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INTRODUCTION

The focus of this book is a survey of the various giterthat were made since the
emergence of wave mechanics to explain the otherwiggratic nature of the quantum
wave function by converting the gquantum wave equation @teet of differential
equations that look intriguingly similar to corresponding é&qua of continuum
mechanics. Historically, that has always been redeio as the “hydrodynamical”
interpretation of wave mechanics, but the author th@bpinion that the actual character
of a continuous medium (i.e., fluid, anisotropic fluidastic solid, plastic, etc.) is
something that is rooted in the mechanical constitutive tlzat associates dynamical
states with virtual displacements of kinematical orsesit would be premature to settle
on any particular state of matter at this stage of oanledge. Furthermore, when one
is dealing with macroscopic matter, one finds thatcthestitutive character of the matter
is generally explained by some sort of interaction mbéélveen its constituents, such as
elastic collisions in gases or atomic bonds in crlysstiiices. Since the electric and
magnetic field strengths in the vicinity of elementaharges are quite intense, it seems
unlikely that one is actually dealing with something as llyeseupled as a liquid or gas
at the level of elementary matter. Hence, the aupmefers to speak of “continuum-
mechanical” models, instead of “hydrodynamical” ones, laaste open the problem of
establishing the deeper nature of the constitutive laws.

1. The roots of quantum physics— In order to properly address modern quantum
physics, one must first accept that its present stilteepresents a semi-empirical system
of specialized models and algorithms that do not generallipwf from some
fundamental system of differential equations. Indeedstmwdern quantum physicists
have long since given up dreaming of such a system, andemalntd dismiss the search
for such a thing as merely a “classical” problem, while quanphysics simply starts
with the largely-algorithmic nature of the theory behind da¢a and hopes that with
enough progress in the advancement of experimental physidgps some insight into a
better foundation might eventually emerge.

That is why is it essential to accept that the rootpuahtum physics (and perhaps all
physics) are found in the experimental phenomena thglieidhthe need to adapt the
existing theories. Hence, in its early days, progresguantum physics was mostly a
case of experiments leading theories. Nowadays, ag rsere examples in which a
theory suggests the possible existence of some hithertutseimved phenomenon that
experimentalists might (or might not) look for. Somwets, such as the case of the Higgs
particle, the phenomenon is eventually observed, whilmamy other cases, such as
magnetic monopoles, wormholes, and tachyons, expenmane yet to prove that they
actually exist. However, that does not always ddteorteticians, as one previously saw
in the fact that the continuing lack of any experimentaifirmation of the existence of
gravitational waves did not discourage many physicists sonply accepting that the
limits of experimental physics still fell short dfd necessary requirements. Fortunately,
their faith was eventually vindicated.
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a. The breakdown of Maxwell's theory. Historically, one can make a case for
saying that classical physics had to start adapting to thlel wb quantum phenomena
because an increasing body of experiments was contrgdite wisdom of Maxwell's
theory of electromagnetism. Of course, one migdtifgl that statement by saying that it
was mostly contradicting tHaear form of Maxwell's equations by moving into a realm
in which the electric and magnetic field strengths wemgd enough that perhaps
linearity was becoming an untenable assumption. Thghtnfie based in the quantum
phenomenon of vacuum polarization, which we shall disitudse course.

The earliest experimental contradictions to Maxwellisory mostly related to the
discrete structure of bound-state spectra of electroat@gwaves. For example, atomic
spectroscopy was amassing an increasing volume of egtarding the spectra of
electromagnetic waves that were emitted or absorbeatdoys, although the model for
the atom itself had to evolve into something that woudshant for that fact.

A first definitive step was taken by Max Planck in 19@pwhen he addressed the
theory of black-body radiation. The classical theafy Rayleigh and Jeans was
predicting a curve for the intensity of radiation frorblack-body versus frequency that
agreed for low frequencies, but diverged for high temperaflaes referred to as an
“ultraviolet catastrophe”), while Wien had posed a curvéhwie opposite properties
(i.e., an “infrared catastrophe”). The innovation tR&nck introduced into the theory
that corrected the theoretical curve was the assumpti@t the spectrum of
electromagnetic waves in a black body was discrete, coatinuous, and that the
separation of the energy levels would be proportionéhéoseparation of frequencies by
way of a constanh that came to be known as Planck’s constant. Imjgortant to
emphasize that the discreteness is due to the facotie is again dealing with bound
states.

b. Wave/particle duality— Before one gets to the wave/particle duality of ematt
waves, one must first recall the wave/particle dualityight. The wave theory of light
goes back to Christiaan Huygengl in 1690, although he imagined that it would
propagate in a more mechanical way that would be analdgdhs propagation of sound
in elastic media, such as compressible gases. 3Jaslheory was immediately dwarfed
by the popularity of Newton’s corpuscular theory of tigind optics 3] in 1704, which
was mostly based in the prominence of the one histdiigake over the other in the eyes
of the scientific mainstream. Huygens’s wave thedrygbt did not re-emerge until the
work of Thomas Young and Augustin Fresnel in the early tde@h Century. To some
extent, the difference between regarding light asavewor localized point-particle
amounts to the difference between wave optics and geoaiediptics, respectively, and
one must really regard geometrical optics as an approrimitiwave optics.

However, two experimental phenomena that were pgrto a similar duality in the
context of elementary matter were the photo-eleetifiect and Compton scattering. The
latter effect was first discovered experimentallyHsinrich Hertz in 1887 and expanded
upon by Phillipp Lenard in 1902, and its theory was due to Abmgtein in 19054
(%), which was the main basis for his Nobel Prize in pts/siuch later in 1921, while the

() He referred to 1905 as hasnus mirabilis(miraculous year), since he also published his firstmpape
on special relativity, his paper on the equivalence ofsrend energy, and a fundamental paper on the
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former effect was studied by Arthur Comptdsj [n 1923. Both effects related to the
interaction ofphotons(a term that appeared some time later, and was coindtieby
chemist Gilbert N. Lewis) with atomic electrons. limetphoto-electric effect, the
interaction of a photon with an atomic electron eauthe ionization of the electron —i.e.,
its liberation from a bound state — while in the Compttiacg the collision was not

sufficient to cause ionization, but simply resultedaitransfer of momentum from the
photon to the electron, with a subsequent loss of moume by the photon, which was
observed as a decrease in its wave number thatesl¢h#Compton shift.

Somewhat later, the experimental work by Sir Georgendon at the University of
Aberdeen on the diffraction of electrons by thin meilaild, and Clinton Davisson and
Lester Germer at Western Electric on the diffractafnelectrons by crystal lattices,
which led to Thomson and Davisson being conferred the 1937| IRoize in physics,
added to the growing suspicion that elementary matterahagve-like character, in
addition to its point-like nature.

c. The elementarity of matter. The idea that macroscopic matter is reducible to
some ultimate, irreducible, “atomic” building blocks goaslto ancient Greece and the
philosophers Leucippus {5Century BCE) and Democritus (c. 460 — c. 370 BCE).
Interestingly, that theory was eventually contragticby the more influential voice of
Aristotle, who felt that nature abhorred a vacuum, beean those materialistic days,
everything had to be made of matter, so the non-existeihogatter in a vacuum was
tantamount to the existence of non-existence, whichegemimply a logical ouroboros,
at least to his way of thinking. He then concluded tt@na could not exist, because the
space in between them would have to represent a vacuhioh was impossible to him.
Sadly, that position became Holy Writ up until the Resence, along with Ptolemy’s
picture of the solar system, and Euclid’s foundatiarsgeometry. It was only much
later in the mid-Seventeenth Century when Evange€listaicelli exhibited the existence
of a vacuum in the space at the top of an inverted glassofubercury that was closed at
that end (i.e., a barometer) that the process ofmemito the atomic hypothesis could
begin.

Mostly, it was the study of chemistry that first leg to the acceptance of the atomic
hypothesis as a reasonable basis for the nature oficdieactions. A “periodic table”
of the elements even emerged, which was due to Dmanadvich Mendele’ev in 1869,
although an explanation for why it looked that way seemete puzzling. Nonetheless,
one already had the elementarity of atoms, while cuddss were composite bound states
of atoms.

The first step towards a reduction of atoms came frbserwvations that some atoms
emittedrays of various kinds. For instance, the cathodes in vacues, which were
heated by filaments and subjected to a negative elgctantial (relative to the positive
plate) emitted “cathode rays.” Henri Becquerel did expents with more energetic rays
that were emitted by radioactive salts around 1896, whichnfiach in common with
cathode rays. At the same time, Wilhelm Conrad Rantgas doing experiments with
rays that could make the bones of one’s hand visible Wwheas placed between a source

theory of fluctuations in Brownian motion, and was sgbsatly awarded a Ph. D. in physics by the
University of Zirich.



4 Introduction

of Roentgen rays (or “X-rays”) and a phosphor scrégn An increasing number of
elements were found to be “radioactive,” such as umanand radium, which was
discovered by the Curies in 1898. The terminology of alpbtg, kand gamma rays
emerged from that era.

Eventually, these rays were identified with elemenpanyicles or composite states of
them. Cathode rays were basically low-energy alestr while Becquerel rays were
high-energy ones, and beta rays were electrons gahgri Alpha rays were composite
states of two positively-charged protons and two neutrakoesit which could also be
regarded as a doubly-ionized helium atom. X-rays and garagzgawere seen to be
simply two different energy levels for photons. Henihe inventory of truly elementary
particles was simply the electron, proton, neutron,@maton, although Wolfgang Pauli
first proposed the existence of the neutrino theoréticall 930.

As the experimental basis for the existence of el¢éangparticles advanced, so did
the models for the atoms themselves. At first, #ut that atoms were known to contain
an equal number of positive and negative charges led taisan“cake” model that put
both kinds of charges together into one volume, wheey twvere held together by
Coulomb attraction. It was the experiments of Errfstherford in 1909, along with
Hans Geiger and Ernest Marsden, on the scattering of piphales by gold atoms that
led to his 1911 revision of this picture into a positivelyrged nucleus surrounded by
electrons.

A second attempt at modeling the atom as a nucleususwled by electrons was
made by Niels Bohr in 1913. He reasoned by analogy wélothits of planets about
stars and came up with a “planetary” electron modebweVer, since the centripetal
acceleration of orbiting electrons would bring about th@ssion of electromagnetic
waves according to Maxwell's theory of electromagnedidiation, with a concomitant
loss of energy from the electron, one would expedtdheh electrons could produce only
a continuous spectrum of emitted waves as they ranfaentesgy and crashed into the
nucleus, like the degradation of a satellite orbit dudré from the atmosphere. That
would be inconsistent with the experimental facts of guanphysics for two reasons:
Atomic spectra are not generally continuous, but discratd there seems to be a non-
zero “ground state” for atomic electrons. Bohr simglyt around those facts by
introducing the discreteness in the model as an otbemwnexplained axiom, and
nonetheless came up with a formula for the energgldenf atomic electrons that actually
explained quite a bit of spectroscopy. At any rate,shweild note that the Bohr model
pointed to a fundamental flaw in Maxwell's theory ofdietion, since apparently
accelerated charges did not always emit electromagneties, at least at the atomic
level.

() In fact, Réntgen eventually lost several fingers fitva malignant tumors that resulted from this
now-ill-advised entertainment.
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2. The rise of wave mechanics- It was Louis de Broglie who first suggested in his
doctoral dissertatiors] in 1924 {) that massive matter could behave like waves, and that
the angular frequencyof the wave that is associated with a massf kinetic energye
and linear momenturmp would be equal t&e/# (7 =h/ 27), while the wave numbek
would be equal top/#. That was consistent with the previously-established

relationships that Einstein and Compton had obtainepghotons.

By 1926, Erwin Schrédinger7] attempted to build upon de Broglie’'s concept of
matter waves by devising a wave equation that woeldbeyed by the wave function
that would represent a matter wave. His basicntnteas to use a pseudo-Hamilton-
Jacobi approach to the equation that would maketgoa wave mechanics relate to
classical point mechanics in the same way that veg@ties relates to geometrical optics.
In fact, he himself admitted that there was a aeaount of trial and error associated
with devising his equation, which now takes therfor

2
indY -1 Ay, (2.1)
ot 2m

in which W is the complex-valued wave function for the matittotal massn, andU
represents its potential energy in the preseneecohservative external force.

That brings us to the main topic of this book: fiieblem of the correct physical
interpretation for the wave functioW(t, x). Typically, that mostly centers on the
interpretation of the modulus-square® ||f = WY’ of the wave function, which will then
be a real function of space and time. The onegthinat all interpretations have in
common is that they regard that real function asessort of density.

Schrodinger himself originally thought in terms oharged particles, such as
electrons, so he imagined thatM||f would describe the electric charge density. He
eventually abandoned that idea, although it resadasome time later in the Pauli-
Weisskopf interpretation of the Klein-Gordon eqoatiwhich we shall mention shortly.

The interpretation that seemed to catch on the defmitively was the one that was
proposed by the Copenhagen School of quantum thedmch included Bohr, Max
Born, Werner Heisenberg, and others, at the Fifthey Conference on physics in 1927,
was the statistical interpretation, which regarf&l |f as a probability density function.
More specifically, it described the probability 6hding a point-like massm in a
differential element of volume; i.e., its integraler a finite volume would give the
probability of finding the point mass in that volamSchrédinger and de Broglie, as well
as Einstein, were originally reluctant to accept hterpretation. Einstein had famously
said that “God does not throw dice,” to which Baobtorted “Who are you to tell God
what to do?”

() Itis only a recurring urban legend that de Broglie’s thesis a mere four pages long, which was
probably the result of Nazi propaganda during the rise ofpdy in the 1930’s, which included various
attempts to assert the supremacy of “Aryan” scieriedeed, to this day, there is a small, but vocal clique
of physicists who will insist that de Broglie did not desea Ph. D. in physics for that thesis, much less the
Nobel Prize. The author has never cleaved to thafpsince he has read, and even translated, enough of
de Broglie’s work to know that he was one of the modéced and innovative thinkers of his era whose
understanding of basic physics was beyond reproach.
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In the same year that the Copenhagen School was sktaplithe statistical
interpretation, Erwin Madelun@] suggested an alternative interpretation that nmeel¢|
W | a number density for an extended massmsowould represent its mass density.

Furthermore, by essentially introducing polar coordinates the field spacé&”, so W

would be expressed in the fofné’, withn = R* andd= S/#, which means tha plays

a role that is similar to Jacobi's action functionge found that the complex Schrodinger
equation (2.1) would give rise to a pair of real equatioasttok the form of a continuity
equation for the mass density (or number density, fair thatter) and another equation
that looked like a Hamilton-Jacobi equation that includgubgential energy term that
seemed to embody all of the quantum content, and thusotodlke name of “quantum
potential.” That paper became the seed from which theeptevork evolved eventually.

A closely-related problem to that of the interpretatddnhe wave function and wave
equation is that of showing how quantum wave mechaniateseto classical mechanics.
The correspondence principlef theoretical science, in general, says that amytheory
must account for the successes of the previously-accepemtyt and ideally as
something that remains as some fundamental parameteyagpps a “classical limit.”
For instance, relativistic physics must coincide witdm4nelativistic physics in the limit
asc becomes infinite. In the case of quantum mecharhesglassical limit is defined by
letting h go to zero. One also h&hrenfest’'s theorerthat quantum mechanics should
give classical mechanics when one takes the means ajudintum expressions while
using the probability density function that is defined 1 |f.

A recurring theme in this book will be the fact thhere is a subtlety that was
overlooked by the early founders of quantum mechanicssihae the support of the
wave functionW is not generally a single world line in space-time, &duvorld-tube,
there is something hasty about calling point mechanies @ single world-line) the
classical limit when it would be more methodical testfilook at the continuum-
mechanical picture that is defined by the world-tube. ffecg one first ignores the phase
structure on the world-tube that is defined by the funcf{oyx') by replacing it with the
energy-momenturdensityl-formp = #d€&, which also gives the flow covelocity 1-form
v =p/ mand the flow velocity vector field that is dual tor under the relevant space-
time metric. One also has the aforementioned massitgdep = m || W |E. In order to
then go on point mechanics, one uses the well-estathlisleéhod of moments relative to
p. That is, one gets the zeroth-order monrarty integratingo over all space (i.e., the
support of¥). In non-relativistic physics, one can then define fite# moment in the
form of the world-line of the center-of-mass (i.ehe tmean position). The second
moment ofp is then the moment of inertia of the mass distrdmytand so on.

Something that then becomes clearer when one in&egathis intermediate step of
going from wave mechanics to continuum mechanics and theoirtb mechanics is that
the classical observables that conventional quantuethamics arrives at (i.e.,
eigenvalues of quantum operators) will always represgat quantities that are more
appropriate to point mechanics, while the quantities éinatappropriate to continuum
mechanics are alwaydensities In fact, unless one is integrating a scalar or pseudo-
scalar quantity (such as mass, charge, or energy deaséy)space, there is something
less than rigorous about the common practice of intiegridte components of vector and



8 3. Electron models. 7

tensor fields to get total quantities, such as total mtumenangular momentum, and the
like. We shall have more to say about that topic bBeagbmes relevant.

One of the first extensions of the Schrdodinger equoatias to give it a relativistic
formulation, which produced the Klein-Gordon equation, duehto efforts of Oskar
Klein [9] and Walter Gordon10] in 1926. There were two early objections to the
resulting equation, namely, that its second-order chewraas a partial differential
equation led to solutions with negative kinetic energyictv seemed physically absurd in
the years before the experimental discovery of plsitron and antimatter, more
generally. Furthermore, the conserved current that ags®ciated with the phase
invariance of the action functional for the Klein-Gondchas a temporal component that is
not positive-definite, and cannot be identified witlprabability density function then.
As a result, little serious consideration was giverthi® Klein-Gordon equation until
Pauli and Weisskopf resurrected it in 1934][ along with Schrodinger’s interpretation
of e ||W |F as an electric charge density.

One can also see that the non-positive-definite cteraf the temporal component
of the aforementioned conserved current can be interpest aeductio ad absurdurof
the statistical interpretation &. That was implicit in the Pauli-Weisskopf papercsin
they pointed out that electric charge densities ddhawe to be positive-definite, by any
means.

3. Electron models — Since there were so few elementary particlesvkag known
in the early days, the models for the particles therasalsually focused on the electron.
(That was probably because it was easier to configureimeas to study the electron
in the years before nuclear reactors.) Most thenaes tended to assume that electrons
were simply point-like objects with a certain masd aharge.

a. Abraham-Lorentz-Poincaré modet However, the ones that were pursuing
extended-matter models for the electron included MaxaAdm 2], Hendrik Antoon
Lorentz [L3], and Henri Poincarélfl]. Interestingly, the work of Lorentz and Poincaré
on the modeling of the electron was really more da@dbwards what would now be
called a relativistic theory of the motion of matterore generally, and thus overlapped
strongly with the work of EinsteirlLp] on the electrodynamics of moving bodies.

A recurring theme in the Abraham-Lorentz-Poincaré riso(e was that in the eyes
of Coulomb’s law of electrostatic forces, an extendestribution of negative charge
would have to be unstable in the absence of any otheedosince it would tend to
expand indefinitely under its mutual electrostatic repulsid~urthermore, part of the
rationale for choosing an extended distribution was ith@ne wished to attribute all of
the rest mass of an electron to the total energywthatcontained in its electrostatic field
then as one approached a point-like distribution, tbitl £nergy would diverge, not
converge to the measured mass.

() For more modern discussions of the issues associatiediassical electron models, see the books
by Rohrlich [L6], MacGregor 17], and Yaghjian 18], along with the survey article by Pearl€]
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b. Discovery of electron spir.One of the key advances in quantum physics was the
discovery that the electron had a magnetic dipole momehich seemed to exist in two
distinct states that were thought of as the “up” and ‘fdostate. This was the conclusion
of the Stern-Gerlachexperiment 20] in 1922, which passed a beam of electrons through
an inhomogeneous magnetic field and let them impinge umenegn or emulsion. The
result was that there were two distinct componenthi¢opattern that was produced by
the beam; i.e., a splitting of the beam. The stpilethis result is that if one thinks of
the electron as a small bar magnet then one would expatcthe electrons would all
interact with the magnetic field in the same way and predusingle component to the
final pattern. The fact that it produced two is more irésnent of the way that
birefringent optical media will split an incoming ligtdy into two rays according to the
state of the polarization that they are in.

The most plausible explanation for the existence mbgnetic dipole moment for the
electron was that it was due to amrinsic angular momentum or spin — for the
electron, which, unlike the conventional classical kihémgular momentum, existed in
two distinct states, and not a continuum of intermedssates between them. Although
this hypothesis is usually attributed to George Uhlenbeck antu& Goudsmit in 1925
[2]], they themselves point out that it was proposed prelyidus Arthur Compton in
1921 R2], and had been suggested by Ralph Kronig in unpublished thatteBauli had
criticized for the fact that if the electron werespinning charged sphere then the
equatorial velocity that would be consistent with measumadnetic moment and the
“classical electron radius” would be greater than dfdight. Enrico Fermi and Franco
Raseti 3] also commented on the magnetic field of the electad the fact that it
would define a different radius for the electron thas @he that Abraham, Lorentz, and
Poincaré derived from purely electrostatic considenat Of course, despite the lofty
place of the latter three savants in the historyc@ree and mathematics, their classical
model of the electron must nonetheless be regarded ampiete for its lack of a
magnetic moment, although that was not their ovetsight simply a limitation of
history itself.

c. The Pauli equatian- Wolfgang Pauli was the first to attempt to exterel(tion-
relativistic) Schrédinger equation to include the possybdif particles with spin in his
1927 paper 24]. In effect, the ordinary Zeeman effect representesl gplitting of
spectral lines for atomic electrons in an external retigrfield that coupled to their
orbital angular momentum, while the anomalous Zeeman eftgmiesented a further
splitting that was harder to explain until one attributegdnsic angular momentum to the
electrons, as well. An important advance for quantsave mechanics was Pauli's
decision to model the splitting of that spin into anamgl down state as something that
came from the two-to-one map of three-dimensional Elaclidrotations, when
represented by>X2 complex unitary matrices with unity determinants [idements of
SU2)], to the same rotations when they are representeddyeal orthogonal matrices
with unity determinants [i.e., elements®(3)]. The resulting quantum wave functions

W took their values if?, which carries the “defining” representation3i#(2), and were
referred to a®auli spinors The resulting extension of the Schrodinger equatidrich
came to be called theauli equation not only extended the field spaceWBffrom C to
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C?, but coupled an external magnetic field to the magnetimemt of the charged,

spinning particle by way of a set of three22complex Hermitian matrices{, i = 1, 2,

3} with trace zero that allowed one to represent fhie sf the wave function as a linear
combination of those matrices, which then took on the obla basis for a linear space,
or really, the Lie algebrau(2), which one gets by turning the Hermitian matrices into

anti-Hermitian ones by the use of the imaginary
Heisenberg also commented on the application of thé &guation to the problem of
the anomalous Zeeman effect in a 1926 paper with PascdahJgg|.

d. The need to make the Pauli equation Lorentz-invaria@ne could say that the
Schrddinger equation was doubly-incomplete, since it wad mentz-invariant, and it
did not account for the electron spin. Hence, althotigh Klein-Gordon equation
accounted for the latter, but not the former, the oppasdatement could be made for the
Pauli equation. The challenge to theoretical physidkaitpoint in history was then to
find a single equation (or system of equations) that wactdmplish both objectives.

Although there is now such a thing as thktivistic Pauli equatior(*), in the early
days it was not clear how to develop such a thing, sastpassed over initially. Indeed,
it is easier to see how to formulate a relatividtiauli equation once one has first

developed the Dirac equation. Basically, one simplgred the action BU(2) onC? to

an action oSL(2; C) onC?, and the two-to-one map 8£42) ontoSQ(3) to a two-to-one
map ofSL; C) onto the identity component of the Lorentz group;, §0'(3, 1).

e. The Thomas-Frenkel relativistic, spinning, classical electroin 1927 (a year
before Dirac’s seminal paper on the quantum theory ef dlectron), the English
physicist Llewelyn Thomas devised a relativistic thedrthe classical spinning electron
[27]. It was still a point-like electron, so it did nattempt to explain how a point could
rotate, but it did give a deep and compelling reason forigoeeghancy of a factor of 2 in
the gyromagnetic ratio that was pointed out by Uhlekband Goudsmit: Thomas
showed that the factor of 2 could be explained by theitran from the rotation group to
the Lorentz group; i.e., it was an artifact of thetielstic formulation that did not exist
in the non-relativistic formulation. As we shall sae really comes down to the
difference between the commutation laws for Lorermtpdts and the corresponding
commutation laws for translations.

In 1929) (a year after Dirac’s paper was published), thesi&usloseph Frenkel
published 28] a paper in which he attempted to improve upon some ofittitations of
Thomas’s theory. Once again, his model still assumpdirt-like electron, but it did
introduce the relativistic formulation of electromagswt in terms of what would now be
called exterior differential forms that is mainly deeMinkowski.

f. The Dirac electron— Due to the lack of interest in formulating a reiatic Pauli
equation, the way that events played out historically wes in 1928, Paul Dirac

() One might confer the author’s discussion of that eqoati [26] and the references that are cited
therein.
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formulated a relativistic theory of the electrd?f]] that was explicitly intended to be
Lorentz-invariant and account for electron spin. Asswhe custom in early quantum
theory, he proceeded in a somewhat heuristic way byingtawith the second-order
Klein-Gordon equation and looking for a way of taking tkguare root” of the Klein-

Gordon operator, which one can think of Bs +ny, whereO = 7/ 9, 9, is the

d’Alembertian operator [with the sign convention {4+, -) for 7#"], my is the rest mass
of the particle (which is assumed to be point-like) thatescribed by the wave function,
and one must use “natural’ units, which make= c = 1. If one does not use natural
units, which is often advisable when one is discussingitpeagation of waves and does
not want to lose sight of some fundamental propemiethe waves, themy, would be
replaced with th€ompton wave numbenamely,ko =myc/ 7.

Actually, it is not rigorously correct to say thaetB®irac operatord + ik, is the

square root ofl + k2, in the sense tha@(+ ikg)> = O + k2, but rather, one must have:

(@ +iko)(F —iko) = g%+ kg =0 + kj, (3.1)

which is then equivalent to:
A7=0. (3.2)

Hence, one is basically looking for a square root ofitAéembertian operator.
If one assumes, naively, that= y* d,,, where the coefficientg’ belong to some as-
yet-unspecified algebra then (3.2) will become:

sy Yy Yy ou0u=m"0,0,,
which can be satisfied iff:
vy + vyt =2, (3.3)
which can also be expressed in the form:
(=1, ¢)Y=-1, i=1,2,3, yy'=-y"y* whenu# v.

However, (3.3) is precisely how one defines t@éfford algebra C(4,7) of
Minkowski spacem’ = R?, 7#*). Itis a 16-dimensional real algebra that is gendraye

the four linearly-independent vectaré in R* that is, a basis for the vector space that the

algebra is defined over is defined by 1, #t€ and all linearly-independent produgts
vy Ryt vy v v y= P vt y? 2 = P Dirac chose to represefd,s) by 4x4
complex matrices, not all of which were HermitiaHence, since the matrix algebra of
all 4x4 complex matrices has a complex dimension of 16, lamsl & real dimension of
32, whileC(4,n) has a real dimension of 16, one sees that the Bieddces do not give a
faithful representation of the one algebra in theegthut only in a linear subspace of the
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latter. Other representations of thenatrices evolved in time, and the most-used ones
were due to Hermann Weyl and Ettore Majorana.

Right from the beginning, the Dirac equation touchedaofifrestorm of objections,
most of which were based in the fact that its introdact@f such an abstract
mathematical structure as a Clifford algebra gavenituah-less-than-intuitive character,

so the physical interpretation of the Dirac wave fiomgtwhich took its values ifi*, the

equation itself, and how one was to model basic physicalegses using that equation
were the topic of spirited debates.

Various researchers attempted to give a tensorial forrthe Dirac equation, which
generally involved the use bilinear covariants- i.e., bilinear expressions in the fiéld
and its Hermitian conjugatéﬁ, or rather its Dirac conjugatd = WTyS — and they
matrices. Darwin30] proposed a widely-cited component form of the Dirac #goa
that did not introduce thgmatrices explicitly, but only their components, ifeet.

One of the widely-debated issues regarding the Diractieguaas the question of

true field space for the wave function. The only signifimofC* was the fact that it

carried a representation af(4,7), although not a faithful one. Other quantum
theoreticians, such as Alexandru Pro88,[and later Sir Arthur Stanley Eddingta8?],
pointed out that one could also say that sif{@es) carried a representation of itself (by

either left or right translation), there was nothiogorevent one from using(4,7) as the

field space. For Cornelius Lanczd&sg], the appropriate field space was the eight-real-
dimensional algebra of complex quaternions, whose @eitovs define a Lie group that

is isomorphic t&SL(2; C).

Finally, there was the fact that despite having reducedtter of wave operator
from two to one, the Dirac equation still admitted negaenergy states, and their
physical interpretation was still just as puzzling. Herese must realize that although the
Dirac operator is a first-order, linear differential operator, nonetlss| the Dirac
equationis not a first-order partial differential equation farcomplex-valued wave
function, but asystenof four such entities. Hence, one has not really redidloe order
of the Klein-Gordon equation from two to one, since oan always replace a singfé&
order differential equation (ordinary or partial) witlsystem of first-order equations by
introducing auxiliary variables that represent the higlenivatives of the function that
one is solving for.

g. The discovery of the positron After a few years, the debate regarding the Dirac
equation cooled considerably, since the existence of thatime-kinetic-energy states
was seen to be the most physically damning aspect ofsyiséém. Mostly, particle
physics in that era was limited by its small inventorkimdwn elementary particles, and
all attempts to make the Dirac equation account for psotmnthe positively-charged
counterparts to electrons were clearly doomed, sireenidss of a proton is about 1860
times the mass of an electron, from the outset. #lmeg to Miller [34], Pauli had
become so disenchanted with quantum electrodynamicdaihat while he had drifted
into the underground café culture of Europe, and was evangtayith the idea of
directing a movie! However, Hermann Weyl wrote thet fedition of his classic book
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[35] on the theory of groups and quantum mechanics in thadpef time, in which he
had the admirable objectivity to suggest that the casehtoDirac equation was not
closed, since one could not anticipate what sort g&lacks that experimental physics
would bring.

Indeed, it was the discovery of the positron by Casli@@nderson in 193236 (%)
that essentially got everyone back to work, because thegmosnade a much better
candidate for the negative-energy counterpart of thetrein than the proton. It was also
discovered that the collision of an electron and tpasi(which later came to be called
Bhabha scatteringin the presence of some other mass, such as aicataateus, could
generally produce two gamma photons, while annihilating tiggnat incoming massive
particles. Conversely, the reverse process of twalitgy gamma photons could produce
an electron-positron pair. Indeed, if the photon easergre sufficient, one can also
produce particle-anti-particle pairs of higher masses, aaamuons and anti-muons, or
even strongly-interacting particles.

These processes of pair creation and annihilation promptad @ come up with his
hole theoryof electrons and positrons. One imagined that ggative-energy states,
which represented positrons, also represented “holesfie@ingiantum electromagnetic
vacuum, or “Dirac Sea,” so annihilating a positron wdaddhe same thing as filling in a
hole. The vacuum state was defined to be the stat@ichwvall of the holes were filled,
although that seemed to suggest that the vacuum state addoe infinitely massive,
infinitely charged, and infinitely energetic. This wae tfirst point at which quantum
electrodynamics started to exhibit unphysical infinjtissaddition to the infinite self-
energy of the point-like electron that one found asslcal physics already.

One would also have a somewhat-intermediate stateebr the creation and
annihilation of free particle-anti-particle pairs thateocalledvacuum polarizationand
which amounted to the creation and annihilationvifual pairs, which would be
essentially unstable bound states of particles and anéiparticles. This phenomenon
permeates almost all of the explanations of quantwattreldynamics, so one can say
with some security that the most fundamental problenha branch of physics is to
completely account for the structure of the quantum r@ewgnetic vacuum state (or
probablystate space One of the consequences of vacuum polarizatiornteayet to be
observed directly in experiments photon-photonscattering, in which the vacuum
polarization that is produced at the moment of collisieould produce a nonlinear
contribution to the scattered photons. However, aebtla®lated process calld&klbrick
scattering in which a photon is scattered by the intense eldetiodield of an atomic
nucleus as a result of vacuum polarization, has bésereed experimentally, so one
tends to assume that the limitations to the obsenvaif photon-photon scattering are
mainly technological in character.

h. The emergence of QEBDuring the 1930’s, the increasing volume of theoretical
and experimental work that was being done with the dD&quation, as well as the
discovery of new particles, was bringing about an msireg need for a unified theory of

() Apparently, the positron had been observed previoussy, iy Dmitri Skobeltsyn in 1929, who used
a cloud chamber, and in that same year by a Calteclugte student Chung-Yao Chao, although the latter
observations were not pursued further. At any ratea# Anderson who was awarded the 1936 Nobel
Prize for the discovery.
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such phenomena; i.e., a quantum theory of electrodyngiQI€E®) that would replace
Maxwell’s classical theory.

However, due to the complex nature of quantum electroategvacuum state and
the mathematics of the Dirac equation, it was inengs believed that (at least, for the
time being) it was unlikely that anyone could pose a convinee@f partial differential
equations for some appropriate tensor or spinor fields ¢buld truly be called the
“fundamental equations of QED” in the same way thatxwhl's equations were
fundamental to classical electrodynamics or Einsteagjsations were fundamental to
gravitation. The reasons for that were two-fold:

1. One might regard the presence of vacuum polarizasiessentially a nonlinear
contribution to the electromagnetic constitutive ldwat became significant at high-
enough field strengths. Hence, in order to pose thatmyst equations, one would need
to have a more detailed picture of that constitutive latvich was not (and is still not)
available.

2. Even if one could correctly pose that system,atild undoubtedly represent a
coupled system of nonlinear partial differential equatio@ensequently, merely proving
the existence of solutions to such elementary problerbewsdary-value problems in the
static approximation or dynamical solutions to the Cauptgblem would probably
prove to be mathematically daunting, much less the probldinding any useful closed-
form solutions that might be the basis for explainimg $tructure of elementary particles
and their interactions.

For the most part, it was the work of Werner Heisenb#/glfgang Pauli, and
Pascual Jordan that proved to be most definitive in laymegfoundations for QED.
First, Heisenberg introduced the “exchange-particle” coragpt substitute for a detailed
picture of the interaction of elementary particle$his amounted to eliminating any
discussion of the “forces of interaction,” in lieu ainply the exchange of particles that
would mediate the interaction; for instance, the etecagnetic interaction would be
mediated, not by some extension of Coulomb’s law andBtbeSavart law, but by the
exchange of a photon. (Nowadays, the exchange partacéeseferred to as “gauge”
particles.)

Closely-related to the exchange-particle concept Wwaspassage to thecattering
approximationas a way of linearizing the dynamics of time evolutid@asically, this
amounts to replacing the Cauchy problem of describing thediraition of incoming
particle states (i.e., wave functions) from a finiti¢ial time tp to outgoing particle states
at a finite final timet; with the problem of describing the evolution of incomirgfes at
to = — o to outgoing states &t = + o, which should turn the nonlinear time evolution
operatord(ty, t1) into a linear scattering operat@r This is equivalent to enclosing all of
the nonlinear complexity into a “black box” that takes fbrm of the time interval
during which the interaction of the particle states tgiase, whose length is assumed to
be infinitesimal in comparison to the time intervaltbé linear scattering process that
involves only free particle states.

One of the advantages of linearizing the time-evolutiparator to the scattering
operator is that one can justify applying the methodsoofiEr analysis. Indeed, almost
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all of modern QED takes place in “momentum space,” WwhscFourier transform of
configuration space. The Fourier transform of thetedayg operator then takes the form
of an integral operator whose kernel, with suitable days@nstraints, is thought of as a
“propagator.” The construction of that propagator is ugusdiproached perturbatively
with the use of (Feynman) diagrams that representstiveessive corrections to the
elementary scattering picture.

However, even the picture that emerged in 1929 from Heeg and Pauli3d7],
which came to be called “second quantization,” was sithewhat debatable. For one
thing, it was still plagued by spurious, unphysical infirsitie’hich were mostly traceable
to the structure of the Dirac Sea as the electromimgvecuum. Heisenberg proposed a
process of “subtracting infinities,” which later came lde called “regularization and
renormalization,” although even at that point in tinsilPwas unconvinced that such a
process could be justified in a mathematically-rigorous way One cannot help but
notice that at that point in history, almost alltbé subsequent published research that
pertained to the theory of quantum electrodynamics wasectned with making the
subtraction of infinites an acceptable process, and isiogdg less discussion was
devoted to the physical interpretation of the theory.

By the time that the various regularization and reraizations schemes become
established in the mainstream, the fact that they wasecdlly “kludges” (i.e., error-
correcting algorithms) was lost on all but the mostimisiished members of the QED
community. Everyone else seemed to be content tohese on the grounds that there
was more work to be done in the name of particle phylsas just the development of its
fundamental theory. As the emphasis shifted to thesldpmnent of more powerful
particle accelerators that could reach higher and higmtercef-mass collision energies,
the majority of particle physicists were happy to haven kludges that worked.

Something that gradually emerged from the theory of rerl@ahian was the
concept of “effective field theories,” which amountedstarting with the classical field
theory as a zeroth-order approximation (more preciselgro-loop or tree
approximation), and then looking at the inclusion of an Bmirey number of
renormalization loops in the Feynman diagrams for thecgss as the successive
guantum corrections to the classical field theory.snocess is actually quite analogous
to the way that one corrects the geometrical optfa®aximation to wave optics by
adding diffraction terms that represent the processgggdometrical optics left out, and
also relates to the mathematical theorg®fmptotic expansions.

A particularly useful one-loop effective theory of quan electrodynamics is the one
that was devised by Heisenberg and his student Hans Euler in[38361t basically
corrected the Dirac wave function of a photon in thesence of an external
electromagnetic field for the polarization of the fointo a bound state of an electron
and a positron as a result of the external field beuf§icgently strong and led to a
corresponding effective theory for photon-photon scaigdoy Euler B9].

() Apparently, that rift led to an eventual estrangeméntaisenberg from Pauli. Heisenberg came to
regard Pauli’s objections as “overblown” and did not eattend Pauli’s funeral.
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4. Continuum-mechanical models for wave mechanics- To return to the
continuum-mechanical interpretation of quantum wave @ngick, we note that almost
every successive advance in mainstream quantum theolnyitsvstatistical interpretation
of the wave equation, eventually led to corresponding adgamt the continuum-
mechanical interpretation. To begin with, after teenmal paper §] by Madelung,
which only addressed the hydrodynamical form of the statio Schrodinger equation,
that program was expanded upon and applied to the timeagaBghrédinger equation,
as well.

One of the early proponents of the hydrodynamicalrpnétation amongst the
founders of quantum theory was Louis de Broglie, who adkted his own innovations in
the form of the “theory of the double solution” andl&piwave theory” (e.g.,40]).
Several of his students, such as Jean-Pierre Vidgigrand Francis Halbwachgl?], as
well as the aforementioned Proca, continued his workgalthose lines, although
eventually de Broglie grew temporarily disenchanted g hydrodynamical picture
and begrudgingly accepted the statistical interpretatidowever, he later came back to
the former interpretation in the context of what h#ed “the hidden thermodynamics of
the isolated particle 4B],” although nowadays one would say that the “hidden
thermostat” that the isolated particle interacted witbuld be called the “quantum
vacuum state,” and in fact de Broglie himself mentiomed terminology in a footnote.

Some of the most definitive advances to the hydrodyenmterpretation came from
Takehiko Takabayasi at Nagoya University. He not only rgath the scope of
Madelung'’s original work to the time-varying case, and lao&evarious applications of
the theory to more traditional topics in quantum mechajdidg], but also applied the
program to the Klein-Gordon equatiofvb]. In particular, he derived a “quantum stress
tensor”’ that was related to the quantum potential functimt had been defined by
Madelung. However, when he addressed the cases of wastohs with spin, namely,
the Pauli equation 44d and the Dirac equation44d], he switched from the

transformation by polar coordinates on the field space, (@) to the use of bilinear

covariants as a way of deriving the continuum-mechagicantities that were contained
in the wave function.
When one defines the energy-momentum density 1-fornbetordé@ that will

automatically imply that the resulting motion is (dgmeally) irrotational, since the
exterior derivative of any exact 1-form will vanish. Wdugh Takabayasi discussed the
possible inclusion of vorticial flows irfa,l, it was M. Schénberg who expanded upon
that possibility in a series of papedb]. That had the intriguing consequence that the
terms in the quantum stress tensor could be relatedte @stablished expressions in the
theory of turbulence, such as momentum transfer.

One of the better known proponents of the hydrodynanmbaipretation was David
Bohm, who saw it as a way of introducing “hidden varidb[e]. In a paper with
Vigier [47], Bohm also discussed the possibility that the hydnadyical model (or
“Madelung fluid”) that one obtains from Schrddinger’'s douss is essentially an
approximation to a more complex motion, which takes foren of “sub-quantum”
fluctuations about the quantum ground state. Again, thisdsolike another form of the
guantum vacuum, and also overlaps with the discussi@chdnberg45]. In a paper
with Schiller and Tiomno48], Bohm discussed the conversion of the Pauli equatikon i
a vorticial hydrodynamical form that differed from Takghsi’'s approach by the fact that
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it represented a transformation of the field space, het dpplication of bilinear
covariants.

One can also pose the inverse problem to the Madelangfdrmation, namely, how
does one start with continuum-mechanical equations andfarm them into a quantum
wave equation. Lajos Janossy addressed that problewerabpapers49).

Some of the more modern work regarding the hydrodynanmtafpretation of
guantum mechanics was done by Robert Cars0]l §¢nd Iwo Bialynicki-Birula p1], and
Takabayasi published a paper in 1983 [that discussed some of the advances that had
been made since the early days.

This author has investigated some of the aspects ofcanéinuum-mechanical
models, in his own right. He first observes3] that the quantum potential function
could be related to the scalar curvature of the spacentietgc that is obtained from the
Minkowski-Lorentz metric by rescaling it using the densitpr p. He also expanded
upon the fact that the basic transformation in the Madgltheory is amounts to the
introduction of polar coordinates in the field spacebif.[ That led to further work along
those lines that included obtaining a quantum strain tetisdrwould couple to the
guantum stress tensor by way of a mechanical constitlativen [55]. In the process, it
was becoming clearer that the usage of the terms “aue/aand “torsion” in continuum
mechanics (e.g., the bending and twisting of beams) eaercto their usage in the
Frenet-Serret equations than in the Riemann-Cartan approdifferential geometry, in
which the terms have more to do with the integrabilitparallel translation. That led to
the discussion in56], in which a broader picture of the application of eléntial
geometry to continuum mechanics emerged that sounded rkeréhé geometry of
“teleparallelism” in spirit. Further, it was obsedvthat the structure of the conservation
laws that are associated with the Dirac electronthadWVeyssenhoff fluid (which is an
approximation to the latter) was that of a “relatigsfiosserat medium,” and that was
discussed inq7].

5. Chapter summary.— Although it would be helpful if the reader had somerpr
exposure to the basic geometrical and topological rdstibd mathematical physics (cf.,
e.g., Frenkel 38)), little use of topological methods will be madence the basic
objective is to summarize the various models that wenstructed before, and except for
some discussion of vortices, topology was not géiyeaa issue. (The author is not
trying to trivialize the role of topology in the subjelbut only to defer that discussion to a
later monograph. Indeed, the role of topological defastthe sources of fields is quite
fundamental.)

However, there are times that the calculus of extetifferential forms is simply a
more concise way of doing practical calculations,h&oldasic notions of that topic will be
reviewed in AppendiXA, while some basic notions regarding differentiable fodds
will be reviewed in AppendiB. Similarly, the discussion of conserved currentshen t
context of variational field theory is easier to mgte when one has some basic concepts
from the theory of Lie groups, Lie algebras, and reptasens in hand, so the relevant
notions are summarized in AppendXx Finally, before embarking upon continuum
mechanics, it helps to review some of the correspondoigpns concerned with the
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motion of points and rigid bodies, which is presentedAppendix C. Appendix E
contains some multiplication tables for the Cliffotgedbra of Minkowski space.

As for the main body of text, we shall give the daling summary:

Chapter I.— Since it is no longer the case that the theotephgsics mainstream
regards continuum mechanics as something fundamental tgoee& education, the
first chapter attempts to briefly review the basic naiohthat discipline. Once again, it
is desirable that the reader is not encountering thethdovery first time.

Chapter II.— The author is of the opinion that there was somgthasty about the
founding of quantum theory in its early days, and in padicthat the very concept of
wave mechanics needs to be developed in a more generekictdt treats a general
wave as an object that has a kinematical state agdaardcal state that are coupled by a
constitutive law, along with an integrability equationr fhe kinematical state and a
balance principle for the dynamical one. Hence, ¢hapter is a first attempt at laying
such foundations.

Chapter Ill.— Much of the discussion of the individual models forrquen waves is
based in the methods of variational field theory, wisckummarized to the extent that it
will be used in the rest of the book.

Chapter IV.— In this chapter, we first address the Madelung-Takabpiasre in the
context of non-relativistic, spinless waves, which téwen described by the Schroédinger
equation.

Chapter V.- In the process of developing the continuum-mechamuadel of
Chapter IV, some “quantum terms” appeared, such as the quatential. In this
chapter, the author’s thoughts on the subject of theingnt nature are presented.

Chapter VI.— The extension of the Madelung-Takabayasi methodotmgslativistic,
spinless waves is addressed in this chapter; i.e., the Mad&bkabayasi transformation
of the Klein-Gordon equation, and the corresponding aibermto the discussion of the
guantum terms are made.

Chapter VII.— In this chapter, the introduction of Pauli spinonstfee description of
non-relativistic, spinning waves is investigated. The opdthof Bohm, Tiomno, and
Schiller are discussed in more detail than those of Baglesi, which are mentioned
briefly, and the author’s own view of the process is@néed.

Chapter VIIl.— Before discussing the quantum-mechanical formulatioelativistic,
spinning matter, we first discuss some of the key ideeslativistic rotational mechanics
in its more “classical’ context.

Chapter IX.— The Dirac equation for relativistic, spinning waveseigawed, along
with some of the alternative ways of formulatinghiat had been proposed.. The author
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also discusses the relativistic Pauli equation, and makeg suggestions on how to
remain consistent with the introduction of “generalizpliesical coordinates” into the
field spaces as the basis for the transformatioheofivave equation.

Chapter X — In this chapter, the continuum-mechanical formorfatf the Dirac
equation is presented in the manner of Takabay®gi|.[ The Weyssenhoff fluid is
discussed as a simplification of the Dirac electramg the facts that both the Dirac
electron and the Weyssenhoff fluid represent relatvis€€iosserat media are also
presented and examined.

Epilogue. —Finally, a few suggestions on directions for furthevgh in the field of
continuum-mechanical models for quantum mechanics are ggdpo
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CHAPTER |

BASIC CONTINUUM MECHANICS

The better part of the problem of formulating the santm-mechanical models for
guantum wave equations is trying to gain a better intufdomhe very nature of the state
of matter that one is dealing with in the first placEhat problem amounts to gaining a
deeper understanding of the mechanical constitutive latasaciates a dynamical state
of energy-momentum and stress with a kinematicat sthtleformation. As we will see,
the crucial notion that one must introduce into theekiatical state of the extended
matter distribution that one is addressing is the ideainreddition to the “metric strain”
that is traditionally considered in the name of contmumechanics, one must also
consider “frame strain,” which can be present even wihene is no change in the
distances between points of the object.

Before going on to that more unconventional topic, vl $inst summarize the basic
ideas that one deals with in conventional continuum an@ck. We feel that such a
summary is unavoidable nowadays, because although tlereawime that continuum
mechanics was the foundation for all theoretical psydietween the ultimate failure of
the mechanical ether theory of electromagnetic wavelsthe discreteness of matter at
the atomic level, the physics mainstream seemed dadalm their previous belief that
continuum mechanics was truly fundamental to the studwatter. It is our steadfast
belief that this judgment was premature.

8§ 1. Extended objects and their deformations- When one is dealing with point-
like matter moving in space, the kinematical state of atpmin be characterized by its
position, velocity, acceleration, and any higher-orderetiderivatives that might be
necessary Y. Indeed, since the basic (ordinary) differential equestiof motion
ultimately prove to be second-order, it is usuallyisight to consider only the first-order
derivatives; i.e., the velocity. Furthermore, oné¢hef lessons of rotational mechanics is
the idea that having the velocity equal to preciselytithe derivative of position is not
the only possibility, since the angular velocity of theference frame might also
contribute to the total velocity, in addition to then&i derivatives of position. This
situation can be regarded as an elementary example diftbeence between integrable
and non-integrable kinematical states, which we wiltuks in due course.

Hence, we shall use a modern mathematical formatlisat is best adapted to the
modeling of kinematical states in a manner that makesshe of integrability obvious,
namely, the formalism of “jet manifolds.” This fornsah has the advantage that it is
also closely-adapted to some problems of differentiakaggus and the calculus of
variations. However, we shall stay closer to theal@oordinate expressions than most
purely mathematical treatmenty,[simply because that is where one finds most of the

() Some relevant concepts from the motion of pointsragid bodies are summarized in Appendix
for the sake of completeness.
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standard literature of continuum mechan2<], although some of what we shall discuss
was established some time ago by Gallight [

a. Jet manifolds—- One of the big reasons for introducing the methodstsfig that
they allow one to replace the consideration of itdhdimensional state spaces with the
consideration of finite-dimensional ones. Basicatige starts with something that could
rapidly lead into functional-analytic complicationsamely, the idea thata@nfiguration

of an extended objec®, (which we assume to be an open subset of a parametsi
for some dimensiop) in a space, which we assume tofefor simplicity, is aC* (viz.,

k times continuously differentiable) embedding @, — R", u* X (U¥). That is, the

map is one-to-one and a homeomorphism onto its im@gg), as well. Thus, the image
will not intersect itself, and it will have the samienension as the prototype obj&gj in

RP. Some examples of this situation are wlignis a solid, open ball, disc, or cylinder,

and the configurationg are smooth deformations of the more symmetric, gawmet
prototypes.

The example of a point in space is an elementammpbeaof a configuration in which
k = 0 and the embedding of that point in space is itsign@h. If one wishes to describe

the time evolution of a point then one must go to the denension K = 1) and letD; be

an interval (o, t1) on the time linék. The position will then take the forx{t) for t O (to,

t;) and its successive derivatives will become the vslpeitceleration, etc)( with
respect to an inertial frame. However, in statics also important to consider the case
in whichR does not represent time, but simply a curve pararset€he first derivatives
of X(s) would still define (up to a non-zero scalar constant}ahgent line to the curve at
each point, even though one could not really call theslotities” when nothing is

moving. Similarly, the second derivatives would desctiige curvature (in the Frenet-
Serret sense of the word) of the curve more thaacitsleration.

When one goes on o= 2, one can again considRf to be the parameter space for
the motion of a curve segment (e.qg., a vibrating strimghe embedding of a surface, and

similarly, k = 3 can describe the motion of a surface (e.g., atingranembrane) or the
embedding of a solid object. Ultimately, we shall hageuse for any that is greater

than four, and in that cas@, will usually take the form of a “cylindrical” object; 1,604
= (to, t1) X O3, where(Q;s is a three-dimensional object. Indeed, time evolutionus,

will generally involve objects of the formip( t1) x Ok-1, wherek = 0, 1, 2, 3. The

limitation of cylindrical objects as prototypes for moving exted matter is that one
must rule out “topology-changing processes,” which ateadly quite common in nature
(the bifurcation of branches on plants, the formatbisoap bubbles, smoke rings, and

() For the record, the next two time derivatives aferred to as “jerk” and “yank.”
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the nucleation of bubbles in boiling liquids), although thegpprly deserve special
treatment, due to the topological overhead that meigttboduced?).

Thekinematical stateof the configuratiorx : O, — R" is then defined by the set of
real numberst{, X(u), X,(u), ..., X, .. (U)), and itsorder will then bek. We shall
mostly be concerned with first-order states of the farinx'(u), xfa(u)).

One can back up a step from this definition and definé-faeof a C* mapx : Op -

R" at a pointu 0 Op, to be the set of real numbej$ = U°, X, X,, ..., X, .., ), where
the array(, X,, ..., X, .., are equal to the values of the successive derivativestof
although they themselves are not functions.ofone can also define thget j“x to be
the equivalence class of &f mapsx : O, - R" that are defined in some neighborhood

of a pointu [0 O, and have the same values for their fkstlerivatives at that point.

Notice that since a jet is a purely local object, il we irrelevant whether the map in
guestion is an embedding or an immersion, since thahdisin is a global consideration
that will not typically affect the local derivatives.

One can see that the definition of a tangent veataa pointx in a differentiable
manifold M as an equivalence class of differentiable curves thrgugat have the same

first derivative atx makes a tangent vector essentially a 1-jet 6t anap ofR to M at
some chosen point (e.g., 0) Bn

The set of alk-jets ofC* maps from?, toR" is then a differentiable manifolt (O,
R" whose local coordinate charts look like®,(X, x., ..., X, ..a ), SO it will have

dimensiorp +n+pn+ ..., p'n. In most cases, we will be dealing V\m]mop, R"), which

has coordinate charts of the forof,(X, x.). The coordinate transformations for the
higher-order derivatives get rapidly complicated, sospecify them only for 1-jets: Let
(U3(u), X(u), X.(u)) and @*(u), X'(u), X (u)) be two sets of coordinates fg}x ; one
must be careful to note that:

(1.1)

by definition.
Hence, we already have coordinate transformations:

() Many mathematicians will insist that the approrigwpological techniques for the discussion of
topology-changing processes come from the study of “coboydigimich is a generalized homology that is
specialized to the needs of differential topology. Thith@ has long been of the opinion that nothing in
everyday nature actually goes beyond the scope of the coonputable homologies (e.g., simplicial,
singular) so radically that the generalization to cobordiesomes unavoidable, especially if the canonical
example of a cobordism is the “trouser manifold,” which easily be triangulated by more elementary
building blocks. The introduction of gratuitous generdidly its own sake runs counter to the spirit of
Occam'’s razor, which is fundamental to the scientifithoe.
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o= —a(ub), ii — ii(xj). (12)

Therefore, we must also account for the transfoomatif X, to X!. Since we are

dealing with only first derivatives, it will be a linearansformation by way of the
differentials of the last two transformations:

ou® ox'
ou? ox’

X, =

—x. (1.3)

If we wished to go on to 2-jets then we would have to miffeate the product on the

right-hand side with respect tai®, which would produce an inhomogeneous
transformation law, namely:

o _outou'ax( ;  0X
1.4
= 500 o axl(x°d fxma%axmf‘j (1.4)

This differs from a tensor transformation law by #ppearance of the quadratic term in
the first derivatives. One should note, however, thahe case of one parameter, for
which the partial derivatives will become ordinary datives, if one treats the three-
index expression in the second term on the right-hand sd# & represented the
components:
j m
M), = a_xm% (1.5)
oxX" 0x" dx

of a linear connection then the vanishing of the expressiparentheses would amount
to the geodesic equation for the symmetric part of thabection, namely:

2y
O:d X i
dt?

by XX, Fh=1(C)+rh). (1.6)

Hence, one can already see how the study of jetsapgewith the study of connections.

The manifoIdJl(Op, R") admits three canonical projections:

1. Thesourceprojection: a:J(OpR") - O, X 0.
2. Thetargetprojection: B:IHOn RN - R, jiX > x.
3. Thecontactprojection: pe: M Op, R = Opx R", jiX - (U, X).

Sometimes, the manifol@, x R" is denoted by °(O,, R"), for completeness.
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Consistent with the last projection, one can thinkhef matrix x, as defining a
contact elemenat (U, X), which is ap-dimensional linear subspace of the tangent space
T.R", as long as the mapsn question are always immersions (goalways has rang).
Moreover, one can then regard fheolumns {x, ..., x,} of the rankp matrix x, as

also defining a-framein T,R", which will then span that linear subspace.

It is important to see that the differential mapto®, — R" at a pointu 00 O, is a
linear mapdx, : TuOp, —» TAR", so it is really a “two-point” function, and if oneishes to
express it in terms of the natural cofrathé for T,0, and the natural fram / X in

T.R" then one can write:
dxy = X, (u)du® 0 9 /0X, (1.7)

which is well-defined as a tensor field only &g x R".

The kinematical state of the extended object thaegcribed by then becomes a
sections: Op » J(Op, R"), u = (U7, X(u), X,(u), ..., X, .. (U)), SO eacls(u) belongs
to the setd*(Op, R") of all k-jets that project ta under the source projection (i.e., the

fiber of that projection oveu). Moreover, as defined, it also represents a sedtian
very special type, namely tlkejet prolongationof aC* mapx, which gets denoted by:

%) = U X(U), X, (), .., X, (W) (1.8)

In the more general case, the coordinate functiqln_§ (u) of the value of a sectio

at u do not have to take the form of mixed partial derivatives' with respect tas.
When that is true for a section, i.e.:
s=j*, (1.9)

for some C* function x : O, - R" one calls the section (i.e., kinematical state)

integrable. Not all sections of the source projection will beegrable, since for one
thing, the lower indices ok;l“_a (u) do not have to always be completely symmetric, as

they must be for mixed partial derivatives (with apprdpri@gularity assumptions about
X). Even in the case of, (u), if one forms the set af 1-forms on®,, :

=X (u)di? (1.10)
then one must have the vanishing of:

A& = 1(X,,— %, ) i O dd (1.12)
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for eachi as a necessary condition for the integrabilityipfu) ; i.e., for one to have:
&' =dx (1.12)

for eachi. (As long ag), is simply-connected, that condition will also be &ugint.)
The condition (1.11) then says that one must have:

Xap = Xpa- (1.13)
More generally, one defines ti&pencer operatofl] on sections of the source
projection, which one denotes By: J (O, R") - J*%0,, R", although that is really

an abbreviation for saying that it takes sections of stierce projection of one jet
manifold to sections of the source projection of the othree. Ifs(u) = — (U%, X(u),

X,(U), ..., X, (U)) is a section of the former projection then:

Ds(u) = (U, DX(u), DX, (u), ..., DX, ., (u)), (1.14)
in which:

DX, .o (W) =X, . (W= X . (U). (1.15)

Hencesis integrable iff:
Ds=0. (1.16)

The case of non-integrable kinematical states becdumetamental to the study of
rotational mechanics when one looks at components wihect to non-inertial (i.e.,
anholonomic) frame fields, such as ones that are fixedtating bodies. For instance,
the velocity components will then take the form:

V :%+@xi, (1.17)

which is not generally of the formx' / dt for some set of functions' (t) .
b. Finite deformations— One advantage of the formalism that we havenddfi

above is that one can talk about a deformationleflianensional object: Ox —~ R" as a

(cylindrical) k+1-dimensional object: Ox1 —» R", with Os1 = (So, S1) X Ok. Thus, we

are really referring to a differentiable one-partandamily of kinematical states that
generalizes the motion of a point along a curverkhe 0. One can also think &fas a

“differentiable homotopy” from thénitial state % : Ox — R", with xo(u) = x(0, u) to the

final state ¥ : Ox — R", with x;(u) = x(1, u), although we shall not go into that further at
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this point. (We do not refer tey as thenatural statesince that term makes restricting
assumptions on the internal stress distribution, wivelhave not defined yet.)

For many purposes, it is also useful to have some wayescribing the
transformation that takeg(u) to x;(u). Since we are assuming that both mapandx;

are embeddingsy will be invertible on the points of its image(QOk). If one then
composesx;t : Xo(Ok) - Ok with x; : Ox —» R" then the composed map= x 0§":
Xo(OW) — x1(Ok) will be a diffeomorphism of the two images. If thame of xo(Oy) are

described by coordinates(suitably-restricted), and the pointsxaf©y) are described by
coordinates/ (suitably-restricted) then that transformation candescribed locally by a
set of equations of the form: S

y'=y'(x). (1.18)

This is the usual starting point for conventional aantiim mechanics. One then
describes the finite deformation that is defined by (1k8js displacement vector field
whose components with respect to the natural franté fioe the canonical coordinate

system oR" will be:
u(x) =y (x) - X. (1.19)

Although one can define a vector fiel(k) onxy(Ok) by way of:

u(x) :u‘(x)% = y(9) —x(%), (1.20)

with analogous definitions fax(x) andy(x), nonethelessj(x) is not a true vector field,
any more thax(x) andy(x), which take the form of “position vector fields” oratlius
vector fields,” since their components are actuedigrdinatefunctions. Therefore, when
one changes to a different coordinate system, unlesgrevesformation is linear, the
components olu(x) will not transform linearly by the differential of éhcoordinate
transformation. Nonetheless, we introduce the conokgdisplacement vector field for
the sake of completeness, since its use is widespreadntinuum mechanics; if one
wishes to avoid it, one must deal with the diffeomorphysirectly.

Note that although every diffeomorphism ogtoo(Ok) — R" defines a displacement

vector field onxg(Ox), the converse is not true. For instance, the negatithe radius

vector field (viz.,- r(X) = — X 9;) would take every point to the origin, which does not
describe a diffeomorphism.

c. Infinitesimal deformations: The first thing that one defines after the
displacement vector field is tliksplacement gradientvhich is the differential:
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du = u', dx Dii. (1.21)
’ ay

Note that from (1.20):
du =dy —1I (U, =y,-9), (1.22)

so the essential information idu is already contained idy. Once again, the
displacement gradient is well-defined only as a tenstit 6nR" x R".

Notice thatdul, = 0 for allx O xo(O,) iff the diffeomorphism is a constant (i.e., rigid)
translation.
Up to this point, we could just as well define the atistate to be the subse{O,) of

R", and the final state to be the subs€,) = y(x(Op)), so the deformation could be
defined by the diffeomorphism onto: xo(Op) - R". The space d€"-order kinematical

states would then be the jet manifdhﬂxo((’)p), R"). However, we have found it more

convenient to use the definitions that we made abaveyessimply show how the two
relate, as we have just done.

If one assumes tha&" has a scalar product defined on it (whether Euclidian or
Lorentzian) then one can think of lowering the upper indexufpfto produce the

components of the doubly-covariant second-rank (pseuda@rtengy(Op) x R"
du=u,;dX O dy. (1.23)

If one uses the same coordinate systeriRdbfor bothx andy then one can polarize
this under the permutation of indices:

du=e+6 (1.24)

in which: o
e= e dx dx, 8 = Ui +Uji, (1.25)
f=1G dX dX,  G=uj-u. (1.26)

The former symmetric tenseris referred to as th@finitesimal strainthat is associated
with the deformation, while the latter 2-forgéhis theinfinitesimal rotation which can
also be expressed as the exterior derivative of tidadsment 1-form:

6=dwu. (1.27)

One can further decomposéanto a traceless part and a trace part, where tloe tra
refers to the matrix| :

@D
1
D o
+
Sl

(1.28)
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by setting:
el =¢ -ied, (1.29)

o 0.
but that definition ofe’, is not unique, since one can add any other tracelesx g

without changing its trace.

The trace:
k

e= ¢ :% =divu (1.30)

is called thanfinitesimal dilatationof the deformation.

d. Rate of deformatior= When one is dealing with dynamics, and not statics, one
can single out they parameter as representing time and regard the set @&fso(uY) =

x(W°, us, ..., u?) that one obtains fixing the remaining parameters asngruence of

curvesthat represents the evolution of each poigt (.., u?) of the initial spatial object.
That means, in particular, that one can be dealing mdtter in any state (e.g., fluid or
solid), even though the concept of congruences of cusvesually introduced in the
context of relativistic hydrodynamics, nowadays.

We can then define the velocity vector field of tlengruence of curves that is
defined byx by:

OX(t, W, - W) _ 1 0
v(t, ug, ., ) = =V (t, Uy, ey UD)—. 1.31
( 0 0) ot ( 0 o)axI ( )
Hence, for each((, ..., u?), the vector fields(t, u, ..., uf) will be tangent to the curve

of the congruence that goes through, (..., u?).

One can then think of the vector fieldas the time derivative of the displacement
and the rate of displacemed¢ = v, dX 09, (or rather,dv = v ; dX O dX) can be
polarized in the same way ds:

dv=é+w, (1.32)
in which:
R L ) aqj
e =36 dx dx, quVi'j-'-Vj'i:E’ (1.33)
04

iy (1.34)

w=3apdXrdX, =VijTMiT o

Analogously to the situation witlin place ofv, one can regardy as components of the
2-form that amounts to the exterior derivativeled tovelocity 1-form:

w=0hv . (1.35)

These tensors are referred to asréte of strainandkinematicalvorticity, respectively.
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One can also spl'ﬁe‘j into a traceless part and a trace part:

¢ =0, +1ed, O, =¢é&-led. (1.36)
The trace:
k
e=¢ = % = divv :%(divu) = 3—‘: (1.37)

is referred to as theate of dilatation or kinematical compressibility.

§ 2. Strain. — Strain is basically one way of measuring how the gtonof an
object changes under a deformation of the sort thatetised above. In particular, one
looks at how the metric on the object changes;hamu, the distances between all pairs of
points change. That is why we shall first introducgetric strain” in order to give a
traditional picture of the deformation of regions phse, and then discuss the “frame
strain,” which will be fundamental in explaining the quan stress tensor later on.

a. Finite strain.— As long as one is dealing with finite deformations, omest
always deal with the fact that the initial state drelfinal state are not generally the same
set of points in space, so one must choose whethelefimtions relate to things that are
defined on one state or the other one. This basicalbuats to the difference between
the Lagrange pictureof deformation and th&uler picture respectively. The former is
more customary in the case of the deformation of sphdhich tend to have better-
defined exemplars fo®,, while the latter is generally used in fluid mechansisce it is
the channel or tank that encloses the fluid that l€dnsistent exemplar. However, the
concept of “fluid cells,” which follow the flow, is tdn used, which is a more Lagrangian
sort of concept.

In order to see how the metric on an object changes @ndeformation, one starts
by assuming that the ambient spaRg, for us) has a “background metrig'defined on

it, which can be Euclidian or Lorentzian. One then gittee initial and final states the
metrics that are induced by restricting it to tangentorsdo the objects.
In the Cauchy-Green theory of strain, one choosed #igrange picture and uses the

diffeomorphism (ontoy : xo(0p) — R" to “pull back” the metrig onx;(O,) by means of
the diffeomorphisny to give a metric:

*

g=vyg (2.1)
onxo(Op). By definition, ifv, w are tangent vectors to the initial statex #ien:
g, (v,w) = gy, (ayf, (v), dyf, (w)). (2.2)

The component form of this is:
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6,0 =y Y;(3 g (Y. (2.3)

If one introduces the displacement vector figld) for the diffeomorphisny (so yfj =
J; +u;) then one can express the last equation in the form:

g, (9 =[50 +au+qy +yyl(yg( ¥ x. (2.4)

Thefinite strain tensotthat this defines is then the difference between therchefi,
pulled-back metric and the initial one:

E=g-9g=yg-g (2.5)

Naively, if one uses (2.4) in (2.5) then the componehtke finite strain tensor will
take the form:

Ej = [3°0 +J'u + Y +{d1(xg( ¥ ¥ - o

However, one sees that actually one is dealing withctimaponents of thg at two
distinct points ofR", so unless one makes the usual assumption that the Inatura

coordinate system is also orthonormdl, or at least it makes the componentsgof
constant in space, one can go no further. With tssiraption, however, one can cancel
the initial and final background metric, and get:

Eij: gkl[a'iku]!+qq<+'ﬁrq]:uij+uji g l,fl.[l :Qj+g<| 'qu . (2.6)

All of the expressions involved are now defined at a pafithe initial state.
Not all second-rank, symmetric, covariant tensor fieldsiny region oR" can serve

as the finite strain tensors of some diffeomorphigrthe region. If one considers (2.6)
then one will see that part of the problem is rootedhe fact that not all functions

u‘j(t, X) with values inGL(n) represent the differential matrices of diffeomorplasm

Hence, one can think of (2.6) as a system of first-opaetial differential equations for
the functionsyi(t, x), so the issue at hand is the integrability of thatesy. Traditionally
(see, e.qg.,d]), the necessary condition for the integrabilityfinfte strain was based upon
the fact that the diffeomorphism of the region showdd echange the Riemann curvature
of the initial metricg when it becomes the deformed mefgi¢ in particular, the Riemann
curvature should stay zero. That is essentiallyShevenant compatibility conditipn
more precisely, its linearization will give St.-Venantcompatibility condition for
infinitesimal strain. (See, e.g., Murnagh&i) [

Here, we have a perfect example of how the Riemata@ usage of the terms
“torsion” and “curvature” can create confusion in contimuumechanics, since the

() This assumption is not as trivial as it sounds, inegd, since it implies that the Riemannian
curvature of the background metric must vanish.
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Riemann-Cartan usage of the terms has more to do heéthntegrability of parallel
translation than it does with the bending and twistiigthings. (The author has
discussed this subject at length 19][)

Since we shall have no further use for the issueeirtiegrability of strain, we shall
not introduce the necessary mathematical overhedusgtdint. However, we will point
out that Pommaretlfl] has long been emphasizing a different approach to the
integrability of strain that is rooted in Cosserat-idatconsiderations, although it
demands even more mathematical overhead than theamatlpproach.

b. Infinitesimal strain.— In the last equation, we saw the reappearance of the
infinitesimal strain tensoe as a component of the finite strain tenBor Basically, the
infinitesimal strain represents the first-order citmition of the displacement gradient to
the finite strain. From its definition, it is alwayssgmmetric, second-rank covariant
tensor, and thus its component matrix will always laga@halizable. The frame in which

g (or rather,e‘j) is diagonal is then called tipgincipal framefor the infinitesimal strain

tensor, and the diagonal elemeatse,, e, are referred to as th@incipal strainsin the
principal directions. There are three conditions undleich the principal strains can
overlap:

1. Isotropy: & =6 =6.
2. Uniaxiality:  Two principal strains are equal, but nottthiel.
3. Biaxiality: All three are distinct.

In the general case, one can think of the diagonalegitsrofe; as infinitesimal
elongations and the off-diagonal elements iafinitesimal shearing strains.When one

decomposese‘j into a traceless part and a trace, as above:

. 0. .

eij eJ? , (2.7)

0
_ej+ i

wl~
wl~

o
the traceless pag’, will be referred to as thaeviatoric strain tensqrand will represent

an infinitesimal volume-preserving linear transformatiwhjle the trace part will be the
volumetric strain tensgwhose magnitudée will take the form of anean elongation

If the final statey(t) is a differentiable function of time then so eft), and
differentiating with respect to time will product the mfesimal rate of strain. However,
there is another way of characterizing the infinitesinade of strain that has a deep
geometric significance. If one regards the deforma®m@a motion from the initial state
to the final state then one can express the finad g(gt as a differentiable function of
time, as well as the finite strain tensor: .

E®) =y g-09. (2.8)

When one differentiateE(t) att = 0 one will get the infinitesimal strain tensor ireth
form of theLie derivativeof g with respect to the velocity vector field=dy / ot:
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e=—| =Lag. (2.9)

Those readers with a background in Riemannian geomethjkmolw that it is a
theorem of Wilhelm Killing that, for the general mefgic

ngij = Di\/j + Dj\/i , (2.10)

in which [; represents the covariant derivative in the directib® evhen one uses the
Levi-Civita connection og. When the components gf are constant, that covariant
derivative will reduce to the partial derivative witlspect tax, and we will have:

Lvgj =0 + Vi, (2.11)

which is identical with the rate of strain.
If one wishes to use the Lie derivative to define tifmitesimal strain then one can
apply the same process to the displacement vectdufielr the deformation:

e=L4g. (2.12)

Vector fields for which Lg = 0 are calleilling vector fields They can then be
characterized by the fact that their flows consist &-parameter families of isometries
or that their infinitesimal strain (or rate of strain,the case o¥) vanishes. Hence, one
sees in that the intimate relationship between straththe measure of the degree to
which a diffeomorphism fails to be an isometry (irgid motion).

Here, one must be careful, since differential gegynéims many examples of
diffeomorphisms that are not rigid, but still preserve distances. However, one must
go to diffeomorphisms of submanifolds of a higher-dimensiepake in order to find
them. For instance, if one bends a flexible, exteasiire without stretching or
compressing it then the one-dimensional metric alo(ggt, arc length) will not change,
even though the deformation is clearly not rigid. Sintyi, developable surfaces, such as
cylinders and cones, are all isometric to flat plageen though the deformation of a flat
rectangular plate into a cylinder or a flat angular weid¢ie a cone is clearly not rigid.
Hence, one begins to suspect that the Cauchy-Green id&fioit strain is too coarse-
grained to account for all of the possibilities, sintewill pass over any non-rigid
deformation that is still an isometry. That is why wvill introduce “frame strain”
shortly.

Note that in the case of infinitesimal deformatioiss irrelevant whether one is
considering the Lagrange picture or the Euler picturesesiime distinction between
“initial” and “final” state has disappeared.

8§ 3. Stress— Stress is to strain what force is to displaceméFhat is, it is the
dynamical state that is associated with the kinembbige. In most cases, it is associated
with an infinitesimal kinematical state, such as thnitesimal strain tensor. That is
because in reality the phenomena that are associatiediniie deformations are much
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more complicated than their infinitesimal approximaticesg as a result, the material
constants that are obtained from engineering test®shlmlways tend to describe
infinitesimal deformations.

a. The Cauchy definition of stress The units of stress are basically those of
pressure, but one also considers the anisotropic pagsibdt the pressure on a reference
area through a point will depend upon the angular oriemtadf the area — i.e., the
direction of its normal vector. Once again, this ipidglly assumed to be a linear
relationship. That is, ifi is the unit normal vector to a unit squasghrough a poink(u)

0 R then the vectof that describes the force that acts upemvill be given by a linear

map o(x): TR® - TR n — f = g(x)(n) so if one has defined a frame fBiR> then
one can express this relationship in terms of the comp®oérverything:

f'=al(n. (3.1)

The 33 component matrixg‘j (x), or rather its doubly-covariant fora (x), then

defines theCauchy stress tensorlt is often assumed to be symmetric, but sinceighat
equivalent to the absence of internal couple-strethesquestion arises whether such
couple-stresses have any basis in reality. Sincertteedf the Cosserat brothers, Eugene
and Francois, the fact that internal couple-streasephysically realistic has been taken
seriously by an increasing number of researchers in dtie@r mechanics. We shall
return to discussing the Cosserat approach to continuughamies as it becomes
relevant in what follows.

Traditionally, the Cauchy stress tensor is assatiatéh a geometric object that is
called theCauchy stress tetrahedromctually, the fact that it is a tetrahedron hageno
to do with the period of history in which Cauchy did his kvéhan anything else.
Basically, to the mathematicians and scientists at #ra, geometry always meant
projective geometry, and the “reference tetrahedroryspibe same role in the context of
projective spaces that a linear frame does in the cbotdixear spaces. Of course, the
matrix of the stress tensor does not have to invertsiolets columns or rows do not have
to define linearly-independent vectors. However, evedhamon-invertible case, one can
still think of thei™ row of the matrix as representing the force per uni tirat acts in the
direction of thé™ frame vector.

In the case of a symmetri; , one can speak of th@incipal framefor the tensor,
which will be the frame for which the matrig; is diagonal, which will consist of

eigenvectors of the matrixr}. Those diagonal elements, o, ¢ are then called the
principal stresse$or o. That then defines three possibilities regarding tievprincipal
stresses can overlap, and they are analogous to the foast® infinitesimal strain
tensor.

In the general case, one can think of the diagoratehts ol aspressuresand the
off-diagonal elements ashearing stressesWhen one decomposeﬁ into a traceless

part and a trace, as above:
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(o] (o]
i i 1 Kk i — i 1 Kk xi
0, =0,++00,, O0.=0-+0.9], (3.2)

i~ n

o
the traceless padr; is referred to as theeviatoric stresswhile the trace part ismean
pressure whose magnitude i$&/ .

b. The energy-momentum-stress tensdhenR" is R*, and one has a time+space

decomposition of it intd® O R3, moreover, the time-time and time-space comporehts

a stress tensor would have different interpretations fitte space-space ones, just as the
exterior derivative of a four-dimensional covelocityitspinto a linear acceleration and
an angular velocity, due to the difference in intergi@iabetween time derivatives and
spatial derivatives. In particular, one finds that presshee the same basic units as
energy densities and momentum fluxes. For instaneeflifid has a mass density of
and a flow velocity o then the scalag-pvz, which looks like a kinetic energy density, is
usually referred to as tltynamic pressurelf the fluid were streaming from the end of a

hose and impinging upon a surface, such as a window orocly then the dynamic
pressure would be the pressure that the fluid exertedegulahe of impact.

8 4. Mechanical constitutive laws— The association of a stress state with a state of
strain (whether finite or infinitesimal) is the poiat which the empirical considerations
must be introduced into the model for the equilibriumtestad motion of a deformable
extended object.

Force

Fracture

1] v

Elongation

Figure I.1. Typical force vs. elongation graph for al-weorld material.

a. Basic notions— Generally, the association is something that iabéished by
engineering test stands, in which a cylindrical sampléehaterial is machined to have
a bottleneck in the middle, so it will not fracture desthe test stand, and threaded on the
ends so it can be held firmly.
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A programmed sequence of forces is applied to the saawude the resulting
elongation is measured. A typical graph of force vspldcement might take the form
that is illustrated in Fig. 1.1.

The various regimes are referred to as:

I.  Linear elasticity.

[I.  Nonlinear elasticity.

lll. Plastic deformation. (Actually, the illustratiovould relate to a “softening”
material.)

I\VV. Work hardening.

The first regime is the one that gets the moshttte, since it defineslooke’s law
for elastic springs (viz.F = — k AX) and elastic materials, more generally, which is
typically assumed to be true for small enough displacgsn For three-dimensional
materials, and not just springs, fhevould get replaced with ag , which would then be
the force per unit area in a specific direction, and Akewvould get replaced by the
percentage elongatiag (Al /1) in a given direction. A linear relationship betweaesd

and infinitesimal strain would then take the foons C(e), whereC : S?(R? - S[R3

would be an invertible linear map from the six-dimensionatomrespace of symmetric,
second-rank covariant tensors ovB? to itself. It is usually represented in the

component form:
g = Ceq. (4.1)

Various symmetries are commonly attributed to the compx)arrayCi}" besides the

symmetry inij andkl. For instance, if one prefers to regards an element @(R?)

(namely, a symmetric, doubly-contravariant second-rargorenverR®, so the associated

stress will be an element of its dual space) thenctmponentiq of C will all be
covariant, and one will sometimes assume t@at = Cyj, along with the other
symmetries.

Further reductions in the possible componédjs follow from assuming various
symmetries to the material that it refers to. fdétely, if the material is linear, isotropic,
and homogeneous, then one can express the constiawtive the form:

g=Ga+Ked, (4.2)

in which G is a constant called trghear modulysandK is a constant called tHsulk
modulus.

More generally, a material can be nonlinear, anisotraggid inhomogeneous. In
fact, the very assumption that the relationship betvstsess and strain is an algebraic
one, and not a differential or integral relationshipewen a combination of the three, is
not always a good approximation. For a dispersive nadténe relationship becomes an
integral transformation for which the strain at theghboring points might affect the
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stress at a given point. Some materials have “memaryith amounts to saying that
their constitutive properties can depend upon the time-paramegteprogram of
deformations that they have experienced up to the custate, which amounts to an
integral over time.

b. Examples of constitutive laws.One of the recurring themes in our eventual
discussion of the continuum-mechanical models for quantawve equations is that
perhaps they are giving us a strongly-worded hint concerhmgature of matter at the
atomic-to-subatomic level. Hence, it is good to havaesspecific examples in mind for
the form that mechanical constitutive laws take forkines of matter at the macroscopic
level that have been examined in many laboratories.

Perhaps the simplest medium is theiscid (or perfect) fluid Such a material is
characterized by the fact that it cannot support aninsttdence, there is no constitutive
law, but just a general form for the stress ten3gpically:

gj=1maq;, (4.3)

in which r7is the pressure. This definition assumes that the Buisotropic, as opposed
to liquid crystals, which can be anisotropic. Moreotee, pressure does not have to be
constant in time or space (even for incompressibledjuias one can see in the cases of
the atmosphere or the oceans.

Usually, the distinction between liquids and gasesxasples of fluids is defined by
compressibility. That is, a gas is a compressibla flwihile a liquid is incompressible.
Of course, perfect incompressibility, like perfect rigid is impossible in the eyes of
relativistic continuum mechanics, since it would implg @finite speed for the
propagation of waves.

For aviscous fluid the rate of strain couples to the stress tensaaddhition to the
bulk pressure:

a,j:ndj+/7§j, (4.4)
in which 77 is then called theiscosity.

8 5. Balance principles— Ultimately, the formulation of differential equatis that
would determine the equilibrium state of a deformable obfestatics or its motion in
dynamics is based in certain “first principles” thake the form of balance principles in
the case of open systems and conservation laws ioaid® of closed systems. On the
surface of things, they often have a somewhat taut@bgitaracter, which is why it is
only when one can imagine other possibilities that ttedye on the character of
equations, not identities.

We shall now examine some of the balance principlsahe encounters most often
in continuum mechanics. We shall first discuss thertheir non-relativistic form, and
then present the modifications that would be neces$apye were to give them a
relativistic formulation.
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a. Balance of mass: Naively, one expects that mass cannot be createestmoyed
but only moved around in space. Of course, that sorhiokihg is distinctly non-
relativistic and non-quantum, since the relative motiba body can change its observed
mass, and the creation or destruction of mass by ption and annihilation at the level
of elementary particles is commonplace.

Hence, as long as the nature of problem does not daimaimatroduction of relativity
or quantum theory, one of the oldest conservation taviee applied to processes, such as
chemical reactions, was the notion that the totakrivi{f) of a closed system should stay
constant in time. In an open system, the balanceiplintakes the form of a first-order

ordinary differential equation:
dM : :
W=Zm-2m, (5.1)

in out

where the right-hand side details the various rateshathwmass is being added or
subtracted from the system. Hence, for a closedmystk of the ratest) and i, must

vanish. There is also tlsteady-stat@ossibility, in which they do not vanish, but the two

summations cancel. (One might imagine water flowntg a sink with its drain open.)
When the mass is distributed continuously over a boundédne V with a mass

density ofg(t, X), the total mass will become the integral of the dgmsier the volume:

M(t) = jv ot, X )dV, (5.2)

in whichdV is the differential volume element on space.
Hence, as long asdoes not change in time:

dM 00,
—= | =(t,x)dV. 5.3
ol ¥ at( ) (5.3)

The right-hand side of the balance equation (5.1) censighe resultant of the mass
currents (i.e., fluxes) that flow through the boundaryesgrdV. If one thinks of the
mass current that flows though the surface as somethangakes the form of the vector
field pv, wherev is the flow velocity, then thatesultant mass flup[oV] will take the
form of the surface integral:

®[oV] = [ #(ov), (5.4)
in which thePoincaré duabf a vector fieldA is the 2-form:
#A =iadV= 1A g dx ~dxk. (5.5)

(In conventional vector calculus, this expression dgetsoted byA [dS) For instance,
the dual # of the unit normal vector fielth on a surfacegx) = const. inR? is the
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surface elemerdu ” dv if one uses the adapted coordinates/( ¢) for the points of the
surface, since that will make the components bé (O, 0, 1).

One can then think of the 2-formg@i() as being thenass flux densitthat is dual to
the mass current densityv, which also represents a linear momentum density.
Similarly, if gis an electric charge density thero#) will be theelectric charge flux
densitythat is dual tahe electric current densitgv.

From Stokes’s theorem for exterior forms, which takesform of Gauss’s theorem
here, one will have:

P[AV] = jvd#(pv): jv#div(pv): .[Vdiv(pv) dv. (5.6)
Hence, if the vector is assumed to point outward on the surface then onehaus:

00 /[
J.Vadv- J.lev(pv)dV. (5.7)

If this must be true for every possible voluméhen one can express this as a partial
differential equation fop:

9P — _ div(ow). (5.8)

This equation then represents the balance of masmtinuity equation
One can expand the right-hand side to give:

0p _

—==vp —pdiv(v),
it p —pdiv(v)
which will give:
do :
——=—pdiv(v), 5.9
P (v) (5.9)
with the generic definition:
a_ oo (5.10)
dt ot ox

for the derivative of a functiohalong the flow o¥; i.e., its Lie derivative with respect to
v; this derivative is also sometimes called the “matem@rivative or “substantial”
derivative in the standard literature.

Therefore, from (5.9), the flow of will be incompressibldi.e., divfy) = 0] iff the
mass density is constant along that flow.

One can also express (5.8) in the component form:

9p V) _ o (5.11)
ot ox'
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and if one extends spaf¥ to Galilean space-timg O R so that time becomes the

coordinatex’ and one always setd = 1, then one can give the last equation the even
more concise form:

0 = div (ov) = %"P. (5.12)

That is, it simply describes the vanishing of arfdimensional divergence of a mass
current vector field.

Of course, the four-dimensional picture for meatsnis usually treated
relativistically, but one often finds that formufad non-relativistic mechanics in a four-
dimensional Galilean space-time can make the tiangio relativistic mechanics more
natural.

b. Balance of linear momentum Although it is traditional to discuss the balamdt
linear momentum by analogy with the balance of mastially, the basic step at which
one goes from the linear momentum denpfly X) = o(t, X) v(t, X) of a congruence of
massive curves to the total linear momentu(t) v(t) of a massive point along a single
curve by integrating the component functight, x) over all space at each time paint
has some fundamental limitations.

In the first place, although one can unambiguodskne the total masg(t) to be the
spatial integral ofo(t, x) at timet, the issue of defining the curw§t) whose velocity
vector field will bev(t, X) is not as unambiguous. In non-relativistic meuts, it is
traditional to define the center-of-masgg(t) of the density functiom(t, X) and use that
curve as the reference curve, but since the massitgeby itself is not a Lorentz-
invariant function, one cannot define a Lorentzainant center-of-mass, either.

Secondly, the process of integrating componenttions with respect to a chosen
local frame field is not frame-invariant, unlessaestricts oneself to local frame fields
that differ from each other by constant transitfanctions. That is because otherwise
one would have to include the component functidribe frame transition function in the
integration, and not take them out of the intedjk@ so many constants. For instance,
suppose(t, u) = p'(t, u) & (t, u), whereg is a local frame field that includes the support
of p, which is a congruence of curve, u) that is parameterized hy= (', ..., u").
Suppose further that one defines ttwal linear momentumat t to have spatial
components:

P(t) = L p'(t, u) dV/ (5.13)

with respect tas , and that one makes a transition to another Ipaale field € (t,u) =
e, (t,u)f (t,u), in which L/ (t,u) is the inverse of the transition functids(t,u), which
takes its values iGL(3). HereX is the spatial manifold, ardd, is its volume element,
when it is pulled back to the parameter spapewill then have new componenfs =
L‘J. p' with respect tog, and if one defines the new total linear momentamponents
to be:
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P'=[ pltwdy=[ Litwp tulL |dy (5.14)

then one will see that it is only If (t,u) is a spatially-constant function with determinant
unity that one can, in fact transform the composi@hP linearly as:

P'(t) = L, ()P’ (1). (5.15)

Hence, we shall take the position that reallydHierential formulation of the balance
principle is more definitive than the integral farlation. The soul of the differential
formulation of the balance principle for any phydiobservable is that its derivative
along the curves of the congruenge u) — i.e., its Lie derivative with respect ¥, u) —
must equal the sum of the external contributionth&b density. In the case of the linear
momentum density, that would mean the resulkgnof the external force densities that
act uporp:

Lvp =fext. (5.16)

Now, when the spatial suppdi{t) of p, and thus the domain of definition x(t, u)
and v(t, u), has a boundarg >(t) at eacht, there will be two types of external force
densities that act upon the pointsx@t):

1. Volume force densitie,, such as gravitation, electrostatic forces, magnet
forces, which act upon the pointsXit).

2. Surface force densitiés such as surface tension, atmospheric pressudescane
types of applied loads, which act upon the poifhi® X(t).

Now, the surface forces can be converted into meluorce densities by using
Gauss’s law on the vector fiefd (i.e., Stokes’s law for tha — 1-form #s), as long as
one assumes that the surface force defisttgnsists of simply the boundary values of a
volume force. Ifn is the normal vector field od=(t), so one can express the spatial
components ofs with respect to some local frame fiedqt) that includes(t) in the
form:

fSi = —a‘jni (5.17)
then that will make:
d #s=—d(o;n') " #a —(o}n') dh#e . (5.18)

The second term will vanish for a natural framédfie = 0; , and since:

d,(o'n) =0, (ojn")dX
and
d% A #ai = é'ikVX ,
that will make:
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oh #s=— 0,(0} ')V, = - #(divf),
SO:
divfs=-9,(c' n') =—[(3,0))n' +d\ (4,M)] . (5.19)

One best extendsinto the interior ok by assuming that the frame fieddis adapted
to n, son is itself one of the frame members, and the othendrenembers are tangent to
0%. The components af will then be constants (viz., one of them will beahd the
others will be 0). One then defines the 1-fornon

fs=- (0,010, (5.20)

where@' is the reciprocal coframe field &. [i.e., 8' (8 = 5; ]

It now becomes more convenient to repregeandfy as 1-forms, as well, and the
balance equation (5.16) will take the form:

Lyp=fy+fs = (f, -0,0/)6 (5.21)

Now, according to a basic property of the Lie derivafsee App.B], if p = p; &'
then:

As long as one uses a “convected” frame field, for whig8' lwill vanish, that will
make:

i i d i
Lyp=(Lyp)8 = (vp)@' = d—? 6'.

The condition for L&' to vanish reads:

0=L6"=i,d8"'+dV, (5.22)
explicitly. _ _

One example of a convected frame field is a natusmhdr field @' = dx) that is
adapted tas, soV will be constants [e.g., (1, O, ..., 0)]. Of course, thatld imply that
v would have to be irrotational, in order to hale = O; i.e.,v would have to admit a
velocity potential (if only locally).

Ultimately, we arrive at the conventional compondotm that the balance of
momentum takes:

M _¢_ 54 (5.23)

If mass is conserved (st / dt = 0) then that will take the form:



44 Chapter | — Basic Continuum Mechanics

p%zfi - 9,07 (5.24)

In the case of inviscid fluids, for whictr! = 773', this takes the form dEuler’s
equation:

p%=fi - 0i1T. (5.25)

In the case of elasticity, for which the Lagranguacture is more commonly used, the
Lie derivative becomes the partial derivative withpexg to time, and the equations of
motion take the form:

p%= -9 g, (5.26)

]!

When the problem is one of statics, there will beaoceleration, so the equations will
become equations of equilibrium:

0.0 =f. (5.27)

c. Balance of angular momentum.There are two types of angular momentum to
consider for a moving, deformable mass distribut@(t, x), which amount to the
external and internal angular momentum densities. ithgortant for later discussion to
note that “internal angular momentum” is quite dstifrom the quantum concept of
“intrinsic angular momentum,” or “spin,” which is rooted the weight of the
representation of the rotation or Lorentz group in teédfspace of the quantum wave
function. The internal angular momentum is basicaly orbital angular momentum
density that is associated with the material’'s resptms&ess-couples.

The external oorbital angular momentum density 2-foim=1L; dX ~ dX of a

moving mass distribution that is associated with a limeamentum density 1-form (t,
X) = p;i dX is essentially the moment of that momentum witkpegt to an observation
point (e.g., the origin): _ _

L(t,X) =p~ R=1(pi % —pj %) dx' ~dx’, (5.28)

in whichR(t, X) = x dX is the position 1-form of the pointof p at timet with respect to
the observer.
In order to get the conservation law that goes Wwjtlbne first differentiates it with
respect to time:
dL_ dp,

db_dPapypay, 5.29
at at P (5.29)

As long the momentum denspyis of the “convective” type, sp= pv, the last term will
disappear, but ip includes atransverse momentum densggmponent, which is not
parallel tov, then it will be non-vanishing. Hence, for the timeéngewe shall leave it in.

If one applies the balance of linear momentum (5.23)Jpd/ dt then (5.29) will
become:
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L,

in which we have defined thmoment of external force density 2-form:
M =fAR=1(f x —f; x) dx' ~dx. (5.30)

An application of the product rule to the second two teomghe right-hand side will
give this the form:

A M 0S40 0 4DV v
- Mi— 0S+o oy PPV, (5.31)

in which we have defined the vector-valued 2-form:
S=1g dx'"dx!, S'=o0'x -0, (5.32)

which we shall then call thaternal stress-couple density.
Hence, external angular momentum will be conserffexhe has:

Mj=0,S -0, +0, + P Vi —p Vi . (5.33)
In the absence of external force-moments, onetilhhasre:
0,S =0, -0, —p v +p V. (5.34)

Hence, the sources of internal stress-couples are fouhe possible asymmetry of the
stress tensor and the existence of transverse momentu

d. Balance of energy- If one writes the balance of linear momenturtha form:
Ly Pi = fi - aia} (5.35)

and contracts both sides wifthen since one will have:

. - an o 1 /2 AL
VLvp= vy IR _0GA) oGPV L($pV?),
ot ox! ot ox/

that will make: _
L(3pV) =V (i - 9,0)). (5.36)

Now, one can interpret the expressig)pv2 as either a kinetic energy density or the
dynamic pressure of the motion, and since the -hginid side represents a power
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exchange density, the last equation says that the powesarege density is equal to the
rate of change of pv* along the flow of.
If fi =—0; U, where the potential energy dengitys not a function of time then:
V(i-0,0/)=-vVou-v'oq.

If we further assume thatstress potentiarector ¢/’ exists, so:
g=o0y’, (5.37)
then, if ¢! is not a function of time, either, we will have:
V(fi-0,00)=-Va(U+a¢)=-L(U+0 ¢
and if we define the total energy density to be:
E=1pf+U+0 ¢ (5.38)

then (5.36) can be put into the form:
L.£=0. (5.39)

Hence, as long as the external forces and internedssts are conservative, the total
energy density will be constant along the motion ofrtiaess distribution that is described
P.

In the case of inviscid fluids, one will ha@qaij = —0; iz and if iris also independent

of time then (5.38) will be replaced with:
E=1pf+U+7 (5.40)

which is often referred to as thetal headof the fluid. The fact that this is constant
along the flow whetd andsrare time-independent amountsBernoulli’s theorem.One
usually gets to Bernoulli’'s theorem by starting withdtld equation (5.25) and assuming
that flow issteady which we have implicitly done by assuming thhand 77were time-
independent.

6. Relativistic continuum mechanics— One would expect that when one goes from
non-relativistic to relativistic continuum mechanicke tmathematics would get more
complicated. However, in many respects, it beconmaplser when time gets treated as
another dimension. Fortunately, we have been tryin@rtiicipate the transition to
relativistic methods all along, so it will not be asessary to start distinguishing vectors
from covectors, which is always an issue if one heatéd covariant and contravariant
indices as indistinguishable, simply because the use eofEtrclidian metric in an
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orthonormal frame will not change the values of comptsx@vhen one raises or lowers
an index.

One will find that relativistic continuum mechanicamere developed in the context
of fluid media than it is in the context of solid§o some extent, that is based in the fact
that true “rigidity” cannot exist in relativistic mechasjso even elastic solids will have
some relativistic idiosyncrasies. It is also basethénfact that the main application for
relativistic continuum mechanics all along has basicdlgen directed towards
developing energy-momentum-stress tensors that wouleé ssrmodels for the celestial
objects that define the sources of gravitational fieldhéndyes of Einstein’s equations.
However, since the wave equations that we will treatusually discussed in the context
of special relativity, not general relativity, we shstbp short of anything that involves
introduction connections, curvature, and Einstein’'s equati¢B8ge, however, the book
by Vigier [12].) Hence, it will be assumed in all of what followst the quantum waves
propagate in a space where the gravitational force ieRristent.

a. Minkowski space preliminaries When one goes from non-relativistic motion to
relativistic motion, the first thing that changes fundatably is that the speed of lighin(
vacug c will no longer be infinite, and in fact, it will havlo be the same for all
observers. As a result of that, the three-dimeradi&uclidian metric, whose components
are g; in an orthonormal frame, will have to be extendedthe four-dimensional
Lorentzian metric:

We shall denote Minkowski space Bg* = (R*, ). If the components of two tangent

vectors ta* at some point with respect to the natural frame efordinates” arev”,
W, resp., then their Lorentzian scalar product will be:

v, W) = g VW =0 W = vt wh =V W - VW (6.2)
and the Lorentzian square\otvill be:
v IF = )% = (v)* - (V) - (V)2 (6.3)

Unlike the Euclidian square, the Lorentzian one dogédawee to be non-negative. One
refers tov asspace-likelight-like (or isotropic), or time-likeaccording to whether ] |f

IS negative, zero, or positive, respectively. Oneaathge of the present sign convention
for the components afy, is that the square root of/||f will always be real for time-like
vectors. The set of all light-like vectors in amngent space is referred to as ligat
coneat that point.

A further consequence of the finitude ofis that one must carefully distinguish
between theproper time parameterr of a curvex(z) in space-time and théme
coordinatet of the points along that curve. It is often convententisec as a units
conversion constant in order to defife= ct, so that one does not have to introdace
into the Lorentzian metric explicitly. In the lattcase, one will have:
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(v, w) =V WP = vt wh =V W - vV wP, (6.4)

Because of the difference between proper time, whiebupnably describes the time
evolution of all processes in one’s “rest space” (egerything that is at rest relative to
oneself), and the time coordinate, which is more géndrare will also be a difference
between the spatial components of the four-velocityhef curvex(7) and the three-
velocity of the spatial curvg(t). The four-velocity that is defined by the proper-time
parameter will have components:

w20 9), (6.5)
dr

while the three-velocity that is defined by the time cawate will have components:

X -
V= (=12 3) (6.6)

The way that one gets frouf to V' is by taking advantage of the fact that:

dt
wW=c—, 6.7
i (6.7)

so if one recalls the chain rule for differentiatiben:

pdX _dtdX 1 g

U=—=—"= ZuV; (6.8)
dr dr dt c
ie.:
. u'
\/j = CF. (69)

Since one can think af / W° as the “inhomogeneous coordinates” of a poiriket that

are associated with the “homogeneous coordinatésthat means that the projection
from space-time to the rest space has more in comntbrpvojective geometry than it
does with affine geometry. We mention that only insp&g since we shall not have any
cause to refer to that fact, but if one wishes to knaxenabout that approach to special
relativity then one can confer the author’'s discussiohghat fact ([L3]) and the
references that are cited in them.

An identifying characteristic of proper time is that wizetime-like space-time curve
X(7) has been parameterized by proper-tmene will always have:

llu|f=c (6.10)

In the rest space of(i.e., all co-moving objects), one will then have (c, 0, 0, 0), ol
= 0. Hence, the proper-time parameterization is eisdlgrd unit-speed parameterization
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when one uses units in which= 1. However, light-like curves will not admit proper-
time parameterizations, since proper time will alwag/zéro for them.
If we expand (6.10), while using (6.9), then we will get:

C2 — (UO)2 _ (ul)2_ (u2)2 _ (u3)2 — (UO)Z (1_\2_2j ,
which will make:

dt Y
w=cy, =g C (1——} . (6.11)

This accounts for the ubiquitous nature of the datald-Lorentz factory in special
relativity.
As a result of (6.10), one must always have:

n(u,a=0 a@= %). (6.12)

Hence, the proper velocity will always be orthoddnahe proper acceleratian
One can also relate the proper accelerapnoto the non-relativistic acceleration,
which is:

a=—, (6.13)

by differentiating (6.8) with respect to proper ém

;_du d(yv) dy . dv . 1dy .
a' = = = NV +y— |= a+——=—v |,
ar o Y w S

and if we take into account that:

dy_ y°
Z=7_y4a 6.14
dt ¢ (6.14)
then we can say that:
2
a’ :y{ai 4{1_3 (v, d) \‘/] (6.15)

So the spatial part of the proper acceleration daéshave to be collinear with the non-
relativistic acceleration unless the latter is ogihnal to the velocity. Since:

j_ldv

== : 6.16
2 dt ( )

v a

one can also characterize the latter condition dying that the motion has constant
speed.
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The process of splitting tHe* of space-time (if only locally, as in general relagiy;

into a time-plus-spac® O R? is usually intimately linked with choosing a rest spalre.

particular, if an observex(7) moves through space-time with a time-like four-velpcit
u(7) then one generally defines ttime lineR in the decomposition to be the tangent line

at each pointx(7) that is generated by(7) and thespatial subspac&® to be the

orthogonal complement of the time line.

A time-plus-space splitting of space-time implies aywaf partitioning the
components of tensors into various combinations ofeéhgoral index 0 and the spatial
indices. For instance, a second-rank covariant tefsidra whose components with

respect to a natural coframe agg can be partitioned into:
azapd0d+agdlOdX +apdXOdl+adXOdx', (6.17)

which involves one time-time componead,, three time-space componerds, three
space-time componendg, and nine space-space componepts

The linear transformations of Minkowski spa®®* that preserve the Minkowski

scalar producty are called_orentz transformations Hence, for such a transformatibn
one must have:

77 (L(v), L(w)) =77 (v, w) (6.18)

for any two vectors andw in 9t*.
If one rewrites (6.18) as the matrix equation:

vL T 7Lw=vnw
then condition for a4 real matrixL to be a Lorentz transformation is that:
L'nL=n or L*'=L"=qgL"n (6.19)
Hence, its inverse (which automatically exists) mustduekto itsLorentzadjointL”, in

analogy with the way that orthogonal matrices héedr transposes for their inverses.
If one expressds in time+space form then one will see that:

. _ 5 ! L(j) *_ L(()) I _Lio
if L= —+-+ then L =| =%+ |-
Lk L b

In particular, L) is not altered, while the spatial submatl:i?< gets transposed. Thus, the

spatial submatrices will always be spatial rotations.
However, the Lie grou@(3, 1) of all Lorentz transformations has a dimensibsix,
while the subgrou®(3) has a dimension of only three. The remaining thieemksions
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are defined by theure Lorentz transformations or boosts. If one thinks of a proper-
time hyperboloid:
(UO)Z _ (ul)Z _ (UZ) 2 _ (u3)2 — C2T2, (620)

as a one-parameter family of 2-spheres of radius-squatg + (%) ? + (U%)? then the
rotations will preserve that radius while the boostsahinge it.

Physically, boosts are the relativistic transfororai from one reference frame to
another that has a constant relative velocity wat$pect to the first one. If the relative
velocity points in thex-direction and has a magnitudethen the corresponding boost
transformation will take the form:

T=y[t+/ A, X=y[vt+X], (6.21)

while the other coordinatgs z will remain the same.

If one replaces with x° = ct and T with X°= ¢t and adds a superscript 1x@nd X
then this can be expressed as a matrix equation:

X° cosha  sintr || x°
=] X (6.22)
X sinha costo || X

into which, we have introduced thapidity parametera, which will make:

cosha =y, sinha=ypv/c (6.23)

The subgrouBQ3, 1) of O(3, 1) for which all matrices have unity determinant is
called the special Lorentz grouypor sometimes just thd.orentz group Such
transformations will preserve the four-dimensionauvate, * e, * & ™ e; of a 4-frame
{e,, =0, ..., 3}, as well as its orientation. If one ideieSfe, as the time direction then
one can further decompose special Lorentz transfornsa@@cording to whether they
preserve or invert the orientation of the lin®]] Such transformations are called
orthochronousin the event that they preserve that orientationpolagically, O(3, 1)
consists of four connected components depending upon thefggtL and whetheL is
orthochonous or not. The identity component shall beteéenbySCO (3, 1) and referred
to as theorthochronous Lorentz group.

b. Relativistic hydrodynamics. The story of relativistic hydrodynamick4f1q starts
with a flow velocity vector field:

u(x) = u*(x) 667 (6.24)

that is defined on some regi@d of space-time, and is assumed to be either timelike
lightlike.



52 Chapter | — Basic Continuum Mechanics

Now that we must distinguish proper timewhich is a curve parameter, franthe
coordinate (which can also serve as a parameter), tieebsf integrating the system
of four ordinary differential equations for the world ling€s):

X w@), e, =), (6.25)
ds ds

will become more subtle depending upon whether the parasistequal tor ort.

For one thing, if the vector field(x) is light-like (as one would expect for a photon
gas), there will be no proper time parameter, and odnke have to use an affine
parameter. Similarly, in time-like cases, one mightehto consider the integral curves in
both proper time and time coordinate parameterizations.

One thing that simplifies matters is that since thsidaonfiguration manifoldn*
includes time already, in effect, all velocity vectoddgwill be time-varying (i.e., they
will be steady only with respect to some referencedés). Hence, one no longer needs
to distinguish between path-lines, which are integral cureé time-varying flow
velocities, and the streamlines, which pertain to stdlady. Following Lichnerowicz
[15], we agree to call all integral curveseamlineggenerically.

The covelocity 1-form:

u=u,dx (6.26)
is associated with is associated by way of the Minkowski scalar product:

u=iyn (U= v UY). (6.27)
Hence, one must be careful to include appropriate gigits components:

up =’ = A&, u=Bvi=-u=-8v" (6.28)
One then has:

u(u) = Jlulf =ulf, (6.29)

and for proper-time parameterization:
u(u) =2 (6.30)

In (6.29), the definition of |ii |f comes from the Minkowski space structure on the
cotangent spaces RY, which is defined by the inverse matri%’ to 7, .

The rate of deformatiodu has more non-zero components now, since one must
considen® to be a function of¥, and not just 1, as it was before:

du=é +Q, (6.31)

in which:
é=3¢e,dxX'dx, €,=Uyut+Uy (6.32)

is the symmetricate of straintensor field, while:
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Q=3 Qu dX' M dX, Q= Uyy = Uy (6.33)

is the anti-symmetrikinematical vorticity2-form, which satisfies:

Qu=du. (6.34)
If one splits space-time accordingxbandx, i = 1, 2, 3 then the two tensor fields
will decompose into:
& = Ugo ()% + L (Uoj + Uig) X dX + L (uij +uy;) dX dX (6.35)
Qk = (Uoi — Uio) A A X + L (Uij — uy;) dX 7 dX. (6.36)

Note that the components, anduy; would vanish in non-relativistic mechanics, for
which ywould be a constant, namely, 1. However, if ons &gt ¢ y(x), as in (6.11),
then:

ou, _ay_ y° ov?
Upo= —p= —= ——, 6.37
T ot 2¢? ot (6.37)

2
= 6u0 = Cﬂ: Kal (6.38)

ox ox'  2cox

Hence,upo will vanish when the spatial speed of flow is dans in time, whileug; will
vanish when it is constant in space.
Since one also has:

Lo U 100v) z{avi &(z)z N] (6.39)

ox° ¢ ot clat 2lc) at

one can now compute the time-space componentglincases:

ylov 1 (107 o]
Ugj +Uog= =+|—+= ——V +—], 6.40
MU el at AR TRA | (6:49)
ylov 1 (107  ov)]
Upi —Uo=— % —_ - —_ V. —— . 641
o e at AR TR | (6.4

The interpretation of these time-space component®ot entirely obvious, beyond the
fact that they involve the non-relativistic spaaaiceleration covector fied; / 0t, along
with corrections to it that originate in the podé#y that the speedv of the non-
relativistic velocity vector might vary in both tevand space.

One can then express the spatial gradignof the relativistic (i.e., proper-time)
velocity in terms of the spatial gradient of the non-relativistic velocity by the equation:



54 Chapter | — Basic Continuum Mechanics

a(yv) _ oy ov VoV
U= L=~ V+y—=ylVv +t—V—|. 6.42
d X ox ' yax VIV 2c® ' ox! (6-42)
V2
As v goes to O,u; ; will go to v +?\4F’ while ui; will become infinite asv
C X

approache€. Hence, once again, the possibility that the dpa&fethe velocity vector
field will vary in space has changed the naturett@ non-relativistic limit of the
relativistic expression for the covelocity gradient

When one symmetrizas; , the spatial components of the relativistic ratestoain
will relate to the non-relativistic components by:

: o> oV
Uiij+Uj|i:VQ;+£z(\(axj +\{ax-j, (6.43)

while the difference between the spatial componeritghe relativistic kinematical
vorticity andtimes the non-relativistic components will be:

ov? ov?
U,j— Ui = ya + ;; [Vi ax) Vv 9% j (6.44)

which can be put into the form:

Q= ylw+ E(Zj VA (6.45)
2\ ¢

The second term in the brackets will vanish when dhadient of the speed-squared is
collinear with the covelocity.

Once again, there are two typesépf: ones for which the matrig/= 7*“¢_, has
trace zero and one for which that trace is non-z€ne can then decompoég into:

§ =g +3&9, §=¢§-7&9, (6.46)

in which & is traceless. Once again, this decompositioltisinique, since one can add

any traceless matrix tg/",
One finds that:

o, Ut _dy oV ay , |ov 1 yjz dv?
SO T o T X ) {ax' 2(0 dt (6.47)
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which one then regards as theativistic compressibilityof the flow. Its vanishing
would not be equivalent to non-relativistic incompressipilsince one would need to
have:

ov :_1m o2 6.48)

ax  2lc) dt’
Hence, this would vanish iff the speed of the flow werestant along the integral curves
of v.

One must realize that non-relativistic incompressybiitould imply that that the
speed of propagation of sound waves in the fluid would hate iaofinite, so relativistic
incompressibility must reflect the fact that there s upper bound on that speed of
propagation that is imposed by

When one introduces a mass densityinto the relativistic context, one must
recognize that it is not a Lorentz-invariant object, baty one-fourth of a Lorentz-
invariant object, namely, the energy-momentum densityrtx:f

p=mu. (6.49)

In this expression, we have distinguished the expreshatrp takes in any rest frame,
namely, theest mass densitgh . Such a Lorentzian frame will have the property that
=0 (sou=cdtandp=mc df). Hence, we can say that:

P= (o yc o yvi) = (oc, pVvi), (6.50)
in which:

P=MYy (6.51)

will then become theelative mass densityor the Lorentzian frame show relative
velocity isV.
One can also characterize the temporal componemt a$ 1¢ times theenergy
densityE of the motion:
Cp=E=pf=ym@=yE, (6.52)
which will then make:
Eo= ¢ (6.53)
therest energy densityf that motion.
One then has:

llp |F =02 lulf= A2 c. (6.54)

Since light waves are associated with an energytgeansdl a momentum density, but
a vanishing rest mass density, one cannot use the defiriéid®) for the energy-
momentum density 1-form, but must start wotk (E / ¢, pi) as the definition, which will
have the property that:

lipIf=o0. (6.55)
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Later, we shall discuss the way that such an energyantum density is associated with
a kinematical state, in the form of the “frequency-evaumber” 1-form, rather than the
covelocity.

The exterior derivative g is called thedynamical vorticityQq, and since:
Qy=dp=dp*u+pmdu=dmu+mQx,
the dynamical vorticity will bgx times the kinematical vorticity iffig, is collinear with

u.
If p = uis the energy-momentum density vector field then since:

0 j i i
div p = 29) , 0(p\) _ 0(pB) , 0(LBV) _ 0P , (V)
c ot ox ot ox ot ox

one will see that this differs from the non-relaiic expression (5.11) for conservation
of mass by only a correction to the mass dengitgnce:

divp=0 (6.56)

can serve as the relativistic definition of consg¢ion of mass.
p also defines the relativistic dynamical comprasgibby its four-divergence.
Since:

divp:dpo(u)+podivu:%+podivu
4

the dynamical compressibility will be equal pe times the kinematical compressibility
iff o is constant along the flow aft

Of course, since mass is not a Lorentz-invariamtcept, one usually expands the
conservation of linear momentum by embedding tlerggamomentum density into the

energy-momentum-stress tens®f’, whose doubly-covariant forni,, is generally
assumed to be symmetric in relativistic hydrodyreani The components of both

decompose as:
E ! cp E !cp
H= ——.—I——.— = —+-2
T, {Cp’ i o } T {Cp i_a?j } (6.57)

J

in which a} IS the (relative) stress tensor, and one mustthetsign discrepancies:

P=-p, aG=-0. (6.58)

|
Hence:
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|
Th= {_E_L_CP_} | (6.59)

Hence, even though,, is assumed to be symmetri€;will generally be asymmetric.

One should notice that all components have the samsie baits of M / (LF), since
pressure has units of force per unit area.

One then sees that the tracergiwill take the form:
T/ =E+0. (6.60)

It will then represent the sum of the energy densitl/the three times the mean pressure.
Since T/ is generally asymmetric symmetric, the eigenvaluesTgf will not

necessarily be real. One can also pose a generalgeavelue problem foff “ in the
form:

If one assumes that the eigenvalues are all real tiee will be aprincipal framein
which T/is diagonal. A common restriction diy’ is that it must have at least one time-

like eigenvector. One then calls sucfi/anormal[15].

The divergence of /' has temporal and spatial components that are equal to:

10E__op dp . 9p dp op, 00
0T/ = tc—=c| =— =Cc——, oTH= L+ L, 6.62
N TR [at 6xj dt a0 et ox (6.62)
Hence, its vanishing:
0,1/=0 (6.63)
will yield two sets of conservation laws:
o P 540 (6.64)
dt ot .

From the first equation in (6.62), one can alsdeathe first conservation law as the
conservation of energy in the form:
OE L2 ap

6.65
at ox' ( )
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In the case of external force densitigghat act upon the fluid (e.g., electromagnetic
forces that act upon a charged fluid), instead of coaservlaws, one will get balance
principles. Namely:

9,T =1, (6.66)
which yields:
do 1 ap' -
=1, - =f-0.0. 6.67
a ¢ a0 (6.67)

Hence,f, / ¢ must represent the source of the net flux of massugir any region of
space-time. However, it is more conventional to thinkheftemporal component bhs
representing a power transfer density, which would besistamt with the elementary
association of with dp/ dt. One can then make the first equation in (6.67) camtist
with that definition by multiplying both sides Iof:

—=foC. 6.68
prail (6.68)

The general form ofT/ for the purposes of relativistic hydrodynamics (see
Lichnerowicz [L5] or Halbwachs17)) is:

T/ =p, U +6~. (6.69)
The first term is essentially a kinetic energy tewhile the second one represents the
contribution of internal stresses that are due to therantion of the constituent
molecules with each other, along with the externedds. When there is no transverse
momentum present:
py U =pu, U (6.70)
Otherwise, the kinetic term can be asymmetric inldsbly covariant form.

The most common definitions that we shall use intvidllows are:
1. Pure matter (i.e., dust cloud}’ = 0.

In such a case, there are no mutual interactionstrardfore, no internal stresses.
The divergence of /= u* p, will take the form:

0,1/ = @uU) pv+U'dypy=Acpy+ i‘i’ , (6.71)

which differs from the proper-time derivative of the myyemomentum density by a
contribution from the kinematical compressibility. rnde, for a kinematically
incompressible fluid, they will be equal.
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2. Perfect (i.e., inviscid) fluid)g' = 7o} .

Sinced g = 0,7z one sees that sees that the relativistic Euler equéte.,d,T/ =
fy) will take the form:

IR 1, - 3,7+ A . (6.72)

Note, however, that the time derivative has becomeithderivative, which is consistent
with the fact that one usually treats hydrodynamicienEulerian picture, which means
following the evolution of the hydrodynamical state shtes along the streamlines.

3. Charged, perfect fluid?’ = (perfect fluid) +7 , where:
/= F‘Ff-F%3" (6.73)

is theFaraday tensorfor the electromagnetic field strength 2-foFrthat represents the
external field. Its divergence will be the Lorentwde that acts upon the charge and
electric current thal = ou represents wheais the charge density:

0,1,=FuJ, (6.74)

which will get added from the right-hand side(6£72); 9,7, might also substitute fdy,

if there are no other external forces that act uperfltid.
Although one can also introduce viscosity by makéhg proportional to the rate of

strain ¢, , we will not be dealing with viscous fluids in what élls, except to compare

the form of the “guantum stress tensor” that will egeelater to some of the standard
forms that we discussed here.

It should be noted that the state of the relativitiiid is determined by six variables,
namely p, 7z U). There are four equations {6.72), and if one makes a definite
statement about compressibility then there will be, fwkich will still leave the system
underdetermined by one equation. The most common way qfletng the set is to add
anequation of statewhich might take the form:

p=p(7. (6.75)

A common choice is based upon the ideal gas relation:
mv=nRT or mdp=——, (6.76)

in whichV is the volume of the gas, is the number of moles preseM & molecular
weight of gas moleculeR is a universal constant, amds the absolute temperature.
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When a fluid has been given an equation of state, daes t® it adarotropic.

c. Balance of relativistic angular momentumSince the main physical application
of the theory of relativistic angular momentum foratefable continuous media is to the
Dirac electron, we shall defer a discussion of theseoration of relativistic angular
momentum to a later chapter in which that topic welt®me necessary.

d. Relativistic solid mechanics: If one thinks of the solid state of matter as
something that includes elastic, plastic, and rigid matten one will see why the
relativistic theory of solid mechanics is less develoghesh relativistic fluid mechanics.
For one thing, the very notion of the deformatiom@lid object already leads to certain
relativistic subtleties, such as the idea that a spiiere will appear to deform into an
oblate spheroid as its velocity relative to an obsein@eases, despite the fact that it will
continue to appear to be spherical in its rest spaceta.eomoving observers.

Hence, we shall only attempt to discuss some of fuessthat are associated with the
transition from non-relativistic to relativistic sdlimechanics, and point to relevant
references in which they might have been discussed.

1. Causality.— Due to the universal speed limit @fnot all deformations will be
physically realizable. For instance, if one looks ptaper-time-parameterized family of

diffeomorphismsg; : Ro — M*, x > @ (X), (0< 1) of an initial spatial regiofRothen the
curvesgr (Xo) that are defined by the evolution of each pagifl Rocannot have velocity

vectors that become space-like for amyif the regionRy is massive then they cannot

become light-like either. Hence, one must distingwisusal deformations from acausal
ones.

Rigidity is to the solid state what incompressipils to the fluid state in the eyes of
relativity. In both cases, the issue is the infirgpeed of propagation of waves, which
cannot exceed in reality. Hence, it has been suggested by Brotdantandesl8] that
what Born [L9] was calling a “rigid” body should have been calleduadeformablene.

2. Polar decomposition— The fact that an element GL"(3) — viz., an invertible
real &3 matrix with positive determinant — can be expressed unigsey product of a
non-zero multiple of the identity matrix, a volumesgerving strain, and an oriented
Euclidian rotation is due to the fact that topolodicahe manifold of the Lie group
GL*(3) is the product of a six-dimensional vector space badjtoup manifold o8Q(3).
Furthermore, the algorithm by which one usually obtaias decomposition is basically
the Gram-Schmidt orthonormalization process. At theelleof infinitesimal
transformations, one finds that the corresponding decsitigmo of the vector space that

underlies the Lie algebrg(3) intoso(3) O R® is nothing but the polarization of a square

matrix into the sum of an antisymmetric matrix and arsgtnic one by using the matrix
transpose operator.
When one goes from three dimensions to four, the qunesng orthonormalization

process will makeGL*(4) diffeomorphic toR* x SQ4). However, the relativistically
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interesting subgroup dBL"(4) is SQ3, 1), notSQ4), so the question becomes that of
whether one can decompose a matriGli(4) into the product of a non-zero multiple of
the identity matrix, a volume preservihgrentz strain and aLorentz transformation
The problem with finite transformations is that Graoh@idt will break down whenever
one encounters a light-like frame vector in the atgm, since normalization would then
involve division by zero.

One finds that the process is more elementary to idesier the context of the Lie
algebras. Basically, one uses the Lorentz adjopdrator *:gl(4) — gl(4) that was

defined above, and which takes the matixo:
M =npMTn, (6.77)

in which 7 = diag[+1,-1, -1, —1] is the matrix of the Minkowski scalar product in an
orthonormal frame.

If one looks at a differentiable curié(s) through the identity matrik = M(0) and
differentiates it at the identity then the conditdM = =M "M = will give:

[}
m+m =0 m= dI\(Aj(S) ’ m = M1 - m", (6.78)
S |s=0

s=0

whenm belongs tao(3, 1). Hence, if one polarizes a genendll gi(4) by using * then
one will decompose it into a sum:

m=1|+e, [ =1(m-m¥), e=1(m+nm), (6.79)

in which| will become an infinitesimal Lorentz transformatiande will become what
we shall call amnfinitesimal Lorentz strain.

Although the trace dfwill vanish, since the diagonal elements of raatisymmetric
matrices will always vanish, the same cannot bd sdéie. Hence, one can further
decompose into a traceless part and a trace part in thel ugap

e=e+iTre)l, e=e-1Tr@l. (6.80)

One can obtain a corresponding decompositionmdigix M in GL*(4) into a product
of a determinant, a finite Lorentz strain, and adndz transformation in a neighborhood
of | by exponentiation, although details become rapitlplved, due to the non-Abelian
nature of the group.

3. Relativistic constitutive laws- As one can imagine, the way that the basic
material properties are affected by relativisticngiderations can also get rapidly
involved. For instance, the basic Hooke law asdimei of stress with strain will carry
with it the unbounded velocity of oscillation ofrgle harmonic oscillators in the rest
space of the oscillator. To an observer, if ondealing with an undamped mass-spring
system with a Hookean spring, so the natural frequand maximum velocity will be:
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= \/% : Vmax=Aay (A =amplitude)

as the velocity of oscillation increases, so will #gparent mass, which will reduce the
natural frequency. Moreover, the apparent amplitudebgilshortened with increasing
relative velocity. Of course, to be rigorous, oneusthoeally just re-pose the problem of
the relativistic harmonic oscillator, but the pointloé example was only to show that the
simple linear constitutive law would be somewhat n@vide relativistic context.

One of the earliest attempts to introduce a relaiviginstitutive law was made in
1959 by Synged0], who assumed that one could still deal with a HooKeanif one
went to the coupling of rate of stress to rate ofstra few years later, in 1963, Rayner
[21] discussed the Hookean coupling of stress to straid970, Oldroyd 22] introduced
a “tensor of physical constants” for a material, vahiccluded, elasticity, viscosity, and
visco-elasticity within its scope. Carter and Quintand973 general-relativistic
formulation of perfectly-elastic bodie23] asserted that Rayner’s constitutive law would
be sufficient for low-pressure applications, suchhesimteraction of gravitational waves
with planetary bodies, such as the Earth, but for-pigdssure applications, such as
deformations and vibrations in the crusts of neutron stens,will need to correct that
law.

More recently (2004), Hermann, et @4] examined the constitutive properties of
relativistic spin fluids, such as the Dirac electrond ahe Weyssenhoff fluid, which is a
simplification of the latter. We shall discuss sheexamples in our last chapter on
“hydrodynamical” models for the Dirac equation.

4. The relativistic propagation of waves in elastic media.We have already
mentioned the ultimate bound obn the speed of propagation of waves. In many of the
discussions of relativistic constitutive laws (in pariulSynge 20] and Rayner 21]),
the test of whether the law would be useful in a retdic context was to look at the
propagation of shock waves and see how restricting thenmaxispeed would constrain
the constitutive law itself. Synge looked at the Caymtoplem for Einstein’s equations,
when the energy-momentum-stress tensor was suitablstramed, while Rayner used
Hadamard’'s approach to the propagation of wave that indodlisturbances being
defined across initial discontinuity hypersurfaces. dbkri@5 also examined how
conditions in the constitutive properties might afféet propagation of shock waves.

5. Variational formulation.— The earliest known (special) relativistic treatment
continuum mechanics was by Herglotz in 1928][ In that article, he derived the
relativistic equations of motion/equilibrium from an actiprinciple that was defined by
a “kinetic potential.”

In 1964, Schopfd7] gave a general-relativistic treatment of conservasiystems.
For such systems, one had an elastic potential, ba¢&iocurrent.

Since we will devote an entire chapter to variatiomsthods, we shall content
ourselves for the moment with that brief historigalapsis.
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8 7. The principle of virtual work. — Before we get to the principle of least action in
the context of the variational field theory, we shiaét discuss a first principle of
mechanics that is more general in scope, since itagdpbes to forces that do not admit
potential functions and motion with non-holonomic dossts. We are referring to the
principle of virtual work.

a. Virtual displacements: If we return to the definition of a finite deforna@tiof an
initial statexy of ak-dimensional object in space into a final statas ak+1-object then
the definition of an infinitesimal deformation wilebome not only straightforward, but
consistent with a good way of defining “variations” fbe purposes of the calculus of
variations. Namely, if the “time” dimension is defihdy W then one can define a

congruence of differentiable curve@®) = x(W%, ul, ..., ut) from each poink(0, u:, ...,

u¥) of xo to its corresponding poin(1, uf, ..., u) of x;. The partial derivativéx / au°

will then define a field of velocity vectors on theage ofx, and we define theirtual

displacemen{AKA: variation) of the initial statex to be the restriction of that vector

field to the image oxo:

. I 0 “oe

5 = K l) (7.1)
ou

u®=0

Hence, this is simply the restriction of the velgaiector field that was defined in (1.31)
to the initial configurationg= 0).

The sense in which these displacements are “virtigalthat since vector fields
represent the infinitesimal generators of one-paranfateilies of finite displacements,
until one actually integrates them into such families sense, they are only latent. That
is, they only tell one about the other deformationg thaexist in a “sufficiently-small
neighborhood” of the initial configuration of an object.

The concept of displacement can include rotations, elk ag translations. More

generally, one has a Lie gro@acting upon a regio®, of space, so a one-parameter
family of displacements(u’, Us, ..., Us) can also be generated by starting with a
differentiable curvegy(u®) in G and letting it act upon some initial configuratius, ...,
us). For instance, i6 is represented byxn matrices that act upon the coordinai¢sof

the initial configuration then one might define:

X (W0, Ug, .y US) = 0L (W) B (s ) (7.2)
In order to turn such an action into a virtual disptaent, one differentiategu’) at

u’ = 0 to get a tangent vectarto G atg(0), and obtains a vector field as(uy, ..., US):
HK(Uy, .o U) = & X (U, ), (7.3)

which is the restriction of the fundamental vectaeldithat is associated wittwto the
initial configuration.
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b. Virtual work. — The dual object to a displacement is a force in tlee o
translations and a torque (or moment) in the case diagnsa As long as one deals with

infinitesimal displacements, one can use the canbhiliaear pairing of a Lie algebrg
with its dual vector spagge, namely:

<.,>:g xg - R, (a a) —<a,a>,

in which: _
<g,a>=a(@=qa, (7.4)

to define a bilinear pairing of forcds with virtual translationsdx and torquedM with
virtual rotationsd@that gives thevirtual workthat is done by the force (torque, resp.) on
the virtual displacement:

IN=F(X) =F &, AN =M(06) =M; 6" (7.5)

As long as elements of boghandg” are represented by<n matrices, one can also
represent this bilinear pairing by using thartan-Killing form ong:

<a,b>=Trab=a . (7.6)

(Whena andb are not represented by matrices, one replaces thémthair adjoint
representations.)

As mentioned in Appendi&, for semi-simple Lie algebras, suchSJ3) andSQ3,
1), this bilinear functional will define a scalar productgome., it will be symmetric and

non-degenerate. F&Q3), it will be minus the Euclidian scalar product, whde SQ(3,
1), it will have the signature type ofi, -1, -1, +1, +1, +1).

We shall return to the study of virtual work in the eoatof the calculus of
variations, since that is really the proper place farhsconsiderations. For now, we
simply stated’Alembert’s principlethat when a system is in an equilibrium state, the
virtual work that is done by any “allowable” virtual displagent must vanish. One can
also use this as the basis for its time evolutionng acludes “kinetic forces,” which
essentially amount to contributions of the fama

8. The point-particle approximation. — Since the statistical interpretation of
guantum wave functions (or rather, their moduli-squared)es down to the probability
of finding apoint-like particle within the differential volume element thsitlocated at
that point, for the sake of completeness, it is sgagy to discuss the way that one goes
from the motion of extended, deformable matter to theammf point-like matter.

The first step is that of replacing the mass derfisitgtion o (t, X) with an equivalent
set of moments by using theoment theorerfor a distribution. Although that theorem is
discussed most frequently in the context of probability ilefnctions, nonetheless, the
same theorem is just as applicable to densities of,ncassge, spin, etc. It can be
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expressed im-dimensional Euclidian space in full generality, althougat involves
introducing the formalism of multi-indices in orderrt@ke the notation manageable, so
we shall show how it works in the case of a one-diio@as real vector space, since the
essential details are already contained in that demadiost. We shall also omit the time
dimension as something of a distraction at this pdiot, that is really no loss in
generality when one treats time as a dimension, anyway

Suppose that the density functjofix) admits a Fourier transform:
A 1 v i
pk) = | e"p(¥ dx (8.1)
21T

Expand the exponential in a Taylor series:

00

e =1+ g‘%(—ikx)” = Z$(—ik)”x” . (8.2)

n=1

Assuming thatp is also “analytically convenient” for one to invethe order of
summation and integration, one will get:

R 1 21 .
K) =—|M,+ > —M_(-ik)" |, 8.3
p(K) 277{ 0 ;n! n( )} (8.3)
in which we have introduced the successhament®f o:
Mn= [ p(x) X" dx (8.4)

The moment theorem amounts to the fact that if isngiven a complete set of
moments then one can reconstradly taking the inverse Fourier transform ofk) .

In particular,My is thetotal massof p (assuming thap is a mass density). For a
probability density functionMy would always be equal to 1, since that would ke th
probability that the statement is true in at lesshe case; e.g., in quantum mechanics, it
is the probability that the point-particle existsreewhere in space.

The first moment is essentiallynaean positiorof o whenp has been normalized to
have unit mass. For an arbitrary mass distributio&center-of-mas¢COM) becomes:

Ml

Xem

For a probability density function, the second reamms its variance, and the square-
root of that is the standard deviation, which (irsedy) describes the extent to which the
points in the support ¢f cluster about the mean. For a mass density fumdtine second
moment relates to the moment of inertia.
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One basically uses the moments @fto reduce the motion of the deformable,
extended matter distribution that it describes to theommf a point-like mas#(t) that
is always located at the center-of-masg(t) of o (~ M1). When one wishes to go on
from a point to an extended, but rigid, body one wirntlassociate the COM with an
orthonormal frame, such as the principal frame of tlenemt of inertia that can rotate
independently of the motion of the COM.

Note that there is generally a difference betweemuhgfithe total linear momentum
of the mass in the point approximation by the prodictcm, wherevem = dxm / dt, and
defining it by the integrall pV' dV over all space, unlessis constant in space to begin
with. However, that would put one into the case ofirigiotion, not deformable motion.
Nonetheless, one does have that:

dx, J% d(px) p i, X
t) = —° = t,x)dvV= —| ———dvV = dv,
V(1) dt dtzMX(X) ML ot I[at 'Oat
which will generally equal:
ol — 1 i
vV _VL'UV dv

whenp is not time-varying. The expression on the rigahd side amounts to the mean
velocity over the support ¢f

Hence, one should be careful about jumping tocthelusion that the operations on
densities and points commute with the operatiorakihg the moments.

The degree to which the approximation of a defdimaextended mass distribution
with a moving massive point or frame is accurate s@metimes be estimated by looking
at a breakdown of the distribution of the totalrgyeof the original deformable, extended
mass distribution over its (potentially-infinitepgrees of freedom. In particular, one
might first look at how the work that is done oe #xtended object in question shows up
in its elementary rigid-body degrees of freedonmely, its bulk translation and rotation.
One can then better say whether rigidity is reallglose approximation or not. For
instance, if one drops a ball of clay from a giMeight then the work that is done
accelerating it as it falls will be converted althaompletely into the work of
deformation when it hits the floor and stops, exdep a certain small percentage that
goes into heat. In such a case, rigidity cleargaks down at the point of impact.

The sloshing of liquids in moving tanks offersiateresting example of a motion of a
deformable, extended mass distribution for which kimetic energy of motion is mostly
concentrated in the rigid-body degrees of freedwimle a much smaller percentage is
distributed over such things as turbulence in thlame of the liquid and on its surface.

An interesting problem in which to test the vasadegrees of approximation to the
motion of deformable, extended bodies is what onghimcall the “water balloon”
problem, which amounts to determining the motioraofater balloon in space after it
has been given some initial translation and rotafiwelocities, as well as an initial state
of deformation. The successive degrees of apprabiam start with:
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1. Point-mass moving along a curve.

2. Rigid-body (i.e., oriented, orthonormal frame) ttamsg and rotating along a
curve (e.g., COM).

3. Pseudo-rigid body (i.e., oriented, linear frame) treatslates, rotates, and shears
about a curve.

The last case includes the possibility that it can defoy elongation and contraction
along the principal axes of the strain. Hence, a gpten deform into an oblate spheroid
or ellipsoid about any given oriented, orthonormal frahag is to serve as the principal
frame.

9. Frame strain. — As mentioned above, the Cauchy-Green approach to strain
considers only the relative deformations of neighborisgiadces in a material medium.
Consequently, although it is true that a transformatiban n-dimensional Euclidian
space that preserves all distances between pairs dEpuoust be an isometry — i.e., a
rigid motion or a reflection — nonetheless, a transédion of a lower-dimensional
submanifold can be an isometry of the lower-dimensionaftieneithout having to be
rigid.

For instance, if one bends a wire of negligiblessrsection without stretching or
compressing it then that motion will preserve the onesdsional metric along the wire
— viz., the arc length — despite the fact that it do¢$aee to be rigid. Similarly, one can
deform an infinitely-thin surface (membrane, plate, Ishetk.) without stretching or
compressing any of its regions and come up with an isgroéthe surface that is not a
rigid motion in its ambient space. For instance, allettgpable surfaces, such as
cylinders and cones, are isometric to a plane, even thiegé is clearly a non-trivial
deformation (i.e., diffeomorphism) that will deform kage into a cylinder or cone, in the
sense that work will be necessary in order to perfoemd#gformation.

The way that continuum mechanics usually addressesithation is to treat the wire
and the surface as being, in fact, three-dimensionattsbguch that the approximation is
not in their dimensions, but their material propertiésence, the wire would be a thin
solid cylinder whose strains and stresses could be treatednstant across the cross-
section, and similarly a membrane would be a cylindeysgtheight (i.e., thickness) was
small enough that the strains and stresses could beedreg constant across the
thickness.

a. Monomorphisms of frame bundlesHowever, one might also approximate some
of the dimensions of a-object O as effectively zero and consider the sp@tgO of
linear n-frames at each of its points 0 O (k = reduced dimension of objeat, =
dimension of ambient space). One then says thatléfemation affects not only the
points of O, but the frames o&L(O), which is the set of all linear-frames on all points

X. Since that set projects ontdin a natural way:
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p: GL(O) - O, (X, 8) — X,

and the seGL.O of all linear frames ax is called thefiber of x, one calls the triple
(GL(O), O, p) afiber bundleover ©® (). In particular, it is the bundle of all linear

framesin R" at the points oD.

One can think of a deformation @ as something that affectSL(O) directly,
namely,F: GL(O) - GL(R"), and takes a linear frame, @) atx O O to a linear frame
(y, €) aty O R" in an invertible, differentiable way such that its irefE ™t (which is
defined only upon the image @) is also differentiable; i.eF is a diffeomorphism of
GL(0) into GL(R"); we call such a mapraonomorphisnof the two bundles when it also
has the property that the image of any fildr,(O) will be the corresponding fiber
GLry(R"). Since the Lie grouL(n) acts upon the frames in baBL(0) andGL(R"),
one can also characterize a monomorphEmGL(0) - GL(R") by saying that it

commutes with the group action; i.e., for any fraemat x and anyA} in GL(n), one must
have:

F(x, g A)) = (F(x), F(g) A). (9.1)
The particular form foF(g) that we shall use is:
F(e) =g h'(X), (9.2)

in whichh : © - GL(n), x = h'(X) is a sufficiently-differentiable function that then
takes the form of a transition function that acts ujpames.
If one then defines the projection of the niapnto the base manifolds, namély,O

- R", x=p (GL(O)) = P OF(X) , which is the composition ¢f with p : GL(R") -
R" then the fact thaf is a monomorphism will imply thdtis a diffeomorphism onto.

One refers td= asvertical whenf is the inclusion of in R" (i.e.,x = X). Such a

deformation will take a frame atto another frame atfor everyx. Otherwise, whehis
not the inclusiondfl : TxO - TiwR" will be an invertible linear map for everyl O,

() Of course, there are some topological conditionsrthatt be added to make the definition of a fiber
bundle complete, but we will not need them in what follov@ne might, however, confer a good book on
geometrical and topological methods in mathematical phigsich as Frenke2§].
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and will then define an invertible, bi-differentiable mdp: GLO - GLixR", (x, &)
— (f(x), dfl\(e)) that we call thdift of f.

Generally, the lift of will not agree withF except that bothf andF will project to
the same map. If one defineg= f " [F thenF, will be vertical, and one will have:

F=f[F.

That is, any monomorphism &L(0O) into GL(R") can be expressed as the product of

two unique monomorphisms, one of which is vertical, andther of which is the lift of
its projection. We shall say that a monomorphismintegrableiff it coincides with the
lift of its projection:

F=T: (9.3)

equivalently, its vertical paf, will be the identity transformation at every point@f
We illustrate the scenario that we have been disogiss Fig. 1.2:

GL, F(GLy) = Gl

[ (=
A ] L
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Figure 1.2. A monomorphism of a frame bundle.

Although the manifoldD cannot always be covered with a single coordinate ,chart
any pointx of it will admit at least one local coordinate chdt X) in R" that isadapted

to O (so the lash — k coordinates will be constant for all points @}, and for which

GL(O) will be topologically equivalent tt) x GL(n) when one restrictd to points ofO.

In order to get coordinates f@L(n), one defines the natural frame field that goes with
(U, X) —viz.,e = 9; — and that will allow one to associate every lineflameeg at eaclx
with the invertible matrixA} that makes:

a=0A. (9.4)

Hence, the coordinate charts@f(©) will look like (X, ..., X, A; ).
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When one has such a cha, ) about & &) and another\{, y) about ¢, €), one
can express a monomorphignas two systems of equations:

y'=y'(¥), §=e(xe)=gh(X. (9.5)

The projected mapis described by simply the first set of equations in (918 lift
f will then be defined by the matrix df, namely:

[af],] = L (9.6)

whose inverse will béx ' /dy’.
The vertical parE, of F will then be defined by the equations:

=y s e X _op
y =X, & =¢gh oy g b, (9.7)

in which we have defined the transition function:

i= _J'a_xl

We now see that, in a sense, the scope of the Caud®n@icture of deformation
and strain is confined to the “horizontal” part of théodmation ofGL(O) that is defined

by the monomorphisnf; viz., the lift f of its projectionf. However, since the
dimension of GL(®) is greater than that o® by n? there will be many more

deformations ofGL(O) than there are aP. In order to show how deformations like
can be used to enlarge the scope of the definitiomraihstve must define strain for them
in a way that extends the definition of strain foa tteformations o®.

b. Definition of frame strain— The definition of thdinite frame strain matrixwill
be simply the matrixh/ that represents the vertical part of a monomorphisrthef

bundleGL(0) - O of linear frames on a material obj&@tinto the bundl&GL(R") - R"
of linear frames on the spaB& in which the object is embedded.

The correspondingpfinitesimal frame strain matrixy' is defined by the sufficiently-
differentiable functionw: O - gl(n) that takes every pointin the object to the matrix
w' (X) that represents the infinitesimal generator of tagrimh’ (x) ; i.e.:

@ (x)=exp [ (X]. (9.9)
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The matrixa' (x) acts upon the frame fietsx) to produce minus its differential:
de=-g0w, (9.10)

so upon differentiating h’ one will get:

digh') =dgh'+g Odh'=-g O (o' ~dh H)N .

If this vanishes then we must have:
' = di H'= RldHf. (9.11)

In order to see the last equality, note that whenrepkcesh’' with its inverse and

vice versain the expressiordh/ i, the effect should be to produce minws, but one
has:

diy K= -RidH, (9.12)

which follows upon differentiating the identity H = & .

Now, let us introduce a metric ®¥, which one can restrict todimensional objects

in it, such as®. For non-relativistic continuum mechanics, that metvould be the

Euclidian one J, while for relativistic problems, it would be the Minkdws(or
Lorentzian) metrio;.

The introduction of a metric into the tangent spaoé®"talso allows one to define a

special class af-frames in the form of orthonormal ones. Actuallyy a-frame can be
defined to be orthonormal, and the metric that makes it sib fallow from that

definition. For instance, ifd, i = 1, 2, 3} is a 3-frame iR® then one can define a

Euclidian metricdonR" by demanding that:

de,8)=4. (9.13)

If one wishes to find the scalar produ¥v, w) for any two vectors ifR® then one

must first express them in terms of the given frasie av e , w = w! g and then use
the bilinearity of the scalar product:

Av,w) =V W d(e, g) =g vV W. (9.14)

One can do something analogous for a linear fran' iand the Minkowski scalar
product.
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Since orthogonal transformations must take orthonofraales to other orthonormal
frames, any linear frame will define an orbit in the gpatlinear frame under the action
of a chosen orthogonal group. One can think of that spaite as defining the manifold

of all metricsM (p, n—) of the chosen signature type. Hence, diffeomorphidig! (p,
n—p) will represent deformations of metrics.

The essential point is that since a linear framendsfa metric, a deformation of the
linear frame will either be orthogonal for that netwr it will deform the metric in the
process, which will represent strain in the usual setisthe deformation in question is
an invertible linear map of the frame then polar decompasit

h'(x)=RI(X E(® (9.15)

will give the partE*(x) of the deformation that actually changes the mesia dinite

strain matrix, along with the orthogonal p&}(x) that does not.

However, it is a serious oversight to think that trhogonal part of the polar
decomposition will play no role in the geometry of defation merely because it does
not alter the metric at each point individually. Indlethe only way that a rotation at
each point will represent a rigid motion (i.e., no defation) is when thesame (%)
rotation acts at all points of the object. Hence, muist expect that the differentidR’

must a crucial role.

c. Frenet frames- A simple example of that situation is given bykave curvex(s)
in R for which non-zero first and second derivatives exisl, thry are not collinear; one

also assumes that the parameterization is by archlesgtthe velocity(s) will have unit
speed for als. One can then definelaenetframe{e(s), i = 1, 2, 3} for the curve by
setting e;(s) equal tov(s), andey(s) equal to the normalized acceleration vector field,
while e3(s) is a unit vector that is perpendicular to the plahey(s) andex(s) (which is
called theosculating plangand completes the 3-frame in a right-hand oriented v@ne
refers to the three vectors of the Frenet fram@tangent normal andbinormal resp.,
of the curve at each point.

By definition, all frame vectors are unit vectors, dhd third one is orthogonal to
both of the first two. The fact that the first t@e orthogonal to each other follows from
the condition that(s) must be a unit vector:

<V(S), V(S)> = 1, SO 0 :i <V(S), V(S)> =2 Q/(S , %>.
ds ds

() Of course, the definition of “same” also depends upgoltgical subtleties that relate to the
difference between a general fiber bundle and one wiotsespace is the product of the base manifold
with fiber — viz. trivial fiber bundles. However, we shall not need that levgkakrality in what follows.
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Since the frame(s) spans the tangent spaces at eqsh which can be identified
with R3, any vector inR* can expressed in terms of the frag(g). In particular, the

vectorsde / ds can be expressed in terms @&fs) in the form of theFrenet-Serret
equations:

d 0O « O
ﬁ=ejcqj, w=|-k 0 T1]. (9.16)
ds

0 -r

The parametek relates to an infinitesimal rotation in the osculgtpiane about the
binormal, and is called theurvature of the curve. The parameterrelates to an
infinitesimal rotation about the tangent vector, aaccalled thetorsion of the curve.
When the curvature vanishes, the curve must be a stidaightwhich will make the
binormal undefined; when the torsion vanishes, the curvet ralways lie in the
osculating plane.

Now, suppose that a curxés) is deformed into a curwgs) with no change in the arc
length, so points of the two curves that have theeseatue ofs will correspond under
the deformation. Let this deformation be expressethdgystem of equations:

y'=y' (x)), (9.17)

which are, of course, defined only for the points(sf.
The new velocity vector 8(s) will be:

_ o
ds ox' ds

and since the arc length does not change, the ndsttikx ! must represent a rotation of
the tangent vector, in addition to its translatiomfix(s) to y(s).
The new acceleration vector will be:

ﬂ_(d 6de>€+6)‘/(fﬂ(_ 0%y dx dX 9y d % (9.19)

d¢ |dsdx ) ds 0% d5 oxoxX ds ds 9 x o5
However, since the velocity is a unit vector, theete@ation will still be orthogonal to

that velocity. Hence, when one normalizes that lacagon, and completes the
orthonormal triad that represents the new Frenet frarf®, one will see that the net

effect of the deformation, apart from the translabdpoints of the curve has been a one-
parameter sequence of rotations of the initial frame:

8(s)= e (9R(9. (9.20)

One can then express the new Frenet-Serret equasons
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S
But since:
dé ERJ + d_RJ’
ds ds I ds
one must have:
de i xy  dR =
S R-S% B
dS J[R( ("f( I dS | j
which will imply that:
- dR’
w =R _ Tk ,
) =RIER-TEF
or:
@ :wﬁwa‘% 9.21)

One can then think of this last equation as describindef@mation of the curvature
and torsion of the curve by way of the action of the e&(g) in SQ3) onSQO), where

O is the curvex(s), in this case. Note that R(s) is rigid (i.e., constant) then the
transformation froma) to @ will be an overall change of reference frame for the

components. Furthermore, if the initial curve is stiigy’ = 0) then the deformedy
will be equal to:

. dR
W = R'Kd—lzk. (9.22)

Actually, the method that we used for obtaining (9.21) ditl depend essentially
upon our choice of the Frenet frame for the orthodframe field along(s). If we had
used any other orthonormal frame field &is) then the first difference in thaifferential
equations for the moving frame namely, (9.16) would be in the definition of the
matrix «)’, which would not need to have zeroes in outermost affahal entries, but
only along the diagonal; it would still have to be antisyetric, though.

Due to the linearity of the system (9.16), one canestile initial-value problem for it
by matrix exponentiation:

a(9) =a(0) exp [/ (o) dor. (9.23)

One can define the deformation of the frames mpbi R} (9, a priori, and one will

eventually obtain (9.21) for a measure of the defdgion of the frames alorgs) as a
result ofR(s).

d. Higher-dimensional Frenet frames There is also nothing special about the
choice of one parameter objects, since one cam@xtehigher-dimensional objects, such
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as surfaces, by extending the differential equationghfermoving frame for a linear
system of partial differential equations for the frafredd on the object, and if the
parameters ang®, a = 1, ...,k then the equations of the frame fielgu® will be:

5 0 «, -4,
ae'a:ejcq;, W =|-«k, 0 1,| a=1 ..k (9.24)
u

A -1, O

However, integrating this system will no longer be agp as (9.23).
If one defines the deformation of the frame fiel@u®) by way ofR(U?), a=1, ...,k
then the analogue of (9.21) will be:

@ =RIR+ RIS (925

The author has discussed some of these issues in data# in his article 10].
However, in the present context, it will not be neeeg to say quite so much, and we
will only make occasional comments that relate to #spect of the kinematics of
deformation. It should be pointed out that Kelvin armdt J29] essentially looked at the
deformation of frames as a way of describing the ibgndnd twisting of curves and
surfaces in the years before Riemannian geometry beégactiag all of the attention.

10. Cosserat media— In the last section, we discussed the deformatidraofes on
objects without mentioning the associated displacemetiiteopoints to which they were
associated. Eventually, one needs to include someuaiicg for the deformation of
those points, as well.

One might notice that system of equations (9.5) couldgsisiell define an affine
transformation, depending upon the nature of the functirtdved. That really comes
down to the fact that the manifold that underlies the dnieup A(n) — i.e., then-

dimensional affine group — is diffeomorphic to the (trivilindle GL(R") of linear
frames orR". The diffeomorphism is defined by choosing a linear fréme) at a point

x in R" and applying an affine transformatica (A; ) to (X, &) as follows:

(xe)@ A)=K+a eA)=(, &),
SO
y=x+a, € =eA. (10.1)

Since every element @f(n) has a unique inverse, this pair of equations will be uniquely
invertible, and there will be a one-to-one correspondéeteeen ally, € ) in GL(R")
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and the &, A}) in A(n), which will be differentiable with a differentiablmverse,
moreover.
The action ofA(n) on GL(R") above differs crucially from the action &i(n) on

GL(R" as a structure group, because the latter action ysventical; i.e., it will project

to the identity transformation oR" under the canonical projectid®L(R") — R" that
associates a linear framexatvith x. However, as we see from (10.1), the actioA®)
on GL(R") also moves the points R" that the frames are associated with. That is why

one must be careful about committing to the methogsia€ipal fiber bundles (such as
the various frame bundles) when one needs to includdisiplacement of points in space
along with the displacement of the frames at thosatgo

When one has defined an orthogonal structure Rdn one can restrict the

aforementioned action to the subgroup of rigid motmmihe Poincaré group, as the case
may be. The corresponding diffeomorphism will then Itk the bundle of orthonormal

(Lorentzian, resp.) frames ov&". For three-dimensional Euclidian spaE& the

diffeomorphism is betweet8Q(3) — viz., the Lie group of rigid motions — aS@(E?),
which is the bundle of orthonormal 3-frames Bh For four-dimensional Minkowski
spaced’, the diffeomorphism is betwedSQ(3, 1) — viz., the Poincaré group — and

L(9%, which is the bundle of Lorentzian framesi.

The thought of expanding the scope of non-relativisbinotinuum mechanics from
regions of space to the bundles of orthonormal feaore the regions goes back to the
work of the brothers Eugéne and Francois Cosseratwaadset down in theimmagnum
opusthat was entitled.a théorie de les corps deformabl&g)] in 1909. For them, the
precedent for such a theory already existed in some @fdkoldemar Voigt 81] on the
elasticity of crystals, as well as some of the maah ether models for the propagation
of electromagnetic waves. The essential innovafimm the phenomenological
standpoint was the existence of internal couple stsebst would act upon the medium,

so one could define @osserat mediurto be the bundI8QR) of orthonormal frames on

a regionR of space that is occupied by matter that is subjetttéonal couple stresses.

One symptom of the existence of such stresses is fimnastry of the stress tensor,
which ultimately factors in the equations for the bata of angular momentum as an
effective torque or moment. One will also generallyghaimomentum 1-form that is not
collinear with the covelocity 1-form; i.e., there Wie a “transverse momentum” that is
added to the collinear kind.

Since the basic starting point for the derivation &f @osserat equations for the
equilibrium or time evolution of a Cosserat mediunmishe theory of action functionals
that are invariant under the action of the group of rigmtion, we shall defer a more
detailed discussion of that topic to later chapters lbsdomes appropriate. For now, we
mention that when one goes on to quantum wave equatianstolve matter with spin,
one will find that the continuum-mechanical equivalent tbé Dirac electron is
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essentially a relativistic Cosserat medium, althougé stress tensor of the non-
relativistic spinning Pauli electron is symmetric.

Some more recent references on Cosserat theonbavifiven in later chapters as
they become relevant.
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CHAPTER I

THE MECHANICS OF WAVES

In retrospect, there seems to have been a certaimrdmbhastiness in the early attempts
to lay the theoretical foundations of quantum physio$.course, that is to be expected,
since the founders were dealing with a class of natuethgahena that lies far beneath
the scale of macroscopic laboratory measurementsthasg laboratory measurements
were producing results that were inconsistent withnhgtion that physicists had gained
from dealing with more directly observable phenomektence, the early attempts to
devise some sort of theoretical framework were predigctasemi-empirical and
phenomenological. Indeed, that basic approach to quahtory persists to this day.

Part of the hastiness that was associated with goamg the mechanics of waves to
the mechanics of points was due to the fact that nseemed to have taken the time to
formulate a general theory of wave motion that wouldaddundamental in character as
the mechanics of points and deformable, extended makteat is, no one had started by
defining awaveas an elementary object that moved in a configuratiocesnd thus
had a kinematical state associated with it. Thug, #f&o did not take the time to define
dynamical states that would be associated with thetiarg(i.e., virtual displacements)
of the kinematical states, but they seemed to simstdyt with the partial differential
equation that would govern the time evolution of a wawvetion. By Schrodinger’'s own
admission, the process of obtaining his equation involveertain amount of trial-and-
error that mostly used the Hamilton-Jacobi approaclydometrical optics (i.e., the
eikona) as its basic model.

In this chapter, we shall attempt to fill in some bé tmissing steps that would
connect the main field theories that involved somenfaf wave motion— namely,
elasticity, electromagnetism, and more recently grawina— to the Hilbert space
formalism of quantum wave mechanics. In particular, esimany of the most
fundamental experimental phenomena of quantum physicsesgedm point to a
breakdown of Maxwell's theory of electromagnetisme evould expect that the class of
waves that is most relevant to quantum phenomena theftakectromagnetic waves.

The basic flow of ideas amounts to an applicatiora @feneral theory of physical
models that the author has been developing over thes y&arand has previously
discussed in the context of models for wave motiof2jn Basically, a physical model
(whether static or dynamic) generally involves theof@lhg components:

1. A differentiable manifold of kinematical states wddangent vectors represent
infinitesimal (i.e., virtual) displacements (or vaiams) of those states.

2. A system of differential equations that define theegrability of kinematical
states and their variations.

3. A space of dynamical states that are, in someesédnal to the kinematical states
or their variations.

4. A constitutive map that associates dynamical staiih kinematical ones.
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5. A system of differential equations that expresdss Ibalance principle or
conservation law that governs the dynamical state.

1. The state of a wave medium- Our starting point for a general theory of wave
motion must necessarily be a definition of a wavee @nds that this problem is actually
more complicated than it sounds. One could make afirsinpt by saying that a wave is
a “wave-like” solution of a system of field equationst that obviously just replaces one
undefined concept with another.

It is easier to say what the definition of a waliewdd not be than to say what it is.
Most treatments of waves in elastic and electromagme¢idia, and many treatments of
gravitational waves, start by introducing small-amplitudeysbations of fields, which
predictably results in linear partial differential eqae8 for the waves. However, one of
the most active topics in modern nonlinear physics isahabnlinear waves, such as one
finds in nonlinear optics or large-amplitude elastic wavesdeed, one of the most
common wave phenomena that people observe, namely,réb&iny of waves on a
beach, is manifestly nonlinear in character. Sinyiladespite the ubiquitous use of
plane-wave solutions of wave equations, one should probaltlstart with them as
elementary objects, since the Fourier analysis of i mgeneral wave-like solution into a
linear superposition of plane waves of varying frequencies ane wumbers is more
useful when the operator that takes the Fourier transédram “incoming” wave to the
Fourier transform of an “outgoing” wave is actuallyree&r operator, which then restricts
the wave equation to a linear partial differential equmtvith constant coefficients. It
should also be pointed out that plane waves are actphjlgically absurd unless one
restricts them to a compact region, since otherwise tbtal energy and momentum will
diverge, but restricting them to a region with boundaity mtroduce higher harmonics
due to the cutoff, which would imply that one is no londealing with a true plane-wave
anymore.

Another wrong turn in the name of basic definitiosisoi start with any specific wave
equation as the basis for all waves, since the praliter of specialized linear and
nonlinear wave equations by now would suggest that any sugtitidefiwould be too
limited in scope to represent a fundamental statemenit atadural law as it pertains to
waves in general.

Many physicists and engineers agree that the essem@efphenomena is rooted in
the “response” of a “wave medium” to a “disturbancélénce, we shall attempt to first
clarify those terms.

We define avave mediunto be a regioM of space-time (where the dimension of
space can range from one to three) in which each moagsociated with an “elementary
oscillator” and those oscillators are coupled by somecimie (). Typically we shall
assume only a “cylindrical” topology td, namely,M = (to, t1) x Z,, wherez, (h =1, 2,

() If one prefers the language of fiber bundles, a wagdimm might be defined to be a “bundle of
oscillators” with some coupling law. The definition“okcillator” then bears upon the choice of manifold
for the fiber of that bundle.
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3) is a spatial manifold, which will usually be an open sub§®", such as the set of

points at which the wave function is non-zero. (Thesure of that set is called the
supportof the wave function, although it is possible for a wéwection to vanish at a
limit point.)

a. Elementary oscillators- Of course, even the concept of an elementary asxgilla
can lead to its own complications, since the theorgsaillators is quite vast in its own
right [cf., e.g.,3, 4. Even if one assumes that an oscillator is nfastdamentally
characterized by a dynamical system that exhibits perimditons, some of the issues
that one must still address are:

1. The dimension of the space in which oscillation$giace.
2. Linearity vs. nonlinearity.

3. Damping vs. the absence of damping.

4. Forced vs. unforced.

We believe that it is best to simply regard these sasdhe basis for a classification
scheme that one could apply to oscillators. In maseg, one begins by choosing a type
of basic oscillator upon which to base wave motiost a8 most discussions of problems
in continuum mechanics often start with a choice etinanical constitutive law.

As far as the issue of dimension is concerned, oderatands that it amounts to the
problem of characterizing the basic “amplitude” of theilory motion. That is, when
the amplitude is characterized by a real number, theespécoscillation is one-
dimensional. Although one might say that in the aafseomplex wave functions that
amplitude is a complex number, nevertheless, it isncomto regard that number as
having a real amplitude and phase factor of the féfm Of course, waves in elastic
media typically involve oscillators that oscillate three-dimensional space, while
possibly changing direction, as well, and electromagnedives include the dimension of
time, as well. Since gravitational fields are definedyyrsetric, second-rank covariant
tensors of globally hyperbolic normal type, one assuthat their basic oscillators would
live in a ten-dimensional spac®.(

By now, the issue of linearity seems to be widelyogmized to be one of “small-
amplitude” approximations. Hence, one suspects that ongnénear theory would be
truly definitive. This is especially true when one cdess that as far as electromagnetic
phenomena are concerned, the quantum domain is charattbyizierge electric and
magnetic field strengths at which non-classical phemaynguch as vacuum polarization,
begin to emerge, as they might with a critical-point phaansition. However, one of the
defining characteristics of the elementary wave equatdrguantum mechanics (e.g.,
Schrédinger, Pauli, Klein-Gordon, Dirac) is their linga although many believe that
the transition from quantum mechanics to quantum field rtheoust include some
introduction of nonlinearity into the wave equations, siitcis widely believed that the

() In fact, it is not a vector space, either, but a bgemeous space that is only homeomorphic to a
vector space, namely, the connected compondat@f) / SO3, 1) that include$Q3, 1) as a coset.
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interaction of elementary particles will destroy ttHmearity. Indeed, that is why
guantum field theory immediately passes over any dismusdithe Cauchy problem for
interacting particle fields to the scattering approxiomgtin which one assumes that the
incoming fields are defined at time minus infinity, while thegoing fields are defined
at time plus infinity. That is essentially equivaléatassuming that the time interval
during which the interaction occurs is quite short, andalizes the time-evolution
operator for the particle fields to a scattering omerat the linear, integral type [cf., e.g.,

5, 6.

Presumably, an oscillator gets damped by interacting anttabsorptive medium,
such as a viscous fluid. Although the concept of abserphedium is certainly relevant
to virtually all experimental work, since there is bduo be some damping of local
oscillations, one also expects that damping can omlgude to unmodeled complexity in
the medium. However, there are those who suspettthle nature of the quantum
vacuum that all fields must ultimately interact withs something of a thermodynamic
character, which was the essence of de Broglie's yhd@f of the “hidden
thermodynamics of isolated particles.” Hence, oneishoot dismiss the possibility that
even isolated particle/waves can still exchange engittptheir environment.

A forcing function that acts upon an oscillator can t#ke form of gravity, the
momentum that is carried by incident waves, or monéicit loadings that one might
encounter in engineering practice. Such forces tend defoged on the base manifold of
a bundle of oscillators and not the total space. émt#xt subsection, we shall discuss the
way that systems of oscillators can be coupled bgefrof interaction that become
essentially “internal” forcing functions.

Ultimately, one must define some manifaldthat represents the generic state space

of the oscillators. In the simplest case, it migéiR, and its points would represent the

amplitude of the oscillation. Another elementary-diraensional state space might be
S', which might also describe the direction of a uniteen a plane.

b. Examples of elementary oscillators.Some elementary examples of oscillators
are:

1. One-dimensional simple harmonic oscillator: Fas bscillator, the basic relation
takes the form of Hooke’s law:
F =-kAX, (1.2)

or expressions that are analogous toRtrepresents the force that is associated with a
displacementix from the equilibrium positiomx, of the oscillator, an# is an empirical
spring constant. If one assumes that 0, by definition, the\x can be replaced witk
but it is important to note that the force is not indefnt of the location of . Hence,
the basic constitutive law for such a dynamical systeust be linear, non-dispersive,
and homogeneous.

Such a force is conservative and admits a potentiatian of the form:
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U(x) = 1k¥X. (1.2)

The differential equation for the forced, linearly-dachg€yq = — b dx/ dt) simple
harmonic oscillator is obtained from Newton's seconddad takes the form:

d?x d?x
— 242wl =2 + a2 x =a(t), 1.3
i Y4 " A (1) (1.3)
in which:
=X, 200= 2 (1.4)
m m

anda(t) is the forcing function, which has units of accelerat «, is referred to as the
natural frequencyf the system, whil& is thedamping constant
Initial-value solutions to the equation (1.3) take the egptally-damped sinusoidal
form:
x(t) = e’ (Ae" +Be 'Y, (1.5)

in whichs: = a + iware the roots of the quadratic equation:
& -2 +af =0, (1.6)

which is called theharacteristic equatiof the ODE. Those roots will then be:
s.= @ (¢ i1-¢7), (1.7)

which are then essentially damped frequencies.e M@t if & > 1 then the roots will both
be real, which is the case of overdamping.

Solutions to the problem of forced oscillation® arsually best treated with the
method of Laplace transforms, and sinusoidal fgrcianctions tend to exhibit the
phenomenon ofesonance which makes the amplitude of the oscillation aximam
when the frequency of the forcing function equhts natural frequency of oscillation.

2. The forced, undamped, one-dimensional, anhaomoscillator. — For this
oscillator, one extends the constitutive law (st the addition of a cubic term, which is
based upon the assumption that the f&ieg is an odd function of:

F=—kx+bx (1.8)
Such a force is still conservative and its assedigbtential function takes the form:

U(X) = 1k -1 bx', (1.9)

which is then an even function xf
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The differential equation of such an oscillator takesform:

2
It x-2 2 = ) (1.10)
dt m

which is nonlinear then.
The solutions to the initial-value problem for such an ggonare more involved than
simple sinusoids and generally involve elliptic functions.

3. The physical pendulum. — A physical pendulum of lemgiind massn has a
restoring force that is given by the torque that actshupalue to gravity, which is
assumed to be constant:

r=-mglsin g, (1.12)

in which @is the angle that the pendulum makes withzthgis.

Although this constitutive law is nonlinear, for smalbegh anglesq <1 rad.), sin
@ can be approximated b§, which will then yield a simple harmonic oscillatomhe
differential equation then takes the form:

2

dtf’mﬁsine = 0. (1.12)

in which the natural frequency is now:

ah :\ﬁg, (1.13)

if one assumes that the masss concentrated at the end of the pendulum, sonthment
of inertial about the pivot isn #; more generallyl must be replaced with the radius of
gyration of the pendulum about its pivot.

Once again, the solutions to the initial-value lgean for this nonlinear ODE are
generally given by elliptic functions.

c. Coupling of oscillators— The type of coupling between neighboring oatolis is
a property of the medium more than a property efdhbcillators themselves. The two
main issues that affect the type of coupling are:

1. Discreteness vs. continuity of the medium
2. Dispersion vs. the absence of dispersion.
3. Causality.

Either discreteness or continuity can be regameddn approximation to the other
one. For instance, although one might think ofompgressible gas as composed of
discrete molecules and an elastic crystal latteeb@ng composed of discrete atomic
ions, nonetheless, when it comes to the propagafiomechanical waves in those media,
it is often more convenient to resort to a contmumodel. Conversely, when one goes
looking for numerical solutions to the continuumweaquations in real-world situations



8 1. — The state of a wave medium. 85

(e.g., fluids, antennas), it is usually unavoidable tre must resort to discrete models
for the purposes of computer software design. Hengg,imiportant to understand the
dual relationship between both approximations.

The coupling of oscillators at different space-timenfmis typically assumed to be at
the infinitesimal level; i.e., a given oscillator isupded to only the other oscillators that
are “infinitesimally close” to it. That sort of pice, which involves partial differential
equations, can often be obtained by starting with a systemrdinary differential
equations for a spatial-distributed, discrete systemrmaéfy-separated oscillators that are
coupled in some tangible way (e.g., connecting springdhdonearest neighbors) and
passing to the limit as the number of lattice points beinfinite and their separations
become infinitesimal.

It is heuristically illuminating to see how the syageof ODE’s for the oscillation of
an indefinite sequence of mas®a(§) at pointsx(i) along the real line that are coupled by
springs with spring constark§—1, i) andk(i, i + 1) to the nearest neighbors becomes the
one-dimensional, linear wave equation when one pasgbe tmntinuum limit, in which
m(i) becomes a linear mass dengx¥), k(i, j)) becomes a function of and the sum of
the forces that act on each mass becomes propdrttize second partial derivative of
the amplitude of oscillation with respectxo We illustrate this arrangement in Fig. 11.1:

K(i-1,0) kG, i+1)

mi-1) | mi) | mG+1)
X(i — 1) X(1) X(i +1)

Figure I.1. An indefinite sequence of masses coupled baris@rings.

If one assumes Hooke’s law for the springs then thetieqgaof motion for each
mass point will be:

5 .
m(i)% =—k(i-1,i) x(i-1) + k(i-1, i) +k(i, i+2)] x(i) =k, i+1) x(i+1). (1.14)

If one regards the basic state of the system odsesmas being defined by the
indefinite vectorX = (..., x(i — 1),x(i), x(i + 1), ...) then one can think of (1.14) as being
a very-large-dimensional system of second-ordealr©DE’s forX of the form:

MX = - KX, (1.15)

in whichM = diag][...,m(i-1), m(i), m(i + 1), ...] andK is a “band” matrix. That is, its
elements can be non-zero only on the diagonal sndearest super-diagonal and sub-
diagonal, which is typical of nearest-neighbor dmgpfor finite lattices.

The right-hand side of (1.14) takes the form ofexond-order finite difference
expression. Hence, in the limit as the spacingvbenh masses becomes zero and the
number of masses becomes infinite, it will becomseaond partial derivative with
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respect tox timesdx. However, sincéx / dx is always unity, we need to replage with

a coordinatex(i) + &), wherexo(i) is the equilibrium position of(i), which does not
change in time, and(i) is the amplitude of the oscillation &fi), which does change in
time. Ultimately, the continuum limit of (1.14) is:

°¢ _

PO

k( ) [¢= &t X)), (1.16)

which is the linear, one-dimensional, wave equatiden the speed of propagation of
(longitudinal) waves is:

k(¥
p(x)

c(x) = (1.17)

If the state of an oscillator at one point in tidepends upon its states at some
finitely-separated previous time points then theilebe temporal dispersionwhile if the
state of an oscillator at one point in space depamgbn its state at some finitely-
neighboring points of space then there will §gatial dispersion In other words,
dispersion is a form of “memory” in the medium. Has the effect of making the
constitutive map into an integral operator, instedcén algebraic one. In the discrete
lattice model, spatial dispersion would corresptmeéach mass being coupled to more
than just its nearest neighbors.

Causality in the coupling of oscillators not oirigludes the idea that the state of an
oscillator at a given space-time point cannot ieemced by the states of the oscillators
at any future time points, but also that the fintss of the speeds at which waves
propagate implies that there will also be space-tpuints in the past and present that
cannot affect the state of a given oscillator. Bbandaries of causality ultimately come
down to the dispersion law for the waves, whichshall discuss in due course below.

c. State of a wave medium. A state of a wave mediunM is a differentiable
association of a state of an elementary oscillaitdr each point oM. For us, ifO is the

basic state space for the elementary oscillat@s thwill be sufficient to define that
association by a differentiable functigh: M - © or its graphy: M - M x O, X (X,
#x) (). In the event that the spa€kis a vector space, one can think of the “zero
section” of the projectioM x O - M, (X, ¢¥) — X, which makes/(x) = O for everyx, as

essentially the “quiescent” state.
To make contact with the conventional terminologgarding waves, we too shall
refer to ¢ as awave function. That is, the purpose of a wave function is targethe

() If one chooses to replabéx O with the total spacB of a fiber bundle8 — M then the state would

be a global section of its projection — if one exists perhaps a local one, more generally. Conceivably,
the lack of a Euclidian topology dd might relate to topological defects in the medium, sagHattice
defects, vortices, and even the sources of waves thesasdiowever, we shall try to avoid that discussion
in what follows, since we are trying to stay closerat survey of the existing literature of continuum-
mechanical models for quantum wave mechanics, which did rint@those matters.
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state of a wave mediuM to be the association of an oscillator amplitude w#bh point
of M.

d. Disturbances in the state of a wave medidiWe shall think of alisturbanceas
something that alters the state of a wave mediumncel some of the issues that pertain
to them would be:

1. Impulsive vs. continuous.
2. Finite vs. infinitesimal.

An impulsivedisturbance is generally represented by a jump discatytinuthe state
at some time point, such as when one plucks a tenseticedtring or drops a stone into a
pond. It has the effect of defining the initial valuesstfee time evolution of the state on
some discontinuity surface. Hence, one can thinkhefdubsequent dynamics of the
motion as being “driven by the initial conditions.” Thigproach to defining waves was
developed in great detail by Hadama8fignd others that followed him (e.g9]).

A continuousdisturbance is a higher-dimensional analogue of a forftingtion for
an oscillator; the signals that are broadcast froraranas can take that form, at least for
some finite length of time. Of course, one must keepnind that the elementary
oscillators are already being forced by the motionhefrieighboring oscillators via the
coupling law, so one might distinguish betweeternal and externalforcing functions
on the state of the medium, accordingly.

We shall think of continuous disturbances as possibly beangposed of discrete
pulse trains, rather than invent a separate categomgedoirring impulsive disturbances.
Of course, there is a fundamental distinction to laelenby pulse trains that have a low
enough frequency that successive disturbances might daimmmpletely in between
pulses, and ones of high enough frequency that the previstusbances will still be
affecting the state of the medium when the nextammees about.

The difference between finite and infinitesimal disnces of the state of the
medium brings us back to the difference betweetefand infinitesimal deformations, in
effect. We shall eventually address this in the coraéxtriational field theory, but for
now, we point out that the finite disturbances take ftven of differentiable, one-
parameter familieg/s of statesys : (@, b) x M - O, (s, X) — ¢X); in this case,

differentiability means that the curug(x) in O that one obtains by fixing eachis a
differentiable curve. Typically, the parameter ingdr(a, b) 0 R will include 0O, so the

stateyn(X) will represent an unperturbed state.
An infinitesimal disturbancey is then obtained by differentiatings with respect to
s—say, at 0:

SUAX) = % . (1.18)

s=0

It then associates a tangent vecix) to O to each pointy(X) in O.

Typically, most linear wave equations are the ltesdi applying infinitesimal
disturbances to the state of a wave medium.
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e. Response to a disturbaneeTheresponseof a wave medium to a disturbance in
its state is simply a time-varying state of that medithat is first excited from its
guiescent state when the disturbance becomes adiiwes, the wave functiogy: M —

9, (t, X) > Y t, X) can serve to describe either the state of the was@ium or its
response to a disturbance, such as an impulsive disturatined that basically defines
the Cauchy data for its subsequent time evolution; heheeagesponse is the solution to
the wave equation for that Cauchy problem.

2. The kinematical state of a wave— We can now definewaveto be the response
of a wave medium to a disturbance in its state, andnasghat it takes the form of a
wave functiony, so we now have some hope of defining the kinemastea¢ of a wave.
Basically, we shall take the position that if a wareaimediumM is described by &
functiony: M = O, (t, X) — ¢t X) then thek™order kinematical statef the wave is a
section of the source projectiah (M, ©) — M of the manifold ofk-jets of wave

functions. Hence, for each ) O M, it will take the form:
st %) = (& X, X, G (), ¢ (%), s s, (6X)). (2.1)
The kinematical state will be integrable iff it lgetk-jet prolongation ofy :

S:jk[//_ (22)

Since the wave equations that we shall be considemningis book are all second-
order partial differential equations in the wave functiercept for the Dirac equation,
which is a first-ordersysteny we shall usually be dealing with only first-order
kinematical states. Hence, the kinematical statigakie the form:

S(t, X) = (t, X, ¢t X), ¢ (t, %), ¢ (t, X)) i=1,...,n), (2.3)
and it will be integrable iff:
_ oy _oy
= e Y= v (2.4)

for all (t, x) in M.

When one is dealing with wave motions, it usually moreveaient to regard the
coordinates of a pointasx”, with>® =t (*), and the components of vectors and covectors
as also having temporal component that is given the indeiehce, the coordinates of
J'(M, ©) are &, ¢, ), sos can be given the form:

(l) The reason that we are settifg= t, and notct, is that the use af as a units conversion constant
would imply that we were dealing with a specific type ochve medium (viz., linear, isotropic,
homogeneous, non-dispersive, electromagnetic) in ordertéobe meaningful in the context gt
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st %) = X @t %), ¢ (LX), (2.5)
and it will be integrable iff:
_ oy
W= PV (2.6)

a. The frequency-wave number 1-forSo far, there is nothing to say tlyats any
different from any other field oM that takes its values in the field spage In order to

narrow it down to something more “wave-like,” we shaiiase that) is a vector space

with scalars in a fieldK =R, C, and thaty takes the form of a product:
Ut, X) = A(t, X) O(t, X), (2.7)
in whichA: M - 9 is anamplitude functionand® : M - K is aphase function.Often,
A is time-invariant, so it will define the shape of thevevanvelope, ani = C with:
o0=€? (2.8)
where@is a real function oM; its level surfaces are callesbphases Hence, one thinks
of the elementary oscillator that lives@at ¢, x) as being something whose oscillation
relates to the phase functi@n
Some particular forms that (2.7) can take are:
1. Standing waves: A =A(X), © =0(b).
2. Traveling waves: A =A(x), O = O(X —V1).
3. Geometrical optics: A = A(X), f=4at, x),
although one also imposes an approximation in this Iast ttet relates to the derivatives
of 8 namely, that the absolute values of the partial devesibf & are much larger than
those ofA; one calls that thikigh-frequencyr small wave lengtlapproximation.
4. Plane waves: A = const., =k, ¥ = wt —k X (k, = const.)

5. Cylindrical waves: A = const. f, 0=wt—-kr (wk =const.)

In this case, the other coordinates of spacexare J, X’ = z, where d is either the
azimuth or right ascension.

6. Spherical waves: A = const. 2, 6=wt—kr (wk =const.)

In this case, the other coordinates of spacetzape?, X = 7, wherel'is the codeclination.
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With the special form (2.7), the kinematical state/afan be replaced by:

S(t, X) = (t, X, A(t, X), &t, ), Aut, X), kAt, X)) w=0,1,..n), (2.9)
and it will be integrable iff:
0A 06
A=—, k,=— 2.10
= o e (2.10)

for all (t, x) in M.
One can construct a 1-formwith values inO out of the component functiors,,

and a single 1-forrk (with values inR):

a=A,d¥, k =k, d* (2.11)

so the integrability of the kinematical state wouldelb@ivalent to the exactness of these
1-forms:
a=dA k=dé. (2.12)
The 1-form:
k = wdt—k; dX (2.13)

shall be referred to as tlieequency-wave numbdrform, since its components a&g
which represents the frequency of the local oscillaindk; , which represents the wave
number of the wave at that point. WHeis integrable (i.e., exact), one will then have:

e 06
w=—, i — —. 2.14
ot . ox ( )

Of course, unless the functidtis truly periodic int and eaclx', the interpretation of
these expressions as a frequency and three wave numespsctively, is somewhat
debatable. Fortunately for the people who are contemvork with linear wave
equations, that is not generally an issue, since to #wamything comes back to the
behavior of plane waves, for which the temporal andiapgeriodicity is a basic
property.

If one divides the frequencw by the wave numberk then one will get the
components of a spatial covector with the units ofaiglpnamely, thgophase velocityf
the wave:

p

v=Y% 2.15
K (2.15)

However, if one considers the process of going fronfdbedimensions of space-time to
the three dimensions of space then one will see thatetis something more
geometrically natural about making the inverse definitwhich will give components
with the units of indices of refraction:

ni = ﬁ (2.16)
w
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This will also produce a spatial covector, not a spatietiore
What makes this more geometrically natural is the tfzett the map that takesi(k)

to () is precisely the map that takes the homogeneouslicates of a point ilRP*” to

its inhomogeneous coordinates in one of the four Plickendowte systems. Since this
is not the only time that relativistic physics makes thansformation (it is also how one
gets from four-velocities to three-velocities), ongihe to suspect that there is more to
the idea that “space” should really mean “projective spacehysics. The author has
done considerable research along those lines, but wensihao further into the details
here, but only refer tal] and the references therein.

b. Dispersion laws— Since waves are always assumed to propagate witd fin
speeds (even though the speed might vary in time, positigection, frequency-wave
number, and polarization), it is never true that eviefgrm k is physically admissible.
Rather, they are always confined to some hypersurfacacih eotangent spacE’™ ,

and more to the point, the hypersurfaces are usuallpralgen character. The algebraic
function (k) is generally homogeneous of even degieend more to the point, a
homogeneous polynomial of degmealthough the equation itself:

D(K) = k¢, (2.17)

which is called thedispersion lawfor the class of waves in question, can be
homogeneous or inhomogeneous.
Often, one finds the equation (2.17) solvedkfor w

w= afk). (2.18)

One can think of a dispersion law as something thatte®lthe coupling of
neighboring oscillators, since it converts a locadjfrency for the oscillator at a point into
a wave number for the propagation of a wave in eacltaire and vice versa. Indeed,
in many linear cases, the dispersion law is simplysthiebolof the second-order linear
differential operator that defines the wave equation thatlts from the coupling of
oscillators in space-time. When that operator hasteoh coefficients, one can think of
that symbol as being the Fourier transform of the dperahich can also be obtained by
replacing all partial derivatives as follows:

", 9" -
PO anﬁﬂm'

Note that this also leads to half of the usual c&® quantization rules for quantum
mechanics. One can then think of the dispersianda something like the frequency-
wave number space analogue of the space-time ogupli

The common way of obtaining a dispersion law iotty is to start with a set of field
equations, choose a certain class of “wave-likditgms (such as plane waves), and see
what algebraic relationship ensues when one doesditferentiations of the wave



92 Chapter Il — The mechanics of waves

function and combines them in the algebraic mannerthieatield equations specify. Of
course, it is only in the linear case that it would biigant to examine the dispersion
law for plane waves, since even though wave functeams (by hypothesis) always be
analyzed into their Fourier components, unless the Bepdations are linear in their
derivatives, the dispersion law that one would get fdiffarent class of solutions would
not have to be the same as the one for plane waves.

When one has defined a dispersion law, one can alstedefsecond kind of wave
velocity in terms of the derivatives o with respect tok, that one calls thgroup
velocity[11]:

When:D has been solved favin the form (2.18), that will give:
V= g—:) . (2.20)
Some examples of dispersion laws are:
1. Light cones:
DK =f - "k k = 0. (2.21)

This leads to the most elementary “linear” dispersam |

w=*CK (k= K+K+K). (2.22)

One sees that is basically the norm of the phase velocity in thisecavhich is still
(2.15):

c=%

RN AR AR (2.23)
This makes it clear that the only thing that the sigrereefto is the direction of
propagation of the waves (which is the line throlkkghand we thus omit the sign unless
it is essential.

The fact that there is only oreoints to the isotropy of the medium, and if it iscal
a constant then the medium would be homogeneous, &s @ktourse, the optics and
acoustics of refraction would become trivial in thasegaalthough most commonly the
spatial change inis assumed to be a jump discontinuity across a boymaéne context
of refraction.

Since:

D° =2 D =-2c%d"k, (2.24)

the group velocity will have components:
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>

Vi=tck, (2.25)

in which K = & k / « is the unit vector in the directidh; hencey is also equal te.

As a result, one will always have:

vy, = 2% _2 (2.26)
k «

p-g

One can complete the spatial group velom’gyto a four-velocity that lies on the

dispersion hypersurface (i.e., light cone) by usthg dispersion law, which will
determine/ uniquely (up to sign). Ny is the Euclidian norm 0‘1’7;J then one defines:

\"

V=4 (2.27)

_g .
C
One of the key properties of this type of dispmndaw is that it has no “rest system.”

That is, one cannot find a frame to which a norokecan be referred that will make=
0 for alli, since that would make= 0, as well.

2. Massive matter waves:

DK =f -2 " k k= af. (2.28)

We shall encounter this in the context of the Ki@iordon equation, but there are also
some plasmas that present such a dispersion lathdopropagation of electromagnetic
waves.

This dispersion law can also be put into the form:

w:Jag+ﬂc%K. (2.29)

(We have omitted the sign ambiguity, since it edatto only the direction of
propagation.) Whereas all valuescwtere allowable in the homogeneous case, one now
sees that dg ranges from <o to + oo, the corresponding values afwill fall betweenay
and +co.

This type of dispersion law is distinguished frtma previous one by the fact one can
now define a rest frame, sinke= 0 no longer implies thab= 0, but only that:

w=a . (2.30)

Hence, one can characterizg as the frequency of some basic oscillator in &t r
system for which the wave will be a standing wave.

Although the phase velocity of these waves hashahged in form fronav/ k; (since
the definition ofv, is indifferent to the choice of dispersion lanpnetheless, it does not
have to equat, anymore,
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Vp = —W: c 1+(igj (o= 2. (2.31)

In fact, asv ranges over all real valueg, will range fromc to + .
Furthermore, the group velocity has changed:

dw %~ v )
v =99 _Cp_clie[R) | . (2.32)
ok C
p

although (2.26) will still be true. This time, can range from O to e, butvy can range
from O to onlyc. Therefore, one expects that it is the group amjothat is more
physically meaningful.

Once again, one can complegao a four-velocity on the dispersion hypersurfpee
change the temporal componenugdo avoid confusion with the, in (2.31)]:

| e}

<

y 2
Up = % 1+(?9j : (2.33)
3. Bimetric dispersion laws:
DK) = (@ ke k) (T k, k) =K'k?=0, (2.34)

where both scalar producgsand g on the cotangent spaces have the same signature

type, namely, the Lorentzian omg” = diag[+ 1,— ¢, — ¢, - ¢?]. In the simplest case,
they are both diagonal in the same frame, but different values o€:

DK) = (F -2 " k k) (F —T20™ kn ky) = O. (2.35)

Whenc = €, the dispersion law will reduce to the degenecase §** k, k,)* = 0.

One sees that since the polynomial factors inppoaluct of quadratic polynomials,
and their product must be zero, the zero locu®@) will consist of the union of two
(possibly intersecting) light cones. Therefdkayill lie on one light cone or the other
one, and possibly both.

Since:

0D

G (77 k(T K k) + (77 ke k) (T K], (2.36)

which we rewrite in the form:

gTﬁ: 2 (k2K +K2k?), (2.37)

0

with the obvious definitions, the group velocityiMake the form:
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21521 —2 1.2 2 ~ =2 Z
:_agﬁ/alg:ck_zmcfk _ c K+ C K. (2.38)
9 0D/ 0w k2w+ K@ K’ - k’w
v, 1+ v, 1+

k2 &7)

In particular, the two extreme cases are whées on the first light coned = 0), which
will make vq = ¢® / v, , and wherk lies on the other onekf= 0), which will makevy =
T’ V,. Vg will become undefined on the intersection of the tight cones, since it will

take the form of 0/ O.

c. The eikonal equation- Whenever one is given a function, suchfason the
cotangent bundl& M, one can always define a first-order partial diffeisrequation for
the phase functiof by evaluatingd onk =d&:

D0,6) = af . (2.39)
For instance, in the Lorentzian case, the homogeresuaion:

08 06
H(X)——=0 2.40
0" (5= (2.40)

is referred to as thetkonal equationand it is very important in geometrical optics.

As one can see, that partial differential equation&as first-order and nonlinear.
Finding solutions to it usually involves appealing to Hadansardiethod of
bicharacteristics, which turns into Hamilton’s equations.

d. Virtual displacements of the kinematical statelf s : M - J(M, O) is a
kinematical state of a wave functign: M — © that takes the coordinate form (2.3) then

a virtual displacement of that state will be a vedteld Js(t, X) on s that takes the
component form:

0 0 0
t, X) = oOX¥(t, X)—+ oY (t, )— + oY, (t, )—, 2.41
A(t, X) ( )axﬂ W )64!/ W, ( )640;, (2.41)
and the virtual displacement will be integrable iff
oy, = %) (2.42)

ox*

If the kinematical state takes the form (2.9) tldswill take the form (we drop the
functional dependency of the components, for bygvit
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c%:5x”i+5Ai+5Hi+5Ahi+5I§li, (2.43)
ox* 0A 06 0A, ok,
and its integrability will be equivalent to:
A, = I(OA) XK, = 9(99) (2.44)

oxH 7 axk

3. The dynamical state of a wave- The approach that we shall take to defining the
dynamical state of a wave is to regard it as dual & vihual displacement of the
kinematical state under the duality that is defined by Miraak.

a. Fundamental 1-form-Ifs: M — JY(M, ©) is a kinematical state of a waye and

¢s is a virtual displacement of that state then the dyceanstate ofy will be a 1-formg
onJY(M, ©) that we call théundamental 1-fornthat couples the virtual displacemeXst

to the virtual workd#°that is performed in the process:
W= @(J%). (3.1)
Whens is expressed in the coordinate form (2@Will have the component form:
@=Pdt+fdX + Jdy+ & dy +77 dy . (3.2)

All of the component functions must be understood tamfenctions o’ (M, O),
such adi (t, X, ¢, ¢, ), for instance. Hence, the mechanical constitutves!for the
waves in the mediurM will already be included in the functional dependencyhef t
components of2

If the elements oD have “amplitude units,” which we abbreviate by AU, thea t

components opwill have the following interpretations:

Power density.

External force density.

Energy density per AU.

Energy density per time rate of change of AU.

Energy density per AU gradient.

a s~ wdNE
.:B.“'NJ\I—_-""U

Usually, it is more convenient to writgp in four-dimensional form without
distinguishing spatial components from temporal ones:

Q=T d¥ + Cdy + 7" dyy, . (3.3)
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The most common way of obtaining a fundamental 1-formoisstart with a
Lagrangian densitg onJ'(M, ©) (which we will discuss in the next chapter) and define

@to be:
p=dL. (3.4)
If £ =L ¢, ) then that will make:

=2, ==, == (3.5)

Whens is expressed in the coordinate form (2@Wyill have the component form:
p=f,d¥' + {adA+ {pdE+ p*dk,. (3.6)

b. Examples of fundamental 1-forms for wave3.he simplest wave equation that
one encounters in physics is the massless, linear agvation for a real wave function

y:
0=0¢=m7"¢uv. (3.7)
Since this can be associated with the Lagrangiantgensi

L) ==sn"y,y,, (3.8)

the fundamental 1-form that one associates withlith@i
p=dL=- "y, )dy ,; (3.9)

pr==-n"y,, (3.10)

which is minus the four-dimensional gradient/of
When ¢ is complex-valued, the field spagewill be two-real-dimensional, so if one

wishes to make real-valued then one must regard it as a functidsodi ¢ andy/ and
use the modulus function to tughand ¢/ into a real number, namely:

L, 0,)==n" ¢ ¢, (3.11)
which will make:
p=- " Y dy ,—*" w,)dy,; (3.12)

pE=nty,, U=y, (3.13)
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If one wishes to go on to the massive, linear (K&in-Gordon) wave equation for a
complex wave function, namely:

O=0y+ky, (3.14)
then one must add another termCto
LW W, ) = Ko™ =™ @ 4, (3.15)
One will then get:
o= Ky dy+ ISy ap’ =" w,) dv, -1 w,) db,; (3.16)
ie.:
{=Ky", =Ky, P =-n"yl, P =-n"y,. (3.17)

In more elaborate field spaces, must typically include some way of turning its

elements into real numbers, such as a norm or sgadduct when it is a vector space.
We shall deal with those cases as they become relevennat follows.

c. Energy-momentum of a waveln the mechanics of points and extended massive
objects, where the target variable is the positiondiat in space or space-time, one can
also consider the kinematical state to be something ithalves the velocity or
displacement gradient, which we collectively describeéhgycoordinates,. The dual

object to that kinematical object in the eyes of virtwalk is then energy-momentum-
stress:

IH°=p2 X = pu AV +1° O] (b=1,..p. (3.18)

We have previously discussed two different ways of asSog a spatial velocity
vector with a wave, namely, its phase and group velomgpectively. Indeed, one can
then complete the spatial group velocity to a velocityrfgector on the light cone
uniquely (up to sign), since ¥ is given and its Euclidian norm \g then its temporal
component can be only =+ vy / C.

We shall now show that if one uses the group coveglogit, in particular, and
associates a spatial momentum density 1-form withtlhenconventional way:

Pi =PoVy (3.19)

in which p is the mass density, then in the case of the mastnom dispersion law (i.e.,

the Lorentzian structure), for whisk = ¢®k / wone will get:

CZ

pi = P
w

K, (3.20)

and if one putg into the formmn wherem s the integral op over all space, amd= p/
m s the number density of the matter, then if one défmes:
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h= m_; (.e., mc= hw), (3.21)
one can express in the form:
pi = Aink . (3.22)

Except for the inclusion of the number densityhis is essentially the de Broglie relation
for linear momentum2]. Of course, one must realize that the de Brogllatiom
couples the linear momentum ofpaint massto the wave number of a wave, not the
linear momentum density of aeaxtended mass Hence, one might consider that the
constant is to an whatmis tomn that is, 7% is the integral of a density over all space.

If p denotes the norm @f then the energy density that will complet¢o an energy-
momentum density 1-form is (we omit the sign that corinem the square root) then
derived from (3.20), (3.21), and the fact that ck for this dispersion law:

£=pc=pc? = hnw. (3.23)

Hence, we have also recovered the de Broglie rel&dioanergy (density), as well.

Note that in the previous discussion the only acasdumptionthat one must
introduce in order to be talking about quantum waves isthigatonstant: that we have
definedwill be the same for all matter, and not something taates from one wave to
the next.

4. Derivation of wave equations— We shall use the principle of virtual work as the
basis for the derivation of wave equations, namely, ttretvirtual work that is done by
any “allowable” virtual displacement, viz.:

oW () =[] Ai'wWV, (4.1)

must be zero. The way that we are using the tedlawable” is usually defined by the
boundary conditions on the virtual displacement.

a. The principle of virtual work— In order to derive a wave equation from the
knowledge ofg one must apply it to an integrable virtual disglmentds = j*dy of the
kinematical state ofy and set the resulting total virtual work equakéso. If ds has the
form (2.41) and is integrable then that will give:

0= ai'ap)\V, (4.2)
with:
(oY) =1, &K' + Loy + P 0u (), (4.3)
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andV is the volume element dvi. [We have suppressed the specific reference to the fa
that the functionp(j*dy) must be pulled down thl by a section of the source projection
of (M, ©), for brevity.]

An application of the product rule for differentiatiolyput this into the form:
p('oy) =, &+ ({ - 9,p") A +0u (p* ). (4.4)
When one substitutes this in (4.2), the result will be:
0= jM D @ W)V +jM[ £,0% +0, B'(ap)] V, (4.5)

in which we have defined:
D ¢=({-0,p") dy, (4.6)
or, for complex wave functions:

D'p=({-0,p") dy+({ - 0,p") dy. (4.7)

In a sense, the operator is “adjoint” to the Spencer operator, as it agisruvector
fields onJ*(M, ©), at least with respect to the bilinear pairingttis defined by virtual

work.
When the virtual displacement is verticak” = 0, which will make the second
integral in (4.5) take the form:

[ 100 (V=] p"(Gw)#o,. (4.8)

If (4.5) is to be true for alby that make p* (d¢) vanish ordM (such as whedy itself
vanishes o©@M) then one must have:

0=D'gp, (4.9)
which will give:
0=¢-0,p" (4.10)
in the real case, or:
0=¢-9,p", 0=¢ -0,p" (4.11)

in the complex case.

b. Examples— If we go back to the examples of fundamentabrint that were
given in the last section then we will see thabesitequation (4.10) or equations (4.11)
do, in fact, reproduce the wave equations. We samaenthis in a table:
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Table 1.1 Examples of calculations for elementaryeviypes

Wave type 77 P, p- D'g

Linear, massless, real 0

U

-y, | @W)dy

o}

Linear, massless, complgxX

=ty | @) dy + (@) dg
==y,

= T

Linear, massive, complex 7= k2",

=t | @ kyt) dy
=Ky | p"=-n" g, |+ Op+Ky) dp”

o}

c. Wave equations in amplitude-phase formSo far, we have not said anything

much about the form that the wave equations woake twhen one expresses the
kinematical state and dynamical state of the wawvamplitude-phase form. That is
because that discussion essentially amounts tegdtence of what follows in this book.
In particular, the Madelung transformation of theh®dinger and Klein-Gordon wave
functions amounts to introducing polar coordinatesthe complex plane, so the
amplitude function will be real-valued. Thus, weal not into the topic further at the
moment, since we shall give it considerable atbenin the balance of this book.

10.
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CHAPTER Il

Variational field theory

This chapter is intended to merely summarize the lmedions and formulas from the
calculus of variations that will be used in the conteXields that generally take the form
of wave functions. Since the basic intent is to prieaealculusof variations, and not an
analysisof variations, the discussion will be more localacomponent-oriented than
many modern theorists might prefer. That decision made in the interests of staying
closer to the published physics research that was beingysatvsince much of the
justification for the introduction of the modern matlaizal generalities is to make the
field theory more sensitive to topological issues, Whiere not generally addressed in
the books and papers that are in question here. Mohe faoint, the generalization of a
soluble problem might very well be insoluble, which is vdtyence typically advances
by successive incremental approximations, and not leapdiof f

A similar justification will be made for the fathat we will be concerned with a flat
background metric for space-time. Since one of the fuedéal issues in the continuum-
mechanical models for quantum wave mechanics is howasie density function that
one obtains from the quantum wave function changesg#mmetry of the space of
kinematical states into the geometry of the spacdyoamical states, it would distract
from one’s focus on that topic to also consider tlag that the geometry is being altered
by the presence of gravitating matter. For some theatgturposes, it is better to regard
the formal machinery of general relativity as being nmeggpropriate to the study of
physical phenomena in the presence of strong gravitatietdd, such as one finds near
neutron stars and black holes, rather than a univeasabbound geometry on which to
superimpose all physical phenomena, simply in theasterof mathematical generality.

1. Variations of fields on space-time regions- Although it is often useful to think
of the calculus of variations as something like “thecwalails of infinity variables” or
differential calculus on infinite-dimensional diffet@able manifolds, for the practical
business of deriving field equations, conserved currents, guatiens of motion, that
viewpoint is usually more heuristically useful as a tfwl visualization than actually
useful for the derivation of equations. That is becabeseanalytical overhead that is
associated with making all of one’s statements mattieafig rigorous rapidly turns the
calculus of variations into the analysis of variasionHence, although we shall make
occasional motivating statements that suggest the itexiiimensional picture,
nonetheless, no attempt at making them analyticgtyrous will be made, since the real
objective in all of this is simply to obtain systenfgidferential equations that will tell us
more about the nature of quantum wave mechanics.

a. Finite variations of fields— If one imagines tha#’ is basically a point in the
infinite-dimensional vector spacE(S, C") then one can also imagine thatfinite
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variation of W is a differentiable curvi&(s) through that point; for convenience, assume
thatW(0) =Y. Actually, since only the local behavior of the curvélawill be of any
interest to us, the range of the curve paranstan be a small, but finite, interval €, +
g around 0. One can then represent the c{g as a curve in the graph 8f (x(9),

H(s, X)), whereH : (- & +& xC" - C', (s, X) = H(s, X) is a differentiable map that has

the property that:
H(0, x) = ¥Y(x). (1.2)

One can also think of this as a “differentiable homcotagythe mapW¥ to some
unspecified final map frons to C", but we shall skip over that fact. (The curious can

confer Dedeckerl]] or some of the author’s work{4].)

b. Infinitesimal variations of fields— Just as one can think of differentiating a
differentiable curve through a point in a finite-dimemsibdifferentiable manifold at that
point in order to obtain a tangent vector, one can tbfrdifferentiating the curv&’(s) at
W to obtain a “tangent vector” #t. We shall formally write:

dw(s
ds |

N = (1.2)

and refer tod¥ as avariation of W, which is short forinfinitesimal variationof V.
However, it is more convenient to regard the “tamigeector at¥” that we have just

derived as actually aector field on the graph oM in the spaceS x C', whose
coordinates ared( 7):

JV(x) = 5x‘(x)%+d-l’a(x)aiza. (1.3)

Hence, the vector field¥(x) is defined only on all points & and the corresponding
image points of¢ in C'. One can then also think & (x) as the infinitesimal generator

of a one-parameter family of field8(s, X) on S (and its deformations), at least locally
(i.e., for a sufficiently-small$ |).

A variation, as we have defined it here, is themgemeralization of the virtual
displacement of the configuration of an extendedytibat we defined previously.

The variationd¥(x) will be calledvertical iff o'(x) = 0; it will then take the form:

FV(X) = W3(X) (1.4)

0
o

In such a case, the finite variation that is geteerdy the variation will affect only the
values of¥ in field space.

As mentioned before, the techniques of jet maddare directly applicable to the
formulation of the calculus of variations, sinceLagrangian density is basically a
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differentiable function on a jet manifold. For us, sintbe wave equations in question
will generally be second-order, it will be necessaryctmsider only 1-jet§'¥ of

differentiable mapsV : S — C". Thus, the coordinate representation of a poirt'(§
C" will then look like &, 2, 7, z*, z), a section of the source projecti®nS - J(S,
C" will then have values that look liked,(s%(x), S (X), s*(X), (X)), and it will be

integrable iff there is some differentiable m#p S - C'" such that:

§(% = Wi(x), §7(X9 = WX (1.5)

Actually, for our immediate purposes, the real issuthasintegrability of a vector
field on (the graph of}; i.e., a variation:

0 0 0

_ sy 0 0 0
@(x)—éx(x)§+5sa(>9a—za+5§(xaf5+5,§,( )<a—2+5ﬁ§( )xﬁ. (1.6)
o8(x) will be calledintegrableiff:
05 (X =0s}(x) = a(:j) (X) (and complex conjugate). (1.7)

Sinced® = 05" dx andd&" = s dX will then become a set of 2xact 1-forms, it

will be necessary that one must also have thataheylosed (vizghd& = dd& = 0 for
alla). Locally, that says:

Jsf‘j = 0s2

I

0s'[= 0s];. (1.8)

2. The stationary action principle.— In finite-dimensional differential calculus, the
theory of extrema of differentiable functions isestially identical with the theory of
critical points of those functions; i.e., pointswahich the differential of the function
vanishes. In the calculus of variations, one hasamalogous picture, in which the
“differentiable function” on the “differentiable mdold” takes the form of a
differentiablefunctionalon the objects that are being varied by the vianat(fields, for
us). The “critical points” of that functional atleen extremal objects, and the differential
equations that define those extremal objects wefiing the equations of motion or
equilibrium for the objects in question.

a. The action functionak- The first significant step towards obtaining tiedd
equations is that of replacing the differentiablenction on the infinite-dimensional

vector space of field$ : S — C' whose critical points should determine extremeltf
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with a differentiable functior on the finite-dimensional spad¥S, C"). One calls that

function £ aLagrangian densityor the fieldsW, and it takes the coordinate form:
L=L(X, 2, 7).

When one composes with the 1-jet prolongatiofit¥ of a field ¥, one will get a real
functionj'Ww’ £ onS:
(WL = LW () = L(X, W3, Wi(9) (2.1)

that one calls thpull-backof £ to Sbyj'W.

In practice, sinc& is assumed to take complex values, in order to getl &uredion
for £, one will regardC as a function of botl and its complex conjugatd’, as well as
its first derivatives:

L =LK, W), PR, W3, WPE(X). (2.2)

V=dx " Adx‘:%gil_,_indxi O---Od (2.3)

is a volume element o8 (which is assumed to be orientable) then one can iteetira
n-form (j*'¥’£) V overSand obtain thaction functionafor the fields¥ and¥":

SV, W, W= [ LWV = [ LOGWT (9,900, WI(),WR() V. (2.4)

That construction will then allow one to circumvéime necessity of first defining the
infinite-dimensional complex vector space in whirand¥ live, as long one can also

define the differential of the function&laccordingly.

b. The first variation of the action functional.The differentiatf of a functionf : M
- R on a finite-dimensional differentiable manifditl will define a linear functionadfly

on the tangent vectors at each pombf that manifold. In the present (infinite-
dimensional) case, where the points @rand¥’, and the functiof is the functionals,

the tangent vectors will be variatiod® and J¥°. The differential ofS will be then

referred to as thérst variation ofS, and one defines it by (we suppress the reference to
W and¥’ for brevity):

B[V, I, '] = [ [SL(PW)V +L(J"W) V], (2.5)

in which:
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oL oL oL oL oL

AL([W) = =X +—— T+ P+ Jpo 4+ JP® (2.6)
% oy oW owa T gwta T
and:
N =du#tk, #HX=& i,V =(-1" & dX O---Odx 00 dR. (2.7)

In this last expression, the caret signifies thatréhevant differential is missing from the
exterior product. One can then show that:

& = # div() = div() V. (2.8)

As long asdL is integrable, one can apply the product rule (AKA: iriéign by
parts) and pud. into the form:

oL
ox’

oxt + 25 gpe 4+ 9L gymy O i gpe pmogpy, (2.9)
e ox

o = o

in which we have defined thariational derivativeof £ with respect té¥ and¥":

oL _dL 0 0L oL _ 0L 0 0L
— -9 , = - (2.10)
P 9w ox' v o oy ox' oW,
as well as theicanonical momenta:
- oL . 0L
n =—, n = —. 2.11
If we also define the canonical forces:
0L . 0L
fa= , fa=_—— 2.12
oy? oy ( )
then we can express the variational derivativeberfarm:
5€=fa—6iﬂ‘a, %zf*a—ainf. (2.13)

One can similarly apply the product rule to the t&iw) Jv:

LGMW) O = L({'W) dittdk = d[LW) #K] — AL W) A #K, (2.14)
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in which the notationdy means that one differentiates only with respect to xthe
However, the last term will then take the form:

LMW A #ox = (gﬁ ox j (2.15)

which will cancel the first one in (2.9). Hence, itedmot seem to matter whethedoes

or does not depend upehto begin with, since that dependency will not appeahén t
final expression for the first variation.
If one assumes that the regiSrhas a boundaryS then an application of Stokes’s

theorem for differentiah-forms will put the first variation of into the form:

AS[K, I, V']

—J[ 2

The rest of what we shall consider in the name aatianal field theory will follow
from various specializations of this expression.

jv +j [N AP + NIV + £(j'W) ox']#0, . (2.16)

By definition, an extremal fiel# will be one for whichdS[, ¥, '] vanishes

for every possible choicé¥ (and therefore, its conjugat®’). One will then have to
contend with the vanishing of the integrand in the fingtgral, as well as the vanishing
of the boundary contribution. The former conditioti wnply field equations fo¥ and
W’, while the latter will involve their boundary condit&n

The idea that the extremal fields should representptiysically-meaningful ones
specializes tdHamilton’s principleor the stationary action principl€). Whether or not
that extremal actually represents a minimum thenrteve the methods of the second
variation of the action functional, which we shall gotinto here.

c. The Euler-Lagrange equations. For the purposes of obtaining field equations
from the stationary action principle, one generallykesasome restrictions on the
allowable variations of¥ and¥’ so that they will always make the boundary integral
vanish. There are two basic ways that this condtambe satisfied:

1. The fixed-boundary conditiomllowable variationsék, &2, and &V always
vanish oS Hence, one varies the fields only at their imtepoints.

HK(X) = P3X) = H3X) = 0, x 0 S (2.17)

() Some authors, especially those of the NineteenthuBenirefer to specialize the stationary action
principle even further in order to state Hamilton’snpiple by applying it to a more specific class of
Lagrangians.
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2. The tranversality condition:Allowable variations &* and J¥™® are always
transversal to the canonical momenta at the boundaiytspowhile &' fixes the
boundary:

K =N I (x)=NY W2(x)=0, x 0 0S (2.18)
With those restrictions, the first variation ©fwill take the reduced form:

ES[W, W' = js(;i Jp%iﬁa cwﬂajv. (2.19)

This will vanish for every allowablé¥ andd¥” iff:

oL oL
=0 —F=0 2.20
e W= ( )

for theW and¥’ in question. These equations, which are each calldgulee-Lagrange
equationsthen take on the character of systems of diffeakeatuations for the extremal
fields. In the case of point mechanics, for wiicis an interval along the time line, they
are ordinary differential equations, but wheias a dimension that is higher than one,
they will be partial differential equations.

A common specialization of these equations is testagc case, for which nothing is
a function of time, ands = 3. The extremal fields then take on the character of
equilibrium states, and the Euler-Lagrange equationhareduations of equilibrium.

One notes that with the introduction of canonical feraed momenta, the Euler-
Lagrange equations can be expressed inkherha’ form:

fe=on., f2=9M7. (2.21)

When we get into the examples of how this gets apptieglave equations, we shall see
that this is actually somewhat illusory, since in maages, the forces can get split
between the two sides of the equation.

d. Extension of the stationary action principleTo continue the calculus of infinity
variables analogy, we point out that the first-vaom@tfunctional &S can be regarded as

an exact 1-form on an infinite-dimensional differeblgamanifold, since it is basically
the differential of a 0-form, namely, the action dtional. However, one can define that
1-form more generally in a manner that does not makedtdrom the outset and still be

talking about physically-meaningful concepts. The firgtateon 1-form a&S will then

become a sort of infinite-dimensional equivalent of aseovative force 1-form.
The generalization of the first variation that onéras is essentially the virtual work

functional that associates an increment of virtual kwd#][oX] with the virtual
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displacementX. In place of the Lagrangian densify one starts with theundamental
1-formonJ'(M, N) = (X, y?, y?):

@=P; dX +f, dy? + N2 dy. . (2.22)

Whengis exact (sayg= dL), the generalized forcés and momentd1? will agree

with the previous ones, while the power densifesvill also be expressible as partial
derivatives:

p=9L =9 nf‘:aﬁ.
aXI aya ayla

(2.23)

Of course, the 1-fornp can also be defined in the case of non-conservatieedp as
well as conservative ones, and even for non-holonaroitstraints, unlike the first
variation of the action functional.

The virtual work functional that one defines then anieuo:

WK = | [AoX) D]V, (2.24)

in whichX : M - N is a differentiable map, aréX is the variation of its values M.
As long aspis vertical f; = 0) and the variatiodX is integrable — i.e.:

9 4o,0%x3)-2
oy,

X = 6X° (2.25)

a

one can still define equations of motion or equilim by the vanishing of the functional
W] X] for all allowabledX, which is basically d’Alembert’s principle or tipeinciple of

virtual work. We shall not be using that extension our present purposes, but it
represents an important extension in scope of tanal methods. The author has

published several paper2-f] on this rarely-mentioned aspect of the calculds o
variations, and we refer the curious to those mfoera deeper discussion of it.

3. Symmetries of the action functional.— Now let us return to the general
expression (2.16) for the first variation of theiae functional for general variations of

the fieldsW and¥".
For extremal fields, and regardless of the comggahat were imposed upon the
variations in order to obtain the extremal equatjdhe first variation will take the form:

BIK, W, :jas[n;awa +NI W2+ £(j'W) ox'|#0, . (3.1)

If this expression vanishes then another applicatf Stokes’s theorem will give:
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deD{[ 0w +NYW2 + 4 W) ox]# 8} = 0. (3.2)

If this is to be true for every choice $then one must have:
d [NV +NI 2 + 4 jW) oX]# 0} =0 (3.3)

for that particular variatiod¥ and extremal fieldp.
Now, since the expression in square brackets in (3.3set af functions, one can
also express this last equation in the form:

0[NV +NUIP™ + £(j'W) ox'] = 0; (3.4)
I.e., the functions in the brackets are the compondrayector field or.
J= [Hgdva+ﬂ§dv@+£(j1W)5xi]% (3.5)
X

that has vanishing divergence. One can then think @ a conserved current that is
associated with the variatiakV.

If one defines Vax, W, W) to be the infinite-dimensional vector space of all
variations of the field$¥ andW" then one will have a linear map: Var(X, ¥, ¥°) -
X(9), (K, &, ) - I(K, I, ). Itis not one-to-one, since, for one thing, there
will generally be many variationg#® and J¥"@ that are transverse to the canonical
momentar’, and M.

In general, the variationd¥ and ¥ of the fields consist of two components: There
is a vertical part -q¥ or ,¥, resp. — which is independent of the pointSd¢and is
often called the “substantial variation” $for W") and a lift - _dxor Wox, resp. — of

the variationdx of the points oS Those lifts take the forms:

W ox = dW|(X), WX = d¥ K(K), (3.6)
or, in components:
Wiox=w3ax, Waox =W ox. (3.7)

The vertical partgy¥ or o,\W" of the variations of¥ and¥" are what is left when
one subtracts the lifts @k from the total variations¥ and J¥":

AW = -Wox, W =¥ - YRx. (3.8)

If variations & and dW" are replaced with their vertical parts then the esgioa
(3.5) for the current that is associated wikh+ J,¥ + J,%" will now take the form:
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Ji = TJI JX] +|—Iia J_IJa +I—I2 J_IJ*a, (39)
in which:
T =L£d-N,0¥ -NJow= (3.10)

is referred to as theanonical energy-momentum-stress tengerdoubly-covariant form
T; does not generally have to be symmetric.

a. Infinitesimal symmetries of the action functioraWe refer to a general variation
o5, as in (1.6), that makedS[dg| vanish for any extremal field as aninfinitesimal
symmetry of the action functionalSuch an infinitesimal symmetry is then associated
with a conserved current (i.e., a vector field®with vanishing divergence) by way of
(3.5). If the variationds is not an infinitesimal symmetry of the action ftional (so
aS[dg] # 0) then one can still define the vector fidlshaively. The only thing that will
change is that it will no longer need to have vanishiagrdence.

One should distinguish between an infinitesimal symynés of the action functional
and an infinitesimal symmetC of the Lagrangian density itself, for which:

0=0C= ch‘a—ﬁi+cfzaa—£+cfz*a oL +c$26—£+c5.*za oL

. = 3.11
ox o7 9z° a7 o7 (3.11)

Although an infinitesimal symmetry daf will always be an infinitesimal symmetry &f

from Stokes'’s theorem, as long as thtorm (L) V is exact [say,dL) V = dw], it will
give rise to ann-1-form 5, and if 7, in turn, vanishes oS then X will be an
infinitesimal symmetry ofS that is not an infinitesimal symmetry @¢f One can also
express this by saying that:

o =div#! n. (3.12)

The linear ma@ : Var(X, ¥, ¥") - X(S), (&K, &, W) - (K, &, &) then has

the property that itX, &, M) is an infinitesimal symmetry of the action functional
thenJ(X, d¥, &) will have vanishing divergence. Both of the vector spatasgx,
W, ) andx(S have Lie algebras defined on them. When one restedotsdtor fields

on Swith vanishing divergence, one will get the Lie algebranfwfitesimal generators of
one-parameter families of volume-preserving diffeomorpkjs and the latter
diffeomorphisms define an infinite-dimensional (Banach)dreup.

a. Noether's theorem— Although the association of conserved currents with
infinitesimal symmetries of the action functionahtiwas just described is more general
in scope, the original paper by Emmy Noethglr was confined to the association of
conserved currents with infinitesimal symmetries thatevdue to the action of finite-
dimensional Lie groups in the fields, so the variatitbmsmselves took the form of
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fundamental vector fields for the group action. Sititat is also how the physicists
usually think of Noether’s theorem, we shall discuss ribstricted form of it.

As discussed above, there are actually two ways @atan act uponC':
Independently, and by way of mapping the actiorsém one orC' using the differential

of W or ¥'; i.e., the lift of the action. Hence, the fundata¢nector field § onC' that
corresponds to the action of an elemght G will decompose into two parts again:

§=8,+(WYa, +¥a,), (3.13)

in which g, is the vertical part an& g, +Wg, is the sum of the lifts of the fundamental
vector fieldg of the action o onS

The action of on Swill enter into only the definition ofx, while the representation
of G in C" (more precisely, the representation g)f will then enter into only the

definitions of & and J¥".

4. Examples of symmetries— We shall now discuss the specific examples of this
situation that we shall be concerned with in allhef wvave equations that follow.

a. Phase invariance- One of the simplest symmetries of the action tional
(which is also a symmetry of the Lagrangian densitgj tme can consider for complex
wave functions is the possibility that when their vesd are expressed in polar
coordinates, the choice gfobal phase origin will be irrelevant. Hence, one makes th
finite replacements: _

Yis dY, W s ey,

in which a is an arbitrary real constant.
In order to turn these into infinitesimal transformasie- i.e., variations — one lets
become a differentiable functiar(s) and differentiates the expressions atO:

;N = di (€W =i gy, N = dis‘ (eOWH = —j o'y, (4.1)
s=0

s=0

in whicha’=da/dsats=0.
Since this variation does not involve the poirt$di.e., it is vertical), the conserved
current will take the form:

J'=ia(n! w2 -7 ye), 4.2)

in which we have dropped the otherwise irrelevaimh@, for brevity.
As long as the divergence aF vanishes the inclusion of the constanwill be
superfluous since the divergence is a linear operahda can be omitted.
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b. Scale invariance- Closely related to the concept of phase symmetriaat df
scale symmetrywhich represents a global rescaling of the space-tmoedinates by a
positive factord, combined with a global rescaling of the field spaceheyreciprocal of
that factor:

X =A%, PR =AWAX), PAR) =AWAx). (4.3)

Note that the space-time part of this transformatign not generally defined
independently of a choice of coordinate system.
The associated variations will then take the form:

HK=xa, MH=Ko¥Y-w)ad, MH=Ko¥"-wHa. (4.4)

If we suppress the explicit mention of the consi@hthen the Noether current that
corresponds to this will be:

Ji=£X-niw-ntys, (4.5)
If the action functional is indeed scale-invarianntbae will have:

O:GiJi:'ﬂ‘+>€a—£i—LlJa 0L _ym 9L

) 4.6
0X ow? oy (4.6)

Otherwise, that divergence, and with it, the right-hside will not vanish.
In particular, for Lagrangian densities that are inddpah ofX, ¥, ¥ one will
have:
OzaiJi:'l'ii; (47)

i.e., the energy-momentum-stress tensor will beetess. Such a Lagrangian density will
then have the fornf(W?,W?).

c. Translational invariance- Translations are transformations that presumably act
upon the points of space-time, and in fact, unless theespme manifold actually has the

structure of an affine space, suchRls the action of the translation group for some

dimension can usually have only a local charactercddfse, since we are only going to
consider regionS that belong tdR", that will not be an issue for us.

If the dimension o8 is n then the action oR" on S by a translatiora' is simply to

take a poinix 0 Sthat is described by coordinatesto the pointx' +a'. Naturally, if
one changes the coordinate systemxdhen one must change the coordinatesafor
accordingly. Of course, the translationSxddioes not have to still B&itself, and that will
be the case only for the identity translation. _

In order to get a fundamental vector field &rone replacea ' with a differentiable
curvea ' (s) and differentiatex’ + a'(s) ats= 0. If we lete' denoteda' /dsfors=0
then the variation of will be the vector fieldx(x) whose components are:
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HK(x) =& (4.8)

In particular, it is a constant vector field 8n
Since the translation group typically does not alsb ugon the field space, one
usually sets:
MN=H =0. (4.9)

Hence, the current that is associated with this typarmation will take the form:
J'=Tle (4.10)

If the action functional is invariant with respectttanslations then this current will
have vanishing divergence, and siacare constants, that would imply that:

aT' =0. (4.11)

0T =f, (4.12)

wheref; represent the components of the resultant of therreadt forces that account for
the breakdown of the conservation of energy-momentum.
Explicitly, we have:

oT = 0L 9L ow* oL 0¥ oL ow™ oL oW

. . - . | 4.13
Yhoax! 0wt ox 0w ax aw™ axX 0w 0X (4.13)

in which we have used the field equationsgi¥". If the right-hand side vanishes then
we must have:

0L _ 0L 9¥* oL OW] oL ow™ oL OWF

- = . . — + . 4.14
ox! oW ax!  ow? ax' owW™ ax! oW oX (4.14)

which suggests that must take the form:
L=L W, oW, W, ow). (4.15)

In particular, it must be independentof

d. Rotational invariance= Infinitesimal rotations are usually assumed to act upon
both the points of space-time and the vectors id Bpace. One can also deal with those
transformations by raising the lower index of the matiat represents them:
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w' = ). (4.16)
The resulting matrixo" will also be antisymmetric in its indices:
W =- W (4.17)

Hence, we shall set the components of the fundameetadr field onS that comes
from the action otw s0(3; R) onR® by matrix multiplication equal to:

XK=y, (4.18)

Similarly, the action of the grou®Q3) onC" will result in a representation of its Lie
algebra®: s0(3) - gl(r, C) in the Lie algebra of infinitesimal linear transformat of
C'. If one chooses a basis {i = 1, 2, 3} forso(3) and anotherB,, a=1, ...,r} for

gl(r, C) then one can represedt by anr x 3 complex matrix®?. However, if one is

representing infinitesimal rotations by antisymmetrS 3natrices then it will often be
more convenient to represent the homomorph¥ry a three-index array of the form

DF. The way to get from elements af(3), when expressed as componegfswith
respect to the base, to elements 0§0(3), when expressed as antisymmetric matrices
w", is by way of the “adjoint” map, whose matrices hthecomponents:

[&lk=axk, k=1,2,3, (4.19)
w" =™ of (4.20)

and
@i? = &k @E. (4.22)

As a result, the fundamental vector fields of theomctif SQ(3) onC' by way of the

representatio® will take the form:
=19, M =1D"d . (4.22)

When one substitutes (4.18) and (4.22) into the expre¢8i®y for the Noether
current that is associated with, one will get:

J'=3(L+S,) ", (4.23)
in which:
Ly =T % =T % (4.24)



8 4. Examples of symmetries. 117

represents therbital angular momenturtensor, and:
S, = N, 9% +N, D}, (4.25)

is theintrinsic angular momentum orspin-— tensor.

As one can see, this kind of angular momentum hastdeds with the rotation of
things than it does with the way that the rotations getesented in the field space. Itis
the type of angular momentum that will be associatéa gquantum wave functions later
on.

If the action functional has rotational symmetry (ir@ external torques are present)
then the vector field ' will have zero divergence. Sinee’ is a constant matrix that
would imply the equations of conservation of total angmamentum:

ai(Lijk +Sijk) =0, (4-26)
which can also be written:
oL,

- ais}k . (4.27)

When one goes back to the expression (4.24) for orbitalangomentum, one will
see that:

0L, =0T x0T x+Ta -1 =0T/ x -0 x+T-T. (4.28)
Hence, if linear momentum is also conserved, one hast:
ai Li]-k = Tjk - Tkj . (4.29)

That implies that if linear momentum is conserved tbdntal angular momentum will
also be conserved iff the canonical energy-momentuesssttensoiT; is symmetric.
When one substitutes (4.29) in (4.27) that will give:

Tjk - Tkj == 6iS}k . (430)

Hence, the symmetry of would also imply the conservation of spin when one ha
conservation of total angular momentum.

In the event that the action functional is not syatno under rotations (i.e., external
torques are present), one will have

ai(Lijk +Sijk) = M, (4.31)

whereMj represents the external torques (moments).
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e. Lorentz invariance- Lorentz transformations can be dealt with in clasgagy
to three-dimensional rotations since when one raisefther index on the matrix of an
infinitesimal Lorentz transformation:

" = n" o, (4.32)
one will again obtain an antisymmetric matrix:
"’ =- . (4.33)

In fact, this result is true for scalar products of amnature type. Of course, this time
the matrixaJ” is 4x4, not 3.

The fundamental vector field that is associated wighattion ofw O so(3, 1) onR*
by matrix multiplication will then take the form:

&= x, . (4.34)

a

This time, we write the matrix of the representatdnso(3, 1) - gl(r; C) as®;,,

so the fundamental vector fields of the actios@B, 1) on the field space by way Df
will now take the forms:

M =1D2 W, WP=190 . (4.35)

One will then get a Noether current:

¥ = (L + S o (4.36)
with:
Ll;ia :TK”XA—'I;”)g‘, S;ﬁ = ng@ia+n;ﬂ®;?:- (4-37)

If the action functional is Lorentz-invariant (so external torques or sources of
boosts are present), the curréfiwill be conserved, and sinag” is a constant matrix,
one will get:

d,(L,+S;) =0 (4.38)
or
oLt =-0a,5St, (4.39)

in analogy with (4.26) and (4.27).
Since:
oL, =0, T %=0,T x+T,-T

U KA UK K

(4.40)

if one also has conservation of energy-momentum, dlhbave:
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alul_f(l) :TK/] _T/]K:_ a Sﬂ (441)

UK

in analogy with (4.29) and (4.30).
When the action functional is not Lorentz-invariaote will have:

0,(L, +S) =M, (4.42)
in whichM, represents the external torques (moments).

f. The Belinfante-Rosenfeld theoresif one raises the lower index Cﬁﬁ to giveT L
then one can polarizé! into a symmetric and an antisymmetric part:

T = 7 @) 4 7 [ (4.43)
with:
TWO=1i+Thy, THM=2(TI-T"), (4.44)

If one raises both lower indices cﬁjk then one can completely antisymmetrize the
indices to produce the components of a 3-vector field:
ik = g =1 (g + 9 + i) (4.45)
that some§] call theBelinfante-Rosenfelgknsor field. Explicitly, one has:
ik =1(M) DK +111 D + 115 D) (4.46)
TheBelinfante-Rosenfeld theordm, § then says that:
T = g, Bk, (4.47)

Actually, they also showed that if one is dealing wvaitie’s field theory in the context
of general relativity, so the space-time megjg is not constant, and the Lagrangian
density is a function of it, one can also derive ymarsetric part off*” from the formula:

TW = _a‘zf . (4.48)
v

This is very much in the spirit of Sahkarov® foncept of general relativity being a
theory of “metric elasticity.” If one thinks @, = 77, + E,v, WhereE,, is a finite strain
tensor (which does not have to be infinitesimal as whelly assumes in the case of
linearized gravitation), that would make:
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oL _ oL

o oE (4.49)
g,uv LV
and the equation:

T = —a?; (4.50)

v

would represent a mechanical constitutive law for a hgtestic medium (i.e., one for
which such arC exists).

5. Gauge invariance — When one allows the global constant in a phassiti@m to
become a differentiable function of space-time, enters the realm of local phases, or
gauges There are two types of possible gauge transformatbmise fields that enter
into a Lagrangian density, which are caltpalige transformations of the first kiraohd
gauge transformations of the second kiadcordingly. Gauge transformations of the
first kind are something of a generalization of phagesfiormations that become an issue
whenever one couples the particle that is describedeowave functiot to an external
electromagnetic fieldc by assuming that the particle is charged. Gauge tranafmns
of the second kind pertain to the Lagrangian densithe@gttectromagnetic fiel# alone.
Hence, when one is dealing with only an electromagfetat, but no wave functions, in
effect, the first kind of transformations will play mole. Hence, we shall start with the
gauge transformations of the second kind.

When one represents one of the Maxwell equatiorfseirfiorm:

d-F =0, (5.1)
one can solve it (if only locally) with a 1-forAsuch that:

but not uniquely. That is because any other 1-fé&rm a, whereda = 0 (i.e.,a is
closed) would produce the sarRe Since every closed 1-form is locally exact, one can
also say thaf can be replaced with + dA for any O-formA. The replacement & with

A +dA is what one calls thgauge transformation of the second kind

If one then regards the Lagrangian dengi{y§r) for the electromagnetic field as
something that really takes the foli(A, dA), then a variation of will take the form:

or = 9L 5a+ 9% saa= 2L sa+ 9L 4i5A . (5.3)
A" 3an’ Y A% aaa

One should note that from the second equation in (5a2)yall have:
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oL __ oL : (5.4)
oA, oF,
Actually, if one wishes to formulate Maxwell's secbset of equations:
9, F=2 (5.5)

as the Euler-Lagrange equations for an action functitmed one will find that one
cannot avoid the introduction of the electromagnetiempid! 1-formA. When one uses

a gauge dependent action functioféh, dA) for the electromagnetic field, one can then

express (5.5) in the form:

0L _ 5 L _or (5.6)

0
“oA,, “oF, 0A

Hence, one can use the Lagrangian density:

L(A dA) = L(F) + L(A) = —iF, F"+A X, (5.7)
and get:
0L(F) v oL _ .,
0 —21=9,F*", — = 5.8
“ooF, oA &9

The Lagrangian densityL(F) is automatically invariant under the gauge
transformations of the second kind:

Fi=sd (A+dl)=dA=F. (5.9)
As for the Lagrangian densi§(A), one has:

A+ 0, D) F=AF+0, A F =A, ¥ +0,(A I,

since one must have the vanishing of divdentically (it follows from the identical
vanishing ofd~ d»). When one integrates the second term on thé fight-hand side
over a space-time with no boundary, it will vaniahg that will imply that the invariance

of L(A, dA) under a gauge transformation of the second kifhe can also use the

second equation in (5.8) as the definition of tlemserved current that follows from
gauge invariance of the second kind, as we shah ednat follows.

The canonical energy-momentum-stress tensorglegsociated with in (5.7) is:

TH= -1F FY 0" +F*F - JFA,, (5.10)

1% 4

which is often associated with the name Faradapoagh it is somewhat dubious
whether the methods of tensor analysis were cordempous to his era.
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One sees that the trace of this tensor is:
T/ =-AY, (5.11)

which will then vanish outside of the supportlof
The divergence of the tensgf’ will be:

0,1/ =Fuw X, (5.12)

which is then the Lorentz force law in its relativisticm. Hence, energy-momentum
will be conserved only outside of the suppord of

When one couples the electromagnetic fleltb a wave function and its complex
conjugated”, the gauge transformations of the first kind will plago&. If one replaces
A with A + d/ then the replacemetit —» €' @, W7 5 & Yo will be called agauge
transformation of the first kind Hence, the first kind of transformation enlarges the
scope of phase transformations to ones that havé dbo&ces of phase origin, not just
global ones. Therefore, whelnvaries with position ir§ one can no longer replads’
with ! d¥ and d¥" with € d¥" since one must also differentiate and the
replacement will become:

d¥ i M (@AW +idiw), d¥' e (dw-idiwh.
If one defines theovariant differentials:
OW=d¥+iAY, DOW=@Ow) =dy"-i Ay (5.13)
then one will see that:
W > e [dW +i (A+dA) V], OWY s e [dw”-i (A +dA) Wh.
Hence, the gauge transformation of the first kind wifluce a gauge transformation of
the second kind in the covariant differentials.

The replacement of the ordinary differentidl, d¥" with covariant differentials
OW, OW" resp., is commonly referred to ménimal electromagnetic coupling.

Naturally, one now needs to extend the action foneliand Lagrangian density to

something that also depends ugoandF, as well ag]¥ andO"W", if one is account for
gauge symmetries of both kinds, namely:

L=LAF WY W, OY 0OW). (5.14)

Hence, oL will now include an extra term that comes frédm
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oa= 25 5a + 95 57

, 5.15
oA, oF, ™ (5.15)

while the terms that relate ¥, W* will take the form:

oL, o = 0L cwa+—a£&cw@+—
S TR oW a(0,w?

oL oL
O W) +————3(OW™).  (5.16
(0,%9) W) @¥5.  (5.16)

The variational derivatives &f, W* will then take the covariant forms:

oL _ oL oL oL _ dL oL
== wa %« =~ apE - gm0k = (5.17)
N v o, w?) v oV o, W)
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CHAPTER IV

NON-RELATIVISTIC, SPINLESS PARTICLES

In this chapter, we shall attempt to merely documeatverious contributions that
were made along the way to the formulation of noatnaktic quantum mechanics for
spinless particles as something that also related tontitien of extended matter under
the influence of a force of quantum origin. Since fbate and its associated dynamical
guantities, such as a quantum potential and a quantuns séresor have a somewhat
enigmatic character that one suspects will be the key better understanding of the
foundations of quantum physics, we shall defer that dssmago the next chapter, in
which the author’'s own thoughts on the matter will bespnted.

8 1. The time-varying Schrodinger equation. The approach that we shall take to
defining the time-varying Schrodinger equation is that efd@nonical quantizatior)(of
the classical expression for the total eneEgpf a point massn that moves in space

(which will generally beR® under the influence of a conservative force thateisved
from a potential functiotd, namely:

E=_Lp 4y (1.1)
2m

In this, P = Pi(t) dX is the momentum 1-form that is defined along the traigot(t) of
the mass point, which is related to its velocity:

v(t) :\/(t)i., v= (i=1,2,3) (1.2)
ox dt
by the mechanical constitutive law:
P=mgv=my. (1.3)
One refers to the 1-form: _
v=y; dX (1.4)

as thecovelocityof the motion.
Of course, we are implicitly assuming that the thrieeedsional space in whicim
moves has a Euclidian metide= d; dX dX defined on it. That will then make:

=" P Pi= (P’ + (P + (P’ (1:3)

P2 =V =nt (g V V) = [(V)2 + (P)P + (V)T . (1.6)

Furthermore:

() Canonical quantization means associating the canovécablesx, p. of Hamiltonian mechanics
with operators. Here, we shall mostly be concernedtivéihmomentum variables.
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a. Energy as an operatorThe process of canonical quantization really begins
kinematics, although it is usually introduced in the cekintd dynamics. That is, as a
result of a Fourier transformation of functions thapend upom andx', one will find the
following pair of associationg)¢

0 : 0 :
— o — - © |ki ’ 17
ot “ ox 7

in which wis the radial frequency of a wave, dndre its wave numbers in each spatial
direction.

We can also anticipate the relativistic theory by galileng our spatial coordinates
to space-time ones, ), and then defining® = t, ko = — « so that the associations (1.7)
can be consolidated into a single one:

c{% o ik, @=0, ..., 3). (1.8)

The componentk, define thefrequency-wave-number 1-form:
k =k, d¥' = — wdt + k dX. (1.9)

If we define theenergy-momentum 1-formf the point massn by extending the
momentum 1-form with total enerdg(t):

P(t) = P, d¥' =—E(t) dt + pi(t) dX (1.10)
then the de Broglie relations for matter waves, i.e.:

E = hw, P = 7k, (1.11)

can be expressed concisely as:
P = nk, (2.12)

in which 2 =h/ 27z whereh is Planck’s constant.

If one compares (1.9) to (1.10) then one will see timae$(t) is defined only along
the trajectory of the point-mass, whiteis defined on the support of a wave-function,
which will be a region of space-time, the only wagttfil.12) can make sense is if one
essentially assumes thatandk; are all constants, which would make the wave a plane
wave if the coordinates were rectangular. Clearly,absociation df with P would be
more satisfying iP were also defined over a region of space-time thabtigust a curve,
as well. Hence, one sees that perhaps a continuum riawdée mass would be more
mathematically convenient, after all. In particulamould make sense if the mass were
distributed over the support of the corresponding wave.

i (akixl)

() The minus sign beforeycomes from using
plane wave that moves in the directiorkof

in that transform, which represents a travelling
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If one considerk to be a representation of the kinematical statewéve andP to be
a representation of its dynamical state then one lsEnvéew the de Broglie relations
(1.11) or (1.12) as a type of mechanical constitutive lawwiave motion, in which
Planck’s constant plays a role that is analogousdadle ofmin (1.3). However, if one
associate& with an energy-momentudensityl-formp by way ofp = zk then sincen
would need to have different units (viz., energy-time/vaymone might also ask
whether the newly-defined: were still a constant, or some more general funabibn
space.

We shall return to the ideas that were presented ilashéwo paragraphs later in this
chapter.

The de Broglie relations then allow us to put the cararquantization rules (1.8)
into the form:

ha% o Py, (1.13)
or

hod

Ta = Pu (1.14)

which is the way that one usually works with them in cotieeal quantum mechanics
[1]. More to the point, one uses the associations:

ind L E 9 p (1.15)
ot i ox'

The kinetic energy of the point-mass then gets adsociaith the linear, second-
order partial differential operator:

1 2 —_h_z i ’ i i i i :—h—2
m 2mKa>&j J{axzj J{ai” m’ (1.16)

in whichA is the three-dimensional Laplacian operator.
The total energy equation (1.1) then becomes pleeador equation:

ind = —h—ZA +U(t, X), (1.17)
ot 2m
in which the operatod means multiplication by a scalar function.
All that one has to do to produce the time-vary8ghrodinger equation from the
latter operator equation to apply both sides ofdperator equation to a complex-valued
wave function¥(t, X), which must then be at least once-differentiabléme and twice-

differentiable in space:

2
indY - aw o+ uw, (1.18)
ot 2m
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One can see that virtually everything that one can $&amytathe nature of this
equation will depend upon the specific form of the poteritiattion U. Indeed, the
textbook examples that one encounters in most physicseare mostly concerned
with time-invariant potential function&J(x), which will lead one to the stationary
Schrédinger equation. We shall discuss that case icaluse, but first we shall discuss
the Lagrangian formulation of the time-varying Schrgédmnequation, and then we shall
introduce the Madelung-Takabayasi form of (1.18).

b. Lagrangian formulation of the time-varying Schrodingguation. One can
derive the time-varying Schrddinger equation from a Lageendensity that takes the
form ():

L= i—h(wwﬂ—wwﬂ)—h—zudsw If-U W . (1.19)
2 2m

One sees that (1.18) can then be derived #oloy annulling the variational derivative of
L with respect tob":

_ oL _ oL 0 oL . oL
= == ST o —div = -
oYy ow- ota(W) o(d.Ww")

(1.20)

Similarly, if one variesC with respect td¥ then one will get the corresponding wave

equation fol¥"
One can give equation (1.20) an “infinite-dimemsid= = ma’ form by introducing
the generalized fordethat acts upon the fie and its generalized momenid, M' (%):

oL ih

f= = =-—Yl-yy’,
ow 2
1 . 2 ..
t= a’_CD :ﬂl.IJD, n's= oL :—h—é'la.l-lJD, (121)
AWy 2 a@w) 2m !
and similarly for¥":
f = ‘MD =1y _uy,
ow 2
2
ne= a_ﬁm __ﬂLp, n"= 6£D :—h—éiiajw. (1.22)
WY 2 a@,wH)  2m

(l) The subscrips means that one considers only the spatial part di-floem. For exampledW = g;W
dx.
(® One must note that in performing the differentiatioonse must trea¥ and¥” as independent
variables:
oW 0w _o0W)_,

" , etc.
W av 90w
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As one sees, the second set of quantities are all leengpnjugates of the first; i.e.,
complex conjugation commutes with differentiation. dTls because the differentiation
is with respect toeal variables, not complex ones.)

The time-varying Schrédinger equation $r can then be given the form:

f=o,N'+o,M" (1.23)

and the corresponding equation ¥mwill be the complex conjugate of this.
The LagrangiarC is invariant under thglobal action of the groupJ(1), since the

global choice of origin for the phase of the wave fiamcis arbitrary. The corresponding
infinitesimal generator of that symmetry takes thenfor

MN=igy, N =-iaqV¥. (1.24)

The Noether current that is associated with this irg@gmal symmetry is then the vector
field whose components are:

30= MW+ N = —ha WY, (1.25)
. . . I 2 ..
3= n'dv+n'ﬂdvﬂ:'Z—aal(wﬂajw—wajwm), (1.26)
m

which are basically-7#a times the expressions that are usually identifigth the
“probability current” in quantum mechanics, namely:

JO=yy’, Ji:i_gi(wﬂaw—wawm), (1.27)
2mi . '

Clearly, one can drop an overall constant, non-geatar factor from the definition df,
since the divergence operator is linear. Howether, relative signs and units df do
have physical significance.

One can obtain a canonical energy-momentum-steesor from the Lagrangian
above:

T =N*9W +M* o0, W - LF*. (1.28)

Its individual submatrices are:

2
T = o lldw U W = (1.29)
m

J

T :+%(wﬂajw—wajwﬂ) =-mJ, (1.30)
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hZ

T =——— (Vo'W +¥ o'y, (1.31)
2m
. B . _
T/ =———(@'W0,Ww+dWo,w")-LJ . (1.32)
2m J J J

Note the asymmetry in the componefi{sand T?, while the stress tensdj; = chTJ." IS

symmetric.
The trace of this tensor is then:

3ni

2
T/=H-3= —7(¢WD—W¢D)—F||dSW F+ 20 ¥ {l. (1.33)

The divergence is easier to interpret:
0,T/ =0 ||WIf. (1.34)

Its temporal component will then vanish when théemal potential is time-invariant,
while its spatial components represent the extdaneé (density) that acts upom

§ 2. The Madelung-Takabayasi form of the time-varying Schrodingeequation.
In the same year that the Copenhagen School otgmamechanics was establishing the
statistical interpretation of the quantum wave figre W, Ernst Madelung 7] was
proposing an alternative interpretation that héedathe “hydrodynamical’ interpretation.
Although his way of transforming the Schrddingeua&tipn was actually confined to the
stationary case, it was subsequently extended dotithe-varying case by Takehiko
Takabayasi 3], who expanded the scope of its application tontwa mechanics
considerably.

a. The basic transformation The essential step in the transformation to the
Madelung-Takabayasi form of (1.18) is to introdymsar coordinatesr( ) into the

complex plané in whichW takes its values. Thus, one expresges the form:

Y=Ré& (2.1)

in which bothR and & are real-valued functions ot, (x) that are “sufficiently-
differentiable.”
It helps to know that:

§= (—iﬂéjw | o (—R—iéjwm, 2.2)
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deW = (d;RHdsejw , deW" = (d;R—idsé’jWD, (2.3)

and the fact tha¥y™ = R%.
Substituting the polar form & into (1.18) will give:

2
ih(ﬂﬂaj =_ A—R—(d39)2+i(A9+2Mj +U. (2.4)
R 2m| R R

In this equation, the subscriptndicates the first partial derivative with respect,tand
we are using the notationra< 2> = 8" ai § to indicate the Euclidian scalar product of
spatial 1-forms. _

Since both sides of the equation represent complextidmscof ¢, X), one can
separate the real and imaginary parts and arrive at aopa&al equations that are
equivalent to (1.18):

——i —_— :h_z Z—E
R = 2m(RA«9+2<d$6?,dSR>). he, 2m[(dse) R}+U. (2.5)

One might note that the factor afalways occurs with the same power as the partial
derivatives ofg, so one might make the perfectly reasonable repieaat:

k=d& (2.6)
with k defined as above; i.e.:
06 08
w=—-—, = 2.7
ot ki ox' 27

Of course, the fact thitmust be exact implies that it must also be closed:
d-k = 0. (2.8)

Later on, we shall examine some attempts to gorzkyiee constraint that this implies on
the original wave functiol.
Since wandk; always appear with a factor @f, one can then replaceng with E

and 7k with P;, as before, and the system of equations (2.5)ak# the form:
1 _ W AR

—i(RdivPS+2<PS,dSR>), E=—<P,PR>+U-——. (2.9)
2m 2m 2m R

R

There are two essential differences betweerkEth@d P, in these equations and the
energy and momentum that were defined above. @&firal, we were previously talking
about functions of time that were defined only glahe points of a curve that was
followed by a point-mass, but now sinfés a function oft( x), so areE andP;. Hence,
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if we are to still think of them as being associated witergy and momentum, we must
no longer think in terms of a point-like mass, but aiapigtextended one. Secondly, the
units of E andP; are still those of energy and momentum, resp., netgy density and
momentum density, resp., whereas for an extended nsgbution the role om, E, P,
would now be that of théotal mass, energy, and momentum, resp., which are only
meaningful when one passes to the point-mass approximation

Clearly, we are not dealing with point mechanics anynmrecontinuum mechanics.
The main challenge to physics is then to identify theneaof the extended matter that is
being described by the equations to which we have arrived, empecially, the
constitutive properties of that medium, which we stefttr to as &#Madelung medium

b. The conservation of masi order to get more insight into what the massitign
function o might be, we start with the fact that:

|WIF=wy =R (2.10)

In the statistical interpretation of the wave functi#, one thinks of |W |f as
representing gprobability density function for finding thepoint particle m in the
differential region of spacaV around the point at timet. Of course, that can only come
about as long as the wave functidnhas been normalized to have “total mass” equal to
1;ie.

1=[|w [fav, (2.11)

in which the domain of integration is all spaceijtgeertains to one’s particular problem.

However, this normalization is not necessary melges of the Schréodinger equation
itself, but only in the interpretation of the wafuaction. That leaves open the possibility
of giving the space-time functiony| |f or R® a different interpretation. Madelung chose
to interpret:

n=pR (2.12)
as anumber density.

One usually introduces number densities in thaeodrof ensembles of a large, but
integer, number of point-like masses distributedpace, such as in the kinetic theory of
gases or with crystal lattices. Sineas a real number here, if one assumes that one is
dealing with extended matter, not a finite collentdf points, then there will be nothing

conceptually wrong with saying that the integr%ltl.[v n represents thizaction of all the

extended objects that is contained in the spatkimeV, whereN, namely, the integral
of n over all space represents the total number oihdtsbbjects. One might then relate
this to a probability density function by sayin@thf an object is extended in space then
the probability of finding it in a region of spaed| equal the fraction of the object that is
contained in that region.

If the total mass of the extended objeaiishen one can define a mass density for it
by means of:

o=mn=mR. (2.13)
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If the motion of this mass density were associatell avitelocity vector field/(t, X),
whose support would then be the same as thattben the equation of continuity for the
conservation of that mass would be:

p==0i(pV)=-dipV-paV. (2.14)
If we rewrite the first of (2.5) in the form:

RP (2.15)

1 1
=— R -
R 2m m

Q|
x.|-O

and multiply both sides byn2Rthen that will give:

2mRR=-R*3,P-2R), RP,
or

3 (mR) =- 0, (R P). (2.16)
This equation will be consistent with (2.14) iff:
p=mR, RP =pV. (2.17)
One can solve the last equation vbr

v=lp=Tg 9,6 = —K. (2.18)
m m

Thus, we have succeeded in defining a mass densityd a velocity vector field
for the motion of an extended mass distribution in spackerms of the kinematical
information that was contained in the wave funct#r{in the form ofR and 8 and its
differential, along with the empirical data that vgagen bym and 7.

It is worth noting that the since the difference lesw the mass densigyand the
number densityn is only a multiplicative constant, the number densitll also be
conserved; i.e.: _

ne=-20; (n V). (2.19)

Since we started out with a wave function, which te&nassociated with two
velocities, namely, a phase velocity and a group tgloghose components will take the
form:

v =Sk (2.20)
LY
the necessary and sufficient condition for the e#§o(2.18) to equal the group velocity
is the physically-reasonable constraint that thgmitade of the wave numberk||| must
be the Compton wave number that is associatedthgtbotal masa:
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mc
kil =—=. (2.21)

One can get further information about the mechanicapesties of the extended
matter in motion from the differential of the spdtvelocity vector fields, or even better
(since the metric is Euclidian), the covelocity 1nafor

v="14d4 (2.22)
m

This also means thatadmits avelocity potential(*), or stream functionin the form of
h@im.

If one takes the (spatial) differential of this 1-fortimen the resultingate of
deformationcan be polarized into a symmetric and an antisymengdrt:

dv=e+d =g dxdx+14 dxO dX, (2.23)
for which:
s = oy O vi= @k +o k) = 200 (2.24)
€ iV i Vi m i i m i .

is therate of strainand:

g =0ivi—0vi=0 (2.25)

is thekinematicalvorticity, which will vanish because it is also the exterior\ggive of
v which is exact, sincds@is. Thus, the Madelung medium will lrgotational. The
vanishing of the vorticity also makes the rate of defoionalyy tensor symmetric.

One can also obtain thate of dilatationfrom the trace of; :

j=d =dvv=dvik=2" 6. (2.26)
m m

The vanishing of this function would be equivalent to theompressibility of the
medium, so we shall generally treat the Madelung umedis being compressible.
We can then express the rate of deformation tengteiform:

oivi= & +19 A0, (2.27)

3

in which:
0

e; :e;—

wl~

3 A8 (2.28)
is the traceless part &f .

() Of course, if the support of the covelocity 1-form igltiply-connected then the velocity potential
will exist only locally.
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c. The balance of energyTurning to the first equation (2.9) of the Madelung-
Takabayasi equations, which we rewrite as:

- Lpiuru, (2.29)
2m S h

we note that, despite the usual line of reasoning, it waatithe entirely consistent to call
it the balance of energy for the motion of@ttendedmnass distribution, since all of the
terms have the units dbtal energy, which is more appropriate to tpeintmass
approximation, as is the total mass Hence, we are still talking about the energy
balance for a point-masswhose total energy I5, and whose total momentumHRg and
which moves in the presence of a conservative forceanitiice potentiall, along with

a somewhat mysterious conservative force whose pdtamition takes the form:

_# aR

Y R (2.30)
When we discuss the Lagrangian density, we sleallthat the simple solution to
making densities out of totals is to multiply tletal quantities by the number dengity
as we did with mass. Although this makes senseEf@nd Ps, one must note that
multiplying a potential function by a number densitill change its character noticeably.
For now, we shall continue in the manner of tlessical researchers in this field.
BecauseU, is the only place in the equations in whighis actually used explicitly

(although a factor of: has beemmplicitly absorbed into the definition &), U, came

to be referred to as tlggiantum potentiabr Madelung potential Indeed, in the classical
limit as # goes to zero, so will,. Hence, one suspects thaf should contain the
essence of the difference between classical cantinmechanics and quantum wave
mechanics in its structure. One also notes tlae#pressiot + U, is suggestive of a
“loop expansion” in powers af , which will give one an “effective potential” ihé form
of a classical potential plus quantum correctiohngcreasing order irf .

Of course, the vanishing of a potential functismot as physically definitive as the
vanishing of the force that it defines. The quanfarce that goes with), is the 1-form:

2
F, =-dU, :;’—mds (A—sj. (2.31)

Once again, this will have the units of force, fuste density.
F,will vanish iff A = AR/ R s constant in space, which can be rewritten:

AR=AR (2.32)
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Thus, eigenfunctions of the Laplacian will produce no quantum foi$eme elementary
examples of such amplitude functions &g"* when one is using Cartesian coordinates

and R,e”" when one is using spherical coordinates.

d. The balance of momentunif one takes spatial gradients of both sides of the
energy balance equation (2.29) then the resulting equatiliolve:

PZ
dsE = ds( > j +dU + d U, .
2m
Since:
dE = —d{hﬁj = —i(hdse) S
t ot ot
and

pSZ 1 R o
ai(ij _%[2@3)@} =via P =vigP,

in which the last step will be true because:
0,Pi=1h0,6 =ho,6=0 P,
if we put all of this together then we will get the eduat
LyPi=-0,U+U,). (2.33)
In this, we have introduced the Lie derivative of the congmt functions:

LVPiEinP.:v”a,,Pi:% +V 0; P, (u=0, .., 3V =1). (2.34)

This means that the equation (2.33) represents the bal&(togal) linear momentum
for the motion of the medium when one describes ihe“Euler picture” of continuum
mechanics. That is, one describes the time variatigphysical functions as they are
seen from someone moving with the extended object. ceSthis is typical of
hydrodynamical problems, the classical authors on thdeMag medium have identified
the equation as the Euler equation for the motion efithd. However, one can use the
Euler picture to represent media that are not fluidsyedls

e. The quantum stress tensoFollowing Takabayasi3fg], one can associate the
guantum force with guantum stress tensm} that makes:

0,0/ =nF, =-ndy,. (2.35)
It takes the form:
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(2.36)

—_h_ZRZ 9°InR :_h_2 R_GZR _G_RE
2m  oXoX 2m| oXoX 9X%xox |

Here is an example of how turning total quantities @ensities by multiplying by the
number density can change the character of a quantity én wtys. Namely, the force
density 1-form:

f, =-ndy, (2.37)

will not necessarily be exact anymore. Thatsg,will not be precisely a force potential,
so f, will not be a conservative force, in general. 8inc

d.f, =—dnOdU, =—dn” f, (2.38)

this will vanish iffdn (i.e., the gradient af) is collinear with f,. Of course, this would

be reasonable for a spherically-symmetrigith a radial force acting upon it.
One does see thdt, ~ df, will vanish in any case, so by Frobenius’s theorem, the

codimension-one differential system that is defined leyahnihilating planes of, will
be completely integrable. That is, the supportfpfwill admit a foliation by integral
surfaces. However, since the annihilating planed,ofire the same as those @/, ,
those integral surfaces will be the level surfacedJof after all; in other words, the
integral surfaces of, = 0 will be the equipotentials &f, .

Since the off-diagonal components @f — viz., the shears — do not have to vanish,
and they are not generally coupled to the rate of detawmgensor, which would suggest
viscosity, one sees that calling the Madelung mediufluid is somewhat imprecise.
Hence, we shall simply refer to it as the “Madelungdiam” and leave the details of its
true mechanical constitutive properties to the resulfgrdier analysis.

Indeed, the quantum stress tensor will take the foranpErfect fluid stress tensor:

g =-1m0 (2.39)
iff ntakes the form of a Gaussian distribution:
n(x) = C ekl (2.40)

for which, one will find that pressure must be:

n. (2.41)
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This, too, has a certain reasonableness to it, sirseggests that the pressure increases
with number density, as well as the degree to which igtelition is mostly found near
the mean. One might expect that trying to compresmss distribution into a smaller
region would increase its pressure.

This quantum stress tensor is associated w(theaan)quantum pressure:

hZ
6m

. #2

=——RA(NR =
6m

=30 (R~ RAR. (2.42)

This quantum pressure can then be positive, negatiivzero, and it will vanish iff:

Ar= @R (2.43)
R

The equation (2.29) of energy balance can alsaepgarded as a second-order,
nonlinear partial differential equation for the @ionsR and @ by replacingE, Ps, and
U, with their expressions in terms of those functions

hZ
2m

AR

hd@ = [(de)2 ——R}+U . (2.44)

Originally, this equation was naturally identifie being of the Hamilton-Jacobi
type, although it was later pointed out in a lettePhysical Review by Halperd][that,
strictly speaking, that was not true. In particulthe functions@ and R are not
independent of each other, since they are coupiediaitly by the continuity equation.

f. Lagrangian formulation of the Madelung-Takabayegpuations. In order to obtain
a Lagrangian density function that will give the dé&ung-Takabayasi equation, all that
one needs to do is substitike’ for W in the Schrédinger Lagrangian density (1.19), so
one also substitutd®e' for W". After all of the substitutions have been matie,result

will be:
L=-R {h9+ U |:(d56?)2 +(dsRRj }u}. (2.45)

2m

This time, we see that sinoe= R, the effect of multiplying the term in curly bragts by
R? is to convert the total energy sum inside ofibia total energy density. Meanwhile,
the last term in square brackets takes the forensifess energy density that is associated
with the gradient oR.

The conjugate forces and momenta to the coordifaémd & are:

_oL _ . I 2
fr=— =-2R| n6+—(dH)" +U |,
OR 2m
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2 .
m=%-0 =2 -lor (2.46)
R 3OR  m
2 .
=9 20 M=% oy, M= L Mgy (2.47)
06 06 0(0,0) m

One confirms that the Madelung-Takabayasi equatican be obtained from this
Lagrangian density when one varies it with respethe basic variable€R and&:

oL i oL i
Ozﬁ:fR_atntR_ainR’ Oznge_ atntg_aing’ (248)

in which the first equation will be the balanceeokrgy, while the second one will be the
conservation of mass.

g. Noether currents for the Madelung Lagrangiaim order to find the Noether
current that corresponds to the phase-invariandeeofvave functiot, one substitutes
Ré’ for ¥ and computes the variation from that:

MNM=Re+iIR &= (5—:+i59jW:iaW. (2.49)
This necessarily implies that:
R =0, o8 = a, (2.50)

which is reasonable, since only the phase is benigd.
The components of the Noether current that iscetsal withod are then:

1

J°=n\06 = R*=n, J‘:I'Iigéé?:aRZP':n\}, (2.51)

after removing an overall constant factor-gfa. When one compares these equations
to equation (1.27), one will see that one could aisnply make the substitution (2.1) in
the latter equation and arrive at the present ssmas.

This current is actually the number density flout, as we pointed out above, if one
multiplies it bym then one will get the mass flux, which will alsatisfy the continuity
equation.

The canonical energy-momentum-stress tensor:

T# =N%9,0+M%0 R-L 5" (2.52)

that is associated with is then 6= 18):
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hZ

T°=N\9-L£ = —| R¥(do)*+ |+ RU=H, 2.53
0= M [ R(dO)* +(dR?] (2.53)
T°=N4,0,0 =- hR9,6=-m ], (2.54)
2
Ty= MR+, 8 =~ [R'960,6+0 RO, K], (2.55)
2
T'= L0 R+M,0,6-L3 :_%[RZaieajmai RO, R|-L£3. (2.56)

One can check that these expressions are simppothe forms of (1.29)-(1.32).
The trace of the matriX/ is then [compare to (1.33)]:

T/ = 3hR26t9+h—r;[R2( d8)>+(d B? + 4R°U. (2.57)

The divergence is now [compare (1.34)]:

9,T#=nd,U. (2.58)

8 3. Planck’s constant as a density- Before we go onto the examination of some
special cases of the Schrodinger equation, leausgto introduce a consistent “density-
only” formulation of the Madelung-Takabayasi eqoasi. First, we shall discuss the
possibility that Planck’s constant itself is onhetintegral of a density over the support of
the quantum wave function, just like the total mastal energy, or total charge.

We pointed out above that there is a fundamemednsistency in the original
Madelung-Takabayasi form of the Schroédinger equatimat is based in the fact that
since the statistical interpretation of quantum Inaedcs was directed towards point-like
matter as its classical limit, not extended mattlee, physical quantities that one was
dealing with, such am, E, P, were numbers, not functions (viz., total massreyn
momentum, resp.), even though the kinematical dfies)tsuch asv andk; , that they
were being coupled to were functions whose suppeet® contained within that of the
guantum wave functio. Hence, the suggestion was made that one sheytddperly
dealing with densities, not the total values thag¢ only obtains from integrating those
densities over the support of the wave function.

The basic density that we started with was the bminmdensityn = R?, which
represents a kinematical variable that related tmihe number of particles present in a
given space-time region, and indeed, it is entiggbgsible that only one (extended)
particle is present in all of space-time. Onecaeithat the dynamical quantities that get
associated with the kinematical state, which wé negard asR, 8 and all of the higher
derivatives of these functions that might be retéwa the discussion, start off as total
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guantities, not densities, and that the constantis invariably involved with the
association. The question arises of whether one @aved all of the total quantities to
densities in a manner that will permit one to formutaee Madelung-Takabayasi picture
solely in terms of the appropriate densities.

In particular, as we pointed out, the basic constigutissociatio® = nk = #d8 is
inconsistent becaude represents a total energy-momentum 1-form that is ckefomdy
along a curve, whil& is defined over a region that is contained in the sumggddtwhich
is contained in the support #f. Hence, we need to convéttto an energy-momentum
density. However, the units would not be consistent angniecausé: has the units of
energy-time, action, or angular momentum, not dessitiehose things.

Thus, if we decide that our first attempt at turning tota@ls densities is to always
multiply them byn then we will have to multiply both sides of the ibasonstitutive
association by in order to keep the units consistent. One sees thairdsgsription will
always be consistent with the definition of total qutée# as integrals of densities, except
that we are implicitly assuming that the various dywaidensities are all proportional
to each other as space-time functions, which could onha st approximation to
something more involved. Hence, we shall accept thaitalion and proceed
heuristically in order to simply explore the effectsmaking those definitions.

In the case dP = - E dt+ Ps, we define the energy-momentum density 1-form by:

p=nP=-¢gdt+ps (3.1)
which makes the energy and momentum densities take theofor
£=nE ps =nPs. (3.2)

If we then multiply the right-hand side of the congtve relation byn, as well, then
we will get:
p = Ank. (3.3

Now, sincek is a kinematical quantity, it would make no physical seéas#bsorin into
its definition, since the concepts of frequency density amave number density are
physically absurd. However, one could make a better foasssorbing then into the
definition of 72, which only means that it would no longer be a constan a space-time
function with units of energy-density-seconds, action itignsr angular momentum
density. The value of (which has, of course, been quite well established asvarsal
physical constant by countless experiments) then becthmestegral of the density:

Bt,x) = ib(t,x‘) = han(t, X) (3.4)
21T

over the spatial support of the wave functi¥n

Luppw W, x)d\, . (3.5)
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In order for this to make physical sense, the spatiagmal would always have to be
time-invariant and it would have to be the same fopljisical-possible wave functions,
which might suggest a limited number of elementary fdiras their supports could take.
It could also suggest that the differences in the actalakes ofz between the various
possibilities are immeasurably small, at this pointrmeti

We can now rewrite the basic constitutive relatiothe form:

p=pk =pdo, E=hw=-400, p= hk =§0,6. (3.6)

This also means thatdoes not have to be an exact differential form, angmeven
whenk is exact, since its dynamical vorticity is now:

Qq=dp=dy0da, (3.7)

which will vanish iff dj is collinear withd&.
Note that the character of canonical quantizationf ig#lchange, since although the

kinematical variablegy k; will still go to the same operators, the dynamicatos pi
will now take the form:

g:iw(t,xi)%, pi:Vj(t,i—XJ)%’ (3.8)

which are still linear operators, but they no lanlgave constant coefficients.
We can now define the spatial covelocity 1-forim terms of only densities, since:

vV, = Pi: nFi) :_pi’ (39)
Yo,

which makes:
pi=pM, (3.10)

which is consistent with the usual way of obtainiagmomentum density in non-
relativistic continuum mechanics.
The kinetic energy density can be expressed as:

(%mvz)n:%pvz:(_szn = — p°. (3.11)

These expressions are also consistent with theicéd®nes.

Although we have been using up to now to embody the quantum aspects of the
Madelung medium, we shall eventually find thasimore convenient to work with one-
half that quantity, which we denote by:

h
n=-—n, 3.12
2 ( )

and refer to as thdilatation potentialof the wave function, so its differential:
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m=dn :gdnz (gath dt—(%ai nj X, (3.13)

which will then have the dimensions of either aergg density, a momentum flux, or a
pressure, shall be called tti#atation pressurdor the wave functiotV.
Clearly, the dynamical vorticity afwill vanish:
Q. ,=dm7=0. (3.14)

md

The rate of strain of the integral curves of tkeetor field that is associated with is
then:

éii = 2(6i T+ 6,- H’) =h ai,-n = 26@/7 , (3.15)
so the rate of dilatation will be:
Ay =& =hnAn=2An=2divr (3.16)

We can also definespecific dilatation pressurby way of:
U=—7m=——= d(—ln nj. (3.17)
Since this covelocityl-form clearly admits a ca#tly potential function:
h
/7k:§Inn, (3.18)

its kinematical vorticity will also vanish:
Q, =dy =0. (3.19)

Meanwhile, its rate of strain will take the form:

& =201y +0;v) %6” In 7, (3.20)
so the rate of dilatation will be:
A=¢€ = Al n. (3.21)
m

As we shall seerris just as fundamental as the quantum potentiadesve can also
use it to eliminate the explicit mention bt
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The external force that acts upon an extended, deliderobject as a body force must
take the form of a force density 1-foffrin order for it to be consistent wigha, wherea
is the co-acceleration 1-foran=a dX (*). However, if one multiplies an exact 1-form by
a non-constant function then the resulting 1-form wat generally be exact, anymore.
Hence, the result of multiplying a conservative forcilfley a density will generally be a
non-conservative force density.

Upon closer inspection, one sees that it is not sacgdor a force density to be
conservative, even in the case of such forces as granitatd electrostatic attraction and
repulsion. That is because the force density will usualke the formA dU in such
cases, notlU. For instance, the density of gravitational force H#wa$ upon a distributed
mass of densityo will be pg, whereg is the spatial 1-form that corresponds to the
gravitational acceleration at each point. Similarly ¢gensity of electrostatic force that
acts upon a distributed charge of densiwill be ok, whereE is the spatial electric field
strength 1-form. Since bothandE are exact 1-forms, there are only two cases in which
the combined force density 1-forpg(or ok, resp.) is also exact:

1. The density is constant in space.
2. The gradient of the density is collinear with tppleed force.

Thus, we conclude that the best way to convert fonaks force densities is to
multiply by the relevant density, and accept that thaltiag 1-form might no longer be
closed or exact.

Since Takabayasi's expression for the quantum stressrtefjl produced a force
density upon taking the divergence:

0.0’ =-ndu,, (3.22)

]

it is not necessary to multiply lmy and after converting it to density form, we will get:

2
gj =~ %naij Inp=-3ne. (3.23)

Thus, the Takabayasi stress tensor is a closaveelat the rate of strain of the vector
field vs.
The quantum potential energy density, has the density form:

pv?=Lan=1pv?-1nA, =-3pv2- ndiv v, (3.24)

nu, = .

N
N

0U

Its corresponding quantum force density will then

() Non-relativistic acceleration will have a vanighirtemporal component, since the temporal
component of a non-relativistic velocity will alwalys 1.
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f, =-ndu,, (3.25)

although its explicit expression is quite elaborate aather difficult to interpret
physically.

8 4. The Madelung-Takabayasi equations in density form= We first summarize
the definitions that we have introduced in a table thatshall use consistently in what
follows.

Table IV.1. Definitions of continuum-mechanical quansitie terms of
guantum-mechanical ones.

Number density n | R2
Mass density o |mn=mR
Energy density £ | nE=—pp
h o = S
(Co)velocity potential ol wlm
_h o, N
Covelocity 1-form v | ds@= Eo|sg_E Kk

Momentum density 1-form ps POV = nhk

— 2
Dilatation potential nl 2"~ ER = omP
d="d.n = rRdR
Dilatation pressure g | 917 59N =
m_ hdn_ ndR
Specific dilatation pressurey ;‘ mn mR
One can derive some useful relations from this table:
TE=pUs, us:ds(ilnnj, dspzz—mns. (4.1)
2m h

The time-varying Madelung-Takabayasi equationsipuesly took the form:
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E:%ij +U,, dcn = — div(n ve). (4.2)

In order to convert the first equation (viz., energlabee) into density form, one
needs only to multiply both sides by while if one multiplies both sides of the second
equation bym then it will become a dynamical equation, not a kiagcal one. The net
result of both operations is the set of dynamical egust

5:2—1pp§+n(u+uh), dp=—div (oV), (4.3)

which contain only densities and no explicit mentad 7 .
Previously, the Euler equation that corresponddtié first equation in (4.2) took the
form:
L\Pi=-0i (U +U,). (4.4)

If one takes into account the fact that the se@mdtion in (4.3) also takes the form:

Lyn=-ndivv (4.5)
and the fact that:
Ly(nP)=(LynNP,+nL,Pi=—nPRdivv+nL,P, (4.6)
SO
nLP =L,/ p +pdivyv, 4.7),

then the Euler equation will now take the form:

Lvpi +pidivv=-no; (U +U,), (4.8)
or, if one prefers:

%+1(V’m=—n6i (U+U,). (4.9)

ot ox "

Previously, the time-varying Madelung-Takabayasgilangian took the form:
_ ), B 2 h? 2
L=-FR[h6 + — (ds8* + U] + — (dR)>. (4.10)
2m 2m
With the substitutions above, one can now givhdtform:
L@ 7 9w ) = =2 p(F +02) 41 (E - U), (4.11)

which now suggests that the quantum contributionti® motion can involve the
momentum, as well as the potential energy.
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For a solution to the Madelung-Takabayasi equations (4.8)ll take the form:
— 1 2 — 2 H
5——5,0% +nU, =- pui—-ndivy, (4.12)

in which we have used (3.24) in order to replatg, .
The canonical forces and momenta that are assoeidted are then:

oL oL i _ oL i
f,=%% -0, n,=—=-p N,=—=-pV, (413
Y Y g p 7 ov PV, (4.13)

oc _2| 1 oL i oL -

= —~=Z|--m(V-uv)+E-U|, Ni=—==0, n =—=-u. (414
" an h[ MY ) } "oon Toom 19

The Euler-Lagrange equations take the immediatado

0 =f,—0,M;,— o.M}, =p+divps,
C_2[ 1 .
0=f,-9,,-0on, :%[—Em(vz—uszﬂ E- U} +divy.

The first of these is the conservation of massilemine second one needs to be
multiplied by # in order to give it its final form:

£= %,o(v2 -vY)+nU-pdivu = %,ov2 +nU+U,). (4.15)

The density form of the conserved current thahgsociated with the global phase
invariance of the original quantum wave equatioanges only by being multiplied by
the constant factan, so one will now have:

J= (o, V) =p(L,V). (4.16)

One can also put the energy-momentum-stress temsodensity form as [compare
(2.53) to (2.56)]:

T, =3 p(V* +02)+nU, (4.17)
T =-py=-p, (4.18)
T =&V -nu., (4.19)
T =-pWMv+uvu)-L3, (4.20)

J
so its trace will be [compare (2.57)]:

T/ =-3c+p(v’+ul)+4nU. (4.21)
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The divergence of “will then be:

0,1/ =no, (4.22)
which is identical to (2.58).

8 5. The stationary Schrodinger equation.Actually, most of the solved problems
that one studies in basic non-relativistic quantum mechkashd not involve the time-
varying Schrodinger equation, which is usually treated onlugsatively, but the time-
invariant — or stationary — Schrddinger equation. The wave functions that define its
solutions will then take the form of standing waved. c@Qurse, whether or not one can
use that form of the Schrddinger equation depends ntjgon the nature of the
potential functiorlJ(t, X), and in particular, it is only when it does not depenchugbat
one can turn to the stationary form of the Schrodiegeation. _

If one does, in fact, have a time-invariant potentiaiction U(X) then one can
assume that the wave functiggt, X) has the standing-wave form:

W(t, X) = T(t) ¢ (X), (5.1)

in which the variablé has been separated from the variakles
If one then substitutes this form for the wave fwwt¥ into the time-varying
Schrédinger equation (1.18) then the result will be:

Since the left-hand side of this equation is ecfiom of onlyt, while the right-hand
side is a function of only, that situation can happen only if both functiane constant.
If we call that separation constdatthen we will get a pair of differential equatiofas
the functionsT and ¢ :

T :_ET, _h_A4y+ Uy =Ey. (5.2)
h 2m

The first equation can be solved immediately amg@ga solution of the form:
T(t) = ™", (5.3)
whereas if one introduces thamiltonianoperator:

hZ
H=-—A+U (5.4)
2m

then the second equation in (5.2) will take ondigeenvalugorm:
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Hy=Ey. (5.5)

Thus, the spatial wave functions that define the enveddgbe standing wave will be
eigenfunctions of the Hamiltonian operatdrthat are associated with eigenvallgs
which will represent the total energy (i.e., kineticpetential) of the motion of the
standing wave.

One can derive the stationary Schrodinger equatian ftioLagrangian, just as one
can in the time-varying case. This time, the Lagrangi#l be:

L=—_lidg I+ 0-E)W B (5.6)
m

which differs from the time-varying expression @).1by an overall sign and the
replacement of the time-varying contribution with| ¢ |F.
The generalized forces and momenta now take tine fo

«_ 0L

o _ oL

. [/
=0, N" = =—00Y, (5.7)

- _ t*: a£ —
=U-Ba T a(dy") 2m

oy” oy”

along with their complex conjugates.

Since the wave functiony is a purely spatial in this case, the Euler-Lagean
equations will represent an equilibrium conditian the shape of its envelope, and one
will get the equation fogy by annulling the variational derivative @f with respect to

W
oL . -*
0= =f -0 n". 5.8
" (5-8)

Under the infinitesimal phase transformation:
=iy, ' =-iey’, (5.9)
the components of the associated Noether currdimaw take the form:

39=0, 3= %oﬁi @ Wy -wo g (5.10)

when we drop the overall scalar factor gfe2 In form, this current differs from the
time-varying analogue (1.27) by only by the vanighofJ °.
The energy-momentum-stress tensor will then ta&ddrm:
T =-L, T’ =T, =0, (5.11)

i hz i, 7,0 i [ {
Ti=——(@yoy+dyoy)-4L, (5.12)
2m
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and its trace will be:

T4 == lldyIF + 4E-U) Il I (513)

The main formal differences between the stationarsnfof T/ and the time-varying one
that is described in equations (1.29) to (1.32) amount to thighiag of the contribution
to T, from M'W+N"P°, the vanishing off* and T, , and a change of sign in the first

term ofTJ.i , which comes from the change in sign of the kinetimtin L.
The divergence of / is the covector whose components are:

0,T¢ ==0L =0, 0T =-qU||¢lf, (5.14)

which reflects the fact that the Lagrangian densityn-invariant, and it has changed
sign.

8 6. The Madelung-Takabayasi form of the stationary Schrddinger ecation.
Under the assumption that the potential functibis time-invariant, one now introduces
polar coordinates into the complex plane, as befa@m] expresses the spatial
eigenfunctiony in the form:

Ux) = R(x) €%, (6.1)

If one substitutes this into the stationary Schrodireggiation (5.5), in whicld is
defined by (5.4), then the ultimate result of the separatiothe real and imaginary
equations will be the pair of equations for the functiBné':

2

E:;2+U+Uw 0 =Rdiv Ps + 2<P;, diR>, (6.2)
m

in which we are using the same notations as above.

The only things that have changed in the enerdgniba equation are that now the
left-hand side is a constant, and the potentiaktfons in the right-hand side are
functions ofx, but nott.

In order to put these equations into their denfsityn, we multiply the first one by
and the second one byR which will make then take the form:

e=1pV+nU+U,), 0 = divps. (6.3)

If one takes spatial gradients of both sides & finst one then the resulting
equilibrium equation will take the form:

Lvp=-no,U +U,), (6.4)
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in which the Lie derivative now takes the form:
Lvpi :Vjaj P - (6.5)

The second equation of (6.3) says that the Madelung medsudynamically
incompressible in the stationary case. In the eventghs constant, it would also be
kinematically incompressible. However, the quantum patewiuld necessarily vanish
for such a mass distribution, and one would not be deaidtinga quantum motion.

Since:

A =mMRX?, WX = %dse(x), (6.6)

the basic flow variables are no longer functions, ddut onlyx, so one can think of the
motion in question as beingséeadymotion. Consistent with that, the first equation in
(6.3) can be regarded as a formB&rnoulli’'s theoremon the steady flows in fluids, in
which one can regard the first term on the right asadyc pressure, as well as a kinetic
energy density, and the quantum potential can play the dooldeof an internal
pressure. Since Madelung was dealing with only the statoSchrodinger equation to
begin with, these facts led him to conjecture that tleeliom in question was a fluid,
although, as we pointed out before, later work by Takadaglaowed that the stress
tensor was inconsistent with that form of matter.

One can similarly give a Lagrangian form for thetisteary Madelung-Takabayasi
equations by substitutingy = R €% in the stationary Schrédinger Lagrangian density,
which will give:

— P2 ? 2 _ h_z 2
£L=R {%(dﬁ) +U E}Zm(dsa , (6.7)

in whichE is a constant, this time.
This Lagrangian density can also be expressed in ddosityas:

L(@nvi,p)=1p(V+02)+n(U-E), (6.8)

which has a physical reasonableness to it that stemstbdransparent simplicity.
For a solution to the equations (6.8)will then take the form:

L=431pv:-nU, = pvZ +ndivu, (6.9)

which differs from the corresponding expression for tihee-varying case (4.12) by an
overall sign change.

The canonical forces and momenta that are assoedtted are then:

_oc_ Vs

f,= — =0, n === =/, 6.10
"= 90 o (6.10)
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oL _ 2 i —
f”:%:E[%m(\f_Us‘z)+U_E]’ n, =— =U. (6.11)

The equilibrium equations for the functiogsand /7 are then obtained by varying
with respect tapands and take the form:

0 = divps, 0:%[%m(\f—u§)+ U- E|-div, (6.12)

although if one multiplies the second onerpthen it can be given the density form:
e=1ip(\V’-v)+nU -npdivy,=ipv’+nU+U,), (6.13)
which is consistent with the first of (6.3).
Similarly, the Noether current that is associatethwhe phase-invariance of the
function gwill take the form [compare the complex expressions0)j.

J°=n.dp =0, J'=n,dp=pV, (6.14)

if we ignore an overall constant factor.
The density form of the energy-momentum-stress teasww:

T/ =p(V'w+uviu) - LA, (6.15)
whose individual submatrices are [compare (5.11) and (5.12)]:
T, =-£L, T, =T7=0, T =p(Vv+uvu)-L3d, (6.16)
and its trace will take the form [compare (5.13)]:
T/ == p(V+ 02) + 4-nU). (6.17)
The divergence of /' is now:

0,1/ =-a.L=0, 0T =-ngU, (6.18)

U Il
which is simply the real form of the complex reg6lt14).
8 7. Coupling to an external electromagnetic field- Many of the most important

solved problems and experimental results in quantum mechaaiesconcerned with the
motion of charges and magnetic dipoles in an extelratremagnetic field. We shall
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model such a field by a 2-form on a four-dimensional space- although that
anticipates the relativistic formulation of the probJémsome extent. That 2-form is the
Minkowski electromagnetic field strength 2-form

F=1F,d¢ rdx=cdt"EdX +1BjdX A dX . (7.1)

Note that we are then modeling the magnetic field gtreas beingntrinsically a spatial
2-formB = 1B; dX ~ d¥, while the usual spatial vector fieBithat one encounters is the
(spatial) Poincaré dual of that 2-form using spatial voleteenentdx" ~ dx¢ ~ d, so the
components oB would be:

B'= %éjjk Bix . (7.2)

a. Coupling the electromagnetic field to the wave functitithe extended object
whose total mass i is also associated with a total cha€yéhen coupling the motion of
that charge to the external electromagnetic fields usually achieved by means of
“minimal electromagnetic coupling,” which means that (te¢al) energy-momentum 1-

form () P = - £ c dt+ Ps gets replaced with:

P=p+2a=-(¢ +Q@cdt+(é+9A.jd%, (7.3)
c C
in which:
£=-n00, B =hnd#. (7.4)

We shall think of £ as thegeneralized total energgnd P as thegeneralized total
momentumwhile £ andPs represent the actual values of those physical quantities

The 1-form:
A=-g@c dt+ A (7.5)

represents a choice efectromagnetic potential 1-formA then satisfies the constraint
that:
F=dA=1(0,A -0,A) dx¥"dx’ o€ = ct). (7.6)

Of courseA is not unique, since any other 1-form that differs filddoy a closed 1-form
will produce the samE under exterior differentiation, and that ambiguityAirs referred
to as thegauge invariancef F, while a choice oA is a choice of gauge.
If one putsF into time + space form:
F=—(C'oA+09 dXrdX +1(d A -0 A)dX"dX (7.7)

then one can say that:

() In order to avoid confusion, from now on, the notat®will refer to the spatial 1-forri; dx, while
the total energy will be denoted By
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Ei:_%atAi‘aiW Bj =0 A-0iA. (7.8)

The associated covelocity 1-form now takes the form:

v+ 2 A= 1(ﬁ+9 Aj, (7.9)
mcC m C
SO.
o
i="de (7.10)
m

becomes the “effective velocity” that is associatatth the generalized momentum.
That means that, although is (kinematically) irrotational, the velocity faéh will
not be irrotational, and in fact:

Q=dv=2F. (7.11)
mcC

If we put the kinematical vorticity into time + spgaform:
Q = (v, —0,v,) dtO dx + (o, y=0, V) dxO dx (7.12)
then we will get the following pair of equationsiin (7.11):

av —av, =2 E, oy, —0,y =B, (7.13)

mc ' mc

Note that if [B || is the Euclidian norm of the 2-fofBnthen the expressioQ ||B || /mc
will be twice the Larmor frequency of the cha@en the magnetic fieldB.

b. The minimally-coupled, time-varying Schrodingguation The minimally-
coupled energy-momentum 1-form becomes the paipefators:

.. 0 ho Q J7i
E - |h—_ Pi = 4+ = :—D. s 714
ot Qe iox' ¢ A i ( )
in which we have defined:
J0 IQ
0, =—+—A. 7.15
ox' hcA ( )

The linear, first-order differential operatok basically amounts to the “spatial covariant

derivative” operator for thei(1)-connection that is defined by regardilg}%A as a
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connection 1-form that takes its values in the Lie algetfl) of U(1), namely, the
imaginary line through 1; its complex conjugate is then:

mp=2 Qp. (7.16)
ox hc
The time-varying Schrodinger equation for a point ch&gthat is coupled to an
external electromagnetic field will take the form:

oV
ih— ———5"D 0,¥+QeW. 7.17
% om Qg (7.17)

It is important to see the subtlety that is assteci with evaluating the square of the
operator(]; that comes from the difference between squarin@itvely and squaring it
when it is applied to the wave functigh

S0,0,W = 5‘( s j(— +Q j
X hc oxX hc

=AY - (Qj pey +1Q [(a A)W+2A0 W],
hc
If one did not evaluate the operator\®@rwhen squaring it then the result would differ by
a missing factor of 2 in the brackets.

One can derive (7.17) and its complex-conjugaimfthe Lagrangian density:
in, o o A
£=3(‘P Y-y )—%IID”J If-QeIv f, (7.18)

which is simply the previous (non-magnetic) Lagrangdensity (1.19) with the
replacement of spatial partial derivatives with aeant derivatives and the potential
energyU replaced witlQg

One can also think of the nevas the sum:
L=Lo+ LA (7.19)

of the originall in (1.19), which we now denote 4s, and a Lagrangian densiix that
accounts for the interaction @and the external magnetic field:
QZ

|hQ i
La=—-———A||W Wo'pr-way), 7.20
AT ome 117 2mc ( ) (7.20)
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which can also be put into the form:

=Aj (7.21)

when we define the current:

f=- QA - 'hQ(wawD YW, (7.22)
2mc

The generalized forces and momentadorow take the form of:

fk 2 ..
pr=thg qutu+'hQ AOY, nN"=- 'hw nk :—h—J'D-W, (7.23)
2 2m 2 2m

and their complex conjugates.

Hence, the generalized force and the spatial caems of the generalized
momentum now include contributions from the intéicacof the charge with the external
magnetic field, namely:

inQ d o 0 i
g2 9L _Q ypy pez% g opoe % __1Qh Ny (70

AT oW 2me A awT T AT WY 2me

in addition to the expressions in (1.22), while téporal component of the generalized
momentum has not changed from its expression &2)1.
One can check that equation (7.17) will follownfrohe Euler-Lagrange equations:

5[,

0= =f -9,M" -9, N". (7.25)

The components of the conserved current thatsisceted with the phase degree of
freedom inL now take the form:

Jo=wy’ g _2—5'(wﬂmw Yoiwn), (7.26)
mi

and when we expand the definition of the covar@entvatives, the spatial components
will take the form:

3= s w-wow)+ LA wit. (7.27)
2mi mc

Hence, the spatial part of the current (1.27) reentaltered by an additive term that is
proportional to the magnetic potential. We see the currenj' that we defined above
relates tal' by way of:
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j _Q 539 4 |WIF. (7.28)
c 2mc

However, when we compute the conserved curremtigh@ssociated with the gauge
symmetry ofLa with respect t&\, we will get a more direct relationship:

J, = 0L _ Qi (7.29)

0A ¢C
The energy-momentum-stress tensor is now:
TV/I = nﬂDVqJ +|-|#q]VqJD_£5V/I, (7.30)
whose individual submatrices are:

h2

To =IOV [f+Qp W fi=H, (7.31)
2m
ih

T :E(LIJDDJ.LIJ—LPD]DLPD) =-m1J, (7.32)

i hz i /i OO 4 (i
To =50 (PO W), (7.33)
2
T =- h_(miw W+ 0O WY - £ . (7.34)
2m : ' :

The only difference between these expressions(&ri#)-(1.32), comes from the
minimal coupling of the magnetic potential to tiaige.

The trace ofl / is:

T =S

(‘PD‘P—‘P‘PD)—?IIDqJ If - D W i (7.35)

which is the minimally-coupled expression for (.33
The divergence of /splits into:

0,T¥=Q|I¥ Ifo, 0,T* =QI|WIFE +By J}. (7.36)

The difference between these expressions and (teBérts the fact that the external
force includes the Lorentz force of interactionviE#nQ and the magnetic field, as well
as its interaction with the electric one.

SinceL is the sum of two Lagrangian densities, one cao #link of T/ as the sum
[0}

A o]
T 7+ T/ of two such tensors, the first of whidh/ relates to the case with no magnetic

v
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A
field, while the second on& /' can be obtained fromda . Its individual submatrices are
then:

A A A iQh . .
TO=-La, T°=0, T)=——— A(WP'-wp), (7.37)
2mc
Ai IQh i 0 0 i
Ti= oo AW W -W W) -L, 0. (7.38)

Hence, T has been altered from its previous, non-magnetic esipresdditively

A
only by the addition of the trace &f/, namely:

'/Iiﬁ :gA(3Jé+§AHW ﬁJ (7.39)
C mc

0 A
One can also treat the divergenceTdgf as the sum of two term3, T ['+0, T}/, the

first of which describes the contribution from then-magnetic part of with U = - Qg

and the second of which contributes the Lorentzddretweer) andB. However, one
must be careful not to think that the first diverge still vanishes, as it did in the absence
of an external electromagnetic field, since itsishimg followed from the wave equation
for W, which has changed since then.

c. The Madelung-Takabayasi form of the minimallypgted, time-varying wave
equation The Madelung-Takabayasi equations that correbspor{7.17) will now take
the form ¢):

£= L 2 +Qu+U,, @+div[ﬂﬁs}: 0, (7.40)
2m ot m

in which:

B.= hds«9+%As. (7.41)

This also takes the form of the previous equatwith a minimal coupling (7.3) of the
magnetic potential 1-form to the (total) momentwfodn.

We put (7.40) into density form by multiplying thest one byn and the second one
by m:

£= 1 p2 +op+nU, , a—'0+divp3: 0, (7.42)
20 ot

() We must now replace the symhpfor the velocity potential with, since we are now usingfor
the electric potential.
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in which o= Qn is the electric charge density. These equations arelyrtidentical to
(4.3) withnU = g@ The first of these can also be given the form:

£=1pv’ +op+nU, . (7.43)

The covelocity 1-fornv that is associated witt (= pv) takes the form:

v=la6+2 A, (7.44)
m mcC

whose kinematical vorticity is then:
Qk:dAv:%(dtDA+ B), Bj =0 A — 9;A. (7.45)

The dynamical vorticity that is associated waththen takes the form:
Qq=dps=do”v+pQ. (7.46)

The spatial part of the first equation in (7.45) givessaful commutation rule for the
derivatives of; :

aiv,- = 6,- v, + g Bij . (7.47)
mc

In order to go from (7.43), which expresses the balanenefgy, to the balance of
momentum, one takes the spatial gradients of botls,swleile taking into account the
fact that:

= 16_A+VJ %

v — —

_ 7.48
c ot ox! ( )
This ultimately alters the previous form (2.33) of thdeEequation only by the addition
of the Lorentz force:

Jop 0 , 1_
Lypi=——=+—(Vp)=0clE+=BV |- U, . 7.49
P i ax'( P) [ CBJ } U, (7.49)

In order to get the Lagrangian density for the imally-coupled case that we are
currently considering, we need only replace theiptes expression for momentum with
the new one:

L= Rz[hmi p? +Q¢} + L (dR)? (7.50)
2m 2m

by using the minimal coupling prescription.
The density form of this is:
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L =1p(\V+U2)+op-¢, (7.51)

with the understanding thatincludes the magnetic potential 1-foAn
The canonical forces and momenta that are assooutted are:

L qe 2 9L _ Y

f,=—==0, =Z=p N =—==p\V, 7.52
{ FYe 7 ol P 7 6\4 P ( )
_ oL 2 ) : _ oL i _ 0L _

fn-%—g[%m(\f—%ﬂ Qo+ ”ﬂ’ m, —a—,?—O, n, = a0 =u. (153

One can verify that equations (7.42) follow from the Eukgrange equations that
are associated with, although the one that is associated withill take the form:

£=1p(\V-v2)+op-ndivu, (7.54)

which is equivalent to the latter when one recalls (3.24
Thus, for a solution, one will have thatakes the form:

L=31pv:-nU, = pv: +ndvu, (7.55)

which differs from (4.12) by an overall sign.
The current that is associated with the arbitrariridsthe global choice of initial
phase is now: _ o
J%=p J'=pv'=p, (7.56)

in which we have again suppressed an inessential constamt. fdat effect, the only
thing that has changed since (2.51) is the definition of

The conserved current that is associated with the gaugeance ofL is now:

-9 o, Ji = 9L _ ov, (7.57)

==
A op 0A

which relates t@ by way of:
w=2 3 (7.58)
Yo,

The individual matrices of energy-momentum-stressdeT / are:

Ty =—3p(V*+02) - 0@ (7.59)
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To=p, (7.60)
T, =—¢&V +nU, (7.61)
T = pvv, +pv'v, -L3. (7.62)

which differ from the corresponding complex expressin (7.31)-(7.34) by an overall
minus sign.
The trace off / is now:

T/ =-p(V* +U{) - 4op+ 3, (7.63)

which similarly differs from the complex form (7.35) ag overall sign change.
The divergence of /splits into:

0,15 = -0, 0,T" =o(& + ¢Bj vly, (7.64)

which is consistent with (7.36), up to overall sign.
One can also represefitas a sunto + La, in which:

La=Aj, (7.65)
with:
j =—£[v—&A‘] (7.66)
c 2mc

This allows one to decompose the currefftand J% into sums, although only the

spatial part actually splits:
3=3+9A. (7.67)
c

in which we have defined the current:

St

7 =223, (7.68)

Ji
0 CJ

g
c

which then amounts to the electric current (7.58)@ut the contribution from.

(o] A (o]
One can also regard@/ as a sumT 7+ T/, in which T/ is the previous non-

A
magnetic tensor, and the individual submatrice$ ffare:

. A i .
oA, T =AJ, -L£3. (7.69)

J
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A
The trace off /' is then [compare (7.39)]:

A .
Th=AJ, -4L,. (7.70)
d. The Madelung-Takabayasi form of the minimally-coupled stationary Schrodinger

equation — The minimally-coupled stationary Schrodinger equation besom

_# (0 QY _
{ 2m(6)€+hcAj +Q¢:lz// sy, (7.71)

and its Madelung-Takabayasi form will now be:
1, .
E= E,ov +op+nU, , divp,=0, (7.72)

which is consistent with the non-magnetic case) (@!8n one setd = gg although the
magnetic potential has been absorbed into theidefirofv. Once again, the symbek
En= 2&n/h will represent an energy density that is congtatime.

The Euler equation for equilibrium that one getarf this will then take the form of
the previous one with an extra force term that waapresent the Lorentz force:

0 , | 1_ .
a(v pJ) :U[Ei'kgajvj}_mi Uh' (773)
The Lagrangian density takes the form:
1, n? 2
L=R|—p°+Qp-£&| + — (dR)? (7.74)
2m 2m
whose density-only form is:

L =31p\V +v2)+op-¢, (7.75)

in which nothing is a function of time, now. Onees that this is minimally-coupled
form of the non-magnetic expression (6.8).

For a solution, one can expressn the same form as in the non-magnetic case:(6.9)
L=431pv:-nU, = puv+ndivu, (7.76)

so the minimal coupling has not affected that fact.
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The canonical forces and momenta that one derivasdrare:

f(:g—? =0, n, :g—\f =p, (7.77)
f,,:g—i :%[%m(\f—ufﬂ @ -£], n :g—ﬁi =0, (7.78)

so the Euler-Lagrange equation fpwill actually take the form:
£=1p(\V-vd)+op-ndivu=1ipv +op+nU,. (7.79)

The conserved current that is associated with phasmeiry is:
J°=0, J'=p, (7.80)
and the one that is associated with gauge symmetry is:

Ji = %v‘ . (7.81)

The individual submatrices of the energy-momentumssttenson / take the form:
Ty =-L T, =T°=0, T = pvv, +pv'v, -LJ, (7.82)

SO0 its trace is now:
TV = —pv’ - pul+4(-og). (7.83)

Its spatial divergence is:
0T = oE + B;J), (7.84)

while the temporal divergena®, T, vanishes, sinc€ is independent of time.

As usual, one can represent the contribution of therreit@lectromagnetic field
additively. When one goes over equations (7.65) to (7.7®,vall see that the only

thing that must be changed in them is to expigssn real form.

8 8. The introduction of vorticity. — Since the unavoidable consequence of
obtaining a momentum or covelocity 1-form from the &gte derivative of a
differentiable function, such a8, is that its exterior derivative (viz., dynamical or
kinematical vorticity) must vanish, if one regards 8whrodinger equation that served as
a starting point as a linear, spinless approximation tmedung more physically
fundamental then one possible direction of generabzatiould be to replace the basic
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flow that results in the Madelung-Takabayasi formulatath something that has non-
vanishing vorticity and see how that might also changechiagacter of the Schrodinger
equation in return. Indeed, one might continue along limatof thinking and consider
the chaotic (or perhaps stochastic) formation of adisg sequences of vortex-pairs, in
the form of turbulence; we shall return to discuss plessibility in the next chapter.

The first possibility was considered independently byd&bbkrg p] and Takabayasi
[3], and revisited somewhat later by lwo and Zofia Biakmngirula, along with C. Sliwa
[6]. We shall attempt to address some of the issudssitteist section.

In the last section, we already saw how the coumingn external magnetic field to
the motion of a charged Madelung medium could result in-vamishing vorticity.
Hence, there is certainly an empirical physical bmsithe generalization from an exact
energy-momentum or covelocity 1-form to something morelirad.

Since we have been regarding the covelocity 1-form(7:/m) d@ as more definitive
of continuum mechanics than the total energy-momentdonm P = mv= 7dé&, insofar
as the total values of physical observables areemappropriate to the point
approximation, while densities are the fundamentaervables for continua, we will
start withv, instead oP. The essential fact abowuts that, likeP, it will be exact when
one starts with the traditional form of the Schniphr equation.

a. The theory of Pfaff form@). The Pfaff equation is a total differential eqoati
that takes the formx = 0, wherea is a 1-form on am-dimensional differentiable
manifold. The solution to such an exterior diffial system will be an integral
submanifold of the distribution of tangent hypenaa in space that are spanned by all
tangent vectorX that are annihilated by : a(X) = 0. Hence, one first solves the linear-
algebraic problem of finding the annihilating hypl@nes ofa and then solves the
differential system that they collectively define.

The dimension of an integral submanifold can ilaoyn one up ton — 1; integral
submanifolds of dimension one will always exist,re@mver. The maximum dimension of
an integral submanifold for an exterior differehtgystem is called itddegree of
integrability. When that degree i8 — 1, one calls the exterior differential system
completely integrable Frobenius’s theorem says that complete integhalsl equivalent
to the vanishing of the Frobenius 3-fot* d~a, which is equivalent to saying that a 1-
form 7 exists such that:

da=n"a. (8.1)

Generally, the first thing that one does with dnfprm is to put it into one of two
normal forms

() The theory of the Pfaff equation has a long tradjtsmwe shall cite only one modern reference that
will suit out purposes, namely, the book by Bryant, Chetnal [7]. The author has also compiled a
number of applications of that theory to physicsg [
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p/2

dy+> A du*,  peven

a= ; at (8.2)
> Adut, podd
a=1

in which the positive integgr relates to the rank of the firstform in the series:
d.a, a™dwa, dva” dha, ..

to vanish. Note that for any finite-dimensional malkilif(of dimensiom) this sequence
must truncate after a finite number of terms, since lafyrm on ann-dimensional
manifold must vanish whelnexceeds.

In particular, fom = 3, the only possible non-zero terms in the sequengoda and
a” d.a. The corresponding possible normal formsdaredy, A di, dy + A du, which
correspond te = 0, 1, 2, resp., for which, the first vanishikdprms aredy, A dy, dy +
A dy, resp. The cases that will be of interest to ushadirtst and third ones.

The only possible dimensions for an integral submandbld field of tangent planes
are one and two, where one-dimensional integral submdsiok always possible. One
sees that both the first and second normal formg fenamelydy andA dy, resp.— will
admit two-dimensional integral submanifolds in the formtlod level surfaces of the
functions ¢ and y, respectively. From Frobenius’s theorem, one knoed since
complete integrability is also equivalent to the vanishihg 6 d~a, these will also be the
only two possibilities. Hence, the third case o= d¢ + A du will no longer be
completely integrable, but will admit only one-dimensibintegral submanifolds.

b. Vorticial motions of Madelung medidf we now apply this analysis to the case of
the covelocity 1-form then we will first see that= d{ (where{ = 7#6/m=S/ m, as
before) is the possibility that we started with, andohproduces irrotational motion,
since the kinematical vorticity @y = dw. If one starts with the total energy-momentum
1-formP = dSthen the dynamical vorticit®, = d-P will also vanish, sinc® is related to
v by a non-zero multiplicative constant.

The complete integrability of = 0 would imply that there were integral surfaces
whose tangent vectodé were annihilated by the 1-formv(X) = 0. Since/(Vv) =v; V =
V2 is not generally zero, one sees that the velocittove will not be tangent to the
integral surfaces. In fact, singe= g; v/, one thinks of the velocity vector field as being
normal to the integral surfaces, and refers to theomats asurface-normamotion. As
we shall see, one possible set of candidates for integnaes that belong to the integral
surfaces are the vortex lines.

Although it was never mentioned by the classical autitbesnext possible normal
form for a 1-form after exactness is the one thatcdcoelate to the energy-momentum
densityl-formp = p v = p d{ as long as the mass densityis non-constant, and its
gradient is not collinear witlv. That is because the dynamical vorticity of such a
distribution would bealp ~ d{ = dp v, which would vanish ifdpo were collinear withv.

For instance, cylindrical or spherical mass distrimgiavhose densities varied only with
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distance from the axis or center would generally satigfyconstraint unless their motion
were also one of radial expansion. However, ifrtfess density of a rod that moves in
the direction of its longitudinal axis were also varaalong only that same axis then it,
too, would have vanishing dynamical vorticity.

The case that was considered by Schonberg, TakabagdsBialnycki-Birula was
the one that had been previously established in hydrodgaayi Clebschq], namely,
the treatment of vorticial motion by means of @kebsch variable§10]. One then
expresses the covelocity 1-form in the form:

v=dd+Adu. (8.3)

Its kinematical vorticity would then be:
Q=dA N du=1(3id 0 — 84 did) dX ~ dlX, (8.4)

while the Frobenius 3-form would be:
vAQ=d{NdANdu. (8.5)

If this is non-vanishing — i.e., the motion is not comglieintegrable- then the three 1-
formsdd, dA, du will be linearly-independent.

Since we are only concerned with vector spaces (warehorientable), one can
associate the 2-forr with a vorticity vector fieldw by way of the (inverse of the)

Poincaré isomorphism #'R? . A.R% v i,V that a choice of spatial volume element
V will define:

=#'Q=d]0,, (8.6)
whose components will then be:

o =1 Qu=10 o =10Ax Oy, (8.7)

in which we have temporarily introduced the notation oftmecalculus in the last
expression.
One can then revisit (8.5) with this new concept andrsde

VAQ=vMHu =V () V. (8.8)

Hence, the complete integrability of the exterior ddfgial systenv = 0 is equivalent to
the vorticity vector field satisfying that exterior atgaic equation, which also means that
the vortex lines have to be orthogonal to the patts lime streamlines of the velocity
vector fieldv sincev (wx) = <v, w>.
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CHAPTER V

THE NATURE OF THE QUANTUM TERMS

What one hopes, above all, is that reformulating tleewequations of quantum
mechanics in terms that pertain to continuum mechanitdead to a better intuitive
picture of the structure of matter, its interactiogsd the time evolution of its states by
pointing to analogies between the somewhat-speculasib;microscopic world of
guantum phenomena and the more familiar world of maopms matter. Indeed, one
typically expects that natural law has a sufficiemt@neral, universal character that the
same fundamental processes and relationships would beajoatgevery scale of natural
phenomena. For instance, an early model of the at@rbased on the assumption that
electrons orbit the nucleus like planets, although, of ssguthat model proved to be
highly incomplete.

So far, our first hint regarding the key distinction begw classical continuum
mechanics and the kind that includes “quantum correctisritie appearance of either a
guantum potential, its corresponding quantum force, @uightum stress tensor. Hence,
we suspect that if it is possible to make sense of thesens in more familiar terms then
we shall have made some progress in terms of paving atksenaoad from classical to
guantum physics. Since quantum stress seems to hanesghdacets to it, we shall use
it as a our primary focus.

Basically, the gist of this chapter is that when goes from point-like matter to
extended matter, one can consider the way that theeggpof the instantaneous spaces
of dynamical states differs from that of the instaatars kinematical states as a result of
the conformal transformation of the metric on theéelaspace that scalar multiplication
by the mass density function represents. In particulaen that function is not constant
in space, the shape of its level surfaces plays a -foiee., its higher derivatives.
However, one finds that the real issue is the defobomaof tangent frames, not the
deformation of the space that they live one, so omkeading with what the author calls
“frame strain,” rather than the metric strain tisatustomarily addressed by continuum
mechanics.

Another aspect of the difference between quantum amech and continuum
mechanics that bears upon the physics of the models mdékamed incompleteness in
the original quantum wave equations. The enlargement agesthat going from
guantum mechanics to quantum field theory represents seerbge tooted in the
interaction of fields with the quantum vacuum statehaeing some way of modeling
that state is essential. Hence, we shall also denshe way that various researchers
introduced turbulence into the motion of the Madelungliore as a possible source of
“gquantum fluctuations.”

8 1. The geometrical origins of the quantum stressPerhaps one of the reasons
that the early researchers in the continuum-mechamodkels for quantum mechanics
imagined that the Madelung medium was a fluid was thdirst it did not seem as
though there were any obvious way of associating the quastiess tensor with a
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corresponding strain tensor. Since that situationymcal of fluid media, which
generally admit no strains (although viscous stress@gtlooupled to the rate of strain),
it was then assumed that the medium in question was sorhof exotic fluid.

However, more recently, the author wrote a seriearbéles [L-3] on the role of
geometry in Madelung media. In the first ot he proposed that the quantum potential
could be related to the scalar curvature of a Levi-Civatanection that one associates
with a metric that one obtains from deforming the sppatietric by means of a conformal
factor that amounted to the mass density functionthé second on], he showed that,
along the same lines, one could define a metric steasor that couples to the quantum
stress tensor and is also derived from that same datiomof the metric. In that paper,
it was suggested that the coupling of metric strain to quasttess was more direct if
one used the older usage of the words “curvature” and étdréhat was more consistent
with their usage in the context of the Frenet-Sezgetations than with their usage in the
more modern Riemann-Cartan context. In the third p&jetie author expanded upon
the latter idea in a more general way and showed hevgebmetry of “teleparallelism”
represented a higher-dimensional version of the Fi®eaet approach to the motion of
an orthonormal frame along a curve when one extendisnee fields on surfaces and
higher-dimensional objects.

Indeed, a similar sort of coupling of strain to stneas described by Kelvin and Tait
[4] in the context of the stresses that are producedéopehding and twisting of beams.
Basically, one must realize that one is coupling streskeconnectionon the deformed
space, not to its curvature and torsion in the Riemamta@aense, which is more closely
related to the integrability of parallel translation.

Hence, we shall start from that viewpoint in orderuggest how the basic principle
at work is the idea that there is a difference betwiengeometry of the space of
kinematical states and that of the space of dynarsicdés. At the most elementary
level, if the kinematical state is described by a viglogectorv =V 9; then the speed
that is associated with it will be the square root of:

V=<, v> =gV V. (1.1)

The Euclidian scalar product that is defined on the tangectiors will then be
referred to as thkinematical metric. One can associate it with a corresponding scalar
product on the cotangent vectors that gives the same \@flV* to the covelocity
covector: ) _

V=<, v>=4" vy Vi =g V). (1.2)

This is still a kinematical metric, but when one goeamf covelocity to (linear)
momentum, in its simplest form, one sees that tigeee significant difference between
point mechanics, for which a potentially-time-varying msesslam (t) is associated with
only a single curve (t) in the space of motion, and the motion of an exténdaterial
object, for which a mass densp(t, X) that is associated with congruence of curvés
u) in space; here, the symholgenerically refers to the parameters that define thpesh
of the object in some reference state, such as iialistate. When one defines the
momentum density 1-form=p; (t, X) dX in the usual way:
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p=pv @E=p gV, (1.3)
one will see that one can define a scalar product osuggort ofo, namely:
PV =<, v>,=pd v v, (1.4)

that associates the covelocity 1-form with (twide¢ kinetic energy density of motion.
The difference between this scenario and that of poiathanics is that one can
differentiate o (t, x) with respect to space, as well as time, whl¢t) has only a time
derivative.

The resulting metric on tangent vectors:

gi (t, X) = o (t, X) g (1.5)

takes the form of a conformal transformation of thiginal Euclidian metric, and its
corresponding metric on cotangent vectors will havepmmants:

gl= L5 (1.6)
P

Note that both the metrigg andg " can be defined only where the dengitis non-
zero. Hence, the “dynamical’” metric is definedyowhere the matter itself is defined,
but not in the complementary space. It then pesteo the geometry of the “world-tube”
that is swept out in space-time by the motion efdbject.

A conformal transformation of a metric, which takee general forg > g= Q?

g, whereQ is a function of position on the relevant manifoddn also be defined by a
local homothety of the tangent spaces:

g(u,v)=9(Qu, Qv). (1.7)

Thus, the functiof2 also plays a fundamental role geometrically.
In the case of dynamic® will be equal to\/z, which we know is also proportional
to the functiorR that is at the basis for the Madelung medium, @loith &, i.e.:

Q’=p=mR. (1.8)

We first denote the open set of space-time pahtahichp # 0 by Z, in order to
specify the manifold on which thdynamical metrig = g; dX dX is defined. Although it
is tempting to then go to tisupportof p, which is the closure df,, nonetheless, since
there might be limit points df, at whichpis zero, if one expects to divide jpythen one
cannot use those points, anyway. Hence, we carttéat the Riemannian manifold,
g) as thedynamicalspacefor the motion of the extended object under sogtand the
three-dimensional slices,t) for constant values of the time dimension-parameill be
calledinstantaneous dynamical spaces
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As long asp is not spatially constant, the spatial derivativeg ofill generally be
non-zero and equal to:

_ 0g; ap 0%g; 0o

i = i ij, k1 = - = 1.9
0k = 5 = o 9 9.1 5 a8 T aaX O (1.9)
Hence, one sees that only the spatial derivativgscohtribute in an essential way.

2. The Riemannian geometry of the instantaneous dynamical space- If one
wishes to take the Riemannian route to differential gegmas in [L], then one can use
(1.6) and (1.9) to obtain the components of the Levi-Cimitanection that is associated

with the metric on the instantaneous dynamical spaig
M =20" @5k + Ok — k1) = —(,Ok 3 +pj 3 —p1d" &) (2.1)

The parallel translation of a vecto¢s) = u'(s) 9 along a curvex(s) in 2 t) whose
velocity vector field is/(s) will then imply that:

du ;. 0
0 :DVU = (E+rjkvl Ukja, (22)
i.e., that:
du O dud 1 - ; - - .
0= —+M Vvi=z —+—Julp)V+(Vp ) u—-(yH)dpl, 2.3
dS jk dS 2[0[( 1011) ( 10,]) (\{ ) 10,]] ( )

which can be given the component-free form:

0= %+i[(vp)u+(up)v <u,v>grado]. (2.4)

In particular whem =v, one will get the geodesic equations:

0 :ﬂ+ri_kvi\}‘: —+= (\/p W ——\/2,0.5ij , (2.5)
ds ' !

which can be given the component-free form:

0= %+ L (v,o)v—iv gradp. (2.6)
ds 20
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One notices thadp always seems to appear in conjunction withol Which suggests
thatd (In ©) might be a somewhat more fundamental expressibwe expres® = Q2 in
the forme™ then we can set:

A=1Inp, d)l:z—lpdp, 2.7)

and the components of the Levi-Civita connectioth take the form:
M =Akd+A; 8 —A,d . (2.8)
This will then make the equation of parallel tlatien take the form:

0= %+(u)l)v+(v)l)u—<v,u>grad)l, (2.9)

while the geodesic equation will now be:

0= %+2(v)l)v—vzgrad)l. (2.10)
S

In order to compute the Riemann curvature of thranection that we have defined, it
is simplest to first form the connection 1-form:

rij = rijkd)e( =dA 5} + /]’j d>€ — /]’i d)q . (211)

The curvature 2-form that this defines can be inbth from the Cartan structure
equation for curvature:

R, = 1R, dX Odx =dr +r, Ork. (2.12)
That will give:

R}kl = (/],j,k _/],j/]k)éli _(/],jl _/]J/]L)C? '*'(/]ﬂi _/]i/]|,)5,k _(/]ki _/]i'/]K )5“
+(/],m/]ym)(5|i51k _5Ii<5j|)' (2.13)
One can then find the Ricci curvature 1-forms fitie by contraction:

R =R; dX = R dx, (2.14)
in which:

Ri=—Qij—Aid)-[M+ @A) g. (2.15)

If we raise a lower index then we will get the mabf the Ricci transformation:
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R =g"Rg=e? & Ry=-€?{A] =12, {MHdN 1} . (2.16)
If we contract this then we will get the scalar ctuva ¢):
R=R =-4e?[A1+1(dD)). (2.17)

If we identify A with Inv/m + InR, whereR is the modulus of the Schrédinger wave
function, as before, then:

AA:E_((M)Z,
R
or.
AR _ 2 _ 1.2 1 2
o T ) =3 R ) (2.18)

Hence, the quantum potential can be expressed in the form

AR _ 1

—[pR-2(dA)?]. 2.19
" Tom R Sm[p (dA)7] (2.19)

As we shall see, the second term on the right-Itsachel will no longer appear when
we go to the relativistic form of things. None#®d, we already see that we are close to
identifying the quantum potential with a scalar ¢ of the scalar curvature of the
deformed metric on the instantaneous dynamicalesp&0.

3. Clifford-Weitzenbéck geometry (). — The big problem with differential
manifolds, as compared to affine spaces, in the ey&inematics is that in the absence
of a globally-defined action of the translation gpothat would allow one to not only
move points of space to other points, but (by déffdiation) also tangent and cotangent
vectors in the tangent and cotangent spaces, ds amel has no way of defining the
acceleration of a curve. That is because one lysstalts with a finite difference of two
velocity vectors that are tangent to finitely-seped points, and unless one has some way
of identifying the vectors in the two tangent sgacsuch a difference would be ill-
defined.

The solution, of course, is to define some formparallelism, if only between tangent
objects. Previously, we discussed Riemannian gegme which one defines a
connection on either tangent vectors or tangenhdsathat allows one to define the
parallel translation of such objects along curvasd in so doing, one can get
isomorphisms of the tangent spaces along suchve.cilowever, parallel translation is
generally curve-dependent then, so one cannot expearrive at such a thing as a

() We will use the somewhat non-standard notatioft ébr the scalar curvature, instead,Ryfwhich

we are already using for the modulus of the quantum waaidan
(® For more details on this subsection and the neatttgeauthor’s pape8]|
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globally-defined isomorphism of all tangent spaces thatld allow one to define
“distant parallelism” oteleparallelism- viz., the parallelism of finitely-separated tangent
vectors or frames'

In order to define a global isomorphism of any two tangpates on a manifold, it is
necessary and sufficient that one should be able toedafglobal frame field on it. One
then calls the manifoldarallelizable

Frame fields always exist locally about any point afifferentiable manifold. For
instance, any coordinate chalt, ) defines anatural frame field{d;, i = 1, ...,n} in the
form of the directional derivativel = d / 0X with respect to each coordinate, as well as a
reciprocal coframe fielddx, i = 1, ...,n} that is defined by the coordinate differentials.
Thus, they are related by the fact that:

dX(9) = . (3.1).

The basic property of natural frame fields and cofram&ld is that they are
holonomic which is expressed by the dual conditions:

[0i, 0] =0, ddX = 0. (3.2)

However, extending such a local construction to aajlobe is obstructed by both
topology and geometry.

Topologically, it is necessary for all of the Stie#®hitney classes of the bundle of
linear frames to vanish; indeed, Stiefel was explicitdrassing the problem of
parallelizability when he first defined such classék [ One finds that even such
“homogeneous” spaces as spheres do not generally adtvat lame fields. Indeed, the
only ones that do have dimensions 0, 1, 3, and 7, which aoce nahke them the
underlying manifolds of certain Lie groups. In fact, notyoate all Lie groups
parallelizable, but one can even think of parallelizablaifolls as, in a sense, “almost
Lie groups;” i.e., Lie groups without the multiplication.

Geometrically, a necessary condition for any lineannection to admit a parallel
vector field (even locally) is that its curvature musinigh. Indeed, one can even
characterize the Riemann-Cartan usage of the term &twe/ as something that
obstructs the integrability of parallel-translation, tihe sense of either the path-
independence of that process or the existence of solutidhe system of equation for a
parallel vector fieldi = u' 9; :

0=0u=du+ru. (3.3)

Although the traditional picture of local construcgoim the elementary theory of
differentiable manifolds usually gives the impression thatopen subsets upon which
“local” constructions are defined are usually “sufficlgnsmall” neighborhoods of
points, actually, when it comes to the extension oélidrame fields to global ones (or
not), one often finds that the opposite problem of findangnaximal open subset upon

() The author has compiled a collectids] pf English translations of selected papers on théy ear
attempts by Einstein, Mayer, and others to use the gieprof parallelizable manifolds as the basis for the
unification of Einstein’s theory of gravitation and Maellis theory of electromagnetism, including a
translation of Stiefel’s thesis on the topological nlogions to parallelizability.



174 Chapter V — The nature of the quantum terms.

which the definition is still valid can have a solutitvat amounts to the complement of a
finite point set. For instance, a two-dimensional splcare admit a frame field that is

defined everywhere except for a single point. In fatief@ was defining hisZ,
homologyclasses by first triangulating such sets of singular pant showing that the
resulting complex defined Z,-cycle. Thus, one should not always think of locainkea

fields as being defined on sufficiently small open stgh)sas opposed to global fields
with singularities. (The author has been referring tibes situation assingular
teleparallelism)

Since parallelizable manifolds are “a heartbeat afn@y Lie groups,” we shall first
examine how one defines a global frame field on a LoeigG. Basically, one chooses
any frame &, i = 1, ..., n} in the tangent spac&.G at the identitye [J G (which is
usually identified with the Lie algebgaof G) and either left-translates or right-translates

it to each other poingg O G to obtain a frame(g) in TyG. More precisely, one first
defines the Lie group isomorphisms of left and right ttiet byg:

Ly:G - G, g — gd, Ry:G -G g g,

and differentiates them both at the identity element Since they are both
diffeomorphisms, their differential maps will be lindaomorphisms fronT<G to TyG.
When one repeats this construction for each elemeone will get two global frame
fields e(g) onG, as well as two isomorphisms &G with every other tangent space. As
long asG is non-Abelian, these two frame fields and isomorpkiwill generally be
distinct. We shall then distinguish the two types ahpjalism that come from left and
right translation as beingft andright parallelism, as well.

There is nothing special about any particular choifc&ame at the identity in the
eyes of parallelism. Let us define two vectgrandv' in the tangent spaces at two
distinct elementg andg’, resp., inG to beparallel iff their components with respect to
the respective frame=g) ande(g') are equal; i.e.:

v=ve(g), V=vel(g) (3.4)

If one chooses another frangge) = e, (€) h at the identity then one can also extend
€(e) to every otheg U G by left and right translation and one finds that:

8(g) = e (g)l (3.5)

for everyg O G. Since the (invertible) matriy will be the same for every g, the

components of the two vectors will transform by thensamatrix. As a result, two
vectors that are tangent to two element$okill be parallel with respect to the frame
field e(g) iff they are parallel with respect t§(g). Thus, one can say that a certain

form of parallelism is associated with an equivalenasscof global frame fields that are
related by the same matrix at each point.
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In their paper on the geometry of simple Lie groufsKlie Cartan and Jan Schouten
pointed out that the two aforementioned types of pdisatiewere actually distant
relatives to the two types of parallelism that WitliaKingdon Clifford had defined
previously B] in the context of projective geometry. FurthermorelaRod Weitzenbock
[9] had treated similar issues in his book on the theofipwatriants ). Thus, we shall
refer to the geometry of parallelizable manifold<éfford-Weitzenbdckeometry.

The two types of frame fields on a Lie group can alsediied left-invariant and
right-invariant, respectively, as can the vector fields that comphemt Similarly, their
reciprocal coframe fields{, i = 1, ...,n} [so 6'(g) = J}] will also be left-invariant or
right-invariant, respectively.

A fundamental property of left or right-invariant frarfields on Lie groups is the fact
that one will have the dual conditions:

eel=de,  06'=-1c,6 06, 9)

in which the cl‘].‘ are thestructure constantsf G relative to that global frame field. The

fact that they are constants is due to the fact tiatframe field is assumed to be
invariant under left or right translation, since otheevihey would be more general
functions onG.

The second set of equations in (3.6) is referred to eM#urer-Cartanequations.
One can characterize them as an integrability camdftr the coframe field' to be left-
(or right-) invariant.

One can think of the invariant coframe fie®d as also being a 1-form a@ with
values in its Lie algebra g, sinceXf=X" g (g) is a tangent vector atthen8d' (X) = X'
can be associated with the tangent vector to the idefitigy(e) = 8' (X) & (¢). The 1-
form 8 on G with values ing that this defines will then be called th&urer-Cartan 1-
formon G (modeg). If G is a matrix group (i.e., its elements can be represdmnted
invertible matrices and its multiplication takes themiasf matrix multiplication), so the
coordinate functions for the elemeanare g2(g), then Maurer-Cartan 1-form for the left-

invariant and right-invariant frame fields will take tloems:
«f = g;dg;, of =dg’ g, (3.7)
resp., in which the tilde denotes the matrix inverse.

If one takes the exterior derivative of the Maurert@a equations then one will get
the Bianchi identity:

0=c'c +G'g + ¢ ¢, (3.8)

which is dual to the Jacobi identity:

() Amusingly, Roland Weitzenbdck was apparently such adeghobe that he could not resist
disguising an acrostic in the opening sentences of the prédaihat book. The first letters of the first
words of the first 21 sentences actually spell out “Niede& den Franzdsen!” (Down with the French!).
That also accounts for his activities in the 1930’s duttiregrise of Third Reich.
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O=1la.[g &l + 8, [e ]l + [&, [e, &]l, (3.9)

which is true for any Lie algebra and expresses thahactta general Lie algebra will not
be associative.

The transition from a Lie grou® to more general parallelizable manifdil is to
replace the concept of left or right invariant franedfe(g) (which would no longer be
meaningful in the absence of group multiplication) widpeaeral frame fieldg(x), i = 1,
..., N}. Any other frame fieldg (x) onM will be related tae(x) by way of:

8(x) = e, (0N (X, (3.10)

in which h'(X) is thetransition functionthat takes one from one frame field to the other

one. lItis then a functioh : M - GL(n), x > h’(x) that associates an invertitien

matrix with each point off.

Once again, one can define two tangent vectoemd V' at x and X', resp. to be
parallel with respect te iff their components with respect &(x) ande(x’), resp., are
equal. This situation is the same as it was for Lieigspas well as the fact that any two
distinct tangent vectons andv' will be parallel with respect to two frame fieldsand €

iff the transition function that takes one to the otlsea constant function. Thus, the
parallelism that a given frame field defines is commmm@ twhole equivalence class of
other frame fields. _

A vector fieldv(x) = V/(x) e(x) is parallel with respect t& (and all other frame fields
that differ by a constant transition function) iff k®@mponents/(x) are all constant
functions. Hence: _

dv =0. (3.11)

Thus, any vector or frame at a single pointMbfcan be extended to a global parallel
vector field or frame field by means et
For the general frame fiellonM, one will now have the dual equations:

[a(x), ()] = c (X e (X, d8'=-1c, (X6 0", (3.12)

in which the cl'j‘(x) are nowstructure functionghat do not have to be constant. Indeed,

the existence of a global frame field for which theg eonstant would define a local
diffeomorphism to a Lie group manifold whose Lie algebra th@se structure constants
(*). Upon comparison with (3.6), one sees that the sesenof equations is basically a
generalization of the Maurer-Cartan equations for agtaip.

As far as the Jacobi-Bianchi identities are concertiedJacobi identity will have the
same form as in (3.9), while the Bianchi identity (3.8) witk up another term that

comes from the fact thaiq'i‘ does not have to vanish, namely:

() This statement is cited without proof in Singer aretrgierg 10].
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0=6CK +G'G +G'f + £f- (3.13)

Since a choice of frame fietel defines a notion of parallelism, one naturally wonders
if it also defines a linear connection that implies Haene parallelism, if only along
curves. Indeed, if one goes back to the definitiorhefgarallelism of a vector field
(mode), and the condition (3.11) then one will see that paisallel (mode) iff dv = 0.

We then define the covariant differentiahoto be:

Ov=dVOe, (3.14)
and since one usually expects that:

Ov=@V+aVv)Oe (3.15)

for some connection 1-formy’ (which does not transform linearly from one frame to
another), we see that we must hayje= 0 relative to this frame field.
If & = hjaj then the transformation @ to the natural frame will take the form:

@ = hlafH + 7 dif = R dif- (3.16)

Thus @' is a 1-form with values igl(n).
If one compares (3.16) to (3.7) then one will see tihiatl-forma is the pull-back

of the Maurer-Cartan form oBL(n) by the functiorh : M - GL(n). Hence, one sees
that the connection that makesarallel has much in common with the Maurer-Cartan
geometry ofGL(n).

If v' = ﬁ} V! are the components ufrelative to the natural frame then one can rewrite

(3.14) in the form:
Ov=0v 0o, V' =dv' +ad V. (3.17)

Hence, the condition for the parallelismvodan be expressed in the familiar form:
dv'+a V' =0 (3.18)

in the natural frame, while it is simpti/ = 0 in the anholonomic franes.
Similarly, the differential equations for a geodesis) (whose velocity vector field
must be parallel) take the two forms:

dv v ,
— =0, — 4+ WV =0 3.19
s s (V) (3.19)

in the anholonomic and natural frames, respectively
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If we expressid, in the form:
@ =, dX (3.20)

then the last system in (3.19) will take the form:

%uﬁﬂi V¢ =0. (3.21)

One can obtain the torsion and curvature 2-formsHertéleparallelism connection
from the Cartan structure equations:

0 =d6'+ w6’ Q' =dd +d Od, (3.22)

in which we are using a generic coframe field and its@stsm connection 1-form.
Relative to the coframe field' for which ch = 0, these become simply:

©=d8', Q =0 (3.23)

J

Relative to the natural frame fiettX for which o = @, one will get:
0 =a@"dx =-1(@, -a,) dx) ~dX; (3.24)

Q‘j = dD@ +ad DcTJJ.‘ =0. (3.25)
(Proof of last equation:

d.@ +a, 0 = dy(f df)+ ) dfOR of
= dh Odf + i d O df
=df Odf + i dh B O dh
=df Odf-dj0db =0 )
The last expression in (3.24) shows that the camapis of the torsion 1-form are the
antisymmetric parts of the connection componerstsisaial. That is, if:
0 =10, dX Odx (3.26)
then
O =W, ~d,. (3.27)

From the first equation in (3.23), and a glanceklzt (3.12), one can also see that the
components of the torsion 2-form in the cofram& ' will be:
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0, =-c. (3.28)

4. The Clifford-Weitzenb6ck geometry of dynamical space— We shall assume
that topologically our dynamical space takes the fofithe embedding iR* = R x R?

of a world-tubeZ * = (to, t1) x Z, whereX is diffeomorphic to the interior of the support of
pat any time-point; hence, the essential contribution to its topolsgll come fronk.
That embedding will taketd t1) into the first factor oR* andZ into the second one. The

imageZ; of ¥ under that embedding at tinieshall be referred to as thestantaneous
dynamical space at t.

In order to apply the preceding section to the caskeoMadelung medium, we start
by noting that the metric on each instantaneous dym@dspace is defined by:

g=pgdldx =g RIYRIX) R=.p). (4.1)

SinceR? is parallelizable, we can then think of it natural frafiedd 9; as being

defined at all points of each , although it is not generally adapted to that submanifold.
However, it is a basic result of Stiefd [that if that space is compact, orientable, and
three-dimensional then it will always be parallelizabl@ll of those conditions are

physically reasonable. For instance, the (confornmfpactification ofR® by a point at
infinity will produce a 3-sphere, which relates to thedy of functions that are constant
(e.g., zero) at infinity.

a. Basic frame for the deformed metrie From (4.1), the frame field and its
reciprocal coframe field' that we need to define will take the simple forms:

15, G=rdk (4.2)
R
ie.:
h =R&, R =15
. =RJ;, i TR (4.3)
The connection 1-form that this defines in the natwabene field will then be:
@ =Rdi =[1s |dr @ =dLoRr 4.4
i J__RJ' J jk_jﬁk' (4.4)
Since:

1 1
—dR=d(InR) =1d (Inp) =—dp,
R (InR) =3d (In p) 25 P

we can also say that:
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@ =|Lsld
| =15, 9 |de- (4.5)
0

If we compare this connection to the Levi-Civita castimn that was defined in (2.1)
then we will see that they are related by:

rijk = CT)}k +(7'i<j _%wn:l Jﬁa—jk | (4.6)
in which we have used the fact that we can solvedbersl equation in (4.4) for:

Eak,c): W i.e., Ed,0: . (4.7)
P P

It is important to note that the connection for?vh takes its values in the Lie algebra

of (R, x), so it will not be a metric connection, as opmbse F‘jk, nor will it have

vanishing torsion, as we shall see.
If we recall thato = €' then we can also say that:

@ =5,dA =(3 9,4)dX, (4.8)
SO

chjk :a} 0. (4.9)
One then has:

dA :%cT)I' . (4.10)

SinceR = ¢ is a homothety that acts upon coframes on tharitesteous dynamical
spaces, one can regatds the infinitesimal generator of that homothetyich will then

be an element of the Lie algebra & ). For some purposes, it is more convenient to

regard the connection 1-for@ as taking the form:

W =0, (4.11)

J J
in which the 1-forme will then take the elementary form:
w =dA. (4.12)
One also finds that the deformed cofrafhevill generally be anholonomic:

0 =dd'= L(&, -a,)dx Ddx
SO:
0, =0,15,-0,47.. (4.13)
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Hence, the torsion oﬁjj will be non-vanishing as long as the densatyis not
spatially constant. That also says that the Lielmgehat is defined by the structure
functions ¢, (t, x)= = @, (t,x) at eacht{ x) will not be that of the Lie algebra dk( +),

which is Abelian, so its structure constants would htwvevanish. Of course, the
curvature ofa will vanish identically.

b. The frame strain that is due o — The type of frame strain that is of immediate
interest to us is the simplest of all of them: atdition. The functiop(t, X) that defines
by a mass density dh* acts upon tangent vectors, and therefore tangent frasesll.
Moreover, it is clearly vertical, since the linearnstormation that it induces in any
tangent space is a homothety.e., a scalar multiple of the identity transforioat— that
projects to the identity transformation @rf. (Of course, there are such things as non-

trivial, local diffeomorphisms off * that differentiate to a homothety in each tangent
space, but the dilatation that is defineddag not due to one of them.)

If we anticipate the ultimate coupling of infinitesinfeame strain to the Madelung-
Takabayasi stress tensor then we can rather conciséhe that kinematical concept by
way of:

9°A
ox' ox

o=dw aj = (4.14)

c. The stress that is associated with the frame straMow, recall the definition of
the Madelung-Takabayasi stress tensor in the form:

n* 9%Inp 9°A
g =—p—>="=1pP n——. 4.15
= amPoxax 2 Moxox (4.15)
We see that this can be expressed as a constitutiveylavay of:
gj =ih°nm; . (4.16)

Thus, one finds that, once again, the constans being used as part of a constitutive
law, and once more multiplied by the number densitiipaljh one cannot simply absorb
ninto }7{ = /in as conveniently, sinceé is squared, but is not.

All of this gives us more confidence about assertirgg the quantum stress that
appears in the continuum-mechanical formulation of the@&linger equation originates
in the deformation of the spatial metric into a dynahimmetric by means of the mass
density.

85. The possible role of the quantum vacuumOne must realize from the outset
that the Schrddinger equation is, presumably, only a-semirical approximation to
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something more fundamental. Thus, the equations thatdwesult from converting it

would also have to manifest some of that approximate ciearaOne then must wonder
what sort of extension of the Madelung-Takabayasi equatimight be appropriate,
considering that it would also have to correspond toesertension of the Schrédinger
equation, as well.

Some of the extensions that took place historicallyewera relativistically-invariant
form of the Schrédinger equation (viz., the Klein-Gardmuation), the inclusion of spin
(viz., the Pauli equation), and a relativistically-invatiavave equation for spinning
particles (viz., the Dirac equation). We shall discaisof those extensions in the
following chapters of this book, but for now, we shahsider the extension of scope
that comes from thinking of mechanics as a limiting cdgeld theory.

In quantum field theory, the most fundamental constmcseems to be that of the
guantum vacuum state (or probably, stapac@. That is because one thinks of
elementary particles as being basically quantum fluctuatomn excitations of that
vacuum state. In quantum electrodynamics, that typidakes the form of applying
creation or annihilation operators to some (non-zeacjum wave function at each point
of space-time. However, the existence of the spoatenbreaking of the symmetry of
that vacuum state can turn the single vacuum stateaimtorbit of such states under the
action of the broken symmetry group. Furthermore, if@iD vacuum state takes the
form of the “zero-point field” then one would expelaat it is highly unlikely that such a
field would be defined uniquely, as opposed to being a nochastic sort of ensemble
of random fields.

Here, one must address the issue of why one introdtmgsastic (i.e., probabilistic)
considerations into any scientific theory. Basicalprobability is the science of
ignorance. That is, one turns to probability and stetib systems when one has only so
much information about the states of a complex systeththeir dynamics’). Hence,
the real issue is the incompleteness of the model, wdfteim takes the form of some
fundamental approximation that is usually introduced in ot@evoid some intractable
complexity.

Some of the forms that such complexity can take amdimearity, heat, friction,
viscosity, turbulence, vibration, and unmodeled degreeseetldém in a system. In the
case of quantum physics, one can say that one is ddé&mg with the breakdown of the
“test particle” approximation, which is also closely teth to the “external field”
approximation.

Basically, the approximation that is associated vagh particles and external fields is
that the orders of magnitude between the effect ofa$tepiarticle and that of the external
field are so appreciable that one can ignore the iritenabetween then. That is, a test
particle cannot appreciably alter the external field thatteracts with. However, one
can see that although that assumption is perfectiyonesade for a microwave photon
from a radar unit interacting with an oncoming motor vehah a freeway, it is totally
unrealistic when that same photon interacts withtami electron.

() This is to be distinguished from the way that engingemodels often introduce randomness even
when a deterministic model exists, simply because xbhess complexity in the model is unnecessary for
the achievement of the overall goal of the systewr. ifstance, the flat-Earth approximation for gravgty
generally adequate for air-to-air missiles because fiig#it time is only a matter of seconds.
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Thus, one might wish to think of the quantum partictg i being described by the
Schrédinger wave function and equation as being an approosinta something that is
in interaction with its environment, which one mightnthiof as the space of quantum
vacuum states. For now, we shall pass over the gguogdbortant extension of scope that
comes from going from a linear wave equation to a nonlioee, which is also probably
very much in the nature of quantum physics, since onecexge be dealing with
enormous electric and magnetic field strengths attthaia and subatomic levels.

The extensions of the Madelung-Takabayasi model fostheddinger equations that
we shall consider came from Bohm and Vigier, Schonltserd,de Broglie. Since Bohm
and Vigier were working independently of Schonberg at routffdysame time, we shall
start with the former paper, since it had a more gecéeahcter.

a. Bohm and Vigier's inclusions of fluctuation{n 1954, David Bohm and Jean-
Pierre Vigier attempted to enlarge the scope of the Madgticture in a paper that was
published in the Physical Review1]. Their motivation was based upon the idea that
even though one was ultimately trying to replace thesstatl interpretation of the
guantum wave function with a causal interpretation, tiwless, one still had to account
for the success of the statistical interpretatioat tis the spirit of the correspondence
principle.

Their approach to that problem was to then assumeoti@thad a large, statistical
ensemble of Madelung media moving together in the preseh@e “sub-quantum”
medium that they interacted with in such a way as ¢olyee random fluctuations of the
number/mass densitg(t, X) and flow velocityv(t, X). The possible origins of the
fluctuations that they suggested were:

1. Random external disturbances that were transmitteddh the boundary of the
medium.

2. Nonlinearity in the dynamical equations might lead svaibility and turbulence
in the flow.

3. Brownian motion of the Madelung media at a “molaculevel.

The Madelung-Takabayasi picture was then assumed $orbething that was only
supposed to the apply to the mean dengity,x') and mean flow velocityv(t,x'),

except that the continuity equation was presumed toagtily for the corrupted flow
variables. Thus, one was assumed to have:

00 . ,—— _00
——+d = L +div(pv) =0. 51
P iv(pV) i (ov) (5.1)

The volume elements of matter were assumed to $@awve (otherwise unspecified)
tendency to move to regions of highest mean density, wanabunted to assuming the
stability of that equilibrium density. After introdugirthe further assumption that such a
volume elemendV’ at ¢, X') would always have a non-zero probabiltft, X; t', x') of
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making the transition to a volume elemei at ¢, X), they proved the theorem that the
limit of p(t, X) ast becomes infinite would b@(t, x') = |y PR

Their proof was a generalization of the proof of al.kebwn theorem of Markov
processes to the case in whi¢tt, X; t', ') and p(t,x') were time-varying. The theorem
was essentially equivalent to BoltzmanH'sheorem in statistical thermodynamics.

b. Schonberg’'s inclusion of turbulencét roughly the same time as Bohm and
Vigier, Schonberg 2] was extending the scope of the Madelung-Takabayasi Imode
along lines that the latter researchers had briefly stgdenamely, the idea that the
random fluctuations would take the form of turbulence ia thuid.” By contrast,
Schonberg, like Takabayasi, was beginning with the moreatassumption that the
irrotational character of the Madelung medium cou& dasily generalized, so the
appearance of a chaotic cascade of vortex-pairs thedatbezes the onset of turbulence
would be reasonable from that standpoint.

Schonberg’s stated objective in writing his paper was twedan improved version
of the Madelung-Takabayasi model from the usual intémpo& of the Schrédinger
equation. Like Bohm and Vigier, he also consider theldllang-Takabayasi model to
represent the mean motion of a fluid that was cordugtg fluctuations, but he
specifically attributed the fluctuations to be due to tlabce, since he had previously
been considering the extension of both Madelung-Takabag@sations and the
Schrédinger equations to the case in the Madelung medasmo longer irrotational.

However, Schonberg then diverged from the approach of Bahd Vigier by
drawing upon the statistical theory of turbulence in paldr, rather than the theory of
Markov processes in general. In fact, he showed tleatishal stochastic modeling of
turbulence also involves a process of “second quantivati@t replaces the dynamical
functions (mass density, momentum density, etc.) afirators and then recovers the
mean motion by taking the expectation values of the abpey in a state, which is
essentially Ehrenfest’s theoreh3. The dynamical functions themselves are assumed
to be related by the Navier-Stokes equation, which goveetrhe evolution of viscous
fluids. Since, as we showed previously, the Madeluegiom is usually inviscid, but
turbulence cannot form in inviscid fluids, one sees théulance would also require that
extension of the scope of the Madelung-Takabayasi model.

If one uses the Heisenberg representation for quantum mesghhen one can find a
direct analogue in that representation with the staichakifferential equations of
turbulence. One of the intriguing consequences of thahas when one passes to
expectation values, one finds that it is known thasthess tensor for the mean motion of
a turbulent fluid is not the same as the expectatidmegaof the stress tensor for the
turbulent motion. The difference between the twossttensors is explained by the fact
that there will be a certain amount of momentunt tha@ransferred by the turbulence. A
consequence of this is that one can then account fotethes of the quantum stress
tensor of the Madelung medium as being totally consisteith some standard

n VR OVR

constructions of the theory of turbulence, namey % on comes from the
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., h? : .
transfer of momentum by turbulence, whﬂe4— AR g; represents the elastic tension in
m

the medium.

The introduction of turbulence as a stochastithermodynamic background in the
relativistic version of the theory would proceecdessentially the same way as in the non-
relativistic case, except that one would have tal deith the relativistic theory of
turbulence, which is not very well developed, imiéidn to relativistic thermodynamics.
The effect of it would be the same as before, ngmiélone regards the current
formulation of the Madelung-Takabayasi picture las tclassical ground state” then the
turbulence would represent “quantum fluctuationsthat classical ground state.

c. De Broglie’s hidden thermodynamickouis de Broglie had been one of the first
to look into Madelung’s theory, and that study culated in the publication of his book
[14]. Eventually he decided that there was stilluadamental incompleteness in the
hydrodynamical interpretation, and gradually ledrnéo accept the statistical
interpretation of Born and the Copenhagen Schdtdwever, the paper of Bohm and
Vigier (the latter of whom had been a student oBdeglie who also wrote a book 3]
on the causal interpretation of quantum mechamelghdled de Broglie’s interest in the
hydrodynamical interpretation, which ultimately u#sed in a book on what he was
calling the “hidden thermodynamics” of an isolapadticle [L6].

The basic gist of that concept is that at the fjuarlevel, an isolated point particle
will still continually exchange energy and momentwith what de Broglie was calling a
“hidden thermostat,” and which corresponded to “twb-quantum medium” of Bohm
and Vigier or what would now be called simply tlguantum vacuum.” He used the
analogy of a particle of small mass moving in amwdtuid that is then subject to
Brownian motion due to the fluctuations that areduced by the exchange of energy
between the motion of the particle and the he#tt@tnvironment.

De Broglie was mostly drawing upon some early wtinkt had been done in
thermodynamics in the hope of formulating a “medtantheory of heat,” which
predated the more currently standard statisticahdations. The former theory had its
roots in the work of Clausius, who had original§roduced the concept of entropy, and
later Szily, Helmholtz, and Boltzmann, that largegntered on the attempt to formulate
the second law of thermodynamics as being, in s@ag analogous to the principle of
least action. Typically, one wished to establislaaalogy between action and entropy.

Helmholtz began by dividing the (generalized) ciates of a mechanical system
into two types: slowly-varying and rapidly-varyingThe former would generally be
associated with the external forces and forcesoa$traint, which were also assumed to
be conservative. The latter would represent mddecuotions at the quantum level and
would thus manifest themselves in the expressionkihetic energy. Hence, the total
energy of the system would consist of potentiargynéhat was due to the slowly-varying
variables and kinetic energy that was due to thmdlgvarying ones. Helmholtz
managed to obtain the desired analogy only for wieatalled “monocyclic’ systems,
which had only one rapidly-varying coordinate. Tisult that he derived was the

theorem that if all of the workV that was done upon the system affected only théccy

coordinate then the force 1-formt)V would be such thathV / KE would be an exact
1-form. One sees that when one passes to meaersv@&o that the temperatufe
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represents the mean value of the kinetic energy) etkeatt 1-form will bedS whereSis
the entropy of the system. (Sometimes this is a itiefin)

Boltzmann attempted to extend the result of Helmhaitzpalycyclic mechanical
systems (i.e., more than one rapidly-varying coordinat&wever, he had to restrict the
scope to periodic systems, so he could introduce periedrads. His generalization of

the Helmholtz result then took the form of saying thaiation oV of the work that was

done on the system would relate to the variation of(kaupertuisian) action over a
period:

A= <J5 p,dxX’
by way of:

:ﬁ :VdA:Eé(ET),
T T

in which 7 is the period of the motion, sowill be its frequency (in Hz).
Starting with these results as a basis, de Brogiie terived some key formulas for
the interaction between the isolated particle andhith@en thermostat, namely:

hv. = KkT,

A
h

~lwm

in which the thermodynamic variabl&sS relate to the thermostat, while the mechanical
variablesv., A relate to the particle. The frequengywas actually a relative frequency:

Ve = Vo 1-0%1c?,

in whichvy was then the rest frequency, andias the relative speed.

De Broglie also assumed that the rest mass ofptrticle my was prone to
fluctuations, as a result of the ongoing exchandeeergy-momentum with the
thermostat, and that fluctuating value was therotehbyM,. He then derived another
key formula in the form of:

S(Mo)—&:—k%.
m,

Thus, the fluctuation of the mass of the partickessvweompensated by a fluctuation in the
entropy of the thermostat abdt.

Of course, what one actually measures will bertiean value oMy, and under the
assumption thahMy = My — mp has a mean of zero, that will bg . Although one leaves
open the possibility that the value AMy can be infinite, nevertheless, one would
associate that possibility with a correspondinglynitesimal probability.

Note that when one uses real-world values forptingsical constants, one finds that
the equivalent temperature of a massthat is due its rest energy (namety, ¢ / k ~
10*” my) can be unimaginably high. For instance, the nesss of an electron would
correspond to a temperature on the order 61 KO To give that some context, note that
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the temperature at which nuclear fusion reactions takee ptathe Sun is typically of
order 10 K, while the Planck scale of temperature is of ordéf KO

As we just saw, it is probably premature to speak ef hture of the quantum
vacuum in advance of the consideration of relativisbiesiderations. Indeed, one should
remember that we are, after all, talking abeate mechanics, and the basic Lorentzian
metric of relativity is, of course, derived from the she&lementary dispersion law for
electromagnetic waves. Hence, one would expectwthae mechanics would properly
start in a relativistic context, so we shall revib@ fjuestion of the quantum vacuum after
we have had a chance to discuss the continuum-mechaoncabf the relativistic wave
equations.

8 6. The relationship between the Madelung transformation andhe WKB
method. — Starting in the early Nineteenth Century, a methadsfuving ordinary
differential equations of a certain type by successivecxopations emerged from some
of the work of Joseph Liouvillel[7]. Unlike the Taylor series method, though, the power
series used did not generally converge as one went te teons in the summation, but
tended to improve up to a point and then diverge after tHatvever, if one truncated the
series after a finite number of terms then typicale approximation would improve as
one let the series parameter go to zero. Such a ligonger series was then referred to
as anasymptotic expansionOther mathematicians contributed to the technique tinee
next one hundred years or so, including Poincaré, whoeapible technique to celestial
mechanics 18], Lord Rayleigh 19|, who was concerned with a problem in optics, and
Harold Jeffreys 20], who was still basically concerned with the theady ordinary
differential equations.

All of that work predated the introduction of the Schng@r equation into physics,
and it was Gregor WentzeR]], Hendrik Kramers 22], and Léon Brillouin 23] that
applied the technique of asymptotic expansions to that partiegjaation. It then
became known amongst physicists as\Wi€B methogdalthough some still insist upon
including a “J” for “Jeffreys.” (There are even somboacall it the “LR method” for
“Liouville-Rayleigh,” according to Heading2fl].) A particularly concise and rigorous
mathematical treatment of the WKB method was publisheGdyrge Birkhoff in 1933
[29]. By now, the applications of the technique have expataladyood number.

In one manifestation (see Messiakf]), the method starts off the same as the
Madelung transformation; that is, one represents tipécglly stationary) wave function
YX) in the polar form:

W= exp(i%j = exp(%s+Tj =R  (R=e). (6.1)

Hence, when this is substituted in the statiorehrodinger equation, one will get
the same equations that Madelung obtained wherseparates the real and imaginary
parts:

(ds9?=2m(E-U + hZA—:, div R 09 = 0. (6.2)
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So far, no actual approximation has been introduced irgoetjuations. Hence,
equations (6.2) are rigorously equivalent to the statioGmtyrddinger equation. The
WKB method then parts company from the Madelung formardatdy treating the
function W as a function of not only(i, but #* (i.e., an even function of:) and
expanding it in a power series #:

W=Wo + B°Wy + 7*Wo + ... (6.3)

Indeed, one can also simply expand$®tog T part ofW (or, equivalentlyR) in such a
power series. For instance:

S=S+ WS +1'S+ ... (6.4)
When this is substituted in the first of (6.2), omstfcomputes:

dsS=dsS + 7°dsSy + 7 dsS + ... (6.5)

In order to square that 1-form (using the spatial metficourse), we shall truncate
the series with the specified terms and then trunbateduare after thg* term:

(ds9)* = (0sS0)* + 7° 2(0sSo , dsS) + 71*[(dsS)* + 2(csSo , dsS)] + .. (6.6)
Combining terms with common powers if then gives:

0=
[(dsS)? — 2m (E — U] + #°[2(dsS , dsS1) —AR/ R + 7*[(dsS1)? + 2[0Sy , dsS5)] . (6.7)

Equating coefficients of powers @f will then give the series of equations:

0’ =2m(E -V, 26,dS)=AR/R,  0=0S)°+20sS,dsS). (6.8)

The first one is the classical Hamilton-Jacobi eiguafor the action functiory, .
Having solved it forS (by Cauchy’s method of characteristics), one can theat the
next equation as a linear, first-order partial differéngéguation forS,, which can be
solved forS,, and so on. Hence, one gets a recursive algorithnsthes with solving
the classical Hamilton-Jacobi equation. Note thasthealled “quantum potential” (viz.,
AR / R) does not appear until the second step, since it iallgithultiplied by #° even
before the power series has been introduced. Indeéddifl not appear in the original
equation then there would be no recursion from §nt the next, and the successive
equations would be independent.

Quantum field theory employs an analogous series ekpairs powers ofs® that
they refer to as the “loop expansion,” since it invelgerting the perturbation series for
the relativistic scattering amplitudes (i.e., the Feymmiggrams) into diagrams with no
loops, one loop, etc. Loops correspond to renormalizgtivhich are often associated
vacuum polarization. The zero-loop (or “tree” graph) agpnation is then the classical
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field-theoretic picture, while subsequent terms in toplexpansion represent “quantum
corrections” of increasing precision.

Such a loop expansion is then used to define “efféctietel theories, which amount
to classical field theories with successive quantum cbores. For instance, one might
define an “effective potential’ that amounts to a clzdgpotential (e.g., Coulomb), plus
a one-loop term, etc. It is also common to defindetive actions” that amount to the
classical action plus higher-loop corrections.

Hence, one sees that although the Madelung transfomnmafi the Schrodinger
equation involves no actual approximation, nonetheless) the WKB standpoint, one
can think of the quantum potential as a “one-loop” comedi the classical potentidl

8 7. The optical interpretation of quantum mechanics— Another compelling
analogy between quantum mechanics and the physics that loafore it (besides the
“hydrodynamical” interpretation), and which did not geame as much attention, was
mentioned in Messial2p]. He called it the “optical analogy,” and one sdwed it should
have an immediate applicability to quantum theory thabased upon the fact that
Schrodinger was explicitly trying to make quantum wavehmaaics relate to classical
(i.e., geometrical) mechanics in the same way that wapties already related to
geometrical optics.

In its essence, wave optics is concerned with tbgom of momentary wave-fronts
though a space that is associated with non-trivial dppcaperties (e.g., indices of
refraction). Dually, geometrical optics considers thiealver of rays, which are curves
that are typically orthogonal trajectories to thetio of the momentary wave fronts.

Since most optical media tend to be time-invarianh@irtproperties, Messiah starts
with the stationary Schrodinger equation, introduces phlar decomposition of the
stationary spatial wave function= A€*”, in which we have changerlto A to mean
“amplitude,” and obtained the Madelung form of the staigrEchrodinger equation, as
in (6.2), but withA in place ofR.

We shall part company with Messiah slightly here, sim@ only wish to find the
partial differential equation for the spatial wave forgnd the system of ordinary
differential equations for their orthogonal trajeatsriviz., the rays. Hence, we &t
hé@, which will put the first equation of (6.2) into the form:

2m AA
T E-Y-@f =——. (7.1)
If we introduce the definitions:
k= wdt + ks, cﬁ:;ZE, ks = ds6 (7.2)

then (7.1) will take the form of a dispersion relationwaves in the spatial medium:

K = k2 c? (7.3)
with
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2m AR _ 2m
kOZCZZFU_F :F(U +Uh)' (74)

Of course, we have encountered this dispersion relagfordbas an intermediate step
between quantum wave mechanics and continuum mechanics.

The momentary wave fronts in space will, of coutse the level surfaces @& In
order to get the orthogonal trajectories to those sesfacne needs only to define the
normal vector field to them, which amounts to the gratofé:

n=068=d"9)a. (7.5)

Althoughn is proportional tgp = 0OS which is more like a momentum vector field,
that factor of proportionality will affect only the maneterization of the orthogonal
trajectories, which will be the integral curvegs) of the system of ordinary differential

equations:
dx dx i 00
—=08 —=q'— | 7.6
as 0% (ds J axj (7.6)

To the extent that the theory of relativity is rootadthe way that electromagnetic
waves propagate through space, it should not be surprisihghdnaoptical analogy
properly belongs to the realm of relativistic wave natts, which we shall also
examine in book.

The concept of an asymptotic series has especial nelevi@ the optical analogy,
since the application of asymptotic expansions to opta&s been established in the
context of diffraction problems. (For instance, Beeili 27].) In effect, one starts with
geometrical optics as the classical solution and ada®ssive corrections that originate
in diffraction effects. The expansion parameter is I\sweavelength in that case, so
geometrical optics becomes the “small-wavelength” .,(i.eigh wave number)
approximation.
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