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§ 1. 
 

The equations upon which theory of the motion of a fluid depends are represented in two 
ways, in general:  Either one considers the unknown quantities of the problem to be the 
velocities that exist at a certain time at a place in the fluid, so one treats them as functions 
of position and time, and arrives in that way at a system of four first-order partial 
differential equations that go by the name of Euler’s equations, and in order to solve that 
system, one must solve a system of three ordinary differential equations that determine 
the motion of the individual fluid particles, or one introduces the coordinates of a fluid 
particle as dependent variables and arrives once more at a system of four partial 
differential equations by means of which one can determine each coordinate as functions 
of time and the initial state.  That is the path that Lagrange pursued in his analytical 
mechanics.  One will then bypass the solution of an additional system of ordinary 
differential equations, but the equations of the partial system would be of second order, 
except for one of them; it also seems regrettable that the characteristic properties of the 
all-important stationary motions do not emerge very clearly in that form. 
 Meanwhile, one can treat the problem in yet a third way that offers some special 
advantages in precisely the aforementioned case.  In fact, for stationary motion, one can 
replace the differential equations with the equations of the following problem: 
 Find a minimum for a triple integral that is extended over space, for which the 
function to be integrated is the vis viva of a particle, increased by an arbitrary quantity 
that remains the same only for all of the particles that traverse the path in question.  The 
aforementioned function will thus be expressed by means of the functions that will give 
the curves of motion for the particles when they are set equal to constant, and the first 
partial derivatives of those functions. 
 By that theorem, which will be derived in what follows, along with some other 
theorems, and which exhibits a remarkable analogy with the principle of least action, one 
then obtains a system of second-order partial differential equations for the stationary 
motion, and one will find the curves of motion immediately by integration.  The 
corresponding result will generally be much more complicated for the non-stationary 
state; still, I would not like to fail to present the general development that also subsumes 
that case.  I will even temporarily consider a general system of partial differential 
equations, and present the result of a transformation that corresponds to the one that was 
suggested. 
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 In a treatise that appeared in Poggendorf’s Annalen, Bd. 95, Meissel has already 
made an attempt at giving a transformation of the greatest possible generality for 
stationary motion, in which he excluded the usual assumption by which the velocity of a 
molecule is set equal to the partial derivatives of one function.  One even easily remarks 
that Meissel (loc. cit.) was led to a false conclusion that, in turn, almost completely 
eliminated the generality of the result.  In fact, the equation that Meissel (pp. 278, 5) gave 
must be replaced with another one that I will present in what follows (§ 7, 59). 
 The source of the present investigations was defined by the theory of functional 
determinants, which allow one to immediately recognize the true form under which the 
velocities can be represented in general. 
 I next turn to the following general system of equations. 
 
 

§ 2. 
 

 Let u1, u2, …, un, and V be functions of the variables x1, x2, …, xn, and t that are 
determined by the equations: 
 

(1)    
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(2)     0 = 1 2

1 2

n

n

uu u

x x x

∂∂ ∂+ + +
∂ ∂ ∂

⋯ . 

 
 The meaning of the last equation can be immediately interpreted analytically.  If one 
forms the functional determinant of the n functions: 
 

a, a′, a(2), …, a(n−1) 
 
with respect to the variables x1, x2, …, xn, and orders it in terms of the derivatives of a, 
such that it assumes the form: 
 

(3)     R = 1 2
1 2

n
n

a a a

x x x

∂ ∂ ∂∆ + ∆ + + ∆
∂ ∂ ∂

⋯ , 

 
then the ∆ will be, in turn, functional determinants, from which a and always one of the x 
variables are excluded.  As is known, one will then have the identity equation (cf., 
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Jacobi, “Theoria novi multiplicatoris,” this journal, Bd. 27, pp. 203, or Mathem. Werke I, 
pp. 51): 

(4)     1 2

1 2

n

nx x x

∂∆∂∆ ∂∆+ + +
∂ ∂ ∂

⋯  = 0, 

 
and the expressions ∆1, ∆2, …, ∆n, which include n−1 arbitrary functions (a, a′, a(2), …, 
a(n−1)), are likewise the most general ones that will satisfy equation (4).  One can then 
examine what will follow from equations (1) when one introduces the functions a, a′, a(2), 
…, a(n−1) into them as dependent variables, and one sets: 
 
(5)    u1 = ∆1, u2 = ∆2, …, un = ∆n . 
 
 Since we have fulfilled equation (2) identically, only equations (1) remain, which can 
be summarized in the following symbolic equation: 
 

(6)     δV = 
1 1 1

n n n
k k

k i k
k i k i

x x
t x

δ δ
= = =

∂∆ ∂∆+ ∆
∂ ∂∑ ∑∑ , 

 
in which only the x1, x2, …, xn, but not t, are considered to be variable in the variation. 
 If one lets 2T denote the expression: 
 
(7)     2T = 2 2 2

1 2 n∆ + ∆ + + ∆⋯  

 
then one will get this expression 
 

(8)     δT = 
1 1

n n
i

i k
i k k

x
x

δ
= =

∂∆∆
∂∑∑  

 
by variation, and instead of equation (6), one can consider the following one: 
 

(9)    δ (V – T) = 
1 1 1

n n n
i k i

k i k
k i k i k

x x
t x x

δ δ
= = =

 ∂∆ ∂∆ ∂∆+ ∆ − ∂ ∂ ∂ 
∑ ∑∑ . 

If one sets, for brevity: 

(10)    Mk = 
1

n
k i

i
k i kx x=

 ∂∆ ∂∆∆ − ∂ ∂ 
∑  

then equation (9) will go to: 
 

(10a)   δ (V – T) = 
1

n
i

k k
k

M x
t

δ
=

∂∆ + ∂ 
∑ . 

 
 That form will already allow us to recognize some properties of the transformation.  
Namely, if one defines the sum: 
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M1 ∆1 + M2 ∆2 + … + Mn ∆n = 
1 1

n n
k i

i k
i k i kx x= =

 ∂∆ ∂∆∆ ∆ − ∂ ∂ 
∑∑  

 
then one will see that it changes its sign under the exchange of i and k and must then 
vanish identically.  It emerges from that, and the well-known properties of determinants, 
that the expression M must assume the form: 
 

(11)   

(2) ( 1)
(1) (2) ( 1)

1
1 1 1

(2) ( 1)
(1) (2) ( 1)

2
2 2 2

(2)
(1) (2) ( 1)

,

,

.......................................................................,
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∂ ∂ ∂
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′∂ ∂ ∂= + + +
∂ ∂

⋯

⋯

⋯

( 1)

,
n

n

a

x

−










 ∂

 

 
in which the A include the first and second derivatives of the a in a still-unknown way.  
The form of the expression A will be given below. 
 Equation (10a), however, goes to the following one immediately: 
 

(12)  δ (V – T) = 
1

n
k

k
k

x
t

δ
=

∂∆
∂∑ + A(1) δa′ + A(2) δa(2) + … + A(n−1) δa(n−1). 

 
 If we next consider the case in which the quantities ∆ are thought of as independent of 
t (which corresponds to the case of stationary motion) then we can integrate equation (12) 
immediately; it will then follow, with no further discussion, from the equation: 
 
(13)  δ (V – T) = A(1) δa′ + A(2) δa(2) + … + A(n−1) δa(n−1), 
 
in which only n – 1 variations appear on the right and n appear on the left, that: 
 

(14)    

(1)

(2) (2)

( 1) ( 1)

( ),

( ),

................

( ),n n

A a

A a

A a− −

′ ′ = Π
 ′= Π


 ′= Π

 

 
(14a)    V – T = Π(a′, a(2), …, a(n−1)). 
 
In these equations, Π is an arbitrary function of a, and Π′(a(i)) denotes the partial 
derivative of that function with respect to a(i).  In this case, one can then replace equation 
(1), (2) with the n − 1 equations (14), which are of order two. 
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 If the ∆ are independent of t then one can even exhibit a system of n – 1 differential 
equations, which are, however, of degree three and very complicated.  Namely, equation 
(12) represents the system: 
 

(15)  

(2) ( 1)
(1) (2) ( 1) 1

1 1 1 1

(2) ( 1)
(1) (2) ( 1) 2

2 2 2 2
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,
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,

..................................................................................
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n
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n
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A A A

x x x x t

V T a a a
A A A

x x x x t

−
−

−
−

′ ∂∆∂ − ∂ ∂ ∂= + + + +
∂ ∂ ∂ ∂ ∂

′ ∂∆∂ − ∂ ∂ ∂= + + + +
∂ ∂ ∂ ∂ ∂

⋯

⋯

(2) ( 1)
(1) (2) ( 1)

.........,

( )
.

n
n n

n n n n

V T a a a
A A A

x x x x t

−
−









 ′ ∂∆∂ − ∂ ∂ ∂= + + + + ∂ ∂ ∂ ∂ ∂

⋯

 

 
If one now forms the (n – 2)-order functional determinant: 
 

( )
h
m

k

a

x

∂∆
∂∂
∂

 

and the sum: 
 

( )m
hS  = ( ) ( ) ( )

1 2

1 2

( ) ( ) ( )h h h
m m m

n

n

V T V T V T

a a ax x x
x x x

∂∆ ∂∆ ∂∆∂ − ∂ − ∂ −⋅ + ⋅ + + ⋅
∂ ∂ ∂∂ ∂ ∂∂ ∂ ∂
∂ ∂ ∂

⋯  

 
then ( )m

hS  is also a functional determinant, and indeed, I will obtain it when I replace the 

a(m) in ∆h with the function of V – T ; I can also consider ( )m
hS  to be coefficients of ∂a(m) / 

∂xh in the functional determinant of order n of the functions a′, a(2), …, a(n−1), (V – T).  I 
will thus have, from the aforementioned theorem: 
 

( )( ) ( )
1 2

1 2

mm m
n

n

SS S

x x x

∂∂ ∂+ + +
∂ ∂ ∂

⋯  = 0 

 
for every value of m from 1 to n − 1, which is an equation that goes to: 
 

0 = ( )
1 1

( )n n
h
m

h k h k

k

V T

ax x
x

= =

 
 ∂∆∂ ∂ − ⋅ ∂∂ ∂ ∂
 ∂ 

∑∑  

 
with the help of the expression for ( )m

hS . 



Clebsch – On a general transformation of the hydrodynamical equations 6 

 If one also replaces ∂ (V – T) / ∂xk with its value then equation will read like an 
identity, and one will obtain equations for the determination of the a.  In fact, one has: 
 

(16)  0 = 
(2) ( 1

(1) (2) ( 1)
( )

1 1

nn n
nh k

m
h k k k k k

k

a a a
A A A

ax x x x t
x

−
−

= =

 
  ′∂∆ ∂∆∂ ∂ ∂ ∂ + + + +  ∂∂ ∂ ∂ ∂ ∂  ∂
 ∂ 

∑∑ ⋯ . 

 
 That equation then simplifies even more appreciably.  A(1) is multiplied by: 
 

( ) ( ) ( )
1 2

1 2

h h h
m m m

n

n

a a a

a a ax x x
x x x

′ ′ ′∂∆ ∂∆ ∂∆∂ ∂ ∂⋅ + ⋅ + + ⋅
∂ ∂ ∂∂ ∂ ∂∂ ∂ ∂
∂ ∂ ∂

⋯ , 

 
under the differential sign ∂ / ∂xk , and that is nothing but the functional determinant that 
arises from ∆h when one replaces a(m) with a′ in it.  It will then contain two equal 
functions, and must vanish when m is not equal to 1, when it will coincide with ∆h .  The 
coefficient of A(1) is then zero, and similarly, that of A(2), etc., up to A(m), which will be ∆h 
, and equation (16) will be converted into: 

(17)   0 = ( )
( )

1 1 1

( )
n n n

m h k
h m

h h kh h

k

A
ax x t
x

= = =

 
 ∂∆ ∂∆∂ ∂  ∆ ⋅ +

∂ ∂ ∂ ∂∂ ∂ 

∑ ∑∑ . 

 
 If one then adds that, from the repeatedly-applied theorem: 
 

1

n
h

h hx=

∂∆
∂∑ = 0, ( )

1

n
h
m

h h

h

ax
x

=

 
 ∂∆∂  

∂ ∂ ∂ ∂ 

∑  = 0 

 
then equation (17) will finally assume the following form: 
 

(18)   0 = 
( ) ( ) ( )

1 2
1 2

m m m

n
n

A A A

x x x

∂ ∂ ∂∆ + ∆ + + ∆
∂ ∂ ∂

⋯ + Q(m), 

 
where we have set, for brevity: 
 

(18a)   Q(m) = 
2

( )
1 1

n n
k h

m
h k h

k

at x
x

= =

∂ ∆ ∂∆⋅
∂∂ ∂ ∂
∂

∑∑ . 
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 Equations (18) serve to determine the a.  If one thinks of these equations as having 
been solved, and then a′, a(2), …, a(n−1), and another arbitrary function a being introduced 
in place of x1, x2, …, xn in V – T, then, from equations (15), one will have: 
 

1 2
1 2

( ) ( ) ( )
n

n

V T V T V T

x x x

∂ − ∂ − ∂ −∆ + ∆ + + ∆
∂ ∂ ∂

⋯  = 
T

t

∂
∂

, 

 

and, at the same time, the left-hand side is nothing but 
( )V T

R
a

∂ − 
 ∂ 

.  Namely, we let R 

denote the determinant of all a with respect to the x, and let square brackets suggest that 
the x in it are thought of as being expressed in terms of the a.  One will then have: 
 

( )V T
R

a

∂ − 
 ∂ 

 = 
T

t

∂
∂

, 

so, by integration: 

(19)   V – T = 
1 T

R t

∂ ⋅ ∂ 
∫  da + Π (a′, a″, …, a(n−1), t), 

 
where Π is an arbitrary function.  Equations (18), (19) will then give the functions a, V.  
Differentiating equation (19) will then lead to condition equations for the arbitrary 
functions, which would yield the complete integration of equations (18). 
 I only remark that as long as any of the expressions Q(m) vanishes, the corresponding 
equation (18) will give the integral: 
 
(20)    A(m) = Ω (a′, a″, …, a(n−1), t), 
 
in which Ω is an arbitrary function.  All of these expressions will vanish in the case that 
was consider above. 
 

§ 3. 
 

 Before I proceed, it will be necessary to actually develop the expressions for the A.  
They will be given by equations (9), (10), (11); namely, one must have: 
 

(21)  
(2) ( 1)

(1) (2) ( 1)
n

n

k k k

a a a
A A A

x x x

−
−′∂ ∂ ∂+ + +

∂ ∂ ∂
⋯ = 

n
k i

i
i k i kx x=

 ∂∆ ∂∆∆ − ∂ ∂ 
∑ . 

 
 The right-hand side must be converted into the left-hand side.  To that end, I consider 
the triple sum: 

(22)    Sk = 
( )1

( )
1 1 1

mn n n
h h

m
i h m i k

i

a

ax x
x

−

= = =

∂∆ ∂∆∂⋅ ⋅
∂∂ ∂ ∂
∂

∑∑∑ . 

The sum: 
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( )1

( )
1

mn
h
m

m k

i

a

ax
x

−

=

∂∆∂ ⋅
∂∂ ∂
∂

∑ , 

 
which is multiplied by ∂∆h / ∂xi in Sk , obviously represents a functional determinant, and 
indeed the one that arises from ∆h when one replaces the derivatives with respect to xi in 
it with ones with respect to xk .  However, that determinant will generally include two 
rows in which one differentiates with respect to xk , so it will vanish.  Only when the 
indices k and i are equal will it remain unchanged by that exchange, namely, ∆h, and 
when k = h, ∆h will itself already no longer contain derivatives with respect to xk , and the 
value of the resulting determinant will be – ∆i, since, from a well-known theorem: 
 

( )
k
m

i

a

x

∂∆
∂∂
∂

 = − ( )
i
m

k

a

x

∂∆
∂∂
∂

. 

 
Therefore, the sum (22) will reduce to: 
 

Sk = 
1 1

n n
h k

h i
h ik ix x= =

∂∆ ∂∆∆ − ∆
∂ ∂∑ ∑ , 

 
and one will then see that Sk differs from the right-hand side of equation (21) only in sign. 
 However, equation also immediately assumes the form: 
 

Sk = 
( )1

( )
1 1 1

mn n n
h h

m
m i hk i

i

a

ax x
x

−

= = =

 
 ∂∆ ∂∆∂  ⋅ ∂∂ ∂ ∂
 ∂ 

∑ ∑∑ . 

 
That is the form that was already achieved in (21), since the index k no longer enters into 
the bracket; one can then set: 

(23)    A(m) = − ( )
1 1

n n
h h

m
i h i

i

ax
x

= =

∂∆ ∂∆
⋅

∂∂ ∂
∂

∑∑ . 

 
One can give this expression a more suitable form when one remarks that: 
 

0 = ( )
1

n
h
m

i i

i

ax
x

=

 
 ∂∆∂  

∂ ∂ ∂ ∂ 

∑ ; 
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one can then write: 

A(m) = − ( )
1 1

n n
h

h m
i hi

i

ax
x

= =

 
 ∂∆∂  ∆ ∂∂  ∂
 ∂ 

∑ ∑ . 

However, the relation: 
2T = 2 2 2

1 2 n∆ + ∆ + + ∆⋯  

 
was introduced above.  If we apply this then we will finally obtain A(m) in its simplest 
form: 

(24)   − A(m) = ( ) ( ) ( )
1 2

1 2

m m m
n

n

T T T

a a ax x x
x x x

∂ ∂ ∂ ∂ ∂ ∂+ + +
∂ ∂ ∂∂ ∂ ∂∂ ∂ ∂
∂ ∂ ∂

⋯ . 

 
That is then the expression for A(m) into which second derivatives enter, as one sees; 
equation (18) will then lead to the third derivatives.  We remark that equation (23) allows 
us to put equations (18) into the form: 
 

(25)   
( ) ( ) ( ) ( )

1 2
1 2

m m m m

n
n

A A A A

x x x t

∂ ∂ ∂ ∂∆ + ∆ + + ∆ +
∂ ∂ ∂ ∂

⋯  = R(m), 

 
in which we have set, for brevity: 

(25a)     R(m) = ( )
1 1

n n
h h

m
i h i

i

ax t
x

= =

∂∆ ∂∆∂⋅
∂∂ ∂ ∂
∂

∑∑ , 

which is a form that will be used in what follows. 
 However, for the simpler case in which the ∆ (or the u) are independent of t, equation 
(24) will give, by way of (14): 
 

(26)   ( ) ( ) ( )
1 2

1 2

( )m
m m m

n

n

T T T
a

a a ax x x
x x x

∂ ∂ ∂ ∂ ∂ ∂ ′+ + + + Π
∂ ∂ ∂∂ ∂ ∂∂ ∂ ∂
∂ ∂ ∂

⋯  = 0. 

 
 The system of equations that is thus represented is nothing but the one that one 
obtains from the problem of finding a minimum for the integral: 
 

(27)     
( )n

∫ (T – Π) dx1 dx2 … dxn , 

where: 
(28)     2T = 2 2 2

1 2 n∆ + ∆ + + ∆⋯ . 
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That theorem is important for the transformation of the differential equations in question, 
and it is interesting for the fact that it allows one to recognize the identity of the problem 
that is given by equations (1), (2), and (27). 
 
 

§ 4. 
 

 If we now couple the system of differential equations that was presented with the 
system of complete differential equations: 
 

(29)   1dx

dt
 = u1,  2dx

dt
 = u2, …, ndx

dt
 = un , 

 
for which we can now also set: 
 

(30)   1dx

dt
 = ∆1,  2dx

dt
 = ∆2, …, ndx

dt
 = ∆n . 

 
 The identity equation: 

1 2

1 2

n

nx x x

∂∆∂∆ ∂∆+ + +
∂ ∂ ∂

⋯  = 0 

 
then shows that a multiplier of the equations is equal to one, and one can find the last 
integral when one knows the first n – 1. 
 One further sees that as long as the ∆ are free of t, the integrals of the equations will 
immediately be the following ones: 
 
(31)   a′ = const., a(2) = const., …, a(n−1) = const. 
 
It will then follow from equations (30) that: 
 

( )mda

dt
= 

( ) ( )
1 2

1 2

m mdx dxa a

x dt x dt

∂ ∂⋅ + ⋅
∂ ∂

 + … = 
( ) ( )

1 2
1 2

m ma a

x x

∂ ∂∆ + ∆
∂ ∂

 + …, 

 
which is identically zero.  When the A are set equal to constants, they will also be 
integrals of the present equations, since, from (14), they are functions of the a. 
 One can add the following general theorem for the general case: 
 
 1. As long as one of the a is independent of t, a = const. will be an integral of 
equations (30). 
 
 2. As long as the expression (25a): 
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R(m) = ( )
1 1

n n
h h

m
i h i

i

ax t
x

= =

∂∆ ∂∆∂⋅
∂∂ ∂ ∂
∂

∑∑  

vanishes: 
A(m) = const. 

 
will be an integral of the present equations. 
 
 From (30), (25), one will then have: 
 

( )mdA

dt
 = 

( ) ( )

1 2
1 2

m mA A

x x

∂ ∂∆ + ∆
∂ ∂

+ …+ 
( ) ( )m m

n
n

A A

x t

∂ ∂∆ +
∂ ∂

 = R(m) = 0. 

 
 

§ 5. 
 

 If we set n = 3, moreover, then equations (1), (2) will go to Euler’s equations, 
namely: 

(32)   

1 1 1 1
1 2 3

1 1 2 3

2 2 2 2
1 2 3

2 1 2 3

3 3 3 3
1 2 3

3 1 2 3

,

,

,

u u u uV
u u u

x t x x x

u u u uV
u u u

x t x x x

u u u uV
u u u

x t x x x

 ∂ ∂ ∂ ∂∂ = + + + ∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂∂ = + + + ∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂∂ = + + +

∂ ∂ ∂ ∂ ∂

 

 

0 = 31 2

1 2 3

uu u

x x x

∂∂ ∂+ +
∂ ∂ ∂

, 

 
where u1, u2, u3 are the velocities that one finds at the location (x1, x2, x3) at time t, and V 
= U – p / q, when U denotes the force function, p denotes the pressure, and q denotes the 
constant density.  Using equations, I now pose: 
 

(33)   

(2) (2)

1 1
2 3 2 3

(2) (2)

2 2
3 1 3 1

(2) (2)

3 3
1 2 1 2

,

,

.

a a a a
u

x x x x

a a a a
u

x x x x

a a a a
u

x x x x

 ′ ′∂ ∂ ∂ ∂= ∆ = ⋅ − ⋅ ∂ ∂ ∂ ∂
 ′ ′∂ ∂ ∂ ∂ = ∆ = ⋅ − ⋅ ∂ ∂ ∂ ∂
 ′ ′∂ ∂ ∂ ∂
 = ∆ = ⋅ − ⋅

∂ ∂ ∂ ∂

 

 
From a known transformation, one will then have: 
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(34)    2T = 2 2 2
1 2 3∆ + ∆ + ∆  = P′ P(2) – PP, 

when one sets, for brevity: 
 

(35)   

22 2

1 2 3

22 2(2) (2) (2)
(2)

1 2 3

(2) (2) (2)

1 1 2 2 3 3

,

,

,

a a a
P

x x x

a a a
P

x x x

a a a a a a
P

x x x x x x

     ′ ′ ′∂ ∂ ∂′ = + +     ∂ ∂ ∂      


    ∂ ∂ ∂ = + +     ∂ ∂ ∂     
 ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂
 = ⋅ + ⋅ + ⋅

∂ ∂ ∂ ∂ ∂ ∂


 

 
and the expressions for A will be: 
 

(36)   

(2)3
(1) (2)

1

(2)3
(2)

1

,

.

i i i i

i i i i

a a
A P P

x x x

a a
A P P

x x x

=

=

  ′∂ ∂ ∂− = −  ∂ ∂ ∂  


 ′∂ ∂ ∂ ′− = −  ∂ ∂ ∂ 

∑

∑
 

 
The differential equations upon which the problem depends in general will then be: 
 

(37)  

(1) (1) (1) (1)
(1)

1 2 3
1 2 3

(2) (2) (2) (2)
(2)

1 2 3
1 2 3

0 ,

0 ,

A A A A
R

x x x t

A A A A
R

x x x t

 ∂ ∂ ∂ ∂= ∆ + ∆ + ∆ + − ∂ ∂ ∂ ∂


∂ ∂ ∂ ∂ = ∆ + ∆ + ∆ + −
 ∂ ∂ ∂ ∂

 

where: 

(37a) 

2 (2) 2 (2) 2 (2)
(1) 3 32 1 2 1

1 2 3 2 3 1 3 1 2

2 2 2
(2) 3 32 1 2 1

1 2 3 2 3 1 3 1 2

,

.

a a a
R

x t x x x t x x x t x x

a a a
R

x t x x x t x x x t x x

      ∂∆ ∂∆∂∆ ∂∆ ∂∆ ∂∆∂ ∂ ∂= − + − + −      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     


     ′ ′ ′∂∆ ∂∆∂∆ ∂∆ ∂∆ ∂∆∂ ∂ ∂ − = − + − + −      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

 

 
The integrals of the equations: 
 

(38)   1dx

dt
 = ∆1 , 2dx

dt
 = ∆2 , 3dx

dt
 = ∆3  

 
represent a varying system of curves on which the particles move.  From the theorems 
that were discussed in § 4, one must now have the integral: 
 

A(m) = const. 
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for the integrals when the term R(m) vanishes in one of the equations (37).  That is the 
case, e.g., when a(2) is independent of time; one will then have that: 
 

A(1) = const. 
is an integral.  However: 

a(2) = const. 
 
will also be one.  If we connect that with the principle of the last multiplier then we can 
integrate equations (38), as long as one of surfaces in the system of surfaces upon which 
the motion takes place is independent of time.  Let the last integral be ϕ = const.  ϕ must 
then satisfy the equation: 

W = 1 2 3
1 2 3t x x x

ψ ψ ψ ψ∂ ∂ ∂ ∂+ ∆ + ∆ + ∆
∂ ∂ ∂ ∂

 = 0, 

 
and since the multiplier is 1, this expression will also be equal to the determinant: 
 

W ≡ 

(2) (1)

1 1 1 1

(2) (1)

2 2 2 2

(2) (1)

3 3 3 3

(2) (1)

a A

x x x x

a A

x x x x

a A

x x x x

a A

t t t t

ψ ϕ

ψ ϕ

ψ ϕ

ψ ϕ

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

. 

  
If one now introduces a(2), A(1), and any new variable v in place of x1, x2, x3, and denotes 
the new derivatives by a bracket then that identity equation will go to: 
 

1 2 3
1 2 3

v v v v

t v t x x x

ψ ψ  ∂ ∂ ∂ ∂ ∂ ∂   + + ∆ + ∆ + ∆    ∂ ∂ ∂ ∂ ∂ ∂    
 ≡ D ⋅⋅⋅⋅ 

v v

t t

ψ ϕ

ψ ϕ

∂ ∂   
   ∂ ∂   

∂ ∂   
   ∂ ∂   

, 

 
where D is the determinant of v, a(2), A(1) with respect to x1, x2, x3 .  If one then sets, for 
brevity: 

(39)    w = 1 2 3
1 2 3

v v v v

t x x x

∂ ∂ ∂ ∂+ ∆ + ∆ + ∆
∂ ∂ ∂ ∂

, 

 
then it will follow from the identity equation that: 
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− 1 = D 
v

ϕ∂ 
 ∂ 

, w = D 
t

ϕ∂ 
 ∂ 

, 

 
and the desired last integral will then be: 
 

(40)     ϕ = 
wdt dv

D

−
∫ . 

 
This case will occur, e.g., when the motion is the same on all sides of a vertical, so in that 
case, one can give all of the integrals, since one integral (viz., the plane of motion that 
goes through that vertical) is independent of t. 
 If the motion is stationary then, from (26), etc., one will have to solve the equations 
that define the minimum of the integral: 
 

(41)    
(2)

(2)
1 2 3( , )

2

P P PP
a a dx dx dx

′ − ′− Π 
 

∫∫∫ , 

namely, the equations: 
(42)    A(1) = Π′(a′),  A(2) = Π′(a(2)). 
 
The functions a′, a(2) will then give the system of surfaces in whose intersection the 
motion takes place: 

a′ = const., a(2) = const. 
 
 That is the theorem that was mentioned in the introduction.  The pressure will be 
finite, and as a result of equations (14a) and (19), it will be given, in general, by the 
formula: 

U − 
p

q
 − T = 

1 T

R t

∂ 
 ∂ 
∫  da + Π (a′, a(2), t), 

 
and for the stationary motion, in particular, it will be given by: 
 

U − 
p

q
 − T = Π (a′, a(2)) . 

 
This is likewise the true form that the equation of the vis viva assumes. 
 
 

§ 6. 
 

 The introduction of new variables into the present equations will raise no new 
difficulties.  For the stationary state, one will have nothing to do but to transform the 
expression T, which obviously assumes only a knowledge of the form that the square of 
the line element assumes.  If that is: 
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(43)   ds2 = 2 2
11 1 22 2 12 1 22u dy u dy u dy dy+ +  …, 

 
in which y1, y2, y3 are the new variables (which are thought of as independent of t), then 
the transformation determinant will be: 

(44)     D = 
11 12 13

21 22 23

31 32 33

u u u

u u u

u u u

, 

and furthermore: 
2T = P′ P(2) – P P, 

where: 

(45)    P = − 

(2)

11 12 13
1

(2)

21 22 23
2

2(2)

31 32 33
3

1 2 3

1

0

a
u u u

y

a
u u u

y

Da
u u u

y

a a a

y y y

∂
∂

∂
∂

⋅
∂
∂

′ ′ ′∂ ∂ ∂
∂ ∂ ∂

, 

 
and in which P′ will be obtained from P when one replaces a(2) with a′, and P(2) will be 
obtained P when one replaces a′ with a(2) .  From the theory of determinants, one easily 
infers that 2T also assumes the form: 
 

(45a)   2T = 

(2)

11 12 13
1 1

(2)

21 22 23
2 2

(2)

31 32 332
3 3

1 2 3

(2) (2) (2)

1 2 3

1

0 0

0 0

a a
u u u

y y

a a
u u u

y y

a a
u u u

D y y

a a a

y y y

a a a

y y y

′∂ ∂
∂ ∂

′∂ ∂
∂ ∂

′∂ ∂⋅
∂ ∂

′ ′ ′∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

 . 

 
[cf., Hesse, “Über Determinanten in der Geometrie,” this journal, Bd. 49, pp. 248, 
formulas (6), (7).] 
 The integral that is to have a minimum will then become: 
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∫∫∫ (T – Π) ⋅⋅⋅⋅ D dy1 dy2 dy3 , 

and the equations: 

(46)    

3

1

3
(2)

(2)
1

0 ( ) ,

0 ( )

i i

i

i i

i

T
D a D

ay
y

T
D a D

ay
y

=

=

  
  ∂ ∂
  ′ ′= ⋅Π + ⋅ ′∂∂  ∂  ∂ 


 
  ∂ ∂ ′= ⋅Π + ⋅ ∂ ∂ ∂  ∂ 

∑

∑

 

 
will flow from that by a known method.  That equation also gives the transformation 
formula for the A in the general case: 

(47)    − A(m) = 
3

( )
1

1
m

i i

i

T
D

aD y
y

=

 
 ∂ ∂ ⋅

∂ ∂ ∂ ∂ 

∑ . 

 
We require this formula for the transformation of equation (37).  If we further remark that 
the first part of that equation, namely: 
 

U = 
( ) ( ) ( )

1 2 3
1 2 3

m m mA A A

x x x

∂ ∂ ∂∆ + ∆ + ∆
∂ ∂ ∂

, 

 
is nothing but the functional determinant of a′, a(2), A(m) with respect to the x then it will 
follow immediately that D ⋅⋅⋅⋅ U is the functional determinant of a′, a(2), A(m) with respect to 
the y, so when one sets: 

(48)    

(2) (2)

1
2 3 3 2

(2) (2)

2
3 1 1 3

(2) (2)

3
1 2 2 1

,

,

,

a a a a

y y y y

a a a a

y y y y

a a a a

y y y y

 ′ ′∂ ∂ ∂ ∂∇ = − ∂ ∂ ∂ ∂
 ′ ′∂ ∂ ∂ ∂ ∇ = − ∂ ∂ ∂ ∂
 ′ ′∂ ∂ ∂ ∂
 ∇ = −

∂ ∂ ∂ ∂

 

 
the identity equation will come about: 
 

(49)     
( )3

1

m

i
i i

A

x=

∂∆
∂∑  = 

( )3

1

1 m

k
k k

A

D y=

∂∇
∂∑ . 
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If one takes the coefficients of 
( )m

i

A

x

∂
∂

 on both sides of this then one will obtain the 

transformation of ∆i, namely: 

(50)      ∆i = 
3

1

k i

k k

x

D y=

∇ ∂⋅
∂∑ . 

 
This equation, in whose derivation the nature of the a′, a(2), A(m) is completely irrelevant, 
involves the general equation: 

2 3 3 2x x x x

ϕ ψ ϕ ψ∂ ∂ ∂ ∂−
∂ ∂ ∂ ∂

 = 

1

1 1 1

1

2 2 2

1

3 3 3

1

x

y y y

x

D y y y

x

y y y

ϕ ψ

ϕ ψ

ϕ ψ

∂∂ ∂
∂ ∂ ∂

∂∂ ∂⋅
∂ ∂ ∂

∂∂ ∂
∂ ∂ ∂

 , 

 
and when one applies this equation to (37a), one will get: 
 

(51)  D R(1) = 

2 (2)
31 2

1 1 1 2 3 1

2 (2)3
31 2

1 2 2 1 2 3 2

2 (2)
31 2

3 3 1 2 3 3

i i i i

i i i i

i

i i i i

x x x xa

t y y D y D y D y y

x x x xa

t y y D y D y D y y

x x x xa

t y y D y D y D y y

=

 ∂ ∂ ∇ ∂ ∂∇ ∇∂ ∂ + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∇ ∂ ∂∇ ∇∂ ∂ + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∇ ∂ ∂∇ ∇∂ ∂ + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

∑ . 

 

In this, 
2 (2)

1

a

t y

∂
∂ ∂

 is multiplied by: 

 
3

3 31 2 1 2

1 3 2 1 2 3 2 3 1 2 3

i i i i i i i i

i

x x x x x x x x

y y D y D y D y y y D y D y D y=

    ∂ ∂ ∂ ∇ ∂ ∂ ∂ ∂ ∇ ∂∇ ∇ ∇ ∇∂ ∂+ + − + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    
∑ , 

or 
3 3

1 1 3 2 2 3

i k i i k i

i k k k

x x x x

y y D y y y D y= =

    ∂ ∇ ∂ ∂ ∇ ∂∂ ∂ −    ∂ ∂ ∂ ∂ ∂ ∂     
∑∑ , 

 
or, when one performs the differentiation: 
 

 
3 3 3

1 1 12 3 3 2

k i i k i i

k k ik k

x x x x

y D y y y D y y= = =

 ∇ ∂ ∂ ∇ ∂ ∂∂ ∂   ⋅ −    ∂ ∂ ∂ ∂ ∂ ∂    
∑ ∑ ∑ +  
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2 23 3 3

3

1 1 13 2 2 3

i i i i

k i ik k

x x x x

D y y y y y y= = =

 ∇ ∂ ∂ ∂ ∂− ∂ ∂ ∂ ∂ ∂ ∂ 
∑ ∑ ∑ , 

 
and when one remarks that, from (43), one has: 
 

(52)     
3

1

i i

i k h

x x

y y=

∂ ∂
∂ ∂∑  = ukh , 

 
the coefficient in question will then go to: 
 

3
3 2

3 2
1 2 3 2 3

k k k k k
k k

k

u u
u u

y D y D D y y=

  ∇ ∇ ∇ ∂ ∂∂ ∂    ⋅ − ⋅ + −     ∂ ∂ ∂ ∂      
∑ , 

 
and the desired form of R(1) will finally become: 
 

(53)  DR(1) = 
2 (2) 2 (2) 2 (2)3

3 2 1 3 2 1

1 1 2 3 2 3 1 3 1 2

k k k k k k k

k

u u u u u ua a a

D t y y y t y y y t y y y=

      ∇ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂− + − + −      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     
∑  

 

+ 

2 (2)

1
1 1

2 (2)3

2
1 2 2

2 (2)

3
3 3

k
k

k
k

k

k
k

a
u

t y y D

a
u

t y y D

a
u

t y y D

=

∇∂ ∂  
 ∂ ∂ ∂  

∇∂ ∂  
 ∂ ∂ ∂  

∇∂ ∂  
 ∂ ∂ ∂  

∑  . 

 
This equation and equation (49) together complete the transformation of equations (37), 
which then likewise goes back to the transformation of only the line element. 
 In particular, if the y are three systems of surfaces that intersect at right angles then 
u12, u23, u31 will vanish, and one will get the new expression for R(1): 
 

(54) R(1) = 
2 (2) 2 (2)

3 32 1
33 22 11 33

2 3 1 3 1 3

a a
u u u u

y D y D t y y D y D t y

   ∇ ∇∇ ∇∂ ∂ ∂ ∂ ∂ ∂      − + −         ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂         
 

+ 
2 (2)

2 1
22 11

1 2 2

a
u u

y D y D t y

 ∇ ∇∂ ∂ ∂   −    ∂ ∂ ∂ ∂    
, 

 
and the corresponding expressions for R(2) is obtained by switching a′ and a(2).  Finally, 
the transformation of equations (38) is contained in equation (50).  If one multiplies it by 
∂yh / ∂xi and sums over i then one will get: 
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(55)     hdy

dt
= h

D

∇
. 

 
 

§ 7. 
 

 In the individual cases, one is in a position to determine one of the functions a′, a(2) 
from the outset just from the mechanical nature of the problem.  One will then obtain a 
differential equation for the remaining function a that will generally be of order three, but 
of order two for stationary motion. 
 Let the motion be such that all particles are required to move in parallel planes whose 
equations might be represented by x3 = const.  One can then set: 
 
(56)    a(2) = x3 , a′ = f (x1, x2, t). 
 
Moreover, equations (35), (36) go to: 
 

(57)   

2 2

(2)

1 2

2 2
(1) (2)

2 2
1 2

, 1, 0,

, 0,

a a
P P P

x x

a a
A A

x x

    ′ ′∂ ∂′ = + = =   ∂ ∂    


′ ′∂ ∂ − = + = ∂ ∂

 

 
and, from (33), the expressions for the velocities will be: 
 

(58)  u1 = ∆1 = 
2

a

x

′∂
∂

,  u2 = ∆2 = − 
1

a

x

′∂
∂

, u3 = 0. 

 
Therefore, of equations (37), the second one will vanish identically, and one will have the 
single equation: 

(59)    
(1) (1) (1)

2 1 1 2

a A a A A

x x x x t

′ ′∂ ∂ ∂ ∂ ∂⋅ − ⋅ +
∂ ∂ ∂ ∂ ∂

 = 0, 

 
in which A is defined by (57).  In the case of stationary motion, equations (42), (57) will 
give: 

(60)    
2 2

2 2
1 2

a a

x x

′ ′∂ ∂+
∂ ∂

+ Π′(a′) = 0. 

 
The integrals of the differential equations that belong to (59) are: 
 
(61)     A(1) = const. 
 
and a second one that one obtains from the principle of the last multiplier, namely (40): 
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(62)   const. = 2 1 1 2
(1) (1)

2 1 1 2

v a v a v
dt dv

t x x x x

v A v A

x x x x

 ′ ′∂ ∂ ∂ ∂ ∂+ − − ∂ ∂ ∂ ∂ ∂ 
∂ ∂ ∂ ∂−
∂ ∂ ∂ ∂

∫ , 

 
in which A(1) and the arbitrary function v were introduced under the integral sign in place 
of x1, x2 as variables 
 A second case in which the differential equations likewise reduce to one is given by 
the motion that is same in all directions around an axis.  Let that axis be x3 .  One can 
then introduce the coordinates: 
 
(63)    x1 = r cos ϕ, x2 = r sin ϕ, x3 = z. 
 
The square of the line element is then known to be: 
 
(64)    ds2 = dr2 + r2 dϕ2 + dz2. 
One likewise obtains: 

(65)   

22 2

2

2 2 2(2) (2) (2)
(2)

2

(2) (2) (2)

2

1
,

1
,

1
.

a a a
P

r z r

a a a
P

r z r

a a a a a a
P

r r z z r

ϕ

ϕ

ϕ ϕ

 ′ ′ ′ ∂ ∂ ∂   ′ = + +      ∂ ∂ ∂     


     ∂ ∂ ∂ = + +      ∂ ∂ ∂     
 ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂
 = + +

∂ ∂ ∂ ∂ ∂ ∂


 

 
The transformation is r.  Now, since 2T = P′ P(2) – PP, equations (47) will give: 
 

(66)  

(2) (2)
(1) (2) (2)

(2)
(2)

2

(2) (2)
(2)

(2)

2

1

1
,

1

1
.

a a a a
A r P P P P

r r r r z z z

a a
P P

r

a a a a
A r P P P P

r r r r z z z

a a
P P

r

ϕ ϕ ϕ

ϕ ϕ ϕ

  ′ ′ ∂ ∂ ∂ ∂ ∂ ∂− = − + −    ∂ ∂ ∂ ∂ ∂ ∂   
 ′ ∂ ∂ ∂ + −  ∂ ∂ ∂  


 ′ ′ ∂ ∂ ∂ ∂ ∂ ∂ ′ ′− = − + −    ∂ ∂ ∂ ∂ ∂ ∂  
 ′ ∂ ∂ ∂′+ −  ∂ ∂ ∂ 

 

 
 When considering motion that is symmetric around x3, one can now attempt to set: 
 

a(2) = ϕ, a′ = f (r, z, t). 
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Equations (65) will then go to: 
 

P′ = 
2 2

a a

r z

′ ′∂ ∂   +   ∂ ∂   
,  P(2) = 

2

1

r
, P = 0, 

 
and equations (66) will give: 
 

(67)  − A(1) = 
1 1 1a a

r
r r r r z r z

′ ′∂ ∂ ∂ ∂   +   ∂ ∂ ∂ ∂   
,  A(2) = 0. 

 
Moreover, equations (48) go to: 
 

(68)  ∇1 = − 
a

z

′∂
∂

,  ∇2 = 0,  ∇3 = 
a

r

′∂
∂

.  

 
If one adds that D = r then one will see from (54) that, in the first place, both expressions 
for R will vanish, and the equation (49) will give: 
 

(69)   
(1) (1) (1)a A a A A

r
r z z r t

′ ′∂ ∂ ∂ ∂ ∂⋅ − ⋅ +
∂ ∂ ∂ ∂ ∂

 = 0, 

 
in which A(1) is defined by (67), and for stationary motion: 
 

(70)   
1 1 1 1a a

r r r r r z r z

′ ′∂ ∂ ∂ ∂   +   ∂ ∂ ∂ ∂   
+ Π′(a′) = 0. 

 
 The differential equations that ultimately have to be integrated will be: 
 

(71)   
dr

dt
 = − 

1 a

r z

′∂
∂

,  
dz

dt
 = 

1 a

r r

′∂
∂

. 

 
 One integral is, in turn, A(1) = const.; the other one will be obtained from the theory of 
multipliers, namely: 

(72)   const. = (1) (1)

v a v a v
r dt dv

t z r r z
v A v A

r z z r

′ ′∂ ∂ ∂ ∂ ∂ − + − ∂ ∂ ∂ ∂ ∂ 
∂ ∂ ∂ ∂−
∂ ∂ ∂ ∂

∫ , 

 
in which A(1), which remains constant during the integration and v, which is an arbitrary 
function of r and z are introduced under the integral sign in place of r, z. 
 
 Berlin, 26 May 1857. 


