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INTRODUCTION 
 

 
 The focus of this book is a survey of the various attempts that were made since the 
emergence of wave mechanics to explain the otherwise-enigmatic nature of the quantum 
wave function by converting the quantum wave equation into a set of differential 
equations that look intriguingly similar to corresponding equations of continuum 
mechanics.  Historically, that has always been referred to as the “hydrodynamical” 
interpretation of wave mechanics, but the author is of the opinion that the actual character 
of a continuous medium (i.e., fluid, anisotropic fluid, elastic solid, plastic, etc.) is 
something that is rooted in the mechanical constitutive law that associates dynamical 
states with virtual displacements of kinematical ones, so it would be premature to settle 
on any particular state of matter at this stage of our knowledge.  Furthermore, when one 
is dealing with macroscopic matter, one finds that the constitutive character of the matter 
is generally explained by some sort of interaction model between its constituents, such as 
elastic collisions in gases or atomic bonds in crystal lattices.  Since the electric and 
magnetic field strengths in the vicinity of elementary charges are quite intense, it seems 
unlikely that one is actually dealing with something as loosely-coupled as a liquid or gas 
at the level of elementary matter.  Hence, the author prefers to speak of “continuum-
mechanical” models, instead of “hydrodynamical” ones, and leave open the problem of 
establishing the deeper nature of the constitutive laws. 
 
 
 1.  The roots of quantum physics. – In order to properly address modern quantum 
physics, one must first accept that its present state still represents a semi-empirical system 
of specialized models and algorithms that do not generally follow from some 
fundamental system of differential equations.  Indeed, most modern quantum physicists 
have long since given up dreaming of such a system, and now tend to dismiss the search 
for such a thing as merely a “classical” problem, while quantum physics simply starts 
with the largely-algorithmic nature of the theory behind the data and hopes that with 
enough progress in the advancement of experimental physics, perhaps some insight into a 
better foundation might eventually emerge. 
 That is why is it essential to accept that the roots of quantum physics (and perhaps all 
physics) are found in the experimental phenomena that implied the need to adapt the 
existing theories.  Hence, in its early days, progress in quantum physics was mostly a 
case of experiments leading theories.  Nowadays, one sees more examples in which a 
theory suggests the possible existence of some hitherto-unobserved phenomenon that 
experimentalists might (or might not) look for.  Sometimes, such as the case of the Higgs 
particle, the phenomenon is eventually observed, while in many other cases, such as 
magnetic monopoles, wormholes, and tachyons, experiments have yet to prove that they 
actually exist.  However, that does not always deter theoreticians, as one previously saw 
in the fact that the continuing lack of any experimental confirmation of the existence of 
gravitational waves did not discourage many physicists from simply accepting that the 
limits of experimental physics still fell short of the necessary requirements.  Fortunately, 
their faith was eventually vindicated. 
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 a. The breakdown of Maxwell’s theory. – Historically, one can make a case for 
saying that classical physics had to start adapting to the world of quantum phenomena 
because an increasing body of experiments was contradicting the wisdom of Maxwell’s 
theory of electromagnetism.  Of course, one might clarify that statement by saying that it 
was mostly contradicting the linear form of Maxwell’s equations by moving into a realm 
in which the electric and magnetic field strengths were large enough that perhaps 
linearity was becoming an untenable assumption.  That might be based in the quantum 
phenomenon of vacuum polarization, which we shall discuss in due course. 
 The earliest experimental contradictions to Maxwell’s theory mostly related to the 
discrete structure of bound-state spectra of electromagnetic waves.  For example, atomic 
spectroscopy was amassing an increasing volume of data regarding the spectra of 
electromagnetic waves that were emitted or absorbed by atoms, although the model for 
the atom itself had to evolve into something that would account for that fact. 
 A first definitive step was taken by Max Planck in 1900 [1] when he addressed the 
theory of black-body radiation.  The classical theory of Rayleigh and Jeans was 
predicting a curve for the intensity of radiation from a black-body versus frequency that 
agreed for low frequencies, but diverged for high temperatures (later referred to as an 
“ultraviolet catastrophe”), while Wien had posed a curve with the opposite properties 
(i.e., an “infrared catastrophe”).  The innovation that Planck introduced into the theory 
that corrected the theoretical curve was the assumption that the spectrum of 
electromagnetic waves in a black body was discrete, not continuous, and that the 
separation of the energy levels would be proportional to the separation of frequencies by 
way of a constant h that came to be known as Planck’s constant.  It is important to 
emphasize that the discreteness is due to the fact that one is again dealing with bound 
states. 
 
 b. Wave/particle duality. – Before one gets to the wave/particle duality of matter 
waves, one must first recall the wave/particle duality of light.  The wave theory of light 
goes back to Christiaan Huygens [2] in 1690, although he imagined that it would 
propagate in a more mechanical way that would be analogous to the propagation of sound 
in elastic media, such as compressible gases.  Sadly, his theory was immediately dwarfed 
by the popularity of Newton’s corpuscular theory of light and optics [3] in 1704, which 
was mostly based in the prominence of the one historical figure over the other in the eyes 
of the scientific mainstream.  Huygens’s wave theory of light did not re-emerge until the 
work of Thomas Young and Augustin Fresnel in the early Nineteenth Century.  To some 
extent, the difference between regarding light as a wave or localized point-particle 
amounts to the difference between wave optics and geometrical optics, respectively, and 
one must really regard geometrical optics as an approximation to wave optics. 
 However, two experimental phenomena that were pointing to a similar duality in the 
context of elementary matter were the photo-electric effect and Compton scattering.  The 
latter effect was first discovered experimentally by Heinrich Hertz in 1887 and expanded 
upon by Phillipp Lenard in 1902, and its theory was due to Albert Einstein in 1905 [4] 
(1), which was the main basis for his Nobel Prize in physics much later in 1921, while the 

                                                
 (1) He referred to 1905 as his annus mirabilis (miraculous year), since he also published his first paper 
on special relativity, his paper on the equivalence of mass and energy, and a fundamental paper on the 
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former effect was studied by Arthur Compton [5] in 1923.  Both effects related to the 
interaction of photons (a term that appeared some time later, and was coined by the 
chemist Gilbert N. Lewis) with atomic electrons.  In the photo-electric effect, the 
interaction of a photon with an atomic electron caused the ionization of the electron – i.e., 
its liberation from a bound state – while in the Compton effect, the collision was not 
sufficient to cause ionization, but simply resulted in a transfer of momentum from the 
photon to the electron, with a subsequent loss of momentum by the photon, which was 
observed as a decrease in its wave number that is called the Compton shift. 
 Somewhat later, the experimental work by Sir George Thomson at the University of 
Aberdeen on the diffraction of electrons by thin metal films, and Clinton Davisson and 
Lester Germer at Western Electric on the diffraction of electrons by crystal lattices, 
which led to Thomson and Davisson being conferred the 1937 Nobel Prize in physics, 
added to the growing suspicion that elementary matter had a wave-like character, in 
addition to its point-like nature. 
 
 c. The elementarity of matter. – The idea that macroscopic matter is reducible to 
some ultimate, irreducible, “atomic” building blocks goes back to ancient Greece and the 
philosophers Leucippus (5th Century BCE) and Democritus (c. 460 – c. 370 BCE).  
Interestingly, that theory was eventually contradicted by the more influential voice of 
Aristotle, who felt that nature abhorred a vacuum, because in those materialistic days, 
everything had to be made of matter, so the non-existence of matter in a vacuum was 
tantamount to the existence of non-existence, which seemed to imply a logical ouroboros, 
at least to his way of thinking.  He then concluded that atoms could not exist, because the 
space in between them would have to represent a vacuum, which was impossible to him.  
Sadly, that position became Holy Writ up until the Renaissance, along with Ptolemy’s 
picture of the solar system, and Euclid’s foundations for geometry.  It was only much 
later in the mid-Seventeenth Century when Evangelista Torricelli exhibited the existence 
of a vacuum in the space at the top of an inverted glass tube of mercury that was closed at 
that end (i.e., a barometer) that the process of returning to the atomic hypothesis could 
begin. 
 Mostly, it was the study of chemistry that first led up to the acceptance of the atomic 
hypothesis as a reasonable basis for the nature of chemical reactions.  A “periodic table” 
of the elements even emerged, which was due to Dmitri Ivanovich Mendele’ev in 1869, 
although an explanation for why it looked that way seemed quite puzzling.  Nonetheless, 
one already had the elementarity of atoms, while molecules were composite bound states 
of atoms. 
 The first step towards a reduction of atoms came from observations that some atoms 
emitted rays of various kinds.  For instance, the cathodes in vacuum tubes, which were 
heated by filaments and subjected to a negative electric potential (relative to the positive 
plate) emitted “cathode rays.”  Henri Becquerel did experiments with more energetic rays 
that were emitted by radioactive salts around 1896, which had much in common with 
cathode rays.  At the same time, Wilhelm Conrad Röntgen was doing experiments with 
rays that could make the bones of one’s hand visible when it was placed between a source 

                                                                                                                                            
theory of fluctuations in Brownian motion, and was subsequently awarded a Ph. D. in physics by the 
University of Zürich. 
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of Roentgen rays (or “X-rays”) and a phosphor screen (2).  An increasing number of 
elements were found to be “radioactive,” such as uranium and radium, which was 
discovered by the Curies in 1898.  The terminology of alpha, beta, and gamma rays 
emerged from that era. 
 Eventually, these rays were identified with elementary particles or composite states of 
them.  Cathode rays were basically low-energy electrons, while Becquerel rays were 
high-energy ones, and beta rays were electrons generically.  Alpha rays were composite 
states of two positively-charged protons and two neutral neutrons, which could also be 
regarded as a doubly-ionized helium atom.  X-rays and gamma rays were seen to be 
simply two different energy levels for photons.  Hence, the inventory of truly elementary 
particles was simply the electron, proton, neutron, and photon, although Wolfgang Pauli 
first proposed the existence of the neutrino theoretically in 1930. 
 As the experimental basis for the existence of elementary particles advanced, so did 
the models for the atoms themselves.  At first, the fact that atoms were known to contain 
an equal number of positive and negative charges led to a “raisin-cake” model that put 
both kinds of charges together into one volume, where they were held together by 
Coulomb attraction.  It was the experiments of Ernest Rutherford in 1909, along with 
Hans Geiger and Ernest Marsden, on the scattering of alpha particles by gold atoms that 
led to his 1911 revision of this picture into a positively-charged nucleus surrounded by 
electrons. 
 A second attempt at modeling the atom as a nucleus surrounded by electrons was 
made by Niels Bohr in 1913.  He reasoned by analogy with the orbits of planets about 
stars and came up with a “planetary” electron model.  However, since the centripetal 
acceleration of orbiting electrons would bring about the emission of electromagnetic 
waves according to Maxwell’s theory of electromagnetic radiation, with a concomitant 
loss of energy from the electron, one would expect that such electrons could produce only 
a continuous spectrum of emitted waves as they ran out of energy and crashed into the 
nucleus, like the degradation of a satellite orbit due to drag from the atmosphere.  That 
would be inconsistent with the experimental facts of quantum physics for two reasons: 
Atomic spectra are not generally continuous, but discrete, and there seems to be a non-
zero “ground state” for atomic electrons.  Bohr simply got around those facts by 
introducing the discreteness in the model as an otherwise-unexplained axiom, and 
nonetheless came up with a formula for the energy levels of atomic electrons that actually 
explained quite a bit of spectroscopy.  At any rate, one should note that the Bohr model 
pointed to a fundamental flaw in Maxwell’s theory of radiation, since apparently 
accelerated charges did not always emit electromagnetic waves, at least at the atomic 
level. 
 
 
 

                                                
 (2) In fact, Röntgen eventually lost several fingers from the malignant tumors that resulted from this 
now-ill-advised entertainment. 
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 2. The rise of wave mechanics. – It was Louis de Broglie who first suggested in his 
doctoral dissertation [6] in 1924 (1) that massive matter could behave like waves, and that 
the angular frequency ω of the wave that is associated with a mass m of kinetic energy E 
and linear momentum p would be equal to /E ℏ  (ℏ  = h / 2π), while the wave number k 
would be equal to /p ℏ .  That was consistent with the previously-established 
relationships that Einstein and Compton had obtained for photons. 
 By 1926, Erwin Schrödinger [7] attempted to build upon de Broglie’s concept of 
matter waves by devising a wave equation that would be obeyed by the wave function 
that would represent a matter wave.  His basic intent was to use a pseudo-Hamilton-
Jacobi approach to the equation that would make quantum wave mechanics relate to 
classical point mechanics in the same way that wave optics relates to geometrical optics.  
In fact, he himself admitted that there was a certain amount of trial and error associated 
with devising his equation, which now takes the form: 
 

i
t

∂Ψ
∂
ℏ  = −

2

2
U

m
∆Ψ + Ψℏ

,    (2.1) 

 
in which Ψ is the complex-valued wave function for the matter of total mass m, and U 
represents its potential energy in the presence of a conservative external force. 
 That brings us to the main topic of this book: the problem of the correct physical 
interpretation for the wave function Ψ(t, xi).  Typically, that mostly centers on the 
interpretation of the modulus-squared || Ψ ||2 = ΨΨ* of the wave function, which will then 
be a real function of space and time.  The one thing that all interpretations have in 
common is that they regard that real function as some sort of density. 
 Schrödinger himself originally thought in terms of charged particles, such as 
electrons, so he imagined that || Ψ ||2 would describe the electric charge density.  He 
eventually abandoned that idea, although it resurfaced some time later in the Pauli-
Weisskopf interpretation of the Klein-Gordon equation, which we shall mention shortly. 
 The interpretation that seemed to catch on the most definitively was the one that was 
proposed by the Copenhagen School of quantum theory, which included Bohr, Max 
Born, Werner Heisenberg, and others, at the Fifth Solvay Conference on physics in 1927, 
was the statistical interpretation, which regarded || Ψ ||2 as a probability density function.  
More specifically, it described the probability of finding a point-like mass m in a 
differential element of volume; i.e., its integral over a finite volume would give the 
probability of finding the point mass in that volume.  Schrödinger and de Broglie, as well 
as Einstein, were originally reluctant to accept that interpretation.  Einstein had famously 
said that “God does not throw dice,” to which Bohr retorted “Who are you to tell God 
what to do?” 

                                                
 (1) It is only a recurring urban legend that de Broglie’s thesis was a mere four pages long, which was 
probably the result of Nazi propaganda during the rise of that party in the 1930’s, which included various 
attempts to assert the supremacy of “Aryan” science.  Indeed, to this day, there is a small, but vocal clique 
of physicists who will insist that de Broglie did not deserve a Ph. D. in physics for that thesis, much less the 
Nobel Prize.  The author has never cleaved to that belief, since he has read, and even translated, enough of 
de Broglie’s work to know that he was one of the more radical and innovative thinkers of his era whose 
understanding of basic physics was beyond reproach. 



6 Introduction 

 In the same year that the Copenhagen School was establishing the statistical 
interpretation, Erwin Madelung [8] suggested an alternative interpretation that made n = || 
Ψ ||2 a number density for an extended mass, so mn would represent its mass density.  

Furthermore, by essentially introducing polar coordinates into the field space C, so Ψ 

would be expressed in the form R eiθ, with n = R2 and θ = /S ℏ , which means that S plays 
a role that is similar to Jacobi’s action function, one found that the complex Schrodinger 
equation (2.1) would give rise to a pair of real equations that took the form of a continuity 
equation for the mass density (or number density, for that matter) and another equation 
that looked like a Hamilton-Jacobi equation that included a potential energy term that 
seemed to embody all of the quantum content, and thus took on the name of “quantum 
potential.”  That paper became the seed from which the present work evolved eventually. 
 
 A closely-related problem to that of the interpretation of the wave function and wave 
equation is that of showing how quantum wave mechanics relates to classical mechanics.  
The correspondence principle of theoretical science, in general, says that any new theory 
must account for the successes of the previously-accepted theory, and ideally as 
something that remains as some fundamental parameter approaches a “classical limit.”  
For instance, relativistic physics must coincide with non-relativistic physics in the limit 
as c becomes infinite.  In the case of quantum mechanics, the classical limit is defined by 
letting h go to zero.  One also has Ehrenfest’s theorem that quantum mechanics should 
give classical mechanics when one takes the means of the quantum expressions while 
using the probability density function that is defined by || Ψ ||2. 
 A recurring theme in this book will be the fact that there is a subtlety that was 
overlooked by the early founders of quantum mechanics that since the support of the 
wave function Ψ is not generally a single world line in space-time, but a world-tube, 
there is something hasty about calling point mechanics (i.e., a single world-line) the 
classical limit when it would be more methodical to first look at the continuum-
mechanical picture that is defined by the world-tube.  In effect, one first ignores the phase 
structure on the world-tube that is defined by the function θ(t, xi) by replacing it with the 
energy-momentum density 1-form p = dθℏ , which also gives the flow covelocity 1-form 
v = p / m and the flow velocity vector field v that is dual to v under the relevant space-
time metric.  One also has the aforementioned mass density ρ = m || Ψ ||2.  In order to 
then go on point mechanics, one uses the well-established method of moments relative to 
ρ.  That is, one gets the zeroth-order moment m by integrating ρ over all space (i.e., the 
support of Ψ).  In non-relativistic physics, one can then define the first moment in the 
form of the world-line of the center-of-mass (i.e., the mean position).  The second 
moment of ρ is then the moment of inertia of the mass distribution, and so on. 
 Something that then becomes clearer when one interpolates this intermediate step of 
going from wave mechanics to continuum mechanics and then to point mechanics is that 
the classical observables that conventional quantum mechanics arrives at (i.e., 
eigenvalues of quantum operators) will always represent total quantities that are more 
appropriate to point mechanics, while the quantities that are appropriate to continuum 
mechanics are always densities.  In fact, unless one is integrating a scalar or pseudo-
scalar quantity (such as mass, charge, or energy density) over space, there is something 
less than rigorous about the common practice of integrating the components of vector and 
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tensor fields to get total quantities, such as total momentum, angular momentum, and the 
like.  We shall have more to say about that topic as it becomes relevant. 
 
 One of the first extensions of the Schrödinger equation was to give it a relativistic 
formulation, which produced the Klein-Gordon equation, due to the efforts of Oskar 
Klein [9] and Walter Gordon [10] in 1926.  There were two early objections to the 
resulting equation, namely, that its second-order character as a partial differential 
equation led to solutions with negative kinetic energy, which seemed physically absurd in 
the years before the experimental discovery of the positron and antimatter, more 
generally.  Furthermore, the conserved current that was associated with the phase 
invariance of the action functional for the Klein-Gordon has a temporal component that is 
not positive-definite, and cannot be identified with a probability density function then.  
As a result, little serious consideration was given to the Klein-Gordon equation until 
Pauli and Weisskopf resurrected it in 1934 [11], along with Schrödinger’s interpretation 
of e || Ψ ||2 as an electric charge density. 
 One can also see that the non-positive-definite character of the temporal component 
of the aforementioned conserved current can be interpreted as a reductio ad absurdum of 
the statistical interpretation of Ψ.  That was implicit in the Pauli-Weisskopf paper, since 
they pointed out that electric charge densities do not have to be positive-definite, by any 
means. 
 
 
 3.  Electron models. – Since there were so few elementary particles that were known 
in the early days, the models for the particles themselves usually focused on the electron.  
(That was probably because it was easier to configure experiments to study the electron 
in the years before nuclear reactors.)  Most theoreticians tended to assume that electrons 
were simply point-like objects with a certain mass and charge. 
 
 a.  Abraham-Lorentz-Poincaré model. – However, the ones that were pursuing 
extended-matter models for the electron included Max Abraham [12], Hendrik Antoon 
Lorentz [13], and Henri Poincaré [14].  Interestingly, the work of Lorentz and Poincaré 
on the modeling of the electron was really more directed towards what would now be 
called a relativistic theory of the motion of matter, more generally, and thus overlapped 
strongly with the work of Einstein [15] on the electrodynamics of moving bodies. 
 A recurring theme in the Abraham-Lorentz-Poincaré models (1) was that in the eyes 
of Coulomb’s law of electrostatic forces, an extended distribution of negative charge 
would have to be unstable in the absence of any other forces, since it would tend to 
expand indefinitely under its mutual electrostatic repulsion.  Furthermore, part of the 
rationale for choosing an extended distribution was that if one wished to attribute all of 
the rest mass of an electron to the total energy that was contained in its electrostatic field 
then as one approached a point-like distribution, that total energy would diverge, not 
converge to the measured mass. 
 

                                                
 (1) For more modern discussions of the issues associated with classical electron models, see the books 
by Rohrlich [16], MacGregor [17], and Yaghjian [18], along with the survey article by Pearle [19]. 
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 b. Discovery of electron spin. – One of the key advances in quantum physics was the 
discovery that the electron had a magnetic dipole moment, which seemed to exist in two 
distinct states that were thought of as the “up” and “down” state.  This was the conclusion 
of the Stern-Gerlach experiment [20] in 1922, which passed a beam of electrons through 
an inhomogeneous magnetic field and let them impinge upon a screen or emulsion.  The 
result was that there were two distinct components to the pattern that was produced by 
the beam; i.e., a splitting of the beam.  The subtlety in this result is that if one thinks of 
the electron as a small bar magnet then one would expect that the electrons would all 
interact with the magnetic field in the same way and produce a single component to the 
final pattern.  The fact that it produced two is more reminiscent of the way that 
birefringent optical media will split an incoming light ray into two rays according to the 
state of the polarization that they are in. 
 The most plausible explanation for the existence of a magnetic dipole moment for the 
electron was that it was due to an intrinsic angular momentum – or spin – for the 
electron, which, unlike the conventional classical kind of angular momentum, existed in 
two distinct states, and not a continuum of intermediate states between them.  Although 
this hypothesis is usually attributed to George Uhlenbeck and Samuel Goudsmit in 1925 
[21], they themselves point out that it was proposed previously by Arthur Compton in 
1921 [22], and had been suggested by Ralph Kronig in unpublished notes that Pauli had 
criticized for the fact that if the electron were a spinning charged sphere then the 
equatorial velocity that would be consistent with measured magnetic moment and the 
“classical electron radius” would be greater than that of light.  Enrico Fermi and Franco 
Raseti [23] also commented on the magnetic field of the electron and the fact that it 
would define a different radius for the electron than the one that Abraham, Lorentz, and 
Poincaré derived from purely electrostatic considerations.  Of course, despite the lofty 
place of the latter three savants in the history of science and mathematics, their classical 
model of the electron must nonetheless be regarded as incomplete for its lack of a 
magnetic moment, although that was not their oversight, but simply a limitation of 
history itself. 
 
 c.  The Pauli equation. – Wolfgang Pauli was the first to attempt to extend the (non-
relativistic) Schrödinger equation to include the possibility of particles with spin in his 
1927 paper [24].  In effect, the ordinary Zeeman effect represented the splitting of 
spectral lines for atomic electrons in an external magnetic field that coupled to their 
orbital angular momentum, while the anomalous Zeeman effect represented a further 
splitting that was harder to explain until one attributed intrinsic angular momentum to the 
electrons, as well.  An important advance for quantum wave mechanics was Pauli’s 
decision to model the splitting of that spin into an up and down state as something that 
came from the two-to-one map of three-dimensional Euclidian rotations, when 
represented by 2×2 complex unitary matrices with unity determinants [i.e., elements of 
SU(2)], to the same rotations when they are represented by 3×3 real orthogonal matrices 
with unity determinants [i.e., elements of SO(3)].  The resulting quantum wave functions 

Ψ took their values in C2, which carries the “defining” representation of SU(2), and were 

referred to as Pauli spinors.  The resulting extension of the Schrödinger equation, which 

came to be called the Pauli equation, not only extended the field space of Ψ from C to 
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C
2, but coupled an external magnetic field to the magnetic moment of the charged, 

spinning particle by way of a set of three 2×2 complex Hermitian matrices {σi , i = 1, 2, 
3} with trace zero that allowed one to represent the spin of the wave function as a linear 
combination of those matrices, which then took on the role of a basis for a linear space, 
or really, the Lie algebra su(2), which one gets by turning the Hermitian matrices into 

anti-Hermitian ones by the use of the imaginary i. 
 Heisenberg also commented on the application of the Pauli equation to the problem of 
the anomalous Zeeman effect in a 1926 paper with Pascual Jordan [25]. 
 
 d. The need to make the Pauli equation Lorentz-invariant. – One could say that the 
Schrödinger equation was doubly-incomplete, since it was not Lorentz-invariant, and it 
did not account for the electron spin.  Hence, although the Klein-Gordon equation 
accounted for the latter, but not the former, the opposite statement could be made for the 
Pauli equation.  The challenge to theoretical physics at that point in history was then to 
find a single equation (or system of equations) that would accomplish both objectives. 
 Although there is now such a thing as the relativistic Pauli equation (1), in the early 
days it was not clear how to develop such a thing, so it was passed over initially.  Indeed, 
it is easier to see how to formulate a relativistic Pauli equation once one has first 

developed the Dirac equation.  Basically, one simply extends the action of SU(2) on C2 to 

an action of SL(2; C) on C2, and the two-to-one map of SU(2) onto SO(3) to a two-to-one 

map of SL; C) onto the identity component of the Lorentz group; viz., SO+(3, 1). 
 
 e. The Thomas-Frenkel relativistic, spinning, classical electron. – In 1927 (a year 
before Dirac’s seminal paper on the quantum theory of the electron), the English 
physicist Llewelyn Thomas devised a relativistic theory of the classical spinning electron 
[27].  It was still a point-like electron, so it did not attempt to explain how a point could 
rotate, but it did give a deep and compelling reason for the discrepancy of a factor of 2 in 
the gyromagnetic ratio that was pointed out by Uhlenbeck and Goudsmit: Thomas 
showed that the factor of 2 could be explained by the transition from the rotation group to 
the Lorentz group; i.e., it was an artifact of the relativistic formulation that did not exist 
in the non-relativistic formulation.  As we shall see, it really comes down to the 
difference between the commutation laws for Lorentz boosts and the corresponding 
commutation laws for translations. 
 In 1929) (a year after Dirac’s paper was published), the Russian Joseph Frenkel 
published [28] a paper in which he attempted to improve upon some of the limitations of 
Thomas’s theory.  Once again, his model still assumed a point-like electron, but it did 
introduce the relativistic formulation of electromagnetism in terms of what would now be 
called exterior differential forms that is mainly due to Minkowski. 
 
 f. The Dirac electron. – Due to the lack of interest in formulating a relativistic Pauli 
equation, the way that events played out historically was that in 1928, Paul Dirac 

                                                
 (1) One might confer the author’s discussion of that equation in [26] and the references that are cited 
therein. 
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formulated a relativistic theory of the electron [29] that was explicitly intended to be 
Lorentz-invariant and account for electron spin.  As was the custom in early quantum 
theory, he proceeded in a somewhat heuristic way by starting with the second-order 
Klein-Gordon equation and looking for a way of taking the “square root” of the Klein-
Gordon operator, which one can think of as □  + 2

0m , where □  = ηµν ∂µ ∂ν is the 

d’Alembertian operator [with the sign convention (+, −, −, −) for ηµν], m0 is the rest mass 
of the particle (which is assumed to be point-like) that is described by the wave function, 
and one must use “natural” units, which make ℏ  = c = 1.  If one does not use natural 
units, which is often advisable when one is discussing the propagation of waves and does 
not want to lose sight of some fundamental properties of the waves, then m0 would be 
replaced with the Compton wave number, namely, k0 = m0 c / ℏ . 
 Actually, it is not rigorously correct to say that the Dirac operator ∂ + ik0 is the 

square root of □  + 2
0k , in the sense that (∂ + ik0)

2 = □  + 2
0k , but rather, one must have: 

 
( ∂ + ik0)( ∂ − ik0) = 2∂ + 2

0k  = □  + 2
0k ,   (3.1) 

 
which is then equivalent to: 

2∂ = □ .     (3.2) 
 
Hence, one is basically looking for a square root of the d’Alembertian operator. 
 If one assumes, naively, that ∂ = γ µ ∂µ , where the coefficients γµ belong to some as-
yet-unspecified algebra then (3.2) will become: 
 

1
2 (γ µ γ ν + γ ν γ µ) ∂µ  ∂ν = ηµν ∂µ ∂ν , 

 
which can be satisfied iff: 

γ µ γ ν + γ ν γ µ = 2ηµν,     (3.3) 
 
which can also be expressed in the form: 
 

(γ 0)2 = 1, (γ i)2 = − 1, i = 1, 2, 3, γ µ γ ν = − γ ν γ µ, when µ ≠ ν. 
 
 However, (3.3) is precisely how one defines the Clifford algebra C(4,η) of 

Minkowski space M4 = (R4, ηµν).  It is a 16-dimensional real algebra that is generated by 

the four linearly-independent vectors γ µ in R4; that is, a basis for the vector space that the 

algebra is defined over is defined by 1, the γ µ, and all linearly-independent products γ µ 
γ ν , γ λ γ µ γ ν , γ λ γ λ γ µ γ ν = γ 0 γ 1 γ 2 γ 3 = γ 5.  Dirac chose to represent C(4,η)  by 4×4 

complex matrices, not all of which were Hermitian.  Hence, since the matrix algebra of 
all 4×4 complex matrices has a complex dimension of 16, and thus, a real dimension of 
32, while C(4,η) has a real dimension of 16, one sees that the Dirac matrices do not give a 

faithful representation of the one algebra in the other, but only in a linear subspace of the 
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latter.  Other representations of the γ matrices evolved in time, and the most-used ones 
were due to Hermann Weyl and Ettore Majorana. 
 Right from the beginning, the Dirac equation touched off a firestorm of objections, 
most of which were based in the fact that its introduction of such an abstract 
mathematical structure as a Clifford algebra gave it a much-less-than-intuitive character, 

so the physical interpretation of the Dirac wave function, which took its values in C4, the 

equation itself, and how one was to model basic physical processes using that equation 
were the topic of spirited debates. 
 Various researchers attempted to give a tensorial form for the Dirac equation, which 
generally involved the use of bilinear covariants – i.e., bilinear expressions in the field Ψ 
and its Hermitian conjugate Ψ†, or rather its Dirac conjugate Ψ  = Ψ†γ 5 – and the γ 
matrices.  Darwin [30] proposed a widely-cited component form of the Dirac equation 
that did not introduce the γ matrices explicitly, but only their components, in effect. 
 One of the widely-debated issues regarding the Dirac equation was the question of 

true field space for the wave function.  The only significance of C4 was the fact that it 

carried a representation of C(4,η), although not a faithful one.  Other quantum 

theoreticians, such as Alexandru Proca [31], and later Sir Arthur Stanley Eddington [32], 
pointed out that one could also say that since C(4,η) carried a representation of itself (by 

either left or right translation), there was nothing to prevent one from using C(4,η) as the 

field space.  For Cornelius Lanczos [33], the appropriate field space was the eight-real-
dimensional algebra of complex quaternions, whose unit vectors define a Lie group that 

is isomorphic to SL(2; C). 

 Finally, there was the fact that despite having reduced the order of wave operator 
from two to one, the Dirac equation still admitted negative-energy states, and their 
physical interpretation was still just as puzzling.  Here, one must realize that although the 
Dirac operator is a first-order, linear differential operator, nonetheless, the Dirac 
equation is not a first-order partial differential equation for a complex-valued wave 
function, but a system of four such entities.  Hence, one has not really reduced the order 
of the Klein-Gordon equation from two to one, since one can always replace a single nth-
order differential equation (ordinary or partial) with a system of first-order equations by 
introducing auxiliary variables that represent the higher derivatives of the function that 
one is solving for. 
 
 g. The discovery of the positron. – After a few years, the debate regarding the Dirac 
equation cooled considerably, since the existence of the negative-kinetic-energy states 
was seen to be the most physically damning aspect of that system.  Mostly, particle 
physics in that era was limited by its small inventory of known elementary particles, and 
all attempts to make the Dirac equation account for protons as the positively-charged 
counterparts to electrons were clearly doomed, since the mass of a proton is about 1860 
times the mass of an electron, from the outset.  According to Miller [34], Pauli had 
become so disenchanted with quantum electrodynamics that for a while he had drifted 
into the underground café culture of Europe, and was even toying with the idea of 
directing a movie!  However, Hermann Weyl wrote the first edition of his classic book 
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[35] on the theory of groups and quantum mechanics in that period of time, in which he 
had the admirable objectivity to suggest that the case for the Dirac equation was not 
closed, since one could not anticipate what sort of advances that experimental physics 
would bring. 
 Indeed, it was the discovery of the positron by Carl David Anderson in 1932 [36] (1) 
that essentially got everyone back to work, because the positron made a much better 
candidate for the negative-energy counterpart of the electron than the proton.  It was also 
discovered that the collision of an electron and positron (which later came to be called 
Bhabha scattering) in the presence of some other mass, such as an atomic nucleus, could 
generally produce two gamma photons, while annihilating the original incoming massive 
particles.  Conversely, the reverse process of two colliding gamma photons could produce 
an electron-positron pair.  Indeed, if the photon energies are sufficient, one can also 
produce particle-anti-particle pairs of higher masses, such as muons and anti-muons, or 
even strongly-interacting particles. 
 These processes of pair creation and annihilation prompted Dirac to come up with his 
hole theory of electrons and positrons.  One imagined that the negative-energy states, 
which represented positrons, also represented “holes” in the quantum electromagnetic 
vacuum, or “Dirac Sea,” so annihilating a positron would be the same thing as filling in a 
hole.  The vacuum state was defined to be the state in which all of the holes were filled, 
although that seemed to suggest that the vacuum state would have be infinitely massive, 
infinitely charged, and infinitely energetic.  This was the first point at which quantum 
electrodynamics started to exhibit unphysical infinities, in addition to the infinite self-
energy of the point-like electron that one found in classical physics already. 
 One would also have a somewhat-intermediate state between the creation and 
annihilation of free particle-anti-particle pairs that one called vacuum polarization, and 
which amounted to the creation and annihilation of virtual pairs, which would be 
essentially unstable bound states of particles and their anti-particles.  This phenomenon 
permeates almost all of the explanations of quantum electrodynamics, so one can say 
with some security that the most fundamental problem in that branch of physics is to 
completely account for the structure of the quantum electromagnetic vacuum state (or 
probably state space).  One of the consequences of vacuum polarization that has yet to be 
observed directly in experiments is photon-photon scattering, in which the vacuum 
polarization that is produced at the moment of collision would produce a nonlinear 
contribution to the scattered photons.  However, a closely-related process called Delbrück 
scattering, in which a photon is scattered by the intense electrostatic field of an atomic 
nucleus as a result of vacuum polarization, has been observed experimentally, so one 
tends to assume that the limitations to the observation of photon-photon scattering are 
mainly technological in character. 
 
 h. The emergence of QED. – During the 1930’s, the increasing volume of theoretical 
and experimental work that was being done with the Dirac equation, as well as the 
discovery of new particles, was bringing about an increasing need for a unified theory of 

                                                
 (1) Apparently, the positron had been observed previously, first by Dmitri Skobeltsyn in 1929, who used 
a cloud chamber,  and in that same year by a Caltech graduate student Chung-Yao Chao, although the latter 
observations were not pursued further.  At any rate, it was Anderson who was awarded the 1936 Nobel 
Prize for the discovery. 
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such phenomena; i.e., a quantum theory of electrodynamics (QED) that would replace 
Maxwell’s classical theory. 
 However, due to the complex nature of quantum electromagnetic vacuum state and 
the mathematics of the Dirac equation, it was increasingly believed that (at least, for the 
time being) it was unlikely that anyone could pose a convincing set of partial differential 
equations for some appropriate tensor or spinor fields that could truly be called the 
“fundamental equations of QED” in the same way that Maxwell’s equations were 
fundamental to classical electrodynamics or Einstein’s equations were fundamental to 
gravitation.  The reasons for that were two-fold: 
 
 1. One might regard the presence of vacuum polarization as essentially a nonlinear 
contribution to the electromagnetic constitutive law that became significant at high-
enough field strengths.  Hence, in order to pose that system of equations, one would need 
to have a more detailed picture of that constitutive law, which was not (and is still not) 
available. 
 
 2. Even if one could correctly pose that system, it would undoubtedly represent a 
coupled system of nonlinear partial differential equations.  Consequently, merely proving 
the existence of solutions to such elementary problems as boundary-value problems in the 
static approximation or dynamical solutions to the Cauchy problem would probably 
prove to be mathematically daunting, much less the problem of finding any useful closed-
form solutions that might be the basis for explaining the structure of elementary particles 
and their interactions. 
 
 For the most part, it was the work of Werner Heisenberg, Wolfgang Pauli, and 
Pascual Jordan that proved to be most definitive in laying the foundations for QED.  
First, Heisenberg introduced the “exchange-particle” concept as a substitute for a detailed 
picture of the interaction of elementary particles.  This amounted to eliminating any 
discussion of the “forces of interaction,” in lieu of simply the exchange of particles that 
would mediate the interaction; for instance, the electromagnetic interaction would be 
mediated, not by some extension of Coulomb’s law and the Biot-Savart law, but by the 
exchange of a photon. (Nowadays, the exchange particles are referred to as “gauge” 
particles.) 
 Closely-related to the exchange-particle concept was the passage to the scattering 
approximation as a way of linearizing the dynamics of time evolution.  Basically, this 
amounts to replacing the Cauchy problem of describing the time evolution of incoming 
particle states (i.e., wave functions) from a finite initial time t0 to outgoing particle states 
at a finite final time t1 with the problem of describing the evolution of incoming states at 
t0 = − ∞ to outgoing states at t1 = + ∞, which should turn the nonlinear time evolution 
operator Φ(t0, t1) into a linear scattering operator S.  This is equivalent to enclosing all of 
the nonlinear complexity into a “black box” that takes the form of the time interval 
during which the interaction of the particle states takes place, whose length is assumed to 
be infinitesimal in comparison to the time interval of the linear scattering process that 
involves only free particle states. 
 One of the advantages of linearizing the time-evolution operator to the scattering 
operator is that one can justify applying the methods of Fourier analysis.  Indeed, almost 
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all of modern QED takes place in “momentum space,” which is Fourier transform of 
configuration space.  The Fourier transform of the scattering operator then takes the form 
of an integral operator whose kernel, with suitable causality constraints, is thought of as a 
“propagator.”  The construction of that propagator is usually approached perturbatively 
with the use of (Feynman) diagrams that represent the successive corrections to the 
elementary scattering picture. 
 However, even the picture that emerged in 1929 from Heisenberg and Pauli [37], 
which came to be called “second quantization,” was still somewhat debatable.  For one 
thing, it was still plagued by spurious, unphysical infinities, which were mostly traceable 
to the structure of the Dirac Sea as the electromagnetic vacuum.  Heisenberg proposed a 
process of “subtracting infinities,” which later came to be called “regularization and 
renormalization,” although even at that point in time Pauli was unconvinced that such a 
process could be justified in a mathematically-rigorous way (1).  One cannot help but 
notice that at that point in history, almost all of the subsequent published research that 
pertained to the theory of quantum electrodynamics was concerned with making the 
subtraction of infinites an acceptable process, and increasingly less discussion was 
devoted to the physical interpretation of the theory. 
 By the time that the various regularization and renormalizations schemes become 
established in the mainstream, the fact that they were basically “kludges” (i.e., error-
correcting algorithms) was lost on all but the most distinguished members of the QED 
community.  Everyone else seemed to be content to use them on the grounds that there 
was more work to be done in the name of particle physics than just the development of its 
fundamental theory.  As the emphasis shifted to the development of more powerful 
particle accelerators that could reach higher and higher center-of-mass collision energies, 
the majority of particle physicists were happy to have even kludges that worked.   
 Something that gradually emerged from the theory of renormalization was the 
concept of “effective field theories,” which amounted to starting with the classical field 
theory as a zeroth-order approximation (more precisely, zero-loop, or tree 
approximation), and then looking at the inclusion of an increasing number of 
renormalization loops in the Feynman diagrams for the process as the successive 
quantum corrections to the classical field theory.  This process is actually quite analogous 
to the way that one corrects the geometrical optics approximation to wave optics by 
adding diffraction terms that represent the processes that geometrical optics left out, and 
also relates to the mathematical theory of asymptotic expansions. 
 A particularly useful one-loop effective theory of quantum electrodynamics is the one 
that was devised by Heisenberg and his student Hans Euler in 1936 [38].  It basically 
corrected the Dirac wave function of a photon in the presence of an external 
electromagnetic field for the polarization of the photon into a bound state of an electron 
and a positron as a result of the external field being sufficiently strong and led to a 
corresponding effective theory for photon-photon scattering by Euler [39]. 
 

                                                
 (1) Apparently, that rift led to an eventual estrangement of Heisenberg from Pauli.  Heisenberg came to 
regard Pauli’s objections as “overblown” and did not even attend Pauli’s funeral. 
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 4. Continuum-mechanical models for wave mechanics. – To return to the 
continuum-mechanical interpretation of quantum wave mechanics, we note that almost 
every successive advance in mainstream quantum theory, with its statistical interpretation 
of the wave equation, eventually led to corresponding advances in the continuum-
mechanical interpretation.  To begin with, after the seminal paper [8] by Madelung, 
which only addressed the hydrodynamical form of the stationary Schrödinger equation, 
that program was expanded upon and applied to the time-varying Schrödinger equation, 
as well. 
 One of the early proponents of the hydrodynamical interpretation amongst the 
founders of quantum theory was Louis de Broglie, who also added his own innovations in 
the form of the “theory of the double solution” and “pilot wave theory” (e.g., [40]).  
Several of his students, such as Jean-Pierre Vigier [41] and Francis Halbwachs [42], as 
well as the aforementioned Proca, continued his work along those lines, although 
eventually de Broglie grew temporarily disenchanted with the hydrodynamical picture 
and begrudgingly accepted the statistical interpretation.  However, he later came back to 
the former interpretation in the context of what he called “the hidden thermodynamics of 
the isolated particle [43],” although nowadays one would say that the “hidden 
thermostat” that the isolated particle interacted with would be called the “quantum 
vacuum state,” and in fact de Broglie himself mentioned that terminology in a footnote. 
 Some of the most definitive advances to the hydrodynamical interpretation came from 
Takehiko Takabayasi at Nagoya University.  He not only enlarged the scope of 
Madelung’s original work to the time-varying case, and looked at various applications of 
the theory to more traditional topics in quantum mechanics [44a], but also applied the 
program to the Klein-Gordon equation [44b].  In particular, he derived a “quantum stress 
tensor” that was related to the quantum potential function that had been defined by 
Madelung.  However, when he addressed the cases of wave functions with spin, namely, 
the Pauli equation [44c] and the Dirac equation [44d], he switched from the 

transformation by polar coordinates on the field space (viz., C) to the use of bilinear 

covariants as a way of deriving the continuum-mechanical quantities that were contained 
in the wave function. 
 When one defines the energy-momentum density 1-form to be dθℏ  that will 
automatically imply that the resulting motion is (dynamically) irrotational, since the 
exterior derivative of any exact 1-form will vanish.  Although Takabayasi discussed the 
possible inclusion of vorticial flows in [44a,b], it was M. Schönberg who expanded upon 
that possibility in a series of papers [45].  That had the intriguing consequence that the 
terms in the quantum stress tensor could be related to more established expressions in the 
theory of turbulence, such as momentum transfer. 
 One of the better known proponents of the hydrodynamical interpretation was David 
Bohm, who saw it as a way of introducing “hidden variables” [ 46].  In a paper with 
Vigier [47], Bohm also discussed the possibility that the hydrodynamical model (or 
“Madelung fluid”) that one obtains from Schrödinger’s equations is essentially an 
approximation to a more complex motion, which takes the form of “sub-quantum” 
fluctuations about the quantum ground state.  Again, this sounds like another form of the 
quantum vacuum, and also overlaps with the discussion in Schönberg [45].  In a paper 
with Schiller and Tiomno [48], Bohm discussed the conversion of the Pauli equation into 
a vorticial hydrodynamical form that differed from Takabayasi’s approach by the fact that 
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it represented a transformation of the field space, not the application of bilinear 
covariants. 
 One can also pose the inverse problem to the Madelung transformation, namely, how 
does one start with continuum-mechanical equations and transform them into a quantum 
wave equation.  Lajos Jànossy addressed that problem in several papers [49]. 
 Some of the more modern work regarding the hydrodynamical interpretation of 
quantum mechanics was done by Robert Carroll [50] and Iwo Bialynicki-Birula [51], and 
Takabayasi published a paper in 1983 [52] that discussed some of the advances that had 
been made since the early days. 
 This author has investigated some of the aspects of the continuum-mechanical 
models, in his own right.  He first observed [53] that the quantum potential function 
could be related to the scalar curvature of the space-time metric that is obtained from the 
Minkowski-Lorentz metric by rescaling it using the density n or ρ.  He also expanded 
upon the fact that the basic transformation in the Madelung theory is amounts to the 
introduction of polar coordinates in the field space in [54].  That led to further work along 
those lines that included obtaining a quantum strain tensor that would couple to the 
quantum stress tensor by way of a mechanical constitutive law in [55].  In the process, it 
was becoming clearer that the usage of the terms “curvature” and “torsion” in continuum 
mechanics (e.g., the bending and twisting of beams) was closer to their usage in the 
Frenet-Serret equations than in the Riemann-Cartan approach to differential geometry, in 
which the terms have more to do with the integrability of parallel translation.  That led to 
the discussion in [56], in which a broader picture of the application of differential 
geometry to continuum mechanics emerged that sounded more like the geometry of 
“teleparallelism” in spirit.  Further, it was observed that the structure of the conservation 
laws that are associated with the Dirac electron and the Weyssenhoff fluid (which is an 
approximation to the latter) was that of a “relativistic Cosserat medium,” and that was 
discussed in [57]. 
 
  
 5. Chapter summary. – Although it would be helpful if the reader had some prior 
exposure to the basic geometrical and topological methods of mathematical physics (cf., 
e.g., Frenkel [58]), little use of topological methods will be made, since the basic 
objective is to summarize the various models that were constructed before, and except for 
some discussion of vortices, topology was not generally an issue.  (The author is not 
trying to trivialize the role of topology in the subject, but only to defer that discussion to a 
later monograph.  Indeed, the role of topological defects as the sources of fields is quite 
fundamental.) 
 However, there are times that the calculus of exterior differential forms is simply a 
more concise way of doing practical calculations, so the basic notions of that topic will be 
reviewed in Appendix A, while some basic notions regarding differentiable manifolds 
will be reviewed in Appendix B.  Similarly, the discussion of conserved currents in the 
context of variational field theory is easier to navigate when one has some basic concepts 
from the theory of Lie groups, Lie algebras, and representations in hand, so the relevant 
notions are summarized in Appendix C.  Finally, before embarking upon continuum 
mechanics, it helps to review some of the corresponding notions concerned with the 
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motion of points and rigid bodies, which is presented in Appendix C.  Appendix E 
contains some multiplication tables for the Clifford algebra of Minkowski space. 
 
 As for the main body of text, we shall give the following summary: 
 
 Chapter I. – Since it is no longer the case that the theoretical physics mainstream 
regards continuum mechanics as something fundamental to everyone’s education, the 
first chapter attempts to briefly review the basic notions of that discipline.  Once again, it 
is desirable that the reader is not encountering them for the very first time. 
 
 Chapter II. – The author is of the opinion that there was something hasty about the 
founding of quantum theory in its early days, and in particular that the very concept of 
wave mechanics needs to be developed in a more general context that treats a general 
wave as an object that has a kinematical state and a dynamical state that are coupled by a 
constitutive law, along with an integrability equation for the kinematical state and a 
balance principle for the dynamical one.  Hence, this chapter is a first attempt at laying 
such foundations. 
 
 Chapter III. – Much of the discussion of the individual models for quantum waves is 
based in the methods of variational field theory, which is summarized to the extent that it 
will be used in the rest of the book. 
 
 Chapter IV. – In this chapter, we first address the Madelung-Takabayasi picture in the 
context of non-relativistic, spinless waves, which are then described by the Schrödinger 
equation. 
 
 Chapter V. – In the process of developing the continuum-mechanical model of 
Chapter IV, some “quantum terms” appeared, such as the quantum potential.  In this 
chapter, the author’s thoughts on the subject of their intrinsic nature are presented. 
 
 Chapter VI. – The extension of the Madelung-Takabayasi methodology to relativistic, 
spinless waves is addressed in this chapter; i.e., the Madelung-Takabayasi transformation 
of the Klein-Gordon equation, and the corresponding alterations to the discussion of the 
quantum terms are made. 
 
 Chapter VII. – In this chapter, the introduction of Pauli spinors for the description of 
non-relativistic, spinning waves is investigated.  The methods of Bohm, Tiomno, and 
Schiller are discussed in more detail than those of Takabayasi, which are mentioned 
briefly, and the author’s own view of the process is presented. 
 
 Chapter VIII. – Before discussing the quantum-mechanical formulation of relativistic, 
spinning matter, we first discuss some of the key ideas of relativistic rotational mechanics 
in its more “classical” context. 
 
 Chapter IX. – The Dirac equation for relativistic, spinning waves is reviewed, along 
with some of the alternative ways of formulating it that had been proposed..  The author 
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also discusses the relativistic Pauli equation, and makes some suggestions on how to 
remain consistent with the introduction of “generalized spherical coordinates” into the 
field spaces as the basis for the transformation of the wave equation.   
 
 Chapter X. – In this chapter, the continuum-mechanical formulation of the Dirac 
equation is presented in the manner of Takabayasi [44d]. The Weyssenhoff fluid is 
discussed as a simplification of the Dirac electron, and the facts that both the Dirac 
electron and the Weyssenhoff fluid represent relativistic Cosserat media are also 
presented and examined. 
 
 Epilogue. – Finally, a few suggestions on directions for further growth in the field of 
continuum-mechanical models for quantum mechanics are proposed. 
 

References 
 

1. M. Planck: 
a.  “Über eine Verbesserung der Wienschen Spektralgleichung,” Verhandlungen 

der Deutschen Physikalischen Gesellschaft 2 (1900), 202–204; Translated in D. 
ter Haar, “On an Improvement of Wien's Equation for the Spectrum” in The Old 
Quantum Theory, Pergamon Press, 1967; pp. 79–81. 

b. “Zur Theorie des Gesetzes der Energieverteilung im Normalspektrum,” 
Verhandlungen der Deutschen Physikalischen Gesellschaft 2 (1900), 237. 
Translated in D. ter Haar, The Old Quantum Theory, Pergamon Press, 1967, 
pp. 82. 

2. C. Huygens, Traité de la lumière, Chez Pierre van der A a, Leiden, 1690. 
3. I. Newton, Opticks, 1704. 
4. A. Einstein, “Über einen die Erzeugung und Verwandlung des Lichtes betreffenden 

heuristischen Gesichtspunkt,” Ann. Phys. (Berlin) (6) 17 (1905), 132–148.  
Translated in D. ter Haar, The Old Quantum Theory, Pergamon Press, 1967, pp. 91. 

5. A. Compton, “A Quantum Theory of the Scattering of X-Rays by Light Elements,” 
Phys. Rev. 21 (5) (1923), 483–502. 

6. L. de Broglie, “Recherches sur la théorie des quanta,” Ann. de Phys. (10) 3 (1925), 
22-128; English translation by A. F. Kracklauer, 2004, published online. 

7. E. Schrödinger, “Quantisierung als Eigenwertproblem,” Ann. Phys. (Berlin) (4) 384 
(1926), 273–376.  English translation in E. Schrödinger, Collected Papers on Wave 
Mechanics, AMS Chelsea Publishing, Providence, Rhode Island, 1982. 

8*. E. Madelung, “Quantentheorie in hydrodynamischer Form,” Z. Phys. (3–4) 40 
(1927), 322–326. 

9. O. Klein, “Quantentheorie und fünf-dimenzionale Relativitätstheorie,” Z. Phys. 37, 
895 (1926). 

10*. W. Gordon, “Der Comptoneffekt nach der Schrödingerschen Theorie,” Zeit. f. 
Phys. 40 (1926), 117-133. 

11. W. Pauli and V. Weisskopf, “Über die Quantisierung der skalaren relativistischen 
Wellengleichung,” Helv. Phys. Acta 7 (1934), 709-31; also published in translation 
in [33]. 



References 19 

12*. M. Abraham, “Prinzipien der Dynamik des Elektrons,” Ann. Phys. (Berlin) 315 
(1903), 105-179. 

13. H. A. Lorentz, Theory of Electrons, Dover, NY, 1952. 
14. H. Poincaré, “Sur la dynamique de l’électron,” C.R. Acad. Sci. 140 (1905), 1504; 

“Sur la dynamique de l’électron,” Rend. Circ. Mat. Palermo 21 18 (1906), 129; 
Translation, with commentary, by A. A. Logunov in “On the articles by Henri 
Poincaré ‘On the dynamics of the electron’.” Publishing Department of the Joint 
Institute for Nuclear Research. Dubna. 1995. 

15. A. Einstein, “Zur Elektrodynamik bewegter Körper,” Ann. Phys. (Berlin) (10) 322  
(1905), 891–921. Translated in The Principle of Relativity, Dover, Mineola, NY, 
1952. 

16. F. Rohrlich, Classical Charged Particles, Addison-Wesley, Reading, MA, 1965. 
17. M. H. MacGregor, The Enigmatic Electron, 2nd ed., El Mac Books, Santa Cruz, CA, 

2013. 
18. A. D. Yaghjian, Relativistic Dynamics of a Charged Sphere, Springer-Verlag, 

Berlin, 1992. 
19. P. Pearle, “The classical electron,” in Electromagnetism – Paths to Research, D. 

Teplitz (ed.), Plenum, NY, 1982. 
20. W. Gerlach and O. Stern, “Der experimentelle Nachweis der Richtungsquantelung 

im Magnetfeld,” Zeit. Phys. 9 (1922), 349–352.  
21. G. Uhlenbeck and S. Goudsmit, “Spinning electrons and the structure of spectra,” 

Nature 117 (1926), 264-265. 
22. A. Compton, “The magnetic electron,” J. Franklin Inst. 192 (1921), 145-155. 
23*. F. Raseti and E. Fermi, “Sopra l’elettrone rotante,” (8) 3 (1926), 226-235. 
24*. W. Pauli, “Zur Quantenmechanik des magnetischen Elektrons,” Zeit. f. Phys. 43 

(1927), 601-623. 
25*. W. Heisenberg and P. Jordan, “Zur Quantenmechanik des magnetischen Elektrons,” 

Zeit. f. Phys. 43 (1927), 601-623. 
26. D. H. Delphenich, “The relativistic Pauli equation,” arXiv:1207.5752. 
27. L. H. Thomas, “The kinematics of an electron with an axis,” Phil. Mag. (7) 13 

(1927), 1-22. 
28*. J. Frenkel, “Die Elektrodynamik des rotierienden Elektrons,” Zeit. Phys. 37 (1926), 

243-262. 
29. P. A. M. Dirac, “The quantum theory of the electron,” Proc. Roy. Soc. (London) A 

117 (1928), 610-624; Part II: ibid. 118 (1928), 351-361. 
30. C. G. Darwin, “The wave equations of the electron,” Proc. Roy. Soc. London A 118 

(1928), 654-680.  
31*. A. Proca, “Sur l’equation de Dirac,” J. Phys. et le Rad. 1 (1930), 235-248. 
32. A. S. Eddington, Fundamental Theory, Cambridge Univ. Press, Cambridge, 1953. 
33*. C. Lanczos: 

a. “Die tensoranalytischen Beziehungen der Diracschen Gleichung,” Zeit. f. 
Phys. 57 (1927), 447-473. 

b. “Zur kovarianten Formulierung der Diracschen Gleichung,” Zeit. f. Physik 57 
(1929), 474-483. 

c. “Die Erhaltungssätze in der feldmässigen Darstellung der Diracschen 
Theorie,” Zeit. f. Phys. 57 (1929), 484-493. 



20 Introduction 

34. A. I. Miller, Early Quantum Electrodynamics: a source book, Cambridge 
University Press, Cambridge, 1994. 

35. H. Weyl, Gruppentheorie und der Quantenmechanik, 1928.  English translation: 
Theory of Groups and Quantum Mechanics, Dover, Mineola, NY, 1950. 

36. Carl D. Anderson, "The Positive Electron," Phys. Rev. (6) 43 (1933), 491–494. 
37*. W. Heisenberg and W. Pauli: 

a. “Zur Quantendynamik der Wellenfelder,” Zeit. Phys. 56 (1929), 1-61. 
b. “Zur Quantentheorie der Wellenfelder, II” Zeit. Phys. 59 (1929), 168-190. 

38*. W. Heisenberg and H. Euler, “Folgerungen aus der Diracschen Theorie des 
Positrons,” Zeit. f. Phys., 98 (1936), 714-732. 

39*. H. Euler and B. Köckel, “Über die Streuung von Licht an Licht nach der Diracschen 
Theorie,” Naturwiss. 23 (1935), 246-247; H. Euler, “Über die Streuung von Licht 
an Licht nach der Diracschen Theorie,” Ann. Phys. (Leipzig) 26 (1936), 398-448. 

40. L. de Broglie, Nonlinear Wave Mechanics, Elsevier, Amsterdam, 1960. 
41*. J. P. Vigier, Structure des micro-objets dans l’interprétation causale de la théorie 

des quanta, Gauthier-Villars, Paris, 1956. 
42*. F. Halbwachs, La theorie relativiste des fluides a spin, Gauthier-Villars, Paris, 

1960. 
43*. L. de Broglie, La thermodynamique de la particule isolée, Gauthier-Villars, Paris, 

1964. 
44. T. Takabayasi: 

a. “On the Formulation of Quantum Mechanics Associated with Classical Pictures,” 
Prog. Theor. Phys., 8 (1952), 143-182. 

b. “Remarks on the Formulation of Quantum Mechanics Associated with Classical 
Pictures,” Prog. Theor. Phys., 9 (1953), 187-222. 

c. “The vector representation of spinning particle in the quantum theory, I,” Prog. 
Theor. Phys. 14 (1955), 283-302. 

d. “Relativistic Hydrodynamics of Dirac Matter (Part 1.  General Theory),” Prog. 
Theor. Phys. suppl. 4 (1957), 1-80. 

45. M. Schönberg: 
a. “A non-linear Generalization of the Schrödinger and Dirac Equations,” Nuov. 

Cim. 11 (1954), 674-682. 
b. “On the Hydrodynamical Model of the Quantum Mechanics,” Nuov. Cim. 12 

(1954), 103-133. 
c. “Simple Solution of the Generalized Schrödinger Equations,” Nuov. Cim. 12 

(1954), 300-303. 
d. “Vortex Motions of the Madelung Fluid,” Nuov. Cim. (1955), 543-580. 

46. D. Bohm, “A Suggested Interpretation of the Quantum Theory in Terms of 
‘Hidden’ Variables I” Phys. Rev. 85 (1952), 166-179; “…II,” ibid., 180-193. 

47. D. Bohm and J.-P. Vigier, “Model of the Causal Interpretation of Quantum Theory 
in Terms of a Fluid with Irregular Fluctuations,” 96 (1954), 208-216. 

48. D. Bohm, R. Schiller, J. Tiomno, “A causal interpretation of the Pauli equation 
(A),” Supp. Nuovo Cimento 1 (1955), 48-66, (B) 66-91. 

49. L. Janossy: 
a. “Zum hydrodynamischen Modell der Quantenmechanik,” Zeit. Phys. 169 

(1962), 79-89. 



References 21 

b. “The physical interpretation of wave mechanics, I,” Found. Phys. 3 (1973), 185-
202. 

50. R. Carroll, “On the quantum potential,” arXiv:quant-ph/0403156v3. 
51. I. Bialnycki-Birula, Z. Bialnycki-Birula, and C. Sliwa, “Motion of vortex lines in 

quantum mechanics,” Phys. Rev. A 61 032110 (2000).  
52. T. Takabayasi, “Hydrodynamical formulation of quantum mechanics and 

Aharonov-Bohm effect,” Prog. Theor. Phys. 69 (1983), 1323-1344. 
53. D. H. Delphenich, “The Geometric Origin of the Madelung Potential,” arXiv:gr-

qc/0211065. 
54. D. H. Delphenich, “Generalized Madelung transformations for quantum wave 

equations I: generalized spherical coordinates for field spaces,” arXiv:0802.0305. 
55. D. H. Delphenich, “A strain tensor that couples to the Madelung stress tensor,” 

arXiv:1303.3582. 
56. D. H. Delphenich, “The use of the teleparallelism connection in continuum 

mechanics,” Mathematics and Mechanics of Solids 21 (2016), 1260-1275; first 
published online Dec. 26, 2014. 

57. D. H. Delphenich, “Mechanics of Cosserat media: II. relativistic theory,” 
arXiv:1510.01243. 

58. T. Frenkel, The Geometry of Physics: an introduction, Cambridge University Press, 
Cambridge, 1997. 

 
__________ 

 



  

CHAPTER I 
 

BASIC CONTINUUM MECHANICS  
 
 
 The better part of the problem of formulating the continuum-mechanical models for 
quantum wave equations is trying to gain a better intuition for the very nature of the state 
of matter that one is dealing with in the first place.  That problem amounts to gaining a 
deeper understanding of the mechanical constitutive law that associates a dynamical state 
of energy-momentum and stress with a kinematical state of deformation.  As we will see, 
the crucial notion that one must introduce into the kinematical state of the extended 
matter distribution that one is addressing is the idea that in addition to the “metric strain” 
that is traditionally considered in the name of continuum mechanics, one must also 
consider “frame strain,” which can be present even when there is no change in the 
distances between points of the object. 
 Before going on to that more unconventional topic, we shall first summarize the basic 
ideas that one deals with in conventional continuum mechanics.  We feel that such a 
summary is unavoidable nowadays, because although there was a time that continuum 
mechanics was the foundation for all theoretical physics, between the ultimate failure of 
the mechanical ether theory of electromagnetic waves and the discreteness of matter at 
the atomic level, the physics mainstream seemed to abandon their previous belief that 
continuum mechanics was truly fundamental to the study of matter.  It is our steadfast 
belief that this judgment was premature. 
 
 
 § 1.  Extended objects and their deformations. – When one is dealing with point-
like matter moving in space, the kinematical state of a point can be characterized by its 
position, velocity, acceleration, and any higher-order time derivatives that might be 
necessary (1).  Indeed, since the basic (ordinary) differential equations of motion 
ultimately prove to be second-order, it is usually sufficient to consider only the first-order 
derivatives; i.e., the velocity.  Furthermore, one of the lessons of rotational mechanics is 
the idea that having the velocity equal to precisely the time derivative of position is not 
the only possibility, since the angular velocity of the reference frame might also 
contribute to the total velocity, in addition to the time derivatives of position.  This 
situation can be regarded as an elementary example of the difference between integrable 
and non-integrable kinematical states, which we will discuss in due course. 
 Hence, we shall use a modern mathematical formalism that is best adapted to the 
modeling of kinematical states in a manner that makes the issue of integrability obvious, 
namely, the formalism of “jet manifolds.”  This formalism has the advantage that it is 
also closely-adapted to some problems of differential equations and the calculus of 
variations.  However, we shall stay closer to the local coordinate expressions than most 
purely mathematical treatments [1], simply because that is where one finds most of the 

                                                
 (1) Some relevant concepts from the motion of points and rigid bodies are summarized in Appendix D, 
for the sake of completeness. 
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standard literature of continuum mechanics [2-7], although some of what we shall discuss 
was established some time ago by Gallisot [8]. 
 
 a. Jet manifolds. – One of the big reasons for introducing the methods of jets is that 
they allow one to replace the consideration of infinite-dimensional state spaces with the 
consideration of finite-dimensional ones. Basically, one starts with something that could 
rapidly lead into functional-analytic complications, namely, the idea that a configuration 

of an extended object Op (which we assume to be an open subset of a parameter space Rp 

for some dimension p) in a space, which we assume to be R
n for simplicity, is a Ck (viz., 

k times continuously differentiable) embedding x : Op → Rn, ua ֏ xi (ua).  That is, the 

map is one-to-one and a homeomorphism onto its image x(Op), as well.  Thus, the image 

will not intersect itself, and it will have the same dimension as the prototype object Op in 

R
p.  Some examples of this situation are when Op is a solid, open ball, disc, or cylinder, 

and the configurations x are smooth deformations of the more symmetric, geometric 
prototypes. 
 The example of a point in space is an elementary example of a configuration in which 
k = 0 and the embedding of that point in space is its inclusion.  If one wishes to describe 
the time evolution of a point then one must go to the next dimension (k = 1) and let O1 be 

an interval (t0, t1) on the time line R.  The position will then take the form xi(t) for t ∈ (t0, 

t1) and its successive derivatives will become the velocity, acceleration, etc. (1), with 
respect to an inertial frame.  However, in statics, it is also important to consider the case 

in which R does not represent time, but simply a curve parameter s.  The first derivatives 

of xi(s) would still define (up to a non-zero scalar constant) the tangent line to the curve at 
each point, even though one could not really call them “velocities” when nothing is 
moving.  Similarly, the second derivatives would describe the curvature (in the Frenet-
Serret sense of the word) of the curve more than its acceleration. 

 When one goes on to k = 2, one can again consider R2 to be the parameter space for 

the motion of a curve segment (e.g., a vibrating string) or the embedding of a surface, and 
similarly, k = 3 can describe the motion of a surface (e.g., a vibrating membrane) or the 
embedding of a solid object.  Ultimately, we shall have no use for any k that is greater 
than four, and in that case, Op will usually take the form of a “cylindrical” object; i.e., O4 

=  (t0, t1) × O3 , where O3 is a three-dimensional object.  Indeed, time evolution, for us, 

will generally involve objects of the form (t0, t1) × Ok−1, where k = 0, 1, 2, 3.  The 

limitation of cylindrical objects as prototypes for moving extended matter is that one 
must rule out “topology-changing processes,” which are actually quite common in nature 
(the bifurcation of branches on plants, the formation of soap bubbles, smoke rings, and 

                                                
 (1) For the record, the next two time derivatives are referred to as “jerk” and “yank.”  
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the nucleation of bubbles in boiling liquids), although they properly deserve special 
treatment, due to the topological overhead that must be introduced (1). 

 The kinematical state of the configuration x : Op → Rn is then defined by the set of 

real numbers (ua, xi(u), , ( )i
ax u , …, 

1, , , ( )
k

i
a ax u
⋯

), and its order will then be k.  We shall 

mostly be concerned with first-order states of the form (ua, xi(u), , ( )i
ax u ). 

 One can back up a step from this definition and define the k-jet of a Ck map x : Op → 

R
n at a point u ∈ Op , to be the set of real numbers k

uj x  = (ua, xi, i
ax , …, 

1, , k

i
a ax
⋯

), where 

the arrays xi, i
ax , …, 

1, , k

i
a ax
⋯

 are equal to the values of the successive derivatives of x at u, 

although they themselves are not functions of u.  One can also define the k-jet k
uj x  to be 

the equivalence class of all Ck maps x : Op → Rn that are defined in some neighborhood 

of a point u ∈ Op and have the same values for their first k derivatives at that point. 

Notice that since a jet is a purely local object, it will be irrelevant whether the map in 
question is an embedding or an immersion, since that distinction is a global consideration 
that will not typically affect the local derivatives. 
 One can see that the definition of a tangent vector at a point x in a differentiable 
manifold M as an equivalence class of differentiable curves through x that have the same 

first derivative at x makes a tangent vector essentially a 1-jet of a C1 map of R to M at 

some chosen point (e.g., 0) on R. 

 The set of all k-jets of Ck maps from Op to Rn  is then a differentiable manifold Jk (Op, 

R
n) whose local coordinate charts look like (ua, xi, i

ax , …, 
1, , k

i
a ax
⋯

), so it will have 

dimension p + n + pn + …, pkn.  In most cases, we will be dealing with J1(Op, R
n), which 

has coordinate charts of the form (ua, xi, i
ax ).  The coordinate transformations for the 

higher-order derivatives get rapidly complicated, so we specify them only for 1-jets: Let 
(ua(u), xi(u), ( )i

ax u ) and ( ( )au u , ( )ix u , ( )i
ax u ) be two sets of coordinates for 1

uj x ; one 

must be careful to note that: 

i
ax  = 

i

a

x

u

∂
∂

,     (1.1) 

by definition. 
 Hence, we already have coordinate transformations: 

                                                
 (1) Many mathematicians will insist that the appropriate topological techniques for the discussion of 
topology-changing processes come from the study of “cobordism,” which is a generalized homology that is 
specialized to the needs of differential topology.  This author has long been of the opinion that nothing in 
everyday nature actually goes beyond the scope of the more computable homologies (e.g., simplicial, 
singular) so radically that the generalization to cobordism becomes unavoidable, especially if the canonical 
example of a cobordism is the “trouser manifold,” which can easily be triangulated by more elementary 
building blocks.  The introduction of gratuitous generality for its own sake runs counter to the spirit of 
Occam’s razor, which is fundamental to the scientific method. 
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au = ( )a bu u , ix  = ( )i jx x .    (1.2) 
 
 Therefore, we must also account for the transformation of i

ax  to i
ax .  Since we are 

dealing with only first derivatives, it will be a linear transformation by way of the 
differentials of the last two transformations: 
 

i
ax  = 

b i
j

ba j

u x
x

u x

∂ ∂
∂ ∂

.     (1.3) 

 
 If we wished to go on to 2-jets then we would have to differentiate the product on the 
right-hand side with respect to bu , which would produce an inhomogeneous 
transformation law, namely: 
 

i
abx  = 

c d i j m
j k l

cd c da b j m k l

u u x x x
x x x

u u x x x x

 ∂ ∂ ∂ ∂ ∂+ ∂ ∂ ∂ ∂ ∂ ∂ 
.   (1.4) 

 
This differs from a tensor transformation law by the appearance of the quadratic term in 
the first derivatives.  One should note, however, that in the case of one parameter, for 
which the partial derivatives will become ordinary derivatives, if one treats the three-
index expression in the second term on the right-hand side as if it represented the 
components: 

j
klΓ  = 

j m

m k l

x x

x x x

∂ ∂
∂ ∂ ∂

     (1.5) 

 
of a linear connection then the vanishing of the expression in parentheses would amount 
to the geodesic equation for the symmetric part of that connection, namely: 
 

0 =
2

( )2

j
j k l
kl

d x
x x

dt
+ Γ ɺ ɺ ,  j

klΓ ≡ 1
2 ( )j j

kl lkΓ + Γ .  (1.6) 

 
Hence, one can already see how the study of jets overlaps with the study of connections. 
 

 The manifold J1(Op, R
n) admits three canonical projections: 

 

 1. The source projection: α : J1(Op, R
n) → Op , 

1
uj x ֏  u. 

 2. The target projection:  β : J1(Op, R
n) → Rn, 1

uj x ֏  x. 

 3. The contact projection: 1
0p : J1(Op, R

n) → Op × Rn, 1
uj x ֏ (u, x). 

 

Sometimes, the manifold Op × Rn is denoted by J 0(Op, R
n), for completeness. 
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 Consistent with the last projection, one can think of the matrix i
ax  as defining a 

contact element at (u, x), which is a p-dimensional linear subspace of the tangent space 

TxR
n, as long as the maps x in question are always immersions (so i

ax  always has rank p).  

Moreover, one can then regard the p columns { 1
ix , …, i

px } of the rank-p matrix i
ax  as 

also defining a p-frame in TxR
n, which will then span that linear subspace. 

 It is important to see that the differential map to x : Op → Rn at a point u ∈ Op  is a 

linear map dx|u : TuOp → TxR
n, so it is really a “two-point” function, and if one wishes to 

express it in terms of the natural coframe dua for TuOp and the natural frame ∂ / ∂xi in 

TxR
n then one can write: 

dx|u = ( )i
ax u dua ⊗ ∂ / ∂xi,     (1.7) 

 

which is well-defined as a tensor field only on Op × Rn. 

 The kinematical state of the extended object that is described by x then becomes a 

section s : Op → J k(Op, R
n), u ֏ (ua, xi(u), , ( )i

ax u , …, 
1, , , ( )

k

i
a ax u
⋯

), so each s(u) belongs 

to the set k
uJ (Op, R

n)  of all k-jets that project to u under the source projection (i.e., the 

fiber of that projection over u).  Moreover, as defined, it also represents a section of a 
very special type, namely the k-jet prolongation of a Ck map x, which gets denoted by: 
 

j kx (u) = (ua, xi(u), , ( )i
ax u , …, 

1, , , ( )
k

i
a ax u
⋯

).   (1.8) 

 
 In the more general case, the coordinate functions 

1
( )

l

i
a ax u
⋯

 of the value of a section s 

at u do not have to take the form of mixed partial derivatives of xi with respect to ua.  
When that is true for a section, i.e.: 

s = j kx,      (1.9) 
 

for some Ck function x : Op → Rn, one calls the section (i.e., kinematical state) 

integrable.  Not all sections of the source projection will be integrable, since for one 
thing, the lower indices of 

1
( )

l

i
a ax u
⋯

 do not have to always be completely symmetric, as 

they must be for mixed partial derivatives (with appropriate regularity assumptions about 
x).  Even in the case of ( )i

ax u , if one forms the set of n 1-forms on Op : 

 
ξ i = ( )i

ax u dua     (1.10) 

then one must have the vanishing of: 
 

d^ξ i = 1
, ,2 ( )i i a b

a b b ax x du du− ∧    (1.11) 
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for each i as a necessary condition for the integrability of ( )i
ax u ; i.e., for one to have: 

 
ξ i = dxi      (1.12) 

 
for each i.  (As long as Op is simply-connected, that condition will also be sufficient.) 

 The condition (1.11) then says that one must have: 
 

,
i
a bx  = ,

i
b ax .     (1.13) 

 
 More generally, one defines the Spencer operator [1] on sections of the source 

projection, which one denotes by D : J k(Op, R
n) → J k−1(Op, R

n), although that is really 

an abbreviation for saying that it takes sections of the source projection of one jet 
manifold to sections of the source projection of the other one.  If s(u) = ֏ (ua, xi(u), 

( )i
ax u , …, 

1
( )

k

i
a ax u
⋯

) is a section of the former projection then: 

 
Ds(u) = (ua, Dxi(u), ( )i

aDx u , …, 
1 1

( )
k

i
a aDx u

−⋯
),  (1.14) 

in which: 

1
( )

l

i
a aDx u
⋯

 = 
1 1 1 1, ( ) ( )

l l l

i i
a a a a ax u x u

+ +
−

⋯ ⋯
.    (1.15) 

 
Hence, s is integrable iff: 

Ds = 0.      (1.16) 
 
 The case of non-integrable kinematical states becomes fundamental to the study of 
rotational mechanics when one looks at components with respect to non-inertial (i.e., 
anholonomic) frame fields, such as ones that are fixed in rotating bodies.  For instance, 
the velocity components will then take the form: 
 

vi = 
i

i j
j

dx
x

dt
ω+ ,    (1.17) 

 
which is not generally of the form /idx dt for some set of functions ( )ix t . 
 
 b. Finite deformations. – One advantage of the formalism that we have defined 

above is that one can talk about a deformation of a k-dimensional object x: Ok → Rn as a 

(cylindrical) k+1-dimensional object x: Ok+1 → Rn, with Ok+1 = (s0, s1) × Ok .  Thus, we 

are really referring to a differentiable one-parameter family of kinematical states that 
generalizes the motion of a point along a curve when k = 0.  One can also think of x as a 

“differentiable homotopy” from the initial state x0 : Ok → Rn, with x0(u) = x(0, u) to the 

final state x0 : Ok → Rn, with x1(u) = x(1, u), although we shall not go into that further at 
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this point.  (We do not refer to x0 as the natural state since that term makes restricting 
assumptions on the internal stress distribution, which we have not defined yet.) 
 
 For many purposes, it is also useful to have some way of describing the 
transformation that takes x0(u) to x1(u).  Since we are assuming that both maps x0 and x1 
are embeddings, x0 will be invertible on the points of its image x0(Ok).  If one then 

composes 1
0x−  : x0(Ok) → Ok  with x1 : Ok → Rn then the composed map y = 1

1 0x x−⋅ : 

x0(Ok) → x1(Ok) will be a diffeomorphism of the two images.  If the points of x0(Ok) are 

described by coordinates xi (suitably-restricted), and the points of x1(Ok) are described by 

coordinates yi (suitably-restricted) then that transformation can be described locally by a 
set of equations of the form: 

y i = y i (x j).      (1.18) 
 
 This is the usual starting point for conventional continuum mechanics.  One then 
describes the finite deformation that is defined by (1.18) by its displacement vector field, 
whose components with respect to the natural frame field for the canonical coordinate 

system on Rn will be: 

ui(x) = yi (x) − xi.     (1.19) 
 
 Although one can define a vector field u(x) on x0(Ok) by way of: 

 

u(x) = ui(x)
ix

∂
∂

 = y(x) – x(x),     (1.20) 

 
with analogous definitions for x(x) and y(x), nonetheless, u(x) is not a true vector field, 
any more than x(x) and y(x), which take the form of “position vector fields” or “radius 
vector fields,” since their components are actually coordinate functions. Therefore, when 
one changes to a different coordinate system, unless that transformation is linear, the 
components of u(x) will not transform linearly by the differential of the coordinate 
transformation.  Nonetheless, we introduce the concept of displacement vector field for 
the sake of completeness, since its use is widespread in continuum mechanics; if one 
wishes to avoid it, one must deal with the diffeomorphism y directly. 

 Note that although every diffeomorphism onto y: x0(Ok) → Rn defines a displacement 

vector field on x0(Ok), the converse is not true.  For instance, the negative of the radius 

vector field (viz., − r(x) = − xi ∂i) would take every point x to the origin, which does not 
describe a diffeomorphism. 
 
 c. Infinitesimal deformations. –  The first thing that one defines after the 
displacement vector field is the displacement gradient, which is the differential: 
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du = ,
i j
j i

u dx
y

∂⊗
∂

.     (1.21) 

Note that from (1.20): 
du = dy – I  ( ,

i
ju  = ,

i i
j jy δ− ),   (1.22) 

 
so the essential information in du is already contained in dy.  Once again, the 

displacement gradient is well-defined only as a tensor field on Rn × Rn. 

 Notice that du|x = 0 for all x ∈ x0(Op) iff the diffeomorphism is a constant (i.e., rigid) 

translation. 
 Up to this point, we could just as well define the initial state to be the subset x0(Op) of 

R
n, and the final state to be the subset x1(Op) = y(x0(Op)), so the deformation could be 

defined by the diffeomorphism onto y : x0(Op) → Rn.  The space of kth-order kinematical 

states would then be the jet manifold Jk(x0(Op), R
n).  However, we have found it more 

convenient to use the definitions that we made above, so we simply show how the two 
relate, as we have just done. 

 If one assumes that Rn has a scalar product defined on it (whether Euclidian or 

Lorentzian) then one can think of lowering the upper index of ,
i
ju  to produce the 

components of the doubly-covariant second-rank (pseudo) tensor on x0(Op) × Rn: 

 
du = ui, j dxj ⊗ dyi.      (1.23) 

 

 If one uses the same coordinate system on R
n for both x and y then one can polarize 

this under the permutation of indices: 
du = e + θ,     (1.24) 

in which: 
e = 1

2 eij dxi dxj,  eij ≡ ui, j + uj, i ,    (1.25) 

θ = 1
2 θij dxi ^ dxj,  θij ≡ ui, j − uj, i .    (1.26) 

 
The former symmetric tensor e is referred to as the infinitesimal strain that is associated 
with the deformation, while the latter 2-form θ is the infinitesimal rotation, which can 
also be expressed as the exterior derivative of the displacement 1-form: 
 

θ = d^u.      (1.27) 
 
 One can further decompose e into a traceless part and a trace part, where the trace 
refers to the matrix ije : 

i
je  = 

o
1i i

j jne eδ+ ,    (1.28) 
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by setting: 
o

i
je  = 1i i

j jne eδ− ,    (1.29) 

 

but that definition of 
o

i
je  is not unique, since one can add any other traceless matrix to 

o
i
je  

without changing its trace. 
 The trace: 

e = k
ke  =

k

k

u

x

∂
∂

 = div u     (1.30) 

 
is called the infinitesimal dilatation of the deformation. 
 
 d.  Rate of deformation. −  When one is dealing with dynamics, and not statics, one 
can single out the u0 parameter as representing time and regard the set of curves x(u0) = 
x(u0, 1

0u , …, 0
pu ) that one obtains fixing the remaining parameters as a congruence of 

curves that represents the evolution of each point (1
0u , …, 0

pu ) of the initial spatial object.  

That means, in particular, that one can be dealing with matter in any state (e.g., fluid or 
solid), even though the concept of congruences of curves is usually introduced in the 
context of relativistic hydrodynamics, nowadays. 
 We can then define the velocity vector field of the congruence of curves that is 
defined by x by: 

v(t, 1
0u , …, 0

pu ) = 
1
0 0( , , , )px t u u

t

∂
∂
⋯

= vi (t, 1
0u , …, 0

pu )
ix

∂
∂

.   (1.31) 

 
Hence, for each (10u , …, 0

pu ), the vector field v(t, 1
0u , …, 0

pu ) will be tangent to the curve 

of the congruence that goes through (1
0u , …, 0

pu ). 

 One can then think of the vector field v as the time derivative of the displacement u, 
and the rate of displacement dv = ,

i j
j iv dx ⊗ ∂  (or rather, dv = vi, j dxi ⊗ dxj) can be 

polarized in the same way as du: 
dv = e ω+ɺ ,     (1.32) 

in which: 

eɺ  = 1
2

i j
ije dx dxɺ  , ijeɺ ≡ vi, j + vj, i =

ije

t

∂
∂

,   (1.33) 

ω = 1
2 ωij dxi ^ dxj, ωij ≡ vi, j − vj, i =

ij

t

θ∂
∂

.   (1.34) 

 
Analogously to the situation with u in place of v, one can regard ωij as components of the 
2-form that amounts to the exterior derivative of the covelocity 1-form: 
 

ω = d^v .       (1.35) 
 
These tensors are referred to as the rate of strain and kinematical vorticity, respectively. 



§ 1.  Extended objects and their deformations. 31 

 One can also split ijeɺ  into a traceless part and a trace part: 

 
i
jeɺ  = 1i i

j jn eδΘ + ɺ ,  i
jΘ = 1i i

j jne eδ−ɺ ɺ .   (1.36) 

The trace: 

 eɺ  = k
keɺ  = 

k

k

v

x

∂
∂

 = div v = (div )
t

∂
∂

u  = 
e

t

∂
∂

    (1.37) 

 
is referred to as the rate of dilatation, or kinematical compressibility. 
 
 
  § 2.  Strain. – Strain is basically one way of measuring how the geometry of an 
object changes under a deformation of the sort that was defined above.  In particular, one 
looks at how the metric on the object changes; i.e., how the distances between all pairs of 
points change.  That is why we shall first introduce “metric strain” in order to give a 
traditional picture of the deformation of regions of space, and then discuss the “frame 
strain,” which will be fundamental in explaining the quantum stress tensor later on. 
 
 a. Finite strain. – As long as one is dealing with finite deformations, one must 
always deal with the fact that the initial state and the final state are not generally the same 
set of points in space, so one must choose whether the definitions relate to things that are 
defined on one state or the other one.  This basically amounts to the difference between 
the Lagrange picture of deformation and the Euler picture, respectively.  The former is 
more customary in the case of the deformation of solids, which tend to have better-
defined exemplars for Op , while the latter is generally used in fluid mechanics, since it is 

the channel or tank that encloses the fluid that has the consistent exemplar.  However, the 
concept of “fluid cells,” which follow the flow, is often used, which is a more Lagrangian 
sort of concept. 
 In order to see how the metric on an object changes under a deformation, one starts 

by assuming that the ambient space (R
n, for us) has a “background metric” g defined on 

it, which can be Euclidian or Lorentzian.  One then gives the initial and final states the 
metrics that are induced by restricting it to tangent vectors to the objects. 
 In the Cauchy-Green theory of strain, one chooses the Lagrange picture and uses the 

diffeomorphism (onto) y : x0(Op) → Rn to “pull back” the metric g on x1(Op) by means of 

the diffeomorphism y to give a metric: 
 

 g  = y*g       (2.1) 
 
on x0(Op).  By definition, if v, w are tangent vectors to the initial state at x then: 

 
( , )xg v w  = ( ) ( ( ), ( ))y x x x

g dy dyv w .    (2.2) 

 
 The component form of this is: 
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( )ijg x  = , ,( ) ( ) ( ( ))k l
i j kly x y x g y x .    (2.3) 

 
 If one introduces the displacement vector field u(x) for the diffeomorphism y (so ,

i
jy = 

i i
j juδ + ) then one can express the last equation in the form: 

 
( )ijg x  = [ ]( ) ( ( ))k l k l l k k l

i j i j k i i j klu u u u x g y xδ δ δ δ+ + + .  (2.4) 

 
 The finite strain tensor that this defines is then the difference between the deformed, 
pulled-back metric and the initial one: 
 

E = g − g = y*g – g.      (2.5) 
 
 Naively, if one uses (2.4) in (2.5) then the components of the finite strain tensor will 
take the form: 

Eij = [ ]( ) ( ( )) ( )k l k l l k k l
i j i j k i i j kl iju u u u x g y x g xδ δ δ δ+ + + − . 

 
However, one sees that actually one is dealing with the components of the g at two 

distinct points of Rn, so unless one makes the usual assumption that the natural 

coordinate system is also orthonormal (1), or at least it makes the components of g 
constant in space, one can go no further.  With that assumption, however, one can cancel 
the initial and final background metric, and get: 
 

Eij = [ ]k l l k k l
kl i j k i i jg u u u uδ δ+ + = k l

ij ji kl i ju u g u u+ + = k l
ij kl i je g u u+ . (2.6) 

 
All of the expressions involved are now defined at a point of the initial state. 

 Not all second-rank, symmetric, covariant tensor fields on any region of Rn can serve 

as the finite strain tensors of some diffeomorphism of the region.  If one considers (2.6) 
then one will see that part of the problem is rooted in the fact that not all functions 

( , )i
ju t x  with values in GL(n) represent the differential matrices of diffeomorphisms.  

Hence, one can think of (2.6) as a system of first-order partial differential equations for 
the functions yi(t, x), so the issue at hand is the integrability of that system.  Traditionally 
(see, e.g., [3]), the necessary condition for the integrability of finite strain was based upon 
the fact that the diffeomorphism of the region should not change the Riemann curvature 
of the initial metric g when it becomes the deformed metric g ; in particular, the Riemann 
curvature should stay zero.  That is essentially the St.-Venant compatibility condition; 
more precisely, its linearization will give St.-Venant’s compatibility condition for 
infinitesimal strain.  (See, e.g., Murnaghan [9]) 
 Here, we have a perfect example of how the Riemann-Cartan usage of the terms 
“torsion” and “curvature” can create confusion in continuum mechanics, since the 

                                                
 (1)  This assumption is not as trivial as it sounds, in general, since it implies that the Riemannian 
curvature of the background metric must vanish. 
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Riemann-Cartan usage of the terms has more to do with the integrability of parallel 
translation than it does with the bending and twisting of things.  (The author has 
discussed this subject at length in [10].) 
 Since we shall have no further use for the issue of the integrability of strain, we shall 
not introduce the necessary mathematical overhead at this point.  However, we will point 
out that Pommaret [11] has long been emphasizing a different approach to the 
integrability of strain that is rooted in Cosserat-related considerations, although it 
demands even more mathematical overhead than the traditional approach. 
 
 b. Infinitesimal strain. – In the last equation, we saw the reappearance of the 
infinitesimal strain tensor e as a component of the finite strain tensor E.  Basically, the 
infinitesimal strain represents the first-order contribution of the displacement gradient to 
the finite strain.  From its definition, it is always a symmetric, second-rank covariant 
tensor, and thus its component matrix will always be diagonalizable.  The frame in which 
eij (or rather, i

je ) is diagonal is then called the principal frame for the infinitesimal strain 

tensor, and the diagonal elements ex, ey, ez are referred to as the principal strains in the 
principal directions.  There are three conditions under which the principal strains can 
overlap: 
 
 1. Isotropy:  ex = ey = ez . 
 2. Uniaxiality: Two principal strains are equal, but not the third. 
 3. Biaxiality: All three are distinct. 
 
 In the general case, one can think of the diagonal elements of eij as infinitesimal 
elongations, and the off-diagonal elements as infinitesimal shearing strains.  When one 
decomposes ije  into a traceless part and a trace, as above: 

 
i
je  = 

o
1
3

i i
j je eδ+ , 

o
i
je = 1

3
i i
j je eδ− ,   (2.7) 

 

the traceless part 
o

i
je  will be referred to as the deviatoric strain tensor, and will represent 

an infinitesimal volume-preserving linear transformation, while the trace part will be the 
volumetric strain tensor, whose magnitude 1

3 e  will take the form of a mean elongation. 

 
 If the final state y(t) is a differentiable function of time then so is e(t), and 
differentiating with respect to time will product the infinitesimal rate of strain.  However, 
there is another way of characterizing the infinitesimal rate of strain that has a deep 
geometric significance.  If one regards the deformation as a motion from the initial state 
to the final state then one can express the final state y(t) as a differentiable function of 
time, as well as the finite strain tensor: 

E(t) = y(t)*g – g.     (2.8) 
 
When one differentiates E(t) at t = 0 one will get the infinitesimal strain tensor in the 
form of the Lie derivative of g with respect to the velocity vector field v = ∂y / ∂t: 
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e = 
0t

dE

dt =

= Lvg.     (2.9) 

 
 Those readers with a background in Riemannian geometry will know that it is a 
theorem of Wilhelm Killing that, for the general metric g: 
 

Lvgij = ∇ivj + ∇jvi ,     (2.10) 
 
in which ∇i represents the covariant derivative in the direction of xi when one uses the 
Levi-Civita connection of g.  When the components of g are constant, that covariant 
derivative will reduce to the partial derivative with respect to xi, and we will have: 
 

Lvgij = ∂ivj + ∂jvi ,     (2.11) 
 
which is identical with the rate of strain. 
 If one wishes to use the Lie derivative to define the infinitesimal strain then one can 
apply the same process to the displacement vector field u for the deformation: 
 

e = Lug .      (2.12) 
 
 Vector fields for which Lug = 0 are called Killing vector fields.  They can then be 
characterized by the fact that their flows consist of one-parameter families of isometries 
or that their infinitesimal strain (or rate of strain, in the case of v) vanishes.  Hence, one 
sees in that the intimate relationship between strain and the measure of the degree to 
which a diffeomorphism fails to be an isometry (i.e., rigid motion). 
 Here, one must be careful, since differential geometry has many examples of 
diffeomorphisms that are not rigid, but still preserve the distances.  However, one must 
go to diffeomorphisms of submanifolds of a higher-dimensional space in order to find 
them.  For instance, if one bends a flexible, extensible wire without stretching or 
compressing it then the one-dimensional metric along it (e.g., arc length) will not change, 
even though the deformation is clearly not rigid.  Similarly, developable surfaces, such as 
cylinders and cones, are all isometric to flat plates, even though the deformation of a flat 
rectangular plate into a cylinder or a flat angular wedge into a cone is clearly not rigid.  
Hence, one begins to suspect that the Cauchy-Green definition of strain is too coarse-
grained to account for all of the possibilities, since it will pass over any non-rigid 
deformation that is still an isometry.  That is why we will introduce “frame strain” 
shortly. 
 Note that in the case of infinitesimal deformations, it is irrelevant whether one is 
considering the Lagrange picture or the Euler picture, since the distinction between 
“initial” and “final” state has disappeared. 
 
 
  § 3.  Stress. – Stress is to strain what force is to displacement.  That is, it is the 
dynamical state that is associated with the kinematical one.  In most cases, it is associated 
with an infinitesimal kinematical state, such as the infinitesimal strain tensor.  That is 
because in reality the phenomena that are associated with finite deformations are much 
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more complicated than their infinitesimal approximations, and as a result, the material 
constants that are obtained from engineering tests almost always tend to describe 
infinitesimal deformations. 
 
 a.  The Cauchy definition of stress. − The units of stress are basically those of 
pressure, but one also considers the anisotropic possibility that the pressure on a reference 
area through a point will depend upon the angular orientation of the area – i.e., the 
direction of its normal vector.  Once again, this is typically assumed to be a linear 
relationship.  That is, if n is the unit normal vector to a unit square Ax through a point x(u) 

∈ R3 then the vector f that describes the force that acts upon Ax will be given by a linear 

map σ (x): TxR
3 → TxR

3, n ֏  f = σ (x)(n) so if one has defined a frame for TxR
3 then 

one can express this relationship in terms of the components of everything: 
 

f i = ( )i j
j x nσ .     (3.1) 

 
 The 3×3 component matrix ( )i

j xε , or rather its doubly-covariant form εij (x), then 

defines the Cauchy stress tensor.  It is often assumed to be symmetric, but since that is 
equivalent to the absence of internal couple-stresses, the question arises whether such 
couple-stresses have any basis in reality.  Since the time of the Cosserat brothers, Eugène 
and François, the fact that internal couple-stresses are physically realistic has been taken 
seriously by an increasing number of researchers in theoretical mechanics. We shall 
return to discussing the Cosserat approach to continuum mechanics as it becomes 
relevant in what follows. 
 
 Traditionally, the Cauchy stress tensor is associated with a geometric object that is 
called the Cauchy stress tetrahedron.  Actually, the fact that it is a tetrahedron has more 
to do with the period of history in which Cauchy did his work than anything else.  
Basically, to the mathematicians and scientists of that era, geometry always meant 
projective geometry, and the “reference tetrahedron” plays the same role in the context of 
projective spaces that a linear frame does in the context of linear spaces.  Of course, the 
matrix of the stress tensor does not have to invertible, so its columns or rows do not have 
to define linearly-independent vectors.  However, even in the non-invertible case, one can 
still think of the i th row of the matrix as representing the force per unit area that acts in the 
direction of the i th frame vector. 
 In the case of a symmetric σij , one can speak of the principal frame for the tensor, 
which will be the frame for which the matrix σij is diagonal, which will consist of 
eigenvectors of the matrix i

jσ .  Those diagonal elements σx, σy, σz are then called the 

principal stresses for σ.  That then defines three possibilities regarding how the principal 
stresses can overlap, and they are analogous to the cases for the infinitesimal strain 
tensor. 
 In the general case, one can think of the diagonal elements of σij as pressures, and the 
off-diagonal elements as shearing stresses.  When one decomposes ijσ  into a traceless 

part and a trace, as above: 
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i
jσ  = 

o
1i k i

j k jnσ σ δ+ , 
o

i
jσ = 1i k i

j k jnσ σ δ− ,   (3.2) 

 

the traceless part 
o

i
jσ  is referred to as the deviatoric stress, while the trace part is a mean 

pressure, whose magnitude is 1 k
kn ε . 

 

 b.  The energy-momentum-stress tensor. – When Rn is R4, and one has a time+space 

decomposition of it into R ⊕ R3, moreover, the time-time and time-space components of 

a stress tensor would have different interpretations from the space-space ones, just as the 
exterior derivative of a four-dimensional covelocity splits into a linear acceleration and 
an angular velocity, due to the difference in interpretation between time derivatives and 
spatial derivatives.  In particular, one finds that pressures have the same basic units as 
energy densities and momentum fluxes.  For instance, if a fluid has a mass density of ρ 
and a flow velocity of v then the scalar 1

2 ρv2, which looks like a kinetic energy density, is 

usually referred to as the dynamic pressure.  If the fluid were streaming from the end of a 
hose and impinging upon a surface, such as a window or car body, then the dynamic 
pressure would be the pressure that the fluid exerted on the plane of impact. 
 
 
  § 4.  Mechanical constitutive laws. – The association of a stress state with a state of 
strain (whether finite or infinitesimal) is the point at which the empirical considerations 
must be introduced into the model for the equilibrium state or motion of a deformable 
extended object. 

 Force 

Elongation 

I II III IV 

Yield 

Fracture 

 
 

Figure I.1.  Typical force vs. elongation graph for a real-world material. 
 

 a.  Basic notions. – Generally, the association is something that is established by 
engineering test stands, in which a cylindrical sample of the material is machined to have 
a bottleneck in the middle, so it will not fracture inside the test stand, and threaded on the 
ends so it can be held firmly. 
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 A programmed sequence of forces is applied to the sample and the resulting 
elongation is measured.  A typical graph of force vs. displacement might take the form 
that is illustrated in Fig. I.1. 
 The various regimes are referred to as: 
 

I. Linear elasticity. 
II. Nonlinear elasticity. 
III. Plastic deformation.  (Actually, the illustration would relate to a “softening” 

material.) 
IV. Work hardening. 

 
 The first regime is the one that gets the most attention, since it defines Hooke’s law 
for elastic springs (viz., F = − k ∆x) and elastic materials, more generally, which is 
typically assumed to be true for small enough displacements.  For three-dimensional 
materials, and not just springs, the F would get replaced with an σij , which would then be 
the force per unit area in a specific direction, and the ∆x would get replaced by the 
percentage elongation eij (∆l / l) in a given direction.  A linear relationship between stress 

and infinitesimal strain would then take the form σ = C(e), where C : S 2(R3) → S 2(R3) 

would be an invertible linear map from the six-dimensional vector space of symmetric, 

second-rank covariant tensors over R3 to itself.  It is usually represented in the 

component form: 
σij = kl

ijC ekl .      (4.1) 

 
 Various symmetries are commonly attributed to the component array kl

ijC  besides the 

symmetry in ij  and kl.  For instance, if one prefers to regard e as an element of S2(R
3) 

(namely, a symmetric, doubly-contravariant second-rank tensor over R3, so the associated 

stress will be an element of its dual space) then the components Cijkl of C will all be 
covariant, and one will sometimes assume that Cijkl = Cklij, along with the other 
symmetries. 
 Further reductions in the possible components Cijkl follow from assuming various 
symmetries to the material that it refers to.  Ultimately, if the material is linear, isotropic, 
and homogeneous, then one can express the constitutive law in the form: 
 

σij = 
o

k
ij k ijG e K e δ+ ,     (4.2) 

 
in which G is a constant called the shear modulus, and K is a constant called the bulk 
modulus. 
 More generally, a material can be nonlinear, anisotropic, and inhomogeneous.  In 
fact, the very assumption that the relationship between stress and strain is an algebraic 
one, and not a differential or integral relationship, or even a combination of the three, is 
not always a good approximation.  For a dispersive material, the relationship becomes an 
integral transformation for which the strain at the neighboring points might affect the 
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stress at a given point.  Some materials have “memory,” which amounts to saying that 
their constitutive properties can depend upon the time-parameterized program of 
deformations that they have experienced up to the current state, which amounts to an 
integral over time. 
  
 b.  Examples of constitutive laws. – One of the recurring themes in our eventual 
discussion of the continuum-mechanical models for quantum wave equations is that 
perhaps they are giving us a strongly-worded hint concerning the nature of matter at the 
atomic-to-subatomic level.  Hence, it is good to have some specific examples in mind for 
the form that mechanical constitutive laws take for the kinds of matter at the macroscopic 
level that have been examined in many laboratories. 
 
 Perhaps the simplest medium is the inviscid (or perfect) fluid.  Such a material is 
characterized by the fact that it cannot support any strain.  Hence, there is no constitutive 
law, but just a general form for the stress tensor.  Typically: 
 

σij = π δij ,      (4.3) 
 
in which π is the pressure.  This definition assumes that the fluid is isotropic, as opposed 
to liquid crystals, which can be anisotropic.  Moreover, the pressure does not have to be 
constant in time or space (even for incompressible fluids), as one can see in the cases of 
the atmosphere or the oceans. 
 Usually, the distinction between liquids and gases as examples of fluids is defined by 
compressibility.  That is, a gas is a compressible fluid, while a liquid is incompressible.  
Of course, perfect incompressibility, like perfect rigidity, is impossible in the eyes of 
relativistic continuum mechanics, since it would imply an infinite speed for the 
propagation of waves. 
 For a viscous fluid, the rate of strain couples to the stress tensor, in addition to the 
bulk pressure: 

σij = π δij + η ijeɺ ,    (4.4) 

in which η is then called the viscosity. 
 
 
 § 5.  Balance principles. – Ultimately, the formulation of differential equations that 
would determine the equilibrium state of a deformable object in statics or its motion in 
dynamics is based in certain “first principles” that take the form of balance principles in 
the case of open systems and conservation laws in the case of closed systems.  On the 
surface of things, they often have a somewhat tautological character, which is why it is 
only when one can imagine other possibilities that they take on the character of 
equations, not identities. 
 We shall now examine some of the balance principles that one encounters most often 
in continuum mechanics.  We shall first discuss them in their non-relativistic form, and 
then present the modifications that would be necessary if one were to give them a 
relativistic formulation. 
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 a. Balance of mass. – Naively, one expects that mass cannot be created or destroyed 
but only moved around in space.  Of course, that sort of thinking is distinctly non-
relativistic and non-quantum, since the relative motion of a body can change its observed 
mass, and the creation or destruction of mass by pair creation and annihilation at the level 
of elementary particles is commonplace. 
 Hence, as long as the nature of problem does not demand the introduction of relativity 
or quantum theory, one of the oldest conservation laws to be applied to processes, such as 
chemical reactions, was the notion that the total mass M(t) of a closed system should stay 
constant in time.  In an open system, the balance principle takes the form of a first-order 
ordinary differential equation: 

dM

dt
= i j

in out

m m−∑ ∑ɺ ɺ ,     (5.1) 

 
where the right-hand side details the various rates at which mass is being added or 
subtracted from the system.  Hence, for a closed system, all of the rates imɺ  and jmɺ must 

vanish.  There is also the steady-state possibility, in which they do not vanish, but the two 
summations cancel.  (One might imagine water flowing into a sink with its drain open.) 
 When the mass is distributed continuously over a bounded volume V with a mass 
density of ρ(t, xi), the total mass will become the integral of the density over the volume: 
 

M(t) = ( , )i

V
t x dVρ∫ ,     (5.2) 

 
in which dV is the differential volume element on space. 
 Hence, as long as V does not change in time: 
 

dM

dt
= ( , )i

V
t x dV

t

ρ∂
∂∫ .    (5.3) 

 
 The right-hand side of the balance equation (5.1) consists of the resultant of the mass 
currents (i.e., fluxes) that flow through the boundary surface ∂V.  If one thinks of the 
mass current that flows though the surface as something that takes the form of the vector 
field ρ v, where v is the flow velocity, then that resultant mass flux Φ[∂V] will take the 
form of the surface integral: 

Φ[∂V] = #( )
V

ρ
∂∫ v ,     (5.4) 

 
in which the Poincaré dual of a vector field A is the 2-form: 
 

#A = iAdV = 1
2 Ai εijk dx j ^ dx k.    (5.5) 

 
(In conventional vector calculus, this expression gets denoted by A ⋅ dS.)  For instance, 

the dual #n of the unit normal vector field n on a surface φ(xi) = const. in R3 is the 
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surface element du ^ dv if one uses the adapted coordinates (u, v, φ) for the points of the 
surface, since that will make the components of n be (0, 0, 1). 
 One can then think of the 2-form #(ρ v) as being the mass flux density that is dual to 
the mass current density ρ v, which also represents a linear momentum density.  
Similarly, if σ is an electric charge density then #(σ v) will be the electric charge flux 
density that is dual to the electric current density σ v. 
 From Stokes’s theorem for exterior forms, which takes the form of Gauss’s theorem 
here, one will have: 

Φ[∂V] = #( )
V

d ρ∫ v = #div( )
V

ρ∫ v = div( )
V

dVρ∫ v . (5.6) 

 
 Hence, if the vector v is assumed to point outward on the surface then one must have: 
 

V
dV

t

ρ∂
∂∫ = − div( )

V
dVρ∫ v .    (5.7) 

 
 If this must be true for every possible volume V then one can express this as a partial 
differential equation for ρ : 

t

ρ∂
∂

= − div(ρv).      (5.8) 

 
This equation then represents the balance of mass or continuity equation. 
 One can expand the right-hand side to give: 
 

t

ρ∂
∂

= – vρ  – ρ div(v), 

which will give: 
d

dt

ρ
= – ρ div(v),      (5.9) 

with the generic definition: 
df

dt
 = i

i

f f
v

t x

∂ ∂+
∂ ∂

     (5.10) 

 
for the derivative of a function f along the flow of v; i.e., its Lie derivative with respect to 
v; this derivative is also sometimes called the “material” derivative or “substantial” 
derivative in the standard literature. 
 Therefore, from (5.9), the flow of v will be incompressible [i.e., div(v) = 0] iff the 
mass density is constant along that flow. 
 One can also express (5.8) in the component form: 
 

( )i

i

v

t x

ρ ρ∂ ∂+
∂ ∂

= 0,      (5.11) 
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and if one extends space R3 to Galilean space-time R ⊕ R3, so that time t becomes the 

coordinate x0 and one always sets v0 = 1, then one can give the last equation the even 
more concise form: 

0 = div (ρv) = 
( )v

x

µ

µ
ρ∂
∂

.    (5.12) 

 
That is, it simply describes the vanishing of a four-dimensional divergence of a mass 
current vector field. 
 Of course, the four-dimensional picture for mechanics is usually treated 
relativistically, but one often finds that formulating non-relativistic mechanics in a four-
dimensional Galilean space-time can make the transition to relativistic mechanics more 
natural. 
 
 b. Balance of linear momentum. – Although it is traditional to discuss the balance of 
linear momentum by analogy with the balance of mass, actually, the basic step at which 
one goes from the linear momentum density p(t, x) = ρ(t, x) v(t, x) of a congruence of 
massive curves to the total linear momentum m(t) v(t) of a massive point along a single 
curve by integrating the component functions pi (t, x) over all space at each time point t 
has some fundamental limitations. 
 In the first place, although one can unambiguously define the total mass m(t) to be the 
spatial integral of ρ(t, x) at time t, the issue of defining the curve x(t) whose velocity 
vector field will be v(t, x) is not as unambiguous.  In non-relativistic mechanics, it is 
traditional to define the center-of-mass xcm(t) of the density function ρ(t, x) and use that 
curve as the reference curve, but since the mass density by itself is not a Lorentz-
invariant function, one cannot define a Lorentz-invariant center-of-mass, either. 
 Secondly, the process of integrating component functions with respect to a chosen 
local frame field is not frame-invariant, unless one restricts oneself to local frame fields 
that differ from each other by constant transition functions.  That is because otherwise 
one would have to include the component functions of the frame transition function in the 
integration, and not take them out of the integral like so many constants.  For instance, 
suppose p(t, u) = pi(t, u) ei (t, u), where ei is a local frame field that includes the support 
of p, which is a congruence of curves x(t, u) that is parameterized by u = (u1, …, up).   
Suppose further that one defines the total linear momentum at t to have spatial 
components: 

( )iP t = ( , )i
up t u dV

Σ∫      (5.13) 

 
with respect to ei , and that one makes a transition to another local frame field ( , )i t ue  = 

( , ) ( , )j
j it u L t ue ɶ , in which ( , )j

iL t uɶ  is the inverse of the transition function ( , )j
iL t u , which 

takes its values in GL(3).  Here, Σ is the spatial manifold, and dVu is its volume element, 
when it is pulled back to the parameter space.  p will then have new components ip  = 

i j
jL p  with respect to ie , and if one defines the new total linear momentum components 

to be: 
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iP  = ( , )i
up t u dV

Σ∫ = ( , ) ( , ) | |i j i
j j uL t u p t u L dV

Σ∫    (5.14) 

 
then one will see that it is only if ( , )j

iL t u  is a spatially-constant function with determinant 

unity that one can, in fact transform the components of P linearly as: 
 

( )iP t  = ( ) ( )i j
jL t P t .    (5.15) 

 
 Hence, we shall take the position that really the differential formulation of the balance 
principle is more definitive than the integral formulation.  The soul of the differential 
formulation of the balance principle for any physical observable is that its derivative 
along the curves of the congruence x(t, u) – i.e., its Lie derivative with respect to v(t, u) – 
must equal the sum of the external contributions to that density.  In the case of the linear 
momentum density, that would mean the resultant fext of the external force densities that 
act upon p: 

Lvp = fext .      (5.16) 
 
 Now, when the spatial support Σ(t) of ρ, and thus the domain of definition of x(t, u) 
and v(t, u), has a boundary ∂ Σ(t) at each t, there will be two types of external force 
densities that act upon the points of Σ(t): 
 
 1. Volume force densities fV, such as gravitation, electrostatic forces, magnetic 
forces, which act upon the points of Σ(t). 
 
 2. Surface force densities fS, such as surface tension, atmospheric pressure, and some 
types of applied loads, which act upon the points of ∂ Σ(t). 
 
 Now, the surface forces can be converted into volume force densities by using 
Gauss’s law on the vector field fS (i.e., Stokes’s law for the n – 1-form #fS), as long as 
one assumes that the surface force density fS consists of simply the boundary values of a 
volume force.  If n is the normal vector field on ∂Σ(t), so one can express the spatial 
components of fS with respect to some local frame field ei(t) that includes Σ(t) in the 
form: 

i
Sf  = − i j

jnσ      (5.17) 

then that will make: 
d^ #fS = − ( )i j

jd nσ ^ #ei − ( )i j
j nσ d^ #ei .    (5.18) 

 
The second term will vanish for a natural frame field ei = ∂i , and since: 
 

( )i j
s jd nσ   = ( )i j k

k j n dxσ∂  

and 
 dxk ^ #∂i = k

i xVδ , 

that will make: 



§ 5.  Balance principles. 43 

d^ #fS = − ( )i j
i j xn Vσ∂  = − #(div fS), 

so: 
div fS = − ( )i j

i j nσ∂  = − [( ) ( )]i j i j
i j j in nσ σ∂ + ∂ .  (5.19) 

 
 One best extends n into the interior of Σ by assuming that the frame field ej is adapted 
to n, so n is itself one of the frame members, and the other frame members are tangent to 
∂Σ.  The components of n will then be constants (viz., one of them will be 1, and the 
others will be 0).  One then defines the 1-form on Σ: 
 

Sf = − ( )i j
i jσ θ∂ ,    (5.20) 

 
where θ i is the reciprocal coframe field to ei .  [i.e., θ i (ej) = i

jδ .] 

 It now becomes more convenient to represent p and fV as 1-forms, as well, and the 
balance equation (5.16) will take the form: 
 

Lv p = fV + fS  = ( )j i
i j if σ θ− ∂     (5.21) 

 
 Now, according to a basic property of the Lie derivative [see App. B], if p = pi θ i 
then: 

Lv p = Lvpi θ i + pi Lvθ i. 
 
As long as one uses a “convected” frame field, for which Lvθ i will vanish, that will 
make: 

Lv p = (Lv pi)θ i = (vpi)θ i = idp

dt
θ i. 

 
 The condition for Lvθ i to vanish reads: 
 

0 = Lvθ i = ivd^θ i + dvi,     (5.22) 
explicitly.   
 One example of a convected frame field is a natural frame field (θ i = dxi) that is 
adapted to v, so vi will be constants [e.g., (1, 0, …, 0)].  Of course, that would imply that 
v would have to be irrotational, in order to have d^v = 0; i.e., v would have to admit a 
velocity potential (if only locally). 
 
 Ultimately, we arrive at the conventional component form that the balance of 
momentum takes: 

idp

dt
= fi − i

i jσ∂ .    (5.23) 

 
 If mass is conserved (so dρ / dt = 0) then that will take the form: 
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idv

dt
ρ = fi − j

j iσ∂ .    (5.24) 

 
 In the case of inviscid fluids, for which jiσ  = j

iπ δ , this takes the form of Euler’s 

equation: 

idv

dt
ρ = fi − ∂iπ .     (5.25) 

 
 In the case of elasticity, for which the Lagrangian picture is more commonly used, the 
Lie derivative becomes the partial derivative with respect to time, and the equations of 
motion take the form: 

iv

t
ρ ∂

∂
= fi − j

j iσ∂ .    (5.26) 

 
 When the problem is one of statics, there will be no acceleration, so the equations will 
become equations of equilibrium: 

j
j iσ∂ = fi .      (5.27) 

 
 c. Balance of angular momentum. – There are two types of angular momentum to 
consider for a moving, deformable mass distribution ρ (t, x), which amount to the 
external and internal angular momentum densities. It is important for later discussion to 
note that “internal angular momentum” is quite distinct from the quantum concept of 
“intrinsic angular momentum,” or “spin,” which is rooted in the weight of the 
representation of the rotation or Lorentz group in the field space of the quantum wave 
function.  The internal angular momentum is basically an orbital angular momentum 
density that is associated with the material’s response to stress-couples. 
 The external or orbital angular momentum density 2-form L = 1

2 Lij dxi ^ dxj of a 

moving mass distribution that is associated with a linear momentum density 1-form p (t, 
xi) = pi dxi is essentially the moment of that momentum with respect to an observation 
point (e.g., the origin): 

L(t, xi) = p ^ R = 1
2 (pi xj – pj xi) dx i ^ dx j,   (5.28) 

 
in which R(t, xi) = xi dxi is the position 1-form of the point x of ρ at time t with respect to 
the observer. 
 In order to get the conservation law that goes with L, one first differentiates it with 
respect to time: 

dL

dt
= 

dp

dt
^ R + p ^ v.     (5.29) 

 
As long the momentum density p is of the “convective” type, so p = ρ v, the last term will 
disappear, but if p includes a transverse momentum density component, which is not 
parallel to v, then it will be non-vanishing.  Hence, for the time being, we shall leave it in. 
 If one applies the balance of linear momentum (5.23) to dpi / dt then (5.29) will 
become: 
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ijdL

dt
= Mij − k k

k i j k j ix xσ σ∂ − ∂ + pi vj – pj vi , 

 
in which we have defined the moment of external force density 2-form: 
 

M = f ^ R = 1
2 (fi xj – fj xi) dx i ^ dx j.    (5.30) 

 
An application of the product rule to the second two terms on the right-hand side will 
give this the form: 

ijdL

dt
= Mij − k

k ij ij jiS σ σ∂ + − + pi vj – pj vi ,   (5.31) 

 
in which we have defined the vector-valued 2-form: 
 

Sk = 1
2

k
ijS  dx i ^ dx j,  k

ijS = k k
i j j ix xσ σ− ,  (5.32) 

 
which we shall then call the internal stress-couple density. 
 Hence, external angular momentum will be conserved iff one has: 
 

Mij = k
k ij ij jiS σ σ∂ − + + pi vj – pj vi .    (5.33) 

 
In the absence of external force-moments, one can still have: 
 

k
k ij ij jiS σ σ∂ = − – pi vj + pj vi .    (5.34) 

 
Hence, the sources of internal stress-couples are found in the possible asymmetry of the 
stress tensor and the existence of transverse momentum. 
 
 d. Balance of energy. – If one writes the balance of linear momentum in the form: 
 

Lv pi = fi − i
i jσ∂     (5.35) 

 
and contracts both sides with vi then since one will have: 
 

vi Lv pi = i i ji i
j

p p
v v v

t x

∂ ∂+
∂ ∂

= 
2 21 1

2 2( ) ( )j

j

v v
v

t x

ρ ρ∂ ∂+
∂ ∂

= Lv( 1
2 ρ v2), 

 
that will make: 

Lv( 1
2 ρ v2) = vi (fi − j

j iσ∂ ).    (5.36) 

 
 Now, one can interpret the expression 1

2 ρv2 as either a kinetic energy density or the 
dynamic pressure of the motion, and since the right-hand side represents a power 
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exchange density, the last equation says that the power exchange density is equal to the 
rate of change of 12 ρv2 along the flow of v. 

 If fi = − ∂i U, where the potential energy density U is not a function of time then: 
vi (fi − j

j iσ∂ ) = − vi ∂i U − v i j
j iσ∂ . 

 
If we further assume that a stress potential vector ψ j exists, so: 
 

j
iσ = j

i ψ∂ ,     (5.37) 

 
then, if ψ j is not a function of time, either, we will have: 
 

vi (fi − j
j iσ∂ ) = − vi ∂i (U + ∂j ψ j) = − Lv(U + ∂j ψ j) 

 
 and if we define the total energy density to be: 
 

E = 1
2 ρv2 + U + ∂j ψ j     (5.38) 

 
then (5.36) can be put into the form: 

LvE = 0.      (5.39) 

 
Hence, as long as the external forces and internal stresses are conservative, the total 
energy density will be constant along the motion of the mass distribution that is described 
ρ. 
 In the case of inviscid fluids, one will have j

j iσ∂  = – ∂i π, and if π is also independent 

of time then (5.38) will be replaced with: 
 

E = 1
2 ρv2 + U + π,     (5.40) 

 
which is often referred to as the total head of the fluid.  The fact that this is constant 
along the flow when U and π are time-independent amounts to Bernoulli’s theorem.  One 
usually gets to Bernoulli’s theorem by starting with Euler’s equation (5.25) and assuming 
that flow is steady, which we have implicitly done by assuming that U and π were time-
independent. 
 
 
 6.  Relativistic continuum mechanics. – One would expect that when one goes from 
non-relativistic to relativistic continuum mechanics, the mathematics would get more 
complicated.  However, in many respects, it becomes simpler when time gets treated as 
another dimension.  Fortunately, we have been trying to anticipate the transition to 
relativistic methods all along, so it will not be as necessary to start distinguishing vectors 
from covectors, which is always an issue if one has treated covariant and contravariant 
indices as indistinguishable, simply because the use of the Euclidian metric in an 
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orthonormal frame will not change the values of components when one raises or lowers 
an index. 
 One will find that relativistic continuum mechanics is more developed in the context 
of fluid media than it is in the context of solids.  To some extent, that is based in the fact 
that true “rigidity” cannot exist in relativistic mechanics, so even elastic solids will have 
some relativistic idiosyncrasies.  It is also based in the fact that the main application for 
relativistic continuum mechanics all along has basically been directed towards 
developing energy-momentum-stress tensors that would serve as models for the celestial 
objects that define the sources of gravitational fields in the eyes of Einstein’s equations.  
However, since the wave equations that we will treat are usually discussed in the context 
of special relativity, not general relativity, we shall stop short of anything that involves 
introduction connections, curvature, and Einstein’s equations.  (See, however, the book 
by Vigier [12].)  Hence, it will be assumed in all of what follows that the quantum waves 
propagate in a space where the gravitational force is non-existent. 
 
 a.  Minkowski space preliminaries. − When one goes from non-relativistic motion to 
relativistic motion, the first thing that changes fundamentally is that the speed of light (in 
vacuo) c will no longer be infinite, and in fact, it will have to be the same for all 
observers.  As a result of that, the three-dimensional Euclidian metric, whose components 
are δij in an orthonormal frame, will have to be extended to the four-dimensional 
Lorentzian metric: 
 

η = ηµν dxµ dxν, (ηµν = diag[+1, −1, −1, −1]).    (6.1) 
 

We shall denote Minkowski space by M4 = (R4, η).  If the components of two tangent 

vectors to M4 at some point with respect to the natural frame of the coordinates xµ are vµ, 

wµ, resp., then their Lorentzian scalar product will be: 
 

η(v, w) = ηµν v
µ wν = v0 w0 − v1 w1 − v2 w2 − v3 w3,   (6.2) 

 
and the Lorentzian square of v will be: 
 

|| v ||2 = (v0)2 − (v1)2 − (v2)2 − (v3)2.    (6.3) 
 
Unlike the Euclidian square, the Lorentzian one does not have to be non-negative.  One 
refers to v as space-like, light-like (or isotropic), or time-like according to whether || v ||2 
is negative, zero, or positive, respectively.  One advantage of the present sign convention 
for the components of ηµν is that the square root of || v ||2 will always be real for time-like 
vectors.  The set of all light-like vectors in any tangent space is referred to as the light 
cone at that point. 
 A further consequence of the finitude of c is that one must carefully distinguish 
between the proper time parameter τ of a curve x(τ) in space-time and the time 
coordinate t of the points along that curve.  It is often convenient to use c as a units 
conversion constant in order to define x0 = ct, so that one does not have to introduce c 
into the Lorentzian metric explicitly.  In the latter case, one will have: 
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η(v, w) = c2 v0 w0 − v1 w1 − v2 w2 − v3 w3.   (6.4) 
 
 Because of the difference between proper time, which presumably describes the time 
evolution of all processes in one’s “rest space” (i.e., everything that is at rest relative to 
oneself), and the time coordinate, which is more general, there will also be a difference 
between the spatial components of the four-velocity of the curve x(τ) and the  three-
velocity of the spatial curve x(t).  The four-velocity that is defined by the proper-time 
parameter will have components: 

uµ = 
dx

d

µ

τ
 (µ = 0, …, 3),     (6.5) 

 
while the three-velocity that is defined by the time coordinate will have components: 
 

vi = 
idx

dt
 (i = 1, 2, 3).     (6.6) 

 
The way that one gets from uµ to vi is by taking advantage of the fact that: 
 

u0 = c
dt

dτ
,      (6.7) 

 
so if one recalls the chain rule for differentiation then: 
 

ui = 
idx

dτ
 = 

idt dx

d dtτ
=  

1

c
u0 vi ;      (6.8) 

i.e.: 

vi = 
0

iu
c

u
.      (6.9) 

 

Since one can think of ui / u0 as the “inhomogeneous coordinates” of a point of RP3 that 

are associated with the “homogeneous coordinates” uµ, that means that the projection 
from space-time to the rest space has more in common with projective geometry than it 
does with affine geometry.  We mention that only in passing, since we shall not have any 
cause to refer to that fact, but if one wishes to know more about that approach to special 
relativity then one can confer the author’s discussions of that fact ([13]) and the 
references that are cited in them. 
 An identifying characteristic of proper time is that when a time-like space-time curve 
x(τ) has been parameterized by proper-time τ, one will always have: 
 

|| u ||2 = c2.       (6.10) 
 

In the rest space of u (i.e., all co-moving objects), one will then have u = (c, 0, 0, 0), or ui 
= 0.  Hence, the proper-time parameterization is essentially a unit-speed parameterization 
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when one uses units in which c = 1.  However, light-like curves will not admit proper-
time parameterizations, since proper time will always be zero for them. 
 If we expand (6.10), while using (6.9), then we will get: 

c2 = (u0)2 – (u1)2 − (u2)2 − (u3)2 = (u0)2 
2

21
v

c

 
− 

 
, 

which will make: 

u0 = cγ, γ ≡ 
dt

dτ
 = 

1/ 22

2
1

v

c

−
 

− 
 

.   (6.11) 

 
This accounts for the ubiquitous nature of the Fitzgerald-Lorentz factor γ in special 
relativity. 
 As a result of (6.10), one must always have: 
 

η (u, αααα) = 0  (αααα ≡ 
d

dτ
u

).    (6.12) 

 
Hence, the proper velocity will always be orthogonal to the proper acceleration αααα. 
 One can also relate the proper acceleration αααα to the non-relativistic acceleration, 
which is: 

a = 
d

dt

v
,     (6.13) 

 
by differentiating (6.8) with respect to proper time: 
 

α i =
idu

dτ
= 

( )id v

dt

γγ = 
i

id dv
v

dt dt

γγ γ 
+ 

 
= 2 1i id

a v
dt

γγ
γ

 + 
 

, 

 
and if we take into account that: 

d

dt

γ
= 

3

2
i

iv a
c

γ
     (6.14) 

then we can say that: 

α i =
2

2 ( )i i i
ja v a v

c

γγ
  +  

   
,    (6.15) 

 
So the spatial part of the proper acceleration does not have to be collinear with the non-
relativistic acceleration unless the latter is orthogonal to the velocity.  Since: 
 

vj a j = 
21

2

dv

dt
,     (6.16) 

 
one can also characterize the latter condition by saying that the motion has constant 
speed. 
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 The process of splitting the R4 of space-time (if only locally, as in general relativity), 

into a time-plus-space R ⊕ R3 is usually intimately linked with choosing a rest space.  In 

particular, if an observer x(τ) moves through space-time with a time-like four-velocity 

u(τ) then one generally defines the time line R in the decomposition to be the tangent line 

at each point x(τ) that is generated by u(τ) and the spatial subspace R3 to be the 

orthogonal complement of the time line. 
 A time-plus-space splitting of space-time implies a way of partitioning the 
components of tensors into various combinations of the temporal index 0 and the spatial 
indices.  For instance, a second-rank covariant tensor field a whose components with 
respect to a natural coframe are aµν can be partitioned into: 
 

a = a00 dx0 ⊗ dx0 + a0i dx0 ⊗ dxi + ai0 dxi ⊗ dx0 + aij dxi ⊗ dx j ,  (6.17) 
 
which involves one time-time component a00, three time-space components a0i, three 
space-time components ai0, and nine space-space components aij . 
 
 The linear transformations of Minkowski space M4 that preserve the Minkowski 

scalar product η are called Lorentz transformations.  Hence, for such a transformation L 
one must have: 

η (L(v), L(w)) = η (v, w)     (6.18) 
 
for any two vectors v and w in M4. 

 If one rewrites (6.18) as the matrix equation: 
 

v LTη L w = vη w 
 
then condition for a 4×4 real matrix L to be a Lorentz transformation is that: 
 

LTηL = η or L−1 = L* ≡ η LTη.   (6.19) 
 

Hence, its inverse (which automatically exists) must be equal to its Lorentz adjoint L*, in 
analogy with the way that orthogonal matrices have their transposes for their inverses. 
 If one expresses L in time+space form then one will see that: 
 

if L = 
0 0
0

0

j

i i
j

L L

L L

 
 
  

  then  L* = 
0
0 0
0

i

j
j i

L L

L L

 −
 −  

. 

 
In particular, 0

0L  is not altered, while the spatial submatrix i
jL  gets transposed.  Thus, the 

spatial submatrices will always be spatial rotations. 
 However, the Lie group O(3, 1) of all Lorentz transformations has a dimension of six, 
while the subgroup O(3) has a dimension of only three.  The remaining three dimensions 
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are defined by the pure Lorentz transformations – or boosts.  If one thinks of a proper-
time hyperboloid: 

(u0)2 − (u1)2 – (u2) 2 – (u3)2 = c2τ 2,    (6.20) 
 
as a one-parameter family of 2-spheres of radius-squared (u1)2 + (u2) 2 + (u3)2 then the 
rotations will preserve that radius while the boosts will change it. 
 Physically, boosts are the relativistic transformations from one reference frame to 
another that has a constant relative velocity with respect to the first one.  If the relative 
velocity points in the x-direction and has a magnitude v then the corresponding boost 
transformation will take the form: 
 

t  = γ [t + (v / c2) x] , x = γ [ vt + x],   (6.21) 
 
while the other coordinates y, z will remain the same. 
 If one replaces t with x0 = ct and t with 0x = ct and adds a superscript 1 to x and x  
then this can be expressed as a matrix equation: 
 

0

1

x

x

 
 
 

 = 
0

1

cosh sinh

sinh cosh

x

x

α α
α α

  
  

   
,   (6.22) 

 
into which, we have introduced the rapidity parameter α, which will make: 
 

cosh α = γ ,  sinh α = γ v / c.   (6.23) 
 
 The subgroup SO(3, 1) of O(3, 1) for which all matrices have unity determinant is 
called the special Lorentz group, or sometimes just the Lorentz group.  Such 
transformations will preserve the four-dimensional volume e0 ^ e1 ^ e2 ^ e3 of a 4-frame 
{ eµ , µ = 0, …, 3}, as well as its orientation.  If one identifies e0 as the time direction then 
one can further decompose special Lorentz transformations according to whether they 
preserve or invert the orientation of the line [e0].  Such transformations are called 
orthochronous in the event that they preserve that orientation.  Topologically, O(3, 1) 
consists of four connected components depending upon the sign of det L and whether L is 
orthochonous or not.  The identity component shall be denoted by SO+(3, 1) and referred 
to as the orthochronous Lorentz group. 
 
 b. Relativistic hydrodynamics. – The story of relativistic hydrodynamics [14-16] starts 
with a flow velocity vector field: 

u(x) = uµ (x) 
xµ
∂

∂
    (6.24) 

 
that is defined on some region R of space-time, and is assumed to be either timelike or 

lightlike. 
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 Now that we must distinguish proper time τ, which is a curve parameter, from t, the 
coordinate (which can also serve as a parameter), the business of integrating the system 
of four ordinary differential equations for the world lines x(s): 
 

dx

ds
= u(x(s)), i.e., 

dx

ds

µ

= uµ (x(s)),    (6.25) 

 
will become more subtle depending upon whether the parameter s is equal to τ or t. 
 For one thing, if the vector field u(x) is light-like (as one would expect for a photon 
gas), there will be no proper time parameter, and one will have to use an affine 
parameter.  Similarly, in time-like cases, one might have to consider the integral curves in 
both proper time and time coordinate parameterizations. 
 One thing that simplifies matters is that since the basic configuration manifold M4 

includes time already, in effect, all velocity vector fields will be time-varying (i.e., they 
will be steady only with respect to some reference frames).  Hence, one no longer needs 
to distinguish between path-lines, which are integral curves of time-varying flow 
velocities, and the streamlines, which pertain to steady flow.  Following Lichnerowicz 
[15], we agree to call all integral curves streamlines generically. 
 The covelocity 1-form: 

u = uµ dxµ      (6.26) 
 
is associated with u is associated by way of the Minkowski scalar product: 
 

u = iuη  (uµ = ηµν u
ν).    (6.27) 

 
Hence, one must be careful to include appropriate signs in its components: 
 

u0 = u0, = βc,  ui = β vi = − ui = − β v i.   (6.28) 
 One then has: 

u(u) = || u ||2 = || u ||2,      (6.29) 
 
and for proper-time parameterization: 

u(u) = c2.      (6.30) 
 
In (6.29), the definition of || u ||2 comes from the Minkowski space structure on the 

cotangent spaces to R4, which is defined by the inverse matrix ηµν
  to ηµν . 

 The rate of deformation du has more non-zero components now, since one must 
consider v0 to be a function of xµ, and not just 1, as it was before: 
 

du = eɺ  + Ωk ,      (6.31) 
in which: 

eɺ  = 1
2 eµνɺ dxµ dxν, eµνɺ ≡ uµ,ν + uν,µ     (6.32) 

 
is the symmetric rate of strain tensor field, while: 
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Ωk = 1
2 Ωµν dxµ ^ dxν,  Ωµν ≡ uµ,ν − uν,µ   (6.33) 

 
is the anti-symmetric kinematical vorticity 2-form, which satisfies: 
 

Ωk = d^u .      (6.34) 
 
 If one splits space-time according to x0 and xi, i = 1, 2, 3 then the two tensor fields 
will decompose into: 
 

eɺ  = u0,0 (dx0)2 + 1
2 (u0,i + ui,0) dx0 dxi  + 1

2 (ui,j + uj,i) dxi dxj ,   (6.35) 

 
Ωk = (u0,i − ui,0) dx0 ^ dxi + 1

2 (ui,j − uj,i) dxi ^ dxj.    (6.36) 

 
 Note that the components u0,0  and u0,i would vanish in non-relativistic mechanics, for 
which γ would be a constant, namely, 1.  However, if one sets u0 = c γ (xµ), as in (6.11), 
then: 

u0,0 = 0
0

u

x

∂
∂

= 
t

γ∂
∂

= 
3 2

22

v

c t

γ ∂
∂

,    (6.37) 

 

u0,i = 0
i

u

x

∂
∂

= 
i

c
x

γ∂
∂

= 
3 2

2 i

v

c x

γ ∂
∂

.    (6.38) 

 
Hence, u0,0 will vanish when the spatial speed of flow is constant in time, while u0,i will 
vanish when it is constant in space. 
 Since one also has: 

ui,0 = 
0
iu

x

∂
∂

= 
( )1 iv

c t

γ∂
∂

= 
2 21

2
iv v

c t c t

γ γ ∂ ∂ +  ∂ ∂   
,  (6.39) 

 
one can now compute the time-space components in both cases: 
 

u0,i + ui,0 =    
2 2

2
2

1 1

2
i

i i

v v v
v

c t c t x

γ γ
  ∂ ∂ ∂+ +  ∂ ∂ ∂  

,  (6.40) 

 

u0,i − ui,0 = − 
2 2

2
2

1 1

2
i

i i

v v v
v

c t c t x

γ γ
  ∂ ∂ ∂− −  ∂ ∂ ∂  

.  (6.41) 

 
The interpretation of these time-space components is not entirely obvious, beyond the 
fact that they involve the non-relativistic spatial acceleration covector field ∂vi / ∂t, along 
with corrections to it that originate in the possibility that the speed v of the non-
relativistic velocity vector might vary in both time and space. 
 One can then express the spatial gradient ui,j of the relativistic (i.e., proper-time) 
velocity in terms of the spatial gradient vi,j of the non-relativistic velocity by the equation: 



54 Chapter I – Basic Continuum Mechanics 

ui, j = 
( )i

i

v

x

γ∂
∂

= i
ii i

v
v

x x

γ γ ∂∂ +
∂ ∂

= 
2 2

, 22i j i j

v
v v

c x

γγ  ∂+ ∂ 
.  (6.42) 

 

As v goes to 0, ui, j will go to vi, j +
2

2

1

2 i j

v
v

c x

∂
∂

, while ui,j will become infinite as v 

approaches c.  Hence, once again, the possibility that the speed of the velocity vector 
field will vary in space has changed the nature of the non-relativistic limit of the 
relativistic expression for the covelocity gradient. 
 When one symmetrizes ui,j , the spatial components of the relativistic rate of strain 
will relate to the non-relativistic components by: 
 

ui, j + uj,i = 
3 2 2

22ij i jj i

v v
e v v

c x x

γγ  ∂ ∂+ + ∂ ∂ 
ɺ ,   (6.43) 

 
while the difference between the spatial components of the relativistic kinematical 
vorticity and β times the non-relativistic components will be: 
 

ui, j − uj,i = 
3 2 2

22ij i jj i

v v
v v

c x x

γγ ω  ∂ ∂+ − ∂ ∂ 
,   (6.44) 

 
which can be put into the form: 

Ωk = γ [ω + 
2

1

2 c

γ 
 
 

v ^ dv2].     (6.45) 

 
The second term in the brackets will vanish when the gradient of the speed-squared is 
collinear with the covelocity. 
 Once again, there are two types of eµνɺ : ones for which the matrix eµ

νɺ = eµκ
κνη ɺ  has 

trace zero and one for which that trace is non-zero.  One can then decompose eµ
νɺ  into: 

 
eµ

νɺ  = 1
4e eµ κ µ

ν κ νδ+⌢ ɺ , eµ
ν
⌢ ≡ 1

4e eµ κ µ
ν κ νδ−ɺ ɺ ,   (6.46) 

 
in which eµ

ν
⌢

 is traceless.  Once again, this decomposition is not unique, since one can add 

any traceless matrix to eµ
ν
⌢

, 

 One finds that: 
 

λk ≡ eµ
µɺ  = 

u

x

µ

µ
∂
∂

= 
i

i

i i

v
v

t x x

γ γγ∂ ∂ ∂+ +
∂ ∂ ∂

=
2 21

2

i

i

v dv

x c dt

γγ
 ∂  +  ∂    

, (6.47) 
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which one then regards as the relativistic compressibility of the flow.  Its vanishing 
would not be equivalent to non-relativistic incompressibility, since one would need to 
have: 

i

i

v

x

∂
∂

= −
2 21

2

dv

c dt

γ 
 
 

.    (6.48) 

 
Hence, this would vanish iff the speed of the flow were constant along the integral curves 
of v. 
 One must realize that non-relativistic incompressibility would imply that that the 
speed of propagation of sound waves in the fluid would have to be infinite, so relativistic 
incompressibility must reflect the fact that there is an upper bound on that speed of 
propagation that is imposed by c. 
 
 When one introduces a mass density ρ into the relativistic context, one must 
recognize that it is not a Lorentz-invariant object, but only one-fourth of a Lorentz-
invariant object, namely, the energy-momentum density 1-form: 
 

p = ρ0 u.      (6.49) 
 
In this expression, we have distinguished the expression that ρ takes in any rest frame, 
namely, the rest mass density ρ0 . Such a Lorentzian frame will have the property that ui 
= 0 (so u = c dt and p = ρ0 c dt).  Hence, we can say that: 
 

p = (ρ0 γ c, ρ0 γ vi) = (ρ c, ρ vi),    (6.50) 
in which: 

ρ = ρ0 γ       (6.51) 
 
will then become the relative mass density for the Lorentzian frame show relative 
velocity is vi. 
 One can also characterize the temporal component of p as 1/c times the energy 
density E of the motion: 

c p0 = E = ρ c2 = γ ρ0 c
2 = γ E0 ,    (6.52) 

which will then make: 
E0 = ρ0 c

2      (6.53) 
the rest energy density of that motion. 
 One then has: 

|| p ||2 = 2 2
0 || ||uρ = 2 2

0 cρ .    (6.54) 

 
 Since light waves are associated with an energy density and a momentum density, but 
a vanishing rest mass density, one cannot use the definition (6.49) for the energy-
momentum density 1-form, but must start with p = (E / c, pi) as the definition, which will 
have the property that: 

|| p ||2 = 0.      (6.55) 
 



56 Chapter I – Basic Continuum Mechanics 

Later, we shall discuss the way that such an energy-momentum density is associated with 
a kinematical state, in the form of the “frequency-wave number” 1-form, rather than the 
covelocity. 
 
 The exterior derivative of p is called the dynamical vorticity Ωd , and since: 
 

Ωd = d^p = dρ0 ^ u + ρ0 d̂ u = dρ0 ^ u + ρ0 Ωk , 
 
the dynamical vorticity will be ρ0 times the kinematical vorticity iff dρ0 is collinear with 
u. 
 If p = ρ0 u is the energy-momentum density vector field then since: 
 

div p = 
0

0 0( ) ( )1 i

i

u u

c t x

ρ ρ∂ ∂+
∂ ∂

= 0 0( ) ( )i

i

v

t x

ρ β ρ β∂ ∂+
∂ ∂

= 
( )i

i

v

t x

ρ ρ∂ ∂+
∂ ∂

, 

 
one will see that this differs from the non-relativistic expression (5.11) for conservation 
of mass by only a correction to the mass density.  Hence: 
 

div p = 0     (6.56) 
 
can serve as the relativistic definition of conservation of mass. 
 p also defines the relativistic dynamical compressibility by its four-divergence.  
Since: 

div p = dρ0 (u) + ρ0 div u = 0d

d

ρ
τ

+ ρ0 div u 

 
the dynamical compressibility will be equal to ρ0 times the kinematical compressibility 
iff ρ0 is constant along the flow of u. 
  
 Of course, since mass is not a Lorentz-invariant concept, one usually expands the 
conservation of linear momentum by embedding the energy-momentum density into the 
energy-momentum-stress tensor T µ

ν , whose doubly-covariant form Tµν is generally 

assumed to be symmetric in relativistic hydrodynamics.  The components of both 
decompose as: 

T µ
ν = 

j

i i
j

E cp

cp σ
 
 
 

, Tµν = 
i

i ij

E cp

cp σ
 
 
 

,   (6.57) 

 
in which i

jσ  is the (relative) stress tensor, and one must note the sign discrepancies: 

 
pi = − pi , σij = − i

jσ .    (6.58) 
Hence: 



§ 6.  Relativistic continuum mechanics. 57 

T µ
ν = 

i

i ij

E cp

cp σ
 
 − − 

.    (6.59) 

 
Hence, even though Tµν is assumed to be symmetric, T µ

ν will generally be asymmetric.  

One should notice that all components have the same basic units of M / (LT2), since 
pressure has units of force per unit area. 
 One then sees that the trace of T µ

ν will take the form: 

 
T µ

µ  = E + i
iσ .     (6.60) 

 
It will then represent the sum of the energy density and the three times the mean pressure. 
 Since T µ

ν  is generally asymmetric symmetric, the eigenvalues of T µ
ν  will not 

necessarily be real.  One can also pose a generalized eigenvalue problem for T µ
ν  in the 

form: 
Tµν X

ν = λ ηµν X
ν = λ Xµ .     (6.61) 

 
If one assumes that the eigenvalues are all real then there will be a principal frame in 
which T µ

ν is diagonal.  A common restriction on T µ
ν  is that it must have at least one time-

like eigenvector.  One then calls such a T µ
ν  normal [15]. 

 
 The divergence of T µ

ν  has temporal and spatial components that are equal to: 

 

0T µ
µ∂ = 

1 i

i

E p
c

c t x

∂ ∂+
∂ ∂

= 
i

i

p
c

t x

ρ ∂ ∂+ ∂ ∂ 
 = 

d
c

dt

ρ
, jT µ

µ∂ = 
i

j j

i

p

t x

σ∂ ∂
+

∂ ∂
.  (6.62) 

 
Hence, its vanishing: 

T µ
µ ν∂ = 0     (6.63) 

 
will yield two sets of conservation laws: 
 

d

dt

ρ
= 0, 

ip

t

∂
∂

= − i
i jσ∂ .    (6.64) 

 
 From the first equation in (6.62), one can also write the first conservation law as the 
conservation of energy in the form: 

2
i

i

E p
c

t x

∂ ∂+
∂ ∂

= 0.     (6.65) 
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 In the case of external force densities fν that act upon the fluid (e.g., electromagnetic 
forces that act upon a charged fluid), instead of conservation laws, one will get balance 
principles.  Namely: 

T µ
µ ν∂ = fν ,     (6.66) 

which yields: 
d

dt

ρ
= 

1

c
f0 , 

ip

t

∂
∂

= fj − i
i jσ∂ .    (6.67) 

 
Hence, f0 / c must represent the source of the net flux of mass through any region of 
space-time.  However, it is more conventional to think of the temporal component of f as 
representing a power transfer density, which would be consistent with the elementary 
association of f with dp / dt.  One can then make the first equation in (6.67) consistent 
with that definition by multiplying both sides by c2: 
 

dE

dt
= f0 c.      (6.68) 

 
 The general form of T µ

ν  for the purposes of relativistic hydrodynamics (see 

Lichnerowicz [15] or Halbwachs [17]) is: 
 

T µ
ν  = pν u

µ + µ
νθ .     (6.69) 

 
 The first term is essentially a kinetic energy term, while the second one represents the 
contribution of internal stresses that are due to the interaction of the constituent 
molecules with each other, along with the external forces.  When there is no transverse 
momentum present: 

pν u
µ = ρ uν u

µ.    (6.70) 
 
Otherwise, the kinetic term can be asymmetric in its doubly covariant form. 
 
 The most common definitions that we shall use in what follows are: 
 
 1. Pure matter (i.e., dust cloud): µ

νθ = 0. 

 
 In such a case, there are no mutual interactions, and therefore, no internal stresses.  
The divergence of T µ

ν = uµ pν will take the form: 

 

T µ
µ ν∂ = (∂µ uµ) pν + uµ ∂µ pν = λk pν +

dp

d
ν

τ
,   (6.71) 

 
which differs from the proper-time derivative of the energy-momentum density by a 
contribution from the kinematical compressibility.  Hence, for a kinematically 
incompressible fluid, they will be equal. 
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 2. Perfect (i.e., inviscid) fluid): µνθ = π µ
νδ . 

 
 Since µ

µ νθ∂  = ∂ν π, one sees that sees that the relativistic Euler equation (i.e., T µ
µ ν∂ = 

fv) will take the form: 
dp

d
ν

τ
= fv − ∂νπ + λk pν .    (6.72) 

 
Note, however, that the time derivative has become the Lie derivative, which is consistent 
with the fact that one usually treats hydrodynamics in the Eulerian picture, which means 
following the evolution of the hydrodynamical state variables along the streamlines. 
  
 3. Charged, perfect fluid: µνθ  = (perfect fluid) + µ

ντ  , where: 

 
µ

ντ = F Fµ κ
κ ν − F 2 µ

νδ      (6.73) 

 
is the Faraday tensor for the electromagnetic field strength 2-form F that represents the 
external field.  Its divergence will be the Lorentz force that acts upon the charge and 
electric current that J = σ u represents when σ is the charge density: 
 

ν
ν µτ∂ = Fµν J

ν,      (6.74) 

 
which will get added from the right-hand side of (6.72); ν

ν µτ∂  might also substitute for fµ 

if there are no other external forces that act upon the fluid. 
 Although one can also introduce viscosity by making θµν proportional to the rate of 
strain eµνɺ , we will not be dealing with viscous fluids in what follows, except to compare 

the form of the “quantum stress tensor” that will emerge later to some of the standard 
forms that we discussed here. 
 
 It should be noted that the state of the relativistic fluid is determined by six variables, 
namely (ρ, π, uµ).  There are four equations in (6.72), and if one makes a definite 
statement about compressibility then there will be five, which will still leave the system 
underdetermined by one equation.  The most common way of completing the set is to add 
an equation of state, which might take the form: 
 

ρ = ρ (π).     (6.75) 
 
A common choice is based upon the ideal gas relation: 
 

π V = nRT or π ∝ ρ = 
nM

V
,    (6.76) 

 
in which V is the volume of the gas, n is the number of moles present (M = molecular 
weight of gas molecule), R is a universal constant, and T is the absolute temperature. 
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 When a fluid has been given an equation of state, one refers to it as barotropic. 
 
 c. Balance of relativistic angular momentum. – Since the main physical application 
of the theory of relativistic angular momentum for deformable continuous media is to the 
Dirac electron, we shall defer a discussion of the conservation of relativistic angular 
momentum to a later chapter in which that topic will become necessary. 
 
 d. Relativistic solid mechanics. – If one thinks of the solid state of matter as 
something that includes elastic, plastic, and rigid matter then one will see why the 
relativistic theory of solid mechanics is less developed than relativistic fluid mechanics.  
For one thing, the very notion of the deformation of a solid object already leads to certain 
relativistic subtleties, such as the idea that a solid sphere will appear to deform into an 
oblate spheroid as its velocity relative to an observer increases, despite the fact that it will 
continue to appear to be spherical in its rest space; i.e., to comoving observers. 
 Hence, we shall only attempt to discuss some of the issues that are associated with the 
transition from non-relativistic to relativistic solid mechanics, and point to relevant 
references in which they might have been discussed. 
 
 1. Causality. – Due to the universal speed limit of c, not all deformations will be 
physically realizable.  For instance, if one looks at a proper-time-parameterized family of 
diffeomorphisms φτ : R0 → M4, x ֏ φτ (x), (0 ≤ τ) of an initial spatial region R0 then the 

curves φτ (x0) that are defined by the evolution of each point x0 ∈ R0 cannot have velocity 

vectors that become space-like for any τ ; if the region R0 is massive then they cannot 

become light-like either.  Hence, one must distinguish causal deformations from acausal 
ones. 
 
 Rigidity is to the solid state what incompressibility is to the fluid state in the eyes of 
relativity.  In both cases, the issue is the infinite speed of propagation of waves, which 
cannot exceed c in reality.  Hence, it has been suggested by Brota and Fernandes [18] that 
what Born [19] was calling a “rigid” body should have been called an undeformable one. 
 
 2. Polar decomposition. – The fact that an element of GL+(3) – viz., an invertible 
real 3×3 matrix with positive determinant – can be expressed uniquely as a product of a 
non-zero multiple of the identity matrix, a volume-preserving strain, and an oriented 
Euclidian rotation is due to the fact that topologically the manifold of the Lie group 
GL+(3) is the product of a six-dimensional vector space and the group manifold of SO(3).  
Furthermore, the algorithm by which one usually obtains that decomposition is basically 
the Gram-Schmidt orthonormalization process.  At the level of infinitesimal 
transformations, one finds that the corresponding decomposition of the vector space that 

underlies the Lie algebra gl(3) into so(3) ⊕ R6 is nothing but the polarization of a square 

matrix into the sum of an antisymmetric matrix and a symmetric one by using the matrix 
transpose operator. 
 When one goes from three dimensions to four, the corresponding orthonormalization 

process will make GL+(4) diffeomorphic to R10 × SO(4).  However, the relativistically 
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interesting subgroup of GL+(4) is SO(3, 1), not SO(4), so the question becomes that of 
whether one can decompose a matrix in GL+(4) into the product of a non-zero multiple of 
the identity matrix, a volume preserving Lorentz strain, and a Lorentz transformation.  
The problem with finite transformations is that Gram-Schmidt will break down whenever 
one encounters a light-like frame vector in the algorithm, since normalization would then 
involve division by zero. 
 One finds that the process is more elementary to describe in the context of the Lie 
algebras.  Basically, one uses the Lorentz adjoint operator *: gl(4) → gl(4) that was 

defined above, and which takes the matrix M to: 
 

M * = η M Tη,      (6.77) 
 

in which η = diag[+1, −1, −1, −1] is the matrix of the Minkowski scalar product in an 
orthonormal frame. 
 If one looks at a differentiable curve M(s) through the identity matrix I = M(0) and 
differentiates it at the identity then the condition MM * = M *M = I will give: 
 

m + m* = 0  m = 
0

( )

s

dM s

ds =

, m* = 
0

( )

s

dM s

ds

∗

=

= (m) *, (6.78) 

 
when m belongs to so(3, 1).  Hence, if one polarizes a general m ∈ gl(4) by using * then 

one will decompose it into a sum: 
 

m = l + e, l = 1
2 (m – m*),  e = 1

2 (m + m*),  (6.79) 

 
in which l will become an infinitesimal Lorentz transformation, and e will become what 
we shall call an infinitesimal Lorentz strain. 
 Although the trace of l will vanish, since the diagonal elements of real, antisymmetric 
matrices will always vanish, the same cannot be said of e.  Hence, one can further 
decompose e into a traceless part and a trace part in the usual way: 
 

e = 
o

e + 1
4 Tr(e) I, 

o

e = e − 1
4 Tr(e) I.    (6.80) 

 
 One can obtain a corresponding decomposition of a matrix M in GL+(4) into a product 
of a determinant, a finite Lorentz strain, and a Lorentz transformation in a neighborhood 
of I by exponentiation, although details become rapidly involved, due to the non-Abelian 
nature of the group. 
 
 3. Relativistic constitutive laws. – As one can imagine, the way that the basic 
material properties are affected by relativistic considerations can also get rapidly 
involved.  For instance, the basic Hooke law association of stress with strain will carry 
with it the unbounded velocity of oscillation of simple harmonic oscillators in the rest 
space of the oscillator.  To an observer, if one is dealing with an undamped mass-spring 
system with a Hookean spring, so the natural frequency and maximum velocity will be: 
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ωn = 
k

m
,  vmax = Aωn  (A = amplitude) 

 
as the velocity of oscillation increases, so will the apparent mass, which will reduce the 
natural frequency.  Moreover, the apparent amplitude will be shortened with increasing 
relative velocity.  Of course, to be rigorous, one should really just re-pose the problem of 
the relativistic harmonic oscillator, but the point of the example was only to show that the 
simple linear constitutive law would be somewhat naïve in the relativistic context. 
 One of the earliest attempts to introduce a relativistic constitutive law was made in 
1959 by Synge [20], who assumed that one could still deal with a Hookean law if one 
went to the coupling of rate of stress to rate of strain.  A few years later, in 1963, Rayner 
[21] discussed the Hookean coupling of stress to strain.  In 1970, Oldroyd [22] introduced 
a “tensor of physical constants” for a material, which included, elasticity, viscosity, and 
visco-elasticity within its scope.  Carter and Quintana’s 1973 general-relativistic 
formulation of perfectly-elastic bodies [23] asserted that Rayner’s constitutive law would 
be sufficient for low-pressure applications, such as the interaction of gravitational waves 
with planetary bodies, such as the Earth, but for high-pressure applications, such as 
deformations and vibrations in the crusts of neutron stars, one will need to correct that 
law. 
 More recently (2004), Hermann, et al [24] examined the constitutive properties of 
relativistic spin fluids, such as the Dirac electron and the Weyssenhoff fluid, which is a 
simplification of the latter.  We shall discuss these examples in our last chapter on 
“hydrodynamical” models for the Dirac equation. 
 
 4. The relativistic propagation of waves in elastic media. – We have already 
mentioned the ultimate bound of c on the speed of propagation of waves.  In many of the 
discussions of relativistic constitutive laws (in particular, Synge [20] and Rayner [21]), 
the test of whether the law would be useful in a relativistic context was to look at the 
propagation of shock waves and see how restricting the maximum speed would constrain 
the constitutive law itself.  Synge looked at the Cauchy problem for Einstein’s equations, 
when the energy-momentum-stress tensor was suitably constrained, while Rayner used 
Hadamard’s approach to the propagation of wave that involved disturbances being 
defined across initial discontinuity hypersurfaces.  Israel [25] also examined how 
conditions in the constitutive properties might affect the propagation of shock waves. 
 
 5. Variational formulation. – The earliest known (special) relativistic treatment of 
continuum mechanics was by Herglotz in 1911 [26].  In that article, he derived the 
relativistic equations of motion/equilibrium from an action principle that was defined by 
a “kinetic potential.” 
 In 1964, Schöpf [27] gave a general-relativistic treatment of conservative systems.  
For such systems, one had an elastic potential, but no heat current. 
 Since we will devote an entire chapter to variational methods, we shall content 
ourselves for the moment with that brief historical synopsis. 
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 § 7.  The principle of virtual work. – Before we get to the principle of least action in 
the context of the variational field theory, we shall first discuss a first principle of 
mechanics that is more general in scope, since it also applies to forces that do not admit 
potential functions and motion with non-holonomic constraints.  We are referring to the 
principle of virtual work. 
 
 a. Virtual displacements. – If we return to the definition of a finite deformation of an 
initial state x0 of a k-dimensional object in space into a final state x1 as a k+1-object then 
the definition of an infinitesimal deformation will become not only straightforward, but 
consistent with a good way of defining “variations” for the purposes of the calculus of 
variations.  Namely, if the “time” dimension is defined by u0 then one can define a 
congruence of differentiable curves x(u0) = x(u0, 1

0u , …, 0
ku ) from each point x(0, 1

0u , …, 

0
ku ) of x0 to its corresponding point x(1, 1

1u , …, 1
ku ) of x1.  The partial derivative ∂xi / ∂u0 

will then define a field of velocity vectors on the image of x, and we define the virtual 
displacement (AKA: variation) of the initial state x0 to be the restriction of that vector 
field to the image of x0: 

δxi = 
0

0

0
0

( , , )i k

u

x u u

u =

∂
∂
⋯

.    (7.1) 

 
Hence, this is simply the restriction of the velocity vector field that was defined in (1.31) 
to the initial configuration (s = 0). 
 The sense in which these displacements are “virtual” is that since vector fields 
represent the infinitesimal generators of one-parameter families of finite displacements, 
until one actually integrates them into such families, in a sense, they are only latent.  That 
is, they only tell one about the other deformations that in exist in a “sufficiently-small 
neighborhood” of the initial configuration of an object. 
 The concept of displacement can include rotations, as well as translations.  More 
generally, one has a Lie group G acting upon a region R0 of space, so a one-parameter 

family of displacements x(u0, 1
0u , …, 0

ku ) can also be generated by starting with a 

differentiable curve g(u0) in G and letting it act upon some initial configuration x0(
1
0u , …, 

0
ku ).  For instance, if G is represented by n×n matrices that act upon the coordinates 0

ix  of 

the initial configuration then one might define: 
 

xi (u0, 1
0u , …, 0

ku ) = 0 1
0 0 0( ) ( , , )i j k

jg u x u u…  .    (7.2) 

 
 In order to turn such an action into a virtual displacement, one differentiates g(u0) at 
u0 = 0 to get a tangent vector ω to G at g(0), and obtains a vector field on x0(

1
0u , …, 0

ku ): 

 
δxi

 (
1
0u , …, 0

ku ) = 1
0 0 0( , , )i j k

j x u uω … ,    (7.3) 

 
which is the restriction of the fundamental vector field that is associated with ω to the 
initial configuration. 
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 b. Virtual work. – The dual object to a displacement is a force in the case of 
translations and a torque (or moment) in the case of rotations.  As long as one deals with 
infinitesimal displacements, one can use the canonical bilinear pairing of a Lie algebra g 

with its dual vector space g*, namely: 

 

<. , .> : g* × g → R, (α, a) ֏ <α, a>, 

in which: 
<α, a> ≡ α (a) = αi a

i,     (7.4) 
 
to define a bilinear pairing of forces F with virtual translations δx and torques M with 
virtual rotations δθ that gives the virtual work that is done by the force (torque, resp.) on 
the virtual displacement: 
 

δW = F(δx) = Fi δxi,  δW = M(δθ) = Mi δθ i.   (7.5) 
 
 As long as elements of both g and g* are represented by n×n matrices, one can also 

represent this bilinear pairing by using the Cartan-Killing form on g: 

 
<a, b> = Tr a b = i j

j ia b .    (7.6) 

 
(When a and b are not represented by matrices, one replaces them with their adjoint 
representations.) 
 As mentioned in Appendix C, for semi-simple Lie algebras, such as SO(3) and SO(3, 
1), this bilinear functional will define a scalar product on g; i.e., it will be symmetric and 

non-degenerate.  For SO(3), it will be minus the Euclidian scalar product, while for SO(3, 
1), it will have the signature type of (−1, −1, −1, +1, +1, +1). 
 We shall return to the study of virtual work in the context of the calculus of 
variations, since that is really the proper place for such considerations.  For now, we 
simply state d’Alembert’s principle that when a system is in an equilibrium state, the 
virtual work that is done by any “allowable” virtual displacement must vanish.  One can 
also use this as the basis for its time evolution if one includes “kinetic forces,” which 
essentially amount to contributions of the form ma. 
 

 8. The point-particle approximation. – Since the statistical interpretation of 
quantum wave functions (or rather, their moduli-squared) comes down to the probability 
of finding a point-like particle within the differential volume element that is located at 
that point, for the sake of completeness, it is necessary to discuss the way that one goes 
from the motion of extended, deformable matter to the motion of point-like matter. 
 The first step is that of replacing the mass density function ρ (t, x) with an equivalent 
set of moments by using the moment theorem for a distribution.  Although that theorem is 
discussed most frequently in the context of probability density functions, nonetheless, the 
same theorem is just as applicable to densities of mass, charge, spin, etc.  It can be 
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expressed in n-dimensional Euclidian space in full generality, although that involves 
introducing the formalism of multi-indices in order to make the notation manageable, so 
we shall show how it works in the case of a one-dimensional real vector space, since the 
essential details are already contained in that demonstration.  We shall also omit the time 
dimension as something of a distraction at this point, but that is really no loss in 
generality when one treats time as a dimension, anyway. 
 Suppose that the density function ρ (x) admits a Fourier transform: 
 

ˆ ( )kρ  = 
1

( )
2

ikxe x dxρ
π

+∞ −

−∞∫ .    (8.1) 

 
Expand the exponential in a Taylor series: 
 

e−ikx = 1 + 
1

1
( )

!
n

n

ikx
n

∞

=
−∑ = 

1

1
( )

!
n n

n

ik x
n

∞

=
−∑ .   (8.2) 

 
 Assuming that ρ is also “analytically convenient” for one to invert the order of 
summation and integration, one will get: 
 

ˆ ( )kρ  = 0
1

1 1
( )

2 !
n

n
n

M M ik
nπ

∞

=

 + − 
 

∑ ,    (8.3) 

 
in which we have introduced the successive moments of ρ : 
 

Mn = ( ) nx x dxρ
+∞

−∞∫ .     (8.4) 

 
 The moment theorem amounts to the fact that if one is given a complete set of 
moments then one can reconstruct ρ by taking the inverse Fourier transform of ˆ ( )kρ . 

 In particular, M0 is the total mass of ρ (assuming that ρ is a mass density).  For a 
probability density function, M0 would always be equal to 1, since that would be the 
probability that the statement is true in at least some case; e.g., in quantum mechanics, it 
is the probability that the point-particle exists somewhere in space. 
 The first moment is essentially a mean position of ρ when ρ has been normalized to 
have unit mass.  For an arbitrary mass distribution, the center-of-mass (COM) becomes: 
 

xcm = 1

0

M

M
.      (8.5) 

 
 For a probability density function, the second moment is its variance, and the square-
root of that is the standard deviation, which (inversely) describes the extent to which the 
points in the support of ρ cluster about the mean.  For a mass density function, the second 
moment relates to the moment of inertia. 
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 One basically uses the moments of ρ to reduce the motion of the deformable, 
extended matter distribution that it describes to the motion of a point-like mass M(t) that 
is always located at the center-of-mass xCM(t) of ρ (~ M1).  When one wishes to go on 
from a point to an extended, but rigid, body one will then associate the COM with an 
orthonormal frame, such as the principal frame of the moment of inertia that can rotate 
independently of the motion of the COM. 
 
 Note that there is generally a difference between defining the total linear momentum 
of the mass in the point approximation by the product M vcm , where vcm = dxcm / dt, and 
defining it by the integral ∫ ρ vi dV over all space, unless v is constant in space to begin 
with.  However, that would put one into the case of rigid motion, not deformable motion.  
Nonetheless, one does have that: 
 

( )i
cmv t  = cmdx

dt
 = ( , )id

x t x dV
dt M

ρ
Σ∫ = 

1 ( )ix
dV

M t

ρ
Σ

∂
∂∫ = 

1 i
i x

x dV
M t t

ρ ρ
Σ

 ∂ ∂+ ∂ ∂ 
∫ , 

 
which will generally equal: 

iv  =
1 iv dV
M

ρ
Σ∫  

 
when ρ is not time-varying.  The expression on the right-hand side amounts to the mean 
velocity over the support of ρ. 
 Hence, one should be careful about jumping to the conclusion that the operations on 
densities and points commute with the operation of taking the moments. 
 
 The degree to which the approximation of a deformable, extended mass distribution 
with a moving massive point or frame is accurate can sometimes be estimated by looking 
at a breakdown of the distribution of the total energy of the original deformable, extended 
mass distribution over its (potentially-infinite) degrees of freedom.  In particular, one 
might first look at how the work that is done on the extended object in question shows up 
in its elementary rigid-body degrees of freedom, namely, its bulk translation and rotation.  
One can then better say whether rigidity is really a close approximation or not.  For 
instance, if one drops a ball of clay from a given height then the work that is done 
accelerating it as it falls will be converted almost completely into the work of 
deformation when it hits the floor and stops, except for a certain small percentage that 
goes into heat.  In such a case, rigidity clearly breaks down at the point of impact. 
 The sloshing of liquids in moving tanks offers an interesting example of a motion of a 
deformable, extended mass distribution for which the kinetic energy of motion is mostly 
concentrated in the rigid-body degrees of freedom, while a much smaller percentage is 
distributed over such things as turbulence in the volume of the liquid and on its surface. 
 An interesting problem in which to test the various degrees of approximation to the 
motion of deformable, extended bodies is what one might call the “water balloon” 
problem, which amounts to determining the motion of a water balloon in space after it 
has been given some initial translation and rotational velocities, as well as an initial state 
of deformation.  The successive degrees of approximation start with: 
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 1. Point-mass moving along a curve. 
 
 2. Rigid-body (i.e., oriented, orthonormal frame) translating and rotating along a 
curve (e.g., COM). 
 
 3. Pseudo-rigid body (i.e., oriented, linear frame) that translates, rotates, and shears 
about a curve. 
 
 The last case includes the possibility that it can deform by elongation and contraction 
along the principal axes of the strain.  Hence, a sphere can deform into an oblate spheroid 
or ellipsoid about any given oriented, orthonormal frame that is to serve as the principal 
frame. 
 
 
 9.  Frame strain. – As mentioned above, the Cauchy-Green approach to strain 
considers only the relative deformations of neighboring distances in a material medium.  
Consequently, although it is true that a transformation of an n-dimensional Euclidian 
space that preserves all distances between pairs of points must be an isometry – i.e., a 
rigid motion or a reflection – nonetheless, a transformation of a lower-dimensional 
submanifold can be an isometry of the lower-dimensional metric without having to be 
rigid. 
 For instance, if one bends a wire of negligible cross-section without stretching or 
compressing it then that motion will preserve the one-dimensional metric along the wire 
– viz., the arc length – despite the fact that it does not have to be rigid.  Similarly, one can 
deform an infinitely-thin surface (membrane, plate, shell, etc.) without stretching or 
compressing any of its regions and come up with an isometry of the surface that is not a 
rigid motion in its ambient space.  For instance, all developable surfaces, such as 
cylinders and cones, are isometric to a plane, even though there is clearly a non-trivial 
deformation (i.e., diffeomorphism) that will deform a plate into a cylinder or cone, in the 
sense that work will be necessary in order to perform the deformation. 
 The way that continuum mechanics usually addresses that situation is to treat the wire 
and the surface as being, in fact, three-dimensional objects, such that the approximation is 
not in their dimensions, but their material properties.  Hence, the wire would be a thin 
solid cylinder whose strains and stresses could be treated as constant across the cross-
section, and similarly a membrane would be a cylinder whose height (i.e., thickness) was 
small enough that the strains and stresses could be treated as constant across the 
thickness. 
 
 a.  Monomorphisms of frame bundles. – However, one might also approximate some 
of the dimensions of a n-object O as effectively zero and consider the space GLxO of 

linear n-frames at each of its points x ∈ O (k = reduced dimension of object, n = 

dimension of ambient space).  One then says that the deformation affects not only the 
points of O, but the frames of GL(O), which is the set of all linear n-frames on all points 

x.  Since that set projects onto O in a natural way: 
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p: GL(O) → O, (x, ei) ֏ x, 

 
and the set GLxO of all linear frames at x is called the fiber of x, one calls the triple 

(GL(O), O, p) a fiber bundle over O (1).  In particular, it is the bundle of all linear n-

frames in Rn at the points of O. 

 One can think of a deformation of O as something that affects GL(O) directly, 

namely, F: GL(O) → GL(Rn), and takes a linear frame (x, ei) at x ∈ O to a linear frame 

(y, ie ) at y ∈ Rn in an invertible, differentiable way such that its inverse F−1 (which is 

defined only upon the image of O) is also differentiable; i.e., F is a diffeomorphism of 

GL(O) into GL(Rn); we call such a map a monomorphism of the two bundles when it also 

has the property that the image of any fiber GLx(O) will be the corresponding fiber 

GLF(x)(R
n).  Since the Lie group GL(n) acts upon the frames in both GL(O) and GL(Rn), 

one can also characterize a monomorphism F: GL(O) → GL(Rn) by saying that it 

commutes with the group action; i.e., for any frame ei at x and any i
jA  in GL(n), one must 

have: 
F(x, ej

i
jA ) = (F(x), F(ej)

i
jA ).     (9.1) 

 
 The particular form for F(ej) that we shall use is: 
 

F(ej) = ej ( )j
ih x ,     (9.2) 

 
in which h : O → GL(n), x ֏ ( )j

ih x  is a sufficiently-differentiable function that then 

takes the form of a transition function that acts upon frames. 
 If one then defines the projection of the map F onto the base manifolds, namely, f : O 

→ Rn, x = p (GLx(O)) ֏  p  ⋅⋅⋅⋅ F(x) , which is the composition of F with p  : GL(Rn) → 

R
n then the fact that F is a monomorphism will imply that f is a diffeomorphism onto. 

 One refers to F as vertical when f is the inclusion of O in Rn (i.e., x ֏  x).  Such a 

deformation will take a frame at x to another frame at x for every x.  Otherwise, when f is 

not the inclusion, df|x : TxO → Tf(x)R
n will be an invertible linear map for every x ∈ O, 

                                                
 (1) Of course, there are some topological conditions that must be added to make the definition of a fiber 
bundle complete, but we will not need them in what follows.  One might, however, confer a good book on 
geometrical and topological methods in mathematical physics such as Frenkel [28]. 
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and will then define an invertible, bi-differentiable map xf : GLxO → GLf(x)R
n, (x, ei) 

֏ (f(x), df|x(ei)) that we call the lift  of f. 
 Generally, the lift of f will not agree with F except that both f  and F will project to 

the same map.  If one defines Fv = 1f − ⋅⋅⋅⋅ F then Fv will be vertical, and one will have: 
 

F = f ⋅⋅⋅⋅ Fv. 
 

That is, any monomorphism of GL(O) into GL(Rn) can be expressed as the product of 

two unique monomorphisms, one of which is vertical, and the other of which is the lift of 
its projection.  We shall say that a monomorphism F is integrable iff it coincides with the 
lift of its projection: 

F = f ;      (9.3) 
 

 equivalently, its vertical part Fv will be the identity transformation at every point of O. 

We illustrate the scenario that we have been discussing as Fig. I.2: 
 

x 

f 

F 

f (x) 

GLx F(GLx) = GLf(x) 

f  e1 e2 

e3 

1e  2e  

3e  

 
Figure I.2.  A monomorphism of a frame bundle. 

 
 Although the manifold O cannot always be covered with a single coordinate chart, 

any point x of it will admit at least one local coordinate chart (U, xi) in Rn that is adapted 

to O (so the last n – k coordinates will be constant for all points of O), and for which 

GL(O) will be topologically equivalent to U × GL(n) when one restricts U to points of O.  

In order to get coordinates for GL(n), one defines the natural frame field that goes with 
(U, xi) – viz., ei = ∂i – and that will allow one to associate every linear n-frame ei at each x 
with the invertible matrix i

jA  that makes: 

 
ei = j

j iA∂ .     (9.4) 

 
 Hence, the coordinate charts of GL(O) will look like (x1, …, xk, i

jA ). 
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 When one has such a chart (U, xi) about (x, ei) and another (V, yi) about (y, ie ), one 

can express a monomorphism F as two systems of equations: 
 

y i = ( )i jy x , ie  = ie (xk, ei) = ej ( )j
ih x .   (9.5) 

 
 The projected map f is described by simply the first set of equations in (9.5).  Its lift 
f  will then be defined by the matrix of df, namely: 

 
i

x j
df   = 

i

j

y

x

∂
∂

,    (9.6) 

whose inverse will be ∂x i / ∂y j.  
 The vertical part Fv of F will then be defined by the equations: 
 

yi = xi,  ie  = ej 
i

j
i j

x
h

y

∂
∂

= ej 
j

ih ,   (9.7) 

 
in which we have defined the transition function: 

j
ih = 

i
j

i j

x
h

y

∂
∂

.     (9.8) 

 
 We now see that, in a sense, the scope of the Cauchy-Green picture of deformation 
and strain is confined to the “horizontal” part of the deformation of GL(O) that is defined 

by the monomorphism F; viz., the lift f  of its projection f.  However, since the 

dimension of GL(O) is greater than that of O by n2, there will be many more 

deformations of GL(O) than there are of O.  In order to show how deformations like F 

can be used to enlarge the scope of the definition of strain, we must define strain for them 
in a way that extends the definition of strain for the deformations of O. 

 
 b. Definition of frame strain. – The definition of the finite frame strain matrix will 
be simply the matrix j

ih  that represents the vertical part of a monomorphism of the 

bundle GL(O) → O of linear frames on a material object O into the bundle GL(Rn) → Rn 

of linear frames on the space Rn in which the object is embedded. 

 The corresponding infinitesimal frame strain matrix j
iω  is defined by the sufficiently-

differentiable function  ω : O → gl(n) that takes every point x in the object to the matrix  

( )j
i xω  that represents the infinitesimal generator of the matrix ( )j

ih x ; i.e.: 

 
( )j

i xω = exp [ ( )j
ih x ].     (9.9) 
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 The matrix ( )j
i xω  acts upon the frame field ei(x) to produce minus its differential: 

 
dei = − ej ⊗ j

iω ,     (9.10) 

 
so upon differentiating ej

j
ih one will get: 

 

d(ej
j

ih ) = dej
j

ih + ej ⊗ j
idh = − ej ⊗ ( j

iω − j k
k ldh hɶ ) l

ih . 

 
If this vanishes then we must have: 
 

j
iω = j k

k ldh hɶ = j k
k ih dhɶ .     (9.11) 

 
 In order to see the last equality, note that when one replaces j

ih  with its inverse and 

vice versa in the expression j k
k idh hɶ , the effect should be to produce minus j

iω , but one 

has: 
j k

k idh hɶ = − j k
k ih dhɶ ,     (9.12) 

which follows upon differentiating the identity j k
k ih hɶ = j

iδ . 

 

 Now, let us introduce a metric on Rn, which one can restrict to k-dimensional objects 

in it, such as O.  For non-relativistic continuum mechanics, that metric would be the 

Euclidian one δ, while for relativistic problems, it would be the Minkowski (or 
Lorentzian) metric η. 

 The introduction of a metric into the tangent spaces to Rn also allows one to define a 

special class of n-frames in the form of orthonormal ones.  Actually, any n-frame can be 
defined to be orthonormal, and the metric that makes it so will follow from that 

definition.  For instance, if {ei, i = 1, 2, 3} is a 3-frame in R3 then one can define a 

Euclidian metric δ on Rn by demanding that: 

 
δ (ei, ej) = δij .      (9.13) 

 

 If one wishes to find the scalar product δ(v, w) for any two vectors in R3 then one 

must first express them in terms of the given frame as v = vi ei , w = w j ej and then use 
the bilinearity of the scalar product: 
 

δ(v, w) = vi wj δ (ei, ej) = δij v
i wj.    (9.14) 

 

 One can do something analogous for a linear frame in R
4 and the Minkowski scalar 

product. 
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 Since orthogonal transformations must take orthonormal frames to other orthonormal 
frames, any linear frame will define an orbit in the space of linear frame under the action 
of a chosen orthogonal group.  One can think of that orbit space as defining the manifold 
of all metrics M(p, n−p) of the chosen signature type.  Hence, diffeomorphisms of M(p, 

n−p) will represent deformations of metrics. 
 
 The essential point is that since a linear frame defines a metric, a deformation of the 
linear frame will either be orthogonal for that metric or it will deform the metric in the 
process, which will represent strain in the usual sense.  If the deformation in question is 
an invertible linear map of the frame then polar decomposition: 
 

( )j
ih x = ( ) ( )j k

k iR x E x      (9.15) 

 
will give the part ( )k

iE x  of the deformation that actually changes the metric as a finite 

strain matrix, along with the orthogonal part ( )j
kR x  that does not. 

 However, it is a serious oversight to think that the orthogonal part of the polar 
decomposition will play no role in the geometry of deformation merely because it does 
not alter the metric at each point individually.  Indeed, the only way that a rotation at 
each point will represent a rigid motion (i.e., no deformation) is when the same (1) 
rotation acts at all points of the object.  Hence, one must expect that the differential j

idR  

must a crucial role. 
 
 c.  Frenet frames. – A simple example of that situation is given by a skew curve x(s) 

in R3 for which non-zero first and second derivatives exist, and they are not collinear; one 

also assumes that the parameterization is by arc length, so the velocity v(s) will have unit 
speed for all s.  One can then define a Frenet frame {ei(s), i = 1, 2, 3} for the curve by 
setting e1(s) equal to v(s), and e2(s) equal to the normalized acceleration vector field, 
while e3(s) is a unit vector that is perpendicular to the plane of e1(s) and e2(s) (which is 
called the osculating plane) and completes the 3-frame in a right-hand oriented way.  One 
refers to the three vectors of the Frenet frame as the tangent, normal, and binormal, resp., 
of the curve at each point. 
 By definition, all frame vectors are unit vectors, and the third one is orthogonal to 
both of the first two.  The fact that the first two are orthogonal to each other follows from 
the condition that v(s) must be a unit vector: 
 

<v(s), v(s)> = 1, so 0 = 
d

ds
<v(s), v(s)> = 2 <v(s), 

d

ds

v
>. 

 

                                                
 (1) Of course, the definition of “same” also depends upon topological subtleties that relate to the 
difference between a general fiber bundle and one whose total space is the product of the base manifold 
with fiber – viz., trivial  fiber bundles.  However, we shall not need that level of generality in what follows.  
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 Since the frame ei(s) spans the tangent spaces at each x(s), which can be identified 

with R3, any vector in R3 can expressed in terms of the frame ei(s).  In particular, the 

vectors dei / ds can be expressed in terms of ei(s) in the form of the Frenet-Serret 
equations: 

id

ds

e
= j

j iωe ,  j
iω  = 

0 0

0

0 0

κ
κ τ

τ

 
 − 
 − 

.   (9.16) 

 
 The parameter κ relates to an infinitesimal rotation in the osculating plane about the 
binormal, and is called the curvature of the curve.  The parameter τ relates to an 
infinitesimal rotation about the tangent vector, and is called the torsion of the curve.  
When the curvature vanishes, the curve must be a straight line, which will make the 
binormal undefined; when the torsion vanishes, the curve must always lie in the 
osculating plane. 
 Now, suppose that a curve x(s) is deformed into a curve y(s) with no change in the arc 
length, so points of the two curves that have the same value of s will correspond under 
the deformation.  Let this deformation be expressed by the system of equations: 
 

y i = y i (x j),       (9.17) 
 
which are, of course, defined only for the points of x(s). 
 The new velocity vector at y(s) will be: 
 

idy

ds
= 

i j

j

y dx

x ds

∂
∂

,     (9.18) 

 
and since the arc length does not change, the matrix ∂y i / x j must represent a rotation of 
the tangent vector, in addition to its translation from x(s) to y(s). 
 The new acceleration vector will be: 
 

2

2

id y

ds
= 

2

2

i j i j

j j

d y dx y d x

ds x ds x ds

 ∂ ∂+ ∂ ∂ 
= 

2 2

2

i j k i j

j k j

y dx dx y d x

x x ds ds x ds

∂ ∂+
∂ ∂ ∂

.  (9.19) 

 
However, since the velocity is a unit vector, the acceleration will still be orthogonal to 
that velocity.  Hence, when one normalizes that acceleration, and completes the 
orthonormal triad that represents the new Frenet frame ( )i se , one will see that the net 

effect of the deformation, apart from the translation of points of the curve has been a one-
parameter sequence of rotations of the initial frame: 
 

( )i se = ( ) ( )j
j is R se .     (9.20) 

 
 One can then express the new Frenet-Serret equations as: 
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id

ds

e
= j

j iωe = j k
j k iR ωe . 

But since: 

id

ds

e
= 

j
j j i

i j

d dR
R

ds ds
+

e
e , 

one must have: 

id

ds

e
=

j
j k l kk

j k l i i

dR
R R R

ds
ω

 
− 

 
e ɶ ɶ , 

which will imply that:  

j
iω  =

j
j k l kk

k l i i

dR
R R R

ds
ω −

ɶ
ɶ , 

or: 

j
iω  =

k
j k l j i

k l i k

dR
R R R

ds
ω +ɶ ɶ .    (9.21) 

 
 One can then think of this last equation as describing the deformation of the curvature 
and torsion of the curve by way of the action of the curve R(s) in SO(3) on SO(O), where 

O is the curve x(s), in this case.  Note that if R(s) is rigid (i.e., constant) then the 

transformation from j
iω  to j

iω  will be an overall change of reference frame for the 

components.  Furthermore, if the initial curve is straight ( j
iω = 0) then the deformed j

iω  

will be equal to: 

i
jω  = 

k
ji

k

dR
R

ds

ɶ

.      (9.22) 

 
 Actually, the method that we used for obtaining (9.21) did not depend essentially 
upon our choice of the Frenet frame for the orthonormal frame field along x(s).  If we had 
used any other orthonormal frame field for ei(s) then the first difference in the differential 
equations for the moving frame − namely, (9.16) − would be in the definition of the 
matrix j

iω , which would not need to have zeroes in outermost off-diagonal entries, but 

only along the diagonal; it would still have to be antisymmetric, though. 
 Due to the linearity of the system (9.16), one can solve the initial-value problem for it 
by matrix exponentiation: 

ei(s) = ei(0) exp 
0

( )
s

j
i dω σ σ∫ .   (9.23) 

 
 One can define the deformation of the frames by simply ( )i

jR s , a priori, and one will 

eventually obtain (9.21) for a measure of the deformation of the frames along x(s) as a 
result of R(s). 
 
 d.  Higher-dimensional Frenet frames. – There is also nothing special about the 
choice of one parameter objects, since one can extend to higher-dimensional objects, such 
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as surfaces, by extending the differential equations for the moving frame for a linear 
system of partial differential equations for the frame field on the object, and if the 
parameters are ua, a = 1, …, k then the equations of the frame field ei (u

a) will be: 
 

i
au

∂
∂

e
= j

j iaωe ,  j
iaω  = 

0

0

0

a a

a a

a a

κ λ
κ τ
λ τ

− 
 − 
 − 

, a = 1, …, k. (9.24) 

 
However, integrating this system will no longer be as simple as (9.23). 
 If one defines the deformation of the frame field ei (u

a) by way of R(ua), a = 1, …, k 
then the analogue of (9.21) will be: 
 

j
iaω  =

k
j k l j i

k la i k a

R
R R R

u
ω ∂+

∂
ɶ ɶ .    (9.25) 

 
 The author has discussed some of these issues in more detail in his article [10].  
However, in the present context, it will not be necessary to say quite so much, and we 
will only make occasional comments that relate to this aspect of the kinematics of 
deformation.  It should be pointed out that Kelvin and Tait [29] essentially looked at the 
deformation of frames as a way of describing the bending and twisting of curves and 
surfaces in the years before Riemannian geometry began attracting all of the attention. 
 
 
 10.  Cosserat media. – In the last section, we discussed the deformation of frames on 
objects without mentioning the associated displacement of the points to which they were 
associated.  Eventually, one needs to include some accounting for the deformation of 
those points, as well. 
 One might notice that system of equations (9.5) could just as well define an affine 
transformation, depending upon the nature of the functions involved.  That really comes 
down to the fact that the manifold that underlies the Lie group A(n) – i.e., the n-

dimensional affine group – is diffeomorphic to the (trivial) bundle GL(Rn) of linear 

frames on Rn.  The diffeomorphism is defined by choosing a linear frame (x, ei) at a point 

x in Rn and applying an affine transformation (a, i
jA ) to (x, ei) as follows: 

 
(x, ei) (a, i

jA ) = (x + a, i
i jAe ) = (y, je ), 

so: 
 y = x + a, je  = i

i jAe .    (10.1) 

 
Since every element of A(n) has a unique inverse, this pair of equations will be uniquely 

invertible, and there will be a one-to-one correspondence between all (y, je ) in GL(Rn) 
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and the (a, i
jA ) in A(n), which will be differentiable with a differentiable inverse, 

moreover. 

 The action of A(n) on GL(Rn) above differs crucially from the action of GL(n) on 

GL(Rn) as a structure group, because the latter action is only vertical; i.e., it will project 

to the identity transformation on Rn under the canonical projection GL(Rn) → Rn that 

associates a linear frame at x with x.  However, as we see from (10.1), the action of A(n) 

on GL(Rn) also moves the points in Rn that the frames are associated with.  That is why 

one must be careful about committing to the methods of principal fiber bundles (such as 
the various frame bundles) when one needs to include the displacement of points in space 
along with the displacement of the frames at those points. 

 When one has defined an orthogonal structure on R
n, one can restrict the 

aforementioned action to the subgroup of rigid motions or the Poincaré group, as the case 
may be.  The corresponding diffeomorphism will then be with the bundle of orthonormal 

(Lorentzian, resp.) frames over Rn.  For three-dimensional Euclidian space E3, the 

diffeomorphism is between ISO(3) – viz., the Lie group of rigid motions – and SO(E3),  
which is the bundle of orthonormal 3-frames on E3.  For four-dimensional Minkowski 
space M4, the diffeomorphism is between ISO(3, 1) – viz., the Poincaré group – and 

L(M4), which is the bundle of Lorentzian frames on M4. 

 The thought of expanding the scope of non-relativistic continuum mechanics from 
regions of space to the bundles of orthonormal frames on the regions goes back to the 
work of the brothers Eugène and François Cosserat, and was set down in their magnum 
opus that was entitled La théorie de les corps deformables [30] in 1909.  For them, the 
precedent for such a theory already existed in some work of Woldemar Voigt [31] on the 
elasticity of crystals, as well as some of the mechanical ether models for the propagation 
of electromagnetic waves.  The essential innovation from the phenomenological 
standpoint was the existence of internal couple stresses that would act upon the medium, 
so one could define a Cosserat medium to be the bundle SO(R) of orthonormal frames on 

a region R of space that is occupied by matter that is subject to internal couple stresses.  

One symptom of the existence of such stresses is the asymmetry of the stress tensor, 
which ultimately factors in the equations for the balance of angular momentum as an 
effective torque or moment.  One will also generally have a momentum 1-form that is not 
collinear with the covelocity 1-form; i.e., there will be a “transverse momentum” that is 
added to the collinear kind. 
 Since the basic starting point for the derivation of the Cosserat equations for the 
equilibrium or time evolution of a Cosserat medium is in the theory of action functionals 
that are invariant under the action of the group of rigid motion, we shall defer a more 
detailed discussion of that topic to later chapters as it becomes appropriate.  For now, we 
mention that when one goes on to quantum wave equations that involve matter with spin, 
one will find that the continuum-mechanical equivalent of the Dirac electron is 
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essentially a relativistic Cosserat medium, although the stress tensor of the non-
relativistic spinning Pauli electron is symmetric. 
 Some more recent references on Cosserat theory will be given in later chapters as 
they become relevant. 
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CHAPTER II 
 

THE MECHANICS OF WAVES  
 

In retrospect, there seems to have been a certain amount of hastiness in the early attempts 
to lay the theoretical foundations of quantum physics.  Of course, that is to be expected, 
since the founders were dealing with a class of natural phenomena that lies far beneath 
the scale of macroscopic laboratory measurements, and those laboratory measurements 
were producing results that were inconsistent with the intuition that physicists had gained 
from dealing with more directly observable phenomena.  Hence, the early attempts to 
devise some sort of theoretical framework were predictably semi-empirical and 
phenomenological.  Indeed, that basic approach to quantum theory persists to this day. 
 Part of the hastiness that was associated with going from the mechanics of waves to 
the mechanics of points was due to the fact that no one seemed to have taken the time to 
formulate a general theory of wave motion that would be as fundamental in character as 
the mechanics of points and deformable, extended matter.  That is, no one had started by 
defining a wave as an elementary object that moved in a configuration space, and thus 
had a kinematical state associated with it.  Thus, they also did not take the time to define 
dynamical states that would be associated with the variations (i.e., virtual displacements) 
of the kinematical states, but they seemed to simply start with the partial differential 
equation that would govern the time evolution of a wave function.  By Schrödinger’s own 
admission, the process of obtaining his equation involved a certain amount of trial-and-
error that mostly used the Hamilton-Jacobi approach to geometrical optics (i.e., the 
eikonal) as its basic model. 
 In this chapter, we shall attempt to fill in some of the missing steps that would 
connect the main field theories that involved some form of wave motion − namely, 
elasticity, electromagnetism, and more recently gravitation – to the Hilbert space 
formalism of quantum wave mechanics.  In particular, since many of the most 
fundamental experimental phenomena of quantum physics seemed to point to a 
breakdown of Maxwell’s theory of electromagnetism, one would expect that the class of 
waves that is most relevant to quantum phenomena the that of electromagnetic waves. 
 The basic flow of ideas amounts to an application of a general theory of physical 
models that the author has been developing over the years [1], and has previously 
discussed in the context of models for wave motion in [2].  Basically, a physical model 
(whether static or dynamic) generally involves the following components: 
 
 1. A differentiable manifold of kinematical states whose tangent vectors represent 
infinitesimal (i.e., virtual) displacements (or variations) of those states. 
 
 2. A system of differential equations that define the integrability of kinematical 
states and their variations. 
 
 3. A space of dynamical states that are, in some sense, dual to the kinematical states 
or their variations. 
 
 4. A constitutive map that associates dynamical states with kinematical ones. 
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 5. A system of differential equations that expresses the balance principle or 
conservation law that governs the dynamical state. 
 
 
 1.  The state of a wave medium. – Our starting point for a general theory of wave 
motion must necessarily be a definition of a wave.  One finds that this problem is actually 
more complicated than it sounds.  One could make a first attempt by saying that a wave is 
a “wave-like” solution of a system of field equations, but that obviously just replaces one 
undefined concept with another. 
 
 It is easier to say what the definition of a wave should not be than to say what it is.  
Most treatments of waves in elastic and electromagnetic media, and many treatments of 
gravitational waves, start by introducing small-amplitude perturbations of fields, which 
predictably results in linear partial differential equations for the waves.  However, one of 
the most active topics in modern nonlinear physics is that of nonlinear waves, such as one 
finds in nonlinear optics or large-amplitude elastic waves.  Indeed, one of the most 
common wave phenomena that people observe, namely, the breaking of waves on a 
beach, is manifestly nonlinear in character.  Similarly, despite the ubiquitous use of 
plane-wave solutions of wave equations, one should probably not start with them as 
elementary objects, since the Fourier analysis of a more general wave-like solution into a 
linear superposition of plane waves of varying frequencies and wave numbers is more 
useful when the operator that takes the Fourier transform of an “incoming” wave to the 
Fourier transform of an “outgoing” wave is actually a linear operator, which then restricts 
the wave equation to a linear partial differential equation with constant coefficients.  It 
should also be pointed out that plane waves are actually physically absurd unless one 
restricts them to a compact region, since otherwise their total energy and momentum will 
diverge, but restricting them to a region with boundary will introduce higher harmonics 
due to the cutoff, which would imply that one is no longer dealing with a true plane-wave 
anymore. 
 Another wrong turn in the name of basic definitions is to start with any specific wave 
equation as the basis for all waves, since the proliferation of specialized linear and 
nonlinear wave equations by now would suggest that any such definition would be too 
limited in scope to represent a fundamental statement about natural law as it pertains to 
waves in general. 
 
 Many physicists and engineers agree that the essence of wave phenomena is rooted in 
the “response” of a “wave medium” to a “disturbance.”  Hence, we shall attempt to first 
clarify those terms. 
 We define a wave medium to be a region M of space-time (where the dimension of 
space can range from one to three) in which each point is associated with an “elementary 
oscillator” and those oscillators are coupled by some principle (1).  Typically we shall 
assume only a “cylindrical” topology to M, namely, M = (t0, t1) × Σn , where Σn (n = 1, 2, 

                                                
 (1) If one prefers the language of fiber bundles, a wave medium might be defined to be a “bundle of 
oscillators” with some coupling law.  The definition of “oscillator” then bears upon the choice of manifold 
for the fiber of that bundle. 
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3) is a spatial manifold, which will usually be an open subset of Rn, such as the set of 

points at which the wave function is non-zero.  (The closure of that set is called the 
support of the wave function, although it is possible for a wave function to vanish at a 
limit point.) 
 
 a.  Elementary oscillators. − Of course, even the concept of an elementary oscillator 
can lead to its own complications, since the theory of oscillators is quite vast in its own 
right [cf., e.g., 3, 4].  Even if one assumes that an oscillator is most fundamentally 
characterized by a dynamical system that exhibits periodic motions, some of the issues 
that one must still address are: 
 
 1. The dimension of the space in which oscillation takes place. 
 2. Linearity vs. nonlinearity. 
 3. Damping vs. the absence of damping. 
 4. Forced vs. unforced. 
 
 We believe that it is best to simply regard these issues as the basis for a classification 
scheme that one could apply to oscillators.  In most cases, one begins by choosing a type 
of basic oscillator upon which to base wave motion, just as most discussions of problems 
in continuum mechanics often start with a choice of mechanical constitutive law. 
 
 As far as the issue of dimension is concerned, one understands that it amounts to the 
problem of characterizing the basic “amplitude” of the oscillatory motion.  That is, when 
the amplitude is characterized by a real number, the space of oscillation is one-
dimensional.  Although one might say that in the case of complex wave functions that 
amplitude is a complex number, nevertheless, it is common to regard that number as 
having a real amplitude and phase factor of the form eiθ.  Of course, waves in elastic 
media typically involve oscillators that oscillate in three-dimensional space, while 
possibly changing direction, as well, and electromagnetic waves include the dimension of 
time, as well.  Since gravitational fields are defined by symmetric, second-rank covariant 
tensors of globally hyperbolic normal type, one assumes that their basic oscillators would 
live in a ten-dimensional space (1). 
  
 By now, the issue of linearity seems to be widely recognized to be one of “small-
amplitude” approximations.  Hence, one suspects that only a nonlinear theory would be 
truly definitive.  This is especially true when one considers that as far as electromagnetic 
phenomena are concerned, the quantum domain is characterized by large electric and 
magnetic field strengths at which non-classical phenomena, such as vacuum polarization, 
begin to emerge, as they might with a critical-point phase transition.  However, one of the 
defining characteristics of the elementary wave equations of quantum mechanics (e.g., 
Schrödinger, Pauli, Klein-Gordon, Dirac) is their linearity, although many believe that 
the transition from quantum mechanics to quantum field theory must include some 
introduction of nonlinearity into the wave equations, since it is widely believed that the 

                                                
 (1) In fact, it is not a vector space, either, but a homogeneous space that is only homeomorphic to a 
vector space, namely, the connected component of GL(4) / SO(3, 1) that includes SO(3, 1) as a coset. 
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interaction of elementary particles will destroy that linearity.  Indeed, that is why 
quantum field theory immediately passes over any discussion of the Cauchy problem for 
interacting particle fields to the scattering approximation, in which one assumes that the 
incoming fields are defined at time minus infinity, while the outgoing fields are defined 
at time plus infinity.  That is essentially equivalent to assuming that the time interval 
during which the interaction occurs is quite short, and linearizes the time-evolution 
operator for the particle fields to a scattering operator of the linear, integral type [cf., e.g., 
5, 6]. 
 
 Presumably, an oscillator gets damped by interacting with an absorptive medium, 
such as a viscous fluid.  Although the concept of absorptive medium is certainly relevant 
to virtually all experimental work, since there is bound to be some damping of local 
oscillations, one also expects that damping can only be due to unmodeled complexity in 
the medium.  However, there are those who suspect that the nature of the quantum 
vacuum that all fields must ultimately interact with has something of a thermodynamic 
character, which was the essence of de Broglie’s theory [7] of the “hidden 
thermodynamics of isolated particles.”  Hence, one should not dismiss the possibility that 
even isolated particle/waves can still exchange energy with their environment. 
 
 A forcing function that acts upon an oscillator can take the form of gravity, the 
momentum that is carried by incident waves, or more artificial loadings that one might 
encounter in engineering practice.  Such forces tend to be defined on the base manifold of 
a bundle of oscillators and not the total space.  In the next subsection, we shall discuss the 
way that systems of oscillators can be coupled by forces of interaction that become 
essentially “internal” forcing functions. 
 
 Ultimately, one must define some manifold O that represents the generic state space 

of the oscillators.  In the simplest case, it might be R, and its points would represent the 

amplitude of the oscillation.  Another elementary one-dimensional state space might be 
S1, which might also describe the direction of a unit vector in a plane. 
 
 b. Examples of elementary oscillators. – Some elementary examples of oscillators 
are: 
 
 1. One-dimensional simple harmonic oscillator: For this oscillator, the basic relation 
takes the form of Hooke’s law: 

F = − k ∆x,      (1.1) 
 
or expressions that are analogous to it.  F represents the force that is associated with a 
displacement ∆x from the equilibrium position x0 of the oscillator, and k is an empirical 
spring constant.  If one assumes that x0 = 0, by definition, then ∆x can be replaced with x, 
but it is important to note that the force is not independent of the location of x0 .  Hence, 
the basic constitutive law for such a dynamical system must be linear, non-dispersive, 
and homogeneous. 
 Such a force is conservative and admits a potential function of the form: 
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U(x) = 1
2 kx2.      (1.2) 

 
 The differential equation for the forced, linearly-damped (Fd = − b dx / dt) simple 
harmonic oscillator is obtained from Newton’s second law and takes the form: 
 

2d x

dt
+ 2ωnζ 

2d x

dt
 + 2

n xω  = a(t),     (1.3) 

in which: 

2
nω  ≡ k

m
, 2ωn ζ ≡ 

b

m
,     (1.4) 

 
and a(t) is the forcing function, which has units of acceleration.  ωn is referred to as the 
natural frequency of the system, while ζ is the damping constant. 
 Initial-value solutions to the equation (1.3) take the exponentially-damped sinusoidal 
form: 

x(t) = eα t (A eωt + B e− iωt),      (1.5) 
 
in which s± = α ± iω are the roots of the quadratic equation: 
 

s2 − 2ωnζ + 2
nω  = 0,       (1.6) 

 
which is called the characteristic equation of the ODE.  Those roots will then be: 
 

s± = ( )21n iω ζ ζ± − ,     (1.7) 

 
which are then essentially damped frequencies.  Note that if ξ > 1 then the roots will both 
be real, which is the case of overdamping. 
 Solutions to the problem of forced oscillations are usually best treated with the 
method of Laplace transforms, and sinusoidal forcing functions tend to exhibit the 
phenomenon of resonance, which makes the amplitude of the oscillation a maximum 
when the frequency of the forcing function equals the natural frequency of oscillation. 
 
 2. The forced, undamped, one-dimensional, anharmonic oscillator. – For this 
oscillator, one extends the constitutive law (1.1) by the addition of a cubic term, which is 
based upon the assumption that the force F(x) is an odd function of x: 
 

F = − k x + b x3.      (1.8) 
 
Such a force is still conservative and its associated potential function takes the form: 
 

U(x) = 2 41 1
2 4kx bx− ,     (1.9) 

 
which is then an even function of x. 
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 The differential equation of such an oscillator takes the form: 
 

2d x

dt
+ 2

n xω − b

m
 x3 = a(t),     (1.10) 

 
which is nonlinear then. 
 The solutions to the initial-value problem for such an equation are more involved than 
simple sinusoids and generally involve elliptic functions. 
 
 3. The physical pendulum. – A physical pendulum of length l and mass m has a 
restoring force that is given by the torque that acts upon it due to gravity, which is 
assumed to be constant: 

τ = − mgl sin θ,    (1.11) 
 
in which θ is the angle that the pendulum makes with the z-axis. 
 Although this constitutive law is nonlinear, for small enough angles (θ ≪1 rad.), sin 
θ can be approximated by θ, which will then yield a simple harmonic oscillator.  The 
differential equation then takes the form: 
 

2
2

2
sinn

d

dt

θ ω θ+  = 0.     (1.12) 

in which the natural frequency is now: 

ωn =
g

l
,     (1.13) 

 
if one assumes that the mass m is concentrated at the end of the pendulum, so the moment 
of inertial about the pivot is m l2; more generally, l must be replaced with the radius of 
gyration of the pendulum about its pivot. 
 Once again, the solutions to the initial-value problem for this nonlinear ODE are 
generally given by elliptic functions. 
 
 c.  Coupling of oscillators. – The type of coupling between neighboring oscillators is 
a property of the medium more than a property of the oscillators themselves.  The two 
main issues that affect the type of coupling are: 
 
 1. Discreteness vs. continuity of the medium 
 2. Dispersion vs. the absence of dispersion. 
 3. Causality. 
 
 Either discreteness or continuity can be regarded as an approximation to the other 
one.  For instance, although one might think of a compressible gas as composed of 
discrete molecules and an elastic crystal lattice as being composed of discrete atomic 
ions, nonetheless, when it comes to the propagation of mechanical waves in those media, 
it is often more convenient to resort to a continuum model.  Conversely, when one goes 
looking for numerical solutions to the continuum wave equations in real-world situations 
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(e.g., fluids, antennas), it is usually unavoidable that one must resort to discrete models 
for the purposes of computer software design.  Hence, it is important to understand the 
dual relationship between both approximations. 
 
 The coupling of oscillators at different space-time points is typically assumed to be at 
the infinitesimal level; i.e., a given oscillator is coupled to only the other oscillators that 
are “infinitesimally close” to it.  That sort of picture, which involves partial differential 
equations, can often be obtained by starting with a system of ordinary differential 
equations for a spatial-distributed, discrete system of finitely-separated oscillators that are 
coupled in some tangible way (e.g., connecting springs to the nearest neighbors) and 
passing to the limit as the number of lattice points becomes infinite and their separations 
become infinitesimal. 
 It is heuristically illuminating to see how the systems of ODE’s for the oscillation of 
an indefinite sequence of masses m(i) at points x(i) along the real line that are coupled by 
springs with spring constants k(i−1, i) and k(i, i + 1) to the nearest neighbors becomes the 
one-dimensional, linear wave equation when one passes to the continuum limit, in which 
m(i) becomes a linear mass density ρ(x), k(i, j) becomes a function of x, and the sum of 
the forces that act on each mass becomes proportional to the second partial derivative of 
the amplitude of oscillation with respect to x.  We illustrate this arrangement in Fig. II.1: 

 

x(i – 1) x(i) x(i + 1) 

m(i – 1) 
 

m(i) m(i + 1) 

k(i−1, i) k(i, i + 1) 

… … 

 
Figure II.1.  An indefinite sequence of masses coupled by linear springs. 

 
 If one assumes Hooke’s law for the springs then the equations of motion for each 
mass point will be: 
 

2

2

( )
( )

d x i
m i

dt
 = − k(i−1, i) x(i–1) + [k(i−1, i) + k(i, i+1)] x(i) – k(i, i+1) x(i+1). (1.14) 

 
 If one regards the basic state of the system of masses as being defined by the 
indefinite vector X = (…, x(i – 1), x(i), x(i + 1), …) then one can think of (1.14) as being 
a very-large-dimensional system of second-order linear ODE’s for X of the form: 
 

MXɺɺ = − KX,       (1.15) 
 
in which M = diag[…, m(i−1), m(i), m(i + 1), …] and K is a “band” matrix.  That is, its 
elements can be non-zero only on the diagonal and its nearest super-diagonal and sub-
diagonal, which is typical of nearest-neighbor coupling for finite lattices. 
 The right-hand side of (1.14) takes the form of a second-order finite difference 
expression.  Hence, in the limit as the spacing between masses becomes zero and the 
number of masses becomes infinite, it will become a second partial derivative with 
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respect to x times dx.  However, since ∂x / ∂x is always unity, we need to replace x(i) with 
a coordinate x0(i) + ξ(i), where x0(i) is the equilibrium position of x(i), which does not 
change in time, and ξ(i) is the amplitude of the oscillation of x(i), which does change in 
time.  Ultimately, the continuum limit of (1.14) is: 
 

2

2
( )x

t

ξρ ∂
∂

 = 
2

2
( )k x

x

ξ∂
∂

  [ξ = ξ(t, x)],   (1.16) 

 
which is the linear, one-dimensional, wave equation when the speed of propagation of 
(longitudinal) waves is: 

c (x) =
( )

( )

k x

xρ
.    (1.17) 

 
 If the state of an oscillator at one point in time depends upon its states at some 
finitely-separated previous time points then there will be temporal dispersion, while if the 
state of an oscillator at one point in space depends upon its state at some finitely-
neighboring points of space then there will be spatial dispersion.  In other words, 
dispersion is a form of “memory” in the medium.  It has the effect of making the 
constitutive map into an integral operator, instead of an algebraic one.  In the discrete 
lattice model, spatial dispersion would correspond to each mass being coupled to more 
than just its nearest neighbors. 
 
 Causality in the coupling of oscillators not only includes the idea that the state of an 
oscillator at a given space-time point cannot be influenced by the states of the oscillators 
at any future time points, but also that the finiteness of the speeds at which waves 
propagate implies that there will also be space-time points in the past and present that 
cannot affect the state of a given oscillator.  The boundaries of causality ultimately come 
down to the dispersion law for the waves, which we shall discuss in due course below. 
 
 c. State of a wave medium. – A state of a wave medium M is a differentiable 
association of a state of an elementary oscillator with each point of M.  For us, if O is the 

basic state space for the elementary oscillators then it will be sufficient to define that 
association by a differentiable function ψ : M → O or its graph ψ : M → M × O, x ֏ (x, 

ψ(x) (1).  In the event that the space O is a vector space, one can think of the “zero 

section” of the projection M × O → M, (x, ψ) ֏  x, which makes ψ(x) = 0 for every x, as 

essentially the “quiescent” state. 
 To make contact with the conventional terminology regarding waves, we too shall 
refer to ψ as a wave function.  That is, the purpose of a wave function is to define the 
                                                
 (1) If one chooses to replace M × O with the total space B of a fiber bundle B → M then the state would 
be a global section of its projection – if one exists – or perhaps a local one, more generally.  Conceivably, 
the lack of a Euclidian topology on M might relate to topological defects in the medium, such as lattice 
defects, vortices, and even the sources of waves themselves.  However, we shall try to avoid that discussion 
in what follows, since we are trying to stay closer to a survey of the existing literature of continuum-
mechanical models for quantum wave mechanics, which did not go into those matters. 
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state of a wave medium M to be the association of an oscillator amplitude with each point 
of M. 
 
 d.  Disturbances in the state of a wave medium. − We shall think of a disturbance as 
something that alters the state of a wave medium.  Hence, some of the issues that pertain 
to them would be: 
 
 1. Impulsive vs. continuous. 
 2. Finite vs. infinitesimal. 
 
 An impulsive disturbance is generally represented by a jump discontinuity in the state 
at some time point, such as when one plucks a tensed, elastic string or drops a stone into a 
pond.  It has the effect of defining the initial values for the time evolution of the state on 
some discontinuity surface.  Hence, one can think of the subsequent dynamics of the 
motion as being “driven by the initial conditions.”  This approach to defining waves was 
developed in great detail by Hadamard [8] and others that followed him (e.g., [9]). 
 A continuous disturbance is a higher-dimensional analogue of a forcing function for 
an oscillator; the signals that are broadcast from antennas can take that form, at least for 
some finite length of time.  Of course, one must keep in mind that the elementary 
oscillators are already being forced by the motion of the neighboring oscillators via the 
coupling law, so one might distinguish between internal and external forcing functions 
on the state of the medium, accordingly. 
 We shall think of continuous disturbances as possibly being composed of discrete 
pulse trains, rather than invent a separate category for recurring impulsive disturbances.  
Of course, there is a fundamental distinction to be made by pulse trains that have a low 
enough frequency that successive disturbances might damp out completely in between 
pulses, and ones of high enough frequency that the previous disturbances will still be 
affecting the state of the medium when the next one comes about. 
 The difference between finite and infinitesimal disturbances of the state of the 
medium brings us back to the difference between finite and infinitesimal deformations, in 
effect.  We shall eventually address this in the context of variational field theory, but for 
now, we point out that the finite disturbances take the form of differentiable, one-
parameter families ψs of states ψs : (a, b) × M → O, (s, x) ֏  ψs(x); in this case, 

differentiability means that the curve ψs(x) in O that one obtains by fixing each x is a 

differentiable curve.  Typically, the parameter interval (a, b) ⊂ R will include 0, so the 

state ψ0(x) will represent an unperturbed state. 
 An infinitesimal disturbance δψ is then obtained by differentiating ψs with respect to 
s – say, at 0: 

δψ(x) = 
0

( )s

s

d x

dx

ψ
=

.    (1.18) 

  
 It then associates a tangent vector δψ(x) to O to each point ψ0(x) in O. 

 Typically, most linear wave equations are the result of applying infinitesimal 
disturbances to the state of a wave medium. 
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 e.  Response to a disturbance. – The response of a wave medium to a disturbance in 
its state is simply a time-varying state of that medium that is first excited from its 
quiescent state when the disturbance becomes active.  Thus, the wave function ψ : M → 
O, (t, x) ֏ψ(t, x) can serve to describe either the state of the wave medium or its 

response to a disturbance, such as an impulsive disturbance at t = 0 that basically defines 
the Cauchy data for its subsequent time evolution; hence, the response is the solution to 
the wave equation for that Cauchy problem. 
 
 
 2. The kinematical state of a wave. – We can now define a wave to be the response 
of a wave medium to a disturbance in its state, and assume that it takes the form of a 
wave function ψ, so we now have some hope of defining the kinematical state of a wave.  
Basically, we shall take the position that if a wave in a medium M is described by a Ck 
function ψ : M → O, (t, x) ֏  ψ(t, x) then the kth-order kinematical state of the wave is a 

section of the source projection J k (M, O) → M  of the manifold of k-jets of wave 

functions.  Hence, for each (t, x) ∈ M, it will take the form: 
 

s(t, x) = (t, xi, ψ(t, x), ψt (t, x), ψi (t, x), …, 
1

( , )
ki i t xψ

⋯
).  (2.1) 

 
 The kinematical state will be integrable iff it is the k-jet prolongation of ψ : 
 

s = j k ψ .      (2.2) 
 
 Since the wave equations that we shall be considering in this book are all second-
order partial differential equations in the wave function (except for the Dirac equation, 
which is a first-order system), we shall usually be dealing with only first-order 
kinematical states.  Hence, the kinematical state will take the form: 
 

s(t, x) = (t, xi, ψ(t, x), ψt (t, x), ψi (t, x))  (i = 1, …, n),  (2.3) 
  
and it will be integrable iff: 

ψt = 
t

ψ∂
∂

, ψi = 
ix

ψ∂
∂

    (2.4) 

for all (t, x) in M. 
 When one is dealing with wave motions, it usually more convenient to regard the 
coordinates of a point x as xµ, with x0 = t (1), and the components of vectors and covectors 
as also having temporal component that is given the index 0.  Hence, the coordinates of 
J1(M, O) are (xµ, ψ, ψµ), so s can be given the form: 

 

                                                
 (1) The reason that we are setting x0 = t, and not ct, is that the use of c as a units conversion constant 
would imply that we were dealing with a specific type of wave medium (viz., linear, isotropic, 
homogeneous, non-dispersive, electromagnetic) in order for c to be meaningful in the context of φ . 
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s(t, x) = (t, xµ, ψ(t, x), ψµ (t, x)),    (2.5) 
and it will be integrable iff: 

ψµ = 
xµ
ψ∂

∂
.     (2.6) 

 
 a. The frequency-wave number 1-form. – So far, there is nothing to say that ψ is any 
different from any other field on M that takes its values in the field space O.  In order to 

narrow it down to something more “wave-like,” we shall assume that O is a vector space 

with scalars in a field K = R, C, and that ψ takes the form of a product: 

 
 ψ(t, x) = A(t, x) Θ(t, x),     (2.7) 

 

in which A : M → O is an amplitude function, and Θ : M → K is a phase function.  Often, 

A is time-invariant, so it will define the shape of the wave envelope, and K = C with: 

 
Θ = eiθ,     (2.8) 

 
where θ is a real function on M; its level surfaces are called isophases.  Hence, one thinks 
of the elementary oscillator that lives in Θ at (t, x) as being something whose oscillation 
relates to the phase function Θ. 
 Some particular forms that (2.7) can take are: 
 
 1. Standing waves: A = A(x), Θ = Θ(t). 
 
 2. Traveling waves: A = A(x), Θ = Θ(xi – vit). 
 
 3. Geometrical optics: A = A(x), θ = θ(t, x), 
 
although one also imposes an approximation in this last case that relates to the derivatives 
of θ, namely, that the absolute values of the partial derivatives of θ are much larger than 
those of A; one calls that the high-frequency or small wave length approximation. 
 
 4. Plane waves:  A = const.,  θ = kµ x

µ = ω t – ki x
k  (kµ = const.) 

 
 5. Cylindrical waves: A = const. / r,  θ = ω t – kr r  (ω, kr = const.) 
 
In this case, the other coordinates of space are x2 = ϑ, x3 = z, where ϑ is either the 
azimuth or right ascension. 
 
 6. Spherical waves: A = const. / r2,  θ = ω t – kr r  (ω, kr = const.) 
 
In this case, the other coordinates of space are x2 = ϑ, x3 = ζ, where ζ is the codeclination. 
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 With the special form (2.7), the kinematical state of ψ can be replaced by: 
 

s(t, x) = (t, xi, A(t, x), θ(t, x), Aµ(t, x), kµ(t, x))  (µ = 0, 1, …, n),  (2.9) 
 
and it will be integrable iff: 

Aµ = 
A

xµ
∂
∂

, kµ = 
xµ
θ∂

∂
    (2.10) 

for all (t, x) in M. 
 One can construct a 1-form α with values in O out of the component functions Aµ , 

and a single 1-form k (with values in R): 

 
α = Aµ dxµ,  k = kµ dxµ,   (2.11) 

 
so the integrability of the kinematical state would be equivalent to the exactness of these 
1-forms: 

α = dA,  k = dθ.    (2.12) 
 The 1-form: 

 k = ω dt – ki dxi     (2.13) 
 
shall be referred to as the frequency-wave number 1-form, since its components are ω, 
which represents the frequency of the local oscillator, and ki , which represents the wave 
number of the wave at that point.  When k is integrable (i.e., exact), one will then have: 
 

ω = 
t

θ∂
∂

,  ki = 
ix

θ∂
∂

.   (2.14) 

 
 Of course, unless the function θ is truly periodic in t and each xi, the interpretation of 
these expressions as a frequency and three wave numbers, respectively, is somewhat 
debatable.  Fortunately for the people who are content to work with linear wave 
equations, that is not generally an issue, since to them everything comes back to the 
behavior of plane waves, for which the temporal and spatial periodicity is a basic 
property. 
 If one divides the frequency ω by the wave numbers ki then one will get the 
components of a spatial covector with the units of velocity, namely, the phase velocity of 
the wave: 

i
pv = 

ik

ω
.     (2.15) 

 
However, if one considers the process of going from the four dimensions of space-time to 
the three dimensions of space then one will see that there is something more 
geometrically natural about making the inverse definition, which will give components 
with the units of indices of refraction: 

ni = ik

ω
.     (2.16) 
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This will also produce a spatial covector, not a spatial vector. 
 What makes this more geometrically natural is the fact that the map that takes (ω, ki) 

to (ni)  is precisely the map that takes the homogeneous coordinates of a point in RP3* to 

its inhomogeneous coordinates in one of the four Plücker coordinate systems.  Since this 
is not the only time that relativistic physics makes this transformation (it is also how one 
gets from four-velocities to three-velocities), one begins to suspect that there is more to 
the idea that “space” should really mean “projective space” in physics.  The author has 
done considerable research along those lines, but we shall not go further into the details 
here, but only refer to [10] and the references therein. 
 
 b. Dispersion laws. – Since waves are always assumed to propagate with finite 
speeds (even though the speed might vary in time, position, direction, frequency-wave 
number, and polarization), it is never true that every 1-form k is physically admissible.  
Rather, they are always confined to some hypersurface in each cotangent space xT M∗ , 

and more to the point, the hypersurfaces are usually algebraic in character.  The algebraic 
function D(k) is generally homogeneous of even degree d, and more to the point, a 
homogeneous polynomial of degree d, although the equation itself: 
 

D(k) = 0
dk ,     (2.17) 

 
which is called the dispersion law for the class of waves in question, can be 
homogeneous or inhomogeneous. 
 Often, one finds the equation (2.17) solved for k0 = ω: 
 

ω = ω(ki).      (2.18) 
 
 One can think of a dispersion law as something that relates the coupling of 
neighboring oscillators, since it converts a local frequency for the oscillator at a point into 
a wave number for the propagation of a wave in each direction, and vice versa.  Indeed, 
in many linear cases, the dispersion law is simply the symbol of the second-order linear 
differential operator that defines the wave equation that results from the coupling of 
oscillators in space-time.  When that operator has constant coefficients, one can think of 
that symbol as being the Fourier transform of the operator, which can also be obtained by 
replacing all partial derivatives as follows: 
 

n

nt

∂
∂

 → (i ω)n,  
( )

n

i nx

∂
∂

 → (i ki)
n. 

 
Note that this also leads to half of the usual canonical quantization rules for quantum 
mechanics.  One can then think of the dispersion law as something like the frequency-
wave number space analogue of the space-time coupling. 
 The common way of obtaining a dispersion law in theory is to start with a set of field 
equations, choose a certain class of “wave-like” solutions (such as plane waves), and see 
what algebraic relationship ensues when one does the differentiations of the wave 
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function and combines them in the algebraic manner that the field equations specify.  Of 
course, it is only in the linear case that it would be sufficient to examine the dispersion 
law for plane waves, since even though wave functions can (by hypothesis) always be 
analyzed into their Fourier components, unless the field equations are linear in their 
derivatives, the dispersion law that one would get for a different class of solutions would 
not have to be the same as the one for plane waves. 
 
 When one has defined a dispersion law, one can also define a second kind of wave 
velocity in terms of the derivatives of D with respect to kµ that one calls the group 
velocity [11]: 

i
gv = − 

0

i
D

D
= − 

/

/
ik

ω
∂ ∂
∂ ∂
D

D
.    (2.19) 

 
 When D has been solved for ω in the form (2.18), that will give: 
 

i
gv = 

ik

ω∂
∂

.     (2.20) 

 
 Some examples of dispersion laws are: 
 
 1. Light cones: 

D(k) = ω2 – c2 δ ij ki kj = 0.     (2.21) 
 
This leads to the most elementary “linear” dispersion law: 
 

ω = ± c κ  (κ = 2 2 2
1 2 3k k k+ + ).   (2.22) 

 
 One sees that c is basically the norm of the phase velocity in this case, which is still 
(2.15): 

c = ± 
ω
κ

 = ± 1 2 2 2 3 2( ) ( ) ( )p p pv v v+ + .    (2.23) 

 
This makes it clear that the only thing that the sign refers to is the direction of 
propagation of the waves (which is the line through ki), and we thus omit the sign unless 
it is essential. 
 The fact that there is only one c points to the isotropy of the medium, and if it is also 
a constant then the medium would be homogeneous, as well.  Of course, the optics and 
acoustics of refraction would become trivial in that case, although most commonly the 
spatial change in c is assumed to be a jump discontinuity across a boundary in the context 
of refraction. 
 Since: 

D
0 = 2ω,  D

i = − 2 c2 δ ij kj ,    (2.24) 
 

the group velocity will have components: 
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i
gv = ± c ˆik ,     (2.25) 

 

in which ˆik  = δ ij kj / κ is the unit vector in the direction ki ; hence, vg is also equal to c.  
As a result, one will always have: 

i
p giv v  = i

i

ck

k

ω
κ

 = c2.     (2.26) 

 
 One can complete the spatial group velocity i

gv  to a four-velocity that lies on the 

dispersion hypersurface (i.e., light cone) by using the dispersion law, which will 
determine v0 uniquely (up to sign).  If vg is the Euclidian norm of igv  then one defines: 

 

v0 = ± gv

c
.     (2.27) 

 
 One of the key properties of this type of dispersion law is that it has no “rest system.” 
That is, one cannot find a frame to which a non-zero k can be referred that will make ki = 
0 for all i, since that would make ω = 0, as well. 
 
 2. Massive matter waves: 

D(k) = ω2 – c2 δ ij ki kj = 2
0ω .    (2.28) 

 
We shall encounter this in the context of the Klein-Gordon equation, but there are also 
some plasmas that present such a dispersion law for the propagation of electromagnetic 
waves. 
 This dispersion law can also be put into the form: 
 

ω = 2 2
0

ij
i jc k kω δ+ .     (2.29) 

 
(We have omitted the sign ambiguity, since it relates to only the direction of 
propagation.)  Whereas all values of ω were allowable in the homogeneous case, one now 
sees that as ki ranges from – ∞ to + ∞, the corresponding values of ω will fall between ω0 
and + ∞. 
 This type of dispersion law is distinguished from the previous one by the fact one can 
now define a rest frame, since ki = 0 no longer implies that ω = 0, but only that: 
 

ω = ω0 .      (2.30) 
 
Hence, one can characterize ω0 as the frequency of some basic oscillator in the rest 
system for which the wave will be a standing wave. 
 Although the phase velocity of these waves has not changed in form from ω / ki (since 
the definition of vp is indifferent to the choice of dispersion law), nonetheless, it does not 
have to equal c, anymore,  
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vp = 
2 2 2
0 cω κ

κ
+

= 
2

01
v

c
c

 +  
 

 (v0 ≡ 0ω
κ

).  (2.31) 

 
In fact, as v0 ranges over all real values, vp will range from c to + ∞. 
 Furthermore, the group velocity has changed: 
 

 i
gv  = 

ik

ω∂
∂

 = 
2

ˆi

p

c
k

v
 = c 

1/22

0 ˆ1 iv
k

c

−
  +     

,    (2.32) 

 
although (2.26) will still be true.  This time, v0 can range from 0 to + ∞, but vg can range 
from 0 to only c.  Therefore, one expects that it is the group velocity that is more 
physically meaningful. 
 Once again, one can complete vg to a four-velocity on the dispersion hypersurface [we 
change the temporal component to u0 to avoid confusion with the v0 in (2.31)]: 
 

u0 = 
2

1 gv

c

 
± +  

 
.     (2.33) 

 3. Bimetric dispersion laws: 
 

D(k) = (gκλ kκ kλ) ( gµν kµ kν) = k2 2k = 0,    (2.34) 
 
where both scalar products g and g  on the cotangent spaces have the same signature 

type, namely, the Lorentzian one ηµν = diag[+ 1, − c2, − c2, − c2].  In the simplest case, 
they are both diagonal in the same frame, but with different values of c: 
 

D(k) = (ω2 – c2 δ ij ki kj) (ω2 – 2c δ mn km kn) = 0.   (2.35) 
 
When c = c , the dispersion law will reduce to the degenerate case (ηµν kµ kν)

2 = 0. 
 One sees that since the polynomial factors into a product of quadratic polynomials, 
and their product must be zero, the zero locus of D(k) will consist of the union of two 
(possibly intersecting) light cones.  Therefore, k will lie on one light cone or the other 
one, and possibly both. 
 Since: 

kρ

∂
∂
D

= 2 [(ηρλ kλ)(
µνη kµ kν)  + (ηκλ kκ kλ)(

ρνη kν)],  (2.36) 

 
which we rewrite in the form: 

kρ

∂
∂
D

= 2 ( 2k kρ + k2 k ρ ),    (2.37) 

 
with the obvious definitions, the group velocity will take the form: 
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i
gv  = − 

/

/
ik

ω
∂ ∂
∂ ∂
D

D
= 

2 2 2 2

2 2

i ic k k c k k

k kω ω
+
+

 = 
2 2

2 2

2 2

ˆˆ

1 1

i i

p p

c c
k k

k k
v v

k k

ω ω
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.  (2.38) 

 
In particular, the two extreme cases are when k lies on the first light cone (k2 = 0), which 
will make vg = c2 / vp , and when k lies on the other one (2k = 0), which will make vg = 

2
pc v .  vg will become undefined on the intersection of the two light cones, since it will 

take the form of 0 / 0. 
 
 c. The eikonal equation. – Whenever one is given a function, such as D, on the 
cotangent bundle T*M, one can always define a first-order partial differential equation for 
the phase function θ by evaluating D on k = dθ : 
 

D(∂µθ) = 0
dω .     (2.39) 

 
 For instance, in the Lorentzian case, the homogeneous equation: 
 

( )g x
x x

µν
µ ν

θ θ∂ ∂
∂ ∂

= 0     (2.40) 

 
is referred to as the eikonal equation, and it is very important in geometrical optics. 
 As one can see, that partial differential equation for θ is first-order and nonlinear.  
Finding solutions to it usually involves appealing to Hadamard’s method of 
bicharacteristics, which turns into Hamilton’s equations. 
 
 d. Virtual displacements of the kinematical state. – If s : M → J1(M, O) is a 

kinematical state of a wave function ψ : M → O that takes the coordinate form (2.3) then 

a virtual displacement of that state will be a vector field δs(t, x) on s that takes the 
component form: 
 

δs(t, x) = ( , ) ( , ) ( , )x t x t x t x
x

µ
µµ

µ

δ δψ δψ
ψ ψ

∂ ∂ ∂+ +
∂ ∂ ∂

,  (2.41) 

 
and the virtual displacement will be integrable iff: 
 

δψµ = 
( )

xµ
δψ∂

∂
.     (2.42) 

 
 If the kinematical state takes the form (2.9) then δs will take the form (we drop the 
functional dependency of the components, for brevity): 
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δs = x A A k
x A A k

µ
µ µµ

µ µ

δ δ δθ δ δ
θ

∂ ∂ ∂ ∂ ∂+ + + +
∂ ∂ ∂ ∂ ∂

,  (2.43) 

 
and its integrability will be equivalent to: 
 

δAµ = 
( )A

xµ
δ∂

∂
,  δkµ = 

( )

xµ
δθ∂

∂
.    (2.44) 

 
 

 3. The dynamical state of a wave. – The approach that we shall take to defining the 
dynamical state of a wave is to regard it as dual to the virtual displacement of the 
kinematical state under the duality that is defined by virtual work. 
 
 a.  Fundamental 1-form. – If s : M → J1(M, O) is a kinematical state of a wave ψ, and 

δs is a virtual displacement of that state then the dynamical state of ψ will be a 1-form φ 
on J1(M, O) that we call the fundamental 1-form that couples the virtual displacement δs 

to the virtual work δW that is performed in the process: 
 

δW = φ (δs).      (3.1) 
 
 When s is expressed in the coordinate form (2.3), φ will have the component form: 

 
φ = P dt + fi dxi + ζ dψ + εɶ  dψt +

iπɶ dψi .    (3.2) 
 
 All of the component functions must be understood to mean functions on J1(M, O), 

such as fi (t, x
i, ψ, ψt, ψi), for instance.  Hence, the mechanical constitutive laws for the 

waves in the medium M will already be included in the functional dependency of the 
components of φ. 
 If the elements of O have “amplitude units,” which we abbreviate by AU, then the 

components of φ will have the following interpretations: 
 
 1. P  Power density. 
 2. fi  External force density. 
 3. ζ  Energy density per AU. 
 4. εɶ   Energy density per time rate of change of AU. 
 5. iπɶ  Energy density per AU gradient. 
 
 Usually, it is more convenient to write φ in four-dimensional form without 
distinguishing spatial components from temporal ones: 
 

φ = fµ dxµ + ζ dψ + µπɶ dψµ .     (3.3) 
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 The most common way of obtaining a fundamental 1-form is to start with a 
Lagrangian density L on J1(M, O) (which we will discuss in the next chapter) and define 

φ to be: 
φ = dL.     (3.4) 

If L = L(xµ, ψ, ψµ) then that will make: 

 

fµ = 
xµ

∂
∂
L

, ζ = 
ψ

∂
∂
L

, µπɶ  = 
µψ

∂
∂
L

.   (3.5) 

 
 When s is expressed in the coordinate form (2.9), φ will have the component form: 
 

φ = fµ dxµ  + ζA dA + ζθ dθ + pµ
ɶ dkµ .    (3.6) 

 
 b. Examples of fundamental 1-forms for waves. – The simplest wave equation that 
one encounters in physics is the massless, linear wave equation for a real wave function 
ψ : 

0 = ψ□ = ηµν ψ, µ, ν .      (3.7) 
 
 Since this can be associated with the Lagrangian density: 
 

L(ψµ) = − 1
, ,2

µν
µ νη ψ ψ ,    (3.8) 

 
the fundamental 1-form that one associates with it will be: 
 

φ = dL = − , ,( )dµν
ν µη ψ ψ ;    (3.9) 

i.e.: 
pµ
ɶ  = − ,

µν
νη ψ ,     (3.10) 

 
which is minus the four-dimensional gradient of ψ. 
 When ψ is complex-valued, the field space O will be two-real-dimensional, so if one 

wishes to make L real-valued then one must regard it as a function of both ψ and ψ* and 

use the modulus function to turn ψ and ψ* into a real number, namely: 
 

L(ψµ , µψ ∗ ) = − , ,
µν

µ νη ψ ψ ∗ ,    (3.11) 

which will make: 
φ = − , , , ,( ) ( )d dµν µν

ν µ ν µη ψ ψ η ψ ψ∗ ∗− ;   (3.12) 

i.e.: 
pµ
ɶ  = − ,

µν
νη ψ ∗ , pµ∗

ɶ  = − ,
µν

νη ψ .  (3.13) 

 



98 Chapter II – The mechanics of waves 

 If one wishes to go on to the massive, linear (i.e., Klein-Gordon) wave equation for a 
complex wave function, namely: 

0 = 2
0kψ ψ+□ ,    (3.14) 

then one must add another term to L: 

 
L(ψ, ψ*, ψµ , µψ ∗ ) = 2

0k ψψ ∗  − , ,
µν

µ νη ψ ψ ∗ .   (3.15) 

 One will then get: 
 

φ = 2 2
0 0 , , , ,( ) ( )k d k d d dµν µν

ν µ ν µψ ψ ψ ψ η ψ ψ η ψ ψ∗ ∗ ∗ ∗+ − − ;  (3.16) 

i.e.: 
ζ = 2

0k ψ ∗ ,    ζ * = 2
0k ψ ,    pµ

ɶ  = − ,
µν

νη ψ ∗ ,    pµ∗
ɶ  = − ,

µν
νη ψ .  (3.17) 

 
  In more elaborate field spaces, O must typically include some way of turning its 

elements into real numbers, such as a norm or scalar product when it is a vector space.  
We shall deal with those cases as they become relevant in what follows. 
 
 c. Energy-momentum of a wave. – In the mechanics of points and extended massive 
objects, where the target variable is the position of a point in space or space-time, one can 
also consider the kinematical state to be something that involves the velocity or 
displacement gradient, which we collectively describe by the coordinates axµ .  The dual 

object to that kinematical object in the eyes of virtual work is then energy-momentum-
stress: 

δW = a
ap xµ

µ δ  = pµ dvµ + b i
i beτ δ  (b = 1, …, p) .  (3.18) 

 
 We have previously discussed two different ways of associating a spatial velocity 
vector with a wave, namely, its phase and group velocity, respectively.  Indeed, one can 
then complete the spatial group velocity to a velocity four-vector on the light cone 
uniquely (up to sign), since if vgi is given and its Euclidian norm is vg then its temporal 
component can be only v0 = ± vg / c. 
 We shall now show that if one uses the group covelocity vgi , in particular, and 
associates a spatial momentum density 1-form with it in the conventional way: 
 

pi = givρ ,     (3.19) 

 
in which ρ is the mass density, then in the case of the most common dispersion law (i.e., 
the Lorentzian structure), for which vgi = c2 ki / ω one will get: 
 

pi = 
2

i

c
k

ρ
ω

,     (3.20) 

 
and if one puts ρ into the form mn, where m is the integral of ρ over all space, and n = ρ / 
m is the number density of the matter, then if one also defines: 
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ℏ  = 
2mc

ω
 (i.e., mc2 = ωℏ ),   (3.21) 

one can express pi in the form: 
pi = in kℏ .     (3.22) 

 
Except for the inclusion of the number density n, this is essentially the de Broglie relation 
for linear momentum [12].  Of course, one must realize that the de Broglie relation 
couples the linear momentum of a point mass to the wave number of a wave, not the 
linear momentum density of an extended mass.  Hence, one might consider that the 
constant ℏ  is to nℏ  what m is to mn; that is, ℏ  is the integral of a density over all space. 
 If p denotes the norm of pi then the energy density that will complete pi to an energy-
momentum density 1-form is (we omit the sign that comes from the square root) then 
derived from (3.20), (3.21), and the fact that ω = cκ for this dispersion law: 
 

ε = pc = ρc2 = nωℏ .      (3.23) 
 
Hence, we have also recovered the de Broglie relation for energy (density), as well. 
 Note that in the previous discussion the only actual assumption that one must 
introduce in order to be talking about quantum waves is that the constant ℏ  that we have 
defined will be the same for all matter, and not something that varies from one wave to 
the next. 
 
   
 4. Derivation of wave equations. – We shall use the principle of virtual work as the 
basis for the derivation of wave equations, namely, that the virtual work that is done by 
any “allowable” virtual displacement, viz.: 
 

δW  (δψ) = ( )i

M
j Vφ δψ∫ ,    (4.1) 

 
must be zero.  The way that we are using the term “allowable” is usually defined by the 
boundary conditions on the virtual displacement. 
 
 a. The principle of virtual work. – In order to derive a wave equation from the 
knowledge of φ, one must apply it to an integrable virtual displacement δs = j1δψ of the 
kinematical state of ψ and set the resulting total virtual work equal to zero.  If δs has the 
form (2.41) and is integrable then that will give: 
 

0 = ( )i

M
j Vφ δψ∫ ,     (4.2) 

with: 
 φ (j1δψ) = fµ δxµ  + ζ δψ + pµ

ɶ ∂µ (δψ),   (4.3) 
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and V is the volume element on M.  [We have suppressed the specific reference to the fact 
that the function φ (j1δψ) must be pulled down to M by a section of the source projection 
of J1(M, O), for brevity.] 

 An application of the product rule for differentiation will put this into the form: 
 

φ (j1δψ)  = fµ δxµ + (ζ  − pµ
µ∂ ɶ ) δψ + ∂µ ( pµ

ɶ δψ).   (4.4) 

 
 When one substitutes this in (4.2), the result will be: 
 

0 = ( ) [ ( )]
M M

D V f x p Vµ µ
µ µφ δψ δ δψ∗ + + ∂∫ ∫ ɶ ,  (4.5) 

 
in which we have defined: 

D*φ = (ζ − pµ
µ∂ ɶ ) dψ ,    (4.6) 

or, for complex wave functions: 
 

D*φ = (ζ − pµ
µ∂ ɶ ) dψ + (ζ * − pµ

µ
∗∂ ɶ ) dψ*.   (4.7) 

 
 In a sense, the operator D* is “adjoint” to the Spencer operator, as it acts upon vector 
fields on J1(M, O), at least with respect to the bilinear pairing that is defined by virtual 

work. 
 When the virtual displacement is vertical, δxµ = 0, which will make the second 
integral in (4.5) take the form: 

[ ( )]
M

p Vµ
µ δψ∂∫ ɶ = ( )#

M
pµ

µδψ
∂

∂∫ ɶ .   (4.8) 

 
If (4.5) is to be true for all δψ that make pµ

ɶ (δψ) vanish on ∂M (such as when δψ itself 

vanishes on ∂M) then one must have: 
0 = D*φ ,     (4.9) 

which will give: 
0 = ζ  − pµ

µ∂ ɶ      (4.10) 

in the real case, or: 
0 = ζ  − pµ

µ∂ ɶ ,  0 = ζ *  − pµ
µ

∗∂ ɶ    (4.11) 

in the complex case. 
 
 b. Examples. – If we go back to the examples of fundamental 1-forms that were 
given in the last section then we will see that either equation (4.10) or equations (4.11) 
do, in fact, reproduce the wave equations.  We summarize this in a table: 
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Table II.1  Examples of calculations for elementary wave types 
 

 
Wave type 

 

 
ζ, ζ * 

 
pµ
ɶ , pµ∗
ɶ  

 
D*φ 

Linear, massless, real 0 pµ
ɶ = − ηµν ψ,ν ( )dψ ψ□  

Linear, massless, complex 0 pµ
ɶ = − ηµν ,νψ ∗  

pµ∗
ɶ = − ηµν ψ,ν 

( ) ( )d dψ ψ ψ ψ∗ ∗+□ □  

Linear, massive, complex ζ = 2
0k ψ ∗ , 

ζ * = 2
0k ψ   

pµ
ɶ = − ηµν ,νψ ∗  

pµ∗
ɶ = − ηµν ψ,ν  

2
0( )k dψ ψ ψ∗ ∗+□  

+ 2
0( )k dψ ψ ψ ∗+□  

 
 c. Wave equations in amplitude-phase form. – So far, we have not said anything 
much about the form that the wave equations would take when one expresses the 
kinematical state and dynamical state of the wave in amplitude-phase form.  That is 
because that discussion essentially amounts to the essence of what follows in this book.  
In particular, the Madelung transformation of the Schrödinger and Klein-Gordon wave 
functions amounts to introducing polar coordinates in the complex plane, so the 
amplitude function will be real-valued.  Thus, we shall not into the topic further at the 
moment, since we shall give it considerable attention in the balance of this book. 
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CHAPTER III 
 

Variational field theory  
 

 
 This chapter is intended to merely summarize the basic notions and formulas from the 
calculus of variations that will be used in the context of fields that generally take the form 
of wave functions.  Since the basic intent is to present a calculus of variations, and not an 
analysis of variations, the discussion will be more local and component-oriented than 
many modern theorists might prefer.  That decision was made in the interests of staying 
closer to the published physics research that was being surveyed, since much of the 
justification for the introduction of the modern mathematical generalities is to make the 
field theory more sensitive to topological issues, which were not generally addressed in 
the books and papers that are in question here.  More to the point, the generalization of a 
soluble problem might very well be insoluble, which is why science typically advances 
by successive incremental approximations, and not leaps of faith. 
 A similar justification will be made for the fact that we will be concerned with a flat 
background metric for space-time.  Since one of the fundamental issues in the continuum-
mechanical models for quantum wave mechanics is how the basic density function that 
one obtains from the quantum wave function changes the geometry of the space of 
kinematical states into the geometry of the space of dynamical states, it would distract 
from one’s focus on that topic to also consider the way that the geometry is being altered 
by the presence of gravitating matter.  For some theoretical purposes, it is better to regard 
the formal machinery of general relativity as being most appropriate to the study of 
physical phenomena in the presence of strong gravitational fields, such as one finds near 
neutron stars and black holes, rather than a universal background geometry on which to 
superimpose all physical phenomena, simply in the interests of mathematical generality. 
 
 
 1.  Variations of fields on space-time regions. – Although it is often useful to think 
of the calculus of variations as something like “the calculus of infinity variables” or 
differential calculus on infinite-dimensional differentiable manifolds, for the practical 
business of deriving field equations, conserved currents, and equations of motion, that 
viewpoint is usually more heuristically useful as a tool for visualization than actually 
useful for the derivation of equations.  That is because the analytical overhead that is 
associated with making all of one’s statements mathematically rigorous rapidly turns the 
calculus of variations into the analysis of variations.  Hence, although we shall make 
occasional motivating statements that suggest the infinite-dimensional picture, 
nonetheless, no attempt at making them analytically rigorous will be made, since the real 
objective in all of this is simply to obtain systems of differential equations that will tell us 
more about the nature of quantum wave mechanics. 
 
 a. Finite variations of fields. – If one imagines that Ψ is basically a point in the 

infinite-dimensional vector space Γ(S, Cr) then one can also imagine that a finite 
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variation of Ψ is a differentiable curve Ψ(s) through that point; for convenience, assume 
that Ψ(0) = Ψ.  Actually, since only the local behavior of the curve at Ψ will be of any 
interest to us, the range of the curve parameter s can be a small, but finite, interval (− ε, + 
ε) around 0.  One can then represent the curve Ψ(s) as a curve in the graph of Ψ: (x(s), 

H(s, x)), where H : (− ε, + ε) × Cr → Cr, (s, x) ֏  H(s, x) is a differentiable map that has 

the property that: 
H(0, x) = Ψ(x).     (1.1) 

 
 One can also think of this as a “differentiable homotopy” of the map Ψ to some 

unspecified final map from S to Cr, but we shall skip over that fact.  (The curious can 

confer Dedecker [1] or some of the author’s work [2-4].) 
 
 b. Infinitesimal variations of fields. – Just as one can think of differentiating a 
differentiable curve through a point in a finite-dimensional differentiable manifold at that 
point in order to obtain a tangent vector, one can think of differentiating the curve Ψ(s) at 
Ψ to obtain a “tangent vector” at Ψ.  We shall formally write: 
 

δΨ ≡ 
0

( )

s

d s

ds =

Ψ
    (1.2) 

 
and refer to δΨ as a variation of Ψ, which is short for infinitesimal variation of Ψ.  
However, it is more convenient to regard the “tangent vector at Ψ” that we have just 

derived as actually a vector field on the graph of Ψ in the space S × Cr, whose 

coordinates are (xi, za): 

δΨ(x) = ( ) ( )i a
i a

x x x
x z

δ δ∂ ∂+ Ψ
∂ ∂

.   (1.3) 

 
Hence, the vector field δΨ(x) is defined only on all points of S and the corresponding 

image points of Ψ in Cr.  One can then also think of δΨ(x) as the infinitesimal generator 

of a one-parameter family of fields Ψ(s, x) on S (and its deformations), at least locally 
(i.e., for a sufficiently-small | s  |). 
 A variation, as we have defined it here, is then a generalization of the virtual 
displacement of the configuration of an extended body that we defined previously. 
 The variation δΨ(x) will be called vertical iff δxi(x) = 0; it will then take the form: 
 

δΨ(x) = ( )a
a

x
z

δ ∂Ψ
∂

.     (1.4) 

 
In such a case, the finite variation that is generated by the variation will affect only the 
values of Ψ in field space. 
 As mentioned before, the techniques of jet manifolds are directly applicable to the 
formulation of the calculus of variations, since a Lagrangian density is basically a 
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differentiable function on a jet manifold.  For us, since the wave equations in question 
will generally be second-order, it will be necessary to consider only 1-jets j1Ψ of 

differentiable maps Ψ : S → Cr.  Thus, the coordinate representation of a point of J1(S, 

C
r) will then look like (xi, za, za*, a

iz , a
iz

∗ ), a section of the source projection s : S → J1(S, 

C
r) will then have values that look like (xi, sa(x), sa*(x), ( )a

is x , ( )a
is x∗ ), and it will be 

integrable iff there is some differentiable map Ψ : S → Cr such that: 

 
( )a

is x  = , ( )a
i xΨ , ( )a

is x∗  = , ( )a
i x∗Ψ .   (1.5) 

 
 Actually, for our immediate purposes, the real issue is the integrability of a vector 
field on (the graph of) s; i.e., a variation: 
 

δs(x) = ( ) ( ) ( ) ( ) ( )i a a a a
i ii a a a a

i i

x x s x s x s x s x
x z z z z

δ δ δ δ δ∗ ∗
∗ ∗

∂ ∂ ∂ ∂ ∂+ + + +
∂ ∂ ∂ ∂ ∂

.  (1.6) 

 
δs(x) will be called integrable iff: 
 

( )a
is xδ  = , ( )a

is xδ  = 
( )

( )
a

i

s
x

x

δ∂
∂

 (and complex conjugate).  (1.7) 

 
 Since δsa = a i

is dxδ  and δsa* = a i
is dxδ ∗   will then become a set of 2r exact 1-forms, it 

will be necessary that one must also have that they are closed (viz., d^δsa = d^δsa* = 0 for 
all a).  Locally, that says: 

,
a
i jsδ = ,

a
j isδ , ,

a
i jsδ ∗ = ,

a
j isδ ∗ .    (1.8) 

 

 2.  The stationary action principle. – In finite-dimensional differential calculus, the 
theory of extrema of differentiable functions is essentially identical with the theory of 
critical points of those functions; i.e., points at which the differential of the function 
vanishes.  In the calculus of variations, one has an analogous picture, in which the 
“differentiable function” on the “differentiable manifold” takes the form of a 
differentiable functional on the objects that are being varied by the variations (fields, for 
us).  The “critical points” of that functional are then extremal objects, and the differential 
equations that define those extremal objects will define the equations of motion or 
equilibrium for the objects in question. 
 
 a.  The action functional. – The first significant step towards obtaining the field 
equations is that of replacing the differentiable function on the infinite-dimensional 

vector space of fields Ψ : S → Cr whose critical points should determine extremal fields 



106 Chapter III – Variational field theory 

with a differentiable function L on the finite-dimensional space J1(S, Cr).  One calls that 

function L a Lagrangian density for the fields Ψ, and it takes the coordinate form: 

 
L = L(xi, za, a

iz ). 

 
When one composes L with the 1-jet prolongation j1Ψ of a field Ψ, one will get a real 

function j1Ψ*
L on S: 

 ( j1Ψ*
L)(x) = L( j1Ψ*(x)) = L(xi, Ψa(x), , ( )a

i xΨ )  (2.1) 

 
that one calls the pull-back of L to S by j1Ψ. 

 In practice, since Ψ is assumed to take complex values, in order to get a real function 
for L, one will regard L as a function of both Ψ and its complex conjugate Ψ*, as well as 

its first derivatives: 
L = L(xi, Ψa(x), Ψ∗a(x), , ( )a

i xΨ , , ( )a
i x∗Ψ ).    (2.2) 

 If: 

V = dx1 ^ … ^ dxn = 1

1

1

!
n

n

ii
i i dx dx

n
ε ∧ ∧
⋯

⋯    (2.3) 

 
is a volume element on S (which is assumed to be orientable) then one can integrate the 
n-form  ( j1Ψ*

L) V over S and obtain the action functional for the fields Ψ and Ψ*: 

 

S[V, Ψ, Ψ*] = 1( )
S

j VΨ∫ L = , ,( , ( ), ( ), ( ), ( ))i a a a a
i iS

x x x x x V∗ ∗Ψ Ψ Ψ Ψ∫ L . (2.4) 

 
 That construction will then allow one to circumvent the necessity of first defining the 
infinite-dimensional complex vector space in which Ψ and Ψ* live, as long one can also 
define the differential of the functional S accordingly. 

 
 b.  The first variation of the action functional. – The differential df of a function f : M 

→ R on a finite-dimensional differentiable manifold M will define a linear functional df|x 

on the tangent vectors at each point x of that manifold.  In the present (infinite-
dimensional) case, where the points are Ψ and Ψ*, and the function f is the functional S, 

the tangent vectors will be variations δΨ and δΨ*.  The differential of S will be then 

referred to as the first variation of S, and one defines it by (we suppress the reference to 

Ψ and Ψ* for brevity): 
 

δS[δV, δΨ, δΨ*] = 1 1[ ( ) ( ) ]
S

j V j Vδ δΨ + Ψ∫ L L ,   (2.5) 

in which: 
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δL(j1Ψ) = , ,
, ,

i a a a a
i ii a a a a

i i

x
x

δ δ δ δ δ∗ ∗
∗ ∗

∂ ∂ ∂ ∂ ∂+ Ψ + Ψ + Ψ + Ψ
∂ ∂Ψ ∂Ψ ∂Ψ ∂Ψ
L L L L L

 (2.6) 

and: 

δV = d^ #δx, #δx = δxi 
i

i V∂ = (− 1)i+1 δxi 
1 i ndx dx dx∧ ∧ ∧ ∧⋯ ⋯ .  (2.7) 

 
In this last expression, the caret signifies that the relevant differential is missing from the 
exterior product.  One can then show that: 
 

δV = # div(δx) = div(δx) V.     (2.8) 
 
 As long as δL is integrable, one can apply the product rule (AKA: integration by 

parts) and put δL into the form: 

 

δL = ( )i a a i a i a
a ai a a i

x
x x

δ δδ δ δ δ δ
δ δ

∗ ∗ ∗
∗

∂ ∂+ Ψ + Ψ + Π Ψ + Π Ψ
∂ Ψ Ψ ∂
L L L

,  (2.9) 

 
in which we have defined the variational derivatives of L with respect to Ψ and Ψ*: 

 

a

δ
δΨ
L

= 
,

a i a
ix

∂ ∂ ∂−
∂Ψ ∂ ∂Ψ
L L

, 
a

δ
δ ∗Ψ
L

= 
,

a i a
ix∗ ∗

∂ ∂ ∂−
∂Ψ ∂ ∂Ψ
L L

,  (2.10) 

 
as well as their canonical momenta: 
 

i
aΠ  = 

,
a
i

∂
∂Ψ
L

,  i
a
∗Π  = 

,
a
i

∗

∂
∂Ψ
L

.    (2.11) 

 
 If we also define the canonical forces: 
 

f a = 
a

∂
∂Ψ
L

,  f *a = 
a∗

∂
∂Ψ
L

    (2.12) 

 
then we can express the variational derivatives in the form: 
 

a

δ
δΨ
L

= f a − i
i a∂ Π , 

a

δ
δ ∗Ψ
L

= f *a − i
i a

∗∂ Π .   (2.13) 

 
 One can similarly apply the product rule to the term L(j1Ψ) δV: 

 
L(j1Ψ) δV = L(j1Ψ) d^#δx = d^[L(j1Ψ) #δx] − dxL(j1Ψ) ^ #δx,   (2.14) 
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in which the notation dx means that one differentiates only with respect to the xi.  
However, the last term will then take the form: 
 

dxL(j1Ψ) ^ #δx = i
i

x V
x

δ∂ 
 ∂ 

L
,    (2.15) 

 
which will cancel the first one in (2.9).  Hence, it does not seem to matter whether L does 

or does not depend upon xi to begin with, since that dependency will not appear in the 
final expression for the first variation. 
 If one assumes that the region S has a boundary ∂S then an application of Stokes’s 
theorem for differential n-forms will put the first variation of L into the form: 

 
 δS[δxi, δΨ, δΨ*] 

 

= a a
a aS

V
δ δδ δ
δ δ

∗
∗

 Ψ + Ψ Ψ Ψ 
∫

L L
 + 1[ ( ) ]#i a i a i

a a iS
j xδ δ δ∗ ∗

∂
Π Ψ + Π Ψ + Ψ ∂∫ L . (2.16) 

 
 The rest of what we shall consider in the name of variational field theory will follow 
from various specializations of this expression. 
 
 By definition, an extremal field Ψ will be one for which δS[δxi, δΨ, δΨ*] vanishes 

for every possible choice δΨ (and therefore, its conjugate δΨ*).  One will then have to 
contend with the vanishing of the integrand in the first integral, as well as the vanishing 
of the boundary contribution.  The former condition will imply field equations for Ψ and 
Ψ*, while the latter will involve their boundary conditions. 
 The idea that the extremal fields should represent the physically-meaningful ones 
specializes to Hamilton’s principle or the stationary action principle (1).  Whether or not 
that extremal actually represents a minimum then reverts to the methods of the second 
variation of the action functional, which we shall not go into here. 
 
 c. The Euler-Lagrange equations. – For the purposes of obtaining field equations 
from the stationary action principle, one generally makes some restrictions on the 
allowable variations of Ψ and Ψ* so that they will always make the boundary integral 
vanish.  There are two basic ways that this condition can be satisfied: 
 
 1. The fixed-boundary condition: Allowable variations δxi, δΨa, and δΨ*a always 
vanish on ∂S.  Hence, one varies the fields only at their interior points. 
 

δxi(x) = δΨa(x) = δΨ*a(x) = 0,  x ∈ ∂S.   (2.17) 
 

                                                
 (1) Some authors, especially those of the Nineteenth Century, prefer to specialize the stationary action 
principle even further in order to state Hamilton’s principle by applying it to a more specific class of 
Lagrangians. 
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 2. The tranversality condition: Allowable variations δΨa and δΨ*a are always 
transversal to the canonical momenta at the boundary points, while δxi fixes the 
boundary: 

δxi(x) = i a
a δΠ Ψ (x) = ( )i a

a xδ∗ ∗Π Ψ = 0, x ∈ ∂S.   (2.18) 

 
 With those restrictions, the first variation of L will take the reduced form: 

 

δS[δΨ, δΨ*]  = a a
a aS

V
δ δδ δ
δ δ

∗
∗

 Ψ + Ψ Ψ Ψ 
∫

L L
.  (2.19) 

 
 This will vanish for every allowable δΨ and δΨ* iff: 
 

a

δ
δΨ
L

= 0, 
a

δ
δ ∗Ψ
L

= 0    (2.20) 

 
for the Ψ and Ψ* in question.  These equations, which are each called the Euler-Lagrange 
equations, then take on the character of systems of differential equations for the extremal 
fields.  In the case of point mechanics, for which S is an interval along the time line, they 
are ordinary differential equations, but when S has a dimension that is higher than one, 
they will be partial differential equations. 
 A common specialization of these equations is to the static case, for which nothing is 
a function of time, and S = Σ3.  The extremal fields then take on the character of 
equilibrium states, and the Euler-Lagrange equations are the equations of equilibrium. 
 One notes that with the introduction of canonical forces and momenta, the Euler-
Lagrange equations can be expressed in the “F = ma” form: 
 

f a = i
i a∂ Π , f *a = i

i a
∗∂ Π .    (2.21) 

 
When we get into the examples of how this gets applied to wave equations, we shall see 
that this is actually somewhat illusory, since in many cases, the forces can get split 
between the two sides of the equation. 
 
 d.  Extension of the stationary action principle. – To continue the calculus of infinity 
variables analogy, we point out that the first-variation functional δS can be regarded as 

an exact 1-form on an infinite-dimensional differentiable manifold, since it is basically 
the differential of a 0-form, namely, the action functional.  However, one can define that 
1-form more generally in a manner that does not make it exact from the outset and still be 
talking about physically-meaningful concepts.  The first variation 1-form δS will then 

become a sort of infinite-dimensional equivalent of a conservative force 1-form. 
 The generalization of the first variation that one defines is essentially the virtual work 
functional that associates an increment of virtual work W[δX] with the virtual 
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displacement δX.  In place of the Lagrangian density L, one starts with the fundamental 

1-form on J1(M, N) = (xi, ya, a
iy ): 

 
φ = Pi dxi + fa dya + a i

i adyΠ .    (2.22) 

 
 When φ is exact (say, φ = dL), the generalized forces fa and momenta a

iΠ  will agree 

with the previous ones, while the power densities Pi will also be expressible as partial 
derivatives: 

Pi = 
ix

∂
∂
L

, fa = 
ay

∂
∂
L

, a
iΠ  = 

a
iy

∂
∂
L

.   (2.23) 

 
Of course, the 1-form φ can also be defined in the case of non-conservative forces, as 
well as conservative ones, and even for non-holonomic constraints, unlike the first 
variation of the action functional. 
 The virtual work functional that one defines then amounts to: 
 

W[δX] = [ ( ) ]
S

X X Vφ δ ⋅∫ ,    (2.24) 

 
in which X : M → N is a differentiable map, and δX is the variation of its values in N. 
 As long as φ is vertical (Pi = 0) and the variation δX is integrable – i.e.: 
 

δX = ( )a a
ia a

i

X X
y y

δ δ∂ ∂+ ∂
∂ ∂

,   (2.25) 

 
one can still define equations of motion or equilibrium by the vanishing of the functional 
W[δX] for all allowable δX, which is basically d’Alembert’s principle or the principle of 

virtual work.  We shall not be using that extension for our present purposes, but it 
represents an important extension in scope of variational methods.  The author has 
published several papers [2-4] on this rarely-mentioned aspect of the calculus of 
variations, and we refer the curious to those papers for a deeper discussion of it. 
 
 
 3.  Symmetries of the action functional. – Now let us return to the general 
expression (2.16) for the first variation of the action functional for general variations of 
the fields Ψ and Ψ*. 
 For extremal fields, and regardless of the constraints that were imposed upon the 
variations in order to obtain the extremal equations, the first variation will take the form: 
 

δS[δxi, δΨ, δΨ*]  = 1[ ( ) ]#i a i a i
a a iS

j xδ δ δ∗ ∗

∂
Π Ψ + Π Ψ + Ψ ∂∫ L .  (3.1) 

 
 If this expression vanishes then another application of Stokes’s theorem will give: 
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1{[ ( ) ]# }i a i a i
a a iS

d j xδ δ δ∗ ∗
∧ Π Ψ + Π Ψ + Ψ ∂∫ L  = 0.   (3.2) 

 
If this is to be true for every choice of S then one must have: 
 

1{[ ( ) ]# }i a i a i
a a id j xδ δ δ∗ ∗

∧ Π Ψ + Π Ψ + Ψ ∂L = 0  (3.3) 

 
for that particular variation δΨ and extremal field Ψ. 
 Now, since the expression in square brackets in (3.3) is a set of functions, one can 
also express this last equation in the form: 
 

1[ ( ) ]i a i a i
i a a j xδ δ δ∗ ∗∂ Π Ψ + Π Ψ + ΨL  = 0;    (3.4) 

 
i.e., the functions in the brackets are the components of a vector field on S: 
 

J = 1[ ( ) ]i a i a i
a a i

j x
x

δ δ δ∗ ∗ ∂Π Ψ + Π Ψ + Ψ
∂

L    (3.5) 

 
that has vanishing divergence.  One can then think of J as a conserved current that is 
associated with the variation δΨ. 
 If one defines Var(xi, Ψ, Ψ*) to be the infinite-dimensional vector space of all 
variations of the fields Ψ and Ψ* then one will have a linear map J : Var(xi, Ψ, Ψ*) → 
X(S), (δxi, δΨ, δΨ*) ֏ J(δxi, δΨ, δΨ*).  It is not one-to-one, since, for one thing, there 

will generally be many variations δΨa and δΨ*a that are transverse to the canonical 
momenta i

aΠ  and i
a
∗Π . 

 In general, the variations δΨ and δΨ* of the fields consist of two components: There 
is a vertical part – δvΨ or δ vΨ*, resp. – which is independent of the points of S (and is 
often called the “substantial variation” of Ψ or Ψ*) and a lift – xδ∗Ψ or xδ∗∗Ψ , resp. – of 

the variation δx of the points of S.  Those lifts take the forms: 
 

xδ∗Ψ  = dΨ|x(δx),  xδ∗∗Ψ  = dΨ*|x(δx),   (3.6) 

or, in components: 
a xδ∗Ψ = ,

a i
i xδΨ ,  a xδ∗

∗Ψ  = ,
a i
i xδ∗Ψ .  (3.7) 

 
 The vertical parts δvΨ or δ vΨ* of the variations of Ψ and Ψ* are what is left when 
one subtracts the lifts of δx from the total variations δΨ and δΨ*: 
 

δvΨ = δΨ − xδ∗Ψ , δ vΨ* = δ Ψ* − a xδ∗
∗Ψ .  (3.8) 

 
 If variations δΨ and δ Ψ* are replaced with their vertical parts then the expression 
(3.5) for the current that is associated with δx + δ vΨ + δ vΨ* will now take the form: 
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J i = * *i j i a i a
j a aT xδ δ δ+ Π Ψ + Π Ψ ,   (3.9) 

in which: 
i
jT  = i i a i a

j a j a jδ ∗ ∗− Π ∂ Ψ − Π ∂ ΨL    (3.10) 

 
is referred to as the canonical energy-momentum-stress tensor; its doubly-covariant form 
Tij does not generally have to be symmetric. 
 
 a. Infinitesimal symmetries of the action functional. – We refer to a general variation 
δs, as in (1.6), that makes δS[δs] vanish for any extremal field s as an infinitesimal 

symmetry of the action functional.  Such an infinitesimal symmetry is then associated 
with a conserved current (i.e., a vector field on S with vanishing divergence) by way of 
(3.5).  If the variation δs is not an infinitesimal symmetry of the action functional (so 
δS[δs] ≠ 0) then one can still define the vector field J naively.  The only thing that will 

change is that it will no longer need to have vanishing divergence. 
 One should distinguish between an infinitesimal symmetry δs of the action functional 
and an infinitesimal symmetry δL of the Lagrangian density itself, for which: 

 

0 = δL = * *
*

i a a a a
i ii a a a a

i i

x z z z z
x z z z z

δ δ δ δ δ ∗

∂ ∂ ∂ ∂ ∂+ + + +
∂ ∂ ∂ ∂ ∂
L L L L L

.  (3.11) 

 
Although an infinitesimal symmetry of L will always be an infinitesimal symmetry of S, 

from Stokes’s theorem, as long as the n-form (δL) V is exact [say, (δL) V = d^η], it will 

give rise to an n−1-form η, and if η, in turn, vanishes on ∂S then X will be an 
infinitesimal symmetry of S that is not an infinitesimal symmetry of L.  One can also 

express this by saying that: 
δL = div #−1 η.    (3.12) 

 
 The linear map J : Var(xi, Ψ, Ψ*) → X(S), (δxi, δΨ, δΨ*) ֏ J(δxi, δΨ, δΨ*) then has 

the property that if (δxi, δΨ, δΨ*) is an infinitesimal symmetry of the action functional 
then J(δxi, δΨ, δΨ*) will have vanishing divergence.  Both of the vector spaces Var(xi, 
Ψ, Ψ*)  and X(S) have Lie algebras defined on them. When one restricts to vector fields 

on S with vanishing divergence, one will get the Lie algebra of infinitesimal generators of 
one-parameter families of volume-preserving diffeomorphisms, and the latter 
diffeomorphisms define an infinite-dimensional (Banach) Lie group. 
 
 a. Noether’s theorem. – Although the association of conserved currents with 
infinitesimal symmetries of the action functional that was just described is more general 
in scope, the original paper by Emmy Noether [5] was confined to the association of 
conserved currents with infinitesimal symmetries that were due to the action of finite-
dimensional Lie groups in the fields, so the variations themselves took the form of 
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fundamental vector fields for the group action.  Since that is also how the physicists 
usually think of Noether’s theorem, we shall discuss that restricted form of it. 

 As discussed above, there are actually two ways that G can act upon Cr: 

Independently, and by way of mapping the action on S to one on Cr using the differential 

of Ψ or Ψ*; i.e., the lift of the action.  Hence, the fundamental vector field  ɶg  on Cr that 

corresponds to the action of an element g ∈ G will decompose into two parts again: 
 

ɶg  = v ( )x x
∗

∗ ∗+ Ψ + Ψɶg g g ,    (3.13) 

 
in which vɶg  is the vertical part and x x

∗
∗ ∗Ψ + Ψg g  is the sum of the lifts of the fundamental 

vector field g of the action of g on S. 

 The action of G on S will enter into only the definition of δx, while the representation 

of G in Cr (more precisely, the representation of g) will then enter into only the 

definitions of δΨ and δΨ*. 
 
 
 4. Examples of symmetries. – We shall now discuss the specific examples of this 
situation that we shall be concerned with in all of the wave equations that follow. 
 
 a.  Phase invariance. – One of the simplest symmetries of the action functional 
(which is also a symmetry of the Lagrangian density) that one can consider for complex 
wave functions is the possibility that when their values are expressed in polar 
coordinates, the choice of global phase origin will be irrelevant.  Hence, one makes the 
finite replacements: 

Ψ ֏  eiα Ψ, Ψ* ֏  e−iα Ψ*, 
 
in which α is an arbitrary real constant. 
 In order to turn these into infinitesimal transformations – i.e., variations – one lets α 
become a differentiable function α(s) and differentiates the expressions at s = 0: 
 

δΨ = ( )

0

( )i s

s

d
e

ds
α

=

Ψ = i α′ Ψ,  δΨ* = ( )

0

( )i s

s

d
e

ds
α− ∗

=

Ψ = − i α′ Ψ*,  (4.1) 

 
in which α′ = dα / ds at s = 0. 
 Since this variation does not involve the points of S (i.e., it is vertical), the conserved 
current will take the form: 

J i = * *( )i a i a
a aiα Π Ψ − Π Ψ ,    (4.2) 

 
in which we have dropped the otherwise irrelevant prime, for brevity. 
 As long as the divergence of iJ  vanishes the inclusion of the constant α will be 
superfluous since the divergence is a linear operator, and α can be omitted. 
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 b. Scale invariance. – Closely related to the concept of phase symmetry is that of 
scale symmetry, which represents a global rescaling of the space-time coordinates by a 
positive factor λ, combined with a global rescaling of the field space by the reciprocal of 
that factor: 

ix  = λ xi, ( )xΨ  = 1 ( )xλ λ− Ψ , ( )x∗Ψ  = 1 ( )xλ λ− ∗Ψ .  (4.3) 
 

Note that the space-time part of this transformation is not generally defined 
independently of a choice of coordinate system. 
 The associated variations will then take the form: 
 

δxi = xi δλ, δΨ = (xi ∂iΨ – Ψ) δλ,      δΨ∗ = (xi ∂iΨ∗ – Ψ∗) δλ .  (4.4) 
 
 If we suppress the explicit mention of the constant δλ then the Noether current that 
corresponds to this will be: 

J i = L xi − i a i a
a a

∗ ∗Π Ψ − Π Ψ .    (4.5) 

 
 If the action functional is indeed scale-invariant then one will have: 
 

0 = ∂i J i = i i a a
i i a a

T x
x

∗
∗

∂ ∂ ∂+ − Ψ − Ψ
∂ ∂Ψ ∂Ψ
L L L

.  (4.6) 

 
Otherwise, that divergence, and with it, the right-hand side will not vanish. 
 In particular, for Lagrangian densities that are independent of xi, Ψ, Ψ∗, one will 
have: 

0 = ∂i J i = i
iT ;     (4.7) 

 
i.e., the energy-momentum-stress tensor will be traceless.  Such a Lagrangian density will 
then have the form ( , )a a

i i
∗Ψ ΨL . 

 
 c.  Translational invariance. – Translations are transformations that presumably act 
upon the points of space-time, and in fact, unless the space-time manifold actually has the 

structure of an affine space, such as R
n, the action of the translation group for some 

dimension can usually have only a local character.  Of course, since we are only going to 

consider regions S that belong to Rn, that will not be an issue for us. 

 If the dimension of S is n then the action of Rn on S by a translation ai is simply to 

take a point x ∈ S that is described by coordinates x i to the point x i + a i.  Naturally, if 
one changes the coordinate system for x then one must change the coordinates for ai 
accordingly.  Of course, the translation of S does not have to still be S itself, and that will 
be the case only for the identity translation. 
 In order to get a fundamental vector field for ai, one replaces a i with a differentiable 
curve a i (s) and differentiates x i + a i (s) at s = 0.  If we let ε i denote da i / ds for s = 0 
then the variation of x will be the vector field δx(x) whose components are: 
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δxi(x) = εi.      (4.8) 
 
In particular, it is a constant vector field on S. 
 Since the translation group typically does not also act upon the field space, one 
usually sets: 

δΨ = δΨ* = 0.     (4.9) 
 
 Hence, the current that is associated with this type of variation will take the form: 
 

J i = i j
jT ε .     (4.10) 

 
 If the action functional is invariant with respect to translations then this current will 
have vanishing divergence, and since ε i are constants, that would imply that: 
 

i
i jT∂  = 0.      (4.11) 

 
 Otherwise, if translational symmetry is not present then one must have: 
 

i
i jT∂  = fj ,      (4.12) 

 
where fj represent the components of the resultant of the external forces that account for 
the breakdown of the conservation of energy-momentum. 
 Explicitly, we have: 
 

i
i jT∂ = 

a aa a
j j

j a j a j a j a j
i ix x x x x

∗∗

∗ ∗

∂Ψ ∂Ψ∂ ∂ ∂Ψ ∂ ∂ ∂Ψ ∂− − − −
∂ ∂Ψ ∂ ∂Ψ ∂ ∂Ψ ∂ ∂Ψ ∂
L L L L L

,  (4.13) 

 
in which we have used the field equations for Ψ, Ψ*.  If the right-hand side vanishes then 
we must have: 

jx

∂
∂
L

 = 
a aa a
j j

a j a j a j a j
i ix x x x

∗∗

∗ ∗

∂Ψ ∂Ψ∂ ∂Ψ ∂ ∂ ∂Ψ ∂+ + +
∂Ψ ∂ ∂Ψ ∂ ∂Ψ ∂ ∂Ψ ∂
L L L L

,  (4.14) 

 
which suggests that L must take the form: 

 
L = L (Ψ, ∂iΨ, Ψ*, ∂iΨ*).     (4.15) 

 
In particular, it must be independent of x. 
 
 d.  Rotational invariance. – Infinitesimal rotations are usually assumed to act upon 
both the points of space-time and the vectors in field space.  One can also deal with those 
transformations by raising the lower index of the matrix that represents them: 
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ω ij = ik j
kδ ω .     (4.16) 

 
The resulting matrix ω ij will also be antisymmetric in its indices: 
 

ω ij = − ω ji.      (4.17) 
 
 Hence, we shall set the components of the fundamental vector field on S that comes 

from the action of ω ∈ so(3; R) on R3 by matrix multiplication equal to: 

 
δxi = ω ij xj .     (4.18) 

 

 Similarly, the action of the group SO(3) on Cr will result in a representation of its Lie 

algebra D: so(3) → gl(r, C) in the Lie algebra of infinitesimal linear transformations of 

C
r.  If one chooses a basis {εi , i = 1, 2, 3} for so(3) and another {Ea , a = 1, …, r} for 

gl(r, C) then one can represent D by an r × 3 complex matrix a
iD .  However, if one is 

representing infinitesimal rotations by antisymmetric 3×3 matrices then it will often be 
more convenient to represent the homomorphism D by a three-index array of the form 

a
ijD .  The way to get from elements of so(3), when expressed as components ωk with 

respect to the basis εi , to elements of so(3), when expressed as antisymmetric matrices 

ω ij, is by way of the “adjoint” map, whose matrices have the components: 
 

[εij]k = εijk ,  k = 1, 2, 3,    (4.19) 
so: 

ω ij = ε ijk ωk      (4.20) 
and 

a
ijD = εijk 

a
kD .     (4.21) 

 

 As a result, the fundamental vector fields of the action of SO(3) on Cr by way of the 

representation D will take the form: 

 
δΨa = 1

2
a ij
ij ωD ,  δΨ*a = 1

2
a ij

ij ω∗D .   (4.22) 

 
 When one substitutes (4.18) and (4.22) into the expression (3.9) for the Noether 
current that is associated with ω ij, one will get: 
 

J i = 1
2 ( )i i jk

jk jkL S ω+ ,     (4.23) 

in which: 
i
jkL  = i i

j k k jT x T x−      (4.24) 
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represents the orbital angular momentum tensor, and: 
 

i
jkS = *i a i a

a jk a jk
∗Π + ΠD D ,    (4.25) 

 
is the intrinsic angular momentum – or spin − tensor. 
 As one can see, this kind of angular momentum has less to do with the rotation of 
things than it does with the way that the rotations get represented in the field space.  It is 
the type of angular momentum that will be associated with quantum wave functions later 
on. 
 
 If the action functional has rotational symmetry (i.e., no external torques are present) 
then the vector field J i will have zero divergence.  Since ω ij is a constant matrix that 
would imply the equations of conservation of total angular momentum: 
 

( )i i
i jk jkL S∂ + = 0,      (4.26) 

which can also be written: 
i

i jkL∂  = − i
i jkS∂ .     (4.27) 

 
 When one goes back to the expression (4.24) for orbital angular momentum, one will 
see that: 
 

i
i jkL∂  = i i i i

i j k i k j j ik k ijT x T x T Tδ δ∂ − ∂ + −  = i i
i j k i k j ij jiT x T x T T∂ − ∂ + − .  (4.28) 

 
 Hence, if linear momentum is also conserved, one must have: 
 

i
i jkL∂  = Tjk − Tkj .     (4.29) 

 
That implies that if linear momentum is conserved then orbital angular momentum will 
also be conserved iff the canonical energy-momentum-stress tensor Tij is symmetric.  
When one substitutes (4.29) in (4.27) that will give: 
 

Tjk − Tkj = − i
i jkS∂ .     (4.30) 

 
Hence, the symmetry of Tjk would also imply the conservation of spin when one has 
conservation of total angular momentum. 
 In the event that the action functional is not symmetric under rotations (i.e., external 
torques are present), one will have  
 

( )i i
i jk jkL S∂ + = Mjk ,      (4.31) 

 
where Mjk represents the external torques (moments). 
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 e. Lorentz invariance. – Lorentz transformations can be dealt with in close analogy 
to three-dimensional rotations since when one raises the lower index on the matrix of an 
infinitesimal Lorentz transformation: 
 

ωµν = µκ ν
κη ω ,      (4.32) 

 
one will again obtain an antisymmetric matrix: 
 

ωµν = − ωνµ.      (4.33) 
 
In fact, this result is true for scalar products of any signature type.  Of course, this time 
the matrix ωµν is 4×4, not 3×3. 

 The fundamental vector field that is associated with the action of ω ∈ so(3, 1) on R4 

by matrix multiplication will then take the form: 
 

δxµ = ωµν xν .       (4.34) 
 

 This time, we write the matrix of the representation D : so(3, 1) → gl(r; C) as a
µνD , 

so the fundamental vector fields of the action of so(3, 1) on the field space by way of D 

will now take the forms: 
 

δΨa = 1
2

a µν
µν ωD , δΨ*a = 1

2
a µν

µν ω∗D .   (4.35) 

 
 One will then get a Noether current: 
 

Jµ = 1
2 ( )L Sµ µ κλ

κλ κλ ω+ ,     (4.36) 

with: 
Lµ

κλ  = T x T xµ µ
κ λ κ λ− , Sµ

κλ  = *a a
a a
µ µ

κλ κλ
∗Π + ΠD D .   (4.37) 

 
 If the action functional is Lorentz-invariant (so no external torques or sources of 
boosts are present), the current Jµ will be conserved, and since ωµν is a constant matrix, 
one will get: 

( )L Sµ µ
µ κλ κλ∂ + = 0      (4.38) 

or 
Lµ

µ κλ∂  = − Sµ
µ κλ∂ ,     (4.39) 

 
in analogy with (4.26) and (4.27). 
 Since: 

Lµ
µ κλ∂  = T x T x T Tµ µ

µ κ λ µ λ κ κλ λκ∂ − ∂ + − ,   (4.40) 

 
if one also has conservation of energy-momentum, one will have: 
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Lµ
µ κλ∂  = Tκλ  − Tλκ = − Sµ

µ κλ∂ ,     (4.41) 

 
in analogy with (4.29) and (4.30). 
 When the action functional is not Lorentz-invariant, one will have: 
 

( )L Sµ µ
µ κλ κλ∂ + = Mκλ ,       (4.42) 

 
in which Mκλ represents the external torques (moments). 
  
 f.  The Belinfante-Rosenfeld theorem. – If one raises the lower index on i

jT  to give T ij 

then one can polarize T ij into a symmetric and an antisymmetric part: 
 

T ij = T (ij) + T [ij],      (4.43) 
with: 

T (ij) = 1
2 ( )ij jiT T+ , T [jk] = 1

2 ( )ij jiT T− .   (4.44) 

 
 If one raises both lower indices on ijkS  then one can completely antisymmetrize the 

indices to produce the components of a 3-vector field: 
 

Bijk = S[ijk] = 1
3 (Sijk + Sjki + Skij)    (4.45) 

 
that some [6] call the Belinfante-Rosenfeld tensor field.  Explicitly, one has: 
 

Bijk = , , ,1
3 ( )i a jk j a ki k a ij

a a aΠ + Π + ΠD D D .  (4.46) 

 
 The Belinfante-Rosenfeld theorem [7, 8] then says that: 
 

T [jk] = ∂i B
ijk.       (4.47) 

 
 Actually, they also showed that if one is dealing with one’s field theory in the context 
of general relativity, so the space-time metric gµν is not constant, and the Lagrangian 
density is a function of it, one can also derive the symmetric part of Tµν from the formula: 
 

T(µν) = 
gµν

∂
∂
L

.      (4.48) 

 
 This is very much in the spirit of Sahkarov’s [9] concept of general relativity being a 
theory of “metric elasticity.”  If one thinks of gµν = ηµν + Eµν , where Eµν is a finite strain 
tensor (which does not have to be infinitesimal as one usually assumes in the case of 
linearized gravitation), that would make: 
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gµν

∂
∂
L

= 
Eµν

∂
∂
L

,      (4.49) 

and the equation: 

T(µν) = 
Eµν

∂
∂
L

      (4.50) 

 
would represent a mechanical constitutive law for a hyper-elastic medium (i.e., one for 
which such an L exists). 

 
 
 5. Gauge invariance. – When one allows the global constant in a phase transition to 
become a differentiable function of space-time, one enters the realm of local phases, or 
gauges.  There are two types of possible gauge transformations of the fields that enter 
into a Lagrangian density, which are called gauge transformations of the first kind and 
gauge transformations of the second kind, accordingly.  Gauge transformations of the 
first kind are something of a generalization of phase transformations that become an issue 
whenever one couples the particle that is described by the wave function Ψ to an external 
electromagnetic field F by assuming that the particle is charged.  Gauge transformations 
of the second kind pertain to the Lagrangian density of the electromagnetic field F alone.  
Hence, when one is dealing with only an electromagnetic field, but no wave functions, in 
effect, the first kind of transformations will play no role.  Hence, we shall start with the 
gauge transformations of the second kind. 
 When one represents one of the Maxwell equations in the form: 
 

d^F = 0 ,     (5.1) 
 

one can solve it (if only locally) with a 1-form A such that: 
 

F = d^A   (Fµν = ∂µ Aν − ∂µ Aν),   (5.2) 
 
but not uniquely.  That is because any other 1-form A + α, where d^α = 0 (i.e., α is 
closed) would produce the same F.  Since every closed 1-form is locally exact, one can 
also say that A can be replaced with A + dλ for any 0-form λ.  The replacement of A with 
A + dλ is what one calls the gauge transformation of the second kind. 
 If one then regards the Lagrangian density L(F) for the electromagnetic field as 

something that really takes the form L(A, dA), then a variation of L will take the form: 

 

δL = A dA
A dA

δ δ∂ ∂+
∂ ∂
L L

= ( )A d A
A dA

δ δ∂ ∂+
∂ ∂
L L

.  (5.3) 

 
 One should note that from the second equation in (5.2), one will have: 
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,Aµ ν

∂
∂
L

= − 
Fµν

∂
∂
L

.     (5.4) 

 
 Actually, if one wishes to formulate Maxwell’s second set of equations: 
 

∂µ F
µν = Jν      (5.5) 

 
as the Euler-Lagrange equations for an action functional then one will find that one 
cannot avoid the introduction of the electromagnetic potential 1-form A.  When one uses 
a gauge dependent action functional L(A, dA) for the electromagnetic field, one can then 

express (5.5) in the form: 

,Aµ
µ ν

∂∂
∂
L

= −
Fµ

µν

∂∂
∂
L

= 
Aν

∂
∂
L

.     (5.6) 

 
Hence, one can use the Lagrangian density: 
 

L(A, dA) = L(F) + L(A) =  − 1
4 Fµν F

µν + Aµ J
µ,   (5.7) 

and get: 
( )F

Fµ
µν

∂∂
∂
L

= ∂µ F
µν,  

Aν

∂
∂
L

= Jν.   (5.8) 

 
 The Lagrangian density L(F) is automatically invariant under the gauge 

transformations of the second kind: 
 

Fλ ≡ d^ (A + dλ) = d^ A = F.    (5.9)  
 
 As for the Lagrangian density L(A), one has: 

 
(Aµ + ∂µ λ) Jµ = Aµ J

µ + ∂µ λ Jµ = Aµ Jµ + ∂µ (λ Jµ), 
 
since one must have the vanishing of div J identically (it follows from the identical 
vanishing of d^ d^).  When one integrates the second term on the final right-hand side 
over a space-time with no boundary, it will vanish, and that will imply that the invariance 
of L(A, dA)  under a gauge transformation of the second kind.  One can also use the 

second equation in (5.8) as the definition of the conserved current that follows from 
gauge invariance of the second kind, as we shall do in what follows. 
 The canonical energy-momentum-stress tensor that is associated with L in (5.7) is: 

 
T µ

ν = 1
4 F F F Fκλ µ µκ

κλ ν κνδ− + − Jµ Aν ,    (5.10) 

 
which is often associated with the name Faraday, although it is somewhat dubious 
whether the methods of tensor analysis were contemporaneous to his era. 
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 One sees that the trace of this tensor is: 
 

T µ
µ  = − Aµ J

µ,      (5.11) 

 
which will then vanish outside of the support of J. 
 The divergence of the tensor T µ

ν  will be: 

 
T µ

µ ν∂  = Fµν  J
µ,     (5.12) 

 
which is then the Lorentz force law in its relativistic form.  Hence, energy-momentum 
will be conserved only outside of the support of J. 
 
 When one couples the electromagnetic field F to a wave function Ψ and its complex 
conjugate Ψ∗, the gauge transformations of the first kind will play a role.  If one replaces 
A with A + dλ then the replacement Ψ ֏  eiλ Ψ, Ψ∗ ֏  e−iλ Ψ∗ will be called a gauge 
transformation of the first kind.  Hence, the first kind of transformation enlarges the 
scope of phase transformations to ones that have local choices of phase origin, not just 
global ones.  Therefore, when λ varies with position in S, one can no longer replace dΨ 
with eiλ dΨ and dΨ∗ with e−iλ dΨ∗, since one must also differentiate λ, and the 
replacement will become: 
 

dΨ ֏  eiλ (dΨ + i dλ Ψ), dΨ∗ ֏  e−iλ (dΨ∗ − i dλ Ψ∗). 
 
 If one defines the covariant differentials: 
 

∇Ψ = dΨ + i A Ψ, ∇∗ Ψ∗ = (∇Ψ)∗ = dΨ∗ − i A Ψ∗   (5.13) 
 
then one will see that: 
 

∇Ψ ֏  eiλ [dΨ + i (A + dλ) Ψ], ∇∗Ψ∗ ֏  e−iλ [dΨ∗ − i (A + dλ) Ψ∗]. 
 
Hence, the gauge transformation of the first kind will induce a gauge transformation of 
the second kind in the covariant differentials. 
 The replacement of the ordinary differentials dΨ, dΨ∗ with covariant differentials 
∇Ψ, ∇∗Ψ∗, resp., is commonly referred to as minimal electromagnetic coupling. 
 
 Naturally, one now needs to extend the action functional and Lagrangian density to 
something that also depends upon A and F, as well as ∇Ψ and ∇∗Ψ∗, if one is account for 
gauge symmetries of both kinds, namely: 
 

L = L(x, A, F, Ψ, Ψ*, ∇Ψ, ∇Ψ*).   (5.14) 

 
 Hence, δL will now include an extra term that comes from A: 
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δLA = A F
A Fµ µν

µ µν

δ δ∂ ∂+
∂ ∂
L L

,    (5.15) 

 
while the terms that relate to Ψ, Ψ* will take the form: 
 

,
δ ∗Ψ Ψ
L  = ( ) ( )

( ) ( )
a a a a

a a a aµ µ
µ µ

δ δ δ δ∗ ∗ ∗
∗ ∗ ∗

∂ ∂ ∂ ∂Ψ + Ψ + ∇ Ψ + ∇ Ψ
∂Ψ ∂Ψ ∂ ∇ Ψ ∂ ∇ Ψ
L L L L

. (5.16) 

 
 The variational derivatives of Ψ, Ψ* will then take the covariant forms: 
 

a

δ
δΨ
L

= 
( )a aµ

µ

∂ ∂− ∂
∂Ψ ∂ ∇ Ψ
L L

, 
a

δ
δ ∗Ψ
L

= 
( )a aµ

µ
∗ ∗

∂ ∂− ∂
∂Ψ ∂ ∇ Ψ
L L

.  (5.17) 
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CHAPTER IV 
 

NON-RELATIVISTIC, SPINLESS PARTICLES  
 

 In this chapter, we shall attempt to merely document the various contributions that 
were made along the way to the formulation of non-relativistic quantum mechanics for 
spinless particles as something that also related to the motion of extended matter under 
the influence of a force of quantum origin.  Since that force and its associated dynamical 
quantities, such as a quantum potential and a quantum stress tensor have a somewhat 
enigmatic character that one suspects will be the key to a better understanding of the 
foundations of quantum physics, we shall defer that discussion to the next chapter, in 
which the author’s own thoughts on the matter will be presented. 
 
 
 § 1.  The time-varying Schrödinger equation.  The approach that we shall take to 
defining the time-varying Schrödinger equation is that of the canonical quantization (1) of 
the classical expression for the total energy E of a point mass m that moves in space 

(which will generally be R3) under the influence of a conservative force that is derived 

from a potential function U, namely: 
 

E = 
1

2m
P2 + U.      (1.1) 

 
In this, P = Pi(t) dxi is the momentum 1-form that is defined along the trajectory x(t) of 
the mass point, which is related to its velocity: 
 

v(t) = vi(t)
ix

∂
∂

, vi = 
idx

dt
 (i = 1, 2, 3)  (1.2) 

 
by the mechanical constitutive law: 
 

Pi = m δij v
j = m vi .      (1.3) 

One refers to the 1-form: 
v = vi dxi       (1.4) 

as the covelocity of the motion. 
 Of course, we are implicitly assuming that the three-dimensional space in which m 
moves has a Euclidian metric δ = δij dxi dxj defined on it.  That will then make: 
 

P2 = δ ij Pi Pi = (P1)
2 + (P2)

2 + (P3)
2.     (1.5) 

Furthermore: 
P2 = m2 v2 = m2 (δij v

j vj) = m2 [(v1)2 + (v2)2 + (v3)2] .    (1.6) 

                                                
 (1) Canonical quantization means associating the canonical variables xi, pi of Hamiltonian mechanics 
with operators.  Here, we shall mostly be concerned with the momentum variables.  
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 a.  Energy as an operator.  The process of canonical quantization really begins in 
kinematics, although it is usually introduced in the context of dynamics.  That is, as a 
result of a Fourier transformation of functions that depend upon t and xi, one will find the 
following pair of associations (1): 
 

 
t

∂
∂

 ↔ − iω, 
ix

∂
∂

 ↔ iki ,    (1.7) 

 
in which ω is the radial frequency of a wave, and ki are its wave numbers in each spatial 
direction. 
 We can also anticipate the relativistic theory by generalizing our spatial coordinates 
to space-time ones (t, xi), and then defining x0 = t, k0 = − ω, so that the associations (1.7) 
can be consolidated into a single one: 
 

xµ
∂

∂
 ↔ ikµ   (µ = 0, …, 3).    (1.8) 

 
 The components kµ define the frequency-wave-number 1-form: 
 

k = kµ dxµ = − ω dt + ki dxi.     (1.9) 
 
 If we define the energy-momentum 1-form of the point mass m by extending the 
momentum 1-form with total energy E(t): 
 

P(t) = Pµ dxµ  = − E(t) dt + pi(t) dxi   (1.10) 
 
then the de Broglie relations for matter waves, i.e.: 
 

E = ωℏ , Pi = ikℏ ,    (1.11) 

can be expressed concisely as: 
P = kℏ ,     (1.12) 

 
in which ℏ  = h / 2π, where h is Planck’s constant. 
 If one compares (1.9) to (1.10) then one will see that since P(t) is defined only along 
the trajectory of the point-mass, while k is defined on the support of a wave-function, 
which will be a region of space-time, the only way that (1.12) can make sense is if one 
essentially assumes that ω and ki are all constants, which would make the wave a plane 
wave if the coordinates were rectangular.  Clearly, the association of k with P would be 
more satisfying if P were also defined over a region of space-time that is not just a curve, 
as well.  Hence, one sees that perhaps a continuum model for the mass would be more 
mathematically convenient, after all.  In particular, it would make sense if the mass were 
distributed over the support of the corresponding wave. 

                                                

 (1) The minus sign before ω comes from using ( )ii t k xie
ω− −  in that transform, which represents a travelling 

plane wave that moves in the direction of ki. 
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 If one considers k to be a representation of the kinematical state of a wave and P to be 
a representation of its dynamical state then one can also view the de Broglie relations 
(1.11) or (1.12) as a type of mechanical constitutive law for wave motion, in which 
Planck’s constant plays a role that is analogous to the role of m in (1.3).  However, if one 
associates k with an energy-momentum density 1-form p by way of p = kℏ  then since ℏ  
would need to have different units (viz., energy-time/volume), one might also ask 
whether the newly-defined ℏ  were still a constant, or some more general function of 
space. 
 We shall return to the ideas that were presented in the last two paragraphs later in this 
chapter. 
 The de Broglie relations then allow us to put the canonical quantization rules (1.8) 
into the form: 

xµ
∂

∂
ℏ  ↔ iPµ ,      (1.13) 

or 

i xµ
∂

∂
ℏ

 ↔ Pµ ,      (1.14) 

 
which is the way that one usually works with them in conventional quantum mechanics 
[1].  More to the point, one uses the associations: 
 

i
t

∂
∂
ℏ  ↔ E,  

ii x

∂
∂
ℏ

 ↔ Pi .     (1.15) 

 
 The kinetic energy of the point-mass then gets associated with the linear, second-
order partial differential operator: 
 

21

2
P

m
 = −

2 2 22

1 2 32m x x x

 ∂ ∂ ∂     + +      ∂ ∂ ∂       

ℏ
 = −

2

2m
∆ℏ ,  (1.16) 

 
in which ∆ is the three-dimensional Laplacian operator. 
 The total energy equation (1.1) then becomes the operator equation: 
 

i
t

∂
∂
ℏ  = −

2

2m
∆ℏ  + U(t, xi),     (1.17) 

 
in which the operator U means multiplication by a scalar function. 
 All that one has to do to produce the time-varying Schrödinger equation from the 
latter operator equation to apply both sides of the operator equation to a complex-valued 
wave function Ψ(t, xi), which must then be at least once-differentiable in time and twice-
differentiable in space: 

i
t

∂Ψ
∂
ℏ  = −

2

2m
∆Ψℏ

 + UΨ.    (1.18) 
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 One can see that virtually everything that one can say about the nature of this 
equation will depend upon the specific form of the potential function U.  Indeed, the 
textbook examples that one encounters in most physics courses are mostly concerned 
with time-invariant potential functions U(xi), which will lead one to the stationary 
Schrödinger equation.  We shall discuss that case in due course, but first we shall discuss 
the Lagrangian formulation of the time-varying Schrödinger equation, and then we shall 
introduce the Madelung-Takabayasi form of (1.18). 
 
 b.  Lagrangian formulation of the time-varying Schrödinger equation.  One can 
derive the time-varying Schrödinger equation from a Lagrangian density that takes the 
form (1): 

L = 
2

2 2( ) || || || ||
2 2 s

i
d U

m
∗ ∗ΨΨ − ΨΨ − Ψ − Ψℏ ℏ

ɺ ɺ .   (1.19) 

 
One sees that (1.18) can then be derived from L by annulling the variational derivative of 

L with respect to Ψ*: 

0 = 
δ

δ ∗Ψ
L

= div
( ) ( )s

L L

t d∗ ∗ ∗

∂ ∂ ∂ ∂− −
∂ Ψ ∂ ∂ Ψ ∂ Ψɺ

L
.   (1.20) 

 
Similarly, if one varies L with respect to Ψ then one will get the corresponding wave 

equation for Ψ*. 
 One can give equation (1.20) an “infinite-dimensional F = ma” form by introducing 
the generalized force f that acts upon the field Ψ and its generalized momenta Π t, Πi (2): 
 

 f = 
∂
∂ Ψ
L

 = −
2

i ∗Ψℏ ɺ − UΨ*, 

Π t = 
( )∗

∂
∂ Ψɺ
L

=
2

i ∗Ψℏ ,    Π i = 
( )i

∂
∂ ∂ Ψ
L

 = −
2

2
ij

jm
δ ∗∂ Ψℏ

,  (1.21) 

 
and similarly for Ψ*: 
 

 f * = ∗

∂
∂ Ψ
L

 = 
2

i Ψℏ ɺ − UΨ, 

Π t* = 
( )∗

∂
∂ Ψɺ
L

= −
2

i Ψℏ ,    Π i* = 
( )i

∗

∂
∂ ∂ Ψ
L

 = −
2

2
ij

jm
δ ∂ Ψℏ

. (1.22) 

                                                
 (1) The subscript s means that one considers only the spatial part of the 1-form.  For example, dsΨ = ∂iΨ 
dxi. 
 (2) One must note that in performing the differentiations, one must treat Ψ and Ψ* as independent 
variables: 

∗∂Ψ

∂Ψ
=

∗∂Ψ

∂Ψ

ɺ

ɺ
=

( )

( )
i

j

∗∂ ∂ Ψ

∂ ∂ Ψ
= 0, etc. 
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As one sees, the second set of quantities are all complex conjugates of the first; i.e., 
complex conjugation commutes with differentiation.  (That is because the differentiation 
is with respect to real variables, not complex ones.) 
 The time-varying Schrödinger equation for Ψ* can then be given the form: 
 

f = ∂t Πt + ∂i Π i,      (1.23) 
 
and the corresponding equation for Ψ will be the complex conjugate of this. 
 The Lagrangian L is invariant under the global action of the group U(1), since the 

global choice of origin for the phase of the wave function is arbitrary.  The corresponding 
infinitesimal generator of that symmetry takes the form: 
 

δΨ = iα Ψ, δΨ* = − iα Ψ*.   (1.24) 
 

The Noether current that is associated with this infinitesimal symmetry is then the vector 
field whose components are: 
 

J 0 = t tδ δ∗ ∗Π Ψ + Π Ψ  = − αℏ ΨΨ*,     (1.25) 
 

J i = i iδ δ∗ ∗Π Ψ + Π Ψ  = 
2

( )
2

ij
j j

i

m

α δ ∗ ∗Ψ ∂ Ψ − Ψ ∂ Ψℏ
,   (1.26) 

 
which are basically − αℏ  times the expressions that are usually identified with the 
“probability current” in quantum mechanics, namely: 
 

J 0 = ΨΨ*, J i = ( )
2

ij
j jmi

δ ∗ ∗Ψ ∂ Ψ − Ψ ∂ Ψℏ
.   (1.27) 

 
Clearly, one can drop an overall constant, non-zero scalar factor from the definition of Jµ, 
since the divergence operator is linear.  However, the relative signs and units of Jµ do 
have physical significance. 
 One can obtain a canonical energy-momentum-stress tensor from the Lagrangian 
above: 

T µ
ν  = Πµ ∂νΨ + Πµ* ∂νΨ∗ − L µ

νδ .    (1.28) 
 
Its individual submatrices are: 
 

0
0T  = 

2
2 2|| || || ||

2 sd U
m

Ψ + Ψℏ
 = H,     (1.29) 

 
0
jT  = + ( )

2 j j

i ∗ ∗Ψ ∂ Ψ − Ψ ∂ Ψℏ
 = − m Jj ,    (1.30) 
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0
iT  = −

2

( )
2

i i

m
∗ ∗Ψ ∂ Ψ + Ψ ∂ Ψℏ

ɺ ɺ ,     (1.31) 

 

i
jT = −

2

( )
2

i i i
j j jm

δ∗ ∗∂ Ψ ∂ Ψ + ∂ Ψ ∂ Ψ −ℏ
L .    (1.32) 

 
Note the asymmetry in the components 0

iT  and 0
jT , while the stress tensor Tij = δik

k
jT  is 

symmetric. 
 The trace of this tensor is then: 
 

T µ
µ  = H – 3L = 

2
2 23 2

( ) || || 2 || ||
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i
d U

m
∗ ∗− ΨΨ − ΨΨ − Ψ + Ψℏ ℏ
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 The divergence is easier to interpret: 
 

T µ
µ ν∂  = ∂νU || Ψ ||2.      (1.34) 

 
Its temporal component will then vanish when the external potential is time-invariant, 
while its spatial components represent the external force (density) that acts upon m. 
 
 
 § 2.  The Madelung-Takabayasi form of the time-varying Schrödinger equation.  
In the same year that the Copenhagen School of quantum mechanics was establishing the 
statistical interpretation of the quantum wave function Ψ, Ernst Madelung [2] was 
proposing an alternative interpretation that he called the “hydrodynamical” interpretation.  
Although his way of transforming the Schrödinger equation was actually confined to the 
stationary case, it was subsequently extended to the time-varying case by Takehiko 
Takabayasi [3], who expanded the scope of its application to quantum mechanics 
considerably. 
 
 a.  The basic transformation.  The essential step in the transformation to the 
Madelung-Takabayasi form of (1.18) is to introduce polar coordinates (r, θ) into the 

complex plane C in which Ψ takes its values.  Thus, one expresses Ψ in the form: 

 
Ψ = R eiθ,     (2.1) 

 
in which both R and θ are real-valued functions of (t, xi) that are “sufficiently-
differentiable.” 
 It helps to know that: 
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dsΨ = s
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id
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and the fact that ΨΨ* = R2. 
 Substituting the polar form of Ψ into (1.18) will give: 
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In this equation, the subscript t indicates the first partial derivative with respect to t, and 
we are using the notation <α, β> = δ ij αi βj to indicate the Euclidian scalar product of 
spatial 1-forms. 
 Since both sides of the equation represent complex functions of (t, xi), one can 
separate the real and imaginary parts and arrive at a pair of real equations that are 
equivalent to (1.18): 
 

Rt = − ( )2 ,
2 s sR d d R
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 One might note that the factor of ℏ  always occurs with the same power as the partial 
derivatives of θ, so one might make the perfectly reasonable replacement: 
 

k = dθ       (2.6) 
with k defined as above; i.e.: 

ω = −
t

θ∂
∂

, ki = 
ix

θ∂
∂

.    (2.7) 

 
 Of course, the fact that k must be exact implies that it must also be closed: 
 

d^k = 0.      (2.8) 
 
Later on, we shall examine some attempts to go beyond the constraint that this implies on 
the original wave function Ψ. 
 Since ω and ki always appear with a factor of ℏ , one can then replace − tθℏ  with E 

and ikℏ  with Pi, as before, and the system of equations (2.5) will take the form: 

 

Rt = − ( )1
div 2 ,

2 s s sR P d R
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,
2 s sP P
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< >+ U − 
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2

R
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. (2.9) 

 
 There are two essential differences between the E and Pi in these equations and the 
energy and momentum that were defined above.  First of all, we were previously talking 
about functions of time that were defined only along the points of a curve that was 
followed by a point-mass, but now since θ is a function of (t, xi), so are E and Pi .  Hence, 
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if we are to still think of them as being associated with energy and momentum, we must 
no longer think in terms of a point-like mass, but a spatially-extended one.  Secondly, the 
units of E and Pi are still those of energy and momentum, resp., not energy density and 
momentum density, resp., whereas for an extended mass distribution the role of m, E, Pi 
would now be that of the total mass, energy, and momentum, resp., which are only 
meaningful when one passes to the point-mass approximation. 
 Clearly, we are not dealing with point mechanics anymore, but continuum mechanics.  
The main challenge to physics is then to identify the nature of the extended matter that is 
being described by the equations to which we have arrived, and especially, the 
constitutive properties of that medium, which we shall refer to as a Madelung medium. 
 
 b.  The conservation of mass.  In order to get more insight into what the mass density 
function ρ might be, we start with the fact that: 
 

|| Ψ ||2 = ΨΨ* = R2.      (2.10) 
 
 In the statistical interpretation of the wave function Ψ, one thinks of || Ψ ||2 as 
representing a probability density function for finding the point particle m in the 
differential region of space dV around the point x at time t.  Of course, that can only come 
about as long as the wave function Ψ has been normalized to have “total mass” equal to 
1; i.e.: 

1 = 2|| ||dVΨ∫ ,     (2.11) 

 
in which the domain of integration is all space, as it pertains to one’s particular problem. 
 However, this normalization is not necessary in the eyes of the Schrödinger equation 
itself, but only in the interpretation of the wave function.  That leaves open the possibility 
of giving the space-time function || Ψ ||2 or R2 a different interpretation.  Madelung chose 
to interpret: 

n = R2       (2.12) 
as a number density. 
 One usually introduces number densities in the context of ensembles of a large, but 
integer, number of point-like masses distributed in space, such as in the kinetic theory of 
gases or with crystal lattices. Since n is a real number here, if one assumes that one is 
dealing with extended matter, not a finite collection of points, then there will be nothing 

conceptually wrong with saying that the integral 
1

V
n

N ∫
 represents the fraction of all the 

extended objects that is contained in the spatial volume V, where N, namely, the integral 
of n over all space represents the total number of distinct objects.  One might then relate 
this to a probability density function by saying that if an object is extended in space then 
the probability of finding it in a region of space will equal the fraction of the object that is 
contained in that region. 
 If the total mass of the extended object is m then one can define a mass density for it 
by means of: 

ρ = mn = mR2.      (2.13) 
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 If the motion of this mass density were associated with a velocity vector field v(t, xi), 
whose support would then be the same as that of ρ, then the equation of continuity for the 
conservation of that mass would be: 
 

ρt = − ∂i (ρ vi) = − ∂i ρ vi − ρ ∂i v
i.    (2.14) 

 
 If we rewrite the first of (2.5) in the form: 
 

Rt = − 1 1

2
ii

ii

P
R R P

m x m

∂ −
∂

    (2.15) 

 
and multiply both sides by 2mR then that will give: 
 
 2mRRt = − 2 2 i

i i iR P R R P∂ − ∂ , 

or 
∂t (mR2) = − ∂i (R

2 Pi).     (2.16) 
 
This equation will be consistent with (2.14) iff: 
 

ρ = m R2, R2 Pi = ρ vi.     (2.17) 
 
 One can solve the last equation for vi: 
 

 vi = 
1

m
Pi = 

m

ℏ δ ij ∂jθ  = 
m

ℏ
ki.   (2.18) 

 
 Thus, we have succeeded in defining a mass density ρ and a velocity vector field v 
for the motion of an extended mass distribution in space in terms of the kinematical 
information that was contained in the wave function Ψ (in the form of R and θ) and its 
differential, along with the empirical data that was given by m and ℏ . 
 It is worth noting that the since the difference between the mass density ρ and the 
number density n is only a multiplicative constant, the number density will also be 
conserved; i.e.: 

nt = − ∂i (n vi).     (2.19) 
 
 Since we started out with a wave function, which can be associated with two 
velocities, namely, a phase velocity and a group velocity, whose components will take the 
form: 

i
gv  = 

|| ||
ic

k
k

,     (2.20) 

 
the necessary and sufficient condition for the velocity (2.18) to equal the group velocity 
is the physically-reasonable constraint that the magnitude of the wave number || k || must 
be the Compton wave number that is associated with the total mass m: 
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|| k || = 
mc

ℏ
.     (2.21) 

 
 One can get further information about the mechanical properties of the extended 
matter in motion from the differential of the spatial velocity vector field v, or even better 
(since the metric is Euclidian), the covelocity 1-form: 
 

v = 
m

ℏ
dsθ.     (2.22) 

 
This also means that v admits a velocity potential (1), or stream function, in the form of 

/ mθℏ . 
 If one takes the (spatial) differential of this 1-form then the resulting rate of 
deformation can be polarized into a symmetric and an antisymmetric part: 
 

dsv = e ϑ+ ɺɺ  = 1 1
2 2

i j i j
ij ije dx dx dx dxϑ+ ∧ɺɺ ,   (2.23) 

for which: 

ijeɺ  = ∂i vj + ∂j vi = 
m

ℏ
(∂i kj + ∂j ki) = 

2

m

ℏ ∂ijθ    (2.24) 

is the rate of strain and: 

ijϑɺ  = ∂i vj − ∂j vi = 0      (2.25) 

 
is the kinematical vorticity, which will vanish because it is also the exterior derivative of 
v which is exact, since dsθ is.  Thus, the Madelung medium will be irrotational.  The 
vanishing of the vorticity also makes the rate of deformation dsv tensor symmetric. 
 One can also obtain the rate of dilatation from the trace of ijeɺ : 

 

λɺ  = i
ieɺ  = div v = 

2

m

ℏ
div ks =

2

m

ℏ ∆θ .    (2.26) 

 
The vanishing of this function would be equivalent to the incompressibility of the 
medium, so we shall generally treat the Madelung medium as being compressible. 
 We can then express the rate of deformation tensor in the form: 
 

∂i vj = 0 1
3ij ije δ θ+ ∆ɺ ,     (2.27) 

in which: 
0
ijeɺ  = 1

3ij ije δ θ− ∆ɺ      (2.28) 

is the traceless part of 0ijeɺ . 

 

                                                
 (1) Of course, if the support of the covelocity 1-form is multiply-connected then the velocity potential 
will exist only locally. 
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 c.  The balance of energy.  Turning to the first equation (2.9) of the Madelung-
Takabayasi equations, which we rewrite as: 
 

E = 21

2 sP U U
m

+ +
ℏ
,     (2.29) 

 
we note that, despite the usual line of reasoning, it would not be entirely consistent to call 
it the balance of energy for the motion of an extended mass distribution, since all of the 
terms have the units of total energy, which is more appropriate to the point-mass 
approximation, as is the total mass m.  Hence, we are still talking about the energy 
balance for a point-mass m whose total energy is E, and whose total momentum is Ps, and 
which moves in the presence of a conservative force with a force potential U, along with 
a somewhat mysterious conservative force whose potential function takes the form: 
 

U
ℏ
 = −

2

2

R

m R

∆ℏ
.     (2.30) 

 
 When we discuss the Lagrangian density, we shall see that the simple solution to 
making densities out of totals is to multiply the total quantities by the number density n, 
as we did with mass.  Although this makes sense for E and Ps, one must note that 
multiplying a potential function by a number density will change its character noticeably. 
 For now, we shall continue in the manner of the classical researchers in this field. 
 Because U

ℏ
 is the only place in the equations in which ℏ  is actually used explicitly 

(although a factor of ℏ  has been implicitly absorbed into the definition of Ps), Uℏ
 came 

to be referred to as the quantum potential or Madelung potential.  Indeed, in the classical 
limit as ℏ  goes to zero, so will U

ℏ
.  Hence, one suspects that U

ℏ
 should contain the 

essence of the difference between classical continuum mechanics and quantum wave 
mechanics in its structure.  One also notes that the expression U + U

ℏ
 is suggestive of a 

“loop expansion” in powers of ℏ , which will give one an “effective potential” in the form 
of a classical potential plus quantum corrections of increasing order in ℏ . 
 Of course, the vanishing of a potential function is not as physically definitive as the 
vanishing of the force that it defines.  The quantum force that goes with U

ℏ
 is the 1-form: 

 

F
ℏ
 = − sd U

ℏ
 =

2

2 s

R
d

m R

∆ 
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 

ℏ
.    (2.31) 

 
Once again, this will have the units of force, not force density. 
 F

ℏ
will vanish iff λ ≡ ∆R / R is constant in space, which can be rewritten: 

 
∆R = λ R.      (2.32) 

 



§ 2.  The Madelung-Takabayasi for of the time-varying Schrödinger equation. 135 

Thus, eigenfunctions of the Laplacian will produce no quantum force.  Some elementary 

examples of such amplitude functions are 0
xR e λ  when one is using Cartesian coordinates 

and 0
rR e λ  when one is using spherical coordinates. 

 
 d.  The balance of momentum.  If one takes spatial gradients of both sides of the 
energy balance equation (2.29) then the resulting equation will be: 
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P
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m
 ∂   = v j ∂i Pj = v j ∂j Pi , 

 
in which the last step will be true because: 
 

∂j Pi = jiθ∂ℏ  = ijθ∂ℏ = ∂i Pj , 

 
if we put all of this together then we will get the equation: 
 

Lv Pi = − ( )i U U∂ +
ℏ

.     (2.33) 

 
In this, we have introduced the Lie derivative of the component functions: 
 

Lv Pi ≡ iv dPi = vµ ∂µ Pi = iP

t

∂
∂

 + vi ∂i Pi  (µ = 0, …, 3, v0 = 1).   (2.34) 

 
 This means that the equation (2.33) represents the balance of (total) linear momentum 
for the motion of the medium when one describes it in the “Euler picture” of continuum 
mechanics.  That is, one describes the time variation of physical functions as they are 
seen from someone moving with the extended object.  Since this is typical of 
hydrodynamical problems, the classical authors on the Madelung medium have identified 
the equation as the Euler equation for the motion of the fluid.  However, one can use the 
Euler picture to represent media that are not fluids, as well. 
 
 e.  The quantum stress tensor.  Following Takabayasi [3a], one can associate the 
quantum force with a quantum stress tensor i

jσ  that makes: 

 
j

j iσ∂  = nF
ℏ
 = − n iU∂

ℏ
.    (2.35) 

It takes the form: 
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σij = −
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R
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 Here is an example of how turning total quantities into densities by multiplying by the 
number density can change the character of a quantity in other ways.  Namely, the force 
density 1-form: 

f
ℏ
 = − n dU

ℏ
      (2.37) 

 
will not necessarily be exact anymore.  That is, U

ℏ
 will not be precisely a force potential, 

so f
ℏ
 will not be a conservative force, in general.  Since: 

 
d f∧ ℏ

 = − dn dU∧
ℏ
 = − dn ^ f

ℏ
    (2.38) 

 
this will vanish iff dn (i.e., the gradient of n) is collinear with f

ℏ
.  Of course, this would 

be reasonable for a spherically-symmetric n with a radial force acting upon it. 
 One does see that f

ℏ
 ^ df

ℏ
 will vanish in any case, so by Frobenius’s theorem, the 

codimension-one differential system that is defined by the annihilating planes of f
ℏ
 will 

be completely integrable.  That is, the support of f
ℏ
 will admit a foliation by integral 

surfaces.  However, since the annihilating planes of f
ℏ
 are the same as those of dU

ℏ
, 

those integral surfaces will be the level surfaces of U
ℏ
, after all; in other words, the 

integral surfaces of f
ℏ
 = 0 will be the equipotentials of U

ℏ
. 

 
 Since the off-diagonal components of σij – viz., the shears – do not have to vanish, 
and they are not generally coupled to the rate of deformation tensor, which would suggest 
viscosity, one sees that calling the Madelung medium a fluid is somewhat imprecise. 
Hence, we shall simply refer to it as the “Madelung medium” and leave the details of its 
true mechanical constitutive properties to the results of further analysis. 
 Indeed, the quantum stress tensor will take the form of a perfect fluid stress tensor: 
 

i
jσ  = − π i

jδ       (2.39) 

 
iff n takes the form of a Gaussian distribution: 
 

n(x) = C 
2|| ||/ 2e µ σ− −x x ,     (2.40) 

 
for which, one will find that pressure must be: 
 

π = 
2

2mσ
ℏ

n.       (2.41) 
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This, too, has a certain reasonableness to it, since it suggests that the pressure increases 
with number density, as well as the degree to which the distribution is mostly found near 
the mean.  One might expect that trying to compress a mass distribution into a smaller 
region would increase its pressure. 
 This quantum stress tensor is associated with a (mean) quantum pressure: 
 

π
ℏ
= − 1

3
i
iσ  = −

2
2 (ln )

6
R R

m
∆ℏ

 = 
2

2( )
6 sd R R R
m
 − ∆ 

ℏ
.  (2.42) 

 
This quantum pressure can then be positive, negative, or zero, and it will vanish iff: 
 

∆R = 
2( )sd R

R
.      (2.43) 

 
 The equation (2.29) of energy balance can also be regarded as a second-order, 
nonlinear partial differential equation for the functions R and θ by replacing E, Ps, and 
U
ℏ
 with their expressions in terms of those functions: 

 

dθℏ  = 
2

2( )
2

R
d U

m R
θ ∆ − +  

ℏ
.   (2.44) 

 
 Originally, this equation was naturally identified as being of the Hamilton-Jacobi 
type, although it was later pointed out in a letter to Physical Review by Halpern [4] that, 
strictly speaking, that was not true.  In particular, the functions θ and R are not 
independent of each other, since they are coupled implicitly by the continuity equation. 
  
 f. Lagrangian formulation of the Madelung-Takabayasi equations.  In order to obtain 
a Lagrangian density function that will give the Madelung-Takabayasi equation, all that 
one needs to do is substitute Reiθ for Ψ in the Schrödinger Lagrangian density (1.19), so 
one also substitutes Re−iθ for Ψ*.  After all of the substitutions have been made, the result 
will be: 

L = − R2 
22

2( )
2

s
s

d R
d U

m R
θ θ

    + + +   
     

ℏɺℏ .   (2.45) 

 
This time, we see that since n = R2, the effect of multiplying the term in curly brackets by 
R2 is to convert the total energy sum inside of it into a total energy density.  Meanwhile, 
the last term in square brackets takes the form of a stress energy density that is associated 
with the gradient of R. 
 The conjugate forces and momenta to the coordinates R and θ are: 
 

 fR = 
R

∂
∂
L

 = − 2R 
2

2( )
2 sd U
m

θ θ 
+ + 

 

ℏɺℏ , 
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t
RΠ  = 

R

∂
∂ ɺ
L

 = 0, i
RΠ  = 

( )i R

∂
∂ ∂
L

 = −
2

m

ℏ ∂iR.   (2.46) 

 

  fθ = 
θ

∂
∂
L

 = 0, t
θΠ  = 

θ
∂
∂ ɺ
L

 = − 2Rℏ , i
θΠ  = 

( )iθ
∂

∂ ∂
L

= −
2

m

ℏ
R2 ∂iθ .  (2.47) 

 
 One confirms that the Madelung-Takabayasi equations can be obtained from this 
Lagrangian density when one varies it with respect to the basic variables R and θ : 
 

0 = 
R

δ
δ
L

= fR − t
t R∂ Π − i

i R∂ Π ,  0 = 
δ
δθ
L

= fθ − t
t θ∂ Π − i

i θ∂ Π ,  (2.48) 

 
in which the first equation will be the balance of energy, while the second one will be the 
conservation of mass. 
 
 g.  Noether currents for the Madelung Lagrangian.  In order to find the Noether 
current that corresponds to the phase-invariance of the wave function Ψ, one substitutes 
Reiθ for Ψ and computes the variation from that: 
 

δΨ = δR eiθ + i δθ R eiθ = 
R

i
R

δ δθ + 
 

Ψ = iα Ψ.   (2.49) 

This necessarily implies that: 
δR = 0,  δθ  = α,    (2.50) 

 
which is reasonable, since only the phase is being varied. 
 The components of the Noether current that is associated with δθ are then: 
 

J 0 = t
θ δθΠ  = 2R = n,  J i = i

θ δθΠ  = 21 iR P
m

= n vi,   (2.51) 

 
after removing an overall constant factor of − αℏ .  When one compares these equations 
to equation (1.27), one will see that one could also simply make the substitution (2.1) in 
the latter equation and arrive at the present expressions. 
 This current is actually the number density flux, but, as we pointed out above, if one 
multiplies it by m then one will get the mass flux, which will also satisfy the continuity 
equation. 
 The canonical energy-momentum-stress tensor: 
 

T µ
ν  = R Rµ µ µ

θ ν ν νθ δΠ ∂ + Π ∂ −L    (2.52) 

 
that is associated with L is then (S = θℏ ): 
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0
0T = t

θ θΠ −ɺ L  = 
2

2 2 2 2( ) ( )
2 s sR d d R R U
m

θ + + 
ℏ

= H,   (2.53) 

 
0
jT = t

jθ θΠ ∂  = − ℏR2 ∂jθ = − m Jj ,        (2.54) 

0
iT = i i

R R θ θΠ + Π ɺɺ  = −
2

2 i i
t tR R R

m
θ θ ∂ ∂ + ∂ ∂ 

ℏ
,    (2.55) 

 

i
jT = i i i

R j j jR θ θ δΠ ∂ + Π ∂ −L  = −
2

2 i i i
j j jR R R

m
θ θ δ ∂ ∂ + ∂ ∂ − 

ℏ
L .   (2.56) 

 
One can check that these expressions are simply the polar forms of (1.29)-(1.32). 
 The trace of the matrix T µ

ν  is then [compare to (1.33)]: 
 

T µ
µ  = 3ℏR2 ∂tθ +

2
2 2 2[ ( ) ( ) ]s sR d d R

m
θ +ℏ + 4R2U.   (2.57) 

 
 The divergence is now [compare (1.34)]: 
 

T µ
µ ν∂ = n ∂νU.       (2.58) 

 
 
 § 3.  Planck’s constant as a density. – Before we go onto the examination of some 
special cases of the Schrödinger equation, let us pause to introduce a consistent “density-
only” formulation of the Madelung-Takabayasi equations.  First, we shall discuss the 
possibility that Planck’s constant itself is only the integral of a density over the support of 
the quantum wave function, just like the total mass, total energy, or total charge. 
 
 We pointed out above that there is a fundamental inconsistency in the original 
Madelung-Takabayasi form of the Schrödinger equation that is based in the fact that 
since the statistical interpretation of quantum mechanics was directed towards point-like 
matter as its classical limit, not extended matter, the physical quantities that one was 
dealing with, such as m, E, Pi, were numbers, not functions (viz., total mass, energy, 
momentum, resp.), even though the kinematical quantities, such as ω and ki , that they 
were being coupled to were functions whose supports were contained within that of the 
quantum wave function Ψ.  Hence, the suggestion was made that one should be properly 
dealing with densities, not the total values that one only obtains from integrating those 
densities over the support of the wave function. 
 The basic density that we started with was the number density n = R2, which 
represents a kinematical variable that related only to the number of particles present in a 
given space-time region, and indeed, it is entirely possible that only one (extended) 
particle is present in all of space-time.  One notices that the dynamical quantities that get 
associated with the kinematical state, which we will regard as (R, θ) and all of the higher 
derivatives of these functions that might be relevant to the discussion, start off as total 
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quantities, not densities, and that the constant ℏ  is invariably involved with the 
association.  The question arises of whether one can convert all of the total quantities to 
densities in a manner that will permit one to formulate the Madelung-Takabayasi picture 
solely in terms of the appropriate densities. 
 In particular, as we pointed out, the basic constitutive association P = kℏ  = dθℏ  is 
inconsistent because P represents a total energy-momentum 1-form that is defined only 
along a curve, while k is defined over a region that is contained in the support of θ, which 
is contained in the support of Ψ.  Hence, we need to convert P to an energy-momentum 
density.  However, the units would not be consistent anymore, because ℏ  has the units of 
energy-time, action, or angular momentum, not densities of those things. 
 Thus, if we decide that our first attempt at turning totals into densities is to always 
multiply them by n then we will have to multiply both sides of the basic constitutive 
association by n in order to keep the units consistent.  One sees that this prescription will 
always be consistent with the definition of total quantities as integrals of densities, except 
that we are implicitly assuming that the various dynamical densities are all proportional 
to each other as space-time functions, which could only be a first approximation to 
something more involved.  Hence, we shall accept that limitation and proceed 
heuristically in order to simply explore the effects of making those definitions. 
 In the case of P = − E dt + Ps , we define the energy-momentum density 1-form by: 
 

p = nP = − ε dt + ps,      (3.1) 
 
which makes the energy and momentum densities take the form of: 
 

ε = nE,  ps = nPs .     (3.2) 
 
 If we then multiply the right-hand side of the constitutive relation by n, as well, then 
we will get: 

p = nkℏ .     (3.3) 
 
Now, since k is a kinematical quantity, it would make no physical sense to absorb n into 
its definition, since the concepts of frequency density and wave number density are 
physically absurd.  However, one could make a better case for absorbing the n into the 
definition of ℏ , which only means that it would no longer be a constant, but a space-time 
function with units of energy-density-seconds, action density, or angular momentum 
density.  The value of ℏ  (which has, of course, been quite well established as a universal 
physical constant by countless experiments) then becomes the integral of the density: 
 

( , )it x/h  = 
1

( , )
2

it x
π
h  = ( , )in t xℏ    (3.4) 

 
over the spatial support of the wave function Ψ: 
 

ℏ  = 
supp( )

( , )i
st x dV

Ψ
/∫ h .    (3.5) 
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In order for this to make physical sense, the spatial integral would always have to be 
time-invariant and it would have to be the same for all physical-possible wave functions, 
which might suggest a limited number of elementary forms that their supports could take.  
It could also suggest that the differences in the actual values of ℏ  between the various 
possibilities are immeasurably small, at this point in time. 
 We can now rewrite the basic constitutive relation in the form: 
 

 p = k/h  = dθ/h , ε = ω/h  = − tθ∂/h , pi =  ik/h  = iθ∂/h .  (3.6) 

 
 This also means that p does not have to be an exact differential form, anymore, even 
when k is exact, since its dynamical vorticity is now: 
 

Ωd = d^p = d dθ∧/h ,     (3.7) 
 

which will vanish iff d/h  is collinear with dθ. 
 Note that the character of canonical quantization itself will change, since although the 
kinematical variables ω, ki will still go to the same operators, the dynamical ones ε, pi 
will now take the form: 

ε = ( , )ii t x
t

∂
/

∂
h , pi = 

( , )j

i

t x

i x

∂/
∂

h
,   (3.8) 

 
which are still linear operators, but they no longer have constant coefficients. 
 We can now define the spatial covelocity 1-form v in terms of only densities, since: 
 

vi = 
1

iP
m

 = 
1

inP
mn

 = 
1

ip
ρ

,    (3.9) 

which makes: 
pi = ρ vi ,      (3.10) 

 
which is consistent with the usual way of obtaining a momentum density in non-
relativistic continuum mechanics. 
 The kinetic energy density can be expressed as: 
 

( )21
2 mv n = 1

2  ρ v2 = 21

2
P n

m
 
 
 

 = 21

2
p

ρ
.   (3.11) 

 
These expressions are also consistent with the classical ones. 
 Although we have been using /h  up to now to embody the quantum aspects of the 
Madelung medium, we shall eventually find that it is more convenient to work with one-
half that quantity, which we denote by: 

η = 
2

n
ℏ

,     (3.12) 

 
and refer to as the dilatation potential of the wave function, so its differential: 
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π ≡ dη =
2

dn
ℏ

= 
2 2

i
t in dt n dx

   ∂ − ∂   
   

ℏ ℏ
,   (3.13) 

 
which will then have the dimensions of either an energy density, a momentum flux, or a 
pressure, shall be called the dilatation pressure for the wave function Ψ. 
 Clearly, the dynamical vorticity of π will vanish: 
 

,dπΩ  = d π∧  = 0.      (3.14)  

 
 The rate of strain of the integral curves of the vector field that is associated with πs is 
then: 

ij
ɺe  = 2(∂i πj + ∂j πi) =ℏ ∂ijn = 2 ∂ijη ,     (3.15) 

 
so the rate of dilatation will be: 
 

dλɺ  = i
i
ɺe  = ℏ∆n = 2 ∆η = 2 div ππππ.    (3.16) 

 
 We can also define a specific dilatation pressure by way of: 
 

υ = 
1 π
ρ

= 
2

dn

n

ℏ
= ln

2
d n
 
 
 

ℏ
.     (3.17) 

 
 Since this covelocity1-form clearly admits a covelocity potential function: 
 

ηk = ln
2

n
ℏ

,      (3.18) 

 
its kinematical vorticity will also vanish: 
 

,kυΩ  = d υ∧  = 0.      (3.19)  

 
 Meanwhile, its rate of strain will take the form: 
 

ijɺε  = 2(∂i υj + ∂j υi) =
m

ℏ ∂ij ln η,    (3.20) 

 
so the rate of dilatation will be: 

kλɺ = i
iɺε  = 

m

ℏ ∆ ln η.     (3.21) 

 
 As we shall see, π is just as fundamental as the quantum potential, since we can also 
use it to eliminate the explicit mention of ℏ . 
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 The external force that acts upon an extended, deformable object as a body force must 
take the form of a force density 1-form f, in order for it to be consistent with ρ a, where a 
is the co-acceleration 1-form a = ai dxi (1).  However, if one multiplies an exact 1-form by 
a non-constant function then the resulting 1-form will not generally be exact, anymore.  
Hence, the result of multiplying a conservative force field by a density will generally be a 
non-conservative force density. 
 Upon closer inspection, one sees that it is not necessary for a force density to be 
conservative, even in the case of such forces as gravitation and electrostatic attraction and 
repulsion.  That is because the force density will usually take the form λ dU in such 
cases, not dU.  For instance, the density of gravitational force that acts upon a distributed 
mass of density ρ will be ρg, where g is the spatial 1-form that corresponds to the 
gravitational acceleration at each point.  Similarly, the density of electrostatic force that 
acts upon a distributed charge of density σ will be σE, where E is the spatial electric field 
strength 1-form.  Since both g and E are exact 1-forms, there are only two cases in which 
the combined force density 1-form (ρg or σE, resp.) is also exact: 
 
 1. The density is constant in space. 
 2. The gradient of the density is collinear with the applied force. 
 
 Thus, we conclude that the best way to convert forces into force densities is to 
multiply by the relevant density, and accept that the resulting 1-form might no longer be 
closed or exact. 
 
 Since Takabayasi’s expression for the quantum stress tensor i

jσ  produced a force 

density upon taking the divergence: 
 

j
j iσ∂  = − n iU∂

ℏ
,     (3.22) 

 
it is not necessary to multiply by n, and after converting it to density form, we will get: 
 

σij = − 
2

lnijm
η η∂ℏ

= − 1
2 ijη ɺε .     (3.23) 

 
Thus, the Takabayasi stress tensor is a close relative to the rate of strain of the vector 
field υυυυs. 
 The quantum potential energy density nU

ℏ
 has the density form: 

 

nU
ℏ
 = 21

2 sρυ − η
ρ

∆η = 21 1
2 2s kρυ ηλ− ɺ  = − 21

2 sρυ − η div υυυυ.   (3.24) 

 
 Its corresponding quantum force density will then be: 

                                                
 (1) Non-relativistic acceleration will have a vanishing temporal component, since the temporal 
component of a non-relativistic velocity will always be 1.  
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f
ℏ
 = − n sd U

ℏ
,     (3.25) 

 
although its explicit expression is quite elaborate and rather difficult to interpret 
physically. 
 
 
 § 4.  The Madelung-Takabayasi equations in density form. – We first summarize 
the definitions that we have introduced in a table that we shall use consistently in what 
follows. 
 

Table IV.1.  Definitions of continuum-mechanical quantities in terms of  
quantum-mechanical ones. 

 
 
Number density 

 
n  

 
R2 

 
Mass density 

 
ρ 

 
m n = m R2 

 
Energy density 

 
ε 

 
nE = − ρφɺ  

 
(Co)velocity potential 

 
φ m

θℏ  = 
S

m
 

 
Covelocity 1-form 

 
v dsφ = sd

m
θℏ

= k
m

ℏ
  

 
Momentum density 1-form 

 
ps 

 
ρ v = sn kℏ  

 
Dilatation potential 

 
η 2

n
ℏ

 = 2

2
R
ℏ

= 
2m

ρℏ  

 
Dilatation pressure 

 
πs 

dsη = 
2 sd n
ℏ

 = R dRℏ  

 
Specific dilatation pressure 

 
υs 

sπ
ρ

= 
2

sd n

m n

ℏ
= sd R

m R

ℏ
 

 
 One can derive some useful relations from this table: 
 

πs = ρ υs ,  υs = ln
2sd n
m

 
 
 

ℏ
,  dsρ = 

2
s

mπ
ℏ

.   (4.1) 

 
 The time-varying Madelung-Takabayasi equations previously took the form: 
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E = 21

2 sP U U
m

+ +
ℏ
,  ∂t n = − div(n vs).   (4.2) 

 
 In order to convert the first equation (viz., energy balance) into density form, one 
needs only to multiply both sides by n, while if one multiplies both sides of the second 
equation by m then it will become a dynamical equation, not a kinematical one.  The net 
result of both operations is the set of dynamical equations: 
 

ε = 21
( )

2 sp n U U
ρ

+ +
ℏ

, ∂t ρ = − div (ρ v),    (4.3) 

 
which contain only densities and no explicit mention of ℏ . 
 Previously, the Euler equation that corresponded to the first equation in (4.2) took the 
form: 

LvPi = − ∂i (U +U
ℏ
).     (4.4) 

 
If one takes into account the fact that the second equation in (4.3) also takes the form: 
 

Lv n = − n div v     (4.5) 
 and the fact that: 
 

Lv (nPi) = (Lv n)Pi + n LvPi = − n Pi div v + n LvPi ,    (4.6) 
so 

n LvPi = Lv pi + pi div v,    (4.7), 
 
then the Euler equation will now take the form: 
 

Lvpi + pi div v = − n ∂i (U +U
ℏ
),   (4.8) 

or, if one prefers: 

( )ji
ij

p
v p

t x

∂ ∂+
∂ ∂

= − n ∂i (U +U
ℏ
).   (4.9) 

 
 Previously, the time-varying Madelung-Takabayasi Lagrangian took the form: 
 

L = − R2 [ θɺℏ  + 
2

2m

ℏ
(dsθ)2 + U] + 

2

2m

ℏ
(dsR)2.  (4.10) 

 
 With the substitutions above, one can now give it the form: 
 

L(φ, η, φɺ , vi, ηɺ , πi) = − 2 21
( )

2 svρ υ+ + n (E − U),   (4.11) 

 
which now suggests that the quantum contribution to the motion can involve the 
momentum, as well as the potential energy. 
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 For a solution to the Madelung-Takabayasi equations (4.3), L will take the form: 

 

L = − 21

2 s nUρυ +
ℏ
 = − 2

sρυ − η div υυυυ,   (4.12) 

 
in which we have used (3.24) in order to replace nU

ℏ
. 

 The canonical forces and momenta that are associated with L are then: 

 

fφ = 
φ

∂
∂
L

= 0,       t
φΠ  = 

φ
∂
∂ ɺ
L

= − ρ,      i
φΠ  = 

iv

∂
∂
L

= − ρ vi,   (4.13) 

fη = 
η

∂
∂
L

= 2 22 1
( )

2 sm v E Uυ − − + −  ℏ
,    t

ηΠ = 
η

∂
∂ ɺ
L

= 0, i
ηΠ  = 

iπ
∂
∂
L

= − υi.    (4.14) 

 
 The Euler-Lagrange equations take the immediate forms: 
 
   0 = fφ – t

t φ∂ Π − i
i φ∂ Π  =ρɺ + div ps , 

   0 = fη − t
t η∂ Π − i

i η∂ Π  = 2 22 1
( )

2 sm v E Uυ − − + −  ℏ
 + div υυυυ . 

 
 The first of these is the conservation of mass, while the second one needs to be 
multiplied by η in order to give it its final form: 
 

ε = 2 21
( ) div

2 sv nUρ υ η− + − υυυυ  = 21
( )

2
v n U Uρ + +

ℏ
.  (4.15) 

 
 The density form of the conserved current that is associated with the global phase 
invariance of the original quantum wave equation changes only by being multiplied by 
the constant factor m, so one will now have: 
 

J = (ρ, ρvi) = ρ (1, vi).     (4.16) 
 
 One can also put the energy-momentum-stress tensor into density form as [compare 
(2.53) to (2.56)]: 

0
0T  = 2 21

2 ( )sv nUρ υ+ + ,    (4.17) 
0
jT  = − ρ vj = − pj ,      (4.18) 

0
iT  = ε vi − i

sηυɺ ,     (4.19) 
i
jT  = − ρ (vi vj + i

jυ υ ) – L i
jδ ,   (4.20) 

 
so its trace will be [compare (2.57)]: 
 

T µ
µ  = − 3ε + 2 2( ) 4sv nUρ υ+ + .   (4.21) 
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 The divergence of T µ
ν will then be: 

 
T µ

µ ν∂  = n ∂νU,      (4.22) 

which is identical to (2.58). 
 
 
 § 5.  The stationary Schrödinger equation.  Actually, most of the solved problems 
that one studies in basic non-relativistic quantum mechanics do not involve the time-
varying Schrödinger equation, which is usually treated only perturbatively, but the time-
invariant − or stationary − Schrödinger equation.  The wave functions that define its 
solutions will then take the form of standing waves.  Of course, whether or not one can 
use that form of the Schrödinger equation depends entirely upon the nature of the 
potential function U(t, xi), and in particular, it is only when it does not depend upon t that 
one can turn to the stationary form of the Schrödinger equation. 
 If one does, in fact, have a time-invariant potential function U(xi) then one can 
assume that the wave function Ψ(t, xi) has the standing-wave form: 
 

Ψ(t, xi) = T(t) ψ (xi),      (5.1) 
 
in which the variable t has been separated from the variables xi. 
 If one then substitutes this form for the wave function Ψ into the time-varying 
Schrödinger equation (1.18) then the result will be: 
 

T
i

T

ɺ
ℏ = − 

2

2m

ψ
ψ
∆ℏ

+ U. 

 
 Since the left-hand side of this equation is a function of only t, while the right-hand 
side is a function of only xi, that situation can happen only if both functions are constant.  
If we call that separation constant E then we will get a pair of differential equations for 
the functions T and ψ : 
 

Tɺ  = − iE

ℏ
T,  − 

2

2m
ψ∆ℏ + Uψ = Eψ.    (5.2) 

 
The first equation can be solved immediately and gives a solution of the form: 
 

T(t) = /iEte− ℏ ,      (5.3) 
 
whereas if one introduces the Hamiltonian operator: 
 

H = − 
2

2m
∆ℏ + U     (5.4) 

 
then the second equation in (5.2) will take on the eigenvalue form: 
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Hψ = Eψ .       (5.5) 
 
Thus, the spatial wave functions that define the envelope of the standing wave will be 
eigenfunctions of the Hamiltonian operator H that are associated with eigenvalues E, 
which will represent the total energy (i.e., kinetic + potential) of the motion of the 
standing wave. 
 One can derive the stationary Schrödinger equation from a Lagrangian, just as one 
can in the time-varying case.  This time, the Lagrangian will be: 
 

L = 
2

2 2|| || ( ) || ||
2 sd U E
m

ψ ψ+ −ℏ
,    (5.6) 

 
which differs from the time-varying expression (1.19) by an overall sign and the 
replacement of the time-varying contribution with E || ψ ||2. 
 The generalized forces and momenta now take the form: 
 

f * = 
ψ ∗

∂
∂
L

= (U – E)ψ,    Πt* =
ψ ∗

∂
∂ ɺ
L

= 0,    Πi* = 
( )sd ψ ∗

∂
∂
L

=
2

2
ij

jm
δ ψ∂ℏ

, (5.7) 

 
along with their complex conjugates. 
 Since the wave function ψ is a purely spatial in this case, the Euler-Lagrange 
equations will represent an equilibrium condition for the shape of its envelope, and one 
will get the equation for ψ by annulling the variational derivative of L with respect to 

ψ *: 

0 = 
δ
δψ ∗

L
 = f * − ∂i Πi*.    (5.8) 

 
 Under the infinitesimal phase transformation: 
 

δψ = iεψ, δψ * = − iεψ *,     (5.9) 
 
the components of the associated Noether current will now take the form: 
 

J 0 = 0,  J i = ( )
2

ij
j jmi

δ ψ ψ ψ ψ∗ ∗∂ − ∂ℏ
   (5.10) 

 
when we drop the overall scalar factor of 2εℏ .  In form, this current differs from the 
time-varying analogue (1.27) by only by the vanishing of J 0. 
 The energy-momentum-stress tensor will then take the form: 

0
0T  = − L, 0

jT  = 0
iT  = 0,      (5.11) 

 

i
jT = 

2

( )
2

i i i
j j jm

ψ ψ ψ ψ δ∗ ∗∂ ∂ + ∂ ∂ −ℏ
L ,   (5.12) 
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and its trace will be: 

T µ
µ  = −

2

m

ℏ
|| dsψ ||2 + 24( ) || ||E U ψ− .    (5.13) 

 
The main formal differences between the stationary form of T µ

ν  and the time-varying one 

that is described in equations (1.29) to (1.32) amount to the vanishing of the contribution 
to 0

0T  from t t∗ ∗Π Ψ + Π Ψɺ ɺ , the vanishing of 0
jT  and 0

iT , and a change of sign in the first 

term of i
jT , which comes from the change in sign of the kinetic term in L. 

 The divergence of T µ
ν  is the covector whose components are: 

 

0T µ
µ∂  = − ∂tL = 0,   i

i jT∂  = − ∂j U || ψ ||2,   (5.14) 

 
which reflects the fact that the Lagrangian density is time-invariant, and it has changed 
sign. 
 
 
 § 6.  The Madelung-Takabayasi form of the stationary Schrödinger equation.  
Under the assumption that the potential function U is time-invariant, one now introduces 
polar coordinates into the complex plane, as before, and expresses the spatial 
eigenfunction ψ in the form: 

ψ(x) = R(x) eiθ(x).      (6.1) 
 
 If one substitutes this into the stationary Schrödinger equation (5.5), in which H is 
defined by (5.4), then the ultimate result of the separation of the real and imaginary 
equations will be the pair of equations for the functions R, θ : 
 

E = 
2

2
sP

U U
m

+ +
ℏ
,  0 = R div Ps + 2<Ps, dsR>,  (6.2) 

 
in which we are using the same notations as above. 
 The only things that have changed in the energy balance equation are that now the 
left-hand side is a constant, and the potential functions in the right-hand side are 
functions of x, but not t. 
 In order to put these equations into their density form, we multiply the first one by n 
and the second one by mR, which will make then take the form: 
 

ε = 1
2 ρ v2 + n(U + U

ℏ
), 0 = div ps .    (6.3)  

 
 If one takes spatial gradients of both sides of the first one then the resulting 
equilibrium equation will take the form: 
 

Lv pi = − n ( )i U U∂ +
ℏ

,    (6.4) 
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in which the Lie derivative now takes the form: 
 

 Lv pi = v j ∂j pi .      (6.5) 
 
 The second equation of (6.3) says that the Madelung medium is dynamically 
incompressible in the stationary case.  In the event that ρ is constant, it would also be 
kinematically incompressible.  However, the quantum potential would necessarily vanish 
for such a mass distribution, and one would not be dealing with a quantum motion. 
 Since: 

ρ(x) = m R(x)2,  v(x) = 
m

ℏ
dsθ(x),    (6.6) 

 
the basic flow variables are no longer functions of t, but only x, so one can think of the 
motion in question as being a steady motion.  Consistent with that, the first equation in   
(6.3) can be regarded as a form of Bernoulli’s theorem on the steady flows in fluids, in 
which one can regard the first term on the right as dynamic pressure, as well as a kinetic 
energy density, and the quantum potential can play the double role of an internal 
pressure.  Since Madelung was dealing with only the stationary Schrödinger equation to 
begin with, these facts led him to conjecture that the medium in question was a fluid, 
although, as we pointed out before, later work by Takabayasi showed that the stress 
tensor was inconsistent with that form of matter. 
 One can similarly give a Lagrangian form for the stationary Madelung-Takabayasi 
equations by substituting ψ = R eiθ in the stationary Schrödinger Lagrangian density, 
which will give: 

L = 
2 2

2 2 2( ) ( )
2 2s sR d U E d R
m m

θ 
+ − + 

 

ℏ ℏ
,   (6.7) 

 
in which E is a constant, this time. 
 This Lagrangian density can also be expressed in density form as: 
 

L (φ, η, vi, pi) = 2 21
2 ( ) ( )sv n U Eρ υ+ + − ,   (6.8) 

 
which has a physical reasonableness to it that stems from its transparent simplicity. 
 For a solution to the equations (6.3), L will then take the form: 

 
L = 21

2 s nUρυ −
ℏ
 = 2

sρυ  + η div υυυυ,    (6.9) 

 
which differs from the corresponding expression for the time-varying case (4.12) by an 
overall sign change. 
 The canonical forces and momenta that are associated with L are then: 

 

fφ = 
φ

∂
∂
L

= 0,     i
φΠ  = 

iv

∂
∂
L

 = ρvi,  (6.10) 
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fη = 
η

∂
∂
L

= 2 21
2

2
( )sm v U Eυ − + − 

ℏ
,  i

ηΠ  = 
iπ

∂
∂
L

 = υi.  (6.11) 

 
 The equilibrium equations for the functions φ and η are then obtained by varying L 

with respect to φ and η and take the form: 
 

0 = div ps, 0 = 2 21
2

2
( )sm v U Eυ − + − 

ℏ
− div υυυυ,   (6.12) 

 
although if one multiplies the second one by η then it can be given the density form: 
 

ε = 2 21
2 ( )sv nUρ υ− +  − η div υυυυ, = 21

2 ( )v n U Uρ + +
ℏ

,  (6.13) 

 
which is consistent with the first of (6.3). 
 Similarly, the Noether current that is associated with the phase-invariance of the 
function φ will take the form [compare the complex expressions (5.10)]: 
 

J 0 = t
φ δφΠ  = 0, J i = i

φ δφΠ = ρ vi,    (6.14) 

 
if we ignore an overall constant factor. 
 The density form of the energy-momentum-stress tensor is now: 
 

T µ
ν  = ρ (vµ vν + µ

νυ υ ) − L µ
νδ ,    (6.15) 

 
whose individual submatrices are [compare (5.11) and (5.12)]: 
 

0
0T  = − L, 0

iT  = 0
jT  = 0,  i

jT  = ρ (vi vj + i
jυ υ ) − L i

jδ ,  (6.16) 

 
and its trace will take the form [compare (5.13)]: 
 

T µ
µ  = − ρ (v2 + 2

sυ ) + 4(ε − nU).    (6.17) 

 
 The divergence of T µ

ν  is now: 

 

0T µ
µ∂  = − ∂tL = 0,   i

i jT∂  = − n ∂j U,   (6.18) 

 
which is simply the real form of the complex result (5.14). 
 
 
 § 7.  Coupling to an external electromagnetic field. − Many of the most important 
solved problems and experimental results in quantum mechanics were concerned with the 
motion of charges and magnetic dipoles in an external electromagnetic field.  We shall 
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model such a field by a 2-form on a four-dimensional space-time, although that 
anticipates the relativistic formulation of the problem, to some extent.  That 2-form is the 
Minkowski electromagnetic field strength 2-form: 
 

F = 1
2 Fµν dxµ ^ dxν = c dt ^ Ei dxi + 1

2 Bij dxi ^ dxj .    (7.1) 

 
Note that we are then modeling the magnetic field strength as being intrinsically a spatial 
2-form B = 1

2 Bij dxi ^ dxj, while the usual spatial vector field B that one encounters is the 

(spatial) Poincaré dual of that 2-form using spatial volume element dx1 ^ dx2 ^ dx3, so the 
components of B would be: 

B i = 1
2 εijk Bjk .      (7.2) 

 
 a.  Coupling the electromagnetic field to the wave function.  If the extended object 
whose total mass is m is also associated with a total charge Q then coupling the motion of 
that charge to the external electromagnetic field F is usually achieved by means of 
“minimal electromagnetic coupling,” which means that the (total) energy-momentum 1-
form (1) P = − E c dt + Ps gets replaced with: 

 

P = 
Q

P A
c

+ɶ  = − ( ɶE  + Qφ) c dt + i i

Q
P A

c
 + 
 
ɶ dxi,   (7.3) 

in which: 
ɶE  = − tθ∂ℏ , sPɶ  = sd θℏ .     (7.4) 

 

We shall think of ɶE  as the generalized total energy and Pɶ  as the generalized total 
momentum, while E and Ps represent the actual values of those physical quantities. 

 The 1-form: 
A = − φ c dt + As     (7.5) 

 
represents a choice of electromagnetic potential 1-form.  A then satisfies the constraint 
that: 

F = d^A = 1
2 (∂µ Aν − ∂ν Aµ) dxµ ^ dxν  (x0 = ct).  (7.6) 

 
Of course, A is not unique, since any other 1-form that differs from A by a closed 1-form 
will produce the same F under exterior differentiation, and that ambiguity in A is referred 
to as the gauge invariance of F, while a choice of A is a choice of gauge. 
 If one puts F into time + space form: 
 

F = − (c−1 ∂t Ai + ∂iφ) dx0 ^ dxi + 1
2 (∂i Aj − ∂i Aj) dxi ^ dxj  (7.7) 

 
then one can say that: 

                                                
 (1) In order to avoid confusion, from now on, the notation, E will refer to the spatial 1-form Ei dxi, while 
the total energy will be denoted by E.  
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Ei = − 1

c
∂t Ai − ∂iφ, Bij = ∂i Aj − ∂i Aj .    (7.8) 

 
 The associated covelocity 1-form now takes the form: 
 

v = 
Q

v A
mc

+ɶ = 
1 Q

P A
m c
 + 
 
ɶ ,    (7.9) 

so: 

vɶ  = sd
m

θℏ
      (7.10) 

 
becomes the “effective velocity” that is associated with the generalized momentum. 
 That means that, although vɶ  is (kinematically) irrotational, the velocity field v will 
not be irrotational, and in fact: 

Ωk = d^v = 
Q

F
mc

.     (7.11) 

 
If we put the kinematical vorticity into time + space form: 
 

Ωk  = 1
0 2( ) ( )i i j

t i i i j j iv v dt dx v v dx dx∂ − ∂ ∧ + ∂ − ∂ ∧   (7.12) 

 
then we will get the following pair of equations from (7.11): 
 

0t i iv v∂ − ∂  = i

Q
E

mc
,  i j j iv v∂ − ∂  = ij

Q
B

mc
.  (7.13) 

 
Note that if || B || is the Euclidian norm of the 2-form B then the expression Q || B || / mc 
will be twice the Larmor frequency of the charge Q in the magnetic field B. 
 
 b.  The minimally-coupled, time-varying Schrödinger equation.  The minimally-
coupled energy-momentum 1-form becomes the pair of operators: 
 

E = i
t

∂
∂
ℏ − Qφ, Pi = ii

Q
A

i x c

∂ +
∂
ℏ

= ii
∇ℏ  ,   (7.14) 

 
in which we have defined: 

∇i  ≡ ii

iQ
A

x c

∂ +
∂ ℏ

.     (7.15) 

 
The linear, first-order differential operator ∇i basically amounts to the “spatial covariant 

derivative” operator for the u(1)-connection that is defined by regarding i

iQ
A

cℏ
 as a 



154 Chapter IV – Non-relativistic, spinless particles 

connection 1-form that takes its values in the Lie algebra u(1) of U(1), namely, the 

imaginary line through 1; its complex conjugate is then: 
 

i
∗∇  = ii

iQ
A

x c

∂ −
∂ ℏ

.     (7.16) 

 
 The time-varying Schrödinger equation for a point charge Q that is coupled to an 
external electromagnetic field will take the form: 
 

i
t

∂Ψ
∂
ℏ  = −

2

2
ij

i jm
δ ∇ ∇ Ψℏ

+ Qφ Ψ.    (7.17) 

 
 It is important to see the subtlety that is associated with evaluating the square of the 
operator ∇i that comes from the difference between squaring it naively and squaring it 
when it is applied to the wave function Ψ: 
 

 ij
i jδ ∇ ∇ Ψ  = ij

i ji j

iQ iQ
A A

x c x c
δ ∂ ∂Ψ  + + Ψ  ∂ ∂  ℏ ℏ

 

 = ∆Ψ − 
2

2 ( ) 2i i
i i

Q iQ
A A A

c c
 

 Ψ + ∂ Ψ + ∂ Ψ   
 ℏ ℏ

. 

 
If one did not evaluate the operator on Ψ when squaring it then the result would differ by 
a missing factor of 2 in the brackets. 
 
 One can derive (7.17) and its complex-conjugate from the Lagrangian density: 
 

L = 
2

2 2( ) || || || ||
2 2

i
Q

m
φ∗ ∗Ψ Ψ − ΨΨ − ∇Ψ − Ψℏ ℏ

ɺ ɺ ,  (7.18) 

 
which is simply the previous (non-magnetic) Lagrangian density (1.19) with the 
replacement of spatial partial derivatives with covariant derivatives and the potential 
energy U replaced with Qφ. 
 One can also think of the new L as the sum: 

 
L = L0 + LA        (7.19) 

  
of the original L in (1.19), which we now denote as L0, and a Lagrangian density LA that 

accounts for the interaction of Q and the external magnetic field: 
 

LA = − ( )
2

2 2
2

|| ||
2 2

i i
i

Q i Q
A A

mc mc
∗ ∗Ψ − Ψ∂ Ψ − Ψ ∂ Ψℏ

,  (7.20) 
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which can also be put into the form: 
 

LA = i
iA j       (7.21) 

when we define the current: 
 

j i = − ( )
2

2
2

|| ||
2 2

i i iQ i Q
A

mc mc
∗ ∗Ψ − Ψ∂ Ψ − Ψ ∂ Ψℏ

.  (7.22) 

 
 The generalized forces and momenta for L now take the form of: 

 

f * = 
2 2

i
i

i i Q
Q A

mc
φΨ − Ψ + ∇ Ψℏ ℏɺ , Πt* = − 

2

i Ψℏ ,     Πi* = −
2

2
ij

jm
δ ∇ Ψℏ

,    (7.23) 

 
and their complex conjugates. 
 Hence, the generalized force and the spatial components of the generalized 
momentum now include contributions from the interaction of the charge with the external 
magnetic field, namely: 
 

Af
∗ = A

∗

∂
∂Ψ
L

 =
2

i
i

i Q
A

mc
∇ Ψℏ

,    t
A
∗Π = Q

∗

∂
∂Ψɺ
L

 = 0,    i
A
∗Π = 

( )
Q

i
∗

∂
∂ ∂ Ψ
L

 = −
2

iiQ
A

mc
Ψℏ

, (7.24) 

 
in addition to the expressions in (1.22), while the temporal component of the generalized 
momentum has not changed from its expression in (1.22). 
 One can check that equation (7.17) will follow from the Euler-Lagrange equations: 
 

0 = 
δ
δ ∗Ψ
L

= f * − ∂t Πt* − ∂i Πi*.   (7.25) 

 
 The components of the conserved current that is associated with the phase degree of 
freedom in L now take the form: 

 

J 0 = ΨΨ*, J i = ( )
2

ij
j jmi

δ ∗ ∗ ∗Ψ ∇ Ψ − Ψ ∇ Ψℏ
,  (7.26) 

 
and when we expand the definition of the covariant derivatives, the spatial components 
will take the form: 

J i = 2( ) || ||
2

ij i
j j

Q
A

mi mc
δ ∗ ∗Ψ ∂ Ψ − Ψ ∂ Ψ + Ψℏ

.  (7.27) 

 
Hence, the spatial part of the current (1.27) has been altered by an additive term that is 
proportional to the magnetic potential.  We see that the current j i that we defined above 
relates to J i by way of: 
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j i =
2

23
|| ||

2
i iQ Q

J A
c mc

− Ψ .    (7.28) 

 
 However, when we compute the conserved current that is associated with the gauge 
symmetry of LA with respect to A, we will get a more direct relationship: 

 
i
AJ  = A

iA

∂
∂
L

= iQ
J

c
.     (7.29) 

 
 The energy-momentum-stress tensor is now: 
 

T µ
ν  = µ µ µ

ν ν νδ∗ ∗Π ∇ Ψ + Π ∇ Ψ −L ,   (7.30) 
 
whose individual submatrices are: 
 

0
0T  = 

2
2 2|| || || ||

2

h
Q

m
φ∇Ψ + Ψ  ≡ H,   (7.31) 

0
jT  = ( )

2 j j

i ∗ ∗ ∗Ψ ∇ Ψ − Ψ ∇ Ψℏ
 = − m Ji ,  (7.32) 

0
iT  = −

2

( )
2

ij
j jm

δ ∗ ∗ ∗Ψ ∇ Ψ + Ψ ∇ Ψℏ
ɺ ɺ ,   (7.33) 

i
jT  = − 

2

( )
2

i i i
j j jm

δ∗ ∗ ∗ ∗∇ Ψ ∇ Ψ + ∇ Ψ ∇ Ψ −ℏ
L .  (7.34) 

 
 The only difference between these expressions and (1.29)-(1.32), comes from the 
minimal coupling of the magnetic potential to the charge. 
 The trace of T µ

ν  is: 
 

T µ
µ  = −

2
2 23 2

( ) || || 2 || ||
2

i
Q

m
φ∗ ∗Ψ Ψ − ΨΨ − ∇Ψ − Ψℏ ℏ

ɺ ɺ ,  (7.35) 

 
which is the minimally-coupled expression for (1.33).   
 The divergence of T µ

ν splits into: 

 

0T µ
µ∂ = Q || Ψ ||2φɺ ,  iT µ

µ∂  = Q || Ψ ||2 Ei +Bij j
AJ .  (7.36) 

 
The difference between these expressions and (1.34) reflects the fact that the external 
force includes the Lorentz force of interaction between Q and the magnetic field, as well 
as its interaction with the electric one. 
 Since L is the sum of two Lagrangian densities, one can also think of T µ

ν  as the sum 
o A

T Tµ µ
ν ν+  of two such tensors, the first of which 

o

T µ
ν  relates to the case with no magnetic 
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field, while the second one 
A

T µ
ν  can be obtained from LA .  Its individual submatrices are 

then: 

0
0

A

T  = − LA , 
0

A

jT  = 0, 0

A
iT  = − ( )

2
iiQ

A
mc

∗ ∗ΨΨ − Ψ Ψℏ ɺ ɺ , (7.37) 

 
A

i
jT = − ( )

2
i i

j j A j

iQ
A

mc
δ∗ ∗Ψ∂ Ψ − Ψ ∂ Ψ −ℏ

L .   (7.38) 

 
 Hence, T µ

µ  has been altered from its previous, non-magnetic expression additively 

only by the addition of the trace of 
A

T µ
ν , namely: 

 
A

T µ
µ  = 2

0

2
3 || ||i i

i

Q Q
A J A

c mc
 + Ψ 
 

.    (7.39) 

 

 One can also treat the divergence of T µ
ν  as the sum of two terms 

o A

T Tµ µ
µ ν µ ν∂ + ∂ , the 

first of which describes the contribution from the non-magnetic part of L with U = − Qφ, 

and the second of which contributes the Lorentz force between Q and B.  However, one 
must be careful not to think that the first divergence still vanishes, as it did in the absence 
of an external electromagnetic field, since its vanishing followed from the wave equation 
for Ψ, which has changed since then. 
 
 c. The Madelung-Takabayasi form of the minimally-coupled, time-varying wave 
equation.  The Madelung-Takabayasi equations that correspond to (7.17) will now take 
the form (1): 

E = 21

2 sp Q U
m

φ+ +
ℏ
,  div s

n n

t m

∂  +  ∂  
p = 0,    (7.40) 

in which: 

sp = s s

Q
d A

c
θ +ℏ .     (7.41) 

 
This also takes the form of the previous equations with a minimal coupling (7.3) of the 
magnetic potential 1-form to the (total) momentum 1-form. 
 We put (7.40) into density form by multiplying the first one by n and the second one 
by m: 

ε = 21

2 sp nUσφ
ρ

+ +
ℏ
, div st

ρ∂ +
∂

p = 0,   (7.42) 

 

                                                
 (1) We must now replace the symbol φ for the velocity potential with ζ, since we are now using φ for 
the electric potential. 
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in which σ ≡ Qn is the electric charge density.  These equations are virtually identical to 
(4.3) with nU = σφ.  The first of these can also be given the form: 
 

ε = 21
2 v nUρ σφ+ +

ℏ
.     (7.43) 

 
 The covelocity 1-form v that is associated with ps (= ρv) takes the form: 
 

v = s s

Q
d A

m mc
θ +ℏ

,     (7.44) 

 
whose kinematical vorticity is then: 
 

Ωk = d^v = ( )s

Q
dt A B

mc
∧ +ɺ ,  Bij = ∂i Aj − ∂j Ai .   (7.45) 

 
 The dynamical vorticity that is associated with ps then takes the form: 
 

Ωd = d^ps = dρ ^ v + ρ Ωk .     (7.46) 
 
The spatial part of the first equation in (7.45) gives a useful commutation rule for the 
derivatives of vi : 

∂i vj = ∂j vi + 
Q

mc
Bij .      (7.47) 

 
 In order to go from (7.43), which expresses the balance of energy, to the balance of 
momentum, one takes the spatial gradients of both sides, while taking into account the 
fact that: 

LvAi = 
1 ji i

j

A A
v

c t x

∂ ∂+
∂ ∂

.     (7.48) 

 
This ultimately alters the previous form (2.33) of the Euler equation only by the addition 
of the Lorentz force: 

Lvpi = ( )i
ji

v p
t x

ρ∂ ∂+
∂ ∂

= 
1 j

i ij iE B v n U
c

σ  + − ∂  
ℏ
 .   (7.49) 

 
 In order to get the Lagrangian density for the minimally-coupled case that we are 
currently considering, we need only replace the previous expression for momentum with 
the new one: 

L = R2 21

2 sp Q
m

θ φ + +  
ɺℏ  + 

2

2m

ℏ
(dsR)2   (7.50) 

 
by using the minimal coupling prescription. 
 The density form of this is: 
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L = 2 21
2 ( )svρ υ σφ ε+ + − ,     (7.51) 

 
with the understanding that v includes the magnetic potential 1-form A.   
 The canonical forces and momenta that are associated with L are: 

 

fζ = 
ζ

∂
∂
L

= 0,  t
ζΠ  = 

ζ
∂
∂ ɺ
L

= ρ,  i
ζΠ  = 

iv

∂
∂
L

= ρ vi,   (7.52) 

 

fη = 
η

∂
∂
L

= 2 21
2

2
( )sm v Q mυ φ ζ − + + 

ɺ

ℏ
,    t

ηΠ  = 
η

∂
∂ ɺ
L

= 0,    i
ηΠ  = 

iυ
∂
∂
L

= υi.   (7.53) 

 
 One can verify that equations (7.42) follow from the Euler-Lagrange equations that 
are associated with L, although the one that is associated with η will take the form: 

 
ε = 2 21

2 ( )svρ υ σφ− + − η div υυυυ ,     (7.54) 

 
which is equivalent to the latter when one recalls (3.24). 
 Thus, for a solution, one will have that L takes the form: 

 
L = 21

2 s nUρυ −
ℏ
 = 2

sρυ  + η div υυυυ ,     (7.55) 

 
which differs from (4.12) by an overall sign. 
 The current that is associated with the arbitrariness of the global choice of initial 
phase is now: 

J 0 = ρ,   J i = ρ v i = pi,    (7.56) 
 
in which we have again suppressed an inessential constant factor.  In effect, the only 
thing that has changed since (2.51) is the definition of vi. 
 The conserved current that is associated with the gauge invariance of L is now: 

 
0
AJ  = 

φ
∂
∂
L

= σ,  i
AJ  = 

iA

∂
∂
L

= σ vi,    (7.57) 

 
which relates to Jµ by way of: 

AJ µ  = 
σ
ρ

 Jµ.     (7.58) 

 
 The individual matrices of energy-momentum-stress tensor T µ

ν  are: 

 
0

0T  = − 2 21
2 ( )svρ υ+  − σ φ,     (7.59) 
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0
jT  = pj ,       (7.60) 

0
iT  = − i ivε ηυ+ ɺ ,      (7.61) 
i
jT  = i i i

j j jv vρ ρυ υ δ+ −L .     (7.62) 

 
which differ from the corresponding complex expressions in (7.31)-(7.34) by an overall 
minus sign. 
 The trace of T µ

ν  is now: 

 
T µ

µ  = − 2 2( )svρ υ+  − 4σφ + 3ε,    (7.63) 

 
which similarly differs from the complex form (7.35) by an overall sign change. 
 The divergence of T µ

ν splits into: 

 

0T µ
µ∂  = −σφɺ ,   iT µ

µ∂  = σ (Ei + 1
c Bij v j),  (7.64) 

 
which is consistent with (7.36), up to overall sign. 
 One can also represent L as a sum L0 + LA , in which: 

 
LA = Ai j

i,       (7.65) 

with: 

j i = −
2

iQ
v A

c mc

σ  −  
.     (7.66) 

 
 This allows one to decompose the currents Jµ and AJ µ  into sums, although only the 

spatial part actually splits: 

J i = 0
i iJ A

c

σ+ .     (7.67) 

 
in which we have defined the current: 
 

0
iJ  = jv

c

σ
ɶ  = jmc

σ θ∂ℏ
,     (7.68) 

 
which then amounts to the electric current (7.58) without the contribution from A. 

 One can also regard T µ
ν  as a sum 

o A

T Tµ µ
ν ν+ , in which 

o

T µ
ν  is the previous non-

magnetic tensor, and the individual submatrices of 
A

T µ
ν  are: 

 
0
0

A

T  = − LA , 
0

A

jT  = 0, 0

A
iT  = iA

c

σ θɺ ,  
A

i
jT = 0,

i i
j A jA J δ−L . (7.69) 
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 The trace of 
A

T µ
ν  is then [compare (7.39)]: 

 
A

T µ
µ  = 0, 4i

i AA J − L .     (7.70) 

 
 d.  The Madelung-Takabayasi form of the minimally-coupled stationary Schrödinger 
equation. − The minimally-coupled stationary Schrödinger equation becomes: 
 

22

2 ii

iQ
A Q

m x c
φ ψ

 ∂ − + +  ∂   

ℏ

ℏ
 = Eψ ,   (7.71) 

 
and its Madelung-Takabayasi form will now be: 
 

ε = 21

2
v nUρ σφ+ +

ℏ
,  div sp = 0,    (7.72) 

 
which is consistent with the non-magnetic case (6.3) when one sets U = σφ, although the 
magnetic potential has been absorbed into the definition of v.  Once again, the symbol ε = 
E n = 2 /η ℏE  will represent an energy density that is constant in time. 

 The Euler equation for equilibrium that one gets from this will then take the form of 
the previous one with an extra force term that would represent the Lorentz force: 
 

( )i
ji

v p
x

∂
∂

 = 
1 j

i ij iE B v n U
c

σ  + − ∂  
ℏ
.   (7.73) 

 
 The Lagrangian density takes the form: 
 

L = R2 21

2
p Q

m
φ + −  
E  + 

2

2m

ℏ
(dsR)2,   (7.74) 

 
whose density-only form is: 
 

L = 2 21
2 ( )svρ υ σφ ε+ + − ,     (7.75) 

 
in which nothing is a function of time, now.  One sees that this is minimally-coupled 
form of the non-magnetic expression (6.8). 
 For a solution, one can express L in the same form as in the non-magnetic case (6.9): 
 

L = 21
2 s nUρυ −

ℏ
 = 2

s divρυ η+ υυυυ ,    (7.76) 

 
so the minimal coupling has not affected that fact. 
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 The canonical forces and momenta that one derives from L are: 

 

fζ = 
ζ

∂
∂
L

 = 0,     i
ζΠ  = 

iv

∂
∂
L

 = pi,  (7.77) 

fη = 
η

∂
∂
L

 = 2 21
2

2
( )sm v Qυ ζ − + − 

ℏ
E , i

ηΠ  = 
iπ

∂
∂
L

 = υi,   (7.78) 

 
so the Euler-Lagrange equation for η will actually take the form: 
 

ε = 2 21
2 ( )svρ υ σφ− + − η div υυυυ = 21

2 v nUρ σφ+ +
ℏ
.   (7.79) 

 
 The conserved current that is associated with phase symmetry is: 
 

J 0 = 0,  J i = pi,     (7.80)  
 
and the one that is associated with gauge symmetry is: 
 

i
AJ  = iv

c

σ
.     (7.81) 

 
 The individual submatrices of the energy-momentum-stress tensor vT µ  take the form: 

 
0

0T  = − L,  0
iT  = 0

jT  = 0, i
jT  = i i i

j j jv vρ ρυ υ δ+ −L ,   (7.82) 

 
so its trace is now: 

 T µ
µ  = 2 2 4( )svρ ρυ ε σφ− − + − .     (7.83) 

 
 Its spatial divergence is: 

j
j iT∂  =  σ Ei + j

ij AB J ,     (7.84) 

 
while the temporal divergence 0T µ

µ∂  vanishes, since L is independent of time. 

 As usual, one can represent the contribution of the external electromagnetic field 
additively.  When one goes over equations (7.65) to (7.70), one will see that the only 
thing that must be changed in them is to express vT µ  in real form. 

 
 
 § 8.  The introduction of vorticity.  − Since the unavoidable consequence of 
obtaining a momentum or covelocity 1-form from the exterior derivative of a 
differentiable function, such as θ, is that its exterior derivative (viz., dynamical or 
kinematical vorticity) must vanish, if one regards the Schrödinger equation that served as 
a starting point as a linear, spinless approximation to something more physically 
fundamental then one possible direction of generalization would be to replace the basic 
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flow that results in the Madelung-Takabayasi formulation with something that has non-
vanishing vorticity and see how that might also change the character of the Schrödinger 
equation in return.  Indeed, one might continue along that line of thinking and consider 
the chaotic (or perhaps stochastic) formation of cascading sequences of vortex-pairs, in 
the form of turbulence; we shall return to discuss that possibility in the next chapter. 
 The first possibility was considered independently by Schönberg [5] and Takabayasi 
[3], and revisited somewhat later by Iwo and Zofia Bialnycki-Birula, along with C. Sliwa 
[6].  We shall attempt to address some of the issues in this last section. 
 
 In the last section, we already saw how the coupling of an external magnetic field to 
the motion of a charged Madelung medium could result in non-vanishing vorticity.  
Hence, there is certainly an empirical physical basis for the generalization from an exact 
energy-momentum or covelocity 1-form to something more involved. 
 Since we have been regarding the covelocity 1-form v = ( / )m dθℏ  as more definitive 
of continuum mechanics than the total energy-momentum 1-form P = mv = dθℏ , insofar 
as the total values of physical observables are more appropriate to the point 
approximation, while densities are the fundamental observables for continua, we will 
start with v, instead of P.  The essential fact about v is that, like P, it will be exact when 
one starts with the traditional form of the Schrödinger equation. 
 
 a. The theory of Pfaff forms (1).  The Pfaff equation is a total differential equation 
that takes the form α = 0, where α is a 1-form on an n-dimensional differentiable 
manifold.  The solution to such an exterior differential system will be an integral 
submanifold of the distribution of tangent hyperplanes in space that are spanned by all 
tangent vectors X that are annihilated by α : α(X) = 0.  Hence, one first solves the linear-
algebraic problem of finding the annihilating hyperplanes of α and then solves the 
differential system that they collectively define. 
 The dimension of an integral submanifold can vary from one up to n – 1; integral 
submanifolds of dimension one will always exist, moreover. The maximum dimension of 
an integral submanifold for an exterior differential system is called its degree of 
integrability.  When that degree is n − 1, one calls the exterior differential system 
completely integrable.  Frobenius’s theorem says that complete integrability is equivalent 
to the vanishing of the Frobenius 3-form α ^ d^α, which is equivalent to saying that a 1-
form η exists such that: 

d^α = η ^ α.      (8.1) 
 
 Generally, the first thing that one does with any 1-form is to put it into one of two 
normal forms: 

                                                
 (1) The theory of the Pfaff equation has a long tradition, so we shall cite only one modern reference that 
will suit out purposes, namely, the book by Bryant, Chern, et al. [7].  The author has also compiled a 
number of applications of that theory to physics in [8]. 
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in which the positive integer p relates to the rank of the first k-form in the series: 
 

d^α, α ^ d^α, d^α ^ d^α, … 
 

to vanish.  Note that for any finite-dimensional manifold (of dimension n) this sequence 
must truncate after a finite number of terms, since any k-form on an n-dimensional 
manifold must vanish when k exceeds n. 
 In particular, for n = 3, the only possible non-zero terms in the sequence are d^α and 
α ^ d^α .  The corresponding possible normal forms for α are dψ, λ dµ, dψ + λ dµ, which 
correspond to p = 0, 1, 2, resp., for which, the first vanishing k-forms are dψ, λ dµ, dψ + 
λ dµ, resp.  The cases that will be of interest to us are the first and third ones. 
 The only possible dimensions for an integral submanifold of a field of tangent planes 
are one and two, where one-dimensional integral submanifolds are always possible.  One 
sees that both the first and second normal forms for α – namely, dψ and λ dµ, resp. − will 
admit two-dimensional integral submanifolds in the form of the level surfaces of the 
functions ψ and µ, respectively.  From Frobenius’s theorem, one knows that since 
complete integrability is also equivalent to the vanishing of α ^ d^α, these will also be the 
only two possibilities.  Hence, the third case of α = dψ + λ dµ will no longer be 
completely integrable, but will admit only one-dimensional integral submanifolds. 
 
 b.  Vorticial motions of Madelung media.  If we now apply this analysis to the case of 
the covelocity 1-form then we will first see that v = dζ (where ζ = / mθℏ = S / m, as 
before) is the possibility that we started with, and which produces irrotational motion, 
since the kinematical vorticity is Ωk = d^v.  If one starts with the total energy-momentum 
1-form P = dS then the dynamical vorticity Ωk = d^P will also vanish, since P is related to 
v by a non-zero multiplicative constant. 
 The complete integrability of v = 0 would imply that there were integral surfaces 
whose tangent vectors X were annihilated by the 1-form v: v(X) = 0.  Since v(v) = vi v

i = 
v2 is not generally zero, one sees that the velocity vectors will not be tangent to the 
integral surfaces.  In fact, since vi = δij v j, one thinks of the velocity vector field as being 
normal to the integral surfaces, and refers to the motion as a surface-normal motion.  As 
we shall see, one possible set of candidates for integral curves that belong to the integral 
surfaces are the vortex lines. 
 Although it was never mentioned by the classical authors, the next possible normal 
form for a 1-form after exactness is the one that could relate to the energy-momentum 
density 1-form p = ρ v = ρ dζ as long as the mass density ρ is non-constant, and its 
gradient is not collinear with v.  That is because the dynamical vorticity of such a 
distribution would be dρ ^ dζ = dρ ^ v, which would vanish iff dρ were collinear with v.  
For instance, cylindrical or spherical mass distributions whose densities varied only with 
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distance from the axis or center would generally satisfy this constraint unless their motion 
were also one of radial expansion.  However, if the mass density of a rod that moves in 
the direction of its longitudinal axis were also variable along only that same axis then it, 
too, would have vanishing dynamical vorticity. 
 
 The case that was considered by Schönberg, Takabayasi, and Bialnycki-Birula was 
the one that had been previously established in hydrodynamics by Clebsch [9], namely, 
the treatment of vorticial motion by means of the Clebsch variables [10].  One then 
expresses the covelocity 1-form in the form: 
 

v = dζ + λ dµ .      (8.3) 
 
Its kinematical vorticity would then be: 
 

Ωk = dλ ^ dµ = 1
2 (∂iλ ∂jµ  − ∂jλ ∂iµ) dxi ^ dxj,  (8.4) 

 
while the Frobenius 3-form would be: 
 

v ̂  Ωk = dζ ^ dλ ^ dµ .     (8.5) 
 
If this is non-vanishing – i.e., the motion is not completely integrable − then the three 1-
forms dζ, dλ, dµ will be linearly-independent. 
 Since we are only concerned with vector spaces (which are orientable), one can 
associate the 2-form Ωk with a vorticity vector field ωωωωk by way of the (inverse of the) 

Poincaré isomorphism #: Λ1
R

3 → Λ2R
3, v ֏ ivV that a choice of spatial volume element 

V will define: 
ωωωωk = #−1 Ωk = i

k iω ∂ ,     (8.6) 

whose components will then be: 
 

i
kω  = 1

2 εijk Ωjk = 1
2 εijk ∂jλ ∂kµ  = 1

2 ∇λ × ∇µ,   (8.7) 

 
in which we have temporarily introduced the notation of vector calculus in the last 
expression. 
 One can then revisit (8.5) with this new concept and see that  
 

v ̂  Ωk = v ^ #ωωωωk = v (ωωωωk) V.     (8.8) 
 

Hence, the complete integrability of the exterior differential system v = 0 is equivalent to 
the vorticity vector field satisfying that exterior algebraic equation, which also means that 
the vortex lines have to be orthogonal to the path lines or streamlines of the velocity 
vector field v since v (ωωωωk) = <v, ωωωωk>. 
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CHAPTER V 
 

THE NATURE OF THE QUANTUM TERMS  
 
 

 What one hopes, above all, is that reformulating the wave equations of quantum 
mechanics in terms that pertain to continuum mechanics will lead to a better intuitive 
picture of the structure of matter, its interactions, and the time evolution of its states by 
pointing to analogies between the somewhat-speculative, sub-microscopic world of 
quantum phenomena and the more familiar world of macroscopic matter.  Indeed, one 
typically expects that natural law has a sufficiently general, universal character that the 
same fundamental processes and relationships would be going on at every scale of natural 
phenomena.  For instance, an early model of the atom was based on the assumption that 
electrons orbit the nucleus like planets, although, of course, that model proved to be 
highly incomplete. 
 So far, our first hint regarding the key distinction between classical continuum 
mechanics and the kind that includes “quantum corrections” is the appearance of either a 
quantum potential, its corresponding quantum force, or its quantum stress tensor.  Hence, 
we suspect that if it is possible to make sense of these notions in more familiar terms then 
we shall have made some progress in terms of paving a smoother road from classical to 
quantum physics.  Since quantum stress seems to have the most facets to it, we shall use 
it as a our primary focus. 
 Basically, the gist of this chapter is that when one goes from point-like matter to 
extended matter, one can consider the way that the geometry of the instantaneous spaces 
of dynamical states differs from that of the instantaneous kinematical states as a result of 
the conformal transformation of the metric on the latter space that scalar multiplication 
by the mass density function represents.  In particular, when that function is not constant 
in space, the shape of its level surfaces plays a role – i.e., its higher derivatives.  
However, one finds that the real issue is the deformation of tangent frames, not the 
deformation of the space that they live one, so one is dealing with what the author calls 
“frame strain,” rather than the metric strain that is customarily addressed by continuum 
mechanics. 
 Another aspect of the difference between quantum mechanics and continuum 
mechanics that bears upon the physics of the models is the presumed incompleteness in 
the original quantum wave equations.  The enlargement of scope that going from 
quantum mechanics to quantum field theory represents seems to be rooted in the 
interaction of fields with the quantum vacuum state, so having some way of modeling 
that state is essential.  Hence, we shall also consider the way that various researchers 
introduced turbulence into the motion of the Madelung medium as a possible source of 
“quantum fluctuations.” 
 
 
 § 1.  The geometrical origins of the quantum stress.  Perhaps one of the reasons 
that the early researchers in the continuum-mechanical models for quantum mechanics 
imagined that the Madelung medium was a fluid was that at first it did not seem as 
though there were any obvious way of associating the quantum stress tensor with a 
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corresponding strain tensor.  Since that situation is typical of fluid media, which 
generally admit no strains (although viscous stresses do get coupled to the rate of strain), 
it was then assumed that the medium in question was some sort of exotic fluid. 
 However, more recently, the author wrote a series of articles [1-3] on the role of 
geometry in Madelung media.  In the first one [1], he proposed that the quantum potential 
could be related to the scalar curvature of a Levi-Civita connection that one associates 
with a metric that one obtains from deforming the spatial metric by means of a conformal 
factor that amounted to the mass density function.  In the second one [2], he showed that, 
along the same lines, one could define a metric strain tensor that couples to the quantum 
stress tensor and is also derived from that same deformation of the metric.  In that paper, 
it was suggested that the coupling of metric strain to quantum stress was more direct if 
one used the older usage of the words “curvature” and “torsion” that was more consistent 
with their usage in the context of the Frenet-Serret equations than with their usage in the 
more modern Riemann-Cartan context.  In the third paper [3], the author expanded upon 
the latter idea in a more general way and showed how the geometry of “teleparallelism” 
represented a higher-dimensional version of the Frenet-Serret approach to the motion of 
an orthonormal frame along a curve when one extends to frame fields on surfaces and 
higher-dimensional objects. 
 Indeed, a similar sort of coupling of strain to stress was described by Kelvin and Tait 
[4] in the context of the stresses that are produced by the bending and twisting of beams.  
Basically, one must realize that one is coupling stress to the connection on the deformed 
space, not to its curvature and torsion in the Riemann-Cartan sense, which is more closely 
related to the integrability of parallel translation. 
 Hence, we shall start from that viewpoint in order to suggest how the basic principle 
at work is the idea that there is a difference between the geometry of the space of 
kinematical states and that of the space of dynamical states.  At the most elementary 
level, if the kinematical state is described by a velocity vector v = vi ∂i then the speed v 
that is associated with it will be the square root of: 
 

v2 = <v, v> = δij v
i vj.      (1.1) 

 
 The Euclidian scalar product that is defined on the tangent vectors will then be 
referred to as the kinematical metric.  One can associate it with a corresponding scalar 
product on the cotangent vectors that gives the same value of v2 to the covelocity 
covector: 

v2 = <v, v> = δ ij vi vj
   (vi = δij v

j).   (1.2) 
 
 This is still a kinematical metric, but when one goes from covelocity to (linear) 
momentum, in its simplest form, one sees that there is a significant difference between 
point mechanics, for which a potentially-time-varying mass scalar m (t) is associated with 
only a single curve x (t) in the space of motion, and the motion of an extended material 
object, for which a mass density ρ (t, x) that is associated with congruence of curves x (t, 
u) in space; here, the symbol u generically refers to the parameters that define the shape 
of the object in some reference state, such as its initial state.  When one defines the 
momentum density 1-form p = pi (t, x) dxi in the usual way: 
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p = ρ v  (pi = ρ δij v
j),     (1.3) 

 
one will see that one can define a scalar product on the support of ρ, namely: 
 

ρ v2 = <v, v>ρ = ρ δ ij vi vj ,     (1.4) 
 
that associates the covelocity 1-form with (twice) the kinetic energy density of motion.  
The difference between this scenario and that of point mechanics is that one can 
differentiate ρ (t, x) with respect to space, as well as time, while m (t) has only a time 
derivative. 
 The resulting metric on tangent vectors: 
 

gij (t, x) = ρ (t, x) δij      (1.5) 
 
takes the form of a conformal transformation of the original Euclidian metric, and its 
corresponding metric on cotangent vectors will have components: 
 

g ij = 
1

ρ
δ ij.       (1.6) 

 
 Note that both the metrics gij and g ij can be defined only where the density ρ is non-
zero.  Hence, the “dynamical” metric is defined only where the matter itself is defined, 
but not in the complementary space.  It then pertains to the geometry of the “world-tube” 
that is swept out in space-time by the motion of the object. 
 A conformal transformation of a metric, which takes the general form g  ֏  g = Ω2 

g, where Ω is a function of position on the relevant manifold, can also be defined by a 
local homothety of the tangent spaces: 
 

( , )g u v = g(Ωu, Ωv).      (1.7) 
   
Thus, the function Ω also plays a fundamental role geometrically. 
 In the case of dynamics, Ω will be equal to ρ , which we know is also proportional 

to the function R that is at the basis for the Madelung medium, along with θ; i.e.: 
 

 Ω2 = ρ = m R2.      (1.8) 
 
 We first denote the open set of space-time points at which ρ ≠ 0 by Σρ in order to 
specify the manifold on which the dynamical metric g = gij dxi dxj is defined.  Although it 
is tempting to then go to the support of ρ, which is the closure of Σρ , nonetheless, since 
there might be limit points of Σρ at which ρ is zero, if one expects to divide by ρ then one 
cannot use those points, anyway.  Hence, we can then treat the Riemannian manifold (Σρ , 
g) as the dynamical space for the motion of the extended object under scrutiny, and the 
three-dimensional slices Σρ(t) for constant values of the time dimension-parameter will be 
called instantaneous dynamical spaces. 



170 Chapter V – The nature of the quantum terms. 

 As long as ρ is not spatially constant, the spatial derivatives of g will generally be 
non-zero and equal to: 
 

gij, k = ij

k

g

x

∂
∂

 = 
kx

ρ∂
∂

δij ,   gij, k, l = 
2

ij

k l

g

x x

∂
∂ ∂

 = 
k lx x

ρ∂
∂ ∂

δij .  (1.9) 

 
Hence, one sees that only the spatial derivatives of ρ contribute in an essential way. 

 2.  The Riemannian geometry of the instantaneous dynamical spaces. – If one 
wishes to take the Riemannian route to differential geometry, as in [1], then one can use 
(1.6) and (1.9) to obtain the components of the Levi-Civita connection that is associated 
with the metric on the instantaneous dynamical space Σρ(t): 
 

i
jkΓ  = 1

2 gil (glj , k + glk, j – gjk, l) = 
1

2ρ
(ρ, k i

jδ + ρ, j i
kδ  – ρ, l δ il δjk).   (2.1) 

 
 The parallel translation of a vector u(s) = ui(s) ∂i along a curve x(s) in Σρ(t) whose 
velocity vector field is v(s) will then imply that: 
 

0 = ∇vu = 
i

i j k
jk i

du
v u

ds x

  ∂+ Γ  ∂ 
;    (2.2) 

i.e., that: 

0 = 
i

i j k
jk

du
v u

ds
+ Γ = , , ,

1
[( ) ( ) ( ) ]

2

i
j i j i k ij

j j k j

du
u v v u v u

ds
ρ ρ δ ρ

ρ
+ + − , (2.3) 

 
which can be given the component-free form: 
 

0 = 
1

[( ) ( ) , grad ]
2

d

ds
ρ ρ ρ

ρ
+ + − < >u

v u u v u v .  (2.4) 

 
 In particular when u = v, one will get the geodesic equations: 
 

0 =
i

i j k
jk

dv
v v

ds
+ Γ = 2

, ,

1 1
( )

2

i
j i ij

j j

dv
v v v

ds
ρ ρ δ

ρ ρ
+ − ,  (2.5) 

 
which can be given the component-free form: 
 

0 = 21 1
( ) grad

2

d
v

ds
ρ ρ

ρ ρ
+ −v

v v .    (2.6) 
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 One notices that dρ always seems to appear in conjunction with 1 / ρ, which suggests 
that d (ln ρ) might be a somewhat more fundamental expression.  If we express ρ = Ω2 in 
the form e2λ then we can set: 
 

λ = 1
2 ln ρ,  dλ = 

1

2
dρ

ρ
,    (2.7) 

 
and the components of the Levi-Civita connection will take the form: 
 

i
jkΓ  = λ, k i

jδ + λ, j i
kδ  – λ, l δil δjk .    (2.8) 

 
 This will then make the equation of parallel translation take the form: 
 

0 = ( ) ( ) , grad
d

ds
λ λ λ+ + − < >u

u v v u v u ,   (2.9) 

 
while the geodesic equation will now be: 
 

0 = 22( ) grad
d

v
ds

λ λ+ −v
v v .    (2.10) 

 
 In order to compute the Riemann curvature of the connection that we have defined, it 
is simplest to first form the connection 1-form: 
 

i
jΓ  = i k

jkdxΓ  = dλ i
jδ + λ, j dxi – ,iλ dxj .   (2.11) 

 
 The curvature 2-form that this defines can be obtained from the Cartan structure 
equation for curvature: 

i
jR  = 1

2
i k l
jklR dx dx∧  = i i k

j k jd∧Γ + Γ ∧ Γ .  (2.12) 

 That will give: 
 
  i

jklR  = , , , ,
, , , , , , , , , , , ,( ) ( ) ( ) ( )i i i i i i
j k j k l j l j l k l l jk k k jlλ λ λ δ λ λ λ δ λ λ λ δ λ λ λ δ− − − + − − −  

,
,( )( )m i i
m l jk k jlλ λ δ δ δ δ+ − .   (2.13) 

 
 One can then find the Ricci curvature 1-forms from this by contraction: 
 

Ri = Rij dxj = k j
ikjR dx ,     (2.14) 

in which: 
Rij = – (λ,i, j – λ, i λ, j) − [∆λ + (dλ)2] δij .    (2.15) 

 
 If we raise a lower index then we will get the matrix of the Ricci transformation:



172 Chapter V – The nature of the quantum terms. 

i
jR  = gik Rkj = e−2λ δik Rkj = − e−2λ , , 2

, ,{ [ ( ) ] }i i i
j j jdλ λ λ λ λ δ− + ∆ + . (2.16) 

 
 If we contract this then we will get the scalar curvature (1): 
 

R = i
iR  = − 4 e−2λ [∆λ + 1

2 (dλ)2].     (2.17) 

 

 If we identify λ with ln m  + ln R, where R is the modulus of the Schrödinger wave 
function, as before, then: 

  ∆λ = 2( )
R

d
R

λ∆ − , 

or: 
R

R

∆
 = ∆λ + (dλ)2 = − 1

4 e2λ R + 1
2 (dλ)2.   (2.18) 

 
Hence, the quantum potential can be expressed in the form: 
 

U
ℏ
 = −

2

2

R

m R

∆ℏ
 = 

2
2[ 2( ) ]

8
d

m
ρ λ−ℏ
R .   (2.19) 

 
 As we shall see, the second term on the right-hand side will no longer appear when 
we go to the relativistic form of things.  Nonetheless, we already see that we are close to 
identifying the quantum potential with a scalar multiple of the scalar curvature of the 
deformed metric on the instantaneous dynamical space Σρ(t). 
 
 
 3.  Clifford-Weitzenböck geometry (2). − The big problem with differential 
manifolds, as compared to affine spaces, in the eyes of kinematics is that in the absence 
of a globally-defined action of the translation group that would allow one to not only 
move points of space to other points, but (by differentiation) also tangent and cotangent 
vectors in the tangent and cotangent spaces, as well, one has no way of defining the 
acceleration of a curve.  That is because one usually starts with a finite difference of two 
velocity vectors that are tangent to finitely-separated points, and unless one has some way 
of identifying the vectors in the two tangent spaces, such a difference would be ill-
defined. 
 The solution, of course, is to define some form of parallelism, if only between tangent 
objects.  Previously, we discussed Riemannian geometry, in which one defines a 
connection on either tangent vectors or tangent frames that allows one to define the 
parallel translation of such objects along curves, and in so doing, one can get 
isomorphisms of the tangent spaces along such a curve.  However, parallel translation is 
generally curve-dependent then, so one cannot expect to arrive at such a thing as a 
                                                
 (1) We will use the somewhat non-standard notation of R for the scalar curvature, instead, of R, which 
we are already using for the modulus of the quantum wave function.  
 (2) For more details on this subsection and the next, see the author’s paper [3].  
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globally-defined isomorphism of all tangent spaces that would allow one to define 
“distant parallelism” or teleparallelism – viz., the parallelism of finitely-separated tangent 
vectors or frames (1). 
 In order to define a global isomorphism of any two tangent spaces on a manifold, it is 
necessary and sufficient that one should be able to define a global frame field on it.  One 
then calls the manifold parallelizable. 
 Frame fields always exist locally about any point of a differentiable manifold.  For 
instance, any coordinate chart (U, xi) defines a natural frame field {∂i, i = 1, …, n} in the 
form of the directional derivatives ∂i = ∂ / ∂xi with respect to each coordinate, as well as a 
reciprocal coframe field {dxi, i = 1, …, n} that is defined by the coordinate differentials.  
Thus, they are related by the fact that: 

dxi(∂j) = i
jδ .     (3.1). 

 
 The basic property of natural frame fields and coframe fields is that they are 
holonomic, which is expressed by the dual conditions: 
 

[∂i, ∂j] = 0,   d^dxi = 0.    (3.2) 
 
 However, extending such a local construction to a global one is obstructed by both 
topology and geometry. 
 Topologically, it is necessary for all of the Stiefel-Whitney classes of the bundle of 
linear frames to vanish; indeed, Stiefel was explicitly addressing the problem of 
parallelizability when he first defined such classes [6].  One finds that even such 
“homogeneous” spaces as spheres do not generally admit global frame fields.  Indeed, the 
only ones that do have dimensions 0, 1, 3, and 7, which are also make them the 
underlying manifolds of certain Lie groups.  In fact, not only are all Lie groups 
parallelizable, but one can even think of parallelizable manifolds as, in a sense, “almost 
Lie groups;” i.e., Lie groups without the multiplication. 
 Geometrically, a necessary condition for any linear connection to admit a parallel 
vector field (even locally) is that its curvature must vanish.  Indeed, one can even 
characterize the Riemann-Cartan usage of the term “curvature” as something that 
obstructs the integrability of parallel-translation, in the sense of either the path-
independence of that process or the existence of solutions to the system of equation for a 
parallel vector field u = ui ∂i : 

0 = ∇ui = i i j
jdu u+ Γ .     (3.3) 

 
 Although the traditional picture of local constructions in the elementary theory of 
differentiable manifolds usually gives the impression that the open subsets upon which 
“local” constructions are defined are usually “sufficiently small” neighborhoods of 
points, actually, when it comes to the extension of local frame fields to global ones (or 
not), one often finds that the opposite problem of finding a maximal open subset upon 

                                                
 (1) The author has compiled a collection [5] of English translations of selected papers on the early 
attempts by Einstein, Mayer, and others to use the geometry of parallelizable manifolds as the basis for the 
unification of Einstein’s theory of gravitation and Maxwell’s theory of electromagnetism, including a 
translation of Stiefel’s thesis on the topological obstructions to parallelizability. 



174 Chapter V – The nature of the quantum terms. 

which the definition is still valid can have a solution that amounts to the complement of a 
finite point set.  For instance, a two-dimensional sphere can admit a frame field that is 

defined everywhere except for a single point.  In fact, Stiefel was defining his Z2 

homology classes by first triangulating such sets of singular points and showing that the 

resulting complex defined a Z2-cycle.  Thus, one should not always think of local frame 

fields as being defined on sufficiently small open subsets, as opposed to global fields 
with singularities.  (The author has been referring to this situation as singular 
teleparallelism.) 
 Since parallelizable manifolds are “a heartbeat away from Lie groups,” we shall first 
examine how one defines a global frame field on a Lie group G.  Basically, one chooses 
any frame {ei, i = 1, …, n} in the tangent space TeG at the identity e ∈ G (which is 
usually identified with the Lie algebra g of G) and either left-translates or right-translates 

it to each other point g ∈ G to obtain a frame ei(g) in TgG.  More precisely, one first 
defines the Lie group isomorphisms of left and right translation by g: 
 

Lg : G → G, g′ ֏  gg′,  Rg : G → G, g′ ֏  g′g, 
 
and differentiates them both at the identity element e.  Since they are both 
diffeomorphisms, their differential maps will be linear isomorphisms from TeG to TgG.  
When one repeats this construction for each element g, one will get two global frame 
fields ei(g) on G, as well as two isomorphisms of TeG with every other tangent space.  As 
long as G is non-Abelian, these two frame fields and isomorphisms will generally be 
distinct.  We shall then distinguish the two types of parallelism that come from left and 
right translation as being left and right parallelism, as well. 
 There is nothing special about any particular choice of frame at the identity in the 
eyes of parallelism.  Let us define two vectors v and v′ in the tangent spaces at two 
distinct elements g and g′, resp., in G to be parallel iff their components with respect to 
the respective frames ei(g) and ei(g′) are equal; i.e.: 
 

v = vi ei (g), v′ = vi ei (g′).    (3.4) 
 
 If one chooses another frame ( )i ee  = ( ) j

j ie he  at the identity then one can also extend 

( )i ee  to every other g ∈ G by left and right translation and one finds that: 

 
( )i ge  = ( ) j

j ig he      (3.5) 

 
for every g ∈ G.  Since the (invertible) matrix j

ih will be the same for every g, the 

components of the two vectors will transform by the same matrix.  As a result, two 
vectors that are tangent to two elements of G will be parallel with respect to the frame 
field ei(g) iff they are parallel with respect to ( )i ge .  Thus, one can say that a certain 

form of parallelism is associated with an equivalence class of global frame fields that are 
related by the same matrix at each point. 
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 In their paper on the geometry of simple Lie groups [7], Élie Cartan and Jan Schouten 
pointed out that the two aforementioned types of parallelism were actually distant 
relatives to the two types of parallelism that William Kingdon Clifford had defined 
previously [8] in the context of projective geometry.  Furthermore, Roland Weitzenböck 
[9] had treated similar issues in his book on the theory of invariants (1).  Thus, we shall 
refer to the geometry of parallelizable manifolds as Clifford-Weitzenböck geometry. 
 The two types of frame fields on a Lie group can also be called left-invariant and 
right-invariant, respectively, as can the vector fields that comprise them.  Similarly, their 
reciprocal coframe fields {θi, i = 1, …, n} [so θi(ej) = i

jδ ] will also be left-invariant or 

right-invariant, respectively.   
 A fundamental property of left or right-invariant frame fields on Lie groups is the fact 
that one will have the dual conditions: 
 

[ei, ej] = k
ij kc e ,  d^θ i = − 1

2
i j k
jkc θ θ∧ ,   (3.6) 

 
in which the k

ijc  are the structure constants of G relative to that global frame field.  The 

fact that they are constants is due to the fact that the frame field is assumed to be 
invariant under left or right translation, since otherwise they would be more general 
functions on G. 
 The second set of equations in (3.6) is referred to as the Maurer-Cartan equations.  
One can characterize them as an integrability condition for the coframe field θ i to be left- 
(or right-) invariant. 
 One can think of the invariant coframe field θ i as also being a 1-form on G with 
values in its Lie algebra g, since if X = X i ei (g) is a tangent vector at g then θ i (X) = X i 
can be associated with the tangent vector to the identity Xi ei (e) = θ i (X) ei (e).  The 1-
form θ on G with values in g that this defines will then be called the Maurer-Cartan 1-

form on G (mod ei).  If G is a matrix group (i.e., its elements can be represented by 
invertible matrices and its multiplication takes the form of matrix multiplication), so the 
coordinate functions for the element g are ( )a

bg g , then Maurer-Cartan 1-form for the left-

invariant and right-invariant frame fields will take the forms: 
 

a
bω  = a c

c bg dgɶ ,   a
bω  = a c

c bdg gɶ ,    (3.7) 

 
resp., in which the tilde denotes the matrix inverse. 
 If one takes the exterior derivative of the Maurer-Cartan equations then one will get 
the Bianchi identity: 

0 = m l m l m l
il jk jl ki kl ijc c c c c c+ + ,    (3.8)  

 
which is dual to the Jacobi identity: 

                                                
 (1) Amusingly, Roland Weitzenböck was apparently such a Francophobe that he could not resist 
disguising an acrostic in the opening sentences of the preface to that book.  The first letters of the first 
words of the first 21 sentences actually spell out “Nieder mit den Französen!” (Down with the French!).  
That also accounts for his activities in the 1930’s during the rise of Third Reich. 
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0 = [ei , [ej, ek]] + [ej , [ek, ei]] + [ek , [ei, ej]],    (3.9) 
 
which is true for any Lie algebra and expresses the fact that a general Lie algebra will not 
be associative. 
 The transition from a Lie group G to more general parallelizable manifold M is to 
replace the concept of left or right invariant frame field ei(g) (which would no longer be 
meaningful in the absence of group multiplication) with a general frame field {ei(x), i = 1, 
…, n}.  Any other frame field ( )i xe  on M will be related to ei(x) by way of: 

 
( )i xe  = ( ) ( )j

j ix h xe ,     (3.10) 

 
in which ( )j

ih x  is the transition function that takes one from one frame field to the other 

one.  It is then a function h : M → GL(n), x ( )j
ih x֏  that associates an invertible n×n 

matrix with each point of M. 
 Once again, one can define two tangent vectors v and v′ at x and x′, resp. to be 
parallel with respect to ei iff their components with respect to ei(x) and ei(x′), resp., are 
equal.  This situation is the same as it was for Lie groups, as well as the fact that any two 
distinct tangent vectors v and v′ will be parallel with respect to two frame fields ei and ie  

iff the transition function that takes one to the other is a constant function.  Thus, the 
parallelism that a given frame field defines is common to a whole equivalence class of 
other frame fields. 
 A vector field v(x) = vi(x) ei(x) is parallel with respect to ei (and all other frame fields 
that differ by a constant transition function) iff its components vi(x) are all constant 
functions.  Hence: 

dvi = 0.      (3.11) 
 
Thus, any vector or frame at a single point of M can be extended to a global parallel 
vector field or frame field by means of ei . 
 For the general frame field ei on M, one will now have the dual equations: 
 

[ei(x), ej(x)] = ( ) ( )k
ij kc x xe ,  d^θ i = − 1

2 ( )i j k
jkc x θ θ∧ ,  (3.12) 

 
in which the ( )k

ijc x  are now structure functions that do not have to be constant.  Indeed, 

the existence of a global frame field for which they are constant would define a local 
diffeomorphism to a Lie group manifold whose Lie algebra has those structure constants 
(1).  Upon comparison with (3.6), one sees that the second set of equations is basically a 
generalization of the Maurer-Cartan equations for a Lie group. 
 As far as the Jacobi-Bianchi identities are concerned, the Jacobi identity will have the 
same form as in (3.9), while the Bianchi identity (3.8) will pick up another term that 
comes from the fact that k

ijdc  does not have to vanish, namely: 

 

                                                
 (1) This statement is cited without proof in Singer and Sternberg [10].  
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0 = m m l m l m l
i jk il jk jl ki kl ijc c c c c c c+ + +e .   (3.13) 

 
 Since a choice of frame field ei defines a notion of parallelism, one naturally wonders 
if it also defines a linear connection that implies the same parallelism, if only along 
curves.  Indeed, if one goes back to the definition of the parallelism of a vector field v 
(mod ei), and the condition (3.11) then one will see that v is parallel (mod ei) iff dvi = 0.  
We then define the covariant differential of v to be: 
 

∇v = dvi ⊗ ei ,       (3.14) 
 
and since one usually expects that: 
 

∇v = (dvi + i j
j vω ) ⊗ ei     (3.15) 

 
for some connection 1-form j

iω  (which does not transform linearly from one frame to 

another), we see that we must have j
iω  = 0 relative to this frame field. 

 If ei = j
i jh ∂  then the transformation of jiω  to the natural frame will take the form: 

 
j

iω  =  j k l j k
k l i k ih h h dhω +ɶ ɶ = j k

k ih dhɶ .   (3.16) 

 
Thus j

iω  is a 1-form with values in gl(n). 

 If one compares (3.16) to (3.7) then one will see that this 1-form j
iω  is the pull-back 

of the Maurer-Cartan form on GL(n) by the function h : M → GL(n).  Hence, one sees 
that the connection that makes v parallel has much in common with the Maurer-Cartan 
geometry of GL(n). 

 If iv  = i j
jh vɶ are the components of v relative to the natural frame then one can rewrite 

(3.14) in the form: 
∇v = i

iv∇ ⊗ ∂ , iv∇  = i i j
jdv vω+ .  (3.17) 

  
 Hence, the condition for the parallelism of v can be expressed in the familiar form: 
 

i i j
jdv vω+  = 0    (3.18) 

 
in the natural frame, while it is simply dvi = 0 in the anholonomic frame ei . 
 Similarly, the differential equations for a geodesic x(s) (whose velocity vector field 
must be parallel) take the two forms: 
 

idv

ds
 = 0, ( )

i
i j
j

dv
v

ds
ω+ v  = 0   (3.19) 

 
in the anholonomic and natural frames, respectively. 
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 If we express i
jω  in the form: 

i
jω  = i k

jk dxω      (3.20) 

 
then the last system in (3.19) will take the form: 
 

i
i j k
jk

dv
v v

ds
ω+  = 0.      (3.21)  

 
 One can obtain the torsion and curvature 2-forms for the teleparallelism connection 
from the Cartan structure equations: 
 

Θi = d^θ  i + i
jω ^ θ  j,  i

jΩ  = i i k
j k jd ω ω ω∧ + ∧ ,  (3.22) 

 
in which we are using a generic coframe field and its associated connection 1-form. 
 Relative to the coframe field θ i for which i

jω  = 0, these become simply: 

 
Θi = d^θ  i, i

jΩ  = 0.     (3.23)  

 
 Relative to the natural frame field dxi for which i

jω  = i
jω , one will get: 

 
Θi = i

jω ^ dx j = − 1
2 ( )i i

jk jkω ω−  dx j ^ dxk,    (3.24)  

 
i
jΩ  = i i k

j k jd ω ω ω∧ + ∧  = 0.      (3.25)  

(Proof of last equation: 
 

 i i k
j k jd ω ω ω∧ + ∧  = ( )i k i k m l

k j k m l id h dh h dh h dh∧ + ∧ɶ ɶ ɶ   

 = i k i k m l
k j k m l idh dh h dh h dh∧ + ∧ɶ ɶ ɶ  

 = i k i l m k
k j l m k jdh dh h dh h dh∧ + ∧ɶ ɶ ɶ  

 = i k i k
k j k jdh dh dh dh∧ − ∧ɶ ɶ  = 0   ) 

 
 The last expression in (3.24) shows that the components of the torsion 1-form are the 
antisymmetric parts of the connection components, as usual.  That is, if: 
 

Θi = 1
2

i j k
jk dx dxΘ ∧      (3.26) 

then 
i
jkΘ  = i i

jk jkω ω− .     (3.27) 

 
 From the first equation in (3.23), and a glance back at (3.12), one can also see that the 
components of the torsion 2-form in the coframe θ i will be:
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i
jkΘ  = − i

jkc .      (3.28) 

  
 
 4.  The Clifford-Weitzenböck geometry of dynamical space. − We shall assume 

that topologically our dynamical space takes the form of the embedding in R4 = R × R3 

of a world-tube T 4 = (t0, t1) × Σ, where Σ is diffeomorphic to the interior of the support of 

ρ at any time-point t; hence, the essential contribution to its topology shall come from Σ.  

That embedding will take (t0, t1) into the first factor of R4 and Σ into the second one.  The 

image Σt of Σ under that embedding at time t shall be referred to as the instantaneous 
dynamical space at t.   
 In order to apply the preceding section to the case of the Madelung medium, we start 
by noting that the metric on each instantaneous dynamical space is defined by: 
 

g = ρ δij dxi dx j = δij (R dxi)(R dx j)  (R ≡ ρ ).   (4.1) 

 

 Since R3 is parallelizable, we can then think of it natural frame field ∂i as being 

defined at all points of each Σt , although it is not generally adapted to that submanifold.  
However, it is a basic result of Stiefel [6] that if that space is compact, orientable, and 
three-dimensional then it will always be parallelizable.  All of those conditions are 

physically reasonable.  For instance, the (conformal) compactification of R3 by a point at 

infinity will produce a 3-sphere, which relates to the study of functions that are constant 
(e.g., zero) at infinity. 
 
 a.  Basic frame for the deformed metric. – From (4.1), the frame field ei and its 
reciprocal coframe field θ i that we need to define will take the simple forms: 
 

ei =
1

R
∂i , θ i = R dxi;    (4.2) 

i.e.: 

i
jh  = i

jRδ , i
jhɶ  =

1 i
jR

δ .    (4.3) 

 
 The connection 1-form that this defines in the natural coframe field will then be: 
 

i
jω  = i k

k jh dhɶ  = 
1 i

j dR
R

δ 
 
 

,  i
jkω  = 

1i
j k R

R
δ  ∂ 
 

.  (4.4) 

Since: 
1

dR
R

= d (ln R) = 1
2 d (ln ρ) =

1

2
dρ

ρ
, 

we can also say that: 
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i
jω  = 

1

2
i
j dδ ρ

ρ
 
 
 

.     (4.5) 

 
 If we compare this connection to the Levi-Civita connection that was defined in (2.1) 
then we will see that they are related by: 
 

i
jkΓ  = 1

3
i i m li
jk kj ml jkω ω ω δ δ+ − ,    (4.6) 

 
in which we have used the fact that we can solve the second equation in (4.4) for: 
 

3
k ρ

ρ
∂ = m

mkω ,  i.e., 
3

dρ
ρ

= m
mω .   (4.7) 

 
 It is important to note that the connection form i

jω  takes its values in the Lie algebra 

of (R, ×), so it will not be a metric connection, as opposed to i
jkΓ , nor will it have 

vanishing torsion, as we shall see. 
 If we recall that ρ = e2λ then we can also say that: 
 

i
jω  = i

j dδ λ  =( )i k
j k dxδ λ∂ ,    (4.8) 

so 
 i

jkω  = i
j kδ λ∂ .           (4.9) 

One then has: 
dλ = 1

3
i
iω .              (4.10) 

 
 Since R = eλ is a homothety that acts upon coframes on the instantaneous dynamical 
spaces, one can regard λ as the infinitesimal generator of that homothety, which will then 

be an element of the Lie algebra of (R, ×).  For some purposes, it is more convenient to 

regard the connection 1-form ijω  as taking the form: 

 
i
jω  = i

jδ ω ,      (4.11) 

 
in which the 1-form ω  will then take the elementary form: 
 

ω  = dλ.      (4.12) 
 
 One also finds that the deformed coframe θ i will generally be anholonomic: 
 
 Θi = d^θ i = 1

2 ( )i i j k
jk kj dx dxω ω− ∧  

so: 
i
jkΘ  = i i

j k k jλ δ λ δ∂ − ∂ .    (4.13) 
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 Hence, the torsion of i
jω  will be non-vanishing as long as the density ρ is not 

spatially constant.  That also says that the Lie algebra that is defined by the structure 

functions ( , )i
jkc t x = − ( , )i

jk t xΘ  at each (t, x) will not be that of the Lie algebra of (R, +), 

which is Abelian, so its structure constants would have to vanish.  Of course, the 
curvature of i

jω  will vanish identically. 

 
 b.  The frame strain that is due to ρ . – The type of frame strain that is of immediate 
interest to us is the simplest of all of them: a dilatation.  The function ρ (t, x) that defines 
by a mass density on T 4 acts upon tangent vectors, and therefore tangent frames, as well.  

Moreover, it is clearly vertical, since the linear transformation that it induces in any 
tangent space is a homothety − i.e., a scalar multiple of the identity transformation – that 
projects to the identity transformation on T 4.  (Of course, there are such things as non-

trivial, local diffeomorphisms of T 4 that differentiate to a homothety in each tangent 

space, but the dilatation that is defined by ρ is not due to one of them.) 
 If we anticipate the ultimate coupling of infinitesimal frame strain to the Madelung-
Takabayasi stress tensor then we can rather concisely define that kinematical concept by 
way of: 

ϖ = dω, ϖij = 
2

i jx x

λ∂
∂ ∂

.    (4.14) 

 
 c. The stress that is associated with the frame strain. – Now, recall the definition of 
the Madelung-Takabayasi stress tensor in the form: 
 

σij = 
2 2 ln

4 i jm x x

ρρ ∂
∂ ∂

ℏ
= 

2
21

2 i j
n

x x

λ∂
∂ ∂

ℏ .   (4.15) 

 
 We see that this can be expressed as a constitutive law by way of: 
 

σij =
21

2 ijnϖℏ .      (4.16) 

 
Thus, one finds that, once again, the constant ℏ  is being used as part of a constitutive 
law, and once more multiplied by the number density, although one cannot simply absorb 
n into h = ℏ n as conveniently, since ℏ  is squared, but n is not. 

 All of this gives us more confidence about asserting that the quantum stress that 
appears in the continuum-mechanical formulation of the Schrödinger equation originates 
in the deformation of the spatial metric into a dynamical metric by means of the mass 
density. 
 
 
 §5.  The possible role of the quantum vacuum.  One must realize from the outset 
that the Schrödinger equation is, presumably, only a semi-empirical approximation to 
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something more fundamental.  Thus, the equations that would result from converting it 
would also have to manifest some of that approximate character.  One then must wonder 
what sort of extension of the Madelung-Takabayasi equations might be appropriate, 
considering that it would also have to correspond to some extension of the Schrödinger 
equation, as well. 
 Some of the extensions that took place historically were to a relativistically-invariant 
form of the Schrödinger equation (viz., the Klein-Gordon equation), the inclusion of spin 
(viz., the Pauli equation), and a relativistically-invariant wave equation for spinning 
particles (viz., the Dirac equation).  We shall discuss all of those extensions in the 
following chapters of this book, but for now, we shall consider the extension of scope 
that comes from thinking of mechanics as a limiting case of field theory. 
  In quantum field theory, the most fundamental construction seems to be that of the 
quantum vacuum state (or probably, state space).  That is because one thinks of 
elementary particles as being basically quantum fluctuations or excitations of that 
vacuum state.  In quantum electrodynamics, that typically takes the form of applying 
creation or annihilation operators to some (non-zero) vacuum wave function at each point 
of space-time.  However, the existence of the spontaneous breaking of the symmetry of 
that vacuum state can turn the single vacuum state into an orbit of such states under the 
action of the broken symmetry group.  Furthermore, if the QED vacuum state takes the 
form of the “zero-point field” then one would expect that it is highly unlikely that such a 
field would be defined uniquely, as opposed to being a more stochastic sort of ensemble 
of random fields. 
 Here, one must address the issue of why one introduces stochastic (i.e., probabilistic) 
considerations into any scientific theory.  Basically, probability is the science of 
ignorance.  That is, one turns to probability and stochastic systems when one has only so 
much information about the states of a complex system and their dynamics (1).  Hence, 
the real issue is the incompleteness of the model, which often takes the form of some 
fundamental approximation that is usually introduced in order to avoid some intractable 
complexity. 
 Some of the forms that such complexity can take are nonlinearity, heat, friction, 
viscosity, turbulence, vibration, and unmodeled degrees of freedom in a system.  In the 
case of quantum physics, one can say that one is often dealing with the breakdown of the 
“test particle” approximation, which is also closely related to the “external field” 
approximation. 
 Basically, the approximation that is associated with test particles and external fields is 
that the orders of magnitude between the effect of the test particle and that of the external 
field are so appreciable that one can ignore the interaction between then.  That is, a test 
particle cannot appreciably alter the external field that it interacts with.  However, one 
can see that although that assumption is perfectly reasonable for a microwave photon 
from a radar unit interacting with an oncoming motor vehicle on a freeway, it is totally 
unrealistic when that same photon interacts with an atomic electron. 

                                                
 (1) This is to be distinguished from the way that engineering models often introduce randomness even 
when a deterministic model exists, simply because the excess complexity in the model is unnecessary for 
the achievement of the overall goal of the system.  For instance, the flat-Earth approximation for gravity is 
generally adequate for air-to-air missiles because their flight time is only a matter of seconds. 
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 Thus, one might wish to think of the quantum particle that is being described by the 
Schrödinger wave function and equation as being an approximation to something that is 
in interaction with its environment, which one might think of as the space of quantum 
vacuum states.  For now, we shall pass over the equally-important extension of scope that 
comes from going from a linear wave equation to a nonlinear one, which is also probably 
very much in the nature of quantum physics, since one expects to be dealing with 
enormous electric and magnetic field strengths at the atomic and subatomic levels. 
 The extensions of the Madelung-Takabayasi model for the Schrödinger equations that 
we shall consider came from Bohm and Vigier, Schönberg, and de Broglie.  Since Bohm 
and Vigier were working independently of Schönberg at roughly the same time, we shall 
start with the former paper, since it had a more general character. 
 
 a.  Bohm and Vigier’s inclusions of fluctuations.  In 1954, David Bohm and Jean-
Pierre Vigier attempted to enlarge the scope of the Madelung picture in a paper that was 
published in the Physical Review [11].  Their motivation was based upon the idea that 
even though one was ultimately trying to replace the statistical interpretation of the 
quantum wave function with a causal interpretation, nonetheless, one still had to account 
for the success of the statistical interpretation; that is the spirit of the correspondence 
principle. 
 Their approach to that problem was to then assume that one had a large, statistical 
ensemble of Madelung media moving together in the presence of a “sub-quantum” 
medium that they interacted with in such a way as to produce random fluctuations of the 
number/mass density ρ(t, xi) and flow velocity v(t, xi).  The possible origins of the 
fluctuations that they suggested were: 
 
 1. Random external disturbances that were transmitted through the boundary of the 
medium. 
 
 2. Nonlinearity in the dynamical equations might lead to instability and turbulence 
in the flow. 
 
 3. Brownian motion of the Madelung media at a “molecular” level. 
 
 The Madelung-Takabayasi picture was then assumed to be something that was only 
supposed to the apply to the mean density ( , )it xρ  and mean flow velocity ( , )it xv , 
except that the continuity equation was presumed to still apply for the corrupted flow 
variables.  Thus, one was assumed to have: 
 

div( )
t

ρ ρ∂ +
∂

v  = div( )
t

ρ ρ∂ +
∂

v  = 0.     (5.1)  

 
 The volume elements of matter were assumed to have some (otherwise unspecified) 
tendency to move to regions of highest mean density, which amounted to assuming the 
stability of that equilibrium density.  After introducing the further assumption that such a 
volume element dV′  at (t′, x′i) would always have a non-zero probability K(t, xi; t′, x′i) of 
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making the transition to a volume element dV at (t, xi), they proved the theorem that the 
limit of ρ(t, xi) as t becomes infinite would be ( , )it xρ  = | ψ |2. 
 Their proof was a generalization of the proof of a well-known theorem of Markov 
processes to the case in which K(t, xi; t′, x′i) and ( , )it xρ  were time-varying.  The theorem 
was essentially equivalent to Boltzmann’s H-theorem in statistical thermodynamics. 
 
 b.  Schönberg’s inclusion of turbulence.  At roughly the same time as Bohm and 
Vigier, Schönberg [12] was extending the scope of the Madelung-Takabayasi model 
along lines that the latter researchers had briefly suggested, namely, the idea that the 
random fluctuations would take the form of turbulence in the “fluid.”  By contrast, 
Schönberg, like Takabayasi, was beginning with the more causal assumption that the 
irrotational character of the Madelung medium could be easily generalized, so the 
appearance of a chaotic cascade of vortex-pairs that characterizes the onset of turbulence 
would be reasonable from that standpoint. 
 Schönberg’s stated objective in writing his paper was to derive an improved version 
of the Madelung-Takabayasi model from the usual interpretation of the Schrödinger 
equation.  Like Bohm and Vigier, he also consider the Madelung-Takabayasi model to 
represent the mean motion of a fluid that was corrupted by fluctuations, but he 
specifically attributed the fluctuations to be due to turbulence, since he had previously 
been considering the extension of both Madelung-Takabayasi equations and the 
Schrödinger equations to the case in the Madelung medium was no longer irrotational. 
 However, Schönberg then diverged from the approach of Bohm and Vigier by 
drawing upon the statistical theory of turbulence in particular, rather than the theory of 
Markov processes in general.  In fact, he showed that the usual stochastic modeling of 
turbulence also involves a process of “second quantization” that replaces the dynamical 
functions (mass density, momentum density, etc.) with operators and then recovers the 
mean motion by taking the expectation values of the operators in a state, which is 
essentially Ehrenfest’s theorem [13].  The dynamical functions themselves are assumed 
to be related by the Navier-Stokes equation, which governs the time evolution of viscous 
fluids.  Since, as we showed previously, the Madelung medium is usually inviscid, but 
turbulence cannot form in inviscid fluids, one sees that turbulence would also require that 
extension of the scope of the Madelung-Takabayasi model. 
 If one uses the Heisenberg representation for quantum mechanics then one can find a 
direct analogue in that representation with the stochastic differential equations of 
turbulence.  One of the intriguing consequences of that is that when one passes to 
expectation values, one finds that it is known that the stress tensor for the mean motion of 
a turbulent fluid is not the same as the expectation values of the stress tensor for the 
turbulent motion.  The difference between the two stress tensors is explained by the fact 
that there will be a certain amount of momentum that is transferred by the turbulence.  A 
consequence of this is that one can then account for the terms of the quantum stress 
tensor of the Madelung medium as being totally consistent with some standard 

constructions of the theory of turbulence, namely, 
2 i j

R R

m x x

∂ ∂
∂ ∂

ℏ
 comes from the 
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transfer of momentum by turbulence, while − 
2

4m

ℏ ∆R δij represents the elastic tension in 

the medium. 
 The introduction of turbulence as a stochastic or thermodynamic background in the 
relativistic version of the theory would proceed in essentially the same way as in the non-
relativistic case, except that one would have to deal with the relativistic theory of 
turbulence, which is not very well developed, in addition to relativistic thermodynamics.  
The effect of it would be the same as before, namely, if one regards the current 
formulation of the Madelung-Takabayasi picture as the “classical ground state” then the 
turbulence would represent “quantum fluctuations” of that classical ground state. 
 
 c.  De Broglie’s hidden thermodynamics.  Louis de Broglie had been one of the first 
to look into Madelung’s theory, and that study culminated in the publication of his book 
[14].   Eventually he decided that there was still a fundamental incompleteness in the 
hydrodynamical interpretation, and gradually learned to accept the statistical 
interpretation of Born and the Copenhagen School.  However, the paper of Bohm and 
Vigier (the latter of whom had been a student of de Broglie who also wrote a book [15] 
on the causal interpretation of quantum mechanics) rekindled de Broglie’s interest in the 
hydrodynamical interpretation, which ultimately resulted in a book on what he was 
calling the “hidden thermodynamics” of an isolated particle [16]. 
 The basic gist of that concept is that at the quantum level, an isolated point particle 
will still continually exchange energy and momentum with what de Broglie was calling a 
“hidden thermostat,” and which corresponded to the “sub-quantum medium” of Bohm 
and Vigier or what would now be called simply the “quantum vacuum.”  He used the 
analogy of a particle of small mass moving in a warm fluid that is then subject to 
Brownian motion due to the fluctuations that are produced by the exchange of energy 
between the motion of the particle and the heat of the environment. 
 De Broglie was mostly drawing upon some early work that had been done in 
thermodynamics in the hope of formulating a “mechanical theory of heat,” which 
predated the more currently standard statistical foundations.  The former theory had its 
roots in the work of Clausius, who had originally introduced the concept of entropy, and 
later Szily, Helmholtz, and Boltzmann, that largely centered on the attempt to formulate 
the second law of thermodynamics as being, in some way, analogous to the principle of 
least action.  Typically, one wished to establish an analogy between action and entropy. 
 Helmholtz began by dividing the (generalized) coordinates of a mechanical system 
into two types: slowly-varying and rapidly-varying.  The former would generally be 
associated with the external forces and forces of constraint, which were also assumed to 
be conservative.  The latter would represent molecular motions at the quantum level and 
would thus manifest themselves in the expressions for kinetic energy.  Hence, the total 
energy of the system would consist of potential energy that was due to the slowly-varying 
variables and kinetic energy that was due to the rapidly-varying ones.  Helmholtz 
managed to obtain the desired analogy only for what he called “monocyclic” systems, 
which had only one rapidly-varying coordinate.  The result that he derived was the 
theorem that if all of the work W that was done upon the system affected only the cyclic 

coordinate then the force 1-form dW  would be such that dW / KE would be an exact 
1-form.  One sees that when one passes to mean values (so that the temperature T 
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represents the mean value of the kinetic energy), that exact 1-form will be dS, where S is 
the entropy of the system.  (Sometimes this is a definition.) 
 Boltzmann attempted to extend the result of Helmholtz to polycyclic mechanical 
systems (i.e., more than one rapidly-varying coordinate).  However, he had to restrict the 
scope to periodic systems, so he could introduce period integrals.  His generalization of 
the Helmholtz result then took the form of saying that variation δW of the work that was 

done on the system would relate to the variation of the (Maupertuisian) action over a 
period: 

A = k
kp dx∫�  

by way of: 

δW = 
δ
τ
A

 = v δA = 
2

( )KEδ τ
τ

, 

 
in which τ is the period of the motion, so v will be its frequency (in Hz). 
 Starting with these results as a basis, de Broglie then derived some key formulas for 
the interaction between the isolated particle and the hidden thermostat, namely: 
 

hvc = kT, 
h

A
 = 

S

k
, 

 
in which the thermodynamic variables T, S relate to the thermostat, while the mechanical 
variables vc, A relate to the particle.  The frequency vc was actually a relative frequency: 

 

vc = v0 
2 21 /cυ− , 

 
in which v0 was then the rest frequency, and υ was the relative speed. 
 De Broglie also assumed that the rest mass of the particle m0 was prone to 
fluctuations, as a result of the ongoing exchange of energy-momentum with the 
thermostat, and that fluctuating value was then denoted by M0.  He then derived another 
key formula in the form of: 

S(M0) – S0 = − k 0

0

M

m
. 

 
Thus, the fluctuation of the mass of the particle was compensated by a fluctuation in the 
entropy of the thermostat about S0 . 
 Of course, what one actually measures will be the mean value of M0, and under the 
assumption that ∆M0 = M0 − m0 has a mean of zero, that will be m0 .  Although one leaves 
open the possibility that the value of ∆M0 can be infinite, nevertheless, one would 
associate that possibility with a correspondingly infinitesimal probability. 
 Note that when one uses real-world values for the physical constants, one finds that 
the equivalent temperature of a mass m0 that is due its rest energy (namely, m0 c

2 / k ~ 
1037 m0) can be unimaginably high.  For instance, the rest mass of an electron would 
correspond to a temperature on the order of 1010 K.  To give that some context, note that 
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the temperature at which nuclear fusion reactions take place in the Sun is typically of 
order 107 K, while the Planck scale of temperature is of order 1032 K. 
 As we just saw, it is probably premature to speak of the nature of the quantum 
vacuum in advance of the consideration of relativistic considerations.  Indeed, one should 
remember that we are, after all, talking about wave mechanics, and the basic Lorentzian 
metric of relativity is, of course, derived from the most elementary dispersion law for 
electromagnetic waves.  Hence, one would expect that wave mechanics would properly 
start in a relativistic context, so we shall revisit the question of the quantum vacuum after 
we have had a chance to discuss the continuum-mechanical form of the relativistic wave 
equations. 
 
 
 § 6. The relationship between the Madelung transformation and the WKB 
method. – Starting in the early Nineteenth Century, a method for solving ordinary 
differential equations of a certain type by successive approximations emerged from some 
of the work of Joseph Liouville [17].  Unlike the Taylor series method, though, the power 
series used did not generally converge as one went to more terms in the summation, but 
tended to improve up to a point and then diverge after that.  However, if one truncated the 
series after a finite number of terms then typically, the approximation would improve as 
one let the series parameter go to zero.  Such a formal power series was then referred to 
as an asymptotic expansion.  Other mathematicians contributed to the technique over the 
next one hundred years or so, including Poincaré, who applied the technique to celestial 
mechanics [18], Lord Rayleigh [19], who was concerned with a problem in optics, and 
Harold Jeffreys [20], who was still basically concerned with the theory of ordinary 
differential equations. 
 All of that work predated the introduction of the Schrödinger equation into physics, 
and it was Gregor Wentzel [21], Hendrik Kramers [22], and Léon Brillouin [23] that 
applied the technique of asymptotic expansions to that particular equation.  It then 
became known amongst physicists as the WKB method, although some still insist upon 
including a “J” for “Jeffreys.”  (There are even some who call it the “LR method” for 
“Liouville-Rayleigh,” according to Heading [24].)  A particularly concise and rigorous 
mathematical treatment of the WKB method was published by George Birkhoff in 1933 
[25].  By now, the applications of the technique have expanded to a good number. 
 In one manifestation (see Messiah [26]), the method starts off the same as the 
Madelung transformation; that is, one represents the (typically stationary) wave function 
ψ(xi) in the polar form: 
 

ψ = exp
iW 
 
 ℏ

 = exp
iS

T
 + 
 ℏ

 = R /iSe ℏ  (R ≡ eT).   (6.1) 

 
 Hence, when this is substituted in the stationary Schrödinger equation, one will get 
the same equations that Madelung obtained when one separates the real and imaginary 
parts: 

(dsS)2 = 2m (E – U) + 2 R

R

∆
ℏ ,  div (R2 ∇S) = 0.   (6.2) 
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 So far, no actual approximation has been introduced into the equations.  Hence, 
equations (6.2) are rigorously equivalent to the stationary Schrödinger equation.  The 
WKB method then parts company from the Madelung formulation by treating the 
function W as a function of not only xi, but 2

ℏ  (i.e., an even function of ℏ ) and 
expanding it in a power series in 2

ℏ : 
 

W = W0 + 2
ℏ W1 + 4

ℏ W2 + …    (6.3) 
 
 Indeed, one can also simply expand the S or T part of W (or, equivalently, R) in such a 
power series.  For instance: 

S = S0 + 2
ℏ S1 + 4

ℏ S2 + …    (6.4) 
 
 When this is substituted in the first of (6.2), one first computes: 
 

dsS = dsS0 + 2
ℏ dsS1 + 4

ℏ dsS2 + …   (6.5) 
 
 In order to square that 1-form (using the spatial metric, of course), we shall truncate 
the series with the specified terms and then truncate the square after the 4ℏ  term: 
 

(dsS)2 ≈ (dsS0)
2 + 2
ℏ 2(dsS0 , dsS1) + 4

ℏ [(dsS1)
2 + 2(dsS0 , dsS2)] + …  (6.6) 

 
 Combining terms with common powers of 2

ℏ  then gives: 
 
0 = 

[(dsS0)
2 – 2m (E – U)] + 2

ℏ [2(dsS0 , dsS1) – ∆R / R] + 4
ℏ [(dsS1)

2 + 2(dsS0 , dsS2)] . (6.7) 
 
Equating coefficients of powers of 2ℏ  will then give the series of equations: 
 

 (dsS0)
2 = 2m (E – U),      2(dsS0 , dsS1) = ∆R / R,      0 = (dsS1)

2 + 2(dsS0 , dsS2).  (6.8) 
 
 The first one is the classical Hamilton-Jacobi equation for the action function S0 .  
Having solved it for S0 (by Cauchy’s method of characteristics), one can then treat the 
next equation as a linear, first-order partial differential equation for S1, which can be 
solved for S1, and so on.  Hence, one gets a recursive algorithm that starts with solving 
the classical Hamilton-Jacobi equation.  Note that the so-called “quantum potential” (viz., 
∆R / R) does not appear until the second step, since it is initially multiplied by 2

ℏ  even 
before the power series has been introduced.  Indeed, if ℏ  did not appear in the original 
equation then there would be no recursion from one Sn to the next, and the successive 
equations would be independent. 
 Quantum field theory employs an analogous series expansion in powers of 2

ℏ  that 
they refer to as the “loop expansion,” since it involves sorting the perturbation series for 
the relativistic scattering amplitudes (i.e., the Feynman diagrams) into diagrams with no 
loops, one loop, etc.  Loops correspond to renormalizations, which are often associated 
vacuum polarization.  The zero-loop (or “tree” graph) approximation is then the classical 
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field-theoretic picture, while subsequent terms in the loop expansion represent “quantum 
corrections” of increasing precision. 
 Such a loop expansion is then used to define “effective” field theories, which amount 
to classical field theories with successive quantum corrections.  For instance, one might 
define an “effective potential” that amounts to a classical potential (e.g., Coulomb), plus 
a one-loop term, etc.  It is also common to define “effective actions” that amount to the 
classical action plus higher-loop corrections. 
 Hence, one sees that although the Madelung transformation of the Schrödinger 
equation involves no actual approximation, nonetheless, from the WKB standpoint, one 
can think of the quantum potential as a “one-loop” correction to the classical potential U. 
 
 
 § 7.  The optical interpretation of quantum mechanics. – Another compelling 
analogy between quantum mechanics and the physics that came before it (besides the 
“hydrodynamical” interpretation), and which did not get nearly as much attention, was 
mentioned in Messiah [26].  He called it the “optical analogy,” and one sees that it should 
have an immediate applicability to quantum theory that is based upon the fact that 
Schrödinger was explicitly trying to make quantum wave mechanics relate to classical 
(i.e., geometrical) mechanics in the same way that wave optics already related to 
geometrical optics. 
 In its essence, wave optics is concerned with the motion of momentary wave-fronts 
though a space that is associated with non-trivial optical properties (e.g., indices of 
refraction).  Dually, geometrical optics considers the behavior of rays, which are curves 
that are typically orthogonal trajectories to the motion of the momentary wave fronts. 
 Since most optical media tend to be time-invariant in their properties, Messiah starts 
with the stationary Schrödinger equation, introduces the polar decomposition of the 
stationary spatial wave function y = /iSAe ℏ , in which we have changed R to A to mean 
“amplitude,” and obtained the Madelung form of the stationary Schrödinger equation, as 
in (6.2), but with A in place of R. 
 We shall part company with Messiah slightly here, since we only wish to find the 
partial differential equation for the spatial wave fronts and the system of ordinary 
differential equations for their orthogonal trajectories; viz., the rays.  Hence, we set S = 

θℏ , which will put the first equation of (6.2) into the form: 
 

2

2m

ℏ
(E – U) − (dsθ)2 = − A

A

∆
.    (7.1) 

If we introduce the definitions: 
 

k = ω dt + ks ,  ω2 = 
2 2

2m

cℏ
E,  ks = dsθ   (7.2) 

 
then (7.1) will take the form of a dispersion relation for waves in the spatial medium: 
 

k2 = 2 2
0k c       (7.3) 

with 
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 2 2
0k c = 

2

2m

ℏ
U − R

R

∆
 = 

2

2m

ℏ
(U +U

ℏ
).    (7.4) 

 
Of course, we have encountered this dispersion relation before as an intermediate step 
between quantum wave mechanics and continuum mechanics. 
 The momentary wave fronts in space will, of course, be the level surfaces of θ. In 
order to get the orthogonal trajectories to those surfaces, one needs only to define the 
normal vector field to them, which amounts to the gradient of θ : 
 

n = ∇θ = (gij θ, j) ∂i .      (7.5) 
 
 Although n is proportional to p = ∇S, which is more like a momentum vector field, 
that factor of proportionality will affect only the parameterization of the orthogonal 
trajectories, which will be the integral curves x(s) of the system of ordinary differential 
equations: 

dx

ds
= ∇θ (x)   

i
ij

j

dx
g

ds x

θ ∂= ∂ 
.   (7.6) 

 
 To the extent that the theory of relativity is rooted in the way that electromagnetic 
waves propagate through space, it should not be surprising that the optical analogy 
properly belongs to the realm of relativistic wave mechanics, which we shall also 
examine in book. 
 The concept of an asymptotic series has especial relevance to the optical analogy, 
since the application of asymptotic expansions to optics has been established in the 
context of diffraction problems.  (For instance, see Pauli [27].)  In effect, one starts with 
geometrical optics as the classical solution and adds successive corrections that originate 
in diffraction effects.  The expansion parameter is usually wavelength in that case, so 
geometrical optics becomes the “small-wavelength” (i.e., high wave number) 
approximation. 
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