
+ oot =0,
ot ! ()4 ul 0% uz o
09 09 09 6¢
17 L+ L+ L+...+u, ——=0,
(17 o ox 0% o ]
a_u+%+ +au n=0,
0X 0x 0%,
in which:
op 04 09, 09,
U +ml + m2 ook m =2,
an 0X, 0% 0X,

Two of these equations are of first order, and ohthem is of second order. Once they
are integrated, the u will be given by the formalaove, but V will be given by the
formula:

_0¢ 09, 09, . ¢
1 v=22 0%, %
(18) ot Mo T Tt M

o[98, 34 % AN
' z{xk mxk T ox +m6>&}’

and equationg3) will have the equations:

(19 m = const., ¢ = const.
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for their integrals, into which, a last integral enters that is obtaifreth equationg3)
and(19) with the help of the last multiplier.
Thus, in that way, the present system is reduced to enotte that includes no more
arbitrary constants in its general solution than thgiral one did, and which has the
property that the integrals yield the additional ordindifferential equations with no
further assumptions. One easily infers the followimgptrem:

Theorem 4

Equationg(17) make the integral:
(2n+2)
[V dxdx... dx, d

assume a maximum or a minimum, in which V is thought of as being expi®ss
equation(18).

§4.
Nothing remains for us to do but to express the reswdtswh have arrived at in the

case of hydrodynamics, for which one mas 1. LetU be the force functiorp, the
pressure, and let be the density, so one has the following theorem:

Theorem 5
Equations:
i U_E _%.{. @.}.V@.{.\N@,
0x g) ot o0x 0y 0z
(20) y q t X y z
0 p)_ow ow odw 0w
—|lU-LE|==—+u—+Vv—+ w—,
0z g) ot o0x 0y 0z
ou  ov, ow_
—+—+—=0
ox 0y 0z

can be linked with the problem of finding a minimum or maximum fontegral:

111 [u gj dt i dy o

2
_£:%+ma¢/+u +v2+vvz’
g ot ot 2

in which one sets:

(21)
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and the following expressions are true for the u, v, w:

(22) v=—"+m—=—

The integrals of the equations:
dx _ dy dz
—=u, v,
dt dt dt
will then be:
(23) m = const., (= const.,
and a third one that the theory of the last multiplier implies.

The equations to which the problem reduces will then be:

L L T .

0=—+
ot OX 0x 0yody 0zdz 0x0Xx 0ydy 0 z0

O:6¢/+(6¢/%+6¢/%+6¢/%j+m[6_¢/6_¢/+6¢/6¢/+6¢/6¢/l
ot OX 0x 0yody 0z0z 0X0Xx 0yoy 0 zd

0 :i(%.}.ma_wj.{.i(%.{. ma_wj+i£%+ ma_wg
ox\ 0x 0x) O0y\ 0y dy) 020z 0

It is very easy to go from these equations for théiostary state to the ones that |
developed in the cited place. One only remarks thatldvislfrom the consideration that
was presented in the beginning of 8 3 that one can clwdgeoneof them, ¢ to be
completely free of, while the other one will be of the fortfn+ F.

| further point out that equation (21) will become tbathevis vivain a well-known
form when one lets vanish, which reverts to the usual assumption.

Berlin, 1 March 1858.




