APPENDIX A

TENSORS AND DIFFERENTIAL FORMS
ON VECTOR SPACES

Since only so much of the vast and growing field of daffitial forms and
differentiable manifolds will be actually used in this surver shall attempt to briefly
review how the calculus of exterior differential fa&rman vector spaces can serve as a
replacement for the more conventional vector cafalnd then introduce only the most
elementary notions regarding more topologically gdraifeerentiable manifolds, which
will mostly be used as the basis for the discussioiefgroups, in the following
appendix.

Since exterior differential forms are special kinds tefisor fields — namely,
completely-antisymmetric covariant ones — and tenss¥smportant to physics, in their
own right, we shall first review the basic notiorencerning tensors and multilinear
algebra. Presumably, the reader is familiar with liredgebra as it is usually taught to
physicists, but for the “basis-free” approach to lingad multilinear algebra (which we
shall not always adhere to fanatically), it would di&dp to have some familiarity with
the more “abstract-algebraic” approach to linear algeduaeh as one might learn from
Hoffman and Kunzel]], for instance.

1. Tensor algebra.— A tensor algebra is a type of algebra in which iplidation
takes the form of the tensor product.

a. Tensor product— Although the tensor product of vector spaces can be given
rigorous definition in a more abstract-algebraic con(®ee Greubd], for instance), for
the purposes of actual calculations with tensors andrtéets, it is usually sufficient to
say that ifV andW are vector spaces of dimensionandm, respectively, then thensor
productV [0 W will be a vector space of dimensiam whose elements are finite linear
combinations of elements of the fosm] w, wherev is a vector iV andw is a vector in
W. The tensor produdci then takes the form of a bilinear megpx W - VO W, (v, w)
— v O w. In particular, that kind of product is not closed, sitice tensor product of
two vectors will belong to a different vector space.

Bilinearity means that the map is linear in each factor individuabyt not
collectively linear. Hence:

(av+pVv)YOw=avOw+ gV Ow, (1.2)
vl (aw+pw)=avOw+vIOwW. (1.2)

One can also see that this means that the tensor pisdigit and left distributive over
vector addition.

Because of this bilinearity, ife{,i = 1, ...,n} is a basis fo\ and {f,a=1, ...,m}
is a basis foWwthen{g O fy,i =1, ...,n,a=1, ...,m} will constitute a basis fow [J W.
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Hence, ift is an element o [J Wthen it can be expressed as a linear combination of the
basis elements in the form:

t:t‘aamfasiitiaqmg. (1.3)

i=1 a=1

The numbers? are referred to as tmemponent®ft with respect to the chosen basis
onV O W. Most of the literature of theoretical physics, euprto the present era, deals
exclusively with the components of tensors, althougbrefvity be the soul of wit then
one can easily see that dealing with the intrinsic edjestich as, w, andt, can add a
certain clarity and conciseness to one’s mathewmlatipressions, even if it does involve
a small investment of abstraction in the process.

One can also use the bilinearity of the tensor produexpoess the tensor product
O w in terms of components. Suppose that V @ andw = w? f, (*). One will then
have:

vOw=v'wel fy; (1.4)

i.e., the components of] w with respect to the chosen basis wil\der’.

We now see that there are two distinct types of elesnenV O W, namely,
decomposableelements which have the formn 0 w, and indecomposableslements,
which have the more general form of finite linear cambbons of decomposable
elements, such as in (1.3). The fact that not all elesrere decomposable is due to the
fact that linear combinations of decomposable element®tbave to be decomposable.
In the case of exterior algebra, which we shall discshortly, the decomposable
elements will sometimes define quadric hypersurfaces itetigor product space, rather
than vector subspaces.

b. Contravariant tensors— A common situation in tensor algebra (as well as in
physics) is when the vector spadéis the vector spac¥. One can then refer to the
elements oV [0 V assecond-rank contravariantensors (oveV). The term “second-
rank” refers to the fact that there are two copie¥ of the tensor product. Hence, a basis

can be defined bygd g, i,j =1, ...,n} and components will look like" :
t=t'g0g. (1.5)

The term “contravariant” refers to the way that tkenponents transform under a change
of basis. In particular, if:

€ =¢;A (1.6)

is a change of linear basisVh(so A is an invertible matrix) then the componentsof
andw (which werev' andw' with respect t@) will now be:

() From now on, we shall invoke the “summation conient which is often attributed to Einstein,
namely, whenever a superscript agrees with a subscnigtsums over all defined values of the index in
guestion. In the occasional situations where it esgary to refer to components with doubled indices,
such as the diagonal elements of matrices, the cooweniil usually be rescinded explicitly.
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vV=AV, W=AwW (1.7)

with respect tog. The notationA} refers to the inverse of the matrl%, so this type of

transformation is referred to asntravariant.
From the bilinearity of the tensor product, the resglttransformation of the
components of [1 w will be:

VW=A AVW, (1.8)

and more generally (also due to the bilinearity of thesde product), the components
t! of t, as in (1.5), will transform to:

= A A, (1.9)

Hence, one can say that they doeibly-contravariant.
Since the tensor product is also associative:

(@db)Oc=al (b0Oc), (1.10)

one can define higher tensor prodwéts ... O V of a finite number of copies &f, and
the elements dilyvV = VO ... O V when there are — sayk-copies ofV are then referred
to asrank-k contravariant tensor®verV. Hence, a basis fdrkV can be given by all
tensor products of the fory U ... U ¢ , the components of a general elentefitlV

will take the formt®*, and they will transform to:

T = A;ll ,B;kk th (1.12)
under a change of basis ¥n

Clearly, the dimension df,V will be n*.

One can also form tensors of mixed rank o¥éry forming finite linear combinations
of elements in variouSlV's for different values ok. For instance, one might form the
linear combinatiora + b [J ¢c. Such expressions cannot generally be simplified further
unless some further structure is imposed upal, which will usually be another
algebra, for us. A tensor that does not have mixed isypeferred to ahomogeneoys
although in most cases, that will be tacitly implied.

The direct suniloV O O,V O ... O OV O ... of all the vector spacésV ask varies

from O (JoV = R) to infinity will denoted by simplyJ+V. It will be referred to as the

contravariant tensor algebraverV, and will clearly be infinite-dimensional. One sees
that the tensor product then makes the vector dpa¢énto analgebrg since it defines a
bilinear binary product on the vector space. It will ddlscassociative and possess a unity
element (namely, 1) as an algebra. In addition, sithee tensor product of a
homogeneous tensor of rakkvith one of rank will be a homogeneous tensor of rdak

+ 1, one refers to the algebraV as agradedalgebra.
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c. Covariant tensors- The dual spac¥ to the vector spacé (viz., the vector space
of all linear functionals oW) is itself a vector space, so one can still definsaes of any
rank over it. Henced"V = 0 =V O ... OV (k copies) is a vector space of
dimensiom®, and if {8',i = 1, ...,n} is a basis folV" then a basis faf*V can be defined
by 6:0 ... 0 6%, and a general elemerfld*V will then take the form:

t=t_, 6"0..0 6. (1.12)
The scalar components ; are then the components of a rdnkevariant tensor ove.
Under a change of basis ¥h:

0'= A0, (1.13)
the componentsg ; will transform to:

T = A AR (1.14)

e Jrdk

Of particular interest is the case in which the $8'sfor V' is reciprocal to the basis
e for V. In that case, one will have, by definition:

o' =0 = 1.15
(8) =9, { 0 i%]. (1.15)
d; is then the&kroneckerdeltasymbol.

In order for a reciprocal basis to go to a reciproeaidounder a change of basis
such as in (1.6), one must have:

5=08(€)=B0(EA)=B A0E) =B A4=BA.

Hence, B} can only beA,. One then says that the baBisransformscontragredientlyto

the basi®, and in fact, so do the components of tensors \éver

One can also form the direct stV = 0.V = 0% 0 00O ... 00% O ... over
all k and call it thealgebra of covariant tensors over \t will once more be an infinite-
dimensional graded associative algebra with unity.

d. Tensors mixed variance.One can take the tensor prod@v = (0*v) O (0,V)
and obtain a vector space of dimensihwhose elements are finite linear combinations
of (homogeneous) elements of the foahO ... O a'* Ov, O ...0v,, inwhich thea’s

are linear functionals o¥{, and thev's are vectors iV. Such an element will then be a
tensor that i%-times covariant anttimes contravariant. Hence, a basis fiiv can be

defined by the tensor productsO ... O 60 e U ..U e, and a general element
00V will take the component form:
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t=thh e'0..060e0..0¢,. (1.16)

Under a change of basis (1.6) #and the contragredient change of the reciprocal basis
for ', the components” ;" will become:

_|J1|k]| = Ail Al{kk 765\111 7%" ]‘Elrj . (1.17)

The direct sum of allJ}V for all k andl then becomes an associative algebra with
unity that is doubly-graded and is referred to aguleensor algebraoverV.

Of particular interest in the mixed tensor algebrthés vector spacéllV = \VAIERY

That is because & is a basis fo and®' is a basis fok" (such as the reciprocal basis)
then the components of a tensat[;V will be n x n matricest; . Indeed, one can define

an isomorphism o¥ O V with the vector space Endof all linear maps fronV to itself
(i.e., endomorphisms) by taking each decomposable eleariént to the linear map that
takes any vectow O V to the vectom (W) v. The general indecomposable element in
[ Vis a finite linear combination of elements of the farml v, so one extends the basic
association to a complete mepd V — EndV “by linearity,” as they say:; viz., one takes
finite linear combinations of decomposable element¥'ifd V to the corresponding
linear combinations of the corresponding decomposable elenmelBndV. The fact that
the resulting linear map is also an isomorphism is prgbedsiest to see by choosing a
basis for both vector spaces and noting that the nmaplys associates théensor
componentst} with thematrix t} , which otherwise looks like the identity map.

e. Contraction of covariant tensors with contrawani ones.— There is a basic
bilinear pairing of an elememt 0 V" with an element 0 V to form a scalar that amounts
to the evaluation of the linear functionalon the vectowr to produce the scalar (v).
When one chooses bases férand V', the componentsx will combine with the
components' to give:

a (V) =aiV. (1.18)

One can also regard this as a linear My - R that takes the second-rank mixed

tensora U v to the scalaer (v), so it will take the componentg V' to the scalam V.
This process can be generalized to a linear map figfivito 0}7'V that takes the

decomposable element: 0 ... 0 a* 0 v, U ...0v; to the decomposable element:
a“(v) e"0..04"0..0a¢%0v,0..0¥ 0O..0v,,

in which the caret denotes the removal of that tBom the tensor product. One then
extends the map of decomposable elements to ingexsahle ones by linearity. In
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particular, one can perform this process on the basisegits of ]V to produce basis

elements forJ;JV .
The usual way that one encounters this process in phgsicserms of components.

If the components of a tensoll [,V aret}l“" “"'.k then the components of the contraction

'
s

of the covariant indek with the covariant indep will be:
g =Yg (1.19)

One refers to the process of setting a superscripaaubscript equal to each other
and summing over them as tbentractionof a mixed tensor of rank+l to produce a
mixed tensor of rankk¢1)+(1-1).

A particularly useful example of the contractionaomixed-rank tensor is when one
applies the process to the componeA}tsof a matrixA, which one can also regard as the

components of a tensor Wi O V. The resulting contraction will give the trace bét
matrix A;

TrA=A. (1.20)

f. Multilinear functionals— Since elements &f can be evaluated on vectorswvrio
produce scalars in a linear way, one finds that elemdn#s @ V' can be evaluated on
pairs of vectorsy, w) in V x V to produce scalars inkalinear way. Specifically, ifa O
OV OV then:

(@0 (v, w) = a (v) BW). (1.21)

Hence, the second-rank covariant tensorlS can also be regarded as a bilinear
functional onV. If we denote the vector space of all bilinear functisronV by L? V
then the mapy” O V' = L?V that one gets by taking each decomposable elemer
in V' O V to the bilinear functiom 0B in L? V and extending by linearity is actually a
linear isomorphism.

One can easily extend this argument to higher-oramsots by saying that &n [ ...
O ai 0 0%V then it will also define thi-linear functional orV:

(n O ...0 &) (V1, ..., Vi) = a1 (V1) ... Ak (VK)- (1.22)
Hence, one gets a linear isomorphisnid§# with L* V by extending the previous map in
the obvious way.
In order to get a linear isomorphism B V with L V = L* V', one simply inverts the
order of things in the left-hand side of (1.22) to get:

(Vl 0.0 Vk) (0’1, ceny O'k) =m (Vl) Qi (Vk). (1.23)
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Tensoringd* V with O, V will then give a linear isomorphism of the mixed tensor
space]FV with the vector spac&V of multilinear functionals oV x ... x Vx V' x ...

x /', in which there ark copies ol andl copies oV

g. Converting contravariant tensors into covariant onrealthough the vector space
V' is linearly isomorphic to the vector spave there is not a canonically-defined
isomorphism, in general, unless one imposes some dtbetuse ornV. In general, one
could simply choose an isomorphisbh: V - V', v — C(v), which is referred to as a
correlation in projective geometry (or really the correspondingonod the projective
spaces that are associated WitlndV'). If g is a basis fo and® is the reciprocal
basis forV' then the component matr®; will be invertible. One can also regard the
linear isomorphisnC as an element & V; i.e., a doubly-covariant tensor &n

However, there is nothing to say that the teri3@ symmetric or antisymmetric. In
the event tha€ is symmetri¢ so:

C(v,w)=C(w,V) for allv,w OV, (1.24)
the component matrik; will also be symmetric in its indices:
Cij=GC;. (1.25)
Since we have also assumed that the matrix is inver@tan be used as the basis for a
scalar product ol (or metric as it is usually called in the theory of relativity).
If C isantisymmetri¢cso:
C(v,w)=-C(w,V) for allv,w OV, (1.26)
then the component matr@; will also be antisymmetric in its indices:
Cij =- Cji . (127)
Due to the invertibility ofC that will define asymplectic structurenV. Such a thing can
exist in finite dimensions only when the dimensiovas$ even.
If the components of a vectar 0 V areV with respect to some basis then the
components o€(v) with respect to the reciprocal basis will be:

vi=GCjv!. (1.28)

WhenC refers to a metric, one calls this process “lowerimgndex using the metric.”
One can also “raise an index” by means of the inveeexc " :

C ik ij:(;jkcki = JJ (1.29)
One will then get: _ )
vi=Cly. (2.30)
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This process can be repeated as many times as onespfeaghe components of
higher rank tensors. For example:

Tij:Cikaj, Tij:CjkTik. (1.31)

Notice that when the resulting matricBsor T are not symmetric, it becomes necessary
to specify whether the index being raised or lowered willirgo the first or second
position in the result.

h. Complex tensor algebras.So far, we have been tacitly assuming that the &Gél
scalars that act upovi by scalar multiplication, and thus the field of scalthat the

components of vectors belong to is the fiRldf real numbers. In fact, most of what was
said can be extended to the fi€ldbf complex numbers without modification. Typically,
all that one must do is specify that linearity or nhualkiarity meansC-linearity or C-

multilinearity; i.e., with linear (multilinear, respgspect to the scalar field

Of course, the extension from real to complex vespaices will introduce some new
structures (they are typically related to the existerfdde complex conjugation map on
complex numbers), and we shall simply discuss themges as they become relevant in
the main body of the text.

2. Exterior algebra. — The full tensor algebri@aV over a vector space contains some
important subalgebras that are defined by the symmetrieompletely-covariant or
completely-contravariant tensors. In the simpteste ofJ?V, one can decompose that
vector space into a direct sugivV O A%V, whereS?V is composed of all symmetric,
doubly-covariant tensors, amfV is composed of all antisymmetric ones. In fact, one
can decompose a given elemeit [V into its symmetric and antisymmetric parts by
polarization:

t=t"+t, (2.1)
in which:
t (v, w) = [t (v, w) +t (w, V)], t (v, w) = 1[t (v, w) =t (w, v)]. (2.2)

This is usually introduced in the context of physics angire®ering in its component
form:

taiy = 3 (t; +t;), tip = 3t —t;). (2.3)

Hence, one can think of these definitions as defining lipeajectionsd%V - SV and
0%V - A% onto complementary subspaces.

A corresponding discussion will also apply to thetcavrariant case dfl,V, SV, and
AdV.
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a. Complete symmetrization and antisymmetrization of tenso@ne defines the
complete symmetrization of a raklcompletely-covariant tensdrby way of:

+ 1
T (Ve ooy Vi) = EZT(Vn(l)’““Vn(k))’ (2.4)

in which 77(i) is a permutation of the numerals 1R..so the sum is over all such
permutations. Hence, one is essentially “averdging values ofT (vs, ..., vx) over all
permutations of the vectovs, ..., vk.

The corresponding expression for the componentssf

1
T(ilwik) = EzTﬂ(h)“'ﬂ(ik) . (25)

m

If we denote the vector space of completely-symimetompletely-covariant tensors
of rankk onV by SV then this process of complete symmetrization déffine a linear
projectiond*V — SV.

The complete antisymmetrization bthen takes the form:

T (v, ...,Vi) = %ZSign(ﬂﬂ' W oy - Vg ) (2.6)

in which:
+ whensr is an even permutati

sign (7 = { _ (2.7)

when/r is an odd permutatio

The corresponding component expression is:
1 . -
Tiig = gZS‘gn(ﬂ) i) i) (2.8)

Hence, if we denote the vector space of all cotapleantisymmetric, completely
covariant tensors of rarkin V by AV then complete antisymmetrization will define a
linear projectiond*v — A*V. The elements o0&V are referred to aslgebraic k-forms
onV.

Analogous constructions and statements applyg@dmnpletely-contravariant tensors
on V, and the elements of the vector spa&g®/ that is obtained by complete
antisymmetrization will be referred to #&svectors such asbivectors trivectors or
multivectors in general.

Although one can speak of completely symmetrizilmpnd completely
antisymmetrizing completely-covariant tensors afikrk and completely-contravariant
tensors of rank, the decomposition dfV and 0V into direct sums of subspaces will
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involve more than just the two summands (Hence, we shall concentrate on only the
completely-symmetric and completely-antisymmetric pabss, for now.

b. Symmetric product- The complete symmetrization of the tensor produdt of
vectorsvy, ..., Vk, namely:

1
V1 © .”OVKZEZN" Vn(l)D LU V 7k » (29)

is called thesymmetric producdf the vectors. For example, when one has twtovee,
W:
vow=32(vOw+wOv). (2.10)

The components of any completely-symmetric tertsavill then be completely-
symmetric in their indices:

o 1 -
by — (Il"'lk) = ”('1)"'77(|k)
t t W Eﬂ t : (2.11)

Although the completely-symmetric tensors on atmespace do not get quite as
much attention from differential geometry as thenptetely-antisymmetric ones, it is
important to note two cases in which one does emeowcompletely-symmetric tensors.

The first one is in the context of mixed partiafiglatives. One recalls that as long as
one differentiates &-times continuously-differentiable functioh (X, ..., X") of n
variables, one will have:

¢ _ of ok f
i X" -+ - OX¥ AW ... gy

(2.12)

Part of the reason that this fact gets passed isvdrat modern differential geometry
starts with differentiable manifolds that are mtwpologically general that ones that look

like open subsets dk", so partial derivatives are no longer regardeduagdamental

constructions, as opposed to “covariant derivatives
Another ways that completely-symmetric tensors ajgpear in differential geometry

is due to the fact that a completely-symmekrimear functional on a vector spaveof
dimensionn can be associated with a homogeneous polynomihkitomponents ' of
any vectorx J V when one chooses a basidor V. Specifically, ifT (vy, ..., vi) is the
completely-symmetrik-linear functional then the corresponding polyndnsadefined
by:

PR, XT=T X )= D T X X (2.13)

. . 1k
i1

() In fact, these direct-sum decompositions are closéhyead to the Clebsch-Gordan decomposition in
the theory of representations of Lie groups and Liebalgeand their associated Young tableaux.
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An important special case of this is the way that rarsgtric, doubly-covariant tensor,
such as a metric, can be associated with a quadratic for

QX =T(x, ). (2.14)

In order to get inhomogeneous polynomialsxjnone would have to go to mixed
completely-symmetric tensors iV =R 0 S' 0 ... One calls that algebra, when it is

given the completely-symmetrized tensor prodactthesymmetric algebraverV', and

similarly, SV will be thesymmetric algebraverV. Like 0" andO-, S andS will also
be infinite-dimensional.

Since we shall mostly be concerned with complessliisymmetric tensors in this
study, we shall reserve any further comments regardmgymmetric algebras to their
specific applications and focus upon the antisymmetridoedge

c. Exterior product— The complete-antisymmetrization of the tensor proddidt
vectorsvy, ..., Vk, namely:

1 .
vy A ...AVk:EZn“SIgnﬂ'V,ﬂ)D .. VK) » (2.15)

is called theexterior productof the vectors; it is also called theiredge product. A
similar definition applies to the exterior prododtcovectors (i.e., elements, ..., a*in

V):
1 .
N AN yK— — 1) 74K)
an.hNa T Eﬂggnna 0.0 a™". (2.16)

One then sees thet ~ ...~ vi will be an element ofV, while a* ~ ...~ a* will be an
element ofA"v.
In particular, the exterior product of two vecterandw in V will be:

viw=1(vOw-wiOv)=—-w?"v. (2.17)
Just as the tensor product is associative, $eistterior product:
urv)*w=u”"V"rw), (2.18)
so the expressions on the left-hand sides of (2ah8)(2.16) do not require parentheses
in order to be well-defined.
A useful property ofv; A ...~ v is that it will vanish iffvy, ..., vk are linearly-

dependent. Otherwise, they will definé-&ame that spanslaplane. In particular:

vAiw=0 iff wW=Av. (2.19)
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Although the exterior produet”™ w of two non-collinear vectors is anticommutative,
when one groups; " ...~ Vi into the productvi ~ ...A i) N (Vke1 ™ ... N Vi) Of ak-
vectorA =vy ™ ..M v with anl-vectorB = vis1 ... * Vi, the produciA ” B can either
be commute or anticommute, and in fact:

A~B=(-1FB"A. (2.20)

One establishes this by counting the number of transposiof terms invy ~ ... Vs
that it takes to permute all of the elementsiift ..." v past all of the elements .1 »
... “Vvis1. This generalizes to the case of indecomposable mctibikse

A useful special case for the sake of calculatiomhenA andB are both bivectors:

AAB=BAA. (2.21)
If & defines a basis ovithenv =v' g andw =w'g, so:
viw=iv'eOwg-wgOvie)=viwi(eOg-g0e)=v'w e"rg,

but sinceg ” g is antisymmetric in andj, one must antisymmetrize the components, as
well: o o
viw=1wv'w -viw')e"g. (2.22)

One’s initial reaction to this expression might besay that ale * g define a basis
for A%, and1(v' w! - v! w') are the components vf* w with respect to that basis, but

the fact that the exterior product is antisymmetric wounbéke:
e"g=-g"a, e”"e=0, (2.23)

so not all of the bivectorg ” ¢ would be non-zero and linearly-independent, but only
half of the ones with# j. Hence, the leading factor éfin the summation on the right-

hand side of (2.22) only serves to correct for the redundandipe basis, and the
components of * w with respect to the redundant basis g will be:

vAw)! =viwl -viw', (2.24)
That means that the number of linearly-independent elesme the set¢ ~ g, 1 # j},

and thus the dimension @fV, will be equal to one-half the number of non-diagonal
elements in an x n matrix, namely:

dim A’V =1n (n- 1). (2.25)

Of course, one notes that the’\w)’ in (2.24) are also the componensx(w)* of
the vector product x w when one cyclically permuteg. Hence, the exterior product
amounts to a generalization of that cross product thmmbeadefined for vector spaces of
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any dimension, and not just 3. However, there is @nd#te to the cross product BA

that leads in a different direction, namely, the taet it defines a Lie algebra @& that

is isomorphic to the Lie algebra of infinitesimal ttv@imensional Euclidian rotations.
Therefore, one should not abandon the cross producigasiat anachronism” just yet.

In the more general caselo® 2, one finds that; » ... A v is non-zero iff the vectors
Vi, ..., Vx are linearly-independent; i.e., they defin&-ftame onV. Thus, since one
cannot find more than linearly-independent vectors in ardimensional vector space,
one must have that ~ ... v, = 0 whenevek > n; i.e., allk-vectors vanish fok > n.

If{e,i=1,...,n}is a basis forV then the number of linearly-independent exterior
productse, * ... * e of k of them will be equal to the number of ways of chogin

members of that set aof elements when the order is irrelevant; i.e., thenlber of
combinations oh things takerk at a time. Hence, the dimension&¥ will be:

dimav=| " = " (2.26)
k)~ Ki(n=R!"

That already indicates a duality in terms of dimems sincek and n — k appear
symmetrically in the denominator. Hence:

dim A%V = dim A™*v. (2.27)
The generak-vectorA can then be written in the component form:

A= %A‘l“"kell 0O, (2.28)

in which the component&: '« are completely-antisymmetric.

In the extreme case &f=n, if vy, ..., vy aren linearly-independent vectors on an
dimensional vector spadéthen they will define an-frame onV; i.e., a basis. Any other
set {v,, ...,V } of nlinearly-independent vectors &will define another basis and must

then be related to the first one by an invertitsiedr matrixa’ :

v, =V, A, (2.29)
SO:
VA LAY, = (v, 0.0V, A A

However, one finds that the indicis... i, all amount to permutations of 1In,.so if we
introduce the totally-antisymmetric Levi-Civita siof:
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+1 if i;---i,is an even permutation of 12h
& =49 ~—1 ifi--i isanodd permutation of 12n (2.30)
0 otherwise

then the expression far,” ...AV, can be expressed in the form:

VA LAY, = %sﬁl Arv,O...0v, = (detA) vi ™ ... My, (2.31)

This not only says that there is only one linearly-petelent vector id"V (i.e., A"V
is one-dimensional) but that the concept of the eottgsroduct has much in common
with the theory of the determinar.(

The algebra that is defined #nV comes from the extension of the exterior product
to products ofk-vectors andl-vectors to give k+l-vectors. Namely, ifA =
%A‘l""kell 0---Og is ak-vector andB = I—llle“""ejl O---Oe, is anl-vector then théc+-

vectorA ~ B will be:

1 L
A/NB= Alrikgirile [...0e Oe O---0 e. 2.32
(k+|)| [} ek ?1 ?\ ( )

Hence, AsV with # like O«V with [J, is a graded, associative algebra with unity.
However, unlikeld+V, the direct sunAV =R 0O V O AV O ... OO AyV will terminate

after a finite number of summands.

Although we have been discussing the exteriorbaigeverV (i.e., multivectors), the
same considerations will apply analogously to theerior algebraAV over V' (i.e.,
algebraidk-forms).

d. Interior product.— The exterior product allows one to define adineperatoes :
AV - AwV, B - A B that takes-vectors tok+l-vectors when one is givenkavector
A; this basically amounts to left-multiplication By Similarly, if one is given &-form
a then one can define a linear operaprAV — AV, B - a” B

If one is given &-vectorA then one can also define a linear map AV — A",
that reduces the rank of &form a (I > k) to | —k by defining thenterior productof a
by A to be thd — k-vectoriaa such that iB is anyk--vector then:

(ia0)(B) = a (A *B). (2.33)

Note that here we are making use of the fact tietform a can be regarded as a linear
functional onl-vectors, as well as dfinear functional on vectors.

() For more on this relationship, one might confer #ierementioned book on linear algebra by
Hoffman and Kunzel]].
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An analogous construction will give one the interiavduarct of anl-vectorA by ak-
form a (k <I) to product amn—k-vector. Namelyi,: AV - A4V will take thel-vectorA
to thel-k-vectori, A with the property that i is anyk-form then:

BaA)=(@"p (A). (2.34)

In the simplest case wheke= 1, sov is a vector, if one can represenin the forma
A ... Nak, in which theg;'s are all 1-forms, then:

k _ k _ —
iva =Y (-1)"a, 0---Oi,a 0--0a, = D (-1 "a; (v)a, O---Oi,a; OO ;- (2.35)
i=1 i=1

once more, the caret implies omission. In pardicul
v(@*"B=alv)B-BV)a. (2.36)

If a k-form a is expressed in the component foos %%...ikeil 0..-08" for some

choice of cofram@' then the components i will be simply:

(,0).: .= cril_‘_ikvik . (2.37)
As usual, analogous constructions will apply te ihterior product of ahvector A
by ak-form a.

e. Poincaré isomorphism- Of particular interest is the case in which ¢alees the
interior product of am-form on ann-dimensional vector space withkavector A or
dually, ann-vector with ak-form a. One will then have linear maps: A" — A"* andi,

: An - Anx. Hence, if one chooses a particular non-zefearm V then one can define a
linear map # :A« » A"* A - iaV. One finds that sindaV = 0 iff A = 0, the map will
be one-to-one, and since the two vector spAgesdA"* have the same dimension, the
map # will be a linear isomorphism, which one c#fls Poincaré isomorphism The
inverse isomorphism#: A"* _, A can also be obtained by choosing a non-zero
vectorV such thaV (V) = 1, and defining # to take then—k-form a to thek-vectori,V.

Since the vector spacé8 andA, are one-dimensional, any two choices of non-zero
V andV will differ by a non-zero scalar. Such a choi¢denon-zeron-vector orn-form
on ann-dimensional space is referred to asadume elementfor the space. That is
because ifvy, ..., v, are linearly-independent then they will span radimensional
parallelepiped such that the non-zero num@dy, ..., vy) =V (vi * ... *vp) can be
regarded as its volume (relative\th

A common way of obtaining a volume element isitst fchoose am-framee, for V
and its reciprocal cofran@ for V. One can then define:
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V:elf‘...’\en:ilgif'""eI 0---Oe (2.38)

n. 1 n

v=e'r. .. ~g" :iltsi L, 810---0en, (2.39)
n. 1 'n

in which €2 and & . are the contravariant and covariant completelysgntmetric

Levi-Civita symbols fom dimensions.
For instance, it =V' g is a vector irV then the components of its Poincaré dual will
be:

=g V", (2.40)

(#V)il”'ik—l_ i
and ifA=vrw=1(v'w/—viw') g ¢ is a bivector then the components of its dual
will be:

#A) Vewn (2.41)

=1
_z‘gil

1o dpegin

Thus, the Levi-Civita symbols can be regarded as eitleecomponents of the volume
elements with respect to a chosen basis or the canpoof the matrix of the Poincaré
isomorphism.

An important point to notice is that when one perfosuccessive interior products of
V (orV) the order of exterior multiplication will get invedgi.e.:

It is essential to recognize that although # is a timeanorphism of vector spaces, it
is not, however, aalgebraisomorphism. That is, it does not take exterior prodtets
exterior products.

# (A 7B) £ #(A) » #B). (2.43)

In fact, the ranks of the resulting forms do not evextcim up, since iA is ak-form and
B is anl-form, soA " B is ak+l-form, then # " B) will be ann—-k--form, but #A) will
be ann—k-formand #B) will be ann--form, so that would make &) " #B) a 21 —k--
form. Those two ranks would be consistennhiff O.

f. Hodge duality— When one has chosen a scalar produdRfaii.e, a metric tensor
g), along with a volume elemei, one can use the linear isomorphismR3fwith its

dual spaceR™ that is defined by the metric to define isomorphismsA¢ .. A" that
one refers to adodge duality
In particular, the metrig defines a linear isomorphisg: R" - R" that takes every

vectorv to the linear functional (i.e., covectog) (v), which has the property that for
every vectomw:
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g (V) =g (v, w). (2.44)
Its component form is simply the process of lowerimg index on/ using the metric
Vi = Gjj Vj. (2.45)

The inverse linear isomorphisrgf :R™ - R"is easiest to describe by saying that it

raises the index ow: L . i
vi=dlyy  (@“ge=gd'=7). (2.46)

The linear isomorphism, can be extended to linear isomorphisgis Ok — 0% by
tensoring the vector isomorphisms on the decomposalleets:

lg(viO ... Ow) = 1g(ve) O ... O r9(vi), (2.47)

and extending by linearity to the indecomposable ones.

Similarly, these isomorphisms restrict to correspogdnessy : Aq — A“ when one
replaces the tensor products with exterior products.

In order to define the Hodge star isomorphism A:—. A"* one needs only to
compose the inverse isomorphisgﬁ: A* . A with the Poincaré isomorphism #; —

A" that is defined by a choice of volume elenmént
*= O (2.48)

One of the common applications of the * operaton islectromagnetism, where one
applies it to the electromagnetic field strength 2-férmd F,, dx¥'~ dx” to get the 2-form

*F, whose components with respect to the same naturaheefwill be:
* F,uv = %g,uwol FKA, (249)
in which we have implicitly raised the indices Bp using the metric tensoy.

Since * is defined for ak, one can iterate it and get:
*2 =40 #0, = sign @) (-1)""P 1, (2.50)

in which we have defined sigm)(to be the product of its diagonal elements in an
orthonormal frame. For instance, whgis Euclidian, signd) = + 1, and wheg is four-
dimensional Minkowski space (with either sign convemtisign @) =— 1.

Hence, for three-dimensional Euclidian space:

*2 =, (2.51)
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while the corresponding statement for four-dimensionakilwski space would be:

+1 kodd
*2 = odad (2.52)
-1 kever
Hence, one sees from (2.50) that the inverse of *hsill
*~1 = sign ) (-1)" P =, (2.53)

One can also define the Hodge star isomorphismg* - A« onk-vectors, instead
of k-forms, by the opposite sequence of maps:

= L, (2.54)

although, admittedly, that isomorphism does not get as rattelmtion in mainstream
differential geometry.

3. Exterior derivative. — The exterior derivative operator on exterior diffésdn
forms generalizes not only the gradient, curl, anérmjence of vector fields di®, but

also something that they called the “bilinear covariantstudies of the Pfaff equation
that were made in the Nineteenth Century.

In order to define it, we first generalize from diffetiable ¢) vector fields oriR® to
exterior differential k-forms oR", which we define to be differentiable mags R" -
A“R". Similarly, we shall denote the (infinite-dimensifnactor space of all such maps
by A¥ (R"), or simply/\k, when there is no risk of confusion. In particulafpfims in this
case will be simply differentiable maps &A, while 1-forms will be covector fields on

R". Furthermore, the term “exterior differentlaform” will usually be abbreviated to

simply “k-form” whenever the algebralkeforms are no longer at issue.

The exterior derivativeoperator is a linear mag : A* — A**! that amounts to an
antisymmetrized differential. As it turns out (cWarner B], Cartan #]), it can be
defined uniquely by the following properties:

a. d«f =df whenf is a O-form.

b. Itis ananti-derivation Hence ifa is a differentiak-form andgis a differential-
form then:

() We shall typically say “differentiable” to mean “suoféntly differentiable”; i.e., continuously
differentiable to as many orders as is required by thiysiea Often, it is simplest to say “smooth” to
mean “continuously-differentiable to all orders.”
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d(a”rB =da” B+ (1) a”dB (3.1)
c. lIts square always vanishes:
dda=0 for all a. (3.2)
Of particular interest is the component forndad whena = a; 0 is a 1-form:
dua=d(a 0) =dai "6 + g de' . (3.3)

Here, we must address the difference between the Is@r(ne., coframe fields ofR")

for whichd-0' vanishes and the ones that do not.
When the exterior derivativeha of a k-form a vanishes, it will be calledlosed.
When ¢ is itself the exterior derivativa.S3 of somek-1-form g, it will be calledexact.

From (3.2), every exact form will be closed. The @ge happens to be true Rt only

because it has a very elementary topology (vizs,dbntractiblg. The latter statement is
called thePoincaré lemmasince it first showed up in his work on “analysis sftugjich

was the precursor to homology theory. When the vesgaceR" is replaced with a more

topologically-general differentiable manifold (see ttext Appendix), one can say only
that every closed form is locally exact; i.e., th&yesome neighborhood of each point
upon which that statement will be true.

When one defines a coordinate systetni{= 1, ...,n} for R"[sox : R" - R, X -

X (x) is differentiable], the 1-formgx will be exact and linearly-independent; hence, one
will also haved.dX = 0. One callsiX thenatural coframe fieldhat is associated with the
coordinate system. However, not all coframe fieldsnateral, since there exist coframe
fields ' for which d®' is non-vanishing for some valuesiof Such coframe fields are
called anholonomic while the case in which ath®' vanish isholonomig from the fact
thatd. d» = 0, all natural coframe fields are holonomic; thevarse is true, but harder to
prove. _ _

If we return to (3.3) in the case of a natural frafiedd (so ©' = dX) then we can
continue our calculations and get:

dha = dr(ai dX) =dar A dX =9 dx! A dX =1 (3 aj — 9 ar) dX ~ dx. (3.4)

Hence, the components @fa with respect to this natural coframe field will &eax; - 9;
a;, which are also the components (up to a permutatidheoindices) of the curl of the
vector field whose components areg, if one can ignore the difference between covariant
and contravariant components, which is the case folidiarc vector spaces.

Going on tadva whena =4 g dx' ~ dx’ is a 2-form, one gets:

tha = dr(L aj dx' ~dx)) =2day A dx' Adx! = Lok ay dx¥ A dx! Adx,
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and after dropping the factor of 1/2 and completelysgnimetrizing the componends
aj;, one will get:

4o = %(ai Qi + ) ai + 0y ay) dx < ~Adx’ A dx, (3.5)

but since thex; are already antisymmetric in each of them will be counted twice, and
the components aha will becomes (9; ai + 0; aii + Ok ).

In three dimensions, one can represgnassi a; , and:

da=@a")V, (3.6)

which clearly agrees with the divergence of the vedtdd bnR* whose components are

a.

4. Divergence operator.— The divergence operator can also be generalized to
dimensions, just like the curl, and in fact, one onlydse® have a volume elemeévtn
order to define the generalized divergence operator mstaf the exterior derivative
operator.

First, we define the (infinite-dimensional) vector spade R" of differentiable
functionsA : R" - Ay, which we callk-vector fields orR". Next, we assume that we

have chosen a volume elem&hbnR", so we can define the Poincaré isomorphisms # :

A« —» A" as the obvious extensions of the isomorphisms figtn A" .
Basically, one defines the divergence operator éy - A1 to be the “adjoint” of
d~ under the Poincaré isomorphism:

div = #* [ [ (4.1)

div is then a linear map between the vector spAgesd/\¢-; that is the composition of
maps:

A O A O ATOHLA

When one applies this definition of div to a vecietdfv =v' d; , in whichd; = / 9%
is the natural frame field that is associated with therdinate systerd, one will get the

following function onR":

#71 0oh OH(v) = #1 [y = ([dhiyV)(V). (4.2)
In component form, that will be:

HLOh (' 0) = # DAV #0; ) = #Xdv A #0;) = #50; V dx! A #9,)
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=g VH#AX N9 ) = VH# IV =@ V) #F (V) =0V,

which condenses down to: _
divv=0;v'" (4.3)

Therefore, this generalized divergence operator certagrgea with the conventional
divergence of vector fields.
One finds that div has a dual property to ond-~ai that:

divMiv=#"0h O W ¥ =#" M d ¥ = 0, (4.4)

but since the # isomorphism does not preserve the exfdduct, one finds that div is
not an anti-derivation, as @ .

One can then define dual notions to closed and exacs foynsaying that k-vector
field A is co-closedff div A = 0 and io-exactiff there is ak+1-vector fieldB such that
A = div B. Hence, every co-exact multivector field is co-closadgd since we are

considering only fields oR", the converse will also be true, by the Poincaré lamm

It is more conventional in mainstream differential getyneto define the
“codifferential” operatord: A — A“* by using the Hodge star *, which involves the use
of a metricg, in place of the Poincaré isomorphism #; i.e.:

=* [ ¥ = sign @) (-1)" * dn ¥, (4.5)

in which the sign depends upon the signature type of thecigie dimension oV, and
the parity otk.
owill then have the property that:
0%=0, (4.6)

which it inherits frond-, like the divergence operator.

As we will see in a later section, since the divaogeoperator is most intrinsically
associated with the volume element, the introductiba onetric in order to define a
codifferential operator makes it somewhat less thaatw@ral construction.

5. Integration of differential forms. — To some, the true origin of the theory of
exterior differential forms is in the theory of igtation, since the integrand in the

integral of a functiori (x, ..., x") onR" over a regio® O R", namely:
jD fO,..., X")dx--- dX,

can be regarded as an exterior differentifdrm onR" (or at least o). The reason
that one typically does not represent that integjiarthe formf (<, ..., x") dx ~ ... AdxX’
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is simply that the order of integration is typicallygd, so the sign of the integral will
come from the specific order of integrations. Howeveone changes the order of
integrations then the sign of the integral would chamge imanner that would be
consistent with the introduction of the exterior prochetween the 1-forms idx" ~ ... »

dx". Since the latten-form can be regarded as a volume elemgranR", one can also
think of the integral above as the integral of an integfaan n-form over ann-
dimensional regio® in R":

ij(xl,...,x”)dk..-d%:ijvn. (5.1)

The simplesh-dimensional regio in R" is probably am-cubel " = [0, 1] x ... x
[0, 1]. One can then use Fubini’'s theorem to cantlee integral Jw fV, into a
succession of integrals over each individual cotig:

[LEV,= [ F0¢,. x) dée dR = j:dx“j;dx"'l.--j: f . (5.2)

Hence, if we can convert the more general inte@dl) into a sum of integrals of this
form then the integral of amform over am-dimensional regio in R" can be reduced
to elementary integrations of the kind that onerlsabout in multivariable calculus.

The first step is to define a differentiable, sitay cubicn-simplex inRR" to be a

differentiable mapoy, : 1" = R", X — X'. (Although!" is not a differentiable manifold,

since differentiation is a local operation, one eatenda, to a differentiable map on an
open neighborhood df in any manner that one chooses and restrict ttension back
to ")

Since the use of the adjective “singular” in tloatext of singular simplexes implies
the possibility that the mag, might not be an embedding, and in fact, it mighpreven
to a single (zero-dimensional) point, one mighhkhof the case in which the dimension
is preserved as the “non-singular” case, althotigd more traditional to refer to a non-
singular n-simplex as a ri-cell.” Hence, it will be tacitly assumed thak is an
embedding, and we shall drop the use of the adgtsingular’ accordingly.

If the regionD O R" is the image of such a simplex then one define the integrand
of ann-formf \,, onD to equal the pull-back dfV, to 1" by d;:

g, (fV,) =f(X(%),.. X" ()0, \, = F(X(%),...X" ()T, V,
= f (R(¥),... X" (X) detP, %] dx ... 0 dk.

Thus, we define the integral b¥/, “on g’ to be:
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jg fv = jlnanﬂ(fvn) = Ln f(XY(X),...X"(Y)detp, X ] dXO...0 dk.  (5.3)

We then extend the type of regibnto something that can be covered by the images
of adifferentiable cubim-chainin R", which is a finite formal linear combination of

simplexes iR"™
Ch= Y A0.(a). (5.4)

One then extends the integral overmnasimplex to an integral over anchain by using

linearity of integration:
Ln fv, = za‘/]a Ln(a) fV . (5.5)

As it turns out, the kinds of regiolsin R" that can be broken up into a collection of

deformedn-cubes that are identified at their faces are nmopelogically general than
one might expect. Rather than go into the detdilthis point, we simply say that we
shall typically confine our integrals to only sudgions.

The n-cube I" has 2 faces (namely, two for each dimension), which dan
collectively regarded as its boundaMy. More precisely, when one gives all of the faces
of I" — say — the outward-pointing normal as an origaniabne can also regard opposite
faces as having opposite signdl" can then be represented as a formal sum of signed
faces:

oI"= > R(1-F(0). (5.6)
i=1
For instance, in the 1-dimensional ca¥6, 1] =1 — 0 ), while in two dimensions:
0 ([0, 1]x[0,1]) =—[0,1]x1+][0, 1]x0+1x [0, 1]- 0x [O, 1]. (5.7)
We indicate the orientation on the boundary edgédsg. A.1:

(0, 1) (1, 1)

(0, 0) (1, 0)

Figure A.1 — The boundary of an oriented square.

() As a formal sum, we are treating the symbols 0 and dbsisact in their definitions, so the sum
cannot be reduced to simply 1.
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Note that if we take the boundary again then we witl get
9 ([0, 1]x [0, 1))
=-(1,1)+(0,1)+(1,00(0,0)+ (1,1 (1,0)-(0,1) +(0,0) =0.

In fact, this result generalizes to all othgrnamely, the boundary of a boundary is
always zero; i.e.:
3’ =0. (5.8)

The boundarya, of ann-simplex g, is then the formal sum of the restrictionsaaf
to the faces of " :

da =) 0,|F1)-0, |F (0), (5.9)
i=1
and since the faces d¥flook like "™, so the restrictions af, to each face beconme-1-
simplexes, one sees tlead, will become am-1-chain.
One can then extend by linearity to define thendauy of am-chainc, as in (5.4):

0, = Y A,00,(a). (5.10)

There is an important theorem that relates tarttegral of am-1-form a over the
boundary of am-chain, namely:

jaCna: andDa. (5.11)

Although this is usually just referred to &®kes’s theorenmt actually includes the
fundamental theorem of calculus € 1), Green’s theoremm (= 2), Stokes’s and Gauss’s
theorems 1f = 3). Furthermore, as one gets closer to theirefastory when Stokes
presumably proved his theorem, one finds an inargasmount of footnotes to the effect
that Stokes was not the first to prove it, but &d learned of it from Lord Kelvin.

In order to get from (5.11) to Gauss'’s theorera. (ithe divergence theorem), one
must introduce a volume element in order to be abkefine the Poincaré isomorphism
#. If one expressesas #A for some (unique) vector field then:

.[ac #A = Ldm#A = IS#(divA)- (5.12)

If one also introduces a metric, so the Hodgeistanorphism * is well-defined then
this can also be expressed in terms of * and tlagfecential o, but as we have pointed
out above, the divergence is more intrinsic to r@uelements and the # isomorphism
than it is to the introduction of auxiliary metrics
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6. Lie derivative. — The concept of a Lie derivative is quite fundamental
continuum mechanics, since it amounts to differentiatiagneetric objects along the
streamlines of a flow.

a. Systems of ordinary differential equatiorsWe would first like to point out that
any vector fieldX (x) = X' (X) ; on R" will define a system of first-order ordinary

differential equations by assuming that the vector ficldmounts to the velocity vector
field for a congruence of curves of the foxi(t):

dx |
=X (6.1)

More precisely, this is a system afitonomousrdinary differential equations, since we
are not assuming thaX is also a function ot. (In fluid mechanics, that would
correspond to steady flow.)

If a curvex (t) satisfies the equations (6.1) then it will beiatregral curveof the
system, and the congruence of all of such integral cumwiisamount to a one-
dimensional foliation of the differential system.otd that there is a difference between
integrating the differential system (6.1) into a congogeof integral curves, which
always exists, and actually specifying a parameteoizaif each integral curve, which is
not always possible, except locally. That is, thegtaence of integral curves is not
always hypersurface-normain the sense that there is some hypersurface for walich
integral curves will intersect it transversally. Swclypersurface would allow one to
“synchronize” the parameters of the integral curves bynagfia universal initial time
point.

One way of specifying a common curve parameter fazeedt Ithe integral curves that
pass through some open subdetf the region in which the congruence foitself) is
defined is to use the existence and uniqueness of “locat’fléor the vector fieldX,
which amounts to the existence and uniqueness of lodaticss to the differential
system (6.1). The form of the existence and uniquerdsSaon that we shall use is that
as long ax (x) is continuously differentiable, if one is given sonpen subset) that is
transverse tX and an initial valugy of a parametet that identifiesU then there will
always exist a (sufficiently-smalf such that a one-parameter family of diffeomorphisms

(onto) 6):
D(to, to +At) : U = R, Xo > D(to, to + At)(Xo)

will exist for every 0 <At < £ such that ifx, = X(to) is the point along the integral curve
X(t) whent =ty then:
P(ty, to + At)(X0) =X (to + At). (6.2)

) Amapf: U - R"is called adiffeomorphism ontdiff it is one-to-one and continuously
differentiable, and when one restricts to its imageirnterse map is also continuously differentiable.
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Such a one-parameter family of diffeomorphisms is da#iéocal flow for X, and the
problems of extending to a normal hypersurface (viz., an initial hypersurface)Hte
integral curves and extending to infinity are quite analytically involved) For
instance, although one could conceivably patch togétleemto a normal hypersurface,
one could not necessarily use the sarfa all of them.

The functiongd(to, to + At) can be represented as an invertible mau‘j>(t0,t0+At)
that takes initial position vectong at timeto to their time-evolutes d + At :

X' (to +At) = @' (t,,t, + At)x] . (6.3)
Since taking the time derivative of thistawill give:

d¥| o, _do]
— =X (X(to))—F

I 6.4
dt)., X (6.4)

t=t,

one calls the matrixD‘J. (t,.t, + At) either thetime evolutioroperator for the system or the

matrix of fundamental solutionsince its columns will consist of the solutionsthe
system (6.1) when the initial poin{ is set equal to each of the canonical basis vectors

for R", namely, (1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (O, ..., 0, 1).
A patrticularly useful special case in the presentysisidvhenX is a linear function
onR", and therefore by represented by a time-varyingn real matrix:

dX _ i
S =X, (6.5)

The time evolution matrix is defined everywhere tKais defined and for ali\t by
simply exponentiating the time integral of the matN;}((t):

. t+At .
@' (ty, b, +At) = exp jto X!(7)dr. (6.6)

In the event thaix}(t) IS not time-varying, the system (6.1) will be andmous (or
stationary) and the integral can be replaced \mtlx} . Furthermore, the time evolution
matrix will also become simply a function Af:

@ (At) = exp (At X!). (6.7)

() Some good classic references on the existence and negguef solutions to ordinary differential
equations are Incé&] and Coddington and Levinsof]] although the more modern notion of local flow is
discussed in Arnol'd].
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A very deep special case ¥f(x) is when it has zeros, since where}efx) = 0, one
must havedX / dt = 0, which means that the zeroesXowill correspond to fixed points
of the flow. Much of the structure of the flow ®f can be obtained by examining the
local stability of such fixed points, which will involvedking at the differentiad X, and
more to the point, the eigenvalues of its componentixn@tX ' at each fixed point.

b. Derivatives along a flow- Assume that a differentiable functibx') is defined
everywhere thaX is defined, so one can speak of the variatioh(pfalong each mtegral
curvex ' (t), which one will get by composing the functibwith the functionsc'

f (1) =f(x' () = D). (6.8)

From the chain rule for differentiation, one willMaa

ﬂ_i%_x'a.f X f. (6.9)
dt ox dt

In other wordsdf / dt is the directional derivative dfin the direction o, which is the
immediate direction of the flow.

Although one could generalize this to any fi€dx) of geometric objects (vectors,
tensors, differential forms) that is defined along tlbevfof X, the resulting directional
derivative would not suffice to give a full picture ofethlvariation ofO (x) along the
integral curves. The main problem is that the objéc(s (t)) andO (x (t + At)) are not
attached to the same point, so the spaces that theyghte [let us call thenkyy andEx
+ay] must be identified with each other in some way betfbeedefinition:

do

LxO=-= ams —[O(>(t+At) A X )] (6.10)

will make sense.

For a vector fieldy, the problem is in the fact that there is a diffeeebetween the
compositionX (Yf) and the compositioty (Xf), as a directional derivative operator,
namely:

[X,Y]=X(Y)-Y X)=X"a (Yo -Y'aX'a)=X"aY -y aXx)a,
which can be written in the form:
[X,Y]=(XY' =YX d. (6.11)
Note that this calculation depends upon the basic assuntptt

02 02
0,0 =00, e, ——= S 6.12
o ( ox ox'  ox’' ox ) ( )




422 Appendix A — Tensors, differential forms on vectorcspa

which assumes that the functions that, [Y] acts upon are twice continuously-
differentiable.
One easily sees thaX] Y] does not have to vanish by the example of the

infinitesimal rotations oiR>:

Xi = 1 gy (x) 0 =X 9), (6.13)
which give:

[Xi, X{] = & X«. (6.14)

In general, we set tHae derivativeof a functionf and a vector fieldY along the flow
of the vector fieldX equal to:
Lx f = Xf, LxY =[X, Y], (6.15)

respectively, and extend to higher-rank contravariantoteny imposing the demand
that must act as a derivation on tensor products:

Lx (Tl ] Tz) = (Lx T]_) OT,+T, 0 (Lx Tz), (616)

which is then extended to indecomposable tensors by demgdimarity, as well.
In order to deal with the covariant tensors, whaa a 1-form, one defines:

Lx a=d (a (X)) +ixdha. (6.17)

This is a special case Gartan’s magic formulawhich applies to all exterior differential
forms:

Lx a=drixa +ixda, (618)
namely, wherr is a 1-form:
(Lx a)(Y) =Y (a (X)) + da (X, Y). (6.19)

If one uses the “intrinsic” formula for the exteraarivative ofa:

da(X,Y)=X(@a(Y))-Y (a(X))—a (X, Y] (6.20)
then
(Lx a)(Y) =X (a (Y)) —a (X, Y]). (6.21)

A particular enlightening special case of (6.18) is whea applies it to a volume
elementV. Since one must haekV = 0, one will get:

LV = chixV = dh#X = #(divX) = (div X) V. (6.22)

Hence, zero-divergence vector fields are distinguishethéyfact that their flows are
volume-preserving.

One can extend (6.17) to all covariant tensor fields loyagheling that k must be a
linear derivation.
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One can then combine the rules (6.15) for scalar featdisvector fields with the rule
(6.17) for covector fields and then extend to all terfisdals by the remand thatcLmust
be a linear derivation.
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APPENDIX B

DIFFERENTIABLE MANIFOLDS

1. Topological spaces- Since much of what one learns in a typical courgmint-
set topology is tailored to the various demands of nseparate specialized branches of
mathematics, such as differential topology, algebi@iology, functional analysis, and
the topology of infinite-dimensional differentiableamfolds, we shall cull out only those
notions that are relevant to the definition of dedténtiable manifold.

a. A topology on a set: The subject of topology had been around in the form of
“analysis situs” for much of the late Nineteenth Cepntbefore Felix Haussdorff defined
the more abstract concept of a topology on a set ilahdmark workMengenlehrgi.e.,
set theory), which first appeared around the time of &vavlar |, although the 1927
second edition is the one that is still availaldlp [Indeed, the methods ahalysis situs
(which means the same thing in Latin thagos logodoes in Greek, namely, the “study
of position”) had much more in common with the moderncept of homology theory,
such as the triangulation of spaces into elementaitglifoy blocks in order to describe
the way that the space is “connected” and whethesitlmales” of various dimensions.

The basic idea of a topologyon a setS () is that one defines a special classf
subsets, which one catipensubsets that obey the basic axioms:

1. The setS and the empty sdil are elements of the clags i.e., they are open
subsets.

2. The union o&any family of open subsets will also be open.

3. The intersection of fnite family of open subsets will also be open.

Dually, one can define a class @dbsedsubsets, which obey the axioms that come
from the previous three by applying de Morgan’'s laws to thepéaments of open
subsets, namely:

1. The seSand the empty séi are closed subsets.
2. The intersection afny family of closed subsets will also be closed.
3. The union of &inite family of closed subsets will also be closed.

If one is given the open sets of a topology thea cen define the closed sets to be
the complements of open subsets, and vice versa. \ow®t all subsets will be either
open or closed.

There are two topologies that always exist on anfset

1. Thetrivial topology, which includes only the open sub&tsid(].
2. Thediscretetopology, which includes all subsets.

() A more modern reference than Haussdorff on point-petdgy is Munkres].
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Typically, those topologies are rarely of inter@stphysical models, although the
discrete topology is usually given to finite groups mley to make then into (zero-
dimensional) Lie groups, which we shall discuss in Appe@dix

Topologies are often defined by givindasisfor the topology. Namely, a basis for
the topologyr is a sub-collection, of the open subsets osuch that and point of the set
is contained in one of the subsetsripf and any open subsettican be expressed as the
union of any number of open subsets in the basis ontbeséction of a finite family of

open subsets in the basis. For example, the reaRlic@n be given a popular topology

by using the open intervalg, (b) as a basis for the open subsets; here, one can irthiide
possibilities thata = — « orb = + 0. The closed intervalsa] b] would then be closed
subsets of that topology, and the intervals of tlen$ofa, b) or (a, b] would be neither
open nor closed.

When a seSis given a particular topology, one calls the pair§ 7) atopological
spaceln general, a subsét[] Sdoes not have to be either open or closed with respec
the topologyr. One can, however, associ&eavith an open subset and a closed subset.

[0}
In the former case, one defines theerior of A to be the largest open subgtthat is a
subset ofA. (Here, “largest” means “with respect to the partiedeoing of subset

inclusion.”) Theclosureof A is the smallest closed subsét that containsA. The

frontier or boundaryof A is the set differenc@A = A- A; that is, a boundary point is in
the closure, but not the interior.

As an example of these constructions, take the irealwith the topology that was
just discussed. The interiors of the half-open interfz b) and @, b] would be &, b), in
either case, just as their closures would bothabb][ and their boundaries would be the
set of endpointsd, b}.

When one is given two topological spac&g (1) and &, 1), one can define a
topology on the Cartesian prod&tx S of the two sets by using the Cartesian products
U; x U, of open subsetd; from r; andU, from 7> as a basis for a topology that one calls
the product topology. That construction can be iterated to a topologyhenCartesian
productS, x ... x §, of a finite family of topological spaces. For gste, one can give

R"=R x ... xR (n copies) a topology in that way by starting with theiival topology

onR.

Another common way of building up topological spacesnfimore elementary ones
is the notion of a “quotient space.” Suppose &¢ets an equivalence relation ~ defined
on it, namely, a relatiorn ~y between some pairs of elements that is:

1. Reflexive: x~xfor allx
2. Symmetric: X~yiff y~x.
3. Transitive: Ix ~y andy ~zthenx ~ z
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The setX] of all y 0 Ssuch thaly ~ x is called theequivalence clasthatx belongs to.
If x andy are not related by ~ ther] [and }y] will be disjoint subsets. The s&t ~ of all
such k] is called thequotient of Sy the relation~. There is then a canonical projection
[.]: S— S/~,x—[X] that one calls thquotient maghat is associated with the relation.

Examples of equivalence relations that show up in tmyomostly take the form of
“identifications”; that is, one takes some set of poito be one equivalence class of
“identified” points, while all other points are equivaléo only themselves. For instance,
one can turnd, b] into a circleS' by identifying the points andb into one equivalence
class f] = [b] = {a, b} while any other equivalence clasqg E {x] will contain only the
single pointx. That is essentially what one does with polar coordsét &) in a plane

when one identifie = 0 with # = 2z One can also g&' from R by defining the
equivalence relatior ~ y iff there is some integet such thatx —y = k. One can then
exhibit S asR - Z, and quotient map becomBs— R /Z, x —[x]. This has a close

relationship to the concept of periodicity. One caro agtend the aforementioned
quotient constructions to produce thaphereS' from a closech-ball by identifying all
of its boundary points to a single equivalence classtangroduct am-torus T" by

defining the equivalence class Bfi that makex ~y iff X —y =K for eachi = 1, ...,n,

where K is an integer in each case. This example is relet@rthe concerns of
crystallography.

WhenS also has a topologly one can define a topology @&V ~ that one calls the
guotient topology.A subset o5/ ~ is open in that topology iff its inverse image under
the projection [.] is an open subset & Once again, the most common quotient
topological spaces that one tends to encounter areabigsdentification spaces, such as
the identification of boundary points to a single eglence class.

A neighborhoodf a pointx in a topological spaces(7) is a subselk that contains
an open subsdill, that containsx. Uy will then be itself a neighborhood &fthat one
refers to as anopen neighborhogdne might also encounter closed neighborhoods.

A common way of obtaining neighborhoods is to first defingetricon S, which will

be a functiord : Sx S - R, (X, y) —d (X, y) such that for all pointg, yin S

d(x,y)=0.
dxy)=0iffx=y.
d(x,y) =d(y, ).

dXx vy +d(y,2=d(, 2.

NS

The last axiom is called the “triangle inequality,” @rtbat is the way that things work
for three points iR? when the distance in question is defined by the Pythagtaean

d(xy) = (- y) 2+ (- y)?, (1.1)
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which defines the Euclidian metric. More generally, thelilizmn metric onR" is
defined by:

d (% y) =4 (= y) 2+ 4 (X - y)2. (1.2)

One can then define apend-ball of radiusr about a poink to be the seBy(r) of all
y such thatd (x, y) <r. If one defines the topology on the metric spggel) to have
opend-balls for its basis theBy(r) will be an open neighborhood xf Its closure will be
the set of ally for whichd (x, y) <r and its boundary will be the set of ykuch thad (x,
y) =r. Such a topology is callednaetric topology.

R can be given a metric topology when one defines'distance’d (x, y) fromxtoy

to be:
dxy =ly-x| (1.3)

The openg-ball about a poink is then the open intervak € ¢ x + &), which is then an
open subset of the interval topology. Conversaty;finite open intervalg, b) could be
regarded as an opetball (x —r, X + r) about the poink if one lets:

r=b-a)/2 and x=a+r=b-a (1.4)

Infinite open intervals can be expressed as idinibions of finite (overlapping) open
intervals. Hence, every open subset in a basithiinterval topology ofR can also be

regarded as an open subset in a basis for thecrt@pology, andvice versa
R" can be given a metric topology when one giveketEuclidian metric. The open

balls will then become balls in the geometricalyriliar sense of the term, and their
boundaries will be—1-spheres.

Note that the Minkowski scalar product <., .>R&hdoes not define a metric in the

present sense, since the equatianxs = 0 has more solutions than just 0. Indeed,
the set of all suck (viz., the light cone at the origin) plays an es&e role in relativity.
Hence, one should be careful when referring tosghece-time “metric,” since it is not a
metric in the point-set topological sense.

b. Continuity of maps- A mapf : S - S’ x — f(x) from one topological spac&,(7)
to another oneY, ') is calledcontinuousiff the inverse image') f * (U) of every open
subsetU of S”is an open subset & This definition can also be phrased in terms of
neighborhoodsf is continuous iff the inverse image of every négthoodU, of every
pointy [0 S”is a neighborhood of the poirtl] S such thaty =f (X). We illustrate that
situation in Fig. A.1.

() Thatis, the set of all elementin Ssuch thaf (x) is an element dfl.
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[
/

Figure A.1 - The continuity of a map between topologspeces.

In the case of the real lifie with the interval (or metric) topology, one caohloat an

&ball abouty and a Jdball aboutx and recover the elementary calculus way of
characterizing continuity by saying that “for every 0, there is &> 0 such that for all

x such thatx — d<x < x + done will havey — £ <f(x) <y + &” Hopefully, one can see
that the point-set topological way of describing continbas a more intuitive appeal.

An even stronger requirement than continuity is “bomorphism™f : S - S’is a
homeomorphisniff it is continuous and invertible and its inverse is atamtinuous.
Such a map between topological spaces will defineeat@one correspondence between
the points of the spaces, as well as the open subisdie topologies. Hence, the two
topological spaces will be equivalent as far as tlp@mnts and open subsets are
concerned.

We have already seen that whinit is given either the interval topology or the
metric topology, an open subset of one topology willabeopen subset of the other
topology. Hence, the identity map, which takes everytpof R to itself, will be a
homeomorphism of the two topologies. Similarly, sieeeryn-cube can be expressed
as an infinite union of-balls, andvice versa the identity map orR" will be a
homeomorphism of the two topologies on that spaceother words, the two topologies
onR" are topologically equivalent, which is the soul ofrmlmeomorphisms.

If one wishes to see how an opeball and an open-cube are homeomorphic, one
might inscribe a disc inside a square as an exampleoaRkdt the association of points
that one gets by radial contraction of a point ondtpgeare to a point on the circle or
radial expansion of the point on the circle to a pomtle square. If one thinks of the
interior of the square as being filled up with a continucudipitude sequence of
concentric squares and circles then that construcaonbe applied to each of them to
give a homeomorphism of a square with a disc. Waidltesthis in Fig. A.2:

s
N/

Figure A.2. — The homeomorphism of a square with a disc.
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A weaker form of homeomorphism that will play a majole shortly is that olocal
homeomorphismNamely, the map: S - S’between the topological spacgandSis a
local homeomorphism iff every OO S has an open neighborhoddk on which the
restriction off is a homeomorphism onto its imaf@Jy); one also says théat Uy — S’is
ahomeomorphism onta this case.

c. Topological properties— A property of a topological space is said to be a
topological propertyiff it is preserved by homeomorphisms. In many casgmlogical
properties are preserved by continuous maps, to begin Wwith.openness or closedness
of a set would be examples of properties that are mex$dry homeomorphisms, but not
by continuous maps.

Some of the topological properties that one usualypenters in the study of point-
set topology are the various separation axioms, coaheess, and compactness.

The most common separation axiom to impose upon a wipalsspace is that it is
“Haussdorff,” which was actually one of that mathewiati's original axioms for a
topology to begin with, although nowadays it is usualjated as an extra axiom. A
topological spaceS 1) is said to be &laussdorff spacdf for every two distinct points,

y O Sthere are two disjoint open neighborhottjsandUy of x andy. One has that the
inverse image of a Haussdorff space under a continuousigmdaussdorff, but not
generally the direct image. That is because a mapgat@ndistinct points to the same
point and disjoint subsets to intersecting ones, buts#me thing is not true for the
inverse image of a map. Hencey,ify’ [0 S"are distinct points in a Haussdorff spagé (
7’) then any two points, x”in Sthat map tgy, y’, resp., under a continuous nfaps - S’
will be distinct. Similarly, ifUy, Uy are disjoint open neighborhoodsyofy’then their
inverse image$™(Uy), f(Uy), resp., underf will still be disjoint subsets. Whehis a
homeomorphism, the aforementioned propert§ wfll also be shared by its inver§é.
Thus, any topological space that is homeomorphic to a ddau$ space will be
Haussdorff.

A topological space§ 1) is connectediff it cannot be expressed as the union of
disjoint open subsets. This is equivalent to sayingtheabnly subsets that are both open

and closed ar8 andJ. Hence[R is connected, but the subset ofall R such that x |

> 1 is not. One the other hand, b&hand the subset of alllJ R" such thatl (x, 0) > 1

will be connected when one uses the Euclidian metric.

In order to see that the image of a connected sébsetler a continuous mdp S -
S’ is connected, suppose thigid) is disconnected; i.e., it is the union of disjoipea
subsetdJ, V. The inverse images &f, V underf will also be disjoint open subsets ®f
whose union must ba, but that would imply tha& would have to be disconnected, as
well.

The fact that the image of a connected subset undetm@ous map is continuous is

the basis for the “intermediate-value theorem” ircelis, namely, that f: R - R is

continuous an@ < x < b then eithef (a) <f (x) <f (b) orf (a) >f (x) >f (b), depending
upon whethef (a) <f (b) orf (@) >f (b), resp. In other words, the image of the connected
interval @, b) will be either the connected intervid), f(b)) or ((b), f(a)).
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Compactness of a topological space relates to hoanitoe covered by open subsets.
An open coveringf a topological spaces(7) is a family of open subsets whose union
containsS. Since that family might very well include an infundke of open subsets, one
says thatS is compactiff every open covering o$ contains a finite open subcovering;
here, the term “subcovering” means a sub-family of cadsets in the first family such
that its union also contaifS An important theorem of analysis is thkeine-Borel

theorem that a subset &' (with the metric topology) is compact iff it is sled and

bounded, in the sense that there isvdnall of sufficiently large radius that containsag
a subset. Hence, the clogedballs of finite radius are all compact, as are tlsedn-
cubes of finite edge dimension.

The way that one sees that the image of a compaat Spawer a continuous mdp
is compact is to define an arbitrary open covering ofithegef (S and look at the
corresponding covering &by the inverse images of the open subsets of the ogvefi
f (9. If Sis compact then that covering 8tan be reduced to a finite open subcovering.
One then selects the open subsets of the coverin(Bpfhat correspond to the subsets of
that finite subcovering and show that they also co{®r.

d. Topological manifolds- A topological manifolds a topological spacé/, 7) that
is locally-homeomorphic tR", with either its product or Euclidian metric topology.
Hence, the points d¥l will always have neighborhoods that are topologicadjyivalent
to R".

Elementary examples of topological manifolds aboundh siscopen subsets Bf,

open balls, n-dimensional spheres, projective spaces, tori, and sathological
examples as Mobius bands and Klein bottles. In factpaeyn-ball of finite radius in

R" is homeomorphic t&R", which shows that the Heine-Borel theorem reallysdiepend
upon the subset being closed in order for it to be compicte an open-ball of finite
radius is bounded, but since it is homeomorphi®towhich is not compact, amball

cannot be compact, either.
Two common ways of building up topological manifolds freimpler ones are by
constructing product manifolds and quotient manifolds.

If M andN are both topological manifolds that are modeled®8randR", resp., then

one can first form the product spddex N as a topological space and then show that any
point x, y) O M x N will have a neighborhood that is homeomorphicR8 x R".

However, sincex has a neighborhoot)y that is homeomorphic t®™, andy has a
neighborhood/, that is homeomorphic t&", the productly x V, will be homeomorphic
to R™ x R". This construction can be extended to a finite nunidfetopological

manifolds. ClearlyR" itself is the product ofi copies of the topological manifold.
Similarly, ann-dimensional torug" will be the product oh copies of a circl&'. If one
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removes a single point froR" (such as the origin) then the resulting space will be

homeomorphic to the product @& with the n-1-sphereS™, and will thus be a

topological manifold; this construction is the essesifgeolar coordinates.

A quotient manifold is somewhat harder to visualize. i&dly, one defines an
equivalence relation [.] on a topological manifédd which defines a projection [.]M -
M/ [.], x = [X] from M to its quotient topological space, which consists of edgmnz
classes under the equivalence. One giteg.] the quotient topology that was discussed
above, and then examines the possibility that everytggjnof M / [.] will have a

neighborhood that is homeomorphicR8, for somen’ simply because every poirthat

projects ontox] will have a neighborhood that is homeomorphi®idfor somen.
Common examples of quotient manifolds are the exangflegiotient topological
spaces that we gave above, such as spheres and tori, mutiy@space®RP". One can

either define the latter spaces by the quotient Rl&p— 0 - RP", v > [v], where }] is
the line through the origin thatbelongs to, or the quotient m&) - RP", r - [r] = {-
r, + r}, which defines a point oRP" to be a pair of antipodal points on thephere.

One sees that any line through the origin®fA™ will intersect anyn-sphere inR™* that
is centered at the origin in precisely those two antipoaiats.

A homeomorphisnx : U, DM - R", x —» (X(X), ..., X'(x)) can be called a

coordinate systeron the neighborhoot, of the pointp, and the individual functions
X'(x) are thercoordinate functions.When one has two such coordinate systedugs X)
and {p, y) on overlapping neighborhootls, , V,, of the pointp, for any pointp’ in Up n

V, , one can invert the restriction of the homeomorphisnv, - R" , toU, n V, and
then compose that inverse with the restrictiog 0¥, — R" to that same intersection and

obtain a homeomorphissix* : R" — R", x!  y' (x) that is commonly called a

coordinate transformationIn physics, one most commonly encounters such thinggin th
form of systems of equations of the form:

y' =y (x). (1.5)

When a topological manifoll is not globally homeomorphic tB", it cannot be

covered by a single coordinate chart. However, qdienpit can be covered by a small
number of charts. For instance, any sphere can beetbtg two charts, which amount

to overlapping open hemisphereRP" requiresn + 1 overlapping charts, which are the
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images of the homogeneous coordinate chafts.(, X, 1, X%, ..., X") onR™* - 0 for
eachk =0, ...,n. One calls such char®icker coordinates

The dimension oR" that a topological manifolM is locally modeled on is called its
dimension All charts onM will have the same dimensiar) and so will any topological
manifold that is homeomorphic td. All of this comes down to the idea tHaf' is

homeomorphid®" to iff m=n.

2. Differentiable manifolds [3-5].— Since physics is so deeply rooted in differential
equations of various sorts, one will typically demand nudr@ coordinate transformation

y X' : R" - R" than mere invertibility and “bi-continuity.” In partitzw, one generally

expects that it will also bbi-differentiableto some level of differentiation; that is, that
the mapy Ok will also bek-times continuously-differentiable (if not smooth),ajowith

its inverse mapx Oy . Such a map: R" — R" that is invertiblek-times continuously-

differentiable (i.e..C"), and has &~ inverse is called & diffeomorphismof R" with

itself. In particular, whek is infinite, one calls it @mooth diffeomorphismWhen two
coordinate charts on overlapping neighborhoods of a pointetad by &~ (smooth,

resp.) diffeomorphism oR" with itself, one calls thenC* (smooth, resp.) coordinate

charts. Notice that only pairs of charts can be dasdrin that way, but not the
individual charts, since it is the coordinate transfoimnathat isC*, not the coordinate
functions.

a. Differential structures— A C* (smooth, resp.) differentiable manifdiidefined to
be a topological manifoloM with a C* (smooth, resp.) differential structure.A
differentiable structure, in turn, is defined by a “maxiwaidds of compatibl€* (smooth,
resp.) coordinate charts.” In most cases, it is ®sifb consider a smooth atlas.

A C* atlas of coordinate charts oM is a collection (typically infinite) of coordinate
charts orM whose union coverl and whose coordinate transformations areCll A
coordinate chart U, X) on M is compatible with that atlas if the coordinate
transformations betweetJ( x) and all of the charts in the atlas that overldpX) are
C*. The atlas of charts is callesaximal(under subset inclusion) when any chart that is
compatible with the atlas already belongs to it.

One finds that the obvious example of a differentiabdaifald (which can, in fact,

be given a smooth atlas) R itself. Similarly, any open subset &' will define a

differentiable manifold, and in fact, any open subset oficae general differentiable
manifold. The examples of topological manifolds thatrevgiven above are also
differentiable manifolds, such as spheres, tori, projectspaces. Examples of
topological manifolds that areot differentiable manifolds are the various polytopes, such
as cubes and tetrahedra.
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b. Differentiable maps— A local representativeof a mapf : M - N between
differentiable manifolds (of some specified degree ofeddhtiability, which will be

tacitly assumed from now on) is a mfag R™ - R" such that there are coordinate charts
(U, X) in M and ¥, y?) in N such that:

f=y™ Oy K. (2.1)

That can be illustrated by a commutative diagram &$ginA.3:

M— N
t tl
U \%
|, b
R”LRH

Figure A.3 — The local representative of a differentiag.

f is said to balifferentiableiff every local representative 6fis differentiable. That has
the effect of making the definition of differentiabilitpydependent of the choice of
coordinate system.

The mapf is called adiffeomorphismiff it is invertible and bi-differentiable. That
will necessarily imply thaM andN will be homeomorphic as topological manifolds, and
will, a fortiori, have the same dimension. An opeball is not only homeomorphic to

R", but also diffeomorphic. However, as we pointed otibree although am-cube is

homeomorphic to an-ball, it is not diffeomorphic, since the points along trertices,
edges, faces, etc., will not have consistent tangétt®se points.

One can still define the differentiability of a mgpS — N from a subse$ of M that

is not open to a differentiable manifold by taking advantage of the fact that
differentiation is a “local” process, in the sensd thdandf’: M — N are differentiable
maps that agree at a powmtl M then their differential maps must agree at that paisit
well. Hence, if one finds an open subkkethat containsS and extends the mdpto a
differentiable mapf : U — N in any mannethen one can say that its restrictiorStis
differentiable. This is commonly applied to the problehdefining adifferentiable

singular k-simplexd : 1 ¥ - M, in whichl ¥ O R* is a closed subset, namely, a cloked
cube.

Differential topology is typically concerned with thgearch for properties of
differentiable manifolds that are common to diffeomorphianifolds. Since all
diffeomorphisms are also homeomorphisms, those propaeriieisclude the topological
properties, such as connectedness and compactness.
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Some of the common examples of differentiable m#ps are not typically
diffeomorphisms are differentiable curves in a differ@oie manifoldM, which are

differentiable mapg: R - M, t — x(t) and, more generallgubmanifoldof M, which

are differentiable mapg: S -~ M. The dimension 0% does not have to be less than or
equal to the dimensiom of M, although often the most useful class of submanifoles ar
the embeddednes, which will be diffeomorphisms onto their imgges the dimension
of Smust be less than or equalpin that case.

c. Tangent and cotangent spacesOne of the first things that one learns in the
differential calculus of one real variable is thia¢ erivativedy / dx of a differentiable

functiony =y (x) at a pointx is the slope of the tangent line to the cumyey((x)) in R?
(which one calls thgraph of y) at the point Xo, y (X0)). In multivariable calculus, the
differentialdy = @y / dx', ..., dy / 0x*) of a differentiable functiog (', ...,x") onR" at a

pointx, = (x,-+-,X0) defines a tangent hyperplane to the grapn@t, ..., X", y (<, ...,

x") in R™ at (o, Y (Xo)).

One finds that the notion of a tangent space at a pamtbe adapted to the more
general differentiable manifolds by taking advantage effaélct that if two differentiable
curvesx(t) andy(t) in M intersect at some poiptthen if they have the same tangent line

in R" atx (p) with respect to some coordinate chaftX) aboutp, they will also have the

same tangent line gt(p) with respect tany coordinate chart\(, y) aboutp. Hence, the
concept of tangency is independent of the choice of codedayatem.
One can then definetangent lineto a pointx [ M to be the set of all differentiable

curves througlx that have the same tangent linéRihwith respect to some, and therefore

all, coordinate charts about In order to go from a tangent line to a curve taraént
vector to a curve (namely, its velocity), one must $pecparameterization of the curve,
since other parameterizations will give velocity vectbieg all lie along the tangent line
but have different lengths. Hence,tangentvector x [1 M becomes the set of all
differentiable curves throughthat have the same velocity vector in some (ancetbex
all) coordinate charts aboxt

Somewhat confusingly, it is traditional in differenti@pology and geometry to
represent a tangent vectdrat a pointx L1 M by the directional derivative operator that
acts upon differentiable functions that are defined meighborhood ok. Once again,
one can do this by choosing a coordinate chark'j aboutx and defining the directional
derivative of a differentiable functionthat is defined in some neighborhoodxah the
direction of the tangent vectatto be:

xi=x2 2.2)
ox
for that coordinate chart. When one changes to anoti@t ¢/, y) aboutx, soy =
y'(X'), one will have:
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(2.3)

in which X' are the components &f in the new natural frame field d®". From the
chain rule of differentiation:

of _ ox’ of (2.4)

ay' dy ox '’ '
SO one must set:

_ P

g = % j (2.5)

to be consistent.

The tangent vectaX at a pointx [J M, as a directional derivative, then becomes the
linear, first-order differential operator on differemiia functions that are defined on
neighborhoods of x whose local coordinate representatares related by the
contravariant transformation law (2.5). Hence,aif § are scalars, and, g are
differentiable functions that are both defined on a mesghoodUy of x then one must
always have:

X (af+Bg) =aXf+[Xg, X (fg) = (Xf) g +f (Xqg). (2.6)

The setT«M of all tangent vectors at[] M is called theangent space tM at x. It
can be given the structure of ardimensional real vector space by saying that linear
combinationsa X + SY of tangent vectors map to the corresponding linear conmsat

of vectors inR" under some (hence, all) coordinate charts akoutlence, TuM is (by

definition) linearly isomorphic taR". One can specify that linear isomorphism by

defining atangent n-frameat x to be a setd, ..., e,} of n linearly-independent tangent
vectorsg atx; i.e., a basis fofkM. If one represents the tangent veetan the form:

X=X"g (2.7)

then the linear isomorphisfM OR" will take each suck to its component vectok{,

..., X"). Indeed, some people prefer to define tangent framies such isomorphisms, or
more precisley, the inverse isomorphisms. Most commaonig,uses theatural tangent
frames

0

e =0,

that are defined by the coordinate charts akout
The dual space tdM consists of all linear functionals on the tangerttoes atx,

and is referred to as tleetangent space to M at ik is denoted byl,’'M . Just as tangent

vectors can be associated with directional derieatiof differentiable functions that are
defined in a neighborhood aof, one can associate cotangent vectors with their
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differentials. Indeed, iX [0 TyM is a tangent vector at then the differentiatlf of a
differentiable functiorf that is defined in a neighborhoodoWill give:

df (X) = Xf (2.9)
when it is evaluated oX.
The reciprocal coframé to a tangent frame in T,M will define a basis foll M so

any tangent covectar J T”M can be expressed in the form:
a=ab. (2.10)
Indeed, when is evaluated oiX the result will be:
aX)=(@8) X' g)=aXx'8(g=ax g=aX.

The tangent coframe that is reciprocal to the naftmated; is thenatural coframe dx
Hence:

dX (9) =5, . (2.11)

A differentiable mag : M — N is associated with a linear mefy : M — TN at
eachx O M that one calls thelifferential mapto f at x As usual, it is defined in one
(hence, all) pair of coordinate charts abruandf (x). That is, if U, X) is a coordinate
chart abouk and ¥, y?) is a coordinate chart aboufx), such that one can exprdgg) in
the coordinate forng® (x) then
oy*

dfl = —
ox §

(2.12)

for those two coordinate systems.
For any other coordinate systerfis,X') and (V,y?) aboutx andf (x), respectively,

the chain rule will give:

oy*| _ oy

ox'| oy

oy'| ox| (2.13)

dflx = J. :
0 0Xx Ny oX

Note that these three matrices are not all definelaeagame point.

Whenf is a diffeomorphismdflx will be invertible for allx. The Inverse Function
Theorem gives a partial converse to that statementiftioifix is invertible at allx then
there will be a neighborhood of eaclon whichf is a diffeomorphism. Idflx is a linear
injection for allx then one will calf animmersion while if it is a linear surjection (i.e.,
projection) therf will be asubmersion.In the former case, the dimensionMfmust be
less than that dfl, while in the latter case, it must be greater than it

A good bit of differential topology is taken up with segihow much of the global
behavior of a differentiable map can be predicted byrin&tion that is defined by the
differential of that map at each point. Typicalljeogets local information, at best, such
as in the case of the Inverse Function Theorem.
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One can take the disjoint union of all tangent spdgksto all pointsx [0 M and
arrive at a set (M) that one calls theangent bundleo M. Similarly, the disjoint union

of all cotangent spaceg’™M over allx will give the cotangent bundle T(M). One has

canonical projection§ (M) - M, X O TM — x andT ‘(M) - M, a OT°'M > X

These allow one to define topologies and differerstinictures o (M) and T (M) that
make them differentiable manifolds of dimensiom But we shall not belabor those
definitions, since we shall not actually be dealing whih general case very often in the
main body of the present survey, because most of thetumanechanical references
that are being reviewed never deal with the effectgamig to space-time manifolds
whose topologies are more pathological than Minkowsgkce.

We will say that wheti : M - N is differentiable, there is @mngent maprf: T (M)
- T (N) that basically restricts to the differential mafgd, : .M — TN at eachx and a

cotangent map T: T (N) - T (M) that restricts to the “pull-back” magp,”: TN -

~oNto the linear functionalf a0

f(x)
T.’M that will take any tangent vectXratx to the real number:

T,M, which takes any linear functiona O T

(f )(X) = a(df| (X)). (2.14)

For the sake of consistency, the tangent vea:tt}g (X)is referred to as the “push-

forward” of X byf, and is denoted dyX. From (2.14), one can say thjta = a [+, but
that fact is largely incidental to the rest of this book.

d. Tensor fields on manifolds.In order to go from tensor analysis on vector spaces
which we discussed in the previous Appendix, to tensolysinaon manifolds, one

simply uses the tangent and cotangent spaces {\#.and T,'M ) at each poink of a

differentiable manifoldVl as the models for the vector spavesndV', resp. The tensor
product space:

Tv =VD..0vVOvDo..,0v (k copies ofV', | copies otV)
will then get replaced with:

THOM=T MO ...O0T’'MOTMO... O TM.

The disjoint union of all(T*), M over all x then defines theéoundle of k-times
covariant, I-times contravariant tensors on Mhich one can denote By*M . I, too,

has a canonical projecticff M - M that takes all tensors ato x.
A (k-times covariant, I-times contravariangnsor fieldon M is a “section” of the
bundleT“M - M. Hence, it is a map: M - T*M that takes every 0 M to a tensor

t(x) in (T*), M. One can then locally convert any tensor field is 8gnse into a tensor
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field on a vector space by defining a coordinate chark) aboutx and using the natural
frame fieldd; and coframe fieldlX to obtain the local component functionstofith
respect to that choice of local frame field:

()=t (xde O...0d¢ 009, O0..009,. (2.15)
The degree of differentiability of the tensor field tieen the same as the degree of
differentiability of its component functiortg”” (x).

It is important to note that one does not need to defic@oedinate chart in order to
obtain component functions for a tensor field, but onlioadi frame field.” That is, one
defines an open subsdtand a frame fielég (X) onU, which then associates eachlU
with a tangent frame (X) in TyM. Although a coordinate chart will define a (natural)
local frame field, a local frame field does not hawedefine a coordinate chart, since
there are such things as anholonomic local frame fields

In order to clarify that, it helps to define the natiof a (tangentyector fieldon a
differentiable manifoldM. Such an object amounts to a section M - T(M) of the
projectionT (M) — M, which then takes each poxtn M to a tangent vectoX (X) in
TM. Since we are representing tangent vectors by lingat;order differential
operators on differentiable functions & — namely, directional derivatives — we can
speak of composing the operators. Namel}( (k) andY (x) are vector fields oM then
the composition of acting upon a functiof) followed byX will be:

(XY)() f(x) = X(X) [Y(X) T (X)]. (2.16)

Although XY)(x) will clearly be a linear second-order differential ager, and
therefore, no longer a vector field, nonethelessné takes the difference:

[X, Y] f= (XY —YX)f (2.17)

then one will get a linear, first-order differential oger, which will be another vector
field. That is due to the fact thatfiis sufficiently differentiable then the mixed second
partial derivatives will be symmetric in the coordinated will therefore cancel.

One can see this most simply by looking at local camapb expressions for the
vector fieldX andY with respect to some local coordinate chartx):

XM=X'0d, Y®=YXa. (2.18)
That will make:

X, YI=(X'a)(Y'a) - (Y'a) (X'a) -
:X! (aiYJ_) 6,- +X_I Ylai_a,- -Y! (6,-X') 0 —Y‘X'a,- 0 ,
=X"@Y)o-Y (X" a,
which can be summarized by the formula:

[X,Y]'=X1ag, Y -vig X", (2.19)
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The fact that X, Y] is again a vector field eventually implies that thefifite-
dimensional) vector spad&M) of all vector fields oM defines a “Lie algebra,” which

we shall discuss in more detail in the next Appendix.

Since a local frame fielé (x) is composed of vector fields, one can take the Lie
brackets of all pairs of them and produce local vecelddi Furthermore, since any
tangent vector can be expressed in terms of that larakffield, one can express the Lie
brackets in the form:

[e, 8] = ¢ (X6, . (2.20)

When thec”.k(x) (viz., thestructure functionof the local frame field) all vanish, the

frame fielde(x) is calledholonomi¢ and otherwisanholonomic. As we have mentioned
before, natural frame fields are always holonomic, duéeé symmetry of mixed second-
order partial derivatives of sufficiently-differerii@ functions with respect to
coordinates.

e. Manifolds with other structures: In order to go from differential topology to
differential geometry — i.e., the geometry of curved spaame usually has to impose
further structures upon the differentiable manifold tlsabme considers. Often those
structures are defined by tensor fields on the manifold, ey often they are
differential forms, in particular.

The most common extra structure that one imposes updfeeentiable manifold is
a metric tensor field(which does not necessarily define a metric in the ps®ht-
topological sense). That would take the form of a sgimio) doubly-covariant tensor
field g (X) onM that is nondegenerate, moreover. Basically, thetusmts to saying that
its component matrig; (X) with respect to any local frame fiedd(x):

g=g;6 @ (2.21)

will be invertible. Heref' is the reciprocal coframe field #®, and we have suppressed
the explicit mention of the symmetrized tensor prodyot®! in6' ©'.

What one gets frorg is a scalar product on each tangent sgabe Namely, ifv
andw are tangent vectors M then their scalar product will be:

<v, w>=g (X)(v, w) =g; vV W. (2.22)
The local frame field (x) will then be calledrthonormaliff one has:

<g,g>=diag [+ 1... ++1...-1]. (2.23)
When the diagonal elements are all positive, the spataduct will be the Euclidian one,
and the metric will be calleRiemannian Otherwise, it will bgpseudo-Riemanniamand
the most important case for the theory of relativitytheLorentziancase, in which one

has either one positive amd— 1 negatives or the opposite combination, and the scalar
product will then make each tangent space look like Minkossace.
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Since many of the other fundamental tensor fields weashall encounter, such as a
volume element, take the form of exterior differenfiaims on manifolds, we shall move
on to that topic.

3. Differential forms on manifolds [3-6]. — Just as we could discuss exterior
differential forms on vector spaces as special caemsor fields on vector spaces, we
can carry out an analogous discussion of exteriorrdifteal forms on differentiable
manifolds. That is because kavector field A on a differentiable manifold is a
completely-antisymmetric, completely-contravariaandor field orvi, while an exterior
differential k-form is a completely-antisymmetric, completely coaat tensor field on
M.

We shall denote the bundle of &llvectors onM by AyM and the bundle of ak-
forms byA*M. The fiber of the former bundle atOM will be A (T,M)=TM ~ ..~

T«M (k copies), while the fiber of the latter bundlexawill be A(T,M)=A (T/M)=
T'MA ... AT'M. Hence, &vector fieldA (x) onM will be a sectiolA: M - AM of
the projectiom\M — M, which will then take eackto ak-vector in A (T,M) and ak-
form a (x) will be a sectiony : M — A*M of the projectiol\*M — M that take to ak-
formin A“(T M).

When one has a local frame fiedd(x) on an open subsét in M, and its reciprocal
coframe field®', one can express bathanda in terms of local components:

Am:%NWMQDWMw aw:%%wmmmmmk (3.1)

The exterior products of multi-vector fields and exteforms can still be defined
without making recourse to local frame fields sinae ténsor product of sections of the
tensor bundles in question simply comes down to takingoteproducts in the fibers,
which does not depend upon components for its definitiorA, B are ak-vector field
and al-vector field, resp., while, £ are ak-form and arl-form resp., then one will still
have:

A~B=(-1"B"A, arB=1" B a (3.2)

One can also define the interior product dé@rm by anl-vector field ( < k) or ak-
vector field by anl-form, as before, by starting with the interior produdt a
decomposable-forma=m ~ ... » ax by a vector fields:

va=iy (™ ... ")
=(V) LN . hak— (V) e has . N ac- (FD o) an L N da

extending this to indecomposable ones by linearity, ateinding tol-vector fields by
starting with decomposable ones:

a=i ia, (3.3)

IV1“'V| Vi Vi
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and extending to indecomposable ones by linearity.

a. The exterior derivative- The exterior derivative operatr: AM — A*M can
still be defined uniquely by the requirements that:

1. dris linear.
2. dif =df whenf is a O-form (i.e., differentiable function).
3. Itis an anti-derivation; hence,afis ak-form andgis anl-form:

d(@" B =da” B+ (-1 a" A (3.4)
4. Its square is zero:
d~d.=0. (3.5

“Closed” and “exact” still mean the same thing for d#éfaial forms on manifolds. It
is when one looks at the Poincaré lemma that onee®that topology now asserts itself.
For a topologically-general differentiable manifold,eocan say only that every closed
form is locally exact, not that it is globally exact. In factetéxistence ok-forms that
are closed, but not exact is the starting point for Riteam cohomology,” although we
shall have no need for that here.

Another time that topology interferes with the ibasonstructions is when one needs
a volume element oM. That would still amount to a global, non-zerxdorm, but
whether such things can even exist is also a matt@pofdgy, namely, the orientability
of T (M).

b. Integration of differential forms- As for the integration of exterior differential
forms on a differentiable manifols, one can best generalize the definitions that were
given vector spaces by first generalizing the conceptdifferentiable singular cubio-

simplex inR" to adifferentiable singular cubic n-simplés ann-dimensional manifold

M. That would simply be a differentiable map: |1 " — M, now. More specifically, in
order for the max (a) to preserve the dimensionIdf, one should also assume that it is
an embedding. Aifferentiable singular cubic n-chain M would then be a formal sum

Ch = Z/la o,(a) of a finite number of differentiable singular cobisimplexesd (a).

If ann-form a = a (¢, ..., xX") dx' ~ ... ~dxX' is defined on the image of such &n
simplex a, then one can pull back to give ak-form og’a on | k that one might
represent in the form:

o a=a(X(x),..., X (X)detp, X ] dxO---O dX. (3.6)
The integral:

L a = jlkakﬂa = jlka(x‘(x),..-,yk(x))detpj—x']dkm..- d% (3.7)

can the be evaluated in the usual manner of mulivke calculus.
The extension to an integral overranhainc, is then by linearity:
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Lnas Za:/lajgn(a)a. (3.8)

Stokes’s theorentasically generalizes to the statement that ifnah-form ais
defined on am-chainc, with a boundaryc, = Z/la 00,(a) then:

ja%az jcn d.a. (3.9)

In order to get from (3.9) to Gauss’s theorem,(tlee divergence theorem), one must
introduce a volume element (hence, orientabiliydider to take define Poincaré duality.
One first expresseg = #A for some (unique) vector field. (3.9) will then take the
form:

J, #A = [Ld.#A= [ #(ivA). (3.10)

More commonly, one sees the use of Hodge starogamsm, which will imply both
a volume element and a metric. Basically, one esgesa as *5 for some (unique)
n-k+1-formS. (3.9) will then become:

.[acn LB = f dyUf=+ f 55, (3.11)

in which the sign will depend uponand the signature type of the metric, as discussed
the previous Appendix. Of course, as was pointgdab that time, the introduction of a
metric is not a natural construction for the divesrge operator.

4. Lie derivatives on manifolds.— The concept of the Lie derivativetLof a tensor
field t on a differentiable manifolt¥ with respect to a vector field is a straightforward
adaptation of the previous discussion on vectorcespa One first defines the Lie
derivative of a differentiable function to agredwthe directional derivative:

Lxf = Xf. (4.1)
One then defines the Lie derivative of a vectddfié to be:
LxY =[X, Y] (4.2)
and the Lie derivative of a covector fieddo make:
(Lx a)(Y) =X (a (Y)) - a (X, Y]) (4.3)

for any vector fieldy, which agrees with Cartan’s magic formula for &fgrm o :

Ly a=ixd.a+diixa (4.4)
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whenk = 1. It also helps to use the “intrinsic” formula tbe exterior derivative of a 1-
forma:
da(X,Y)=X(a(Y))=-Y (a (X)) —a (X, Y]). (4.5)

One then extends to any tensor field of arbitrark tandemanding that,L must be a
linear derivation, so if takes the decomposable form:

t=a'0..0a0Y.0..0Y, (4.6)
then:

th:
Ly’ 0 ..0d0Y,:0...0Y, +...+a'0...0Ld0Y,0...0Y, +
0. 0a0LyY.:0...0Y +...+a'0..0d0Y.0...0LyY,.

One then extends to indecomposable tensor fields byitynear
The two example of Lie derivatives that one encersimost frequently in continuum
mechanics are Lie derivatives of the metric tenseldfg and Lie derivatives of the
volume elemenV.
In the first example, one gets the infinitesimaérat strain in the flow of the velocity
vector fieldv:
§=Lvgj=0i v +0 V. (4.7)

When this vanishes, the vector fiaeldis called aKilling vector field and its flow will
consist of isometries of the metgc

In the second example, which we also discussed ipringous Appendix, one will
get the (kinematical) compressibility of the flow\of

A= LV =iydhV + dhivV = dhtv = #(divv) = (divv) V. (4.8)

When A vanishes, the flow of will be calledkinematically incompressihle One then
sees that this condition is equivalent to the vanishindiwf, and the flow ofv will
consist of volume-preserving diffeomorphisms.
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APPENDIX C

Lie groups, Lie algebras, and their representations

Before we get into the business of doing the calculusaoftions with physical
fields, we must first introduce some basic notionsnftbe theory of Lie groups. More to
the point, it is the infinitesimal action of Lie groups the points of space-time and the
vectors in field space that enters into the discmssfovariations of fields. An especially
important class of group actions is defined by linear groujprac on vector spaces,
which are also known as “representations” of Lie groups.

The basic objective of this chapter is to attempt tblldmut the definitions, theorems,
and formulas from the vast body of literature ongtbjects of Lie groups, Lie algebras,
and their representations as they have been treated thytih® pure mathematics
community and the mainstream physics community. Indiénede continues to exist a
sizable gulf between the way that the topics are appeokloy the two communities, and
that stems from the fact that the topics have so nagmjications to either domain of
problems that any author on the subject will inevitably heomme specific constellation
of problems in mind. In the present case, that constellavould center around the
problems of applying the calculus of variations to theotsrwave equations of quantum
mechanics and their continuum-mechanical interpretations

Some common references on the subject of this Appenglifid-®]. In particular, the
last one is oriented towards physics applications, wthie first four are purely
mathematical.

1. Basic concepts regarding Lie groups- Only the most elementary notions from
the theory of differentiable manifolds will be assuniedhis chapter, since eventually
the only manifolds that will be considered in this book take the form of open subsets
of real vector spaces. In particular, the topicswWexe covered in the previous Appendix
should be more than sufficient for an understandirtiefAppendix.

a. Basic definitions— A Lie groupis a setG that that has been given two structures
that are compatible with each other, namely, a group stei@nd the structure of a
differentiable manifold.

That is,G has a binary operatio@ x G - G, (g, g) — ggd defined on it that is
associative, possesses an identity eleregaind every elemerg has a unique inverse
elementg™. Hence, for every, g1, g2, gz 0 G:

1. 0192 93=01(9203) -
2. eg=ge=g.

3. ggt=glg=e.

(Sometimes, the axiom of “closure” is included with thesnamely, thagg always
belongs tdG — but we have included that in our definition of binary operaji
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SecondlyG has a topology defined on it, along with a maximalsadiacharts (), x)
that always make each open subgehomeomorphic taR" in such a way that the

coordinate changes will always be “sufficiently-diffatiable” (typically, smooth) on the
intersections of the open subsets. Thmensionof a Lie group will then be its
dimension as a differentiable manifold.

The compatibility requirement amounts to demanding that group operations
themselves must be differentiable. That is, the birspgrationG x G -~ G is a
differentiable map, along with the inversion n@p- G, g — g™~ As it turns out (see
Chevalley []), one can always reduceCi atlas of charts on any Lie group to an analytic
atlas so the group operations will become analytieyedk this is especially useful when
one is dealing with matrix exponentials.

One then extends the usual sort of group notions by addidgfeaentiability
requirement to the definition. For instancd,i@a subgroupof G is a subgroupd of G
such that the inclusion m&b[J G, h — h is differentiable. A.ie group homomorphism
is a group homomorphisim: G —» G' that is also differentiable, and similarly fol_se
group isomorphism Actually, it is sufficient to require continuityf the map, since there
is a theorem that a continuous homomorphism of Lie growss$ be analytic.

b. Examples of Lie groups- Examples of Lie groups abound, so we shall
concentrate on the ones that will be of intereststan the cause of physical field theory,
which will usually be groups whose elements act as tramsfions on the points of
space-time or the vectors in some field space.

Perhaps the simplest Lie group that does not have dimmernsro (which would be

typical of discrete groups, such Asor Z,) is the additive groupR, +) of real numbers.

In fact, that group is isomorphic to the multiplicatigeoup ®’, x) of positive real
numbers by the exponential map. One can extend thendion to the translation group
(R", +) in the former case, although defining a multipliGatstructure orR" (i.e., an

algebra when the binary operation is bilinear) is not as siraglé is in the case oR(,

x),
Analogously, one can define the equivalence relatiopants of the real line that

two pointsx, y [J R are equivalent ifff — xis an integer (or perhaps an integer multiple of

27). As a topological space, the ima§ie’ of the projectionrR — R/ Z, x —[X] is

homeomorphic to a circlg', and in fact, the addition d& projects to addition moduld

onT * to define a compact, Abelian, one-dimensional Lie groaple shall just call the
circle group It is also isomorphic as a Lie group to the speciddagonal grousQ2)
for two-dimensional real Euclidian space and the uniggoppU(1) that is represented
by the unit circle in the complex plane. One can ektdre definition ofT * to n
dimensions by defining the-torusT" =T ! x...x T ! to be the compact, Abelian;

dimensional Lie group that is equivalently the imagehef projectionR” — R" / Z" or
the product of copies of the Lie group ™.
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Most of the Lie groups that we shall deal with in thesl will be examples ahatrix
Lie groups That is, they are defined by sets of invertible readamplex matrices for
which the binary operation is matrix multiplication. ride, they will be subgroups of the

Lie groupsGL(n; R) or GL(n; C), which are defined by all invertible x n real or
complex matrices, respectively. The identity elemargither case is the x n identity
matrix I. The real (complex, resp.) dimension of those Lieugs isn>. GL(n; R)

consists of two connected components, one of which centhé subgrouL (n; R) of

all realn x n matrices with positive determinants, and the othevloth is not a group (it
has no identity element), although it is diffeomorphidaL’(n; R) as a manifold; both

manifolds still have dimensiomnf. GL(n; C), by contrast, is connected, since one can get
from positive numbers to negative numbers without passingugh zero when one
considers curves in the complex plane, while removingtigen will disconneciR.

In order to obtain most matrix Lie groups, one definesesmet of algebraic
conditions (which also makes theailgebraic group} that will usually reduce the

dimension in the process. For instan&&(n; K) (K = R or C) is defined by the
condition that the determinant must always be unity, whexduces the dimension by
one. If theK-vector spac&" has a (real or complex) orthogonal structure (aescalar
product) defined on it then one can impose the restrithanthe matrices must preserve
that orthogonal structure and obtain the gr@(p, g; K) where the signature type of the

scalar product is, ...,-1, + 1, ..., +1) withp negative signs ang positive ones. For
instanceO(n) will default to the real orthogonal groupmetlimensional Euclidian space,

so the symboK = R will be implicit; otherwise, we will writeO(n; C). If the matrix of
the scalar product ig then the condition that a mat#xmust be orthogonal amounts to:

A'nA=n. (1.1)
This allows one to define apadjoint toA:

A* =n AT/7 , (12)
which makes:
A=A (1.3)

In particular, for a Euclidian orthogonal matri;* = A’.
TheK-dimension of any orthogonal group f&f is the same for all signature types.
It will be n (n— 1) / 2, but that fact is easier to see when one dersithe infinitesimal

generators of one-parameter subgroups of orthogonal traragfons, which we shall do
later. Actually, it is unnecessary to specify thenatgre type of complex orthogonal
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spaces, since the fact that they take on complex vahye®s that one cannot distinguish
negative subspaces from positive ones.
If one combines the orthogonality constraint with ¢bastraint that the determinant

of A must also be unity then one will arrive at the Lieuy SQp, q; K), or special

orthogonal group for signature tyde, g). In particular,SQ3, 1) is the special Lorentz
group andSQ(3) is the Lie group of orientation-preserving Euclidian tiotes in three

dimensions. The group(3; C) is actually more physically interesting than one might

first expect, since it is closely related 33, 1), although that is easier to show at the
infinitesimal level, for which one gets an isomorphishhie algebras.

WhenK = C, and one give€" a Hermitian inner product, one can restren

complex matrices to the ones that preserve that iprestuct and obtain the Lie group
U(n) of all unitary nxn matrices. For them:

At=AT=A", (1.4)

in whichA' is referred to as theermitian transpose of A

When one adds the constraint that the determinant lmeushity, one will define the
subgroupSU(n) of special unitary matricetn dimensionn. Although the fact that the
elements oBU(2) are complex 22 matrices might suggest that is it a complex manifold,
actually, it is a real one. For one thing, its remhehsion is three, which is an odd

number, so it cannot possible admit a complex stru¢tiere an atlas of charts @™ for

some m with holomorphic coordinate changes). In fact, thexea 2-1 Lie group

homomorphisnBU2) — SQ3) that is topologically the same thing as the map faomy
point on the three-sphef to the line that goes through it and the center, aatlitre

will define a point in the real projective spa€>. Similarly, there is a 2-1 Lie group

homomorphisnSL(2; C) - SQy(3, 1) that is topologically the complexification tiat

picture. Here the subscript “0” suggests that the specientz transformations also
preserve a “time orientation,” which mak8&y(3, 1) the connected component of the
identity inO(3, 1); one calls it thproper, orthochronous Lorentz groupVe shall return
to the last two homomorphisms in the context of spimegentations of Lie groups.

2. Fields as representations— One of the fundamental sources of confusion
between mathematicians and physicists in the nameldftheory is their inconsistent
use of the word “representation.” We shall attemptléoify the differing usages that
mathematicians and physicists typically make.

a. Elementary representations of Lie groups To the mathematician, a
representatiorof a groupG (such as a Lie group, in particular) is a homomorptisnt
- GL(V), g — D(g) that takes every elemengtin the groupG to a corresponding
elementD(g) in the groupGL(V) of invertible linear transformations of some vector
spaceV. Hence, as a homomorphism, one must have:
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D(99) = D(g) D(9).

in which the two group multiplications are both represdnby the concatenation of
symbols.

Any group homomorphism must take the identity elemeemt G to the identity
transformationl in GL(V), and the inverse image ofunderD is always a subgroup
ker(D) of G that one calls thkernelof D. Moreover, the map that takes all elements of
G tol is always a homomorphism, although a trivial one. htdther extreme, kddj =
e iff the mapD is injective (i.e., one-to-one). In such a case, @lls the representation
D faithful. In the case of Lie groups, for which the concept ofedision is well-defined,
this can happen only when the dimensiosa$ less than or equal to that@E(V).

Similarly, the imageD(G) of G underD is always a subgroup @&L(V). If D is
surjective (i.e., onto) then the image@funderD will be all of GL(V); for a Lie group,
that will be possible only if the dimension@fis greater than or equal to that@if(V).

The homomorphisnD will be both one-to-one and onto (tijective iff it is
invertible, and in that case, one would call itismmorphism similarly, one would say
that G isisomorphicto GL(V) and notate that b§ [1GL(V). An important isomorphism
to know about is defined by the fact that E8r{s always normal irG (%), so the coset
spaceG / ker(D) will have a group structure, am(G) 0 G / ker(D). As consequence,
D(G) UG iff ker(D) = eiff D is injective.

For example, the covering homomorphiStd2) - SQ3) haszZ, = {l, — I} for its

kernel, and since it is surjectivBl(2) / {l, — 1} 0S(Q3). Hence, one can represent a
three-dimensional Euclidian rotation as a pair of unigx® complex matrices with unity
determinant that are each the negative of the other one

There are more interesting examples of represensatimn the trivial representation

of G in GL(V). For instance, the determinant map d&t(V) — R, A > det(d), where
R’ is the multiplicative group of non-zero real numbéssa non-faithful representation
of GL(V) in the group of invertible linear transformations of teal lineR. The fact that
it is a homomorphism follows from the product rule foredetinants:
det(AB) = det@) det®).
Any permutation grouf of a setS= {0, ..., Oy} of n objects can be represented in
GL(n; K), where isK is any suitable scalar field, suchia®r C. One simply associates

each objecD; in Swith the frame membeg for some frame ,, ..., &} in K". Every

permutation7r : S - S (i.e., every invertible set map) will then correspondato
permutation of the frame members. The matrix of geinmutation with respect to the
initial frame will then be a corresponding permutatidnttee columns of the identity

() This is easy to prove: i O ker D andg O G is arbitrary thenD(gkg™) = D(g)D(k)D(g™) =
D(g)D(g™) =1, sogkg™ O ker D.
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matrix forn dimensions. [IGL(n; K) acts upon the dual spak& then the permutation

will affect rows of the identity matrix.]

When one is dealing with linear transformationsVofo begin with, the grougs
might be defined to be a subgroupGif(V), and one will then refer to the inclusion map
G O GL(V), g — g as thedefining representatianin particular, one can use that term for
GL(V) itself, as well as the subgroups of invertible lineansformations of its linear
subspaces. If an orthogonal structure has been introduseditie can define the group
of orthogonal transformations (e.g., rotations) fomitd ifV is a complex vector space
with a Hermitian inner product then one can deal withdgfining representation of its
unitary transformations.

An important consideration for any representafibnG - GL(V) is its reducibility.
That is: Can one find a non-trivial representatio®oh a subgrougsL(V”), whereV'is
a proper linear subspace ®? If so, one callsV’ an invariant subspacefor the
representation. If no such proper subspace exists thercalls the representatidn
irreducible  When a representation is reducible, there is genaxalgcomposition o¥
into a direct sunV, O ... O V, of proper linear subspaces such that the imade thien
becomes the direct produGti (Vi) x ... x GL(V,). The matrixD(g) that represents the
group elemeng will then decompose into block-diagonal form accordingly

b. Weights and spins of representationsVhenever one is dealing with a linear
transformationT of a vector space to itself, one can always defineeitpenvalues of,
although they might not belong to the given field oflasa in the complex case, one also
always define the eigenvectorsigfas well. Since one can say much about the structure
of the transformatio when one knows all of its eigenvalues and eigenveatassnot
surprising that the eigenvalues and eigenvectors of the lireeeformation€(g) of V
that represent elemengsof a groupG will also play a fundamental roles, especially in
the classification of irreducible representations®f Indeed, to Nineteenth-Century
algebraists, the equation:

detD(g) —-A1] =0 (2.1)

was usually referred to as thendamental equationf the representation. (Usually the
representation in question was that of left-translatsmnone could extend the definition
to algebras in the general sense.)

As one knows, if the eigenvectors actually exist itnenV can be decomposed into a
direct sumV(A;) O ... O V(Ag) of subspaces that each correspond to a separate
eigenvalue, and whose dimensions are equal to the nuiligd of the eigenvalues as
roots of the characteristic equation. It is conveniemt rfany purposes to have
multiplicity one for each root, so the eigenspaces adtth have dimension one; that will
also make the matrilo(g) diagonalizable and it will have distinct diagonal elements.
However, the existence of distinct roots of the charitie polynomial is not necessary
for the diagonalizability of the matrix, but only thgistence of distinct roots for the
“‘minimal polynomial.” For instance, the identity matris clearly diagonalizable,
although its characteristic polynomial is<{ 1)"; its minimal polynomial, however, is—

1.
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One also knows that all elemerts(] G that are conjugate to a givénwill be
represented by linear transformations with the sameeadges, since:

detD(ghg™) —A 1] = detD(g)D(MD(g™) — 4 D(g) D(g™)]
= det P(g)[D(h) — A 1] D(g™)}
= detD(h) — 1 1].

When a Lie groupgs is compact, one can always find maximal compact Abelian
subgroups, which one then catteximal torii () (cf., e.g., AdamsZ]). The elements
O T%, whereT¢ is a maximal torus, are especially fundamental, becthss irreducible
representations ofG are in one-to-one correspondence with the irreducible
representations of, and the irreducible representationsTdf= S are all one-complex-
dimensional (i.e., two-real dimensional). The eigemealofD(h) in that case are called
the weightsof the representatioD, and one can then decompose the vector spaife
the representatioD into eigenspaces of the weights. That is why compéetor spaces
are the ones that one commonly uses for discussibngeducible representations.
Furthermore, since the elementsTbtommute with each other, so will the matriCxg)
that represent them, and that will make the matrigesl&neously diagonalizable; i.e.,
there will be a frame o¥ for which all of the matrice®(h) are diagonal.

When a Lie groupG is not compact, maximal torii do not have to exist, @&nd
becomes more convenient to consider irreducible reprémergtaf its Lie algebra. We
shall defer the discussion of that to a later seaiicthis chapter.

The (complex) dimension of the (finite-dimensionaymplex vector spac¥ in
which the representatidd is found has a dimension of the forsi21, where one refers
to s as thespin of the representation. Hence, when that dimensiaves, one must
resort to half-odd-integer values far For instance, in the case of the defining

representations d8U(2) andSL(2; C) in C? s = 1/2. Since there is also a Hermitian

conjugate representation 8%, one distinguishes the two representations by the

notations(<,0) and (0,2), respectively; sometimes, the notations 2 anar€ also used.

The representations 8U(2) are particularly straightforward, since it is contpaed
simple (i.e., it has no non-trivial normal subgroupsihe maximal torii are all
isomorphic toU(1), which can be represented by the complex numbersedbtm €’’.
Hence, in the case of the defining representatio®®), the maximal torii will be
matrices of the form:

e’ 0
O e—ig '

Hence, the diagonal elements will define the weighthat representation, while the
weight spaces (i.e., eigenspaces) that corresponeno \thll be spanned by the vectors
[1, 0]" and [0, 1], respectively. The higher-spin representationsSof2) will then

() Actually, as Adams points out, there are compact, Abediibgroups that do not take the forrof
such as the discrete subgroup of all matrices of the domgit 1, ...,+ 1].
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amount to tensor products of the defining representatidnitanHermitian conjugate,
which we will discuss in due course.
The representations (8Q(3) include the representations 8t(2) by way of the

isomorphisnSQ3) OSW?2) / Z, . However, they also include the tensor products of the

defining representation iR® and its transpose iR*. The latter two representations are
then thought of as having spin 1, although that would realite to the dimension of
their complexifications. Interestingly, the compléation ofSQ3) to SO 3, C) gives a
Lie that is intimately related with the Lorentz group.

b. Representations as linear actions of groupsihe way that representations of
groups enter into physical field theories is typicallymay of the action of those groups
on the points of space-time and the elements of e $paceV (i.e., the vector spadeé
in which the fields take their values). It is importantknow that Sophus Lie was
defining transformation groupsi.e., group actions on manifolds) before anyone actually
formalized the present definition of a Lie group.

By definition, aleft actionof a Lie groupG on a manifoldV is a differentiable map
GxM - M, (g, X) — gxsuch that for every 1M :

1) ex=x,

2) (0192) X =01(%2 X).

As a consequence:

3) g (gx) =x.

A right action is a differentiable magM x G - M, (X, g) — xg with analogous
properties.

Typically, the distinction between left and rightians is meaningful only when one
must define both at the same time. For instance derdor the vectov =V g to always
represent the same element of a vector space independetit®/ choice of linear frame

e , when one left-multiplies the componentsby an invertible matrixA}, one must
right-multiply the frames by its inverseA} :

If V is a vector space then the actBrzx V - V, (g, v) — gv of a groupG on a
vector spac&/ will be said to bdinear iff for everyg O G theleft-translationmapL(g) :
V - V,Vv 5 gvis linear;L(g) will be invertible as a result of the definition o&troup
action. Hencel.(g) will belong toGL(V), and the map : G - GL(V), g —~ L(g) will be
a representation dd in GL(V). The kernel oL consists of all elements & that act
trivially on V on the left (i.e.gv = v for all v). If ker(L) = e then the action is said to be
freg and the representati@rnwill be faithful.

The subgroufgs, of G that consists of all elements Gfthat fix the vectow is called
the isotropy subgroupf the action av. WhenG, = G, one callsv afixed pointof the
action, and at the other extreme@Gif = e for everyv then the action is calleeffective.
An effective action will be free, since no elementGobesides will fix any point, but an
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action can be free without being effective, sincegharght be elements @ besides
that fix some points, but not others.

For a linear action o& onV, theorbit G(v) of all vectors thav can go to under the
action ofG spans a linear subspace\othat is also an invariant subspace of the action.
One then sees that the transformation group concegt ofbit is closely related to the
representation concept of invariant subspace for a lineapgction. The fact that they
are not identical is due to the fact that a linear doatibn of vectors of the formd(g:)v
and D(gy)v does not have to be of the foidigs)v for somegs O G. For instance, an
orbit might take the form of a circle that spans amimant plane.

If the group action has only one orbit then one chbsactiorntransitive For any two
elementsv, v' I V there will be some elemegt[] G such thatv' = gv, but g is not
generally unique; wheg is always unique, one calls the actgmply transitive

Furthermore, i andv' both belong tds(v) thenG, OG,, although the isomorphism
will not be unique. As a differentiable manifold, onevals has thatG(v) is
diffeomorphic toG / G, , so if the isotropy subgrou@, is the identity group then the
orbit will be diffeomorphic tdG itself. Hence, a simply-transitive action is badmsitive
and effective.

The most common examples of linear actions of gronpseotor spaces that we shall
be dealing with will be the defining representations ofbspaces of either three-
dimensional Euclidian space or four-dimensional Minkowskace and the spinorial

representations of rotations and Lorentz transformsimT? andC*.

c. Tensor representations of Lie groupsln order to relate representations to the
fields of physical field theory, one must first identifye vector spac¥ that constitutes
the field space. For elementary wave functions, thittypically be one of the real

vector spaceR", withn =1, 2, 3, 4, or the complex vector spa€8salso withn =1, 2,

3, 4.

However, such elementary physical fields as electgowiac and gravitational fields
will involve going to “higher-spin” representations of plogdisymmetry groups, such as
transformations of the points of space-time (vignamicalgroups) or the elements of
field spaceV (viz., gauge transformations One must then consider tensor and spinor
fields on space-time that take their values in vectocesp#hat can be decomposed into
tensor product¥; [J ... 00 V; (r =rankof product) of other vector spaces; i.e., tensor and
spinor fields. One must similarly consider repredéonta of one’s basic physical group
G in the general linear grou®L(V1 O ... 00 V,).

A common source of confusion amongst physicists is duketdact that the tensor
productV; O ... O V, of any finite number of vector spaces is itselleatorspace, in the
sense that linear combinations of tensors of that aemlagain tensors of that rank. Some
physicists prefer to reserve the use of the word “vedtorivhat one could call “tensors
of rank one,” so to them the elements of a tensoresmannot also be vectors.
Hopefully, that will not be a source of confusiortie present discussion.

We shall consider the simplest tensor product to begim namely,V O V; the
extension to higher-rank tensors will hopefully seentiradly straightforward.
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When one changes from the frag@nV to another framé;, one can represent that
invertible linear transformatiof : V - V by means of the matrix of componeﬁﬁs of

the new frame with respect to the initial one:
fi=T(g)=aT,.
When one takes the tensor products of the new frameberenone can then say that:
idfi=Te)OT(e)=aT ' 0aT/ =(@0de)T T/,

due to the bilinearity of the tensor product.

Hence, one can say that there is a linear actigdL¢¥) onV [J V that is defined by
the so-calleddiagonal representation oGL(V) in GL(V) x GL(V), which takes every
elementT in GL(V) to the elementT|, T) in GL(V) x GL(V). Since T, T) can then act
linearly upon the elements ®f[] V, one then has th&L(V) x GL(V) can be identified
with a proper subgroup @L(V O V). If one has a representatidnof a groupG in
GL(V) then one then calls the composition of group homgiiems:

G - GL(V) - GL(V) x GL(V) OGL(VO V)

that takeg in G to D(g) in GL(V) to (D(g), D(g)) in GL(V) x GL(V) to the corresponding
transformation oW [0 V thetensor product oD with itselfor therepresentation of G in
the tensor product spacelVV. One usually sees that representation take the fotneo
formula for the transformation of components undertthasformation of the frame to
which they are referred:

=TT (2.2)

although the transformatioh of components must be inverse @mntragredienk to the
transformation of the frame in order for the tentsw®|f to be invariant.

One can also define the tensor product of two differgmtessentation®;, D, : G -
GL(V), but that construction will not be of much use torugvhat follows. However, it
does play an important role in chiral representaticsrsyhich one no longer uses only
the diagonal subgroup & x G.

It is important to note the difference in dimensionsmMeen the group&L(V) x
GL(V) andGL(V O V): The former has dimensiom? while the latter has dimensioh x
n? = n* of course, the diagonal subgroup (V) x GL(V) still has the same dimension
as GL(V), namely,n’>. Hence, there will generally be many more invertiliear
transformations oV [0 V than the ones that come from tensoring a representation
GL(V) with itself.

Even when the representation®fin GL(V) is irreducible, its representationGL(V
[0 V) does not have to be. For instance, one has a dusttlecomposition:

VOV=50OA,,
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in which S, = SV is the vector space of symmetric, second-rank coniemtatensors,
while A; = A,V is the vector space of antisymmetric ones.
One finds that symmetry type is preserved by the wamsition (2.2):

U=TIT# =TT =TTt =270,

Hence,S, andA; are invariant subspaces under the tensor product repréeseotfeanyG
in GL(V), so that representation will be reducible.

In fact, if one has a scalar product defined\bthen one can further reduce the
representation ir, by the fact that a scalar product allows one to definknear
isomorphismV — V', v >V, wherev'(w) = <v, w> for anyw. One can then associate
every element o¥/ O V with an element o/ * O V, which can be identified with the
algebra of (not-necessarily-invertible) linear maps frgnto itself, which then have

matricest} with mixed components. One can then define a tracgifunonV " O V and
distinguish between the elements\of O V with trace zero and those with non-zero

[0}
trace; that implies a corresponding decompositiof afito K [I' S, , where the elements

(o] .
of S, correspond to the matrices with zero trace. Foyrangetric matrix s;, this

decomposition takes the form:
1

k 0i
=t |+t
n~ ]

(o]
in whicht; = 0. It is common to define:

[¢]

. 1,
th o=t —=tF,
] ] ntk

0.
but that decomposition is not unique, since one can add anix méh zero trace td |

and still produce an acceptable decompositiom} oihto a traceless matrix and a trace
part.

The decompositiof 0 V=K 0O S, O A, does, in fact, give a decomposition of the

tensor product representation & in GL(V) into a direct sum of irreducible
representations that one calls @lebsch-Gordan decompositiarfi that representation.

Although it is customary to discuss the way that one wse the “Clebsch-Gordan
coefficients” and “Young tableaux” in order to compute thmehsions of the invariant
subspaces of a tensor product representation, neverthedesball not actually need that
machinery in what we shall do, so we shall pass ovesstligéct. (See, howeveg]])

We need to make the essential comment that thertpnsduct representations of the
three-dimensional rotation group — or ratH&tf2) — constitute the essence of the (non-
relativistic) quantum theory of angular momentum. Intipalar, the Clebsch-Gordan
decomposition relates to the theory of the additiomgligar momenta.
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d. Spinor representations of Lie groups.The 2-1 homomorphisms that we
mentioned above — namelg2) - SQ3) andSL(2; C) —» SO(3, 1) — both play an

important role in quantum mechanics. Indeed, it was thaydiscovery of electron spin
that drew the attention of the physics mainstreanhtsd homomorphisms in the first
place when the former homomorphism was used by Pauhdade the spin of the
electron in non-relativistic wave mechanics, and #teet was used by Dirac to discuss
the relativistic theory.

In both cases, the main difference between the higo groups involved is

topological: SW2) and SL(2; C) are bothsimply-connectecas topological spaces.

Hence, any continuous loop in them can be continuously Mefbrto a point without
leaving the manifold. The 2-1 character of the projectdates to the fact that the image

Lie groups both havg, for their fundamental groups. The simply-connectedgraips

SU2) andSL(2; C) then becomeovering groupdor SQ(3) andSQy(3, 1), respectively,

and the projections amvering homomorphisms

It has also become customary amongst mathematic@mn®fer to the simply-
connected covering group as the “spin” group that is agsdciith the multiply-
connected one, and the representation of an eleme3®8j or SQy3, 1) by a pair of

antipodal matrices i8U2) or SL(2; C), resp., is thapin representationf those groups.

That is then the basis for the constructionspfnor representation®f rotations or
Lorentz transformations.
There are two basic differences between a tensoa apahor:

1. The basic vector spaceds (n = 2 or 4, in most cases), rif.

2. The components transform by the matrice$Sdf2) or SL(2; C), not SQ3) or
SA3, 1).

Before one gets to actual spinors, one first lookkoat one represents the vector
spacesR® and R* as complex 22 matrices and then how the rotations or Lorentz

transformations act upon those vectors when theyegmesented in that way. We shall
address both cases in parallel.

The complex vector spadd(2; C) of all 2x2 complex matrices has a complex

dimension of four. Hence, a basis for it will catsof four linearly-independent
matrices. It is customary to use the identity mawigng with the three Pauli matrices

for a basis:
|11 0 10 1 10 i |11 0

All of these matrices are Hermitian, and the lastéhhave trace zero.
Any matrixA in M(2; C) can then be expressed uniquely in the form:
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A=Ag,, u=0,..,3 (2.4)

for some set of four complex compone®s If one restricts oneself to only real
components” then the resulting set of matrices of the form:

[X] =x g, = (2.5)

{x°+ N ixz}

xX=ix2 xX'=-%

will define a real vector space that is linearly-isomazpti R*. If one wishes to
represent only spatial vectors then one sets0, so:
X3 Xt = ix?

[x]:xio.:{l L, } i=1,2,3. (2.6)
X —IX X

If one looks at the determinants in both cases themdlhfind that:
det K] = () = x)* = () = ) = 17(X, X) (2.7)
in the four-dimensional case and:

det ] = — (x)* - 6€)* — 6X)* == dx, %) (2.8)
in the spatial case.

Any matrixA in M(2; C) acts upon other matrix, such a$ oy way of:
A[X] = AT[x] A. (2.9)

Hence, since both the matrices 3if(2) andSL(2; C) live in M(2; C), the former

group acts upon spatial vectors that are presented forting(2.6), while the latter group
acts upon space-time vectors that are represented farthg2.5). By the product rule
for determinants:

det A'Tx] A) = detA" det ] detA = det K], (2.10)

since detA = detA" = 1 for the matrices of bot8U(2) andSL(2; C). Therefore, the
actions preserve the Euclidian spatial and Minkowski spiaoe- scalar product,
respectively, and one is truly representing the actidnratations and Lorentz
transformations on vectors that have been representegxZascomplex matrices.
However, one should notice that sirfés represented twice in (2.9) andA)' = - A, it
will not matter whether one uses the ma&igr —A, since the sign will square to positive
in either case. Thus, despite the use of complexicesat the action that we have defined

is not a faithful representation &U2) or SL2; C) in M(2; C), but only a faithful
representation dQ(3) or SQy(3, 1), respectively.
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The concept of an elementary spinor then emerges whe looks at the defining
representations of the Lie groups in question, along wigr tHermitian conjugate
representations on the dual space. In both cases, tter \space of the defining

representation will b€? and its dual space will b&8?". Actually, for the relativistic
case, it is more customary to consider the vectorespaof bi-spinorsand its dual, but it

is important to realize that one can still repre®if®; C) in C?, and we shall return to

that topic later on in our discussion of the relatigi§tauli equation.
We shall follow the tradition of Dira®] and use the “bra-ket” formalism for notating

elements of" and its dual. Aet, which can be represented as a column vector:

wl
| ¢/> = , (211)
wn

is an element of", while abra, which can be represented as a row vector:

<y¢l=ln, ..., 4l (2.12)

is an element of".
The way that one goes from one to the other is byofi#lye Hermitian conjugate:

ly>"=<y |, (2.13)

and the effect of the bilinear pairingy<| ¢’ > is to reproduce the Hermitian inner
product. (In quantum mechanics, one also typically hagegrate the real functiong|
Y’> over all space, but for the present purposes thahailbe necessary.)

A complex linear transformatioh: C" — C" acts upon a ket > to the leftT | ¢ >

and its Hermitian conjugaff acts upon a bra from the righty<| T'. Hence, it will be
unitary iff
<Y|T|Y>=<y|y'> (2.14)

in any case.
Since the action oc3U(2) or SL(2; C) by way of (2.9) is quadratic, while their action

on elements of2? or C? is linear, one sees that only the latter action [sabte of

resolving the difference between the two antipodal nedrtbat represent a rotation or
Lorentz transformation. Hence, in a sense, spinoes“square roots” of vectors,
although, not in the sense of tensor product, sincéetisor product of any two spinors

will be, by definition, decomposable, and not all secomrgensors overC? are
decomposable.
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A particular simple example of the Clebsch-Gordarodgmosition is when one looks
at the tensor product representatior8tf(2) in C O C?, which one denotes by[2 2 or

1,0)0 (03). If one writes a basis fdt” in the form of the vectors = [1, 0] andd =

[0, 1]" then a basis fo€? O C? will be defined by §{ O u, ud d, d O u, d O d}.

However, since this representationSif (2) is not irreducible, one can first polarize the
elements ofC? 0 C? into symmetric and antisymmetric ones, which willrttgve the

Clebsch-Gordan decomposition of the representatioreifiotimC? 0 C? = S(C?) O A,
(C?, where the three-dimensional complex vector sp&ce(C?) consists of the

symmetric second-rank tensors 0@, and the one-dimensional vector spaee(C?)

consists of the antisymmetric ones. These repragamaare irreducible, and one
sometimes notates the decomposition in the fofm2= 30 1. A basis fo1S,(C?) can

be defined by 0 u, u © d, d 0 d} and a basis foA; (C%) can be defined by~ d}, in
which A means the exterior product apdis the symmetric product:

uo d=3uldd-d0Ou). (2.15)

We shall deal with the Dirac bi-spinors, which aeséd inC* in the last chapter,
since they require special treatment. Similarly, otgcussion of non-relativistic,
spinning, wave mechanics will enlarge upon the discussion i §f@nors, which are
based inC2.

e. Representations of groups on field spac&Ve shall now attempt to apply the
abstract mathematical notations that we just discussetthe case of physical field
theories.

Since we will not be addressing topological issueshatviollows, for us, &eld will
usually take the form of a “sufficiently-differentiablgr simply smooth) map/ : S -

C', in whichSis an open subset &", which will generally be either Euclidian spage

= (R®, &), Galilean space-tim& x E°, or Minkowski spacéi* = R*, 77,,). Typically,
S will take the form of the set of points on whighis non-zero, so it closure will be the
supportof W. Furthermore, even in the four-dimensional c&eyill usually have a
cylindrical topology, in the sense tha&t= R x 33 whereZ® is a three-dimensional

differentiable manifold with compact closure. The dattonstraint tends to be an
unavoidable consequence of the demands of time evolutiom whe neglects the
possibility of topology-changing processes, such asaifmedation of vortex pairs.
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It is often useful to consider thgaph of the fieldW, which is the subset & x C'

that consists of all points of the form, Y(x)); when no coordinate system has been
specified, we use the notationfor any point ofS and not just its spatial projection.

Hence, the graph o8P can also be regarded asextionof the projectior5x C' - S (x,
Z) X, so it is an injective may : S — Sx C', x = (X, W(x)). (Had we chosen to go

the topological routeS x C" would become a “local trivialization” of a “complexater

bundle” of “rankr” over S soW¥ would become a section of that vector bundle.)
We define the sef (S C') of all sections of the projectio® x C" - S (or

equivalently, the space of all functiotd : S - C"). It is an infinite-dimensional

complex vector space, although in many cases, its exngifucture can prove to be
distracting, since the s& is assumed to be @eal, finite-dimensionaldifferentiable

manifold, so the complex structure b(S, C") is confined to the field spad®. Hence,

when differentiating¥, one will be taking real derivatives, not complees, and any
complex operations, such as complex scalar muléptia and conjugation, can refer
only to the field space.

The action of a Lie grou@ on sections can then be defined by an actidd ohl (S

C"), which, in turn can be defined by the actionG®bn S x C". Typically, we shall
consider only the simplest kind of action, which invol@&acting upors independently

of C', which we think of as the “horizontal” part of the aatiand acting upo@' in two
different ways, both of which are assumed to be linaetions. Firstly, it acts
independently of its action o® and secondly, the Lie algebgaacts uporC" by way of

the differential mapd¥, which we shall discuss below. There will also be a
corresponding action upoW<{x) by means of the complex conjugates of the linear
transformations orC" that represent each element®f and a representation g@fin

gl(C") by way ofd¥".

3. Representations of Lie algebras- For the purposes of the calculus of variations,
it is generally more useful to know how the infiniteal generators of finite
transformations act upon points of space-time and elesmainfield space. That is
because in many cases the variations of the fielguestion will be generated by such
infinitesimal generators of (one-parameter subgroupéirafg transformations. Hence,
one will be dealing with elements of the Lie algepia some Lie grouts.

a. Basic definitions regarding Lie algebras A Lie algebrais a vector spacg that
is given a bilinear pairing x g - g, (& b) — [a, b] that has the properties:
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1. Antisymmetry: [a, b] =—[b, a],
2. Jacobi identity: [a, [b,c]] +[b, [c, a]] +[c, [a b]] =0.

The first condition says that the algebra productmelg, theLie bracket[a, b] — is
not generally commutative, since if it were then omeild also need to have:

[, bl =0

in any event. In such a case, one would call the dlgebraAbelian. Another
consequence is that one must always haya] £ 0 ().

The second condition says that the algebra produgpisally not associative, either,
since one will generally have:

[a, [b, c]] = [[a, b], c] - [b, [c, a].

b. The Lie algebra of a Lie group Any differentiable manifold is associated with
an infinite-dimensional Lie algebra in the form of tlaagent vector fields on it, but in
the case of Lie groups, one can identify sub-algebr#sadiinfinite-dimensional algebra
that have the same dimension as the group itselfndrcase, one considers the action of
the groupG on itself by left-translation, and in the other, byhtigranslation. As a result,
one can say that vector fields @ that are invariant under left-translation dedt-
invariant, and analogously foright-invariant vector fields. Both of them define
isomorphic Lie algebras, but since any right or left irarat vector field can be specified
by its vector at any point db, one usually specifies the vector field by a vectahat
identity e and uses the tangent spdeé to represent the Lie algebgaf G. One defines

the Lie bracketd, b] of tangent vectors, b at e to be the tangent vector atthat
corresponds to the Lie bracket b] of the left (or right) invariant vector fields, b that

the elements, b generate.

Since a tangent vector at a point can be regarded asgainalence class of
differentiable curves through that point that differatdito the same vector in any
coordinate chart, one can obtain an element ®fT.G by passing a differentiable curve

throughe and differentiating it aé. For instance, if/(s) is such a curve through(say,
with y(0) =e) then one can obtain an elemarii g by way of:

_ dy

dsleo

Conversely, one can start warand obtain a differentiable cur¥€s) by extendingx
to a left (or right)-invariant vector field o@ and looking at the integral curve to it that

() If one wishes to quibble about the best way to cheriaet antisymmetry, one must include the
possibility that the field of scalarsZ . Hence, in that case, although §] = O for alla would imply that
[a, b] + [b, a] = O for alla, b, the converse would not have to be true, siaca][+ [a, a] = 2[a, a] = O for

any a, regardless of whethen,[a] is or is not zero. However, we shall have no usesfah exotic
pathologies.
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goes througe. Such a curve will then became-parameter subgroupf G. The curve is
easiest to obtain for Lie groups that consist of inbkr matrices, since one can define
the exponential of any matra

exp@) = iﬁa” : (3.1)

The one-parameter subgroup tlaagenerates is the image of the line through the
origin of TeG anda under the exponential map:

A(s) = expka). (3.2)

One then refers ta as theanfinitesimal generatoof A(s); more casually, the elements of
g are the “infinitesimal transformations” that assaciated with elements Gt

A useful construction on any group, and especthiéyorthogonal and unitary groups
that one encounters in mechanics and gauge fietatis is the&Cartan-Killing form. If g
is a Lie algebra, and, b 0 g are any two elements, then one can define thettaGa
Killing form to be the symmetric bilinear functiona

<a, b> = Tr ad@) adp),

where add) : g - g is the linear map that takes aoy] g to [a, c], and similarly for
ad(b).
When g is a matrix Lie algebra to begin with, add B [0 g are any two of its

matrices, one will have:
<A, B> =Tr(AB).

The Cartan-Killing form will define a scalar pradwng wheng is semi-simple (i.e.,
contains no proper Abelian ideals), and it willdefinite when the underlying Lie group
IS compact.

In particular, forso(3), one has the basis:

0O 0 O 0 01 0 -1 0
,={0 0 -1|, l,={ 0 0 O, Is3={1 0 O, (3.3)
01 0 -1 00 0O 0O
which can be expressed in the single defining egpat
[|;]k = &k - (3.4)

One will then have:
<lg Ip>==2 . (3.5)
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Hence, as an orthogonal spagg3) is essentially three-dimensional, real, Euclidian

space.
In the case ofo(3, 1), if one uses the basis:

0!0 0 O 0/ 0 00 0!0 00
010 0 O 0/ 0 0 1 010 -1 0
Ji= ! , Jo = ! , J3 = ! :
010 0 -1 0100 0 0i1 0 0
0j0 1 0 0j-1 0 0 0j0 0 0
0/1 0 O 0/0 1 O 0/0 0 1
110 0 0 010 0 O 010 0 O
Kl: : 1K2: : ,K3: :
010 0 0 110 0 0 010 0 0
0/0 0 O 0/0 0 O 1,0 0 0

This is also the signature type of the scalar pcbdhat one defines on the six-
dimensional real vector spaces of 2-forms or bimecbnR* when one introduces the

scalar product:
<F, G>=F"G)V),

in the case of 2-forms, for instance. Hare] A%R*) is a choice of volume element.

c. Representations of Lie algebrasA representatiorof a Lie algebrgy is a Lie
algebra homomorphis®: g - gl(V), where gi(V) is the Lie algebra of all (not-
necessarily invertible) linear maps fronto itself. Hence®® must be a linear map of the
underlying vector spaces, while one must alwayghav

[©(a), ()] = [a, b].

Such a representation is callegthful iff the linear map® is injective. That is true
iff the kernel of® vanishes, and ke®)) is always a Lie subalgebra gfsince ifa andb
both map to zero undé&, so will [©(a), ©(b)], by the linearity of0 and the bilinearity
of the bracket. Moreover, ®(k) = 0 then P(a), ®(k)] = 0 for any®(a) [ g, so ker®
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will also be anideal in g, and the difference vector spage- ker® (*) will be a Lie
algebra in its own right. Similarly, the image ©fis always a Lie subalgebra gf(V),

since if®(a) and®(b) are elements d(g) then [O(a), ®(b)] must be the image o]
b].

If one has a representatin: G —» GL(V) of a Lie groupG then one can obtain a
representation®: g — gl(V) of the Lie algebrag in the Lie algebragl(V) by
differentiatingD ate. One way of doing that is to start with a cupyg) throughe 00 G
whose tangent vector atis a, mapy/(s) to a curveD(y(s)) in GL(V), which must also go
throughl O GL(V), and differentiate the image curvelah order to obtain the tangent
vector®(a) in TGL(V) Ogl(V).

When one thinks of the representatiorGoh GL(V) as a linear action & onV, one
will find that the differential of that representatianll associate elements [ g with
vector fields & on V that one callsfundamental vector fields. In particular, the
fundamental vector fields ovi will define a Lie subalgebra of the Lie algel®&V) of

vector fields orV.

Basically, one starts with, generates a one-parameter subgroupsexplets it act
upon a vectorv [0 V to produce a differentiable curvgs) = exp&av in V and
differentiates that curve at(i.e.,s=0):

aw) :dis‘ exp(sa). (3.6)

If (<, ..., X") is a coordinate system fat so {3y, ..., 95} is the natural frame field
that it defines then any vector field ¥rcan be represented in the form:

X(v) = X' (V) 6 (3.7)

for a unique set of smooth functio)(‘sﬁv), and that includes the fundamental vector fields
for a group action oN. All that one needs to do is to choose a basis.{., &} for g and

map those basis elements to corresponding fundaimesttor fields £, ..., &} onV,

and all of the other fundamental vector fields\bwill have constant components with
respect to that basis.

One example of a representation of a Lie algeprauibdamental vector fields for the
action of its Lie group on a vector spa¢ds the representation of the Lie algebra of
infinitesimal translations o¥ by vector fields of the form:

&) =¢£'a;, (3.8)

(™) l.e., the vector space of all translates ofRein g; its vectors are then equivalence classes of vectors
in g that differ by an element of kéd. The algebraic operations on the equivalence clamseshe
projections of the operations on the elements wider the projectiog —» g — ker®.
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in which the components' are constants.
Another example is the representation of the infanit@l rotations ofso(3) by

fundamental vector fields dR® that one gets by starting with an infinitesimal rotatio

0 s0(3), which we regard as consisting of real, anti-symmeB8%3 matrices,
exponentiating it to a one-parameter subgr&g) = exp6a), letting the matrices act
upon the points dR*:

X'(9) = Ri(9 X,
and differentiating those curvés(s) ats= 0:

&) :dis‘ R (%= ax. (3.9)

In particular, if one uses the basis fa(3) that is defined by thg in (3.3) then the
corresponding fundamental vector fields will be:

[(x) =[], X0 =& x' ai; (3.10)
le.:

- 0 0 ~ 0 0 ~ 0 0
l.(X,y,2) =—z—+vy—, |I.(X,y,2)=z2——x—, I|,(X,y,2) =—y—+ X—, 3.11
(X, y,2) oy Y5, (%, Y,2) = 33 (X, Y,2) Yo oy (3.11)

respectively.

d. Weights of representations of Lie algebrasAs mentioned above, for non-
compact Lie groups, such as the Lorentz grouBlg2; C), it becomes more convenient

to deal with the representations of their Lie atgsb instead of the Lie groups
themselves. Fortunately, for the most purpos@hysics — in particular, variational field
theory— it is really the representations of the Lie algetbrat are most useful. Of course,
if one has a representatidh : G - GL(V) of a Lie groupG then one can get a
representation of its Lie algebix g — gl(V) by differentiatingD at the identity. The
opposite process is harder to define, since mane dime Lie group can have the same Lie
algebra.

The infinitesimal analogue of a maximal torus i€artan subalgebranamely, a
maximal, Abelian subalgebifall g. In fact, if a Lie group has a maximal torus thiea
tangent space to it at the identity will define ar@n subalgebra. The dimension of a
Cartan subalgebra is called tlaek of the Lie algebra.

Once again, when one wishes to enumerate theugitdd representations of a Lie
algebra® : g - gl(V), it is sufficient to enumerate the irreducibl@nesentations of any

of its Cartan subalgebrgs If one restrict® to® : h - gl(V), then since the elemerds
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0 h all commute with each other, so will their represemestid(a) in gl(V); therefore,
the matricesD(a) will be simultaneously diagonalizable, and the diag@t@inents will
be the weights of the representation, namely, tigensalues of the matri©(a).

Similarly, the vector spacé will decompose into a direct sum of weight spaces.
In the case of Lie algebras, one finds that the eggov equation:

D@ Vv=A>@V (3.12)

makesi(a) into a linear functional on a Cartan subalgdfrdaience, one can think of the
weights of a representation as something that belotigetdual spach .

If we return to the case &U(2) then we will find that since its maximal torii weak
circles, the Cartan subalgebrassa{2) will all be lines through the origin. Since the

elements ofu(2) are anti-Hermitian 2 complex matrices, it is common to use a basis
for su(2) that amounts to the Pauli matriegdimes= i ; we shall use-i :

r=-ia. (3.13)

One can think of this process as a higher-dimensionab@malof the process of taking a
real angled and multiplying it byi to produce an element of the Lie algebradJ¢t),
which will be the imaginary line.

Whereas the elements of a maximal toruSliki2) took the form of diag{’, 9, by
differentiation, its corresponding Cartan subalgdpreould take the form diag, — 14,

although sincey is a one-dimensional linear subspacegyobne could just as well use
diagfi, —i] =i ;s = - 15.

Any of the three matrices can be used as the basis (i.e., the genenafor a Cartan
subalgebra, and we chodséo bers. We can then define:

e=ntin, (3.14)

which will give the commutation relations:
[h,e]=z%e, [e.,e]=h. (3.15)

The element®. can be regarded as “raising” and “lowering” operatorsegard to
the weights of a given representation su(2) - gl(V), since ifv J V is an eigenvector

of ®(h) of weight a then ©(e.)v will be eigenvectors of©(h) of weightsa + 1,
respectively. Hence®9(e.) will raise or lower the weight of the represematofh in
gl(V) by one unit.

Tensor products of representations of Lie algebrasdafieed analogously to the
tensor products of Lie groups, and can also be obtainedféredtiating the latter.
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Now that we have introduced fundamental vector fieldshe action of a grou@® on
a differentiable manifoldM, which defines a Lie algebra homomorphigm. X(M), one
can take advantage of the fact that tangent vectok$ are usually represented as linear,
first-order differential operators on the infinite-dinsonal vector spac€”(M) of
smooth functions oM, namely, as directional derivative operators. Birlyi, tangent
vector fields can also be regarded as such:

Xf=X gfl . (3.16)

Hence, one also regard this as a represent@iog - gl(C”) in the (infinite-
dimensional) Lie algebra of linear transformationsG{M). For the purposes of
guantum mechanics, one usually has the functions takevtiees inC, so one can think

of the eigenvalues of the vector fiek] when regarded as a differential operator, as
relating to the weights of that representation, astlevhen one restrict® to a Cartan

subalgebra of.

This type of representation is most commonly useterrépresentation of linear and
angular momentum as Hermitian operators on wave fumgtiwhich is part of the
process of “canonical quantization.” For instance, theal momentum covectqr

whose components anmg , which belongs to the Abelian Lie algebRs, will be

represented by the triple of linear, first-order diff¢i@roperators:
h o
P = 3.17
o (3.17)
which also commute:
[Pi , Pj] =0. (318)

The differential operator$’ are 7/i times the fundamental vector fields that are
associated with a basis for the Lie algekra

The eigenfunctiong of these operators are then solutions of:

h oy _
P w=""* =p y, 3.19
Y=T57 TP (3.19)
namely:
W= PHn (no sum over). (3.20)

Similarly, the components of an angular momentunector w whose components
are w , which then belongs to the Lie algely&3) O su(2), go to the differential

L| - (X )| - é’ljk X] ik ( . 1)
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which are#i/i times the fundamental vector fields associated withsis forso(3).

One then finds that:
[Li, Lj] = &k L. (3.22)

Due to the symmetries of the sphere, it is usuallyenemnvenient to represent the
components otvw by means of partial derivatives with respect to sphedoatdinates,
although we shall not go into that here, but referdimeous to any good book on the
quantum theory of angular momentunh [

We shall deal with the specifics of the representatiohthe Lorentz group in the
chapter on relativistic, spinning particles.
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APPENDIX D

THE MECHANICS OF POINTS AND RIGID BODIES

Although it must be presumed of the reader that theyfamiliar with the usual
topics in classical mechanics that are taught to advano@ergraduate and beginning
graduate students of physics, nonetheless, since the ptiesemahis book attempts to
use some of the modern methods of mathematical physick, as differential forms,
moving frames, and Lie groups, we shall include an appendixttigdit serve to apply
those most elementary notions to physics at an elameitevel. Hence, it is also
presently assumed that the basic terminology and mdtdwdof the previous three
Appendixes is reasonably familiar, as well.

Furthermore, since some of the basic notions fromgi@metry of jets and jet
manifolds will be employed occasionally, it is alseldful to see that the concept of a
“let” has a natural interpretation in terms of the knatical state of a moving body,
whether point-like, extended, but rigid, or extended andrdetble.

The topics in this appendix will be non-relativisticcimaracter, while the relativistic
forms of them will be discussed in more detail intdlevant places in the text.

There are two approaches to mechanics in general: &nstart with the motion of
point-like matter and then build up one’s model of the omtf extended matter by
treating it as an infinitude of points (e.g., a congruenceuoves) or one can treat
extended matter as the more realistic manifestatia@hragard point-like matter as a
simplifying approximation that allows one to use finite-dmsienal mathematical
methods, instead of infinite-dimensional ones. [risbably best to not choose up sides
at a time like that, but to regard either extended,isoots matter or point-like matter as
an approximation to the other, since — for example — éveratomic ions of a crystal
lattice or the molecules of a gas will still resoliee more complex subsystems upon
closer inspection, so treating them as lattice poinfgott masses in space is clearly an
approximation in its own right. Hence, in this appendix, skall discuss point-like
matter and its next-most elementary extension tad rigodies, while discussing
continuous matter in the main body of the text.

1. Point mechanics= In this section, we shall first discuss the kinensadica point
that moves in space, and then the dynamics of a massinethat is subject to the action
of forces.

a. The kinematics of moving pointsif a point is assumed to move in a sphte
which will be ann-dimensional differentiable manifold that is usuallyere¢d to as the
configuration manifold then its motion will best be modeled by a “sufficigntl
differentiable” curvex : [to, t1] — M, t > x(t). Here, “sufficiently-differentiable” means
thatx(t) is as many times continuously-differentiable asdguired by the demands of the
problem at hand, which we shall c&lf generically. If one does not wish to deal with
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analytical details, such as the fact that differeimigga C* function will generally produce
a C** function, which will belong a larger space of funciothat include theC*
functions as a proper subspace, then one can demaradl fin@ictions should be smooth;
I.e., continuous derivatives will exist for eveey

The first derivative ok (t) with respect td for each value dfis called thevelocityof
the curve ak (t):

v(t) = dt (4.1)

When then tangent vecta(t) is not zero, it will generate a ling(f)] in the tangent
spaceTyyM that is, in fact, the tangent line to the curve at goint. Wherv(t) = 0, one
thinks of the poink(t) as dixed pointof the curve.

If one changes the parameterization of the cuft)eby a diffeomorphism onto of the

time interval fo, i] - R, t — t then, from the chain rule, the new velocity of theve
will be:

V()= N =

at. v(E(t)). (4.2)

dt

Hence, the reparameterized curve will consist efdgame points with the same tangent
lines, but the magnitudes of the velocity vectoses ,(speeds) will have been rescaled by
the non-zero factodt/dt. That means that fixed points will remain fixedhd non-
fixed points will remain non-fixed.

One of the subtleties that physics had to confweih the emergence of general
relativity was the fact that unless one has somg @facomparing tangent vectors at
finitely-separated points, such as a unique watyafslating them from one point to the
other, the actual definition of the acceleratiom@f curve in a differentiable manifold

is more debatable than its definition when the eus/inRR". Of course, one should

remember that wher(t) and x(t + At) are finitely-separated points &, one cannot
actually defineAx(t) = x(t + At) — x(t) without some sort of translation, either, so idey
to define acceleration, one might imitate what ditkin order to define velocity; viz.,
look at the expression in a local coordinate chbaut a chosen point, and then define an
equivalence class of curves at that point.

Hence, letx(t) be the chosen point, whil&J(X) is aC* coordinate chart abou(t).

By composingx(t) with the coordinate functions, one will get a curvel () inR". The

derivative ofx' (t) with respect td will then be just an elementary exercise in caisul
and it will produce functions' (t) that represent the componentsvft) with respect to

the natural framed ,i =1, ...,n}on R":

V(1) = ‘Z—f. (4.3)
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As discussed in App. B, one then defines the abstractriamgetorv (t) atx (t) to be the
equivalence class of all differentiable curves throxgt) that have the same values for
V (t) in some (and therefore all) coordinate charts akd@i)t
One can repeat that process and define the compaiéttsf the second derivative
of X' (t) with respect to time:
a'(t) = v _ d .
dt  dt?

(4.4)

One can then define the abstract acceleration veffpto be something in the second
tangent spacé@,TxyM that represents the equivalence class of all cwr{tgghrough
v(t) that have the same derivatives in some (and theraffrcoordinate chart aboxit),
or better yet, the equivalence class of all cur(®sthrough the poink(t) that have the
same first and second derivatives, since one then doéswveto clarify what one means
by the curver(t) in the tangent spadgqmM.

If one puts the information about the curve together at¢+1)-tuple of real

numbers{( X(t), V (t),a (t)) then one will see that it can serve as a good definif the
kinematical state of the motion that is defined by ¢heve at timet, at least, up to
second-order. It also coincides with the definitiothef2-jet j’x of that curve at timg,
namely, the equivalence class of @l curves througlx(t) that have the same values for
X(t), V (t), anda (t) attin some (and therefore any) coordinate system atftjut

In fact, what we have really defined is a sectiothefprojectior) 4R, M) — R, j2x

1, in which we have defined?(R, M) to be the set of all 2-jets &6f curves inM. It is

also a differentiable manifold of dimensiom 3 1, and a typical set of coordinate
functions looks liket( X, v, @ ). That projection is called the@urce projectionwhile
the projection ontoM that takes j’x to x is called thetarget projection and the

projection ontal =R x M that takesj’x to (t, X) is called thecontact projection.
Furthermore, when one has:

d?x

dt?

\/j(t):?j—):, a ()=

(4.5)

for all t, one calls the sectig: R — J 4R, M), t — (t, X(t), V (t), & (t)) integrable. If
one introduces the concept of thget prolongationof the curvex(t), namely:

P 2% (1) = & X(), X(1),%(1), (4.6)

in which the dot means differentiation with respecttitdhen one can say that the
condition for integrability of a section is that:

s=j . (4.7)
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b. The dynamics of moving poinits.order to explain the motion of a point that one
observes kinematically, one must first attribute soimgsigal properties to the point and
the space that it inhabits that will allow one to aggeca dynamical state with the
kinematical state. At the infinitesimal level, thedationship is simply the one that exists
between the elements of the dialto a vector spac¥ and the vectors of the latter
space.

The main physical property that one attributes to thetptself is its masan(t),
which is a positive real function of time that is suppbeaccount for its inertia (which
is never defined rigorously), as well as its attractmother masses in the rest of space.
One can then rescale the velocity veatdny the mass to get thi@ear momentum vector
field along the curve(t) in spaceM that is followed by the point:

p(t) =m(t) v(D), (4.8)

and when one expresses this in terms of the compoogtiie vector fields with respect
to some local frame field, one will get:

P (®) =m(t) v'(). (4.9)

Actually, there are times when one might wish toegalize the transformation that is
associated withm(t) from a dilatation to a shear, such as when the rbasaves
differently in different directions. An example dfig is in the Abraham-Lorentz-
Poincaré model of the electron, which had a “trangvergmss” in addition to the
“longitudinal” one, so one might replace the scafawith a symmetric mass matrix
whose eigenvalues would then represent the mass in thepptidaiections. However,
we shall refrain from introducing that extra degree ofegelity here, although the
concept of “transverse momentum” will factor crucially our study of the Dirac
electron.

In order to make a dual object out of linear momentume, can either use the spatial
metricg to convert the vector field to a linear momentum 1-form:

pP=ipg (P =gi p)) (4.10)
or convert the velocity vector fieldto thecovelocity 1-form:

v=ivg Vi =gj V') (4.11)
and multiply bym(t).
Under the canonical bilinear pairing of linear functionaih vectors that represents
the evaluation of a linear functional on a vectoe wiill get:

p(v) =mv(v) =mV, (4.12)

which is twice thekinetic energyf the moving mass.

One can also define a force 1-forAft) along the curvex(t), which can either
represent forces that that are applied to the magsatotig its path, such as impacts and
friction, or forces that will be applied no matteres the path goes, such as gravitation
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and electromagnetism. One finds that the concept o¢ fisrdual to that of infinitesimal
displacementx, which will be regarded as a vector field alodg, in that the evaluation
of a force one-fornF on an infinitesimal — owirtual — displacemen®x will give the
virtual work that is performed bl over that displacement:

IN=F(X) =F X. (4.13)

When one integrates the 1-forfhalong a curve segmemt) for t [ty t1], the
resulting number:

x(1)

Wxel = [ F=[ F®dx= J;lFi(t)vi(t) dt (4.14)

will be called thework that is done by F along that curve segmerhe scalaF(v) = F
V' that appears in the integral representstheerthat is being added to or dissipated by
the mass in its motion as a result of its intecactvith the environment.

When the force 1-forrk is defined over a region ™ that includes the trace ft),
one can imagine how the work done along a curvemeag will change when one
deforms the curve segment itself. In particulare @an look at curve segments that
connect the same two poinkfd) andx(1). When two curve segmentft) and X(t)

connect the same two points, one can concate@teith the time-reverse ok(t) and

obtain a closed loop that is based upon the initoaht x(0). If the integral o around
the loop vanishes then its value along the timens ofX(t) will be minus the value of

the integral along(t); hence, it will be the same on both curves whee goes forward
for both. As a result, if that were true for amywes that connec(0) with x(1) then one
could unambiguously associate a numbéx(1)) with x(1) that equals the work that is
done byF along any curve that connec{®) to x(1). Clearly,U(x(0)) = 0. One finds
that the work done around any loop M vanishes iffF = — dU for some potential
functionU that is defined wherE is defined. The functiobl is then defined only up to a
constant that amounts to choosing the valub@j to be zero at some specified point.
Such a force is then callednservative.

A weaker condition is to demand that the work dopé& along any two homotopic
(*) curves must be the same, which is equivalenaying thatF is closedd:F = 0. IfM
is simply-connected then the two conditions areivadent, but wherM is multiply-
connected, it is possible for there to be closegpdothat are not homotopic to a single
path between two points, because there might bkeo&™ that gets in the way. For
instance, the plane minus a point has that property

If the kinematical state of a moving point is dédsed by a first-order jet secti®t) =
(t, x(t), v(t)) then thedynamical states described by a 1-form on that section:

@=F d){ + d\) (4.15)

() That is, there exists a continuous, one-parameter segu curve segments that starts with one
curve segment and ends with the other.
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Since the component functions are functionsJ4i, M), their functional dependency
can subsume the definition of mechanical constitutive:law

Fi=Fi (t, X, V), pi=pi(t X, V). (4.16)

Note that althougki can be defined globally on space-timex{), such as gravitation
or electromagnetic forces, it might also be defined daypoints on the curve(t), and
any V, such as viscous drag. Similarly, linear momentum pscéyly defined to be
independent ok, but dependent upon, and possiblyt, when the mass varies in time.
That is, the functional form d¥; can be as it is in (4.16) &% (t, V), while typically, p
must have the form; (t, V), such asn(t) V. (Of course, this is only true for point matter,
in general.)

The evaluation ofpon a virtual displacement of the kinematical state:

0 i 0
B = OX (1) — + OV (1) — 4.17
X ()= +0V ()= (4.17)
will give the function ot: _ _
P(®)=F & +p &, (4.18)

which is the totavirtual work that is done by the forces and the kinetic sourcasrasult
of the virtual displacement.

In order to get to the equations of motion that ase@ated with a choice df one
can either postulate the balance of linear momentum:

F=—", (4.19)

which is essentially Newton’s second law, or firstkaat what happens to (4.18) when
one assumes that the virtual displacendsns integrable;i.e.:

. .0 d(OX) o
B =jY(K) = OX () — +——~—, 4.20
() X()ax' i 9V (4.20)
namely, one will get:
i, d i
p®)=Fi—-p)X + a(pié'x'), (4.21)

after an application of the product rule for diffatiation. We shall think of the vector
field j*(JX) as thefirst prolongationof the vector field:

X (1) = 5x‘(t)%. (4.22)

One sees that one can get back to (4.19) by asguhat:
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P(® =0 (modt/dt) (4.23)

for all integrableds, by which, we mean thap(Jds) differs from O by a time derivative.
This assumption is best explained in the language ofdlbalas of variations, which will

be discussed in its own chapter. For now, we shall sjytbat it is essentially another
form of d’Alembert’s principle.

2. The theory of moments — Let us first clarify that the moments that we shall be
discussing refer to things that usually take the forraro$s products of a “radius vector
field” with the vectors of translational mechanics g(ge. velocity, acceleration,
momentum, force), not to the moments of a distribytsuch as the total mass, center-of-
mass, moment of inertia, etc., which will be discdssethe context of extended matter.

a. Kinematical moments- When one has chosen a pdnin an affine spacd” (n =
2, 3), one can speak of theomeniwf a kinematical state, (x, v, a), which will be ¢, r, r
Av, r Ma), in whichr = x — O is the displacement vector that takes the orgito the
pointx. The bivector:

1
=5 TV (5.1)

is called theorbital angular velocity while the bivector:

1
- N
a—Fr a (5.2)
is theorbital angular acceleration
As long as one has a scalar productdr R", one can always associate a bivector

or 2-form with a unique element of the Lie algebra fhextains to the choice of scalar
product. The association is easiest to explain in tefm@@mponent matrices, since if

{e,i =1, ...,n}is any basis foiR" then one can express a bivedbasiB' ¢ " g .

Since the component matrB! is anti-symmetric, the matrig; ! = gi BY will always
belong to the Lie algebra of infinitesimal orthogotmahsformations for the chosen scalar
product. For the Euclidian plane, that Lie algebra bélko(2), for Euclidian space, it

will be s0(3), and for Minkowski space, it will b&(3, 1).
Hence,wanda can be associated with the matrices:

|

i1 i i i
w}=7(x;\/—xw), a; =5 (ga-x a), (5.3)

N

r
respectively.

A basic property ofo; is that:

| S o :
@)X :F(rZVI_XIVjXJ):(V_W, F>f) =) ; (5.4)
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that is, it gives the components of the projection of the direction perpendicular to
(We have defined to be the unit vector that points in the directiém.p
Another is that:
ij_l_ji_iv2_V2 f e e ani_ VT
@V _F(va V' —X )_T (r,v>v-r)= T(rD) . (5.5)
that is, it gives the projection of the centripetal edeation in the direction that is
perpendicular te.

In the case of circular motion, for which = <v, F> = <f,v> = 0, m‘jxi will

reproduce the tangential velocity, whth;}ivi will reproduce the centripetal acceleration.
From (5.4), one can reconstruct the velocity veetipom:

V=<V, I >F +vg=V  + @r W =<v, T >), (5.6)

or, in components:

v‘:%xwm;xi:(%a,: +w‘jjxj. (5.7)

Statements that are analogous to the foregoing onesecarade for the matrixr} :
except that velocity gets replaced with acceleratibmat is:

aix = (), a=af+ave (a=<af>) (5.8)

b. Dynamical moments: When one takes the moment of linear momenpumne
will get theorbital angular momentum:

L=rxp. (5.9)

In fact, in a lot of older literature, this is refedrto as the “moment of momentum.”
The moment of the force is referred to as theerque by physicists and the “(force)
moment” by mechanical engineers:
T=r xF, (5.10)

If one takes the moments of both sides of Newtoe®sd law, when it is expressed
in the formF =dp / dt, then one will get:

rxF=r x%: i(rxp)—%xp,

dt dt

and as long as the linear momentum has the conventiomavéctive” form p =mdr /
dt), one can put this into the form:

dL
r=—:. 5.11
o (5.11)
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Therefore, Newton'’s second law for the balancansfar momentum is equivalent to
a corresponding law for the balance of orbital angmlamentum. Similarly, the law of
conservation of linear momentum will become the lawariservation of orbital angular
momentum. That is, in the absences of external &srqating upon the mass, its orbital
angular momentum (about some reference g@jnwill remain constant in time.

3. Rotation of a rigid-body about a fixed point in space. Although the full non-
relativistic theory of the motion of rigid bodies irlves the group of rigid motions,
nonetheless, the only groups that will get representékirield spaces of the quantum
wave functions that are considered in this book Wl the groups of rotations and
Lorentz transformations. Hence, we shall discusstrerelativistic motions of a rigid
body in space in which only the rotations play a roleictv would be when a point of the
rigid body is fixed in space.

a. The rigidity constraint— A rigid body is one step up from point-like matterha t
sense that it represents an orthonormal frame at gaich of a curve irE". It also
represents an approximation to extended matter in whichregerds the amount of
deformation that the material object experiences duriegmotion as negligible in
comparison to the rigid motions of its points. Thateguivalent to saying that the
distance between any two points of the object stayss#ime during its motion, so one
will be dealing with isometries. As a result of tapproximation, any orthonormal frame
that is attached to any point of the body will movetle same way as any other
orthonormal frame, and the only ambiguity in the defmtiof a rigid body as an
orthonormal frames (t) along a curvex (t) will be in the choice of some representative
point whose motion will be described kyt) and the choice of a representative frame at
eacht that will serve to describe the angular attitude efltbdy. Typically, one reduces
a rigid body to an orthonormal frame at its centemass and chooses that frame either
arbitrarily or by using the principal frame of the momerftimertia of the mass
distribution about an axis through that center of mass.

We shall now describe the kinematical state of a figidy in terms of both a moving
frame along a curve and a curve in the rotation group.

b. Kinematics of rotations about a fixed point in spaeelf the rigid body is
associated with an oriented, orthonormal 3-fraeng0) at some poinO in three-
dimensional Euclidian space then any other orientedppnarmal 3-frames at O can be
associated with a unique proper rotatiors{(3). In particular, if the rigid body is in a
state of continuous motion, so that at each tineme has an oriented, orthonormal frame

e (t) atO, then there will be a unique matrRé (v in SQ(3) that is defined by:

a(t) =g (0) R'(1). (6.1)

Hence, the motion of the rigid body that is described [ty can just as well be described
by the continuous curv& (t) in SO(3).



478 Appendix D — The mechanics of points and rigid bodies

Once again, when the kinematical state of the mosoreferred to a fixed frame,
such asg (0), it will be referred to asertial, while it will be co-movingwhen it is
referred to the moving franme(t).

If one assumes successive levels of differentialditythe curveR} (t) then one can

define inertial and co-moving angular velocities and @&tesibns by successive
differentiation of (6.1) with respect taand expressing the resulting kinematical object in
terms of either (0) ore (t), resp. The first two differentiations give:

e =g(0)R, 8 =g(0)R, (6.2)

so one can think of the second-order kinematical stateeahotion as being described in
an inertial frame by eithet, (& (t), & (t), &(t)) or ¢, R'(t), R'(t), R'(t)). The former

is an integrable section of the source projecfidfR, SO(R?) - R, (t, &, e, e) -t
while the latter is an integrable section of the soprcgectiond ? (R, SO(3)) - R, (t,

R, R, R') 1t Here, we are usin§O (R’ as the notation for the manifold of

oriented, orthonormal frame in three-dimensional Etlattigpace.
In order to see what the second-order kinematicad stawith respect to the moving
frameeg (t), one needs to first substitute:

e (0) =g () R'(), (6.3)
in which the tilde refers to the matrix inverse, in tingt of (6.2) to get:
'el =g a)|j , (64)

in which we have defined thengular velocityof the moving frame (t) with respect to
the inertial frames (0) to be:

@ (t) =R K or w=R'R (6.5)

If one differentiates the basic relationsRp(t) R(t) = | then one will find the useful
corollary to the definition that one also has:

w=- R'R. (6.6)

Furthermore, sincew is an element of the Lie algebsa(3), and therefore the

infinitesimal generator of a one-parameter subgroup efib groupSQ3) that agrees
with R(t) at timet, — wwill be the infinitesimal generator of a one-parametgogroup
that agrees witR™(t) at timet. Hence, one will also have:

w= RR'=- RR™. (6.7)
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In particular, bothR™R and RR™* will yield the same angular velocity matrix.

Since we have already defined one kind of angular vglbgitway of the moment of
velocity about a reference poi@, we should clarify how the current definition would
relate to the previous one. Basically, all that bae to do to make an angular velocity
matrix from an orbital angular velocity that is defined dyposition vector and a
velocity vectorv is to note that the unit vectors and vV, define an instantaneous

oriented, orthonormal 2-framef{ V_} in the instantaneous plane of motion, which is

spanned by andv at timet, unless they are collinear. Hence, one can compihet 2-
frame {f, V,} at O to an oriented, orthonormal 3-framé& { V_, n} by setting the

normalunit vectom equal to:

PN 1.
N=r XVv,=—IXv=—w=—u, (6.8)
VD

Laps—
Vg @
which is then collinear withw One might refer to the 3-framer { V_, n} as the

tracking framefor the motion of the point that is describedrbf). Let us introduce the
notation § (t), i = 1, 2, 3} for that frame, with the members idéati in the same
sequence.

Hence, if one chooses the inertial frame to beotiented orthonormal 3-franfe(0)
that the tracking frame defines at titne O then one can regard any of the time-evolutes
fi (t) of the initial frame as spatial rotations of thetial one, so there will be a

corresponding rotation matriR’ (t) at everyt such that:

fi (® =f,(0) RI(1). (6.9)

That rotation matrix will then allow one to defiae angular velocity in the sense that we
are currently discussing.

If one wishes to go in the opposite directione-, ito start with the angular velocity of
a moving frame with respect to an inertial one dafine an velocity moment — then one
sees that unless one can also specify the timeitevolof anr(t) and its derivatives, one
can typically only define the motion of a point arsphere of some chosen, but arbitrary,
constant radius, . That is, the angular velocity matrix will pragionly the tangential
component of a velocity when it is applied to aipms vectorr that points in the
direction off; (t).

If one substitutes (6.3) in the second of (6.2ntbne will get:
& =ga/, (6.10)

in which we have introduced tlangular acceleratiorof the moving frame with respect
to the inertial frame:

a'=RIK (6.11)
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If one starts from the definition @bin (6.5) and differentiates with respectttthen
after some straightforward algebra, one can alsohsdy

a=w + ww. (6.12)

Thus, one once again has thet w, in general.
Hence, the basic second-order kinematical state afiglicbody that rotates about a

fixed point in space can be defined by a sectidt) of the source projectiod ? (R,

SA3)) - R, in the form {, I, w(t), a(t)) when one refers it to the moving frame.

However, one sees from (6.12) that the relationship ltwieand a is not a simple
differentiation with respect to time, so the sectisnno longer integrable. Thus,
rotational kinematics gives a very tangible examplevbét the non-integrability of a
section of the aforementioned source projection caityimp

For the purposes of dynamics, it will be sufficient fos to consider first-order

kinematical states, which will then take the fasnRR - J*(R, SQ3)),t > s(t), with:

s®=@¢R®, RY) or €I, w®), (6.13)

depending upon whether one describes in the inertial frane anoving one, resp.
A virtual displacement of the kinematical stafg) will be a vector fieldds (t) on the

image ofs (t) in JY(R, SQ3)). Hence, in terms of the natural frame for allec@rdinate

chart ¢, R, p}) onJ*(R, SQ3)), one will have):

&(t) = cSR}(t)%mFg(1)6%:o*l;(t)lij + 3 )17 (6.14)

In order to define the new frame field{, 7/} and the componentsl|(t), daj (t)
with respect to it, we start by varying the deforit of w

ow=O0(R'R =0R'R+ RO F=- R'9RR*'R+ RJ |,
which becomes:
ow=- R*ORw+ R'J F. (6.15)
With the definition:
d=R'R (6.16)
(6.14) will become:
&(t) = (ROR I/ +(ROR RJ R), ()7,

() We shall not consider the variations of the kinegahtistate that are associated with a
reparameterization of the time line.
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and after reorganizing this in termsdX and R, one will get:
&() = (R'OR) 1/ - R'6 Ro) (I +( RS Ry ,

and upon temporarily reverting to the use of the intanthtes, one can put this into the
form:

&) =0R[(1/ -« ) RI+IR(7 B).
Upon comparing this with the inertial expressiondgrwe can make the identifications:

9

L=~ R, Z=nR. (6.17)

0p;

This can be solved for’ andn, directly:

. 9 9 ) . .
|ijz{ﬁ+a¥’ﬁj&" n=—R. (6.18)
]

An essential relationship betwedw anddl can be derived by first differentiatirdiR
= R d with respect to time and then varyifi= R and then equating the result:

d

aJR: RA +RJl, OR= R w+R

namely:
ow= Al + [aw d]. (6.19)

b. Dynamics- Dynamics is dual to kinematics (at least, infinitediyhdoy way of
the bilinear pairing that evaluates a force 1-form onrtal displacement to produce a
an increment of virtual work. That duality can also kpressed in terms of the duality
between elements of a Lie algelgrand its dual vector spage In the present casg,s

s0(3), sog is s0(3). When elements of both vector spaces are represéyteeal,

antisymmetric 83 matrices, one can express that bilinear pairing by mefathe drace
of the product of the matrices. That is, if the mafrrepresents an elements{3) and

B represents an elements{3) then the evaluation & onB will be:

AB)=TrAB= AR. (6.20)
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If one represents the elementssof3) and its dual as three-component vectof&%in

(given the vector product) and its di&l then the evaluation of an element] so(3)"

on an elemen [ so(3) is simply:
(6.21)

ab)y=a'b .
Now, there are two basic kinematical elements toesddrthe infinitesimal rotation
IR ordf = R IR and the angular velocitR or & = R R, in which the first
expression relates to the inertial frame, while #@sd one relates to the moving frame.
The corresponding dual objects under the bilinear pairingrafal work are the torque

and angular momentum, respectively.
In inertial form, the fundamental 1-form for rotat@dmynamics takes the form:

Q= Tide' + |_|J_ dﬂ} ) (6.22)
When this 1-form is evaluated on a virtual displaceméttiekinematical state:
&=0rR L sap o (6.23)
R P,
that will produce:
(6.24)

W= @(®) =1/0R +1 &0,
and if the virtual displacement is integrable [iq = d(JR})/ dt] then one will have:

aW=1/0R + 1 S (3R)= () -S2) 0R +S(USR). (6.25)

If the variationé'R} vanishes at the endpoint of a curve segment tieemanishing of the
virtual work for all allowable virtual displacementvill imply the equations of motion:

. ]
=9 (6.26)
dt
This is the inertial form of Newton’s second law fotational motion; i.e., the balance of
angular momentum.
In order to get the non-inertial form, one stavith the fundamental 1-form in the

form:
(6.27)

p=T'I; +1 1],

in which the coframe field K}, 77;} is reciprocal to the frame fiell’, 7} and uses a

virtual displacement in the form :
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&=0ljl] +dd (6.28)
in order to give:
W=T'0l| +L} ) . (6.29)

If the virtual displacement is integrable, in the setimt it obeys (6.19):

o, = D(JI})=%5I} +Hawal], (6.30)

then
W= T7'al\ +1) O(al})

_ i | 9o i
—Ti5|j+|-i [dt((ﬂj)'*'[w,al]j}

= () +[Lal)) 3+ (1)

— (7l — —i_d_Eij Y
= (@ ~lw )~ 81} + (A1),

in which the antisymmetry ofJI} has been used, along with the product rule for

differentiation.
The equations of motion, namely, the balance guklm momentum, will take the
form:

[ o
ri= b= S eal, (6.31)
or, more concisely:
dL
=—+[awl], 6.32
o [ L] (6.32)

if we drop the overbars.
The corresponding conservation law will be thath@ absence of external moments,
angular momentum will satisfy:
0 :%+[m L] (6.33)

relative to the rotating frame.
If L =1 (a) with | constant in time then (6.32) will give Euler’s atjon in the form:

_ L dw
r= IEHM (). (6.34)

This equation shows that there are two ways bychvhi rotational motion odv can
come about:

1. Precession: This would result from an applieemmal torquer.
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2. Nutation: This would result from a deviation fromhspcality in the mass
distribution, which would maked) |1 («)] non-vanishing. [The spherical case would
makel (a) proportional tow]




APPENDIX E

MULTIPLICATION TABLES FOR THE CLIFFORD
ALGEBRA OF MINKOWSKI SPACE

The basis folC (4, n) that will be used to define the multiplication tabfes that

Clifford algebra (i.e., the structure constamts., bi., ci.) will be the one that was
defined in IX.2a:

Eo =1,

En1=¢y, w=0,..,3),

Evvi =0a(i=1,23), = ee, b=age,Ei=e6,
Ein =ee &, En=&6 e, Ez=&& 63, Eu=€16 €3,
Eis =epe16 63.

A matrix entry equals the row in which it appears titiescolumn. For brevity, the
basis element £will be referred to simply by the value Af The appearance of a + sign
implies that the element is the same as its matnspose, while a — sign implies that it
is the negative of that element.

Table D.1 — Multiplication table faf (4, 7).

Ol1]| 2 3| 4 5 6 7 8 9] 1011 | 12| 13| 14| 15
0|01 2 3| 4 5 6 7| 8 9110 11| 12| 13| 14| 15
1|+|0 5 6| 7 2 3 4113 12| 11 8 9| 10| 15| 14
2|1+|-1-0 8| 9 1]-11| 12| -3 4| 14 6| -7|-15|-10| 13
3|+|-| -|-0]10] 11 1/-13| 2| 14| 4| -5|-15 7| 9|12
4 |+ |- - -1-0|-12| 13 1114 -2| 3| -15 5| 6| 8|11
51+|- - +| + 0| -8 9| -6 7| 15 3| -4|-14|-13| 10
6 |+|- + - + - O|-10| 5| 15| -7| -2]|-14 4| 12| -9
71+ - + +| - - - 0|15 -5| 6| -14 2 3|-11| 8
8|+ ]|+ - - + - - +(-0|-10| 9| -1|-13| 12| 4| -7
9|+ |+ - +| - - + -\ -] 0]-8|-13| -1|-11| 3| -6
10| + | + + - - + - - - -|-0| 12, -11| 1| -2|-5
11|+ |+ —-| +| + - + +| + - -| -0| 10|-13| -7| -4
12| + | + + - + + - +| - +| - - -0 8| 6| -3
13| + | + + +| - + + - - - + - -1 -0| -5|-2
14| + | - + + | + - - - + + | + - - - 0| -1
15| + | - - - - + + + | + + | + - - - -1 -0

Blank cells in the following tables contain O (not befosed with 0= E; = 1). Since
the symmetric product {.,.} and antisymmetric product [.,4déo be divided by two in
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the polarization of the algebra product, the table entrikde multiplied by two in those
respective cases (e.g., 11 refers tg,RE

Table D.2. — Symmetric product f6¢4, ;) (times 2).

0|1} 2| 3| 4] 5 6 7| 8 9 1011 | 12| 13| 14| 15
O|o0j1| 2| 3| 4 5 6 7| 8| 9|10 11|12| 13| 14| 15
1(+|0 1312 | 11 8| 9] 10
2 |+ -0 11| 12 14 -7|-15] -10
3|+ -0 11 -13 14 -5 7] -9
4 |+ -0|-12| 13 14 -15| 5 -8
S |+ +| + 0 15 -4 -14 10
6 |+ + + 0 15 -2 4 -9
70+ + |+ 0|15 -14| 2 8
8 |+ |+ + +|-0 -1 -4 | -7
9 |+ |+ + + -0 -1 -3| -6
10+ |+ + + -0 -1] -2|-5
11+ | + + | + + +| + -0
12+ |+ | + + + + + -0
13|+ |+ +| + + + + -0
14| + + + | + +| +| + 0
15| + + + +| +| +| + -0

Table D.3. — Antisymmetric product f¢f4, ;) (times 2).

0/12/23/4|5/6| 7| 8 9| 10 11| 12| 13| 14| 15

0
1 5/6| 72| 3 4 15| 14
2 - 8| 9|1 -3 4 6 13
3 -| - 10 1 2 -4 -15 12
4 - -] - 1 2| 3 -6 11
5 - - -8 9|-6 7 3 -13
6 - - - -10| 5 -7 -14 12
7 - -1 - - 5| 6 3|11
8 - - - - -10| 9 -13| 12
9 - -| - - - -8 | -13 -11
10 - - - - - - 12| -11
11 - - - - 10| -13| -7| 4
12 - - - - - 8| -6|-3
13 - - - - - - 5| -2
14 - - - - - - - -1
15 - -|-] - - - - -




