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§1.

The equations upon which theory of the motion of a ftlegends are represented in two
ways, in general: Either one considers the unknowmtqigs of the problem to be the
velocities that exist at a certain time at a pladdénfluid, so one treats them as functions
of position and time, and arrives in that way at a systé four first-order partial
differential equations that go by the nameeafer’s equationsand in order to solve that
system, one must solve a system of three ordinaryreliffel equations that determine
the motion of the individual fluid particles, or one oduces the coordinates of a fluid
particle as dependent variables and arrives once moie @tstem of four partial
differential equations by means of which one can detergaé coordinate as functions
of time and the initial state. That is the path thatjrangepursued in his analytical
mechanics. One will then bypass the solution of antiaddi system of ordinary
differential equations, but the equations of the partislesn would be of second order,
except for one of them; it also seems regrettablethi@atharacteristic properties of the
all-importantstationarymotions do not emerge very clearly in that form.

Meanwhile, one can treat the problem in yet a third Wy offers some special
advantages in precisely the aforementioned case.ctipféa stationary motion, one can
replace the differential equations with the equatiortt@following problem:

Find a minimum for a triple integral that is extendedrospace, for which the
function to be integrated is thas vivaof a particle, increased by an arbitrary quantity
that remains the same only for all of the particled thaverse the path in question. The
aforementioned function will thus be expressed by me&tisedfunctions that will give
the curves of motion for the particles when they a&teegjual to constant, and the first
partial derivatives of those functions.

By that theorem, which will be derived in what follswalong with some other
theorems, and which exhibits a remarkable analogy wélptimciple of least action, one
then obtains a system of second-order partial differerquations for the stationary
motion, and one will find the curves of motion immedigtby integration. The
corresponding result will generally be much more cacapéd for the non-stationary
state; still, I would not like to fail to present tgeneral development that also subsumes
that case. | will even temporarily consider a genssatem of partial differential
equations, and present the result of a transformatetnctirresponds to the one that was
suggested.
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In a treatise that appeared Roggendorf’'sAnnalen, Bd. 95Meissel has already
made an attempt at giving a transformation of the gregessible generality for
stationary motion, in which he excluded the usual assompy which the velocity of a
molecule is set equal to the partial derivativesrd function. One even easily remarks
that Meissel (loc. cit) was led to a false conclusion that, in turn, almastmetely
eliminated the generality of the result. In fact, ¢h@ation thaMeissel(pp. 278, 5) gave
must be replaced with another one that | will pregenthat follows (8 7, 59).

The source of the present investigations was defined byhtery of functional
determinants, which allow one to immediately recogneettue form under which the
velocities can be represented in general.

| next turn to the following general system of equations

§2.

Let ug, u, ..., Uy, andV be functions of the variables, x., ..., X, andt that are
determined by the equations:

a—V:%+ a—ul+u a_ul+...+%ﬂ
ox, ot ox, 2 0x, ax’
N %, auz+u U2+_“+q16_uz
(1) 6X2 ot axi 26)(2 a)s’
oV 0, aun+u26u”+ +wau”,
2) 026—u1+%+...+%.
0% 0%, ax

The meaning of the last equation can be immegiatédrpreted analytically. If one
forms the functional determinant of théunctions:

a a,a® .. a"Y

with respect to the variables, x, ..., X,, and orders it in terms of the derivativesapf
such that it assumes the form:

(3) R= A1%+A2%+"'+Anﬂ

X, 0%, ox,

then theA will be, in turn, functional determinants, from isha and alway®neof thex
variables are excluded. As is known, one will theave the identity equation (cf.,
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Jacobi “Theoria novi multiplicatoris,” this journal, Bd. 27, pp03, orMathem. Werké,

pp. 51):
4) 0A, 6A2+ +6An -0

axl 0%, 0x,

and the expressioms,, A, ..., A, which includen—1 arbitrary functionsg, &, a®, ...,
a"™™), are likewise the most general ones that willsfatequation (4). One can then
examine what will follow from equations (1) when onedduces the functiors a’, a®,

, a8 into them as dependent variables, and one sets:
(5) ul :Al, U2 :AZ, sy Un :An .

Since we have fulfilled equation (2) identically, onuations (1) remain, which can
be summarized in the following symbolic equation:

(6) a=Y Do > nPeay,

in which only thex;, x,, ..., X, but nott, are considered to be variable in the variation.
If one lets 4 denote the expression:

(7) 2T=Af+A§+---+A§

then one will get this expression
(8) or = zz A —Ox

by variation, and instead of equation (6), one can congwdpllowing one:

5 0A, L& 0, 04,
9) OV-T=)>  —x + Ai[—"——'jé
; a Z;‘kzi o ox )"
If one sets, for brevity:
. 0A,  0A,
(20) My = Ai[_k__lj
; ox 0%
then equation (9) will go to:
(10a) oV-T= Z[ —+M jaxk.

That form will already allow us to recognize somepandies of the transformation.
Namely, if one defines the sum:
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LA 0A, OA
MiA+MDN + ... My AL = E E k i
1A1 2802 nbBn = T [a)ﬂ a)ﬁ(j

then one will see that it changes its sign underettehange of andk and must then
vanish identically. It emerges from that, and thelAkebwn properties of determinants,
that the expressiod must assume the form:

M, = A0 92 0a  »0d” . en0d” 1),

0%, 0% 0x
M. = A(l)a_a’+ A(z) aa(z) R A\(n_l) aa(n-l) |

(11) ’ X, 9%, 0X,
M — A(l)a_a’+ A(z) aa. + + A\(n_l) aa(n—l) |

" 0X, 0x, 0X,

in which theA include the first and second derivatives of éhi a still-unknown way.
The form of the expressiohwill be given below.
Equation (10a), however, goes to the following onmediately:

¢ SV-1=2 aa%‘yxk +AD & +AD &+ AT @,

k=1
If we next consider the case in which the quaetii are thought of as independent of
t (which corresponds to the case of stationary mytioen we can integrate equation (12)
immediately; it will then follow, with no furtheriscussion, from the equation:
(13) SNV-T) =AY & + AP &® + . +A"D &,

in which onlyn — 1 variations appear on the right andppear on the left, that:

AY =1'(a),
(14) AP =n'(a?),
A(n—l) - I—I r(a(n—l)),
(14a) V-T=M(,a?, ...,a"™").

In these equationd]l is an arbitrary function ofy, and N'(a") denotes the partial
derivative of that function with respecta®. In this case, one can theplace equation

(1), (2)with the n— 1 equationg14), which are of order two.
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If the A are independent afthen one can even exhibit a systermef 1 differential
equations, which are, however, of degree three and verglioated. Namely, equation
(12) represents the system:

OV -T) _ ywdd, j9d” epdd™” oA

0x, X X ax ot
6(\/—T) :A(l)a_a'+ A(z)aafz) - A(n—l)w+%,
(15) ox, 0%, 0%, ox, ot

oV -T) - A(l)a_a’+ A2 6_6{2) +o 4 A(”‘l)w+%.

If one now forms then— 2)-order functional determinant:

oA,

(m)

aaa
0x,
and the sum:
5 = a(\/—T)D A, +a(v—nD 0A,, +_“+a(v— DD oA,

ox 08" ox, ,0a" 0% ,0d"
0, 0%, 0x,

then S is also a functional determinant, and indeed,|ll etitain it when | replace the
a™ in A, with the function o — T; | can also conside&™ to be coefficients oda™ /

dx, in the functional determinant of orderf the functions’, a?, ..., a"™, (v = T). |
will thus have, from the aforementioned theorem:

(m) m) (m)
681 + 0 % +...+ as“ =0
ox 0% 0x,

for every value o from 1 ton — 1, which is an equation that goes to:

with the help of the expression f&™ .
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If one also replace8 (V — T) / dx with its value then equation will read like an
identity, and one will obtain equations for the detertimaof thea. In fact, one has:

(16) o:iii oA, [A<1>0_3'+A<2)6i2)+...+Nn—1>aa_m_l+%j .

That equation then simplifies even more appreciabfy.is multiplied by:

op, 9a oA, od on, pd
(m) (m) (m

5 oa 6)(1 5 oa 6x2 6 9d" ox’
0%, 0X, 0x,

under the differential siga / 0x, and that is nothing but the functional determinant that
arises fromA, when one replacea™ with & in it. It will then contain two equal
functions, and must vanish whanis not equal to 1, when it will coincide witly . The
coefficient ofA™ is then zero, and similarly, that AP, etc., up toA™, which will beA,

, and equation (16) will be converted into:

50 LG O 0A,  0A
(17) 0= _A m(m))+ s hm k
;‘axh ;k;axh aaa‘) ot

0%,

If one then adds that, from the repeatedly-apphedrem:

then equation (17) will finally assume the followiform:

(m) (m) (m
(18) 0=0,2%"n,%% +~-+Anaai+Q(”",
%

0%, 0%

where we have set, for brevity:

n n aA
18a (m =
(182) Q Z; at axh S Ch

0Xk
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Equations (18) serve to determine theIf one thinks of these equations as having
been solved, and thet, a®, ..., a"™, and another arbitrary functi@being introduced
in place ofxy, X2, ..., %, inV =T, then, from equations (15), one will have:

A2V ) V=T, L, AV-T) _OT
0%, 0%, 0x, ot
. o . oV -T)
and, at the same time, the left-hand side is ngthirt R | Namely, we leR

denote the determinant of allwith respect to the, and let square brackets suggest that
thex in it are thought of as being expressed in terimbesa. One will then have:

Jum)_o

da ot

so, by integration:

(19) V-T= j [lﬁl} da+M (a,a", ...,a" ™", 1),
R ot

wherell is an arbitrary function. Equations (18), (19)Iwhen give the functions, V.
Differentiating equation (19) will then lead to abtion equations for the arbitrary
functions, which would yield the complete integoatof equations (18).

| only remark that as long asiy of the expression®™ vanishes, the corresponding
equation (18) will give the integral:

(20) A =0 (@, a", ...,a" 1),

in which Q is an arbitrary functionAll of theseexpressions will vanish in the case that
was consider above.

§3.

Before | proceed, it will be necessary to actudiiyelop the expressions for the
They will be given by equations (9), (10), (11)mey, one must have:

)a_a"+ )aa(Z) - A(n—l)aa(n_l) - Zn:A.{aAk _aAij.

(21) A o8, _oh;
0, 0%, ox = ox 0%

The right-hand side must be converted into theHahd side. To that end, | consider
the triple sum:

L& o 0A L@a‘m) 0A
(22) S= . L.
;; m=1 axl 6)& aaai()

ox

The sum:
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= 9al™ _ aA,
& ox aaa<m> ’
0%

which is multiplied bydAy / 0% in S, obviously represents a functional determinant, and
indeed the one that arises frésmwhen one replaces the derivatives with respegt ito

it with ones with respect ta . However, that determinant will generally include two
rows in which one differentiates with respectxtg so it will vanish. Only when the
indicesk andi are equal will it remain unchanged by that exchange, IyaA\g and
whenk = h, A, will itself already no longer contain derivatives lwrespect to, and the
value of the resulting determinant will bé\ since, from a well-known theorem:

oA, _ oA,
(m (m) -
5 oa 5 oa
0X 0%,

Therefore, the sum (22) will reduce to:

and one will then see th§t differs from the right-hand side of equation (21) onlgign.
However, equation also immediately assumes the form:

T10a™ | & & 9B, 90
S( — h 3 h
Zi 0%, Z:‘ hzl X 402"

0%

That is the form that was already achieved in (21)esihe indexX no longer enters into
the bracket; one can then set:

(23) An=-3y Lg%
it ho1 0% aaa

ox

One can give this expression a more suitable form wherremarks that:
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one can then write:

m_ n a n
=% Ea

i=1 h=1 a( m
0&

However, the relation:
2T = A2 +A2+--+ A2

was introduced above. If we apply this then we will finalbtain A™ in its simplest
form:

(24) _A(m):i T +i ot +...+ia—T.
0x, aaa‘m) 0x, aaa‘m) 0%, aaa‘"’
0%, 0%, 0%,

That is then the expression f&f into which second derivatives enter, as one sees;
equation (18) will then lead to the third derivatives. \Wmark that equation (23) allows
us to put equations (18) into the form:

oA OA™ 9A" 9A” _

(25) A, +A, tot A + R™,
0% 0%, 0, ot
in which we have set, for brevity:
L& 0A 0A
25a R™ = : o
(253) ,Z:;‘ hZ{ ox Ot da™
ox

which is a form that will be used in what follows.
However, for the simpler case in which th¢or theu) are independent of equation
(24) will give, by way of (14):

o aT 9 oT o aT
M 0a™ ox o™ Tax _odm
0% 5 % 4 X 508"

0x, 0%, 0x,

(26) +M'@") =

The system of equations that is thus represented engobut the one that one
obtains from the problem éihding a minimum for the integral:

(27) [ (T dxdbe ... dx,

where:
(28) T=N+AZ++A2
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That theorem is important for the transformationhaf differential equations in question,
and it is interesting for the fact that it allows doerecognize the identity of the problem
that is given by equations (1), (2), and (27).

§4.

If we now couple the system of differential equagidhat was presented with the
system of complete differential equations:

dx dx, dx,
29 — = Uy, —= = Uy, — = U,
(29) a a2 at o
for which we can now also set:

dx dx, dx,
30 —= =/, —= =/, — =A,.
(30) dt dt ¢ da "

The identity equation:

then shows thaa multiplier of the equations is equal to oraad one can find the last
integral when one knows the finst- 1.

One further sees that as long asAhare free ot, the integrals of the equations will
immediately be the following ones:

(31) a =const., a®=const., .., a"=const.

It will then follow from equations (30) that:

(m) (m) (m) (m) (m)
da™ _0a™ i o0&l dx | _p 087,087
dt ox, dt odx dt 0X 0%,

which is identically zero. When the A are set equal to constants, they wsib dde
integrals of the present equatigrssnce, from (14), they are functions of the
One can add the following general theorem for the geoase:

1. As long as one of the a is independent of £ eonst.will be an integral of
equationg30).

2. As long as the expressi¢Pba):
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i=1 h=1 a
0%
vanishes:
A™ = const.
will be an integral of the present equations.
From (30), (25), one will then have:
(m) (m) (m (m) (m
N e P Nl S iy S )
dt 0%, 0%, 0X, ot
8 5.

If we setn = 3, moreover, then equations (1), (2) will go Ealer's equations,
namely:
ov _ aul au1 ul oy
oot Max Pax, Cox’
oV _adu ou

ou, ou,
32 —_—= 2+ 2+ + ,
(32) ox, ot ulax1 UZaxz u36>g

whereu,, Uy, Us are the velocities that one finds at the locatianx, xs) at timet, andV
=U —-p /g, whenU denotes the force functiop,denotes the pressure, apdenotes the
constant density. Using equations, | now pose:

= _oa Qa‘z aa@&
LTox, 0x, 0%, 0%
(2) (2)
(33) u =p, =8 93" da” 9d
ox; 0% 0% 0%
(2) (2)
y=n, =208 o pd
ox, 0%, 0% 0%

From a known transformation, one will then have:
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(34) =N +A2+A2=P'PP_PP,
when one sets, for brevity:

2 2 2
,_[od od od
P=|—| +|— | +| — |,
0% 0x, 0%
(35) e :(aa(z) jZ +(aa(2)j2 +[aa(2)j2
0%, 0%, 0% )
PINE) 32 2)
da’ od +a_aﬁa .04 d

P=— ,
ox, 0% 0% O0X 0% 0X%

and the expressions férwill be:

(36)

The differential equations upon which the problem dependsneral will then be:

& & 1) @
O:AlaA +A26A +A36A LOA
0X, 0X%, 0%, Ot

— R(l)

¢ 0AD aA® AP A?
0=A, +A, +A, +——-R?,
0X, 0%, 0% ot
where:
Rm:aza@ 0A;, oA, ), 0%a® (oA, oA, ), 0%a®(an, oA,
(378) ox 0t ox, 0% ) Ox0tldx 90x) Ox0t dax 0%/
a
_R® = 0°a (0n, 0A,), 0°d (0A, oA, ), o°d 0A, _0A)
ox 0t Ox, 0% ) Ox0t0x d%) O0x0t 0% 0X%
The integrals of the equations:
dx dx dx
38 — =/, —= =/, —= =
(38) dt dt o dt

represent a varying system of curves on which the partiotege. From the theorems
that were discussed in §d@ne must now have the integral:

AM = const.
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for the integrals when the term{"Rvanishes in one of the equatiof®y). That is the
case, e.g., wheat? is independent of time; one will then have that:

AW = const.
is an integral. However:
a® = const.

will also be one. If we connect that with the prpleiof the last multipliethen we can
integrate equation§38), as long as one of surfaces in the system of surfaces upon which
the motion takes place is independent of tirhet the last integral bg = const. ¢ must
then satisfy the equation:
W= oy +A16¢/ +A, oy +A3a¢/ =0
ot 0%, 0%, 0%

and since the multiplier is 1, this expression will ddsoequal to the determinant:

oy 9p 0a® AV
R
dy 9 0a® OAY
ox, 0% 0% 0%
oy 9 0a® OAY
o, 0x, dx, 0%
dy 9 0a® OAY
ot ot ot ot

=2
1]

If one now introducea®, AM, and any new variablein place ofx:, X, Xs, and denotes
the new derivatives by a bracket then that identity éguavill go to:

(a_wj{a_wj{@m ov, , ov 6v}= (%M%j

A,—+A,—+ =D ,
ot ov 6_1// %
7)(F)

ot tox  2ox,  Cox
whereD is the determinant of a®, AV with respect toq, X, Xs . If one then sets, for
brevity:

(39) W= %+Alﬂ+A2ﬂ+A3ﬂ,
ot 0%, 0%, 0%

then it will follow from the identity equation that:
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awo(¥) weo(%)
ov ot

and the desired last integral will then be:

wdt- dv
(40) ¢=| -
This case will occur, e.gwhen the motion is the same on all sides of acad/t0 in that
case, one can give all of the integrals, siane integral (viz., the plane of motion that
goes through that vertical) is independent of
If the motion is stationary then, from (26), etmnge will have to solve the equations
that define the minimum of the integral:

P'P? - PP
41 ——————N(a,a?) | dx dx dx,
(41) m( > ( )j x d dx
namely, the equations:
(42) AY =M'(a), AP =1 @@).

The functionsa’, a® will then give the system of surfaces in whose ietetion the
motion takes place:
a =const., a® = const.

That is the theorem that was mentioned in the intiamluc The pressure will be
finite, and as a result of equations (14a) and (19), it balgiven, in general, by the
formula:

u-P 1= J [Ea_q da+n (a, a®, 1),
q R ot

and for the stationary motion, in particular, illee given by:
_ _p T = 1 A2
U ] T=0N(a,a?).

This is likewise the true form that the equatiothefvis viva assumes.

§ 6.

The introduction of new variables into the preseguations will raise no new
difficulties. For the stationary state, one wiive nothing to do but to transform the
expressionT, which obviously assumes only a knowledge of thenfthat the square of
the line element assumes. If that is:



Clebsch — On a general transformation of the hydrodigsmquations 15

(43) ds = u,dy? + u,dy+2 y,dydy ...,

in whichyj, y», y3 are the new variables (which are thought of as indepemdéntthen
the transformation determinant will be:

ull u12 l"|l3
(44) D= u21 u22 u23 '
u31 u32 u33

and furthermore:
2T=P PP _pPp,
where:

aa(Z)
oy,

da?
Uy Uy Uy ——

0
(45) P=- Y2 gl
aa(Z) D

oy,
0

ull u12 ul3

N

u31 u32 u33

oa oa od
dy, 0y, 0Y,

and in whichP' will be obtained fronP when one replaces® with &', andP® will be
obtainedP when one replaces with a® . From the theory of determinants, one easily
infers that I also assumes the form:

u u u a—a, aa(Z)
11 12 13 ayl ayl
u u u a—a, aa(Z)
21 22 23 ayz ayz
4 (2)
(45a) T=1gu, u, u, 29
D oy, 0Y,
@ od 2d o
gy, 9y, 0y,
(2) (2) (2)
Jda'” o0da“”’ da 0 0
dy, 0y, 0y,

[cf., Hesse “Uber Determinanten in der Geometrie,” this joaalnBd. 49, pp. 248,
formulas (6), (7).]
The integral that is to have a minimum will theecbme:
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[[] (T-n) D dydydys,
and the equations:

3.9 aT
o=DmM'@)+> —| DE—- |,
@) iZ:;'ayi aai
oy,
(46)
3.9 oT
0=DmM'@?)+>» —| DG—
Y%

will flow from that by a known method. That equetialso gives the transformation
formula for theA in the general case:

1& 0 aT
47 —AM = =N —
(47) D ,Z:;‘ |, da™
oy,

We require this formula for the transformation gtiation (37). If we further remark that
the first part of that equation, namely:

(m) (m (m
0A TA oA TA oA

Uu=A
16)(1 26)(2 36)(3

is nothing but the functional determinantadfa®, A™ with respect to the then it will
follow immediately thaD [ is the functional determinant af, a®, A™ with respect to
they, so when one sets:

o, 202047 0d od”
oy, 0y, 0y, 0y,
_0a 9a® 9d ad”
Oy, 9y, Oy dy,
_da'0a® 9d od”
oy, dy, ay, dy,

(48) U,

3

the identity equation will come about:

L 0Am 1 L 0A™
(49) A ==>10 :
2% "o My
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If one takes the coefficients o‘?rg‘— on both sides of this then one will obtain the
%
transformation of\;, namely:

(50) A =

3 _ki
w1 D0y,

This equation, in whose derivation the nature ofatha®, A™ is completely irrelevant,
involves the general equation:

99 0y 0%
dy, 0y, 0y,
dp oy dpow _1.0p ow ox
ox, 0%, 0%0% D |dy, dy, dy,
3¢ dy ox,

0y; 0Y; 0,

—1
 —

and when one applies this equation to (37a), one will get:

0%a® i{&%+&0_ﬂ%0_¥j ox
otdy, dy,\ Doy, Dady, Doy 0y
3 24(2)
(51) DRV=Y dg’a i(ﬂa_)&Lﬂa_)ﬂLEa_xj ox
= | 0tdy, 0y, Ddy, Day, Day,) 9y,
0%a? i{&%+&6_x+&6_xlj ox
otdy, oy,\ Dady, Doy, Doay, A
2.(2)
In this, Is multiplied by:
toy,

zaxa D6_>§+&6_>|<+%6_>,< o0x 0 Dax Dax 0, 0,x
oy, 0y, 0Y,0Y Da}{ Da}g Dag

>3 %1@%}_%1@%} |
o |0y, 0y, Doy, ) dy,0y( Day

or, when one performs the differentiation:

S-Sk

k=1 10y, 0y, 0V,

i=1

or
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S 0% 0°%x & 0x 0°x
Z {Z)ﬂ % ox }

i =1 0y, 0y, 0Y; i:layz oy0y

and when one remarks that, from (43), one has:
3 0
(52) z_)ﬂ A Ukh
the coefficient in question will then go to:
A
2 )
= | 9y, oy,\ D Dlady, 0dy,
and the desired form &{(1) will finally become:

(53) DR® = 23: {aza(z) (ausk ou,, j ,0%a® (aulk 0 u3kj L0 23(2)(6 U, 0 qkﬂ

i D[ otdy,{ 0y, 0y, ) 0t0y,( 0y, Oy ) 00Dy dy 0Y

0’a® o9 (0O,

| = | Y
otdy, dy,\ D

3 2,(2)

S A A
ic1 | 0tay, dy,\ D
0’a® 9 (0O,

| = | Yk
otdy, dy,\ D

This equation and equation (49) together complete the dramsfion of equations (37),
which then likewise goes back to the transformatioondy the line element.

In particular, if they are three systems of surfaces that intersect lat aiggles then
U2, Uzs, Usz Will vanish, and one will get the new expressionRot:

24(2) 24(2)
(54) R(l) = {i(%g%j_i(uzz&j}a a +{1(U11&j_i( Uss— j}a 2
oy, D) oy, D )| otdy, |0V, D) oy ovy,
{a ( Dzj 9 ( Dlj}aza@
Ty | U= | 5| Y s | (3
oy, D/ oy, D )| otay,

and the corresponding expressionsR5t is obtained by switching' anda®. Finally,
the transformation of equations (38) is contained in equ#%0). If one multiplies it by
0yh / 0% and sums ovearthen one will get:
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dt D
87.

In the individual cases, one is in a position to deteemie of the functionsa’, a®

from the outset just from the mechanical nature of thélene. One will then obtain a
differential equation for the remaining functiarnhat will generally be of order three, but
of order two for stationary motion.

Let the motion be such that all particles are reguioemove in parallel planes whose
equations might be representedxpy: const. One can then set:

(56) a® =xs, a =f (xg, Xo, ).

Moreover, equations (35), (36) go to:

I 2 U 2
P,:(a_aj {a_aj , PP =1, P=0,
(57) %) \0%
_pw 0@ o e
ox 0%

and, from (33), the expressions for the velocities ball

(58) U =47y = —, U=NA=—-—, us = 0.

Therefore, of equations (37), the second one will vadishtically, and one will have the

single equation:
Y [ A A 1)
(59) da ﬁA _od QA +6A _

= -~ 0,
ox, 0x 0x 0% Ot

in which A is defined by (57). In the case of stationary motigmagions (42), (57) will

give:

20 2 0
(60) o, 04
o 0%

+M'(@) =0.

The integrals of the differential equations that belmn(b9) are:
(61) AW = const.

and a second one that one obtains from the princigleed&st multiplier, namely (40):
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ot 0x,0%x 0X0X
ov oA"Y gvoAY
0X, 0X 0X 0%

[av 0a dv_0d avjdt dv

(62) const. :j

in which A and the arbitrary functiomwere introduced under the integral sign in place
of x1, X2 as variables

A second case in which the differential equations likeweduce t@neis given by
the motion that is same in all directions around an. akist that axis bes . One can
then introduce the coordinates:

(63) X1 =r COS@P, X =rsing, xz=z

The square of the line element is then known to be:

(64) ds® =dr? + r? d¢? + dZ.
One likewise obtains:
SRl
or 0z r’ o¢
(65) pa) [ 927 "2, 1(0a®Y
or 0z r’{ 0¢ )’
:a_a'aa<2> +6_a’66f2) 10404d”
or or 0z 0z r6¢6¢'

The transformation is Now, since Z = P' P¥) —PP, equations (47) will give:

—pw =109 W”Qi—Pada + 9 ﬁagé—Fﬁda
ror or & oz 0z
410 [p20d Paa(Z)
(66) rPogl  ap  ag )
(2) (2)
A0 =10 p0aT podl), 0f 087 08
ror or a|) &l @& oz
sL0 (089 Jod
r2opl op  og)

When considering motion that is symmetric aroxgiebne can now attempt to set:

a? =g, a =f(r,zt).
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Equations (65) will then go to:

N2 N2
P = (a_aj +(a_aj P(Z) = i P=0
or 0z )’ ’

and equations (66) will give:

(67) - A(l) = Ei(r a_aj +l‘i(_la_aj , A(Z) =0.
ror\ o ) ra&l\r a

Moreover, equations (48) go to:

(68) 0=-2 0,=0, 0=
0z or

If one adds thab =r then one will see from (54) that, in the firstqgdaboth expressions
for Rwill vanish, and the equation (49) will give:

0a A" od pAY  OAY

o o0z dz Or ot

in whichA" is defined by (67), and for stationary motion:

ror\r o re\r &

The differential equations that ultimately havebintegrated will be:

(71) ﬂz_ia_a’ dz_laa.
dt r 0z dt r or

One integral is, in turA® = const.; the other one will be obtained fromtteory of
multipliers, namely:

(v_0d v, 040V
ot 0zodr OJr o0z
@6,6\‘”_@/6,69)

or 0z 0z Or

(72) const. :j

in which A%, which remains constant during the integration @nethich is an arbitrary
function ofr andz are introduced under the integral sign in place af

Berlin, 26 May 1857.



