CHAPTER VI

RELATIVISTIC, SPINLESS PARTICLES

One of the first criticisms of Schrodinger's wave dgqueawas the fact that it was
non-relativistic; that is, it was not Lorentz-invattian form. The first steps that were
taken towards relativistic quantum mechanitk Were made by Oskar Kleir2] and
Walter Gordon 3], who replaced the non-relativistic expression fo total energy of a
point mass with its relativistic formulation. Theyethapplied the same process of
canonical quantization to the classical energy and embunmn observables with the same
first-order partial differential operators as befonmed aarrived at a relativistic wave
equation for spinless particles that related to the uswedrl wave equation in the same
way that the Helmholtz equation of geometrical optedates to the Laplace equation of
potential theory. In fact, since the (spatial) Heditth equation is derived from the
(space-time) wave equation by separating the time arm# y@aiables, one can add yet a
fifth dimension to space-time and convert the Klein-Goramuation into a five-
dimensional wave equation with no mass term. Intiegdgt that line of inquiry can lead
to a Kaluza-Klein formulation of space-time geometrg amechanics, and the paper by
Klein that was just cited was one of the two senmpaglers along that line, along with the
earlier paper by Theodor Kaluzd].] One of the more extensive elaborations upon the
five-dimensional picture was made by the Russian Yurii &um his bookStudies in
Five-Optics[5], which actually had more to do with quantum theornttiee unification
of electromagnetism and gravitation.

One often finds that the relativistic formulation thfe mathematical models of
physics can be more concise than the non-relativistmutation. This is especially true
in the context of wave mechanics, since it is prob#ilg that the concept of a wave and
its motion through space are more rooted in relativisticcepts, which grew out of the
motion of electromagnetic waves, in particular. Henge shall basically follow the
general flow of ideas in Chapter Il, while introducing tle&ativistic form of the same
basic notions that were treated in their non-relstitviform in that chapter.

8 1. The massless, complex scalar wave equatienBefore we go on to the Klein-
Gordon equation, we shall first see how things worktlfier massless, complex scalar
wave function, which is the limiting case of the Kik&sordon wave for vanishing rest
mass. However, we shall find that many of the essefdg&lires of the continuum-
mechanical interpretation of the quantum wave functiom @ready present in the
massless case. In particular, the essence of Heallsd “quantum potential” already
appears in the absence of mass, but one finds thabmsgra@int that the frequency-wave
number 1-formk must be light-like will make it vanish. Hence, the n@mishing of the
guantum potential will be contingent upon the non-vanishinth@ mass of the wave.
Since the solutions of the massless, complex seedase equation must satisfy the
aforementioned constraint dg one sees that in order to be dealing with a nomatrivi
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extension of the wave equation, one must be dealing witiiens to its real form that
do not necessarily correspond to the solutions to itgptoaiform, since they might obey
an enlarged version of the original dispersion law.

a. Canonical quantizationThe basic dispersion law for a massless linear ugave
K="k, k, =0, (1.1)

with the frequency-wave number 1-foknibeing defined by:
k =k, d¥' = wdt—k; dX, (1.2)

in which wis the frequency of the wave (in radians per secamfjk; dX is its spatial
wave number. This differs from the definition in thensrelativistic case (Chapter 1V)
by the opposite choice of signh convention, since the pswtoice was made simply for
the sake of agreement with the usual equations of nativietic quantum mechanics.

In (1.1), we have introduced the Minkowski space scatzdymt in the form:

n'=dag[+1,-1,-1,-1], (1.3)

which has the advantage of making the norm-squarednefltke velocities positive, so
proper time does not become imaginary.

The basic association efwith —i @ / at andk; with i  / X (or, more conciselyd /
ox, « ik,) will then turn the algebraic expressikhinto the d’Alembertian operator)
= ct):

10° 9° a° 9°

=00 = 300 30

(1.4)

Hence, ifW(x*) is a complex-valued wave function then the wagaeagion that is
associated with the dispersion law (1.1) is theabkonear wave equation:

Ow =0, (1.5)
which implies the complex conjugate wave functi¥n will also satisfy an analogous
equation:

ow =0, (1.6)

sincel is a real operator (i.e., its coefficients ard)rea

b. Lagrangian formulation of the massless, scalave equation The most common
Lagrangian density for the equations above is ddfiny:

LoW, W) =1||d¥ |F=17"0,¥ 0, V. (1.7)
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The canonical forces and momenta are then (

:a_£0 = 'u:a—£0: 4 *
f P : Mn 0.) oW, (1.8)
0L, _ o 0L wa
f o =0 M —a(a#qﬂ) " o,W. (1.9)

One then verifies that the wave equationorand¥ can be obtained from:
0:%0 =f-0,M*=-n"0,0,¥ =-0OW, (1.10)

and its complex conjugate, respectively.
The action functional fo£ (as well asC itself) has the basic phase symmeé#y-
d7W, W | 7Y’ whose infinitesimal generators are:

MN=iaV¥, N =-iaVy, (1.11)
and its associated Noether current is the veatd:fi
F=M"IH+NH*N =i Wo¥ -¥ oY) a. (1.12)
When one compares this to the corresponding duirethe Schrddinger case in

Chapter I, one sees that the spatial part of Hteerl is #2/2m times the present
expression fod', while the temporal part has changed fundamentally

The fact thatlo is independent ok shows that the action functional will be
translationally invariant, and the canonical enemgymentum tensor will take the form:

TY = N“9,W+M 9, - L, &
='W AW+ WO,W - 19Wa, WY, (1.13)

which can also be expressed in the form:

T/ =Re2p‘W 9,W] - 1| d¥ |P5~. (1.14)

() In performing calculations that involve complex-valued wlwetions, one must be careful to note
that:

0

LN )= 0L, .
a(auw)( )=(..9,..) etc

d Co .
GRS RI RNy
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The associated doubly-covariant tensor fi€lg is symmetric, which is consistent
with the fact that since the field space Bfis the complex number plane, the only
representation of the Lorentz group on it is the triviee; i.e., W has spin zero.

The trace off / is easily seen to be:

T/ =0, (1.15)

which is consistent with the fact thatdepends upon onBj, W and 9, %", but not¥ and

*

Wy
The conserved current that is associated with thé&e domariance of the action
functional is:

= LoX —NMHW - W = 1) dW |F X = Y 0, || W |~ (1.16)

It divergence is then:
6/1]/1: Tﬂﬂ+ Xya/[ﬁo, (117)

which vanishes because of (1.15), along with the fact4kas not a function o&”, at
least directly.
When one takes the divergence of the tensor Tigldone will get:

5= 0L 00,%) oL, 90,%) o, _

v T 0 O, (118)
BT @,W) X a@,wY) aX  aX

which consistent with the facts thég = Lo (9%, 3, ¥"), and there are no external forces
that act upon the wave.

c. The Madelung-Takabayasi form of the massless, complex wave equatione
makes the basic transformation¥fthat amounts to expressing its values in polar form:

Y=Ré& W' =Re" (1.19)
then since:

J R . J R .
ayw:[LRHaﬂejw, oW :(LR—iaﬂHij :

one will have:
awR

ava:{ —aﬂeaveﬂ[6/“/9+T1:2(6ﬂR6V6?+6ﬂ96VR)}}‘P, (1.20)

which will make the d’Alembertian operator take the form:



8§ 1. The massless, complex scalar wave equation. 197

aow= {D—;—(d9)2+i[ﬂe+%<dR, de>}}w. (1.21)

The complex linear wave equation then splits into aqfaieal equations:
(d@Z:D—;, I:|6?+%<dR, B> = 0. (1.22)

We can convert the second of (1.22) into a more suggdstiveby multiplying it by
R?, which will then allow us to put the Madelung-Takabayagiations into the form:

(d6)? = ':'—RR, div /R gradé) = 0. (1.23)

In the present form, one can see that the vectal fidllose components afé¢ 9“6
represents a conserved current. The expression fongence that we are using is, of
course, the four-dimensional one:

_ov’ oV

divv=0,V=—-—.
# ox° X

(1.24)

If we setk = dé then according to (1.1)%* will have to be zero, and the first of
equations (1.23) will reduce to:
OR =0. (1.25)

Hence,R must be a solution to the linear wave equation; a simpke in which that
would be true is iR were constant. We shall find that this situatioal$® relevant to the
massive case later.

In order for the consideration of solutions of (1.23ntd essentially trivialize the
appearance of a non-zero right-hand side, one mustféherconsider solutions to (1.23)
that do not correspond to solutions of (1.5) in the siactse, but ones that will have
“‘quantum fluctuations of the light-cone” as their dispmnsiaws. One must then shift
one’s emphasis from the complex form of the wave equatbeing the fundamental
form to considering the real form as more fundamemtadl enlarging the scope of the
basic equations to include solutions to the real forrdbanot correspond to solutions of
the complex form.

Since we see that the right-hand side of the drgiquations (1.22) takes the form of
the square of some “rest wave numkegr(i.e., one that is present even whih= wdt),
that would suggest that (1.22) can be given the form:

. (@) _OR
kR—(Cj - (1.26)
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If k2 is a constant then @R that satisfies this equation will be an eigenfunctiorhef
d’Alembertian operator, and its eigenvalue will kie

Introducing the polar substitution (1.19) into the Lagrandil.7) makes:
Lo=Lo(R dR d8 :%[(dR)Z + R( 09)2] (1.27)

Note that for any solution to the complex wave equatibe,second term will vanish.
That does not make the term identically zero, thoughl, @he must realize that the
calculus of variations is more concerned with howeral wave functions lie in the

space of neighboring non-extremal ones than it is thghvalues of itself.
It we treatR and @ as the generalized coordinates in field space thenathencal
forces and momenta d% will be:

= ?9_£RO: R (d6) M = O(C?OR) =" o,R (1.28)
a_'CO_ H = a£0 ="
fo= 5 nls 36.6) m7'Ra,8. (1.29)

Clearly, these expressions are not merely the potars of (1.8) and (1.9). In particular,
one of the canonical forces is now non-zero.
The first set of equations gives:

54) =fr- 0,4 =R (d§?- OR, (1.30)

which is equivalent to the first of (1.23), and(io25) when one imposes the light-like
constraint uporml .
Varying Lo with respect ta@will then give:

0.
- 5_20 =fy— 0,M14 = -3, (R 9. (1.31)

which is essentially the second of (1.23).
In fact, the real symmetry that corresponds toghase invariance of the complex
field Lagrangian is simply the translational inarte ofé by a constantr :

= a. (1.32)

The corresponding conserved curraté Noether’s theorem is:
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F=nN460= (R "9 a, (1.33)

which is, for all practical purposes, the vector figf9“6.

If one introduces polar coordinates into the previousesgion (1.12) fod” then one
will see that the present expression is the santeegsalar form of (1.12).

The canonical energy-momentum tensor now takes the fo

T/ = M40,R+M40,0-L,0
= 9“Rd, R+ F?G”HGVH—%[( dF + & 6)2]5;1. (1.34)

As before,T,, is symmetric, since the field space is il

If one makes the polar substitution in the complex gnargmentum tensor (1.13)
then one will get:

T/ = 2[0“Ro, R+ Fiaﬂeave]—%[( dy’ + R 6)2}5;’, (1.35)
which is not the same a§/in (1.34); then again, the canonical momenta are not

consistent with polar substitution, either.
The trace ofl / [as in (1.34)] is:

T/ ==2Lo#0, (1.36)
which is not consistent with (1.15). That discrepancsearirom the fact that, is now a

function of one of the field variables now, namé®yso it has lost its scale invariance.
The individual sub-matrices df* take the form:

Ty =3[@oR)” + (@R + R (008)” + R (ds)?] = H, (1.37)
T, = RIR+ R ,60'6, (1.38)
T°=0°Ro;R+ R °60;6 (1.39)
Ty =0'Ro, R+ R0'60,0-1] (d¥' + R 87|, (1.40)

If one takes the divergence of (1.34) then one will get:
0,1/ =0. (1.41)

Of course, this is consistent with the fact that dalge that is present — vidg — is an
internal force, as well as being consistent withdbwaplex result (1.18).
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d. Density form of the Madelung-Takabayasi equati@s far, we have said nothing
about the physical nature of the complex wave functoor its polar coordinateR, 4.
In order to introduce some physical significance, we take inspiration from
conventional quantum wave mechanics and assocttff jf RZ with a density andp =
nd@ with an energy-momentum 1-form.

However, since the statistical interpretation @& tjuantum wave function makB$
the probability density function for finding@oint-like particle in a region of space-time,
and we are looking for extended-matter interpretatioresshall treah = R? as anumber
density when integrated over a spatial region, it will givee tfraction of the total
object(s) that is contained in that region. Hence, edl si0t necessarily normalizeto
have unity for its total spatial integral.

Similarly, sincep(t) has more to do with the total energy-momentum pdiat-like

particle, we shall tregi(t, X) =n(t, X) P(t) as theenergy-momentum densityform for

the extended object whose extent in space-timefisatl by the support & (orR, 6).

If we then multiply the first of (1.23) by°n® and the second one iy then we will
get:

p? = nZhZD—RR , divp = 0. (1.42)

The first of these tells us what would happen ® ¢bnservation of energy-momentum
density if the amplitude functio®R were not wave-like, while the second one is a
statement of relativistic dynamical incompressitiili

The expressiom’O0R/ R is 2m, times the “quantum potential” that is usually tfirs
introduced in the context of the massive wave agudte., Klein-Gordon) when the rest
mass of the point particle g, .

In anticipation of a table that we shall defineefaon, we now introduce the following
set of definitions, which are also four-dimensioagiensions of the corresponding spatial
definitions in Chapter IV.

Table VI.1. Dynamical variables associated with plolar coordinates.

Action function S=hnb
Energy-momentum 1-form p =dS=#ndé
Energy-momentum density 1-formp = np= 7n dé@
Dilatation potential _ h = h R?
2 2
Dilatati 1-f
ilatation pressure 1-form 7=dp= Edn - 7R dR

In particular, our present sign convention now nsake
£E=N0:S pp=-nod S (1.43)

We can the rewrite equations (1.42) in the form:
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p* = 27 div 77— 72, divp = 0. (1.44)

We can now examine the vorticity and compressibilitythe 1-formsp and /zand
their associated vector fields. In the former case, will have:

dp = hdn"dB:%ﬂ’\ p, divp=0, (1.45)

. 1, .,
d7= 0, divir =— 7). 1.46
m /4 2,7(|0 +717) (1.46)

Hence, the flow of the flow gb will be vorticial, but incompressible, and the smiof
the vorticity will be the non-collinearity gf and 7z Meanwhile,7zwill be irrotational,
but compressible, and the compressibility will \&miff p and 7zboth vanish.

Since the Frobenius 3-form vanishes for batndp, the flows of7randp will both

be hypersurface-orthogonal, while the hypersurfagéde the level surfaces af (or n,
for that matter).

If one multiplies the Lagrangian density (1.27) 25y then one will get:

- _ 1
L,(Sn, p) == (p°+1T). (1.47)
2n
(Note the fact that the “gradient” variable thatssociated witlsis p=dS notp =n
ds.
One can then rewrite (1.46) as:

L, = div (1.48)

at least for a solution to the first of equatiohsi4).
The canonical forces and momenta are now:

0L, 0L, 2
fg = 20 =, ne = Zo= 2pe, 1.49
S 3S s b, hp ( )
oL, 1 ., oL, _
f,=20= = (p2-7), Ny =% =" 1.50
T an 2/72(p ) "oom, n (1.50)

One can verify the following relationships betwebase quantities and the previous
ones (1.28), (1.29):

ne . (1.51)

The Euler-Lagrange equations that follow from tiesv Lagrangian density are:
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pPP=-7F+2ndivr 0 = divp, (1.52)

which agrees with (1.44).
The conserved current that is associated with theepliavariance off, is still

proportional tol14, and we can use:

F=p (1.53)
Since we also have that:
0,S=10d,6 d,n=m=hRo,R, (1.54)
that will make:
T/ =N%0,S+N4o,n-L, 8= 2nTY, (1.55)

in which T/ is the expression in (1.34). That will make:

fﬂ

%[pﬂ o, + 1t 18] - L, & (1.56)

Hence, we can see that:
T H
T/I

- 2Ly = 20T/, (1.57)

which amounts to a rescaling of (1.36).
The rescaling has not changed the (non-) existehegternal forces, so:

0,T/=0. (1.58)

8§ 2. The time-varying Klein-Gordon equation The first fundamental difference
between non-relativistic and relativistic physidsatt must be addressed in quantum
mechanics is the fact that non-relativistic quantn@chanics relies heavily upon the
Hamiltonian formulation of non-relativistic motiehi.e., the total energy of the system —
while energy, by itself, is not a Lorentz-invarigpiysical observable, nor is linear
momentum. Rather, it is the energy-momentum 1-form

p =P, d¥'=E dt— pdx (2.1)
that is Lorentz-invariant. In this, we have define

X =ct, B,=Elc. (2.2)

Hence,E represents the total energy for gant-like particle under scrutiny, whil@' dx
represents the spatial projection of the energy-emaom 1-form.

If my is the rest mass of the moving matter then thativedtic form for the
conservation of energy-momentum will be:
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p’= 1" p,R= (/-4 pp= M. (2:3)

It is important to note that the use of genstant mp implicitly assumes that one is
dealing withpoint-like matter, since otherwise one would have to introduces the
energy-momenturdensityand couple it to the rest madsnsityo, of the extended matter
distribution. As we have said before, the fact wwtly quantum mechanics chose the
path of the statistical interpretation over the ammim-mechanical one is probably
related to the fact that they wanted the classicat lmhwave mechanics to be point
mechanics, not continuum mechanics.

If one uses the de Broglie relation for matter wavesassociatep with a

corresponding frequency-wave number 1-form, namely:
E= o, p= 7k, (2.4)
which can then be concisely expressed as:

P =7k, (2.5)

then one can also associate (2.3) with a disperawridr massive waves, namely:

K = k2, (2.6)
in which:
ko = % (2.7)

is theCompton wave numbéhat is associated with the mass. (It is interesting that
such a dispersion law also shows up in the propagationeofr@nagnetic waves in
certain plasmas.)

Again, one should note that this equation is well-definggl & both of the 1-forms
involved have the same domain in which they are non-zerg;tlhe same support.
Hence, sinc&k presumably relates to a spatially-extended wave funciioarder to be
consistent,p should refer to something spatially extended, as wefllcoOrse, that issue
was never addressed specifically in early quantum physics,hwiad a distinctly
heuristic character to it.

As we have pointed out before, one can also regard §2.8)pe of constitutive law
for wave mechanics, as long as one regkras a kinematical concept that is, in a sense,
dual to velocity, while p is a dynamical one, as usual. This has the intriguing

consequence that Planck’s constant then plays thefthe constitutive map, much like
the way that mass associates linear momentum witdtitye Moreover, ifk and p are

spatially-extended then there is no reason to assimae 7t is not, as well. Its
“constancy” is probably due to the fact that conventi@uentum mechanics also treats
energy and momentum as point-like observables, so ayt@ e simply integrating the
equation (2.5) over all space in such a way thajets integrated along with everything
else.
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So far, theE in (2.3) is basically just kinetic energy. If onesives to include
potential energy, which would suggest that the mass interacting with a conservative
external force, then there are basically two wdydoing that, depending upon the nature
of the external force: If the interaction involvestarge on the particle with an external
electromagnetic field then one can minimally coupéedlectromagnetic potential 1-form
A = A, d¥' to the energy-momentum 1-forf; we shall deal with that case in a later

section. If the potential energy of the interactib) is more general, such as gravity or
the various step potentials that one encounters in elativistic quantum mechanics,

then one can also introduce the potential energy astalwution to the rest energy of the
particle (see Bethe and Jacki®})[(}):

m & =mec® + 2U, (2.8)
which would make:
(X = m+ ZUCZ(X); (2.9)
i.e., one could replaae,c with:
m,c= n})c+%. (2.10)

However, one would have to replaggc’ in (2.3) withm, ™, ¢:
M = nfc+2mU, (2.11)
which is not equal t¢m,d)* if one uses (2.10).

a. Canonical quantizationln order to turn (2.3) into a partial differentequation
for a wave function, one can apply the canonicantjaation rules for energy and linear
momentum, viz.:

E. 29 5wl (2.12)
ox

to (2.3) and then apply the resulting operator égndo a complex wave functioH(x).
One will get thetime-varying) Klein-Gordon equation:

OW+k2W =0, (2.13)

in which O = 7Y 3, 4, is the d’Alembertian operator, atg represents the Compton
wave number for the particle of rest mass as above.
If one wishes to couple in a general potentialrgynél(x) of interaction then, from

(2.11), one can simply repla¢g with:

() The reason for the factor of 2 will become apparenénwive treat the stationary Klein-Gordon
equation. Moreover, the introductionfto rest energy in the cited reference took the fdren suggested
problem, not an explanation.
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k2= k2 +2mY (2.14)

Of course, that would mean tha, would now be space-time function, and not a

constant.
The modified form of the Klein-Gordon equation wouldrtie:

DW+(%+22UJW:O. (2.15)

b. Klein-Gordon equation and 5-opticsAs we mentioned above, k§ can be treated
as a numerical constant, and not a space-timeifumathen it can be regarded as the
separation constant that one introduces in ordeeparate the fifth coordinat® which
we shall identify with proper time by way gt = cr, from the space-time coordinates

X.

The extension of the metric R? is still Minkowskian in character:

175 = nas X A€ = 2 (dt)? — g; dX dX¥ —c? (dp)?, (2.16)
so the dispersion law (2.6) will become homogeneous
K=750kK=n"kk=0, (2.17)
as long as one defines the fifth componerk wf be:
ks =ko. (2.18)

Note that this implies that the only physically-mizgful inhabitants of)° will live on

its light-cone.
One extends the four-dimensional d’Alembertianrafme to a five-dimensional one:

Q:D—ijé, (2.19)

c’or

and the space-time wave functigix”) to a five-dimensional functiows(x”, 7), as well.
If one now starts with massles$ive-dimensional wave equation:

Ow.=0 (2.20)
and sets:

Ws(x', 1) =T(7) W(x) (2.21)

then the five-dimensional massless wave equati@®)2vill give:
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ov_1T
"

Y

If one sets both sides equal to the separation cdnskdrthen the resulting equation

for W will be the time-varying Klein-Gordon equation (2.13), while fifth-dimensional
factorT of the wave functioVs will take the sinusoidal form:

T =% (ad =ko ©). (2.22)

Analogously, when one starts with the massless, douensional, linear wave
equationdOW = 0 and separates the time coordinatieom the spatial ones', while
introducing the separation constank %, one will get theHelmholtz equation:

Ay+k?Y=0 (2.23)

for the spatial part(x) of W. That equation is used extensively in wave optics, shree t
main physical obstruction to separating the time coordimate the spatial ones would
be whether the optical properties of the medium (@ e, the index of refractiony / c)
were constant in time, and conventional optical malerre usually assumed to have
that property.

Similarly, if one assumes thlat= d@(in its five-dimensional form) then the nonlinear,
first-order partial differential equation fof that the dispersion law (2.17) defines,
namely:

0= 15 (d6, dg) = 1"® 0,60s6, (2.24)

will still have the same form as the four-dimensiogi&bnal equation, which also plays
an important role in geometrical optics.

Yet another aspect of the present situation thatamagnportant interpretation in
geometric optics is that geodesics of the metric thdéfines int’ that are time-like in

that space will become light-like geodesicsyef
c. Lagrangian formulation of the time-varying Klein-Gordon equationfhe

Lagrangian density for the free (i.&l,= 0) time-varying Klein-Gordon equation can take
the form:

LW, W, 0, 0W) =170,V - LKZWY = Lo+ L, (2.25)
in which is£, the Lagrangian density for the massless case, and:
Lon(W, W) =- 1KZWY' (2.26)

is the contribution from the mass. In order to inclijeone needs only to repladg
with kZ, which then has the effect of adding another Lagranggasity:



§ 2. The time-varying Klein-Gordon wave equation. 207

Lo W, W) = —i}—?u (x4) YY", (2.27)

Of course, the form (2.13) for the Klein-Gordon equatisnkinematical, not
dynamical, and the dimensions Hfare basically}¥? / (lengthf. The way to givel the

dimensions of an energy density is to multiply ity m,, which will give:

hZ

LW W, oW W) =
( u, o) 2m

7 aywavw* - %n‘bcz yy = ZO +Zm, (2.28)

in which the previous Lagrangian densitésand L, have been rescaled the same way.

Similarly, £y would get rescaled td, =-2U ||W |f.

The canonical forces and momenta that are assowdiiedhis rescaled Lagrangian
density are then:

oL oL h? x
f =— =—-mcE Y~ n“ = =— oW, 2.29
oy m 00,¥) m, 4 ( )
. oL s oL 2
f = =-mcVY, n< = =— oM. 2.30
oy” ™ a(aﬂqﬂ) m, 4 ( )

The addition ofZ,_, which depends upon only and¥’, will not affect the canonical
momenta that were defined in the massless case by (M&L#®), which have only been
rescaled, along witlf, . However, it has changed the character of therdaal forces,
which previously vanished.

The Euler-Lagrange equation f&t will take the form (2.13) when one varies the
wave functior”:

o:gf =f -9,M*", (2.31)

O

When one varie¥, one will get the complex conjugate equation.

One can already see that (2.25), like (1.7), is again ianawith respect to the
replacement o with €W andW” with e'“Y’, as long agr is a reatonstant that is, it
is phase-invariant. The corresponding infinitesimalnsformations of the wave
functions will still be (1.11), and the conserved currdwdt is associated with that
symmetry will be:

HE i
F=M*&+n*" & :%qu(w oW -W oW ar, (2.32)
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although the factor oda is generally omitted. The only difference between teistar
field and the massless one (1.12) is the constant fattor/ m, .
One of the early objections to the use of the timgingrKlein-Gordon equation as

the proper relativistic form of the time-varying Schrd@ptinequation was based upon the
fact that the temporal component of this conservedentrnamely:

30= in?
2

(WO —¥ oW), (2.33)

did not have to be a positive function, and would theecke unsuitable as a probability
density function. Of course, one could also treat éisaareductio ad absurdurof the
statistical interpretation fo¥ if one were willing to consider alternative hypotheses
That was why Pauli and Weissko] [resurrected the Klein-Gordon equation in the
context of meson wave functions by interpretifigas an electric charge density, which
could then take on an arbitrary sign.
The canonical energy-momentum-stress tensor thatlemees from the Lagrangian
density (2.25) is:
2 m
TV =—t'-L0F =T'+T4, (2.34)
m,

in which t# is the (unscaled) expression (1.13) for the masslessaaT # = - £ O
is derived from L

m ?

symmetric tensor:

so an immediate consequence of this is Thatwill still be a
T,uv :Tv,u- (235)

Of course, that is also consistent with the fact #aas zero spin. Hence, the canonical
angular momentum tensor that is associated &ihust vanish identically.

The trace off / is now:
T/ =40, = 2m |V If, (2.36)

which differs from (1.15) by the addition of the rest-masiergy term. Therefore, the

non-vanishing ofry would obstruct the scale invariance 8f (In fact, the vanishing of
mp would reduce the Klein-Gordon equation to the linear vemyetion.)

The traceless part df;' is then simply:

T =t*. (2.37)
The divergence of the energy-momentum-stress tesisor

0,T) =0, (2.38)
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m
which is zero, as it was in the massless case, tuecadditional contributioi /' to T*
has not introduced any external forces, and it isisti#pendent of.
The individual sub-matrices df take the forms:

T =5 +3mc W If, (2.39)
=T =1, (2.40)
T =G +imClIWIF 5. (2.41)

Hence, the only effect of the inclusion of mass hanlie alter the diagonal elements of
the (rescaled) massless tengpiby the addition of the rest energy densiy, ¢ || W |f.

An analogous statement would apply to the addition of thgrdngian densityl, ;

however, the introduction of an external force woutdrahe vanishing of the divergence
in (2.38) by the appearancediU ||¥ |f.

8 3. The Madelung-Takabayasi form of the time-varying Klein-Gadon
equation. One finds that the mathematics of the Madelung-Talkethdgrm of wave
mechanics become more natural and concise when one go&s relativistic wave
mechanics. That is because the “soul” of relativgythe dispersion relation for
electromagnetic waves in the classical vacuum, whiecasgone the Minkowski scalar
product. Predictably, the result of the Madelung-Takabayassformation must be
interpreted in terms of relativistic continuum mechanics.

a. The basic transformatiol.he basic transformation that takes one from tine-ti
varying Klein-Gordon equation (2.13) to a set of continuunsiraeical equations is still

basically the introduction of polar coordinates on ¢bhenplex plane, which is the field
space in which the wave function takes its values. e4arb, one sets:

W(x) = R(x) & =0, .., 3). (3.1)
That will first put the equation in question into thenfo

0=0OW+kW = {D—;—(de)z r i+ i(DH+ 2<d«9,d—:>ﬂ W,

and upon equating the real and imaginary parts to zeroidndily, one will get the
following pair of equations:

(d9? = K +D—;, 0o+ 2<de,dER> - 0. (3.2)
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The only difference between these equations and thelesaones (1.22) is the addition
of the constank’ to the right-hand side of the dispersion law.

As a first conversion, one can replat€ with k, and if one multiplies the second
equation byR 2 = n then this system of equations can be put into the form:

2 = k§+D—;, divin k) = 0. (3.3)

Here, we can raise the same issue that we raisedjand to the massless casek id
the same as it was for the Klein-Gordon equation inpgdexnform [viz., (2.6)] then we
would again need to have the vanishingt®R. Hence, in order for the modification of
the dispersion relation to be non-trivial, we would éndw be dealing with a solution to
the Madelung-Takabayasi equations that no longer obegesatine dispersion law as a
solution to the Klein-Gordon equation. Thus, the sohgito the former set of equations
are potentially broader in scope than the solutionsedatiier one, which are defined by
the subspace for whidRis wave-like.

The fact that we might be dealing with a “quantum pa@é&nis clear from a
comparison of the first of equations (3.3) with equatioh4R.which showed one way of
coupling a potential function to the dispersion law. @mght perhaps think of the
present potential as being something that relates to theMwork that must be done
while deforming a wave-like amplitude functiéhinto a non-wave-like one. The fact
that one might wish to consider such a deformatitates to the fact tha is essentially
an amplitude for the wave, and one can easily imagiakworld wave envelopes that
are not wave-like in character.

In the form (3.3), we see that we are dealing with pukelgmatical equations, the
first of which takes the form of a modified disperslaw for the matter wave, and the
second of which suggests some sort of relativistic cwaten law, although the vector
field k is only proportional to the four-velocity. If one compares (3.3) to (1.23) then
one will see that the only essential differencénésdddition ofk? on the right-hand side.

The fact thak?® is non-vanishing is no longer an issue for the massige, but the fact
that the right-hand side of the dispersion law in (F3)dt a constant, but a space-time
function, does change the basic physical picture.

The first step in making the equations (3.3) into dynalmecgations is to apply
Planck’s constant as a mechanical constitutive laav; the de Broglie rule for matter
wavesp = fik. That will make (3.3) now take the form:

7}@

P’ = nmfc+ div(n p) = 0. (3.4)

b. The balance of energy-momentuithe first equation in this pair takes the form
of an extension of the balance of energy-momentum (@.8)mething of the fornp®=

mpc +2mU , with a “quantum potential:



§ 3. The Madelung-Takabayasi form of the time-varyingrikiGordon wave equation. 211

»* OR
e (3.5)
2m, R

which agrees with the definition that is given by Takabayds{'}. Of course, as we
have already pointed out, the appearandd ,ohas nothing to do with the introduction of

My, because it is only a rescaling of an expression gaed in the massless case.
The new rest energy will then take the form:

mc = mc+2U, . (3.6)

c. The conservation of massThe second of equations (3.4) takes the form of a
statement of relativistic dynamical incompressibilifytioe motion that is described by
the energy-momentundensityl-form:

p=np=mu, (3.7)

in which the rest mass denspy and covelocity 1-fornv will then be defined by:

da. (3.8)

Hence, the kinematical vorticit®« = d-u will vanish, although the dynamical vorticity
will be:
Qy=dm u=nmpdn”u, (3.9

which will be non-vanishing as long ass not constant in space-time.

Since both the kinematical and dynamical FrobeB#isrms vanish, the congruences
of their trajectories will both be hypersurfacebhmgonal. In particular, the hypersurfaces
will then be the level surfaces @f.e., the isophases.

(3.6) will now take the form:

oUW =pc+nU,. (3.10)

As for the kinematical incompressibility, the vsiming of the divergence qf will
imply that:
divu -1 U, (3.11)
o

which will vanish iff gy is constant along the flow af

() The sign of thidJ, is actually consistent with the sign of the noratiglstic expression, since R
were time-independent then ne would hayRe = - AR.
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d. Lagrangian formulation of the Madelung-Takabayasi equation$t one
substitutes the basic polar form (3.1)WBfinto the Lagrangian density (2.25) then the
result will be the Lagrangian density for the Madeldiakabayasi form of the Klein-
Gordon equations:

L(R, 6 dR d§ = 1[RF (d§*— k2R + (dR). (3.12)

Table VI.2. Definitions of continuum-mechanical quansitie terms of
guantum-mechanical ones.

Number density n | R

Rest mass density o | Mon = R
h,_S

(Co)velocity potential m

Covelocity 1-form u m, m,

energy-momentum density 1-formp | gyu = nnk

Dilatation potential nl|2 > :ﬁpo

_h _h
Dilatation pressure = dn = Edn = AR dR= ﬁdpo

m_ hodn_ & dR

Specific dilatation pressure Ul p, 2my, n m R

So far, this Lagrangian is purely kinematical,htie dimensions d® / (length¥. In
order to obtain a dynamical Lagrangian density, mugtiply the latter expression by

R lmy:
C :ﬁ[Rz(h dg)? - (nk)* R+(n dR] = L, +L,, (3.13)

in which the two Lagrangian densities in the fieapression,z, and £, refer to polar

form of (2.28); that will give theL the dimensions of energy density.
Similarly, the inclusion ob) will result in the addition of the polar form df; .

In order to arrive at a completely classical (i.eon-quantum) expression for
something that describes a continuum-mechanicatsin, we need introduce a set of
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definitions that will effectively eliminaté: andmy, from £. We basically continue the
definitions that we made above by assuming that the wmbrgsity that is associated
with dR (or dn) amounts to a dilatation stress that is associatddtive dilatation strain
thatR (or n) represents. We summarize the definitions in Tabl2 ¥bove.

In particular, one can derive some useful relatiooshfthis table:

mT=pU, u:d[iln nj, d,abzz—mon. (3.14)
2m, h

We can also examine the vorticity and compressibititythe 1-forms/rand v and
their associated vector fields. In the former case,will have:

dh7= 0, divr=0n= gEIn. (3.15)

Hence, the flow ofrrwill be irrotational, but compressible, and the corapitality will
vanish only when the number dengsitis a solution of the linear wave equation.
As for v, one will have:

dw =0, divu= i(I:I/7—u,00), (3.16)

0

which will also be irrotational and compressible,campared tp, for which:

dAp:idpb Ap, divp=0. (3.17)

0

(The second equation will be derived below.)

Hence, since the Frobenius 3-form vanishegpforand v, the flows ofp, 7z andv
will be hypersurface-orthogonal, while the hypefsces will be the level surfaces gf
n, andn, resp. (o, for that matter, in the last two cases).

The new form ofZ will now be:

1
20,

L(,nu,m) =3p -+ = (p*+7F) -1 & (3.18)

One can then express the new Lagrangian dendihgiform:

F=lF+r (3.19)

N
2m,

in which £, takes the previous form (1.47) for the masslese aad:
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L, =-ipmc (3.20)

L has a particularly simple form, since it seems tosi of a sum of three energy
densities of kinetic type, namely (kinetic — rest + difimin pressure). The kinetic energy
density can also be regarded as the dynamic pressure ehemetlium in question is a
fluid. One also notices that this Lagrangian density ewgér contains#z or ny
explicitly, while the role of quantum potential has medsorbed into the last term.

The canonical forces and momenta that are assoeiitted. are:

f,=—==0, N: === u=p" 3.21

{ FYe 7 u, Ao pu ( )
oL 0,2 o oL

f,= = =20 (¥ -c?- 0P, M+ = 2= = 3.22

"= an 2,7( ) "= on (3.22)

When one compares these expressions to the nmssles (1.49), (1.50), one will
find that the only essential difference, besidesescaling and redefinition of the
variables, is the addition of the termm ¢ / 17 to f,. In particular, we have made the
following replacements besides (3.19):

—

1 — h = hoa
M:Ra/, ng:Erv;, 0v=0,17, ng:ﬁng, (3.23)

in which the caret denotes the previous expressiotiee massless case.
One then sees that timew Madelung-Takabayasi form of the time-varyingeiki

Gordon equation can be obtained from varyifigwith respect tof and. When one
varies £ with respect ta’, one will get:

_OL __
0=% 3,0 (o U). (3.24)

When one then varieg one will get:

0 _9L _ &(uz—cz—uz)—divu
oan 2
or
U=+t +2ndivy. (3.25)

When one compares this to the expression (3.18)Cfop one will see that for a
solution (¢, ) to the Madelung-Takabayasi equation, the Lageangensity will reduce
to:

L =pt#+ndvu. (3.26)
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To summarize, the pair of real equations that is eqemvaio the Klein-Gordon
equation is:
OoU? = oo G2 + oo P + 217 div o, 0 = divp. (3.27)
Since the first equation takes the form of a consmenvatf energy density law, if we

take the exterior derivative (i.e., differential) lmdth sides, we will get the corresponding
analogue of Newton’s second law:

Ma=ma+ 2nd(divv), (3.28)

in which we have define the convected acceleratioand the acceleration of the
amplitudea by the Lie derivatives:

a=L,u=d a=Lyw=d (3.29)
(These definitions use the fact tllti andd~v both vanish.)
e. Relationship to the quantum potential et us examine the form of the “quantum”

correction to the rest energy-density, and compate the quantum potential that was
defined above:

2 2 2
OdiVU:(ﬁszaﬂ RORY LI ey [SRI- N g DR—(@j .
2 m R 2m, “{ R ) 2m, R R

Upon comparing (3.5) and the definition@gfwe see that this is:

ndive =nU,- 1o (3.30)
or
2nU, =2ndivo + om0~ (3.31)

Basically, we have converted tt@al potential energy due to a point-like particle iato
potential energylensityfor an extended one. Note that (3.31) is esdgntize negative
of the corresponding relationship that was obtaiieedhe spatial version of the quantum
potential in Chapter IV; that is simply due to flaet that our present sign convention on
the Minkowski scalar product makes the spatial pathe d’Alembertian negative.

We can then express the first of (3.27) in thenfor

oW =mc+ 2nU,, (3.32)
which is also (3.10).
We can then put (3.26) into the form:
L =2U, -ndivu (3.33)

for any solution to the Madelung-Takabayasi equmstio
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If we divide out & from both sides of (3.31) then we will get:

U, =

n

divo +1my (3.34)

N | St

and this will make:
ndU, =3 ma+ nd(div v), (3.35)

with a as in (3.29).
If one now takes the exterior derivative of (3.32) thee will get the F = m&’ form
of that equation:

Ma=2ndu,. (3.36)
One can see the equivalence of this with (3.28) by comsifé3.35).

f.  Noether currents for the Madelung Lagrangiaithe real symmetry ofC that
corresponds to the phase-invariance of the Klein-Gordaat®n is the replacement 8f
with 8 + a; which is equivalent to saying that one can replaggth { + a. One can
then express the basic infinitesimal symmetry as:

on =0, o =a. (3.37)
Hence, the conserved Noether current that correspordgaatill be:
Y¥=nfa=@u)a, (3.38)

which can just as well be identified wigh Hence, the introduction of mass has changed
only the basic definition of the energy-momentum dgnsector field, but not the
character of the conserved current that is assoamteghase invariance.

g. The quantum stress tensdFhe canonical energy-momentum-stress tensorLfor
takes the form:

T/ =n4on+n4o,{-Ld),
which will become:
T/ = p, 0"y, + p,ury, =1 p(F +0* - &) Y. (3.39)

T = n*T,, is, of course, symmetric, which is consistent wité vanishing of spin for

the original field\.
If we take into account the substitutions in (3.23) tiwercan express the nefly’ in

terms of the massless ofé as [compare (2.34)]:
T/ =14 +1p,c? o, (3.40)

in which we can now expredg’ in the form:
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TH=po W U+ oo 0 0y -1 (0P + ) . (3.41)
Hence, the trace af/ is [compare (2.36)]:
T/ =2~ L) =pc - 2L. (3.42)
The traceless part df* can now be expressed as [compare (2.37)]:
T4 =TH-1(p,&-2L) . (3.43)
The absence of external forces is consistent thélfact that [compare (2.38)]:
0,1/ =0,%"+0,L, =0, (3.44)

since £_(0,) is only indirectly a function of.
The individual submatrices Gf* are then:

T, =t°+1p,°, (3.45)
T° =1°, T, = (3.46)
T =T +1p,c°d,. (3.47)

Thus, except for the rescaling of the masslesotetise main difference that mass has
made is to increase all of the diagonal elementhéysame rest-energy density, namely,

2
3P,

h. The Takabayasi quantum stress tenserTakabayasi7 defines a different
quantum stress tensor that does not include tregigipart of T/. For him, the quantum

potentialU, first defines a quantum foragU, , and then a quantum fordensity

f, =ndU, . (3.48)
Note that, in general, this foreell not beconservative, unless:

dn” dU,=0, (3.49)

which is equivalent to saying that the quantuméofc would have to be collinear with
dn.
The Takabayasi quantum stress tengpris then defined to make:
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f =a 0" (3.50)

v u=v 1
namely:

I/ I/

nduiInn. (3.51)

It relationship to our present set of definitions isithaite simple:

Ouw=n0,0,. (3.52)
In particular, we get:
o, =ndvu. (3.53)

Since the equations of motion (3.36) take the form:
fo = Poaw =0, (P w) @.p"=0), (3.54)

one can construct an energy-momentum-stress tensaxithgive these equations from
the vanishing of its divergence in the form of:

This tensor field differs from the canonical one abdy a tensor with vanishing
divergence, since the divergences of b@th and T/ vanish individually.

Although the canonical energy-momentum-stress teesiie one that follows most
naturally from the calculus of variations, one cdsoasee from (3.52) that there is a
fundamental simplicity about the Takabayasi tensdrghggests that for some purposes
it might be preferable to use it.

At the end of this chapter, we shall return to the gmesof finding a relativistic
guantum strain tensor that couples to the relativistioigune stress tensor by way of a
mechanical constitutive law.

8 4. The stationary Klein-Gordon equation When one separates the time
coordinate from the spatial ones for the time-varyitgrkGordon wave function:

W(t, X) = T(t) ¢X), (4.1)

one will convert the latter equation into the form:

AY e T
v °TTT
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If one sets both sides equal to the separation constgat/ c)? then the temporal
function will take the sinusoidal form“, while the remaining spatial equation will be
the stationary Klein-Gordon equation:

2
Ay+ K%’j —kg}wz 0, (4.2)
and if one uses the dispersion law Kor
w 2
K = (_j —kj = ko2 (4.3)
c

in whichks = k dX (ki constants), then the equation can be put into the form:
Ay+ kZy=0. (4.4)

This equation is of Helmholtz type, but in order to pane it to the stationary
Schrédinger equation, let us first repldgavith p. /% (P, = p.dX) and factor outi’/
2my. Equation (4.4) will then take the form:

hZ
- Zrn)

Ay = 2%) w ‘ (4.5)

The expression that precedes then the right-hand side has the form of kinetic eperg
so one is still dealing with an eigenvalue equation of thenH¢ = Ey for the energy
levelsE that correspond to the eigenfunctiggisalthough this time there is no potential
energy contribution to the Hamiltonian.

If we introduceU as a contribution to the rest energyrgfthen we can say that:

p2= (Elc)®> -mfd +2mU=2my [E - U], (4.6)
with:
=_ E* _mV
2E = —~ m,¢& —1_f’ (4.7)
CZ

E=_MC (4.8)
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As long asU is not time-varying, one can now put (4.4) into the ‘tieistic stationary
Schrédinger” form?):

M [E —U]y=0. (4.9)

AyYy+
wh

The relativistic correction to the non-relativistiave equation then takes the form of a
correction to the energy eigenvalde In the non-relativistic limit§ — o), E becomes
the non-relativistic kinetic enerdy

The Lagrangian density for the stationary Klein-Gor@quation (4.4) now takes the
form:

Ly o 0p) =1 oy - Ky, (4.10)
We convert it into an energy density as above and gdtagrangian density for (4.9):

hZ

dlawpow -[E -Vl wy'. (4.11)
2m,

Ly ,ogoy)=

The canonical forces and momenta will then be:

f=-2[E - U]y, ak :h—za"'a,-w*, (4.12)
m,
f"=-2[E - U]y, n‘*:%a‘iajw. (4.13)

Up to sign,M', M" are just the spatial components of the time-varyingressions in
(2.29), (2.30).

Equation (4.4) is then obtained by varying the figld; varying the fieldy will
produce the complex conjugate equation.

The Lagrangian density (4.10) is still phase-invariant, he conserved current that
is associated with that symmetry is now:

J! :%5"' @y -0y ). (4.14)

This is also the spatial part of the time-varying expo@es&.32), up to sign.
The stress tensor that is associated Withwill take the formo; = " a, with:

() As promised before, one now sees the necessityrotlircing the factor of 2 when one coupléso
the rest mass.
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h? x . -
g =—@iyoy +oyoy) - L g, (4.15)
m,
which is again symmetric:
Gj = Gj . (4.16)
The trace ofz; is:
o =L+4E-U)|. (4.17)

When one takes the divergencea?'f, one will get:
0.0 =|ly|foU. (4.18)

The appearance of the termdiy on the right-hand side is consistent with the fact
that external forces are now present.

8 5. The Madelung-Takabayasi form of the stationary Klein-Gordorequation.
The only difference between the previous introduction ofipabordinates into the
complex number plane that was described by (3.1) and #ésemrcase is that the wave
function ¢ is not a function of time now:

@ (X) =R(X) €%, (5.1)

which will put the stationary Klein-Gordon equation (4r2p the form:
2;5 (E-U)+ i[AH+2<dS—RR,dSH>H .

Equating the real and imaginary parts to zero individualllygive the system:

AR
0=|—-(d,6)*+
R (S)

d.R
R 1

AR+2m0

(016)2:F 2 (E-V), A€+2< d36?> =0. (5.2)

After multiplying the first equation by:*/ 2m,, identifyingks = ds&, and multiplying the
second equation bl R¥my, one will get the system:

E=imyV+U+U,, divg(ps) = O, (5.3)
in which we have defined:

j - M OR
" 2m R’

Ps=pV. (5.4)
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Uh then amounts to the quantum potential wReis not a function of time; that is also
consistent with the definition in Chapter IV.

In order to get the Lagrangian density for this systeme can apply the
transformation (5.1) to the Lagrangian density (4.11), wivdligive:
L({nv, =4 +02)-nE-U). (5.5)

The canonical forces and momenta will then be [coefaR21), (3.22)]:

oL Y .
fe=—>=0, N, =—= =V, 5.6
Y T TR (5.6)
oL _ 2 - Y Y
f,=—==(EmVvV-imu’- E+ U, n =2=-,i 5.7
1 6,7 h(zrrb ere} s U) n aUI ( )

which are not merely the real forms of the express{drl2), (4.13), which is analogous
to the time-varying case.
The Euler-Lagrange equations will take the form:

0 :g—?':—divs(pbv), (5.8)
025—_=2(imo\f—i mu’- E+ U —-divsu. (5.9)
5,7 h 2 2 S

The first of these two equations becomes the vanishingeo$patial divergence of
the spatial momentum vector fighd , which implies spatial dynamical incompressibility
for steady flow. By contrast:

divsv = S Voo , (5.10)

Ao
so the flow will be kinematically incompressiblétiie mass density is constant along the
flow of v.

The second Euler-Lagrange equation (5.9) can begetted into a more transparent
form when one multiplies everything tiyn/ 2:

0=1pV—3pu?-n(E-V) - ndivsu.

Hence, we can express the pair of Madelung-Takaleysations that result from the
stationary Klein-Gordon equation in a form that|iddoe compared with (3.27):

nE:%pOV2+nU——;IOOU32—/7 diVs U, diVs Ps = 0. (511)
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If one observes [compare (3.31) and the corresponding tetivstic relationship in
Chapter V] that:

: h* AR ~
1pi+ndivsu=n [2% _Rj:_nuh (5.12)
then the first of equations (5.11) can be given the form:
e=1pVv+nU+U,), (5.13)

which is the first Madelung-Takabayasi equation (5.3) wdres multiplies both sides by
n.

One can also say that due to the first of (5.11), éngrangian density will take the
form [compare (3.26)]:

L = pu?+ndivsu (5.14)

for any solution to the Madelung-Takabayasi equations.

When one compares this with the expression for tla ¢oergy of goint particle of
massy interacting with an external potentidl one will see that one is now dealing
with the total energgensityof an extended object of mass dengigynteracting with an
external potential, when one corrects for the internal potential epéngt is associated
with the non-vanishing of the density gradient.

The Lagrangian density (5.5) is still phase invarianhwaspect ta, but nots, since
o andn depend upom. The Noether current that is associated with tHiaiiasimal
symmetry:

o=a (5.15)
will then be:
¥=n,d =pa, (5.16)

which is essentially the spatial momentum vector field.
The stress tensor now takes the form:

ol =N, C+Nan-L3 =p(v' v+v'v)- L3 (5.17)

If one notes that the present real formffis the same as its previous complex form,
but that:

n' ajw+nmai¢/5= 2(r|;ajz+n‘,7aj/7)

then one will see that (5.17) is not the real forndoi5); once again, a similar situation
prevailed in the time-varying case.

The doubly-covariant form of thig; is symmetric, since we are still dealing with a
field with zero spin.

The trace of} is [compare to (4.17)]:
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so one-third of this represents the mean pressure.
The divergence ofr; is [compare (4.18)]:

0,0, =ngU. (5.19)

8§ 6. Coupling to an external electromagnetic field- The coupling of the quantum
wave function for a charged particle to an exteatattromagnetic field is actually more
transparent in the relativistic case than it wathenon-relativistic case. That is because
a choice of electromagnetic potential 1-form:

A=A, d¥ = pdt—A dX (6.1)

can be regarded as something that is proportiomahnt energy-momentum 1-form,
namely:

DA = %A, (6.2)

which can be combined with the purely mechanical on

As usual, we emphasize that conventional quantweohanics actually deals with
point masses and point charges, not extended spethe charge will have to be
regarded as the total charge when we go from plmto extended matter.

a. Coupling the electromagnetic field to the wave functioldvhen one makes the
minimal electromagnetic coupling gk to the mechanical energy-momentum 1-fggm
and then applies canonical quantization, one il g

h hoooi h
(p+Pa)u=—0,+ qu=T(6y +h_ch”) =0y (6.3)

in which we have introduced the notation:
_ iq

for the so-called “covariant derivative” operatdnem one regards the 1-forigp/#ic A as
a connection 1-form with its values in the Lie &geofU(1), namely, the imaginary
line.

The complex conjugate of the operator then take$drm:

i
07 =dy —h—qCA,, , (6.5)
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which can also be obtained frdy by simply inverting the sign of the charge

Indeed, this is, perhaps, the root of the relationship deriveharge conjugation and
complex conjugation, since in the present situation, thentonjugate wave function
W will satisfy a wave equation that also involves couplihg wave function to the
opposite charge. Note that this would still be true i@ tlase of vanishing mass,
although, to date, no real-world examples of massléssged particles have been

observed. IfF (Mm% C) is a space of complex-valued wave functions on Minkaws

space (e.g., smooth, square-integrable, etc.)%#aisda solution to a wave equation of the
formD(+ g, A) W = 0, whereD(+ g, A) is a differential operator that depends upgand

A, then an operatd@ : F (% C) — F (M* C), ¥ — WC that takes a solution of theg+

wave equation to a solutidh® of D(- g, A) W¥° = 0, which is the -q wave equation, can
be regarded as a “charge conjugation” operator.

The reason that the wave function must take its valué€s at the very least, goes

back to the fact that the 1-foriA takes imaginary values, which would not produce a
real numbers if it were to multiply a real numberende, a real wave function cannot
carry charge.

The tensor square of the operdirthen becomes:

2 -
0,0, = (8,0, ——— ALA) +;—‘1(2A/,av+Ava/,). (6.6)

hc?

Note the factor of 2 in the last pair of parentheseschvis due to the fact that, as an
operator, whed, A, is applied to a functiof) the result will be:

3, (AT = @A) T+ A0,

The minimally-coupled d’Alembertian operator will thexké the form:

_ o
o,=0 - PExe

A + ;_l—qc (220, +A%0,), (6.7)
which is usually represented by:

O,= 7 0,0, = (8, + ;-z_ch”)z' (6.8)
Its complex conjugate will then be represented by:

, i
Oy= " 050; = (9, - h—qCA,,)Z. (6.9)
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b. The minimally-coupled, time-varying, Klein-Gordon equatieWhen the wave
function W is assumed to describe a point chaggd rest massn, that is coupled to an
external electromagnetic field that is described by thenpatel-formA, the minimally-
coupled, time-varying, Klein-Gordon equatiail take the form:

. 2
o=0,w+kw=(o —;_l—qCA)ZqJ " (%j W, (6.10)

The change in its Lagrangian density is, analogouslytatige minimal coupling of
the electromagnetic 1-form to the energy-momentunrixfo

LW,W,0W,0W)=1||0W|f-3K|WI|F. (6.11)

However, one should be careful to interpréfiy] | as the complex modulus-squared,
and not the square oV, as in (6.6); i.e.:

|0W | = 7 OW00W0 = g2 (9,0 +Ih—qCquJ)(a,, Ty _;z_ch” W

2 .
= Jlaw |F+[hicj R+ L p,worw v o)

We can further simplify this expression by the introaurcbf the vector field:

H 2
AW W)= Loy -wery) + E(ij ANWIF, (6.12)
2hc 2\ hc
which will make ):
1[0 |F = 4]|dW |f + Ay~ (6.13)

This means that one can also treat the coupling of @annaktelectromagnetic field to
the wave functio® as a simple addition of a Lagrangian dengityto the uncharged
Lagrangian density that we discussed above, and whicthalére-notate by, (which
suggests zero charge, not zero mass, this time):

L=3DWIF -2 KW IF=Lo+ Ly, (6.14)
with
Lo=1||dW [P -2 K[|V IF, Lq=Auit (6.15)

() This form for the coupling o, to the wave function to somewhat illusory, since theentj” also
depends upoA,,.
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One can see that the additional Lagrangian dedsityill vanish when either the charge
g vanishes or the external fiedddoes.
In order to discuss canonical forces and momenta, st risscalel to have the

dimensions of an energy density, which we do by wap@factors®/m,:

C _%(cowq)_cow (6.16)

in which ZO is the rescaled zero-charge Klein-Gordon Lagrangianitgeasd Zq is the

rescaled contribution from the interaction of thergkaand the external electromagnetic
field:

L, =AsT", (6.17)
so the rescaled current vector field:
2
Tr=l e My g gy 0 pe gy f (6.18)
m°  2mgc mocz

will now take the form ofy /27c times the vector field (2.32) that was associatétl
the phase invariance of the zero-charge Klein-Gordagrangian density, plus a term
that is proportional to the electromagnetic potdritiform. Hence, we can reasonably
interpret this vector field as an electric curreeinsity, although we shall justify that
interpretation later on.

The canonical forces and momenta will then chdngthe addition of terms that are

due toZ‘J:

oL,
fo= oo 10 5 4 19 peyy = 1 A0, (6.19)
oY myc hc
oL, ' \
e o T puy (6.20)
0(0,¥) m,C
oL,
fo= = L o, (6.21)
oV m,c
oL, i
|_|/Ik = 9 —= Ihq AH Y. (622)
00,¥) mc

In particular, the new expressions for the totahmantum densities (i.e., the ones that
are due to botlt, and Zq) can be expressed concisely as [compare (2.23)){2
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/I—hz HOyo ﬂ*—hz Hy -
MN# =—D*y", n* =—0y; (6.23)
m m

hence, the only difference from the uncharged caséhdsreplacement of partial
derivatives with covariant ones.

If one computes the variational derivative@f with respect té¥" then one will get:

55_ 2 - .
1= f0-9,MN" = —h—ﬂ[zAﬂa# vo, A+ AZ}W ,
N m, fic hc

and if one compares this to (6.7) then one will sag& th

oL 72

0 = o Gh DY
and since:

oL, h?

= O

it will be clear that, in fact, the two contributioase complementary with respect to the
minimally-coupled, time-varying, Klein-Gordon equation (6.10).

One will also find that the combined Lagrangian denglty(and hence, the action
functional) still has phase invariance, since bagh and Zq are phase invariant
separately. The associated Noether current will tleetind vector field:

F= 3+ 3, J4=NY o+ ng%aﬂ:[%:Aﬂuwrj a.  (6.24)

Thus the total conserved current will take the form:

o i LW _ Wt Ae hq _in’ O _ W
=" wory —warwy + M pw p= T w oy - ey, (6.25)
m, myC m,

from which we have suppressed tine If one compares this to the uncharged expression
(2.32) then one can characterize the effect okttternal electromagnetic field as either
an additional term in the current or the minimaujgling of the field to the derivative.
Note that this vector fiel# is not the same as the one in (6.18), and in fact:

- h
TH= %C(J”—EQCA“II‘P |fj. (6.26)
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In addition to the phase invariance of the wave func#p one also has thgauge
invarianceof the electromagnetic field, which amounts to replgé&i with A + dA, where
A is a smooth function. In order to get the conseiNedther current that is associated
with that invariance, we simply differentiafe(i.e., £,) with respect te:

gp= = 9 gu (6.27)

Hence, this current is collinear with the one thatsisoaiated with phase invariance, but
rescaled by the total charge of the moving particle. Owea tsees that it can be
reasonably identified with an electric current density.

From (6.17), we can relate this latest current vedtdd to the onej* that was
introduced intoZq by the fact that when one differentiat§§ with respect tA,, one

will get:
2

Ji=T7"+ 9

2m)c2A W If. (6.28)

The energy-momentum-stress tensor can now takeitheatly-coupled form:

2
= OV WL = (0 0,ws 0 WO,W) -3 (6.29)
m

The doubly-covariant forrt,, is still symmetric, since the field space‘8fhas not
changed.

The trace off “is:
T/ =2mc||WIf, (6.30)

so the coupling of the charge to the external electyoetic field has not changed the
obstruction to scale invariance that is solely due éatim-vanishing mass.

The divergence of /'is:
9,T! =Fu 3, (6.31)

so the breakdown of the conservation of linear energyentum is due to the Lorentz
force that acts upon the moving charge.

One can also expre3g’ in the decomposed form:

0 g
TA=T0+T4, (6.32)
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o] q
in which T 7 is the previous (energy-scaled) expression in the ugetiarase, and ' is
the additional term that is due £Q, namely:

q — _ — —
T = I‘IgDVH—'H'ng}VWD—EqJV“: 20471, +A 1) - (A 19)or. (6.33)
The trace of this matrix is:

q
T4 =0, (6.34)

which is to be expected since the mass terd is carried by, not £, .

The individual sub-matrices of  are equal to the uncharged values plus the
contributions from the charge, which take the form:

To=4A, -AT", (6.35)
TP =2(A] + AT, (6.36)
T, =2(AT,+AT). (6.37)
T =2(AT +AT)-(AT)I . (6.38)

c. The Madelung-Takabayasi form of the minimally-coupled wave equatlith
the introduction of polar coordinates on the field spddé,dhe main difference between
the previous Madelung-Takabayasi form of the Klein-Gordqoation and its present
minimally-coupled form will amount to the replacemehthe partial derivatives with the
corresponding covariant derivatives, but only for thagghvariable:

0,(ReY =a, (ReA +4 AVRé“’:[av—Rﬂmve}w, (6.39)
fic R
in which we have introduced the notation:

Dve:ave+hﬂCAv. (6.40)

The main difference between this operafgrand the previous one is that the former is a
real operator that acts upon only the phase angleeoivétve function, while the latter
operator is a complex one that acts upon both the amliand phase of the wave
function W. In particular, this means that the external elecagnetic field does not
couple to the amplitude of the wave function, but only itssgh

We can then compute the tensor square of the opevaber t
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R _ 1
0,00 = K”T—D#HDVHJH (aﬂmvmﬁ(aﬁ DV€+6ﬂRDV€)HW . (6.41)

This makes the minimally-coupled d’Alembertian gter take the form:

O, = [%Q—(DG)Z}H[6ﬂD”6’+T2Q<dR,D6’>}, (6.42)

in which we have introduced the 1-forms:

dR=0,R d¥’, 06=0,0dx = d9+%A. (6.43)

The minimally-coupled Klein-Gordon operator whkn take the form:

I:|A+k02 :[D—;—(DH)Z+k§}+i[6ﬂﬂﬂg+%<dR,D9>}, (644)
This will vanish iff:
(0*=k; +D—RR, 0= aﬂD"8+%aﬂRD“9, (6.45)

the second of which can be put into the form:
0 :aﬂ(RZD"H) : (6.46)

When one compares the present Madelung-Takabdgasi of the minimally-
coupled, time-varying, Klein-Gordon equation to fhevious zero charge form (3.2),
one will see that the only difference is the repfaent ofdd with [J6. Following
Takabayasif], we then introduce the frequency-wave numberrinfoas:

k=06 =dg+3 A (6.47)
ne

Note that this 1-form is no longer exact, since:

dk=LF. (6.48)
he

(We shall defer a discussion of the normal formkfontil the next section.)
If we follow the usual set of associations wkthnd set the covelocity 1-formequal
to:
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u="lk=""(do+La)=a+9L A (4="de) (6.49)
m, m he m,C m
then we will find that the new kinematical vorticis:
Q=du=--—1F, (6.50)

T

so the flow of the four-velocity vector fieldwill not be irrotational any more.
IfRP=n, m=mn p=pmu, as before, then one can deduce from (6.49) Heat t
minimally-coupled energy-momentum density 1-forni icome

~ O ~ ~
p=p+EA (P =pU, o=qn), (6.51)

whose dynamical vorticity will also be non-vanigitin

Qu=dp=3Pnps T (6.52)
P c

Note that unlikeQy, which is merely proportional td-k by way of a constant, that is no
longer the case fdRy, sincep is proportional tk by way of a function on space-time.
Equationg6.45) can be put into the form:

divp =0. (6.53)

The first one of these has a kinematical charaetkile the second has a dynamical
character, so we multiply both sides of the fins¢ oy to get:

W =@ +2nU,, divp =0, (6.54)

in which the definition of the quantum potenti&| has not changed.

Hence, the present Madelung-Takabayasi form of rtheimally-coupled, time-
varying, Klein-Gordon equation is the same as tbem-zharge form, except that the
covelocity 1-formu has different properties, since the frequency-wavaber 1-form is
no longer exact. However, one still has the sawnen fior the dispersion law [compare
(3.3)]:

_ 2. HR
= k= (6.55)

If one imposes polar coordinates on the value¥ ahen the Lagrangian density
(6.11) will take the form:
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L AR 60,R 0,6 =1[R (06 + (dR*- kR, (6.56)

which differs from the zero-charge form (3.12) only by teplacement ofl& with J6&.
Hence, when we convert it to an energy density by piyitig it by #°/m, and
introduce the definitions of Table VI.2, we will get:

LOXCnuy, m)=1p(P=CC+A)=1p (=) -ndivu+nU,. (6.57)
H 7?1 2 2 hi

Once again, the only difference from the uncharged isasethe properties ai, so
the expressions for the canonical forces and momtmd; uler-Lagrange equations, and
the conserved current associated with phase invariailceemain the same (at least,
formally).

One thing that will change is th& =md&’ form of the first equation in (6.54). When
one takes the exterior derivative of it, one mustemaer that since is rotational this
time, the convected acceleration will have an eteran in it:

a=Lyu=igdhu+dif=-——i,F+di (6.58)
m,C
That will make:
,a)a:—%qu +2ndU, . (6.59)

The right-hand side now includes a contribution from ltbeentz force of interaction
between the charge density and the external electratiadield.

In addition to phase invariance, the Lagrangian den&ity7§ will have gauge
invariance, and the conserved current will take the form:

gu= 9L _ %u“. (6.60)

q aA&l

In this form, the conserved current that is associafidul gauge invariance clearly takes
on the character of an electric current density.

The energy-momentum-stress ten$grwill have the same form as in the uncharged
case, namely:
T/= pfu, + v, - LY. (6.61)

Hence, the trace will not change from before [coméu80), as well]:

Ti=-2L+p (P, (6.62)
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Once again, the reason that this is not consistehttiveé corresponding expression (6.30)
in the complex case, which would amount m &, is due to the fact that the kinetic part

of £ now depends upon a field variable in the fornRof

It is when one takes the divergenceldf that one encounters a significant difference

from the zero-charge case, since the presence afekt®rces suggests that energy-
momentum will not be conserved, this time. Actuallge only difference in the
calculation of that divergence comes from the fact giaced-.u does not vanish now,
one must use:

q
uW b m.c U ( )

That will now make [compare (6.31)]:
3,T" :% Fo U, (6.64)

which is the Lorentz force density.
One can also expand as:

C=i2+ D g9 A As (6.65)
m,c 2mc

and thus represeit” as a sum:

[ q
TA=TH+T

u
v v

, (6.66)

in which‘l(Z “"is the uncharged expression (withand p in place ofu andp), and:

q _ _ —
T =]A +A), (A ])5", (6.67)
in which we have defined:
jr= 5{0“ 4 A”}. (6.68)
c 2myc

q
Therefore, T /' represents the contribution to energy-momentum sireks that comes
from the charge. Its trace is:

q _ —
T} ==2A,J" =-2L,, (6.69)
and its individual sub-matrices will then take fbam:
q _ —
To =2]"A-AJ", (6.70)
A (6.71)
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q

T, =T'A+AT +(A])3. (6.72)

The only thing in equations (6.66) to (6.72) that differs frammdnalogous complex ones
[viz., (6.32) to (6.38)] is the definition of the curresmictor field j*.

8 7. The introduction of vorticity. — Now that we have examined the case of an
external electromagnetic field that gets coupled tonto¢ion of the charged extended
object that is described by a complex quantum wave functienhave seen the most
tangible physical example in which the covelocity 1-fannceases to be irrotational,
since its vorticity is coupled directly to the extermdéctromagnetic field strength.
Hence, there is no lapse of reality associated widtirdewith a vorticial 1-formu more
generally. Indeed, sincg is merely proportional ti& by way of a constant, amal is
proportional to it by a function, the fundamental 1-faonexamine ik.

One of the first key differences between the noatngstic case of motion and the
relativistic case is that the additional dimension gpace-time allows for more
possibilities in the type of vorticial 1-forms that onan have beyond the Clebsch
expansion. Ik is exact then its normal form will g, but if d-k # O thenk can be put
into one of the following normal forms:

Ady, dO+Ady, Adut+ A dil
In three dimensions, one had only the first two polsdés, the second of which

described the introduction of Clebsch variables.
The exterior derivatives of these four 1-forms thdwe the forms:

0, dA~dy, dAndy, dA A dut +dA, N did
respectively. Hence, there will be only three distiypes of non-zero 2-forms, which

then correspond to ranks 0, 2, and four, respectively.
The Frobenius 3-forms” d-k then take the possible forms:

0, 0, d@~rdA~dy, Ao deZ ~AdAL A dut + Ay det A dA A de,
respectively, and the corresponding 4-fodxs™ d-k will take the forms:

0, 0, 0, —2dA~dAdut ~dif,
respectively.
We can now substitute the expression above (6.48)and see what the Frobenius
3-form and the 4-form will take:

2
kndk= LkAF, dAk"dAk:(ij FAF. (7.1)
fic fic
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Hence, the integrability of the exterior differentigisemk = 0 will revert to the
character of the electromagnetic field strength 2-form.

In the event that the first differential form in Iy vanishes — i.e., K * F vanishes —
the system will be completely integrable, so the noforan of k will be eitherd@ or A
dé In either case, the integral submanifoldkef O (viz., the isophases) will be level
hypersurfaces of], so the flow of the vector field will be hypersurface-orthogonal.

If k » F does not vanish then one must go onto the second difdréarm in (7.1),
whose vanishing comes down to the vanishing O6fF. If that 4-form vanishes thdh
will need to have rank 2, which will give it the fodfn= a ~ S for some (non-unique)
linearely-independent 1-formandf. At the same timek will take on the normal form
dé+ A du, which is used in the Clebsch approach to three-dimeaisionticity. In such
a case, the isophases will be the level surfacebebtir of functionsd, y, so their
dimension will have been reduced by one from the previass.

Finally, if F * F does not vanish thefa will have rank 4, and must therefore take the
form a ™ g+ p ™ ofor four linearly-independent 1-formg S, p, 0. The 1-formk will
then have the normal form; du* + A di, which will make the isophases two-
dimensional, as in the previous case.

An analogous analysis of the integrability of the egtedifferential systenu = 0 will
follow from the analysis ok = O, sinceu is proportional tk by a constant. However, if
one looks at the situation fpr= 0, one sees that since the proportionality i® by way
of a (differentiable) function, sdp is no longer proportional tdk, but includes an extra
term that is proportional tda * p, as in (6.52), which will vanish iff the space-time
gradient of the rest mass density is collinear withetfiergy-momentum vector field.

The Frobenius 3-form and the 4-fodap ” d~p are then:

20

2
prQu=ZLprF, Q4" Qq = dgppAF+(5jFAF, (7.2)
C C

0

respectively. The first of these expressions ¥ @toportional to the corresponding
expressions fork and u (by a function), so the situation regarding themptete
integrability ofp = 0 has not changed from the previous situation& &ndu. However,
the second expression is not merely proportionahéocorresponding expressions kor
andu, which were proportional to the second term orridpet-hand side, so its vanishing
will also have to involve the relationshipagy, to p andF. It is even conceivable theXy

~ Qg might vanish wheiir * F does not. That would happen iff:

2c

FAF=—""dp,"p"F, (7.3)

0
which could happen when:

e

dp, . (7.4)

0

One notes that if one uses the electromagnetiengpiat 1-formA as a model for the
addition of 1-forms talgthat will make it non-closed then that will imiéhat in a four-
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dimensional space-time, there will be only so manyrfady forms thaiA can take (up to
a choice of gauge), namely, two:

A=Adu and A=A dit + A, di,
which will give 2-forms:

F=di~rdy and F=dA Adut+dA A did,
resp.
The first one represents &nof rank 2, while the second one represents ah rank
4. The former case includes the physically-significaastes of elementary static fields
and electromagnetic wave fields.

8. The quantum strain tensor.— The origin of the relativistic quantum strain tensor
that gives the relativistic quantum stress tensor by afay mechanical constitutive law
has not changed fundamentally from the previous nonwistat case in Chapter V.
That is because one is still dealing with the strainangént frames to objects that comes
about as a result of the dilatation that multipi@atby the number density represents.
The main difference then comes about from the fa¢tadha must take partial derivatives
of n with respect ta, in addition tox.

If one goes back to the basic non-relativistic exqtiam in Sec4 of Chapter V then
one will recall that the basic object is the localmothety of tangent frames that is
defined byez” =n (or e = R). It, in turn, defines a connection on frames witluea in

the Lie algebra ofK’, x) whose 1-form is:

w=dA [eg, = 0, A]. (8.1)

Hence, the only thing that has changed from befordadsnumber of values that the
indices can take.

The infinitesimal frame strain tensor that is assed with this frame deformation is
then:

w=dw=d?] [y = 0, A). (8.2)
If we go back to the Takabayasi stress tensor (3.Bh)wle see that it can be put into
the form:
2 2
=T nopr=" g, (8.3)
2m, 20,

in which we have used our densitized versiomohamely,}?f:hn. This clearly takes

on the form of a mechanical constitutive law that cesighe infinitesimal frame strain
tensor to the Takabayasi tensor by way of a functian is defined entirely in terms of
densities.
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CHAPTER VII

NON-RELATIVISTIC, SPINNING PARTICLES

One of the early challenges to the successes ofdim@®@nger equation as a way of
modeling atomic and sub-atomic phenomena was the expeahascovery in 1922 of a
magnetic dipole moment to the electron by Stern amth@e[1l]. Furthermore, not only
was the electron possessed of a non-zero magnetile dipment in its rest space (but
not apparently an electric dipole moment), but the ptesstates of that magnetic dipole
moment in the presence of a magnetic field seemed tquaatized” into two possible
states, which were thought of as the “up” and “down” statéhus, it became
immediately clear that the scope of the Schrédingerteaquaeeded to be expanded in
order to account for the newly-discovered quantum phenameno

Actually, the existence of a magnetic dipole momemnt the electron had been
discovered implicitly before Stern and Gerlach in them of the “anomalous Zeeman
effect.” In essence, the normal Zeeman effect, lwhiad been discovered in 189, [
related to the splitting of atomic spectral lines he presence of a magnetic field as a
result of the coupling of that field to tleebital angular momentum of the atomic electron
that was making the level transition that produced thetispdme. The fact that there
was a further splitting in the magnetic field was mdly simply referred to as the
“anomalous” Zeeman effect. However, it was not wadtier the concept of electron spin
was introduced that the definitive quantum explanationhatr anomalous effect could be
given by Heisenberg and Jorda&j, [and that is what we shall discuss next.

8 1. Electron spin.— A first step towards the expansion in scope of the Sihgér
equation came from Uhlenbeck and GoudsHijitin 1925 when they suggested that the
magnetic dipole moment of the electron might be cedigb an “intrinsic angular
momentum” or “spin” of the electron that also existedwo (up/down) states in the
presence of a magnetic field. Moreoverif represents the magnitude of the spin
magnetic dipole moment amsdrepresents the magnitude of the spin then the relains
between them would be:

e

This should be contrasted with the corresponding expressr the coupling of an
orbital magnetic moment to the orbital angular momertofran atomic electrort)

h=———1. (9.2)
2mc

() An excellent discussion of the classical and quantumyttedhe spinning electron can be found in
Chap. VI of the textbook by Kramers] [
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This discrepancy of a factor of two was the reasanréderring to the “anomalous”
Zeeman effect, as opposed to the normal one.

When one gives the value of} 7, the (absolute value of the) corresponding value of
ms will be defined to be thBohr magneton:

s = %: =0.93x 10%e.s.u. (9.3)

Actually, by their own admission, Uhlenbeck and Goudsmitewsot the first to
suggest that the electron might have such an intrarsgular momentum, since Arthur
Compton had previously published a pam@rif 1921 that proposed such a thing in a
more classical context, and Ralph Kronig had made samahlished remarks in the
guantum context in the same year as Uhlenbeck and GoudBhatlatter remarks were
concerned with Pauli’'s implicit introduction of spinta his discussion of the emission
spectra of alkali atoms in 1924, and the reason that Kroragechot to publish his
observations was that he attributed the spin to a propation of the electron about an
axis, while Pauli criticized the idea on the grounds theth a rotation would need to
have a superluminal tangential velocity.

That argument is simple enough to present: The presenee nodgnetic dipole
moment (but not any higher magnetic multipole momentd)tla@ absence of any electric
multipole moments would be consistent with assuming titiatelectric and magnetic
fields of the electron were produced by a charged, spinningespieadiusre with a
total charge of -e, total massne, and total angular momentug®:. According to Bohm,

Schiller, and Tiomno 7], the classical expression for the magnetic dipotement of
such a spinning charge distribution should be:

U= /]ece% , (9.4)

in which A is an empirical constant of order unity that accototshe actual distribution
of charge.

If one sets this latter expression f@requal to a Bohr magneton (9.3) and uses the
classical electron radius of = 2.8x 10? cm then one will get:

ol<

= %7 > 1. (9.5)

Indeed, one of the problems with the concept of intiasigular momentum in its
early days was precisely that tendency to take theeporadl too literally and attempt to
model it by means of classical rotational mechanickat Ts, just as Bohr had proposed
that electrons orbited the atomic nucleus like plaribesnext step was to add a rotation
of the electrons about their axes, also like the gitan However, just as the planetary
model of the atom eventually reached its limits asim&mental statement of atomic
matter, similarly, the concept of a proper rotatioratoextended electron also ran into
numerous complications. For one thing, unless one postusome sort of physically-
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debatable rigidity to the mass/charge distribution h&f totating electron, one would
expect that the rotation would produce a figure of equilibrthat would be ellipsoidal or
perhaps toroidal, depending upon the angular speed. Howeekra £harge distribution
would then have a non-vanishing electric dipole moment, lwkvas not observed
experimentally.

In time, the nature of “spin” changed radically, esgbclay the introduction of the
four-(real)-dimensional Pauli algebra ot2 complex matrices, which we shall discuss
shortly. For now, we point out that when one goesoovariational field theory and the
Belinfante-Rosenfeld theorem, it will become cleaattlthe so-called “spin” of an
elementary particle was more intimately related towbeht of the representation of the
gauge group in the field space than it was to any squtogfer rotation of a source charge
distribution. That is, the spin of the (non-relatistelectron had more to do with the
difference between the representation of the Lie g@iughree-dimensional Euclidian
rotations by &2 unitary matrices and its representation 3 3eal direction cosine
matrices, which accounts for the two-fold nature of spin.

8§ 2. The Pauli algebra— The Pauli algebra is basically a matrix represemtaif
the four-dimensional algebid of real quaternions, which includes the Lie gr&u¥2)
as its unit sphere. The latter group, in turn, is thely-connected covering group of
SQ3; R), which is the Lie group of proper, three-dimensiona) Eeuclidian rotations.

Hence, we shall review the algebra of real quaterniodstiaen show first how it gets
represented byX2 complex matrices and then how it relates to suchisotat

a. The algebral (*). An algebrais special case of a ring that is defined over a

vector spacé/. That is, one has a bilinear, binary operaNbr V - V, (a, b) —ab
defined uporV that one thinks of as a multiplication of vectoiie demand that it must
be bilinear is another way of saying that vector mudtgtion must left and right
distribute with the vector addition:

a(b+c)=ab+ac (atb)c=ab+ac

along with the demand that scalar multiplication of hedactor individually must
commute with their multiplication:

(/@) b=a(Ab) =1 ab,
which is not defined for general rings.

Due to bilinearity, in order to define the multiplicatioh any two vectors, it is
sufficient to define the multiplication of all paio$ basis vectors for any choice of basis.

() For more details on this subsection, the ambitioadeemight confer the author’s survéy n the
application of the various kinds of quaternions to theasgntation of physical motions.
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Thus, if {& ,i =1, ...,n} is a basis folV then any produat g can be expressed uniquely
in terms of the basis as:

eg= Zai'j‘q( , (10.1)

in which the constants are referred to as tistructure constantsf the algebra for that

choice of basis. The matrix of produ@sg that (10.1) defines is usually called the
“multiplication table” for the algebra in question.
One can always polarize any prodattinto a commutator and an anti-commutator
product:
ab=1{a, b} + 1[a, b],
in which:
{a, b} =ab+ ba, [a, b] =ab - ba

This polarization gives us two immediate exampledbmfad classes of algebras,
namely, thelie algebras for which {a, b} = 0 in any case and the commutator bracket
must satisfy the Jacobi identity:

[a [b,c]] +[a [b, c]] +[a [b c]]=0,
and theClifford algebras for which:
{a,b}=2<a b>1
for some scalar product on Note that this does not imply any immediate resbimst
upon f, b], but it does imply that the algebra must have a uégent 1 that is also one
of the basis elements.

When one applies polarization to the products of el¢sneina chosen basis, one can
also polarize the structure constants accordingly:

k

ai?:b;(+cﬁk’ hj E%(ailj(+ajli()a G

The algebra of real quaternions is easiest to defing tistnstandard basig{, i = 0,
1, 2, 3} forR*, which consists of the vectors:

& =(1,0, 0, 0), er=(0, 1,0, 0), e =(0,0,1,0), es=(0,0,0,1). (10.2)

We then introduce the standard notations, 1,k for the elements of that basis, so
any elemeng of R* can be written in the form:

a=q‘e, =’ +q i+ j+q’k. (10.3)

We reserve the use of bold-face letters for thetigfigart ofq:
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a=q"i+q’j+q°k, (10.4)
SO.
q=¢’+q; (10.5)

o’ is then the “scalar” part af, and not the “temporal” part, as one might expect in
physics. In fact, the components of a quaternion are nedaged to the homogeneous

coordinates of the projective spaRE®.
This decomposition of a quaternion into a scalar partawéctor part defines a
direct-sum decomposition of the vector spite R O R? and two projection operators

onto the summands:
So=¢’, V@=q (10.6)

For the algebra of real quaternions, we see thatsitfficient to define the products
of all 16 ordered pairs of basis elements:

le=el=e wheree=1,i,j,Kk
i?=j?=K=-1,
ij= —ji=k, jk=-Kkj=i, ki=-ik=j.

The first relations say that 1 isuaity element forH; i.e., a multiplicative identity.

The second set extends the usual definition for theimaagi by two more extra basis
elements. That is, the subalgebrdiodf all elements of the form + ib is isomorphic to

C, along with the subalgebras of al- jb and alla + kb. (In the early days of the theory

of algebras, they were referred to as “hypercomplexihber systems, for that reason.)
One then sees that the last set of definitions isolaged from the usual definition of the
vector cross product, except that the cross product ofvaatpr with itself is always
zero, which is not true for the product of spatial quatesio

The easiest way to represent the general product ofjaternionsy andr is to first
put both of them into “scalar + vector” form:

q=q°+q, r=r+r,
One will then get:
ar=a’r®+q’r +r% +qr.

The only term in this sum that needs further clartiicais the last one, and from the
rules above, one sees that:
qr :—<q, r> +q><r,
which makes:
ar=(r’-<q,r>) +q° +r’q+qxr. (10.7)

Thus, the scalar and vectors partsjiore:
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Sar) =q°r® - <q, r>, V(ar) =q’r +r% +qxr, (10.8)

respectively. It is intriguing that even though the algébres most directly linked to
three-dimensional Euclidian rotations, neverthel&&s;) defines the Minkowski scalar
product orR?. Once again, this relates to the projection of homemes coordinates for

RP® onto inhomogeneous ones, but we shall let that passofar
Although the quaternion product is associative, it is natrautative, since:
rg=(°a’~<r,g>) +r%g+a’r +rxq=(@r’-<q,r>) +c’r +r’g-qgxrzar.

If one polarizes the produgt then one will find that:

{a,r}=2(°r’-<q,r>) +dr +1°g), [g,r]=2qxr.

When one restricts these products to spatial quatermmoasyill get:

{g,r}=-2<q,r>, [q,r]=2qgxr.

Thus, the antisymmetric part of the product defines aalgebra on the spatial
quaternions that differs from the Lie algebra of thetaecross product oR® [which is

isomorphic toso(3; R)] by a factor of 2, while the symmetric part of the pradiays that
the product has much in common with the Clifford algelbirtne@ orthogonal spade® =
(R, <.,.>), in which the scalar product is Euclidian. Heerethat Clifford algebra is*2

= 8-dimensional, not four. (As it turns ol is the “even” subalgebra of that Clifford

algebra.)
One might wonder whethéil has “divisors of zero,” which would be two non-zero

guaterniong] andr such thatyr = 0. From the expressions above, that would im@y: th
0=qr’-<q, r>, 0=’ +r’%q +qxr,

or
oL rl=<q, r>, or +r’%g=rxq.

However, the second one is possiblaiff r = 0, so the first one would say thgtr® = 0,
and since the algebi® has no divisors of zero, that would mean that eitfleor r°

would have to vanish. HendH, has no divisors of zero, either.

Of particular interest is the case in whigh=rq = 1, which would make the
multiplicative inverse ofl. From the expressions above, that would imply:

1=0¢"r’-<q, r>, 0=qr +r’%q+qxr=qr +r%g-qxr.
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The second condition says that one must lipxer = 0, which implies that = a q for
some real scalaw, which might be zero. It also implies ttgit +r°g =0, orr® = - a d’,
and when both conditions are substituted into tis¢ éiquation, one will get:

1=-a((®*+<d,g>),
or
1

(@) +<aq.q>

as long asd’)? + <q, g> does not vanish. However, that will happergiff 0. Hence,
every non-zero quaternianwill have an inverse that is given by:

qgt=—31_ (10.9)
[El
in which:
— 0 _ 0\ 2
qd=d"-q, llglf=@)*+<q,q>. (10.10)

One customarily callg] theconjugateof the quaternion.
One can also see that:
qd = da=1qlf. (10.11)
We now see thall’ = H — {0} defines a non-Abelian multiplicative group the
same way that’ defines an Abelian one. Thu, defines a (realiivision algebraor

skew field In fact, the only real division algebras, upgomorphism, ar®, C, H, and

O, which is the eight-dimensional algebra of octosjoand which is also called the
Cayley algebra.
In particular, theunit quaternionsfor which ||q || = 1, form a subgroufl; of H'

whose point-set is a real three-sphere, and in tleetgrougd is isomorphic taR" x Hj .

We shall see shortly that the grotp is isomorphic t&SU2).

b. The representation d&f by 2x2 complex matrices- One of the most important
classes of algebras is defined by thatrix algebras In general, iM(n; K) is the set of
all nxn matrices with elements in the field (which will beR or C for us) then one can
define ann*dimensionalK-vector space structure ovist(n; K) by matrix addition and

scalar multiplication, and for the present purppasdong a& containsR as a sub-field,
one can also produce afrdimensional real vector space by restricting ttaass to the
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real numbers. In order to then define an algebraneeds only to verify that the usual
matrix multiplication is, in fact, &-bilinear product on the vector spddén; K).

In particular, the vector spad&(2; C) of 2x2 complex matrices is four-dimensional
as a complex vector space and the multiplication atfices iSC-bilinear. However, the
algebraH is a real algebra of real dimension four, wihl€2; C) has a real dimension of
eight. Hence, we cannot expect to get an actual isomargifishe real algebr&l with

the complex algebris(2; C), but we might expect to define a real algebra in it.

In fact, all that one needs to do is to define aablstbasis {,, =0, 1, 2, 3} for the
(complex) vector spadel(2; C) and establish a one-to-one correspondence between the

basis {1,1, j, k} for H and the basis elementg . When one forms all real scalar
combinations of the,, , one will define a real, four-dimensional subspac&i(; C).
However, the hard part is to find a basis M(¢2; C) that will give the same (real)

structure constants as those of the basis, {1k} for H.
As it turns out, one can use the basis:

o= |:(]:; (])], n= IL]:; _01:|, = {_01 (]_)-] 3= IEI)- (]_)-] (10.12)

and one will find that the products of the basis elemgints
Ioly = [,l0= Ty, LG =—0jlo+ &klk. (10.13)
Hence, if one associates 1 withandi, j, k with 71, 7, 73, respectively, then one will,

in fact, have the same multiplication table for tlasib elements, and associating the real
quaterniorg =’ +i " +j o + k ¢ with the matrix:

0+i 1 2+i 3 | 1 2+i 3
= z=| 17 T =dtr e AT (10.14)
-q +I1g° 9 —1Iq -q° +Iq -Iq

will define an isomorphic copy of the real algebran the algebrdv(2; C)
One notes that the “spatial” basis matriges = 1, 2, 3 are anti-Hermitian; i.e.:

' =-rn, (10.15)

and their anti-commutators and commutators are:
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{6, 5} =-201n,  [& 1]=28k, (10.16)
respectively.
Hence, the spatial part of the algebra is closelyta@léo the Clifford algebra of

EuclidianR® (up to a sign), as well as the Lie algebrac8; R). One can then define an

isomorphismr : s0(3; R) - su(2), @ +— 37,, where { , i = 1, 2, 3} are the elementary
rotations around the y, z axes, resp.

c. — Spin and the weights of the representations (@, R). — At this point, we can

see how the integer or half-integerthat gets called thepin of a wave function in
guantum mechanics relates to the weights of the repeggenbf the rotation group (in
the non-relativistic case) in the field space of tlevevfunction. Basically, in order to get
the weight(s) of a representation of a Lie group — dh@present case, its Lie algebra

s50(3, R) — one must choose a maximal Abelian sub-algebra &g@artan subalgebra

One then represents an elemenn that Cartan subalgebra as a linear transformation
(i.e., matrix)®(a) that acts upon the vector spacef the representation. The weights of
the representatio® are then eigenvalues of the linear transformagign); since the
elements of a Cartan subalgebra all commute with et and a homomorphism such
as® will preserve commutatitivity, they will all have tisame eigenvalues.

In the present case 86(3, R), the Cartan subalgebras are all one-dimensional, and

are basically all lines through the origin of its unyiexd vector space. If one chooses
one of them (say an elementary infinitesimal rotatéig = a5 about thez-axis) and
represents it as a real, antisymmetn@® 3natrix (viz., thedefining representation) then
one will see that the eigenvectors of that matrix willlia along the rotational axis.
Since that axis is, by definition, fixed by the rotatitime eigenvalues will be 1; for a
proper rotation, only + 1 will be relevant. That numlisethen the weight of the defining

representation afo(3, R); i.e., it hasspinl.
When one represenss(3, R) in su(2) by the linear homomorphism above that will
take ax to $7,, since the eigenvalues of are alsat 1, the eigenvalues ofr, will be

+1. Therefore, the weight of the representationod8, R) in su(2) is ; i.e., it hasspin
1
>.

d. The Pauli matrices- In order to get to the matricesr{ i = 1, 2, 3} that Pauli

actually used in9] one must convert the anti-Hermitian matrices ingrritian ones by
multiplying byi and permuting the 1 and 3 axes:

n=ios, nL=i0p, =ior. (10.17)
Thus:
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[0 - [0 [-10
Ul{—l o] Uz{—i o] 03{0 1] (10.18)

These matrices now satisfy the commutation rules:
[G, 0] = -2 &« o. (10.19)
The eigenvalues of all three matrices are so if one defines tHeauli spin matrices

by:
S =

N

ho (10.20)

then they will all have eigenvalues 67 .

One sees another key difference between these og@rators and the ones that
represent orbital angular momentum in quantum mechanics:

h h h
Ly = T(yaz -2), L= T(Zax -x,), Ls= T(xay -y0,), (10.21)

namely, that the latter are linear differential opara that act upon complex-vector-
valued wave functions, while the former are linear algiebones that act upon only the

field space.
The matrix that represents the conjugatq tatkes the form:
0_i1_2_i3 il 2+i3
[q] = qz .q3 qo .ql = qOTO_ 2 .q3 q .ql = [q]T’ (1022)
Q" -19° g +iq -q +iq -1q
and the determinant of the matrgy |s:
det il = llq1f, (10.23)
so the inverse af will go to:
a1 4 _ 1 |d°-ig -g°-ig?
= = . 10.24
la det[q] g detq {qz -ig® o’+iq* ( )

Thus, if we restrict ourselves to the unit spharél (which we know to be a group

under multiplication) then we will see that it getapped isomorphically to the group of
2x2 complex matrices with unit determinant whose isge are their Hermitian
conjugates — i.e., the groi§if2), which is areal Lie group of dimension three whose
underlying manifold is, as we have already seenrehl three-sphere.

e. The representation of rotations by unit quatame and matrices in Q). — The
easiest way to get from the elementsSef2) to the corresponding real, proper, three-
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dimensional Euclidian rotations BQ(3; R) is to note that at the level of manifolds, the
two-to-one covering projectioBU2) - SQ3; R) is simply the map that takes each point

of a real 3-sphere to either the line through the mrgiR* and that point to the pair of

antipodal points of the sphere that includes that pdiat;is, one is mapping fro to
RP,

As we have seen, the unit 3-sphereHincan be given a group structure that is

isomorphic toSU2) and a manifold structure that looks [i&& so if one associates any
unit quaternioru with the pair of antipodal pointu{ — u} or the line through the origin
that connects them then one will have the basish®m@ssociation of elements $tA2)
with real, proper, three-dimensional Euclidian rotationd=urthermore, under the
association ofi with the matrix {i] as in (10.14), one sees thatjwill go to — [u], so the
antipodal points §, — u} will go to the pair of %2 unitary matrices [u].

The way that one models the action of Euclidian imntaton three-dimensional, real,

Euclidian spaceE® using real quaternions is to first embEd in H as the spatial

quaternions; i.e., the vectdre goes to the spatial quaterniors Vi +V*j + vk One
then models the rotatidR(u) itself by a unit quaternion (or its negative) and the action
of that rotation o by the map:

R(U)(v) = uvd. (10.25)

One immediately notices that due to the quadratic natutleis action, bothu and —u
will produce the same effect upan Hence, it is really the pairu{ — u} of antipodal
points that act upow.

In order to see that this action really does produasahk proper, three-dimensional,
Euclidian rotation of/, one first verifies that is clearly invertible, sinte inverse action
is:

R™u)(v) =RUu™)(v) = tvu. (10.26)

In order to verify thatR(u)(v) is a spatial quaternion, one notes that a spatial
guaternion always has the property that= —v, so one tests' = R(u)(v) for that
property:

vl

V. Zuvu =uvu=—-uvu=-V.

In order to show that the transformation (10.25) isi@bt a rotation, one needs to
show that the Euclidian length efis the same as the Euclidian length/gfthat would
be equivalent to showing thav]||f = ||v |f:

||V |[F=v'V' =tvutuvu= avvu=||v|fau=||v|f.
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Hence, the action (10.25) truly represents the actionreal, proper, three-
dimensional, Euclidian rotations on points of thremehsional Euclidian space.

Under the association of unit quaterniengith unitary 22 matrices (i] and spatial
guaterniony with anti-Hermitian 22 matrices:

vt v +iv?
M= {—vz +iv? —ivl} (10.27)

one will get a corresponding action®t2) onE>:

[VI=[ulMl ] . (10.28)

This is the usual way that quantum mechanics intced the representation of rotations
by matrices ir5U2).

f. Pauli 2-spinors When one looks at the<2 complex matrices by themselves, one

will see that there are two other natural actidra they define by way of their defining
representation as either the matrices of comptesali maps ofC? to itself or the

transposed action @’ to itself. If one represents an elemen€biby a column vector

W= {Zi} and an element @ by a row vectoyy " = [z, 2], and L] O SU(2) then those
z

actions will be i and ¢ "[u], respectively. Actually, it is more customaryreplace
[u] its inverse {i] Tand " with its complex conjugate .

The elements of? andC?" then become the basis for the introduction ofRhali 2-
spinors and a wave-functiogit, X) that takes its values ifi* or C** becomes ®auli 2-
spinor field.

One way of thinking of Pauli 2-spinors geometticas to consider that whe@? is
given the Hermitian inner product:

(W y)=72"+ 77, (10.29)

one can define an oriented, unitary 2-frame by ifgag one of its members. This is
analogous to the way that an oriented, orthono2afthme inE? can be defined by

specifying one of its members; for example, onesgetify the first member and obtain
the second one by a counter-clockwise rotationudpinca right angle.

The difference is that ifi is a unit vector inC? then one must not only rotate
through 96, but take its complex conjugate, as well:
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_._ |0 -1fjg*| _|-T"
=<2 ][] a0

This situation is illustrated in Fig. 7.1.

(u, u?

Figure 7.1. Extending a Pauli spinor to an orientedpntitam 2-frame.

One can then form a matrix that belongStd2) fromu andug:

ut -T°
Us[u| ug) = { ) _1}, (10.31)
u U
S0, in particular:
oo
Uﬂ:UT:{—m Lﬁ} detU = [ju* IF + 12 . (10.32

Geometrically, one can then think dfas an oriented, Hermitian frame@#, which will

then cover an oriented, orthonormal 3-fram&fnalong with -U.
Hence, a non-zero Pauli 2-spingican also be associated with a matriSiy2):

nw{i_i}
u u

and if ¢ is aunit spinor— so ||¢ || =y = 1 — then the association of unit spinor€

with matrices inSU(2) will be a one-to-one correspondence. In that sem$tguli 2-
spinor is something of an abbreviation for a unitary 2-am
One can represent Pauli 2-spinors by real quaternices, @]) by finding a

decomposition ol into two two-dimensional left or right ideals that isbbehave like
C O C under the left and right multiplication by unit quaterniomgt we shall have no

further use for that fact in the present discussion,esshall leave it at that.

g. The matrix®2. — For the later calculation of the intrinsic angulaomentum
tensor that is associated with the Pauli Lagrangiasite it will be essential to have an
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explicit expression for the components of the lineiar dlgebra isomorphis® : so(3;

R) - su(2) as it relates to the association of tracelass,sgmmetric, real, 83 matrices

q in s0(3; R) with the traceless, anti-Hermitian, comples22matricesaf in su(2) that

represent them. That is, we seek the four-index a@ysuch that:
of =19Y a)J _ (10.33)

Abstractly, if {g§,1 =1, 2, 3} is a basis foso(3; R) and {r; , i = 1, 2, 3} then the

matrix of ©® with respect to those two bases will @ = J§'. That is, ifw' are the
components ofvwith respect tog then ' will also be the components &f(¢«) with
respectto §i,i =1, 2, 3}.

In order to go fromw' to ch , one uses the adjoint representatiosad8; R), which

will make: _
W = ik of or w'= %giik(uﬂ . (10.34)

J

In order to go fromw' to &, one uses thematrices that were defined above:
«f =y, (10.35)

in which the arrayry refers to the components of the matixi.e., 75 = [1];.
If one combines the two transformations (10.34) and (10k&%5) ane will get:

o3 =1e¥rd = ir, 1,12 (10.36)

8 3. Rotational mechanics with Pauli matrices.Rotational mechanics can be first
approached in two basic steps: the motion of a rigid-dady, an orthonormal frame)
about a fixed point and motions of deformable bodies fuclhvone can treat the motion
of an orthonormal frame at each point as that of &adpdistribution of infinitesimally-
rigid bodies. One can then divide the first step nga-body kinematics and rigid-body
dynamics.

In this section, we shall treat the representatidntr® motion of oriented,
orthonormal frames about a fixed point in three-dimaraiduclidian space by Pauli

matrices — i.e., oriented, unitary 2-frame<’fn The extension to a spatial distribution of

infinitesimally-rigid bodies will then be the implicobjective of the Pauli wave equation
that will be discussed in the next section.
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a. Rotational kinematics with Pauli matricesThere are basically four ways of
representing three-dimensional Euclidian rotations alofiked point inR® (e.g., the

origin) that will be of immediate interest in wHatlows:

1. An oriented, orthonormal 3-frame {i = 1, 2, 3} at that point.

2. The direction cosine matrR} 0 SQ3; R) thate defines with respect to a chosen

oriented, orthonormal frame (e.g., the standard fradné £ 1, 2, 3} onR®):
a=3R. (11.1)

3. An oriented, unitary 2-framee{, a = 1, 2} at the origin o€ we shall call these
Pauli frames.

4. The matrixU; O SU2) thate, defines with respect to a chosen oriented, unitary
2-frame (e.g., the standard fram®&.{a = 1, 2} onC?):

€a=8,U.. (11.2)

One can regard the columns of the maRixas the components of the frameavith

respect tod and the columns of the matrbt; as the components of the framewith
respect td,. Hence, there are two manifolds that could serve@aBguration spaces for
the Euclidian rotations: the group manif@(3; R), which also parameterizes the set of

all oriented, orthonormal 3-frames, and the group manifSld2), which also
parameterizes the set of all oriented, unitary 2-frame$he latter manifold is

diffeomorphic toS?, while the former is diffeomorphic tBP®. We shall us&Q3; R)

andSU2) as the generic cases for the configuration manifoldde referring to their
elements as either matrices or frames according tooiext.
A motionof a rigid body about a fixed point will then be eithesmooth curvet{, t;]

- SA3;R), t — R}(t) or a smooth curved, t1] - SU2),t > UZ(t). Of course, since
SU(2) projects ont&c(3; R) smoothly, a smooth curve 81X2) will project to a smooth

curve inSQ3; R). One might wish that the curve should pass througldgmtity matrix

whent = 0 (i.e., R (0)= &} or U2(0) = &7), but that would amount to saying that the
reference frame is the initial frame, which is netals necessary.

From now on, we shall refer to only t8&X2) picture of the motions.

There are two ways of describing the velocity of theve U (t)
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1. Inertial angular velocity:

<. _ du
u() = Et. (11.3)
2. Non-inertial angular velocity:
at) =U®U®)* =U@)U®)". (11.4)

The first kind of angular velocity describes the rotatof the Pauli frame that is
represented by(t) with respect to the reference frardg and belongs to the tangent
spaceTypSU2). The second kind of angular velocity replaces tkedfreference frame
0, with the moving reference frangg and belongs to the tangent sp@c®U(2), which is
identified with the Lie algebrau(2). Hence, the matriwis anti-Hermitian, and it has a

Zero trace:
W=-aq = 0. (11.5)

a

Sincew U su(2), it can be expressed in terms of its components negpect to the

basis of matricesq, i = 1, 2, 3}, although it is more conventional in quantuethanics
to use the basis of Pauli matrices: _
w() =w'(t)r . (11.6)

One can rewrite the definition (11.4) afin such a way that itvis given then the
linear, first-order, ordinary differential equation:

Y _ w (11.7)
dt

can be used as tleguation of the moving frantkat is defined byJ(t) when one chooses
an initialU(0). It can be solved by:

u(t) = U(0) exp[j;w(r)dr] (11.8)

One can also distinguish two types of angular acd@era

1. Inertial angular acceleration:

. d?U
U@ = 11.9
(t) it | (11.9)
2. Non-inertial acceleration:
a) = U ®U ", (11.10)

This last definition can be put into a form that refera(t), instead ot (t) , since:
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u :%(au) =wU+wl = (Wt ww)U , (11.11)

namely:
a= wtww. (11.12)

One then sees the appearance of a centripetabeato@h cucwthat accounts for the non-
inertial character of the moving frame. Howeven' = axy so wwis Hermitian. Since
w is anti-Hermitian, the matrig will generally be neither Hermitian nor anti-Heriait.

If a(t) is given then (11.10) will become the linear,s@torder, ordinary differential
equation forJ(t) when one knows)(0) andU (0):

U =au. (11.13)

One sees that the inertial angular acceleratidonge to the second tangent space
T o SU(2), and the non-inertial kind can be thought of deituging toT . su(2).

If one wishes to relate the kinematical data tinas$ just expressed in terms of Pauli
frames then one will simply embé&f in the (real, four-dimensional) vector spad€;

C) of 2x2 complex matrices by taking the compone/hm‘ any vector irR> to the matrix
[V] =V & . Hence, since each member of the oriented, ootinoal frame &, i = 1, 2, 3}
is itself a vector ifR?, one can represent that frame by the set of timageices {g], i =
1, 2, 3}

The action ofSU2) onR? by way of its representation M(2; C) then implies a

corresponding action &U2) on oriented, orthonormal frames that taledstg U'[e]U.
If U(t) is a rotational motion then one can representribeing frameg(t) by way of %2
complex matrices as:

[a(®)] = U'®)agU®), i=1,2, 3. (11.14)
Differentiation gives:

e =U'gU+U'gU =U"(w'g +gwU =-U'[wc]U. (11.15)
However, ifw= @' ig then since §, &) = - 2i gk c, the last equation will become:
e =-2gw U U=2¢qa, (11.16)

in which we have definedy' = g w*. One then sees that the angular velocity of the
Pauli frame and the oriented, orthonormal 3-franmfferdoy a factor of 2. That goes back
to the fact that whenever you complete a greatecircRP® once, you complete a great

circle inS?® twice.
A second differentiation of (11.15) will give:
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& =U'gU+2'gU+U'gU =U"(a'g +ga-2wow)J. (11.17)

We shall think of th&inematical statef the moving Pauli frame as being composed
of eitherW(t) = (t, U(t), U (t)) orW(t) = (t, I, cft)). The former combination of functions

then takes the form of an integrable section of thengnifold projection*(R; SU?2)) -

R, (t, U, U) — t. The latter is obtained by shifting that section byrigat action of

U®)" on it. Aninfinitesimal kinematical stat®f the Pauli frame is then a virtual
displacement (i.e., variation) of the kinematicaltst so it is a vector fieldd on the
section¥(t) that is vertical under the aforementioned projection:

9
ou"

d

9 9
ol

0
oU; |

ou

J

| = Ui (t) +aU| (1) or | =3l (t) =+ +ddd (t) (11.18)

b. Rotational dynamics with Pauli matricesDynamical variables are dual to
infinitesimal kinematical states with respect te ttuality pairing ovirtual work which
includes kinetic energy as a particular case. Eledgnamical variables belong to the
vector spaceu(2) that is dual to the Lie algebsa(2); typically, one does not introduce

a Lie algebra structure an(2)’, though. A useful theorem in that regard is:
Theorem:

Any linear functional{A) on M(n; C) can be represented as:

dA) = Tr(BA)
for some unique BIM(n; C).
Proof:
Define the map : M(n; C) - M(n; C)’, B  Tr(B ) and show that it is @-linear
isomorphism.

The fact that it is linear follows from a basioperty of the trace. In order to show
that it is one-to-one, one needs only to show thatkernel ofi is O identically. That

kernel consists of aB [1 M(n; C) such that TBA) = 0 for allA O M(n; C). However, if
B # 0 then there will always be at least gnsuch that TBA) # 0. That is because B

# 0 then one can defind to be the elementary matriE} whose elements are all 0,
except forE/ = 1. One will then have that T’B) = B,.# 0. Hence, keri{ = 0. Since
M(n; C) is finite-dimensional, an(n; C)" has the same dimension Mgn; C), i must
also be onto.
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Hence, the elements ai(2)" can all be represented as traces of the forBAjrfor
some uniqud 0 su(2).
In particular, when the elements «i(2) are thought of as angular velocitiesthe

linear functional KE&) of rotational kinetic energy will have (1/2) angularmentumL
as its trace kernel:

KE(a) = 3L(a) = 3 Tr(LW). (11.19)
In components, one can represent rotational kinetiggne two forms then:

KE(«) = iLiw' = ld . (11.20)
When the elements cfu(2) are thought of as infinitesimal rotatiod® (virtual
rotations, the dual functional iBu(2)” will be the virtual workdW(J6) that is done by

that virtual rotation, and its trace kernel will twrque 7 (also calledforce-coupleand
momenk
AMS6) = 1 (06) = Tr(1 56). (11.21)

The component forms of this are then:
IW=106"=1) 56 . (11.22)

In order to get fromsu(2) to su(2)’, one will need anechanical constitutive lawn
the form of some invertible map from(2) tosu(2)” whose definition is purely empirical

in nature. Of course, the definition of such a map\srg open-ended topic in the eyes
of theoretical mechanics, and for the case of torque,ntbst debatable issue is the
linearity of the map under finite displacements. Hosvegince we are only concerned
with infinitesimal ones, it is easier to justify nia§ both constitutive laws for angular
momentum and torque linear isomorphisms, as is customary.

The linear isomorphism that takes angular velocityrigué&ar momentum takes the
form of themoment of inertia : su(2) - su(2)’, w+ L =1(a), so:

Li =l or L =1%d. (11.23)

J

The simplest of these isomorphisms is obtained frdapic and homogeneous rigid
bodies, for which one then has:

li =14 (15 =135) (11.24)

jl
for some unique positive scalar That will then make:

L=l (L, =1d). (11.25)
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When one looks at the form (10.20) of the Pauli spirriocest (namelys = 7/2 )
one sees that if theg matrices (or really, thg matrices) are regarded as elementary unit
angular velocities along the three directions of sghen one can tredt/ 2 as a moment
of inertia for an isotropic, homogeneous rigid body. ©again,7z seems to be asserting
itself as a rudimentary quantum constitutive law, justt aBd before in the Madelung
interpretation of the Schrodinger equation.

As for torque, we shall simply assume that it canrbeué?)-valued functiorr (t, U,

U) of time, U, andU or 7 (t, |, o) for now; i.e., it is still independent of position in
space. For instance, viscosity can couple torquesetcatigular velocity of rotating
bodies in viscous fluids.

The equations of motion for Pauli frames can thenxpeessed in two forms:

1. Inertial:
r= d—lt' : (11.26)
2. Non-inertial:
dL
= E_ [L, d. (11.27)

For a rigid body whose moment of inertia is constaritme, one can then put these
into the forms:

r=1(a) r=1(a) - (), d. (11.28)

For an isotropic rigid body, these equations becomadhge, but for an anisotropic one,
there can exist non-constant rotational modes in tkerale of external torques, since
[1(a), «d will not have to vanish in such a case. In the cdde Earth’s rotation, one
has precession of the rotational axis (or the lineqodreoxes) due to the effect of torque
from the Moon’s gravitational pull and nutation, whichihe rotational mode that follows
from the fact that the Earth’s mass distributiomad perfectly spherical, but represents
an oblate spheroid, to the next degree of approximation.

8 4. The Pauli equation. The first definitive attempt at extending the scop&e
Schrédinger equation to include the spin of an electras made by PaulB] in 1927.
Indeed, he did not extend the perfectly-general form ef3bhrddinger equation, but
only the one that pertained to the wave function cfaged point particle in an external
electric and magnetic field, namely (cf., Chap. IV):

oY (o iq, Y noy
h— = | ——| — +— + Y= |-——o'00 + W, 12.1
! ot l: 2m(ax hcAj W} { 2m ! qw} (1.1

in which m is the mass of the particlg, is its chargeA; are the components of the
magnetic potential 1-form, anglis the potential of the external electric fielce are once
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more using the notation for the spatial covariant davieaperator that we introduced in
Chapter IV. For the sake of convenience, we recallnbigtion:

0 =0+ A, 0f =9 -A . (12.2)
hc hc
One sees that although one could simply replace tred 8shrddinger wave function
, which takes its values ifi, with something that takes its valuesGA and still be

dealing with a quantum wave equation, unless one changekathétonian operator that
acts uponyto include some term that coupled the two componentsbftave function,

all that one would arrive at would be an independent paicomfiplex scalar wave
equations. The rotation that would be described by the yridt&name that is defined by
¢ could only exhibit a constant angular velocity, so in otdeproduce a non-constant
angular velocity, one would have to couple a torque tatiitary 2-frame that is defined

by .

a. Pauli's extension of the Schrodinger equatienThe motivation for the Pauli
equation was the behavior of the spinning electron irexternal magnetic fieldB.
Namely,B will exert a torquer on an electron by coupling to its magnetic dipole moment
M, which we now regard as a three-vector whose lengi is

T=uxB, (12.3)
and the work that is done lzyon u will be:
U,=5ulB. (12.4)

When one replacggwith its quantum (i.e., operator) form:

en
Fion ==t G==2 0, (12.5)

one will get the spin-magnetic field coupling contributiorthe Hamiltonian operator:

eh .
U/I(Olo):_M:BI a . (12.6)

The extension of (12.1) that Pauli arrived at was then:

P . 2
ind¥ - —h—(i—f j—ewﬂ Bo W, (12.7)
ot 2m\o0X #c 4mc

in whichW(t, X) is now a 2-component Pauli spinor wave function.
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As long as the external electric and magnetic figlds constant in time, one can
separate the time and space variable®(f x) = T(t) ¢(X) and arrive at a stationary
Pauli equation:

(o e

2 & B
[%(a—x e j e ms"i}” =Eu (12:8)

b. Lagrangian formulation of the time-varying Paudiquation. Deducing a
Lagrangian density for the Pauli equation (12.7)iterstationary form (12.8) mostly
amounts to adapting the corresponding Schrddinggradngian density (cf., Chap. IV) to
the fact that¥ now has two components, instead of one, and thettetis now a
contribution from the coupling of the spin to theexnal magnetic field.

The first adaptation comes from replacing the dempconjugate of the one-
component wave function with the Hermitian conjegaif the two-component one.
Hence, the wave functio and its Hermitian conjugat®’ will now be treated as
independent dynamical variables.

The second adaptation is achieved by defining:

eh

Leo=—
® 4mc

B (Wow). (12.9)

If one compares this to (12.6) then one will Semt e are effectively defining spin
density vectofrom the wave function:

S= %h(LIJTUiLIJ) = Yisy, (12.10)
which will make the magnetic dipole moment takeftren:
e
Uh=-—35. (12.11)
mc

Hence, we now have a Lagrangian density of theafor

2

£ =2y -ry) - gt pw s repwiv - T B Wy, (12.12)
2 2m amc

One sees that one can represent this Lagrangmnsitylas:

L =Ly +Ls, (12.13)
in which:

. 2
50:%(q)TQJ_QJTqJ)—;_<DTqJT,DqJ>+e¢w*lv (12.14)
m
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is the previous expression from Chap. 1V, @hds the expression in (12.9).
Except for the change in the field space fréinto C? L is just the Lagrangian

density in the non-relativistic, spinless case with @®real potential energy of eg
while Ls represents the contribution from the interactiorwben the spin of the wave
functionW and the external magnetic field.

The generalized force densities and conjugate momertta fmattial derivatives of
are {):

f:a_ﬁz_ﬂl.]ﬁ+ﬂA‘DiTqﬂ+eLPT—ﬂBLIJTUi, (12.15)

ow 2 2mc amc
1 . 2 ..

mt= 9L _ ih g m=_9% __7 sigrgt (12.16)
W 2 a@.w) 2m !

g1 = 9L g Toh g gaap- @ goy, (12.17)
oy 2 2mc amc

1 . 2 ..

= 9L - _ihy, nt=—9% -7 spy, (12.18)

oW 2 a@.wH) ~ 2m !

Hence, the expressions for', M, M'" are, in fact, Hermitian conjugates of the
corresponding expressions without the dagger.

Formally, all that has changed from the spinlessecis the addition og% and

S

ai - to the respective generalized forces.

One can get (12.7) by annulling the variationaiv@give of £ with respect top™:

0= ;jﬁﬂ—atn”—ain” (12.19)

and the Hermitian conjugate of that equation byudmg the variational derivative with
respect tab.

The Lagrangian densitg (as well as the action functional that it defines)still
invariant under the action of global phase tramsédrons of\:

M =icy, M =-igy’ (12.20)

+

o' ow' 9w
() This time, one must be careful to note that- = —— = M: 0
ov ¥  0(0,W)

, etc.
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since the only extra term that we have added is invanathiat way, so there will still be
a conserved current that is associated with that iefimtal transformation. One sees
that the extra spin term does not contribute to thrseot, since it does not involve the
derivatives of the wave function. Hence:

30 = yhy, Ji= %5‘1 (WO -Dw'y), (12.21)
mi

from which, we have dropped the constant factotif .
The gauge-invariance d@fthen implies the conserved current:

1 =% _cyty, i :a_ﬁzi_a*i(wmiw—m}ww), (12.22)
op 0A 2mci
SO one can say that:
VTR 3 :(—SJ ] (12.23)

SO it is once more an electric current vector field.
The canonical energy-momentum-stress tensof foecomes:

T/ =n0,w+0,9Y' N“" -L =T I-L0], (12.24)

which differs from the spinless case only by the seghita of £.0)' and the fact that the

wave functions have two complex components now. ¥vetise express the totdf’ as
a sum:

(o]

TH=THheTH, (12.25)

v

o
In this sum, T /' is the formal analogue of the corresponding tensoispanless wave

functions with two-component wave functions replacing tme-component ones, the
Hermitian conjugate replacing the complex conjugate, anel lsaing taken to be sure
that Hermitian conjugate expressions always appear fartight. The other tensor is:

eh

Ti=-La =—
4mc

B'(W'g,W) . (12.26)

The specific components @f are then:

T =MN9,W+own'-.L
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2
= 0 oW >—epw W+ L B (Wigw) = 1, (12.27)
2m 4mc
T =N'0,w+0,wn't = %(qﬂ Ow-0WwWw)=-mJ, (12.28)
To =M W+o W' =——— (VOW+0'WW), (12.29)
m
[— i Twtmit '__h_z ity t Ty i _ i
T =N0W+OWNT - L8 = (00, W+ 0WHW) - £4]. (12.30)
m

Note the symmetries in the doubly-covariant congmbst

Toi # Tio, Ty =Tj . (12.31)
The trace off / is then:
eh

T =T
“ mc

u

B(WogW). (12.32)

Naturally, since external forces are acting upas noving charge, one would not
expect linear momentum to be conserved, SO onénae:

fo= T =0, T4+, T =gl + A J‘e+2—§lc BS (12.33)

fi=0,T4=0,THd,T¢=EJL+BJ +2_r?10(6i B) $ (12.34)

In these expressions, we can see that the powesfereed from external field to the

moving charge is due to the time derivative of éhectromagnetic potentials and the

magnetic field, while the force that the externgldf exerts upon the charge is a

combination of the usual Lorentz force and anottermtribution that comes from the

coupling of the spatial inhomogeneity of the magnild and the spin of the particle.
The total angular momentum tensor is given by:

£,= L, +S),, (12.35)
in which orbital angular momentum density tensagiv@n by:
L, =T % -T'x, (12.36)

so its individual components will take the form:
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L9, =T x —TO% =H x +m Jt, Ly =Ty x = T't, (12.37)

0j — 0j —
L= T —T°x =—m(J % — J x), L= Ti% — T %. (12.38)

One can see thdt) is the negative of the usual orbital angular momentuniiewt’,, is
due solely to internal stresses.

It is necessary to give only spatial components ofitténsic angular momentum

density S;, , since the others will vanish:

2
S, = D (MW -w™nl) = h—s.k. O"W7rTY-wrOw). (12.39)
4m !

Since there are external torques that act uporchiaege by way of its magnetic
dipole moment, total angular momentum will not @med, but:

0,£,,= M+ myy, (12.40)
in which the external force momelt,, will take the form:

Mo = 0,Lo; +0;Ly = fox; = f t+ T, =T, (12.41)

Mj =05 +o, L =fix —fx+T-T=fx-fx, (12.42)

ij

in which we have employed (12.31).

The first equation in this set takes the formled impulse-momentum theorem. As
for the second one, it clearly represents the mowiforce.

The only potentially non-zero components of thenmal torque density tensor will
be:

mjc = 0,5, = em[ S+ (sx B)'} =g S -(uxB) ], (12.43)

in which we have substituted (12.11). If we defineto be £ my then this can be
expressed in the vectorial form:

S=m+puxB=m+r, (12.44)
with the substitution (12.3).

c. Lagrangian formulation of the stationary Paefijuation. The Lagrangian that
corresponds to the stationary Pauli equation (12:8)
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£=%<D* Oy >- (e¢+tww+ B(waw) (12.45)

As in the time-varying case, one can exp#ss a sunty + Ls, where:

Lo= T <Oly'\Op>-(o+ By, Lo= -2 B@oy) (12.46)
2m amc

represent the spinless case (with a different fegddce) and the contribution from the
interaction between the spin of the wave functiod the external magnetic field, resp.

The fact thatl is time-invariant has the immediate effect of makthe temporal
components of the conjugate momenta vanish:

n'=o, n'=o. (12.47)

However, the generalized forces and the spatialpoments of the conjugate momenta
have the same form as before, but witm place of¥:

1 . 2 ..
f=— 0L AOlY - (ep+ By + - Byl =20y, (12.48)
2mc 2m !
1 . 2 ..
t1 =+ Ay - (ep+ B +-2- Boy, n'="sny. (@249
2mc 4mc 2m !

The stationary Pauli equation is then obtainednfrannulling the variational
derivative ofC with respect to the conjugate fiejd:

0= =f'-on'", (12.50)
W
and the Hermitian conjugate wave equation comen frarying with respect tg.
The Lagrangian is still invariant under phasesfarmations ofy and /"
=iy, M =-igy (12.51)

and the corresponding conserved current now téleefotm:

J°=0, =g W'oOw-0y'y). (12.52)
2mi

The gauge-invariance is not affected by the timeiiance, so the conserved current
that is associated with that symmetry will remaimchanged, although its temporal
component will no longer be proportional8.
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The canonical energy-momentum-stress tensor tagedertm:

2
==L, T,=T"=0,T, :g—m(mifwTDjw+D;¢TDiw)—£5}. (12.53)

(o] S (o]
This, too, takes the form of /' +T/ , whereT ¥ is the corresponding spinless tensor,
and:

TH =—[ (12.54)

represents the contribution from the interactiobwmeen the spin the external magnetic
field.

One has the symmetry of the doubly-covariant fofrif ji :

T=T;. (12.55)
Its trace is:

T, = " 0"y 'Oy -4(ep- E) |l |F+%C Byloy) (12.56)

m
The divergence of / has the form:
0,T{=0H =0, 0T =1, (12.57)

in which the external force densikywill differ from its time-varying form (12.34) ol
by the fact that nowE = - dg since A= 0. The first of these equations expresses
conservation of total energy (density), while tleeand is the equilibrium equation for
the internal stresses that are provoked by theredtéorces.

The non-zero components of the total angular moummerdensity tensor are the
spatial ones:

Ly = Ly +S,, (12.58)
with:
[ i i i n? [ i
ij :TJ)&—-IT( )S, Sjk :R‘g‘jkl (DT LIJTZJLIJ_LIJTZJD LIJ) (1259)

The latter tensor has not changed from the timghvgrcase, except for the fact that its
components are no longer functions of time.
The balance of angular momentum then takes time: for
0.&, =fix—fiox +my. (12.60)

Once again, we have used the symmetri;;of
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This last equation clearly represents an equilibriumagop for the total couple-
stresses that are provoked by the applied external foroeentoand spin torquey ,

which still has the same basic form as (12.43), exceptth&a spin vector must be
constant; i.e.:

mi = — &kl ([Ix B)I . (12.61)
Hence, ifaiﬂik vanishes then one must have:

fxr=uxB. (12.62)

Hence, the force moment that is due to the Lorentzefoplus the coupling of the
inhomogeneity inB to S, must balance the torque that is due to the couplinthe
magnetic dipole moment ®.

8 5. The Bohm, Schiller, and Tiomno form of the &uli equation. — In the paper
of Bohm, Tiomno, and Schillei7] (which we shall abbreviate by the acronym BST), the
authors did not proceed in a precise analogy with the Mageakabayasi
transformation of the Schrodinger and Klein-Gordon df@mations, which basically
amounts to the introduction of polar coordinates in® fiald space and applying the
wave operator to the wave function in that form. Bgtkhey started by expressing the

Pauli spinor wave function in terms of the EulerlaagpfSQ(3; R) and introducing the

wave function in that form into the expression for ¢beserved current that is associated
with phase symmetry, which produced an expression in whelole of the Euler angles
was seen to be closely analogous to the velocity potentéh Clebsch variables for a
vorticial fluid, and with the minimal electromagnetioupling of the magnetic potential
1-form A to the linear momentum 1-form, one could conceivably kdirde with a
charged, vorticial fluid in an external electromagnéétd. Hence, we shall first discuss
that purely classical example in order to show howlites to the Pauli equation.

a. Charged, vorticial fluid in an external electromagnetic fieldne first expresses
the flow covelocity 1-fornv in terms of a velocity potenti&/ m, the Clebsch variables
and#, and the magnetic potential 1-fork(*):

:i(ds+gd7— A. (13.2)
m

olm

Notice how if one is trying to deal with a purely hydrodynzal problem then the
numberse andm seem out of place, since they pertain to point-lilegten, not extended
matter. If one desires to start with extended malkten one will need to start with the

() Since this chapter is non-relativistic in scope,sivall abbreviate that spatial part of the differdntia
ds by simplyd.



268 Chapter VII — Non-relativistic, spinning particles

charge and mass densitiesand p, respectively, and introduce and m as spatial
integrals of the densities over the subset of spaceharhwhe densities are non-zero.

If one wishes to eliminate the point-like contribusothen one can define a velocity
potentialyy = S/ mand absorin into the definition ofp. If one assumes that:

p=mn and o=en (13.2)

wheren is the number density of the matter, tlkdrm = g/ p, and one can write:
o
v=dyg+dv——A, (13.3)
Jolo

which no longer includes any point-like parameters.
One sees that the net kinematical vorticity of sa¢low will be:

Qc=dwv = dé0dp-—=-B. (13.4)
mcC

Hence, if this vanishes then one will get a direct coupdihtipe kinematical vorticity of
the fluid motion to the applied magnetic field:

déndn :%: B. (13.5)

One must introduce the vanishing @f as an explicit constraint, which Takabayasi
[10] refers to as “quasi-irrotationality.” The sense inieth the use of the prefix “quasi”
is justified is thatv represents an “effective” flow velocity, whibky + é di represents
the “true” flow velocity.

One defines an action functional for the motionhef fluid:

S=[LtxX.ng.Enn & n g &g v (13.6)
in which the Lagrangian density takes the expfaim:

_ oy . on). .,
L= n{m{E+EEj+5 mv + ep}f(n), (13.7)

in which gis the potential function of the external elecfiedd, andf (n) is a pressure
potential; i.e., ifizis the pressure in the fluid then:

=4 (13.8)
dn
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Once again, one can eliminate the explicit referen¢bea@oint-like variables by using
(13.2), and defining:

L= p(aalf +56/7j 1 pv? + op+f(n) . (13.9)

If one calculates the variational derivatives withpezs to the configuration variables
then one will initially get:

% (aalf/ 5 j+%mv2+ @+ 1T,
g; - [0+ div ()],
f—é—p(amvn)—p%

i—s -+ div (o] €= P

so when all of these expressions are assumed to yamslcan put the Euler-Lagrange
equations into the form:

=m(0 +&07)+imV + @+, 0=0p+div(oV)= %— i’g (13.10)

One can clear the point-like parameters in the finstloy multiplying everything b
and get:

0=p @@+ Edn) +ipV/ + op+nr (13.11)

This equation has the form of a balance of energy genigione expressesin the
form:

V=V + Edp (Vo :dw—%A), (13.12)

which splits the flow velocity into a part withoutettClebsch variables and a part that
includes them, then the resulting split in the kinetiergy will be:

17 = 1p¢ + KEq, KEn = pé[<v, di> - 3 £(dn)?] (13.13)

When one combines this with the second term in (13.11)eheffect will be the
total energy density that is due to the Clebsch variables:
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g0 = PE[0) + <v, di> -1 E(dn)’] = -1 p(Edn)?, (13.14)

in which we have used the equation of motion fpr Thus, the contribution from
vorticity appears to take the form of a kinetic enedggsity with an effective covelocity
of v = &dn.

The remaining part of the total energy density will then

&= POY+3 Vo + 0P+ 1T (13.15)

in which we have redefinedsrto be 7z which amounts to a redefinition &f(o) to
something that make#f /do = /rwith the new definition.
The force density 1-form thag will imply is:

~Fo=d&= g—r‘:dn + p (B dy + <o, dw>) + ode+ drz (13.16)
If one substitutedy = vo + €/ mc Athen one will get:
—Fo:dsozg—r‘:dn+,0ao+ oE+drz (13.17)

into which we have introduced the convected acceleratifmmm:
ap =0iVo + <V, dvo> = LVOVO, (1318)

which amounts to the rate of changevpélong the flow oty .

One should note th#t, does not include any coupling to the magnetic fizkd d-A,
such as the Lorentz force. That suggests that thenrB®IEIl for a charged, vorticial fluid
in and external electromagnetic field is fundamentaligomplete, since one would
expect that a moving charged fluid would represent anrelemtrrent density, so the
presence of a magnetic field that permeates the fluldvoave to imply the Lorentz
force.

The force density 1-form thag contributes td=, will be:

Fo=—d& = %Vé d,0+ P <Vq, dvo> . (1319)

b. The BST approach to the Pauli equatierin the paper7], the authors departed
slightly from the Madelung-Takabayasi program, which am®uo introducing polar
coordinates into the complex plane, and started by esipgeshe Pauli spinor wave
function in terms of Euler angle8, (¢, ¢):

W=R m (It IF + 117 1P = 1), (13.20)
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with:
ut = cosg expl (¢ + @) /2], (13.21)
uw =i sing expl (- @)/ 2]. (13.22)
This makes:
n=s l.|JT Y = Rz, (1323)

as we had previously with the complex-valued wave funstio

We shall depart slightly from the argument in theccieticle in order to stay closer
to the program that we are attempting to establish inbtho&k and substitute this form of
the wave function into the Pauli Lagrangian density 2P In order to make the effect
of that substitution clearer, we shall specify the/waat the individual terms in the Pauli
Lagrangian density are changed:

gy - 1) :—ﬁn(‘w +cosp? ¢j (13.24)
2 2 ot ot
7 <Oy’ Ow>
2m
1 | (dnY 2e .
= ——n|:(—j +(dy +cosfdg—— Af + (B Y + sirt @ (dp ){l, (13.25)
8m n hc
epW'W=engp=0gp (c=en (13.26)
eh

-— B W agw)= & (- B' sin@sin ¢, B sin @cosg, B* cosH).  (13.27)
mc 2mc

We remove an overall minus sign and then arrahgset terms into three sub-
Lagrangian densities:

L =Lxe + Lot + Ls, (13.28)
with:
Lke
_h oy 09
= +cosfd— |+—n +cosé@ d ——A 13.29
2 (at atj 8m [(dw ¢ )2} ( )
2 2 2
Lot = L (dn) ——+enp=— f @—aw (o=-en), (13.30)
8m n 8m n

Le=n {h [(d6)? +sin? 8 (dp) ]—%CB(S)}, (13.31)
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in which we have defined the total spin vector field by:

S

%u, u=(-sindsing, sin@cosy, cosb). (13.32)

We can then compare these terms to the corresponelings in the Lagrangian
density (13.9) for the charged, vorticial fluid.

The first termCxe is basically a kinetic energy density, and can betifiesh with the
first two terms of (13.9) by the substitutions:

Y - S= gz/l, &=cosé, /75%¢, (13.33)

and the introduction of the total momentum 1-form:
P=dS+ 5d/7—‘_zA:mv, (13.34)

with the corresponding momentum density 1-form:
PEpV. (13.35)

One also introduces the “quasi-irrotationality” coastr uponv; i.e., that the
kinematical vorticity of the flow should vanish. Thaill imply that:

dENdn = ‘—zB. (13.36)

The second ternf,. is a potential energy density in which the first teglays the
role of a pressure potential if one sets:

f(n)= am

2
4Ry, (13.37)
2m
which is consistent with the previous expressiothenMadelung-Takabayasi case.
Finally, the third termZs consists of a kinetic energy density that is doethe
vorticity:

KEq =1pV2, Vo= L 1-¢2 ng dé+ d/7:| (13.38)
m

and a term that couples the spin that one dernges the Euler angles to the external

magnetic field. (This term was absent from thergbd, vorticial fluid model that was

considered by BST.)
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The equations of motion for each of the fundamesaafiguration variable§, n, & 7
that follow from thel in (13.28) are then:

S  an+dv({nv)=0, (13.39)

. oS |, An_1( dn N 1
n: O_E+ mv + 4,0{ ( j} e+ &— t+2m§5 L Bu), (13.40)

2\ n
dn 10L
: L=, 13.41
¢ dt n oan ( )
dé 19,
: = s 13.42
T w T na (13.42)

The first of these expresses the conservatiomofer density, while the second one
is the balance of total energy, with three termthatend that represent the contribution
of the vorticity and the coupling of spin to the gnatic field. The last two equations
have a “quasi-Hamiltonian” form when one regafdg as phase space variables, and the
authors of BST point out that the equations hagesdme form as a system of equations
that was derived by Schdnberg iri].

One should note that the differential of the weittor fieldu can be regarded as three
1-forms:

du* = - cos@sin ¢ d6— sincos¢ dg, (13.43)
di¥ = cosfcos¢ dé— sinésin ¢ dg, (13.44)
du’® = - sin 8dé. (13.45)

(Of course, they are not linearly-independent.)
In order to derive equations of motion for theatatpin vectorS, one needs to first

cull out all of the terms i that involved, ¢, and their derivatives. (It is not necessary to

include the third Euler anglg, sinceu is a function of onlyfd and ¢.) That sub-
Lagrangian density will then take the form:

£S—gncose(2—¢+—n{ (dy + cogdp —— A3+ @ j+ siRd @ ﬂ_%:: BE (13.46)

One now needs to express the termoin terms ofS. One first observes that:

2

% =-tang, u® = coséd, (13.47)

which will then imply that:
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3= %(u2 3 Ut - uto, ), dg = %(uzdul _utdid), (13.48)

in which we have defined:
A=)+ W) =1- (P>~ (13.49)

Since the expressiodsg anddg are homogeneous of degree zero in the components
of u, they can be expressed as functionS 'ahstead; we then tacitly replace a¥ with
Ss.

That allows us to define:

h0ss9?= S (gas-ga9) (13.50)
2 o A
Ps= %cos&d¢=s3d¢:%(§ ds -s ds). (13.51)

The total momentum 1-form can now be expressed as:
e
P=dS+ PS—EA, (1352)

so the quasi-irrotationality constraint will take terh:

Q= Ldps= 2B, (13.53)
m mcC
in which:
dPs = dS A dgp = %[sldg 0dg+ & ds dk (13.54)

Hence, one can express the kinematical vorticity pateterms of the components 8t
and its spatial differentials.
The Frobenius 3-form that goes witd= Ps/ m will then be:

1 1

— PshdPs= — S®dg~ds*~dg = 0. (13.55)

Therefore, the flow of the vector field will be surface-normal.

If one represents the system (13.43)-(13.45) as simply:

duj_au

= de? =g 6°%= 13.56
Y ( )] ( )

then one can define the normdy||| by way of:
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o au au s.(od )
|| du — <d@®do’> = de — | (d¢)?, 13.57
with:
<d6? dg°> = 5, (13.58)
which will make:
||du |F = ([d&)? + sirf 8 (d¢). (13.59)
Since:
do= g—edx d¢ = ¢d>€ <d>d dx> = 5"
one can also say that:
ou du’ ou' du
d =0 5k| = _ 1
| =3 ox< ox  ox! 0x;

(13.60)

which is essentially the form that this expresgsukes in BST.
This means that the last two terms in the squeasekbt inLs can be written in the
form:

n[(d@? + sirf 6 (dg)?] = —n||du If = —n||dS If. (13.61)

This expression has the unit of an energy dersityyne can defina, (which is not a
vector, but a second-rank mixed tensor) by way of:

Vo= 1dS = du, (13.62)
m 2m
and express (13.61) in the form:
1
da = pPlIva I, (13.63)

which we shall call thelynamic pressure due to the spin gradielitwe compare this to
(13.38) then we will see that although is not the same thing as the 1-fong,
nonetheless, one does still have thag |f = V2 .

Ultimately, one can rewrite the total Lagrangiamsity that depends up&and its
derivatives as:

Ls(S,0:S,0 S)—n{—(sza S- So, é}—[ B $|||] e B (13.64)

The variational derivative afs will then be:
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%:fi—atn}—ajn;,

oS
in which:
8
f=n299S , 0B dS -k, (13.65)
0S dt 0SS dt mc
n; =an, n, =4n, n.,=0, (13.66)
ni =2 (pia+d's), ni=2(pig+ds), ni="ais. (13.67)
Y m Z m Y m

To abbreviate, we have introduced the coefficients:

2 Sk
= S'S L=~ SS (13.68)

IS IF+ 1S A IS IF+11s” fi

The Euler-Lagrange equations that are associatbddwill initially take the form:

j
g3 - & g, (13.69)

in which we have introduced the coefficient matrix:

da 0a a3 _oa |
0t 0993 98
_| oa 9 0B op
3 0S'9S 9S00 & (13.70)
9a 9B 0
0S® 0S

and theeffective magnetic field:

B =B +%aj(nais). (13.71)

The second term on the right-hand side of thigesgion comes about solely due to
the fact that the total spin vector field is noatsglly homogeneous, and is generally
thought of as the spin analogue of the quantumnpatehat arises from the spatial non-
homogeneity of the mass density. One can alsaesghat term in the form:

Bs :i[Au +M} , (13.72)
n
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which is similar in form to the expression for the quamfpotential, although the present
“‘quantum” term comes about due to the inhomogeneity irspie vector field, rather
than the inhomogeneity in the number density.

The matrixS; is invertible, and its inverse takes the form:

Sl=¢* g =adg), (13.73)

so the final form of the equations of motion ®will be:

or, as it is often represented:
9S_ € gxpet (13.75)
dt mc

Hence, one can also think of the quantum magnetic Belds contributing a “quantum
torque,” as well:

Ts= = SxBg = — [SXAS+1<dn, s< d&}. (13.76)
mcC m-C n

As usual, one can get from the balance of enesgyh¢ balance of momentum by
taking the spatial differential of the former eqaat When written in terms &, it will
become:

0S

“9S iU+ e+ 41 mg -2 g9), (13.77)
t ot mc

Taking the spatial differential of this will give:

dr =-d;(U, + eq) +i(aiB.Sj + Bo, 8) +6i<‘a—,7+ gM+va Diva,
mc ] ot ot

dt
(13.78)

which shows that the quantum force, which is duéhtoinhomogeneity of the number
density, gets combined with another quantum foheg telates to the inhomogeneity of
the external magnetic field. One should recalt thavas essential to the Stern-Gerlach
experiment to use such a magnetic field.

6. The method of bilinear covariants— In Pauli’s original articleq], the way that
classical (i.e., real, tensorial) physical obseleslvere obtained from the 2-spinor wave
function W was by way of the method dfilinear covariants (although the actual
covariance will be introduced in the context of ieac equation). In some sense, one
can think ofW as an “encrypted signal” that contains the classabservables as
information, so the method of bilinear covariardgsai “decryption algorithm” in that
sense.



278 Chapter VII — Non-relativistic, spinning particles

If one thinks of the information that is being encryptedaking the form of linearly-
independent real functions of space-time then one wdl that there are four such
functions that can be encrypted in# in a linear way. One can extend that by
encrypting information in the successive differentidl¥palthough when one introduces
certain physically-reasonable constraintsignone will find that bilinear expressions in
the second derivatives reduce to linear combinations ofesgjons in the first
derivatives, and therefore all higher derivative expogssiwill be likewise dependent
upon the expressions of orders zero and one.

The easiest way to get four linearly-independent readtfons out ofV is by forming
the four expressions:

Wighy = {Yp Wigly =1, 2, 3}, (14.1)

in which we have implicitly definedp to be the identity matrix.
We have already identified = W@ with the number density of an extended mass
distribution. The remaining spatial vector:

Wo'W)ai=nu (14.2)

can be associated with the spin density of the wawetitun:
h
s:nS:n(Euj, (14.3)

in which S then takes the form of a total spin operator. the@ components afi u —
namely,qﬂai W — are proportional to what we used for the comptsef the spin vector
in the Pauli model. They are not, however, asetyorelated to the canonical spin tensor
that comes from the Pauli Lagrangian density, whislo involves the differentials of the
wave functions.

One can then put the term in the Pauli Lagrandarsity that couples the spin to the
external magnetic field into the form:

—B(s) =-B; s. (14.4)

We have already seen the most common exampléibhaar expression that one can
derive fromdW¥ in the form of the conserved current:

3= %(aiqﬂw - W) (14.5)
|

that is associated with the phase invariance ofPtdwgli action functional by Noether’s
theorem. Since any constant scalar multipld @fill also be a conserved current, one
can multiplyd by 7 to get a momentum density 1-form:

:%@w@—w%%, (14.6)
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and divide it byp = mnto get a flow covelocity 1-form.

gz Po h @¥W-Yiow)

o 2mi Wy ’ (14.7)

which is what BST did.

In Takabayasi's approactl(] to the hydrodynamical formulation of the Pauli
equation, he used the method of bilinear covariemtonverty into a corresponding set
of classical, hydrodynamical observables, whichshal write as p, v, s}, with:

N GRUA VUG R h
p:ml.]JTl.P, Vv = 2mi( i e i ) , S = E(l-l-ﬂLO,'l-I-’), (14.8)

as above.
He then imposed the following constraints uposeéhelassical variables:

a. The magnitude d% should be constant; in particular:
I[S|[=3%. (14.9)
That implies that the componer§sare no longer algebraically independent.
b. The kinematical vorticity should couple to therspnd the external magnetic field

B according to:

Qu=dwv=1g,S dulrdi-—SB (S=1au). (14.10)
2 <l mc 2

Hence, the quasi-irrotationality constraint coulst as well be expressed in the form:

16, S'dul A duf = %B. (14.11)

In order to obtain the equations of motion for tie¢al linear momentummy,
Takabayasi then started with the Pauli Lagrangiansitly (12.12) in terms o# and
derived the gauge-invariant, symmetric energy-mdorarstress tensor from it, and
obtained the equation of motion from the divergewicihat tensor:

mM=F - ou,+2oBS, (14.12)
dt mc
in whichF = - e (E + 1c v x B) is the Lorentz force. He also derived the usual

conservation law fon.
Takabayasi then derived the equations of motios by starting with:

T
ot ot ot
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and substituting the Pauli equation and its Hermitianjugate for the derivatives. That
gave the same equation that BST had derived.

An interesting aspect of the equations of motion tlakiabayasi points out is that the
guantum terms that appear in the total forces and torquis thke the form of
divergences, so when one averages the linear and amgolaentum densities over all
space (which is assumed to have no boundary), the quaetoma will vanish and the
resulting equations of motion:

ﬁ =F +£aiB?ﬁSi, E:SxiB (14.13)
dt mc '’ dt mc

will be classical. That then gives an intriguing newspective on Ehrenfest’s theorem
of quantum mechanics, which says that the quantum equationdd give the classical
equations when one takes means (i.e., expectation values)

7. A more geometric conversion of the Pauli equatior: Ever since the early days
of quantum physics, spinors have always been regardesoaseavhat abstruse encoding
of the basic physical information that is being carriecalwave. In order to master the
introduction of spinor wave functions into quantum wawechanics, one must get used
to dealing with a large number of basically formal ruies symbol manipulation that
often seem to be divorced from any actual physical or ge@mntuition.

That is unfortunate, since the basic Lie gr&@u2) has a very direct and elementary
interpretation in terms of Euclidian rotations in alréaree-dimensional space. In fact,
as we mentioned above, if one represents a Paubrsyigve functiort¥ in the formRuy,

in which R is a real function and = [u}, U] is a unitary vector irtC? when given the
Hermitian inner product, then one can complete an odehtermitian 2-frame 2 in a

manner that is analogous to the way that one can také &ector in EuclidiarR? and

complete an oriented, orthonormal 2-form by rotating itfitéal vector through 90in
some established sense (e.g., counter-clockwise). _

If we multiply the special unitary matrid by the real space-time functid®(t, x)
then the resulting matrix-valued functi®U = [Ru| Ruwj] will contain the Pauli spinor
wave functionRu as its first column, while the other column will n@intain any data
that is essentially distinct frolRu We then define oumatrix-valued wave function to
be:

Y =RU, (15.1)

in whichU can then be regarded as the matrix of an orientednitien 2-frame field {).

() It would probably be best to think & as alocally-definedframe field, if one is to avoid the
inevitable topological considerations about whethebajlgections of the relevant bundleSii(2) frames
actually exist without singularities, which might, ircfarepresent the sources of the waves.
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Note that sincéV takes its values in a group (where®e# 0), namelyR" x SU?2),

whereR’ is the multiplicative group of non-zero real numbehgre will be a subtle
difference betwee ™ andw™:

W= %U " wr=R U" (15.2)

When one forms the bilinear expressi@lﬁsfyw, K=0, ..., 3, one will get:
YgpW =R o, Yigw=3 g +[T], (15.3)

in which § are the same components that one will get from & Rawe function (i.e.,
Wi'g W), and:
0T
Ti] = ", 154
[Ti] {Ti o} (15.4)

which is then a linear combination af andg, . Specifically, one has:
Ti=- WY+ T=-@Uy-W) Tz=2u'r (15.5)

Since these are all real, = T; , which can be removed from the matrix as scalar
multiples:

[T]=T, E (j =T o, (15.6)

which makes:
WigW=S o+ a. (15.7)

The second equation in (15.3) suggests that-thas insu(2) plays a privileged role

for this type of wave function, along with the plahattit is normal to. This is strongly
evocative of the relationship between the wave vdctor an electromagnetic wave and
the plane of oscillation (which contains tBeand B fields) to which it is normal, so
perhaps the componentshave some corresponding physical interpretation in tefms
circular or elliptical polarization.

If one forms the analogue of the conserved currentishagsociated with the phase-
invariance of the Pauli action then one will find that:

%(LpTw)‘l(dwTw ~Wwidw) =du'u . (15.8)

One can also arrive at the expression on the rightchwtakes its values in the Lie
algebrasu(2), by way of the pull-back of the Maurer-Cartan fomio x SU(2):
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dyy :—%dR+dUTU =-ylgy. (15.9)

If one represents in the form:
u=¢€¢ 6=0% (a=1,2,3), (15.10)

which is essentially a higher-dimensional, non-Abebkxtension of theéJ(1) definition
that one uses in the Madelung-Takabayasi conversiomtheeu(2)-valued 1-form:

w=dU'U =-U'dU=-id8=-idb%; (15.11)

will take the form of a higher-dimensional, non-Abeliaxtension of the frequency-
wave-number 1-forrk = dé@that appeared in the Madelung-Takabayasi case. Hence, we
define a set of three such 1-forms:

K=dg?=aw?dt-k*dX, a=1,2,3, (15.12)

and identifyk® as the same thing &sn theU(1) case.
Of course, the physical interpretation of the othey kivis still debatable. Since
eventually turned into the energy-momentum density 1-forand energy density and

momentum flux have the same units as stress, perhef®3 matrix k* is analogous to
a stress tensor. That is, when one evalulfes for a unit covecton, one will get a

wave number 1-formk?n, dX that corresponds to; in particular, it does not have to be

collinear withn.
If n = R% as usual, then one can define three corresponding yemengentum
density 1-forms in the usual way:

p* = Ank® = An @® dt-Ank*dX, (15.13)
and three spatial velocity vector fields a= 1, 2, 3, whose components are

) :% P = % 3 nk?. (15.14)

The idea that wave motion might be associated witkerdnt velocities in different
directions is entirely conventional in the optics oisatropic media, so this is still not a
difficult stretch of the imagination in the eyespdiysical interpretation.

In order to stay consistent with the Madelung-Takabayasyram of introducing
“spherical” coordinates into the field spack [et us set:

() One can find a more detailed discussion of the relship between the Madelung-Takabayasi
program and the introduction of generalized sphericaldimates in the author’'s papdr.
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W =Rexp(62a) (15.15)

and substitute this into the Pauli equation (12.7) to see helpgiens.
First, let us do some of the elementary calculatexudicitly:

1

o =W, o = Ea R+i0:68%0%, (15.16)
W =W, sia R+i0,6%%, (15.17)
AW = [%AFH (A6 +—Rai RO'6%)0, —aieaaiea} W, (15.18)

That makes the kinetic energy term in the Pawle¢iqn take the form:

2 2 2 2
_T (G—EAJ w= || - BRI 5650 + 1ﬂ( J A2
2m fic 2m R 2m'' 2

2
+ﬂ(6A'+—A6 Rj+—A66P (h A6F‘+—6 R?Qaj }
2mc R mc 2 mR

The Hamiltonian operator will then take the forfran algebraic operator ¢#:

2 2 2
H{ AR g0+ 1) Az_ew}ﬂ(am 2o

2m R 2m'' 2mc
2 2
& (2M0,6"+B)a, - h—MaJ’_a RO'G® |0, (15.19)
2mc 2m mR

283

Note that there are four distinct sets of real ponents, which correspond to the four

brackets on the right-hand side. If one calculates

ih—=

aw(a
ot

-ho,6°0 j (15.20)
R
and equates corresponding terms in this and (13H&) one will initially get four
equations:
2 2 2
0=""34640 +i(—j A —ep- AR (15.21)
2m 2m\ ¢ 2m R

dR=—""(RO;A + 2A OR), (15.22)
2mc
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0.6% = —S_(2A 9,67 + BY), (15.23)
2mc

0=A6*+ %ai RO '62 (15.24)

The second and fourth equations can be further convertetubyplying the former
by 2R and the latter bR, which will ultimately give:

dn =0, (ﬂAij, 0=0(nd'6% (15.25)
mcC

in their places.

We immediately note how the extension of anglemf@to & has also brought about
a splitting of the basic equations into smaller piec&hat is simply because wheit
was 6, and there was né* or 8% there was also no need to introduce ¢he which
were responsible for the splitting. Hence, if we Engut gz as the axis iku(2) that
gives the usual Pauli expressions then it is not uanadde to consolidate the equations,
although it is important to realize that the separatashing of both sides of an equation
is a stronger demand than their simple equality.

If we start with (15.23), specialize it o= 3, and multiply both sides by# then we
will get:

E=-706° = ha)3:—2—;C(ZAi ;P +BY). (15.26)

When both sides are added to (15.21) the result can be @ubéntorm:

_ (g 8a) L AR, L __@
e (-2a) ~o- L BN ypama- LB asz)

The first three terms on the right are the totakkimenergy, potential energy, quantum
potential when one introduces the effective velocitprirfas:

\F:E(PS—%AJ. (15.28)

m

The quasi-irrotationality constraint then takes fibwrm:
e
=dv* = —B. (15.29)
mc

The last two terms in the right-hand side of (Iy.2present the total kinetic energy
in the plane that is normal t3 and the energy that is due to the coupling’b S.
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One can also combine the two equations in (15.25) whesetse= 3 and multiplies
the second one by an overall minus sign, and the neglitte:

dn
- = O, 15.30
ot ( )

as usual.

The remaining equations to be dealt with are (15.23) ansettend of (15.25), when
both are restricted ta = 1, 2. The former can be multiplied by: to give two energy
equations that relate to motion in the plane transversg,tovhile the latter can be
multiplied by 7%/ m to give transverse versions of the conservation oflbar density.
Putting everything together will give the following fornr fequations (15.21)-(15.24):

_1(p e, _ . AR 1 _

E—Zm(ﬁ CA.) 9= R+2 [(P)*+( P)7 mc (15.31)
dn
o (15.32)

a a a e i eh a
E®=-100® =hw®=-=-AV —B @=1,2), (15.33)
c 2mc
0=0; (n ) @=1,2). (15.34)

The first and third equations in this set can be comdette density form by
multiplying both sides by, which will give:

Ezépvz—aw—zﬁzA—R+lp[(vl) +(V) - U% B®, (15.35)
a__ 0O i Uﬁ a _
cr=-Zavi -ZLp @=1,2), (15.36)
c 0C

respectively.
Note that in the present context, the conversionh nto a density (namely}z{ =hn
/ 2) makes physical sense, since it now playsdleeaf a spin density.
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Chapter VIl

RELATIVISTIC ROTATIONAL MECHANICS

The purpose of this chapter is not so much to give a getneaéinent of relativistic
rotational mechanics as to discuss some of the topids tmat pertain to the basic
guestion of the precession of the spin of spinning partisiesh as the electron. Hence,
the first section will have a more heuristic charaeied will serve mostly to establish
some formulas that will reappear in the context of rilativistic wave equations for
spinning particles, namely, the relativistic Pauli equadiod the Dirac equation, which
will be discussed in the next chapter.

Perhaps the first definitive attempts to model a spinniagtn in a classical, but
relativistic, way were those of the Englishman LlemeThomas in 19261 and the
Russian Joseph Frenkel in 192§, which was followed by a second attempt by Thomas
in 1927 [Lb]. Both of them still basically assumed a point-likeeatton and then
introduced the rotational aspects heuristically, withdtgnapting to explain how a point
can rotate, unless it represents a point in a rigid b@¢@®ye can also find a good survey
of the Thomas-Frenkel electron in HalbwacBis)[

Along the way, Thomas also introduced a concept tHasgally independent of any
electron model and is called “Thomas precession.halt a purely relativistic origin in
the fact that product of two pure boosts in differenections will not be another pure
boost, but a product of a boost with a rotation, whitoants for the precession. It was
later recognized that Thomas precession could also $iiloed as the “Fermi-Walker
transport” of the spin polarization vector along the eus motion. It also emerges that
model for spin precession in an external homogeneoasaigagnetic field by Valentine
Bargmann, Louis Michel, and Valentine Telegd] |s closely related to the Frenkel
model for such an external field, but is not preciggdntical to it.

8 1. Basic definitions and equations- We shall briefly introduce the basic notions
that will be used in what follows. In particular,stessential to understand the way that

elements of the Lie algebsa(1, 3) can be represented by bivectors on Minkowski space,
while elements of its dual vector spae€l, 3) can be represented by 2-forms.

a. The association of bivectors with infinitesimal Lorentz transfoomst— We
start with Minkowski spac@n* = {R*, 7.}, where 1, = diag[+1,- 1, - 1, - 1] is the
component matrix for the scalar product in an orthombdframe. We denote the vector
space of bivectors ov@” by A;R*, or justA,, for short.

There are two types of bivectors/ia: decomposable ones, which take the forma of

A b for some vectorg, b O A2, and non-decomposable ones, which cannot be put into
that form and take the form of (finite) linear combionat of decomposable bivectors. In
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particular, if f&,, £ =0, ..., 3} is a basis foR* then the set {ale, * ey, p < v} will
consist of six linearly-independent basis elements\for and any bivectoB in can be
expressed as a linear combination of the basis elemnettis form:

B=1B"e, ey, (16.1)

in which summation over doubled indices is implied.
The 44 real matrixB*" is called theeomponent matriof the bivectoB, and due to
the antisymmetry of the exterior product, it will beaartisymmetric matrix. Hence:

B +B% = 0. (16.2)

Now, if the basise, is orthonormal and one uses the component magixo lower
an index (sayy) then the resulting matrix:

B, = nuB"™ (16.3)
will have the property that:

B 1V +BYnf* = 0. (16.4)
The matrix/7" is, of course, the inverse of the matgix, (i.e., 7 = nue 1% = ),

so it will then define a scalar product &f.
However, one can think &, as the component matrix of a mixed tenBan R* O

RY, namely:
B=B"e,08 (16.5)

in which {8, # =0, ..., 3} is the reciprocal basis f&"", s08” (e,) = §*. Hencep can

also be regarded as a linear transformation f&Snto itself that takes any vectd to
B, XV.

Similarly, the matrixB,* = n,,B* = - B, can be thought of as the component
matrix of a mixed tensd® in R* O R*, namely:

B =B, ®Oe,. (16.6)

Hence,B" can be regarded as a linear transformation fi@mto itself that takes a

covectorX, to X, B,".

If one goes back to (16.4) then one will see that the equtitat is satisfied by the
matrix B“, (or B,*, if one inverts the order of indices) is the sam¢hascondition for a
matrix to represent an infinitesimal Lorentz transfation. Hence, there is a linear map
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N2 - so(1, 3),B"” > B¥, . Since the matrix,, is invertible, and both vector spaces are
six-dimensional, the linear map will be an isomorphiaswell.
Dually, if A is the six-dimensional vector space of exterior 2-foover R* (i.e., the

bivectors oveiR*") then one can define a basis Afrby way of {all6* 2 8", ;< 1}, and
any 2-formB O A? can be expressed in the form:

B=1B,, 0/"0" (16.7)

One can then usg" to define a dual linear isomorphishi - so(1, 3) that take$,, to

B.’, which is the transpose of the matB%,. Hence, any element of the dual of the Lie
algebra of infinitesimal Lorentz transformations candpgesented as a 2-form.

It is important to point out that the linear isomogohs that were just defined are not
algebra isomorphisms; that is, they do not take exterior prodtwmtdie brackets.
However, one camlefinea Lie bracket on the vector spaBe that makes the linear
isomorphism an algebra isomorphism. One starts witdeheition that pertains teo(1,

3):
[A B = A“B* - B KX (16.8)
and raises indices accordingly:

[A, B]*= A“BY - B A"=n_ (A“B" - B* K"). (16.9)
One can put this into a component-free form:
[A,B]=n,i, AL B. (16.10)

In fact, any other choice of orthonormal frame \wilbduce the same expression 8, [

o Typically, one does not introduce a Lie bracket @ndhal spaceo(1, 3). However,
there is a canonical bilinear pairiag(1, 3) x so(1, 3) - R, (A", B) — A'(B) = TrAB,

in which we have taken advantage of the fact that any equatrix can be regarded as
an element of the Lie algebg&(n) or its dual space, depending upon whether one uses
the matrix to left-multiply elements oR" or right-multiply elements ofR™. In

components, one will have:
TrAB= A B',. (16.11)

This also allows us to define a bilinear form on elemehtsthso(1, 3) and its dual by

way of:
<A, B>k = 1TrAB, <A",B'>c«=1TrAB'=1TrAB. (16.12)
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in which the subscript CK refers to the fact that tkishieCartan-Killing form. Since
so(1, 3) is semi-simple, the Cartan-Killing form will men-degenerate, and will in fact

define a scalar product on both vector spaces. ltstaiggpe is (+1,+1,+ F1,-1,
— 1), so the orthogonal group that preserves the sgadduct will beSQ(3, 3).

Note that the last relation in (16.12) shows that matamsposition is an isometry for
the Cartan-Killing form.

b. Kinematics.— An element ofso(1, 3) represents an infinitesimal Lorentz

transformation, which will generally be linear sum afiafinitesimal Euclidian rotation
and a pure boost. In order to get a decompositia(df 3) into a direct sum of vectors

spaceso(3) [ b(3), whereb(3) is the vector space of pure boosts (which is notehewy
a Lie subalgebra, as we shall see in the next s¢ctime first needs to splR? into a

direct sum {] O X of a one-dimensiondime line[t] and a three-dimensionapatial
hyperplanez, which is typically assumed to be orthogonalttpds well.

If the orthonormal basisef, , ¢ =0, ..., 3} isadaptedto 7., , such thaky is a time-
like unit vector and ¢, i = 1, 2, 3} are space-like ones that are orthogonej tthen one
can definef] to consist of all vectors of the foraney, while Z is spanned by the basig {
,1 =1, 2, 3}. One can also restrict the Minkowski scalarduct to the spatial hyperplane
and get a Euclidian scalar product, although with a mirgrs si

m==4. (16.13)

The time+space splitting dk* into [t] O Z is associated with a corresponding

splitting of the vector spack; into a direct sum that takes the form gff = [0 N, .
That is, all elements of themporal subspacft] * = are decomposable bivectors that
take the formt N a, wherea [0 Z, while all elements of thepatial subspacé\,z are
bivectors over the vector spake In terms of the basisef ~ e,, i < v} for A, one can
span f] * Z with the basis§ " e, 1 =1, 2, 3} and then spat,Z with the other three
basis elementsg{* g, i <] =1, 2, 3}. Hence, a given bivectBrwill split into a sum of
corresponding temporal and spatial bivectors that will takdorms:

Bi=B" g " g, Bs=1B'e g, (16.14)
respectively.

When one lowers an index using,, the component matric&” andB’ will go to
matrices of the forms:

0 — O I ° i — OI 0
BO = _&T'Bo_ . B= 0TE | (16.15)
respectively.

Since B is symmetric andB‘j Is antisymmetric, they represent the matrices of
infinitesimal boosts and infinitesimal rotationssp. Hence, the time-space splitting of
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R* implies a time-space splitting] [* £ O A= of the bivectors on Minkowski space that

corresponds to the splitting(3) [ so(3) of infinitesimal Lorentz transformations into
sums of pure boosts and pure rotations.

Going in the opposite direction (viz., starting from elamentQ [ so(1, 3) and
associating it with a bivectd® in the aforementioned way), 46(1, 3) has been given a

specific direct sum splitting inte(3) O so(3), so:
Q=b+w=bK+a'J, (16.16)
then one can spl into corresponding temporal and spatial components:
Q=b+w=e b e+ic* we"g; (16.17)
Q¥ =-Q"=p’ Ql=-Q' =g . (16.18)

Note that strictly speaking one must regard the rotatppadlofQ as the spatial dual of a
spatial covector in order for the indices to be csiesit.

One can regard a bivector suchQshat corresponds to an infinitesimal Lorentz
transformation as a “generalized angular velocity,” esinic also includes boosts in
addition to the rotations. Ifis the time-like covector that is metric-dual to time-like
vectort then one can pick off the boost part and the rotatipagl ofQ relative tor by
way of:

b=t"i,Q, w=Q-b=Q-t"i,; Q. (16.19)
When
i: Q=0 (16.20)

one can rightfully characteriZ2 as being purely rotational, at least with respeat tén
terms of components, that condition will take thexfor

r, Q" = 0. (16.21)
The basic kinematical equation that relatesQois the equation of a moving

Lorentzian framee, (7) along a curvex(7). If one thinks of each frame,(7) as being
related to an initial frame, (0) by a Lorentz transformation)(

e.(D) =e, (0L (1) (16.22)

() We can say this with full rigor, since we are oabnsidering Minkowski space, which is an affine
space, so the parallel translation of the fram@) atx(0) to a corresponding framext) is well-defined.
In a more general Lorentzian manifold, we would have twduice a metric connection in order to define
parallel translation along curves.
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such thatl, (0) = g/ then if one differentiates this with respectrtand evaluates it at
an arbitraryr, one will get:

%: e (0) L,(1) = ey (1) Q(1), (16.23)

in which one has defined:
QZ(T): I:;(r) L;(r), (16.24)

and the tilde refers to the inverse of the matrix.
Note that since boosts are defined by relative veésgitivhile rotations are defined

by relative angles, the temporal componeﬁﬁa Qp of Q' will have the character of
linear accelerationswhile the spatial componenQ‘j will have the character of angular
velocities

c. Dynamics= If one gives the bivect® the interpretation of a generalized angular
velocity then one might think of a 2-form:

S=1S,0/70" (16.25)

in A? as representing a “generalized angular momentum” veispeact to the bilinear
pairing: _ )
S@) =4S, 0" =% Q% +15 Q' (16.26)

if one interprets the value of that number as the katattic energy of motion. One sees
that one is combining the kinetic energy due to boostls thie kinetic energy due to
rotations.

That interpretation is consistent with the lineamisophism betweem\? and so(1,

3)', which makes the corresponding bilinear pairing:

S(Q) =4S,/ Q" =1TrSQ; (16.27)
i.e., the Cartan-Killing form.
The splitting ofso(1, 3) intob(3) U so(3) has a corresponding dual splittingsef1,

3) into b(3)" O s0(3)’, which then begets a splitting Af into [ * R* O A*Z". This

time, the line || in R*" is generated by any 1-formthat annihilateg; i.e., 7 (v) = 0 for

anyv 0 2. Hence,= will consist of the space of all 1-forms that annillat A
consequence of this is that one must have the non-vagishr (t).

Only the so(3)" part of S O so(1, 3) will actually correspond to an angular
momentum, in the rotational sense, while #{8) part will be more like a linear

momentum, since it corresponds to an infinitesimal bodde time-like vector field
can be used to pick off the boost parBof
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S =71 S (16.28)

so ifi; S vanishes, one can think 8fas being purely rotational. The angular [&yis
then:
Sw=S-1"itS (16.29)
in general.
In order to preserve the reciprocal relationsh@(e,)=3J), if a Lorentz

transformationL” acts upore, from the right then its inverse must act u@rfrom the

left. Hence, if6“(7) is a Lorentzian coframe moving along the cux{® then there will
be a Lorentz transformatiof:f(r) that makes:

84(1) = [“(r) 8" (0). (16.30)

By differentiating with respect tg we will get the equation of the moving coframe:

0=-Q'8", (16.31)
since:

L = -4 1% =— Q¥ (16.32)

K

This last relationship is derived by differentiating theibadentityL™ L =1.
If one expresses the generalized angular momentum 28amrthe form (16.25) and
differentiates, while taking (16.31) into account, thenwilleget:

S=10,S,0"8", (16.33)
in which we have defined:
DTS/IV = S,uv + $KQ,IL(1 - §KQ£ (1634)

If we raise theu index and switch the positions gfin the second term on the right then
this will take the form:

0,8,=5"+Q"S - g QF, (16.35)
or more concisely:
0,S=S+[Q, 9. (16.36)

Hence, the balance of angular momentum will take aha:f
r=S+[Q, 9 (16.37)

in an anholonomic (i.e., non-inertial) coframe, wheris the external torque that acts
uponS. Hence, torque will also take its values in the dualespa(d, 3).
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For a holonomic (i.e., inertial) coframe field, stad®” = dx, one will havel’ (7) =

J)', so one will also hav&®! = 0, and the balance of generalized angular momentum
will take the form:
*,=S". (16.38)

v

8§ 2. Thomas precession— The innovation that Thomas introduced was to account
for the discrepancy of a factor 2 between the two egweas for the gyromagnetic ratio
that was mentioned by Uhlenbeck-Goudsmit. He basicathyvst that it was purely
relativistic in origin, and essentially arose because groduct of two pure boosts in
different directions will not be a pure boost, butlwitlude a rotation. Hence, when one
considers an orbiting electron, two one-parameter fasndf pure boosts in different
directions will give rise to a one-parameter familyrotations that one call¥homas
precession.lt is important to realize that although Thomas preioesfirst shows up as a
relativistic effect, nonetheless, it will still pessin the non-relativistic limit as becomes
infinite.

The most direct way to see this is to first consithercommutation relations for the
basis vectorsJ, Ki, i = 1, 2, 3} for the Lie algebrso(3, 1), namely:

[Ji, 3] = &k Kk, [Ji, K] = &k Kk, [Ki, K] = = &k k. (17.1)

Now suppose thd(7) is a differentiable curve in the identity componengax(1, 3)
— i.e., the proper, orthochronous Lorentz group. Assuh@st only goes through pure
boosts, but it does not have to go through the identityix

The general form for a boost from one Lorentziamie to another that moves with a

relative (non-relativistic, spatial) velocity of=v' d; = yu' 9;, with y:(l— v ff /Cz)-ﬂ?:

e
B,(v) =9+ cz(y+1)vvj : (17.2)

which can be expressed more concisely for the sh&alculation as:
B(u) = /e Bl(u)=d+—t u 17.3
(u) = , () = G+ U (17.3)

The inverse of this boost is then obtained byaephbv with —v (i.e., us with — us),
which will not changg/or B} (uy) since they are quadraticug. That will give:

1/ N — ____I__U_J'_/E
B(u) = ui/CirB-J(uS) : (17.4)
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If one letsu be a differentiable function of proper tinrethen the proper time
derivative ofB(u) will be:

Y — __JZ__I___U_J'_/_C 3 — 1 o e _ Vo
B—{ o } Bj_cz(y+1)(uuj+uq y—+1uq). (17.5)

In performing the calculations, it is useful tovbdahe following facts at hand:
u U =c? (2 - 1), uu=ctyy. (17.6)

One then calculates the elem&ftr) of so(1, 3) that is obtained by left-translating the
tangent vectoB(7) to SQ(1, 3) atB(7) back to the identity element usiBg'(7):

Q=B"B. (17.7)

One finds that its explicit components are:

0_ 0 _1 . y i 1 . i
Q5=0, Qj—Qé—E{—uj+muj] Qj_cz(yﬂ)[uuj uy .

(17.8)

If one raises thgin Q' usings’ = - &' and takes advantage of the fact that:

. du i i i av
u=—=ypyu +ya, a's— 17.9
el y m (17.9)
then one can expre§¥ as the components of a spatial bivector:
Q=-yw, wr = a allv (17.10)
c*(y+1)

whose corresponding elementsof3) is the usual expression for the angular vejoaft

the Thomas precession. (We have factored)oat the expression foQ in order to
convert from a proper-time derivative to a time-4ahoate one.) In the non-relativistic
limit asv goes to Ogx will take the somewhat-simpler form:

wrzz—izaDv. (17.12)

We have thus shown what we originally asserted,efnthat Thomas precession does
not disappear in the non-relativistic limit.
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There is another more Lie-algebraic way of accognfor the Thomas precession
that we shall mention, although the rest of this sctiis@ can be safely skipped if one is
not so morbidly curious.

If one starts withB(7), as above, then there will then be a differentiablee:

a(n=a' H)K (17.12)

in so(1, 3) that does not have to go through 0 and has the prapatty

B(7) = expa (1) = ii a(7)]". (17.13)

nmo N!
Now differentiate the curvB(7) to find its velocity vector:

dB _ & 1da”

. (17.14)
dr 4n! dr

Since the multiplication that gives the powersgas matrix multiplication, which is
not commutative, in general, one cannot use thesgaower law that one uses for real
functions. Rather, one will have, in general:

n

da
dr

=ga"+--+a"'a. (17.15)

One can commute the produtdr by way of:

aa =aa+[a,aj, (17.16)
so one will have:

1 da?

— =aga+ila,al. 17.17

The next derivative is obtained from:

ada = a’a+ala,al , aa’ = a’a+2ala,al+[a al, a , (17.18)
which makes:
1 da?® 1 .
3 dr (Zlaa —a'[a al+ —[[a, ail,a]j. (17.19)

Summing gives:

> 1da” _ [i%anj(m%[a,awé[m d, d +)

—on! dr n=0
=expa @+%[a.al+i[a.al,al+ ).
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If one defines the (left) adjoint map farby (ad a@)(8) = [B, al, with (ad @)° = | then
one can express this in the form:

% expa (1) = expa expl(ad a)] (a). (17.20)

So far, we have derived a form for the velocity get¢o the curveB(7) in SQ(1, 3) at
B(7). If we left-translate that velocity back to tidentity then we will get an element of
so(1, 3), namely:

Q =expt a)[%expa (r)} =exp[(ad a)] (@)= a+3[a,al+3[[g al, a + ...
(17.21)

Since we have assumed tlmat o' K; is a pure boostg = d' K; will also be a pure
boost, and from the last relation in (17.1), wd halve:

[a,a]= d'a’ [Ki, K] =- gk d'a’ k=—(axa) X, (17.22)

which will be a pure infinitesimal rotation.
Hence, to first order i@, one will have:

Q=dK, -i(axa)J, (17.23)

so the element afo(1, 3) that will correspond to the velocity of ttigrve expa (7) when

a (1) consists of only pure infinitesimal boosts wilirsist of an infinitesimal boost plus
an infinitesimal rotation:

w=-i(axa)'l,. (17.24)

One sees the origin of the relativistic factor1d? that shows up in the Thomas
precession of electron spin. Of course, if theveur(7) is a straight line then there will
be no precession.

8 3. Fermi-Walker transport. — The concept of Thomas precession is relate@lglos
to an alternate form of parallel transport of tarigeectors along curves that was first
introduced into general relativity by Enrico Fermil922 p] and later given a somewhat
more mathematically concise form by Arthur Walkerl©32 B]. The discussion here
roughly follows the first section of Walker's presation {).

() More recent treatments of Fermi-Walker transporh tiidalker’s can be found in Mglle][ and
Misner, Thorne, and Wheele][
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Suppose that one ha€atime-like curvex(7) in a Lorentzian manifold\, g) (*) that
is parameterized by proper time, and its proper-time \glei

u(n:%zu"(na,,. (18.1)

The ¥ (7) are the components af7) with respect to a natural coframe field,{ © = 0,
..., 3} that is defined by a local coordinate chatt X).
Hence, one will have:

w=g(u,u)=c’,  gu,a=0, a=0u, (18.2)

in which the acceleratioais defined by the Levi-Civita connectidrj that is associated
with g by way of:

W y
at = OIL+F"(u)u”: v u' u’. (18.3)
dr " dr "

In the last expression, we have expanded the 1-fgfiwhich takes its values in the Lie
algebraso(1, 3), into its components’, with respect to a natural coframe fieldd, A =
0, ..., 3} that is defined by the local coordinataxthU, x'). In short:

My =r4, dx'. (18.4)

The parallel translation of a vector fieX{t) along the curve(t) with respect to the
Levi-Civita connection is defined by:

dx# dx#

0=0X= . +H(u) X" = ?+rgv ut XV, (18.5)

Since this kind of parallel translation is dueatmetric connection, it will preserve the
length of any tangent vector and the angles betwegrtwo vectors. Now, the space of
all metric connections [when regarded as 1-fornth walues inso(1, 3)] is an infinite-

dimensional affine space, so although the sum ofd@annections is not generally another
connection, nonetheless, the difference betweenvaoymetric connections can still be

defined. For instance, iy’ is an arbitrary metric connection then one carindethe
difference 1-form&’ by way of:
W -TH=A' = A dX. (18.6)

() Of course, the only such manifold that is of intetestis in this book is Minkowski spaé&*, for

which the contribution to the acceleration of the eufiom the Levi-Civita connection will vanish.
Hence, if the reader does not feel comfortable withrtiore general geometry, they can safely skip ahead
to the conclusion of this subsection.
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Hence, the vector space upon which the affine spacd ofesitic connections is based
will consist of all 1-forms on space-time with valueso(1, 3).
In order to get Fermi-Walker transport alox{g), one weakens the constraint ajf

to only that the length of any vectd&rmust be preserved, along with the angle between it
and the velocity vector field, or ratherg(u, X). One can then say that such a translation
will satisfy:

0 =dX'+af(u)X"”, (18.7)
or:

OuXH == A (U)X = - A u' XV, (18.8)

We shall refer to the right-hand side of (18.7) as Feemi-Walker derivativeof the
vector fieldX along the curve(7); i.e.:
D, X*

=dX' +a)f (u)X". (18.9)
Hence, Fermi-Walker transport is the parallel-transpatth respect to the connection
«', which is, of course, defined only aloxr@).

The way that Walker arrived at the explicit form f8f was to require that itself
should be an “auto-parallel” of the connecti@fi, which would make:

a'=0 =-A U)W =-A u'u. (18.10)
The simplest solution to this equation is:
1 1
Alu)= ?[u Da]fzggw(u"a(‘ -ud). (18.11)

[As a quick check on this, one can compute:

AU = C—lz[g(a U U - o(u, u) &]

and substitute from (18.2).]
One can then express the componeijtsin the form:

1
A= g(@”a, -0, d). (18.12)
The antisymmetric part of this will then be:

6= A =50 (08, ~da). (18.13)
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Although the Fermi-Walker connection is defined only gl&fr), if that curve were
only one of a congruence of curves that filled up a spaeeworld-tube then one could

regard S}, as the components of the torsion 2-form for the imetnnection«)’. The

fact that it must have torsion follows from the fabat it is not the Levi-Civita
connection, which is the unique metric connection withstang torsion.

The Fermi-Walker transport of a vector fiéddr) alongx(7) will then satisfy:
DX"-l O “X”—:L X)a' - X) U 18.14
u —g[a ul; —g[g(u, )a = g(@ X) u]. (18.14)

One can then express the Fermi-Walker derivativearfdrm:

U
%: OuXH + = [u O X" (18.15)
T C

For Minkowski space, one will have;, = 0, and this will reduce to:

Doy X _ X, 1 _
e dr+02[g(aX)u g(u, X)a]. (18.16)

The relationship betweerA/(u), as described in (18.11), and the corresponding
expression for Thomas precession in (17.10) is straigidfal then.

Fermi-Walker transport is sometimes characterized doying that it defines a
“relativistic gyroscope.”

8 4. The Frenkel electron— This section is basically a review of the key points
Frenkel's paperd] on the relativistic spinning electron.

a. The electromagnetic moment 2-form Frenkel began by attempting to give
Thomas’s discussion of the equations of motionlia p more relativistic (i.e., four-

dimensional) formulation. He began by assemblingelbetric dipole momeni, which
is a spatial covector, and the magnetic dipole momemthich is a spatial 2-form, into a
space-time 2-form:

M=CcdtMp—m, (29.1)

in a manner that is analogous to the way that one atseriie spatial electric field
strength 1-formE and the spatial magnetic field strength 2-fd8nnto the space-time
electromagnetic field strength 2-form:

F=cdt"E-B. (19.2)



8 4. The Frenkel electron. 301

One then calls the space-time 2-fornthe electromagnetic mome@tform In the
case of a point-like charge, it will then be well-definenly along the world-line that
represents the trajectory of that point. One sonestiwalls a charged point that is
associated with an electromagnetic moment an efeafyoetigpole-dipole(®).

If the particle that is being described were spatiallgmded, rather than point-like,
then the fieldp would represent the zero-field electric polarizatiamd m would

represent the zero-field magnetization.
One can recovear andm from y by using the temporal vector fiedd = 1 /c 0; that is

metric-dual to the temporal 1-fordx, = ¢ dt

p =i M, m=cdt"p-pu. (19.3)
More generally, if:

u=u’do +us = (0 + V), a1 Jlulf=c®  (19.4)

dr . [J1-v?/c®

is a time-like, proper-time parameterized velocity vedteld then one can define a
different splitting ofy into an electric dipole momempt and a corresponding magnetic

dipole momentn':
p' =iy =u’p —cp(u) dt—ium = y[- <p, v>dt+ (p —iym)],
whose temporal and spatial projections are:
Po =~ Y<p, V>, P, = y(p —ivm), (19.5)
respectively. Note that i, vanishes then so will,, sincep =i,m will imply that:
<p,Vv> =iy =iiym=0.

However, if p, vanishes then one can generally say only that the pimjeaf p; in
the direction ot (i.e., <, p,> =i p.) must vanish.

In order to specializg to the case of an electron, Frenkel then imposedahstraint
that the electric dipole moment should vanish in tls¢ sgstem, but not necessarily the
magnetic dipole moment, which was consistent withettpgerimental data. That is:

p=i, u=0. (19.6)

() For more details on the pole-dipole model for thesitas, relativistic, spinning electron, see Honl
and Papapetro®]. The 1940 paper by Bhabha and Corlij includes the radiation reaction, along with
the Frenkel model.
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Hence, from (19.5), the electric dipole moment in anyeotdystem with a relative
velocity ofv will be:

p=p=—yim. (19.7)
The Lorentz-invariant way of characterizing the Frékastraint is then:
iy = 0. (19.8)
The Uhlenbeck-Goudsmit hypothesis then took the formsafragg that there was a
space-time 2-form:

S=cdt"f-s (19.9)

that one could call thmtrinsic angular momenturfor spin) 2-form, and that it related to
M by way of the gyromagnetic ratio:

u=-9_g (19.10)
2m,c

(For Frenkel, one would hage= 2.)
Hence, the Frenkel constraint takes the form pihggthat:

0 =f =i, S=y[-<f, v>dt + (f —is)]. (19.11)
Therefore, iff = 0 then:
"= —Vivs. (19.12)

If the spatial 2-forns is the spatial dualf the vectors:
5= HS=iVs (19.13)
then the vanishing gf will be equivalent to having be parallel te.
c. The Frenkel equations of motion In order to derive the equation of motion for
the spin 2-forrS= 1S, d¥' * dx’, Frenkel started heuristically with the basic bata

principle (16.38):
S=r=[uF (S = W'R-Flu),

and projected it into its temporal and spatial @art
a =—[p, B] - [m, E], & = [p, E] + [m, B]. (19.14)

However, due to the Frenkel constraint, these émusare not independent, so they can
be solved only when that constraint is satisfied.
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Rather than summarize Frenkel's largely-heuristic vd#éian of the equations of
motion, we shall go on to his attempt to derive the eqgousitid motion from a variational
principle by defining the Lagrangian 4-form:

LOE 5, w) :—SAA#H%SDM% FOu, (19.15)

in which A is a choice of electromagnetic potential 1-form Fse d-A), V is the space-
time volume element, and= 1 ¢y, d¥’' ~ dx’ is the relativistic angular velocity 2-form;

hence.ww = Nue &, with
W' = 1 (19.16)

for the one-parameter familyt) of Lorentz transformations that represents the anadf
a Lorentz frame along(7).

However, in order to get around the fact tlhats not actually the proper-time
derivative of some corresponding matrix of angular coatéis, Frenkel then implicitly
switched to a virtual-work formulation, instead of a fofamtion that started with the
action functional. That is, Frenkel tacitly admittéhat he was using anholonomic
constraints by the introduction of a non-Abelian Lieugy of motions, so the definition
of an action functional would then become invalid.

In order to give the equations a virtual work formulationg can start with the
obvious force, torque, linear energy-momentum, and angusanentum that one would
expect for a relativistic, spinning point charge-magnalipole in an external
electromagnetic field, namely:

f:—izqu, r=[uFl, mou, S resp.

The kinematical state is defined Is¢r) = (7, X(7), U(7), 8", w'(r)), with the

integrability condition” = x*, although there is no corresponding constraint(r) .
However, the variations of the coordinates of the kirtexastate are assumed to satisfy:

_d o _d o cqu
ar'=——(Ox),  df'= (50, (19.17)

in which 6Q/ represents an infinitesimal Lorentz transformatiérthe frame that is

chosen in the tangent space to the identity elemethediforentz group.
Corresponding to the variation of the kinematicalestane varies the dynamical state
elements according to:

F=dr(&), B=[0Q,9, q=-——3 & (19.18)
2m,c
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Since the potential energy of the magnetic dipoleighdéscribed by in the external
electromagnetic fielér is 3 F(4), one can vary this to get:

BOF(U)+HF() = 3AF(0@9 -5 THAR. §)

= LdF ()(3%) —4e—niCTr([ S AX).

Hence, this will contributé dF () to the force and4e—nic[8, F to the torque.
However, one also has the state constraints:
u=¢ iWS=0,
which imply the corresponding constraints on theatens:
u(a) =0, iaS+iy,dB=0. (19.19)

One introduces the Lagrange multipliers (7) and ¢ a(7), which are a scalar
function of rand a vector field along the world-lix€r) of the point-dipole, respectively
(*). then one can define (vanishing) virtual wotkattare done by the constraints:

e (), C—lz(iaim8+iaiucB).

The first of these expressions contributes a limsamentunmgu to the fundamental 1-
form, while the second expression will contributghoa linear momentum and a torque.
One has to rearrange the term in parentheseden édpression into:

—iaS(au) + B(una) =-igau) + Tr([X, J[u " a])
~i.S(du) + THIQ S[u”a] — SB[u " al)
—iaS(au) + Tr((S[u™a] - [u”™a] § 0Q)
~i.S(du) + Tr([S u”aldQ).

Hence, the contribution to the linear momentumhs f-form-c7? i,S while the
contribution to the torque is the matoX [S, u” a).

Combining all of the contributions, we will get@tal increment of virtual work that
is due to the virtual displacemeds of the kinematical state:

W :[—Equ +EdF(,u)} (3 +P(3%) ——L [S F/)(6Q) + S(&),  (19.20)
c 2 2m,c

() The factor of 1 £ is introduced into the definition affor consistency with a later equation.
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in which we have defined theffective linear momentum 1-form
P=(mo+m)u-c?i.S (19.21)

and theeffective electromagnetic field strength 2-form:

F=F-bynra (19.22)
ec

When one applies the product rule to the proper-time demga this will become:

W= Fqu +%dF(u)—P}(5x) - (2 [ F1] #8)(80Q) +-- [P(8) + ()]
c 2m,c dr
(19.23)

When one integrated)V/(7) dr along a natural trajectory, while assuming tbatind

X either vanish at the end points or are transv&rshe velocity, one will see that the
vanishing of that integral (viz., the total virtualork along the trajectory) for all
variationsox and X2 that are consistent with the constraints will progl the equations of
motion ¢):

P :iziup +3dF(4), (19.24)
$=-29 sH+1sura=-—9 [5F. (19.25)
2m,c c 2m,c

Note that the zero-field equations give a reatdin motion forP, but S will precess
with an angular velocity a® = ¢ u ~ a, which is due to Thomas precession. However,
although P will vanish in that case, it does not follow thaimust vanish, as well, or
even be collinear with.

d. Transverse momentum One can see from (19.21) that the effective linear
momentum consists of a panty(+ my)u that is collinear withu and a part:

Po=-C7i.S (19.26)
that is transverse (indeed, orthogonaljitsince:
(U, po) == (U, 12 == iy iaS=C2iaiuS=0.

Hence, one refers to; as thetransverse momentufor the motion. As well shall see,
the Dirac electron and the Weyssenhoff fluid alsbilat that novel feature.

() Although we are using e-for the charge of the electron, the componentsFofvill be u* Fu , while
one usually sees the component expresBjipn’ = - u”F,, in the literature.
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e. The nature of the Lagrange multipliersOne can get an explicit expression for
m. from equations (19.21) and (19.24). One first differentidtesexpression (19.21) for
P to get:

P=rmu+(m+mu ¢S @i
and then contracts this with

PU) = M +(m+ m) @)~ €ij S &, mé+— quDa),

sinceu’ = u(u) = ¢ implies thatu(u) =0, andii,S=-ij S=0.
Contracting the right-hand side of the equatiomotion (19.24) foP, as well, will
then give:

mcC2+— quDa) = —l ik +3 (i, dF) (1) = ——(ll) ——(F(ll)) ZH(F),
so:

m.c= ——(F(#)) z,U(F)——S(U Da) = ——(F(#)) %T?S(F)

(The bivector fieldr is the metric dual of the 2-forfn)
However, the last term vanishes, from the equaifanotion forS

$F) =9 Tr(sF1F)=——% Tr(S[F,F'])=0
2m,c 2m,c
Hence:
d d
T me) = Z2Fu.
dr(m° ) dr[z ()]
Integrating this with a vanishing integration cams will give:

me = 1F(1) = -9 F(s), (19.27)
4m,c

which has a ring of physical reasonableness gnte it says that the potential energy of
the magnetic dipolg/ in the external electromagnetic fiefdwill contribute to the rest
energy of the patrticle.

We can then rewrite the definition (19.21)Roés:

P= meu —Cilass Mest = Mo +— F(w). (19.28)
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In order to obtaim, Frenkel began by differentiating the Frenkel constraiget:
i,.S=-i.S, (19.29)

and since the second of (19.25) gives:

S =L sA+Lsura) =iy I=—LiF+a
2m,c c 2m,c

if that also equalsi,S then one can say that:

0 =iy, N s—zxcqu +a+a (19.30)

If this were trudor all S (hence, all) then that would make:

=9 iF-u. (19.31)

2m,c
Since the usual Lorentz force law for a non-spigracharge of e (g = 2) is:

u="1iF, (19.32)

m,C

one sees tha should vanish in that case. Hence, the non-vangstf a would have to
represent a contribution to the Lorentz force laat twas due to the spin of the electron.
If we recall the Frenkel equation (19.24) fBrand the expression fd? in (19.28) then
we will see that the expression fwill involve more than jusg F(4). At this point, we

still do not have an explicit expression &or

8§ 5. The Bargmann-Michel-Telegdi equations — We just saw how Frenkel
developed a classical set of equations for the t@welution of the linear energy-
momentum and intrinsic angular momentum of a pliet-spinning charge in an
arbitrary external electromagnetic field. Someetilater, in 1959, Valentine Bargmann,
Louis Michel, and Valentine Telegd][ (which we shall abbreviate by BMT) derived a
similar set of equations under the assumption timatexternal field was homogeneous,
namely:

= © 19,19
s= m)c{ZISF-FcZ(Z 1)F(5Du)u] (20.1)

(The 1-formsis the metric dual of the vectal)
In the BMT paper, the motivation was to deriveefativistic, classical equation of
motion for thespin polarization vectors for the case of a homogeneous external



308 Chapter VIl — Relativistic rotational mechanics

electromagnetic field that would behave like the quantgomtion of motion when one
takes expectation valuegs|a Ehrenfest’s theorem.
s is a space-likapin polarizationvector, which relates to the relativistic spin 2-form
Sby way of:
#s=iV=u"§ (20.2)

sos amounts to theauli-Lubanski spin vectorThis implies that:
iW#S = iuisV = =iV =—#U"9) =c*S—-u’i,S

so if Ssatisfies the Frenkel constraint then one can réxaent$S fromu ands by way of:
_ 1 n
—?#(s u). (20.3)

As a result of the definition &f one will have:

ur#s=uru”rS=0, (20.4)
but:
ur#s=uniV=_(>GuwV=o9gu-sYV, (20.5)

so that makes the vectsprthogonal tau:
g(u,s) =0. (20.6)
BMT assumed that the Lorentz force law (for a homegesF) would have the
form:
._e.
u=—i,F, (20.7)
m

which wouldnot coincide with the Frenkel equation (19.24) when one assthraedF =
0, since thd® on the left-hand side is not precisety u, but includes a contribution from
the spin [confer (19.28)] that will still remain.

Because of (20.6), we can convert part of the secondderthe right-hand side of
(20.1) into:

——® F(s™u)u=(isa) u = (sa) u — (isu) a=iga”u), (20.8)
m,C

which will allow us to convert (20.1) into the form:

s=-9 jp+ L

oms Si,u0a), (20.9)

with the “effective” electromagnetic fiel defined by:
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F=F-"0,0a, (20.10)
ec

which is the metric-dual of the Frenkel expression (19.2@)pw@gh in the Frenkel the 1-
form a was not interpreted as the proper-time acceleratiah,sbmply a Lagrange
multiplier that had the units of acceleration.

Hence, one can also put the BMT equations into the:form

s+iaru)=-—9 iF. (20.11)
c 2myc

The left-hand side has the form of the Fermi-Walttenvative ofs, which accounts for
Thomas precession, while the right-hand side dessithe Larmor precession.

In order to get the corresponding equation of amfor the spin 2-forng, one first
differentiates (20.3) and substitutes from (20u®)ich will give:
. 1 .
S= ?#(sD u+sl]a

=1 4 a)——lz(—ﬂj HUNF)+—= #[uli_ (a0l u)].
C ¢l 2mc 2¢

We can now address the nature of each term., fieshave:

#(s™a) =igisV=lig#s=i(UNS =—u"i,S,
while:

[Saru] = nﬂ”ieuSDiev(aD u)= /7"”ieuS O(gu-y g=iSOu-i,SO &= #(s"a),

in which some steps have been omitted that areteasplace.
Next 0):
1 - ,
- ?#(UAISF) =[SF’].
Finally:
utifa®”u)=u”i@®u-u”a”iu=0.
Combining everything will give:

$=-29 s F+i[sai. (20.12)
2m,c ¢

() Although this result looks reasonable, trying to préwrigorously is harder than one would expect.
Hence, we shall simply trust Plahtelll when he says “it can be shown.”
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which should be compared with the second of the Frenkelieqag19.25). One sees
that the second term on the right-hand side of (20.12)chwis already implicitly
contained irF’, appears to be superfluous in this case or missing irréimxél case.

If one setgy = 2 then (20.12) will become:

$=-_215A, (20.13)
m,C

which includes only the Larmor precession, sincéhan BMT case, the terms that yield
the Thomas precession will cancel wigen 2.

Therefore, we can see that when one restrict$téekel equations to the case of a
homogeneous external field, the resulting equatwinsnotion for the linear energy-
momentun® and the spin 2-forrB will be closely related to the one that BMT propos
but not identical.

Other attempts have been made to deduce classtaiyistic equations of motion
for charged, spinning point particles in externactomagnetic fields. Typically, they
used the results of WKB expansions of the Diracaéiqn or the relativistic Pauli
equation to various orders @f. A particularly definitive attempt of that kindas made
by E. Plahte I1a, J in 1966 in which he arrived at a generalizatidntloe BMT
equations to inhomogeneous external fields thatetyjoresembled the Frenkel equations
by starting with the relativistic Pauli equationdaapplying a WKB expansion. The
equation for energy-momentugito first order ini was essentially the Frenkel equation,
with the same definition d?, while the equation for the spin 2-foi®to second order in
h was also that of Frenkel. An essential differemes that he also provided an equation
for the accelerationi that was valid to first order ik, and which was missing from
Frenkel's treatment. It took the form:

=S F U+ N R S (Eg—lj—;(% )+

n‘bC 4”@8 MOV KA é RS) y7% ’

(20.14)

IjVC

in which the operatah was defined to be the projection onto the spatte@gonal tou:
-1
A= —?uD u. (20.15)

We shall come back to the subject of classicadtingstic equations in the next
chapter after we have discussed the relativistengum wave equations for spinning
matter.

8 6. The extension fromSU2) to SL2; C). — If one thinks of the transition from
non-relativistic quantum mechanics to relativigjitantum mechanics as something that
is described by the transition fro®t(2) to SL(2; C) then one will see that this transition
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can be effected without needing to alter the spacepoésentation of the former group,
namely,C?. That is because the defining representatio8lL¢2; C) is also a group of

invertible 22 complex matrices, which then act @A and include the Lie groupU(2)

as a proper subgroup.
However, a subtlety has been introduced by that extensamely, thalSWU(2) was

not truly a complex Lie group, since the underlying manifoidz., RP® — does not admit
a complex structure, whil8L(2; C) is, in fact, abona fidecomplex Lie group, and its
underlying manifold i<CP?, which is the complexification &P>. In fact, at the level of

Lie algebrassu(2) lives ins[(2; C) in essentially the same way tt#t sits inC3,

Hence, if the basic requirement of a relativistic gaguation for spinning particles is
that one must have a space of representatio$lit?; C) then one can see thaf is

certainly a simpler choice tha®*, which is what the Dirac equation chooses. Indeed,
sinceC”* = C? x C?, the Dirac wave functions are often referred tbiaspinors.

In order to see hoBU(2) relates t&L(2; C), one needs only to consider the complex
form of polar decomposition, as is described in, say, @lleyv[12]. Basically, every
element ofGL(2; C) can be expressed uniquely as the protikttof a unitary matrixJ
in U(2) and an invertible Hermitian matrk. Now, although the unitary matrices form a
subgroup ofGL(2; C), the Hermitian matrices do not, since, in particulae product of
two Hermitian matrices does not have to be Hermitiau; i

(HiH2)" = HJH = Ha Hy, (21.1)

which equaldd; H; iff the two matrices commute.
When one restricts the polar decomposition to matnegh unity determinant, one

will get U 0 SU2) and detfl) = 1. HenceSU(2) lives inSL(2; C) as a proper subgroup,
and one can express the linear actior8bf2) on C? as the composition of the linear
action ofSL(2; C) onC? (i.e., the defining representation) with the inclusiéiSt(2) in
SL(2; C).

One can just as easily extend the actiors0f2) onM(2; C) by conjugation to an
action ofSL(2; C) by the same composition. That isLif] SL(2; C) andM [ M(2; C)

then the action of onM takesM to L™*ML. If one expresses an elemefibf R* as the

2x2 complex matrix:



312 Chapter VIl — Relativistic rotational mechanics

[V] =V g, = L‘/’f:vfz \j:_ '\\:32} (21.2)
then one will also have an action$if(2; C) onR* by way of its action oi(2; C):
L' M L=VL"gL=v'g, (21.3)
in which we have defined the four matrices:
g, =L"g,L. (21.4)

In order to see that we have, in fact, preserved threritzian scalar product o*,
note that:

det ] = (V)* = (V)% = (V*)* = (V))* = (v, v), (21.5)
S0, since
det L' [v] L) = det () det V] det(L) = det ],

the action oBL(2; C) onR* will preserve the Lorentzian structure.

Once again, one sees that the quadratic nature of tibe aoplies that both. and
—L will produce the same effect on vectors in Minkowski spakEence, since it is the

pair {L, — L} of elements inSL(2; C) that acts uporv, and there is a two-to-one

homomorphisnSL(2; C) -~ SO(3, 1) that takesl{, — L} to a proper, orthochronous

Lorentz transformation [i.e., an element of the tdgrcomponent ir0O(3, 1)], we see that
the action ofL on [v] is equivalent to the action of a proper, orthochronous
transformation ow.

The polar decomposition of elementsSh(2; C) is even easier to explain at the

infinitesimal level. Namely, i’ [ s[(2; C) is a 2 complex matrix with trace zero then

in order to express it uniquely as a sum of an eleméh#u(2) and another matrix, one
needs only to polarizéwith respect to the operator t:

[=u+Bh, u=i(=1M, h=1@u+ 1. (21.6)

Hence,u is anti-Hermitian, which makes it an infinitesimal unjtaransformation,
and b is Hermitian, which makes it an infinitesimal Hermiti transformation; in both
cases, they also have trace zero. One now segxlanmental limitation to the common
practice in non-relativistic quantum mechanics of repat¢he anti-Hermitian matrices

that generate one-parameter subgroups of unitary mawitte$¢lermitian ones, namely,
in relativistic quantum mechanics, one must use both tgpesatrix at the same time,
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and it is more intrinsic to the structure of the Ligeddras((2; &) to regard anti-Hermitian

matrices as the generators of one-parameter fanoliegnitary matrices, instead of
Hermitian ones. Therefore, in order to avoid confuswa shall use the convention that

is intrinsic to the Lie algebrd(2; &).

If one wishes to use the (Hermitian) Pauli matricesi = 1, 2, 3 as @omplexbasis
for the vector spac€(2; €) then if the components @fvith respect to that basis dre=

u'+ih', one will have: o | |
/[=(h'+iu)g=h'g+iu'g = +uy,

which will makeiu ' the components af, andh ', the components df with respect to
that basis. (Recall thaig will be anti-Hermitian matrices.)

It is essential to see that the polarization ofrioes ins((2; C) with respect to the

Hermitian conjugation operator is directly analogous topilarization of 33 complex
orthogonal matrices iBo(3; C) by means of the complex conjugation operator; i.e.,

decomposing them into a real and an imaginary part. Héncél so(3; C) then one can
express it in the real + imaginary form:

o=t+iv, v=23(0+0), v=21(0-0). (21.7)

One then finds that bothandt' represent infinitesimal three-dimensional real Euahd
rotations.
In fact, one has that the Lie algebtg; C) isisomorphicto the Lie algebrao(3; C),

so the imaginary rotations will represent pure boosthkis & closely analogous to the
way that the hyperbolic functions can be expressed aslairftinctions of imaginary
angles. For instance:

cosh@= cosig, sinh@=-1i sinié.

In order to specify the isomorphism, one needs only $ocgte the three complex

basis vectors, :% 1, for sl(2; C) with the three elementary real, anti-symmets& 3
matricesl; to see that one has a complex linear isomorpasmi(2; C) - so(3; C) of
the vector spaces, and the complex bilinearity of tieebkacket in both cases will make

that a Lie algebra isomorphism, as well. Hencé=ifi' 7, soD(/) =1 "1; then one will
also have:
[D(0), D) =111, i1= (‘gijkli 1", = (‘gijkli I'")D(f,)=D[4 I'].

(The last step includes some steps that were omitteduiietstraightforward.)
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The fact thats((2; C) is isomorphic toso(3; C) has the somewhat amusing
consequence that one does not actually need to abandeectbe cross product d&® in

order to talk about special relativity, since the comfiteagion of R* to C* will imply
that the corresponding vector cross product defines thetste of the Lie algebran(3;

C) on C3 which is then isomorphic to the Lie algebra of infisimal Lorentz

transformations. Furthermore, the actionse(; C) on C? that amounts to the defining

representation also has considerable significanceeicdhtext of bivectors and 2-forms
onC?, such as one encounters in the complex formulatiaeatromagnetism.
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CHAPTER IX

RELATIVISTIC, SPINNING PARTICLES

In this chapter, we shall attempt to summarize this fe@ncerning the Dirac equation
that will relate to the continuum-mechanical formwatiwhich will be the subject of the
next chapter. Although the first section on the relstic Pauli equation is historically
out of sequence, it is logically appropriate. We whiken discuss the aspects of the
Clifford algebra of Minkowski space that bear upon thenatédn and interpretation of
the Dirac equation, and in the section after that wi discuss the Dirac equation,
including some of the traditional topics, such as the God#momposition of the Dirac
current, zitterbewegung, and the WKB approximation. Finally shall review some of
the alternative ways of formulating the Dirac equatibat had been proposed along the
way.

8 1. The relativistic Pauli equation.— After the experimental discovery of electron
spin and Pauli’'s non-relativistic attempt to includenitwave mechanics, the next big
challenge to quantum theory was to make the wave equfdioa spinning electron
Lorentz-invariant. What evolved was the Dirac equatmithough some time later,
Richard Feynman pointed out][that perhaps if quantum physicists had developed the
relativistic Pauli equation first, they might not hafeeind it necessary to develop the
Dirac equation. That was not the way that eventspiegd historically, but nonetheless,
this author shall include some of his own, more recaotghts 2] on the formulation of
a relativistic Pauli equation.

Another way of referring to the relativistic Paulguation that is found more
frequently in the quantum physics literature is “the squéredc equation.” Once we
have introduced the Dirac equation, we will justify tteatninology.

a. Lorentz-invariant matrix-valued wave functiordn order to extend Pauli spinors,
which correspond t&U2), to something that correspondsSKH2; C), one should note

that since the latter group acts naturally uiBnjust as the former one does, it would, at

first, seem to be unnecessary to change the field spdbe wfave functions. However,
if one considers a two-component Pauli spingt, [#?]" to be a shorthand notation for a
real functionR times a X2 special unitary matrixJ then one can see that the extension

should be to a complex functieitimes a matrix irSL(2; C):

& x
w=) ) 1.1
Lﬁz )(2} (1.1)
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Note that since dé¥ = A% one can also say that (1.1) represents the decomposit
matrix ¥ in GL(2; C) into the product of (de¥)*? and a matrix® O SL(2; C), namely,

(detw) 2y,

This should be contrasted with the usual Dirasganor, which effectively amounts
to setting® = A [¢, ¢° x* ¥]". Such spinors take their values in a four-complex

dimensional vector space — namély,— but unlike the four-complex dimensional vector
spaceM[2; C], the field space of Dirac bi-spinors lacks theusture of an algebra that

one finds orM[2; C].
Furthermore, one can naturally speak of the detemh of any elemen#® of M[2;
C], which will be || || when® has the form (1.1). In the case whdreganishes, the

matrix W will either be zero identically or it will have mk one, in which case, it will
reduce to a two-component Pauli spinor. When é@sdaot vanish, one can think of the

1 1
¢2 )(2 } which belongs t&L(2; C), as arelativistic spin framgthat is, the
X

columns of the matrix define a unit-volume frame @8, while the rows define a unit-

matrix {

volume frame fofC?". The reduction to Pauli spinors can also comeretien when one

restricts the relativistic spin frame to be unitaag well as having unit-volume, in which
case, one must haye =- ¢, ¥ = ¢*.

The idea that quantum wave functions should beixazdlued has the advantage that
it leads more naturally into generalized Madeluyigetconversions, since thé in the
expressioRe’ can be generalized to any square matrix.

b. One form of the relativistic Pauli equation.Actually, the justification for the
following form that is given here (which is discadsat length ing]) is easier to follow
when one starts with the Dirac equation, but one m@sent it naively with a certain
degree of plausibility, which is what we shall derda

The minimally-coupled Klein-Gordon operatgf” 0, O, + K can be generalized to
something that acts upon afy wave function on space-time that takes its valnes
complex vector space of any dimension by letting dperator act upon each complex
component function individually. However, unledgre is something to relate the
various component functions to each other — i.equpling term — there is really nothing
to say that one is dealing with anything but thecatenation of a number of independent
wave functions, which can then be solved indepethgers well.

In the case of the (non-relativistic) Pauli eqoiatithe coupling came about in the
term that represented the potential energy of tsteilolition of magnetic dipoles that the
electron entailed in the presence of an externgnetic field. However, in the eyes of
special relativity, a magnetic field is not a Ldemvariant concept, but must be
combined with the electric field into a Lorentz-amant object in the form of the
Minkowski electromagnetic field strength 2-folffn Hence, a first place to look for the
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extension of the Pauli equation to something that wouldolbentz-invariant would be to
extend the coupling of the electron’s magnetic mortean external magnetic field to a
coupling of the electron’s electromagnetic momembd an external electromagnetic field
F.

Of course, we have already discussed that in theexbwif the Thomas-Frenkel
electron, and we reiterate the expression for thanpad energy density:

U=-1pu"F=-3F() V. (1.2)

The non-relativistic expression in Chap. VII for tlepresentation of the magnetic
moment of the electron as a quantum operator was:

Hi(op) =~ M8 Gi (1.3)

(48 = Bohr magneton =en/2m, c), which made the spin-magnetic moment coupling to
the Hamiltonian operator take the form:

Uy (op =~ B'O,. (1.4)

As a linear, algebraic operator, this acted on the Rale functiortd on the left or on
its Hermitian conjugat&’ on the right:

- i, BoV¥, -y, B¥o.

The issue is now how to extend these matrix expressmrones that are Lorentz
invariant. As explained ir2[, one will find that it is most convenient to firsttend the
Pauli spinor wave functioW = A [¢1, ¢2]" to a %2 complex matrix:

|
W] = ;{f”l i )“}A 14, 1, (15)
¢2 [ 2
in which eitherA is non-zero and the matri| | x] has unity determinant of = 1 and
the matrix |, | x] has zero determinant, which is then a degenerate case.

In order to represent the 2-forfh by a %2 complex matrix, one resorts to the
complex form ofF () — namely,F; = E; + iB; — and defines its matrix representation to
be:

& +iB 0 =E o1 +iB; (1.6)

0 _E + IBI —L U1 i 0o .- .

() The complex formulation of electromagnetism goeskbiacsome lectures of Riemann on partial
differential equation, and has reasserted itself repeaiadthe work of Ludwik Silberstein, Ettore
Majorana, and J. Robert Oppenheimer, among others. tiohagerable significance in the application of
complex projective geometry to the theory electromagmetsee the author’s booR]].
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The coupling term can then be expressed as the operator:
Upop [W] == it o' [WILF], (1.7)

and when this is combined with the minimally-coupled Klewmrd®n operator, one gets
the ultimate form for the relativistic Pauli equation:

ie

(02 +&7[ W =%Ui[4’][ F] (1.8)
and its (Dirac) conjugate: _
[P0 + &7 :;—ec[ﬁl[@ 7, (1.9)
in which:
,
[¥] = W' = EH (1.10)

c. The Lagrangian form of the relativistic Pauli equatierAs discussed in2],
equation (1.8) can be formulated as a variational prolléen one starts from an action
functional. The Lagrangian density for that actiondtional takes the form:

L= %Tr{nﬂ”DS@] 00 -« @[ 9 —;;eg P4 Y F } (1.11)

One has generalized forces and momehta (

= —a£ = -1 ry E uj i
f= ] zTr{(K (¥1+[FIl ¥ o }]D}, (1.12)
o 0L _ ., e

v 0L o
n* = FEN] LT 09I (1.14)
su_ L
A4 = FTEHT) L Te{ [0 [ W} (1.15)

in which the [l notation signifies that these expressions acxcomplex matrices as
linear functionals by substituting the matrix foetsymbol [J1

() In (1.12), we have taken advantage of the fact th&BT= Tr BAin order to putff] on the left end
of the matrix product.
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One gets the field equations fé¥][and [W] by varying£ with respect td¥] and
[W], respectively:
oL oL

0=——=f-0*, 0=——=f-0,N* 1.16
W] g W] g (1.16)

In order to obtain the form (1.8) and its conjuged@ation fof W] from the expressions

(1.12)-(1.15), it is permissible to simply drop tiederence to the trace and the mathx [
and regard the canonical expressions in (1.12pJ1a% simply linear functionals on a
vector space of matrices; i.e., covectors.

The Lagrangian densityY is clearly invariant under an arbitrary global gha

transformation that replace¥’] with €'? [W] and [¥] with €[¥], whereq is a real
phase constant. Hence, the corresponding varsasioe

oW =-ial¥], V] =ia[V¥], (1.17)

and the corresponding conserved current will be:
F=n* 5[V + %] 1~ :%O”VTr{DE[Q][% {9009}, (1.18)

in which we have dropped the constantr and divided byz .

L is also gauge-invariant, and the conserved (@gcturrent (density) will be
proportional to the latter current:

w-OL __ €& w Oy Y --£
X T T{OPIM G 0[ 9} =- (1.19)

The energy-momentum-stress tensor that one getsdris:

T/ =nAO, W +0[Y 07 -Lg)

- %qﬂ”Tr{DE[‘TJ] W +0I @ O[99} -ca (1.20)

It is clear thafT,, is symmetric, as opposed to the non-relativisasec(see Chap.
VII), for which the time-space components were asatric.
We find that:

0,T, =F,J +%(d,F, YW, (1.21)

u e
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in which we have defined the relativistic electromagnetienent bivectoy to have the
components:

(= %:s‘”, = inTr [P] ¢ [W. (1.22)

[Recall thatd”’ =1(c”c” — o"c*).] If we compare (1.21) to the first of Frenkel's

equations of motion in Chap. VIl then we will see ttta balance of linear momentum
for the relativistic Pauli equation reproduces Frenkel's egudor the balance of linear
momentum precisely.

However, if we assume that all components, as agethe Pauli matrices, refer to a

rest frame then the fact tha is the identity, which commutes with all Pauli mats¢c
will imply that: _ _ ) )
o%=-0'"=0, o'=2¢%0% (1.23)

which will automatically impose the Frenkel constraintmths”” and /" :

s¥=-gs"0=y0%=—/%=0, (1.24)

and we can also say that:
g =gk g sk:—%Tr [¥] & [W]. (1.25)

The second term on the right-hand side of (1.21) welhtreduce to:
10,F, 1" =30,F 1 = S 14, £"0,B, $°= - (9,B,) ", (1.26)

with the obvious definition for/ (= - e /mec §). Thus, we see that actually the absence
of an electric dipole moment for the electron woulglyrthat only the external magnetic
field would couple to the spin.

Hence, the balance of linear momentum makes the divexgehdhe energy-
momentum-stress tensor equal to the sum of the Loferte on the moving charge and
the force that is due to the inhomogeneity in the eatemagnetic field coupling to its
spin.

In order to discuss the balance of angular momentuniéoparticle that is described
by the wave function¥], we must first discuss the way that the Lorentaigracts upon

the field space — i.eM(2; C). Basically, ifL [0 SQ(1, 3) is a Lorentz transformation, and
D: SA1, 3) - SL2; C), L > D(L) is a representation of the Lorentz grouslg2; C)

then the action o8L(2; C) on the matrix ¥] is left translation, while its action on the

matrix [¥] is right translation by the inverse D{L):
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[W] - DOI¥], [¥] - [WIDX(L) .

If © :s0(1, 3) - sl(2; C), w—>D () is the corresponding representation of the Lie

algebra then the action @f(«) on [W] and [W] is essentially the same, except that the
element ofo(1, 3) that corresponds to* will be — w(if L = expa):

[W] - D(I[Y], [¥] - - [V D).
Hence, in order to be more specific about the vanatio
S[W]=D(l[¥], JqY¥] =-[¥]N®,

we need to get an expression for the maBj{ of the representatioB, which will then
take a matrixey’ in so(1, 3) to a matrix®;’ o, in sl(2; C). In order to get the matrix
D, we start with the fact th& must take a basis e6(1, 3) to a basis afi(2; C). We
choose the basisl{, Ki, i = 1, 2, 3} forso(1, 3) and the (real) basisq4, g,i =1, 2, 3}
and make the obvious association:

in — |0’|-, Ki — Oi-
If we put the matrix indices on both sets of bassr&nts then this will take the form:

(31 - ligls, (K], - [als.

The matrix®g" can be obtained from the sum of tensor products:

au —
D, =

als AKI T d g =2, (L3 HKIal (1.27)

3 3
i=1 i=1
We can be more specific about the componenfs,§f and[K]7:

[31¢ = &, (K1 = a0 +3a;. (1.28)

Hence:
3

D=2 it +q') + o) a5 (1.29)
i=1
It is generally more convenient to lower hand produce an expressi@f,, that is
antisymmetric inuv. If we now suppress the matrix indices then wiévave:
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0= Y (i€ 17, &+ 1,00} ] (1.30)

If we consider the boost and rotational componemtependently then we will get
simply:
Doi = [a], Dj=iglal. (1.31)

We can then proceed with the definition of thengpensor for {]:
St =T{nN*D, [V {9 D,0% . (1.32)
With the substitutions (1.14) and (1.15), that Wwéicome:
S5 =3O MW D[N 1% D008 (1.33)

in which we have omitted the matrix indices thataie to the field space.
The boost and rotation components then take timasfo

S =4TH{0 W1 o0F B, (1.34)
S =3igT{0 W o[W 1D ol B, (1.35)
respectively.
We can now take the divergences of those expmessio

0, 8=, TIFI AWt Pd R B . (1.36)
0,8 = THIFI W[ 9 1 ¥ % B - (1.37)

Since ourf had kinematical units, in order to make these egs have dynamical
units, we first multiply both sides by’ /m, (but keep the same notation f8f,). If we
define the matrix form o as in (1.25) and the corresponding matrixgdpby:

[sl=-[V]o¥, [l=-te[s]=w[V]Icol¥, (1.38)
respectively, then equations (1.36) and (1.37) taitk the forms:

0,56 = & Trl7c ], 0,8/ =iTr[g], (1.39)
resp., in which we have defined the torque matrike:

(5] = [[£4], [Fil, (1.40)
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which will be consistent with the vectorial expressio= 4 x B when one imposes the
Frenkel constraint upon4.

However, we see that we have a problem, here, singg JT= 0, due to the fact that
Tr AB = Tr BA, which will make TrpA, B] = Tr AB— TrBA = 0 in any event. It would

appear that if we were to make the left-hand sidesmatrices ins((2; C) and drop the

trace on the right-hand side then we would have noratribalance laws of the expected
form.

8§ 2. The Clifford algebra of Minkowski space — In order to address the Dirac
equation without having to interrupt the discussion foseparate discussion of the

Clifford algebra of Minkowski spacé(4, ), we shall first discuss that topic in a purely
mathematical way.

a. Basic definitions and properties The Clifford algebra’(4, 1) of Minkowski
spacem’ (1) is defined to be the free algebra o98f that satisfies the constraint that:

{v,w}=vw +wv =2 <, w> (2.1)
for everyv, w O 9”.

Since C(4, n) is a free algebra, the vectors of Minkowski space esgt the

generatorsof the algebra, not the underlying vector space. Therlgpace will actually
be 16-dimensional, since one must expand the originabivepice in order to account
for all products of the formsw, uvw, ... In reality, the relation (2.1) makes it
unnecessary to form products of more than four vectorseahall see.

Note that under the polarization of the algebra product:

VW = 2 (VW +Wv) + 2 (VW —Wv) = v, w> + 1 (VW —wWv), (2.2)

the relation (2.1) does not specify what the antisymmptrt of the product is. Hence,
that relation by itself would specify onlycassof algebras that are defined ot and

not a unique one. In order to make the algebra uniquemastealso specify the form of
[v, w] = vw —wv. As it stands, the way that one will defing W] is to make it a new
element of the algebra that is not contained in thessace that represents Minkowski
space. Note that the commutator bracket will defingeaalgebra iff it also satisfies the
Jacobi identity. For instance, if the algebra produdtdghas onevw is associative then
the commutator bracket will define a Lie algebra.

One says that the Clifford algeh®éd, 1) is definedover9t*, rather tharon it, since

abasisé,, =0, ..., 3} forR* will define a minimal set ofieneratorsof the algebra

() The literature of Clifford algebras has grown quigstvby now, but a good modern reference that
discusses the physics, as well as the mathematg, is
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C(4, n). An actual basis fo€(4, n) will then be obtained from all linearly-independent

products of the basis vectors f&f when one imposes the constraint:

{es,e}=e,e0+eve,=2<€,8>=2Nuw. (2.3)
In particular:

(e0)? =1, @?2=-1(=1,2,3), eg=-ga (%] (2.4)

The last constraint has the effect of reducing the itnfile of higher-order products of
basis vectors to, perhaps, the following set of sixteen:

{1, e;, @@, 8k g &, &k 0E &, €1 &63, e & e}, (2.5)

(No summation is implied in these expressions.)
Another way of enumerating these same basis elsntéat is more adapted to
Poincaré duality is the following one:

Ec =1,

Ex1 =€y w=0,..,3),

Esvi =@ (i=1223),k=ae Bb=6ge,Ei=&e¢;,
Ein =ee e, En=g6 e, E3=6e 6, Eu=666s,
Eis =epere 6.

The multiplication table forC(4, n) with this choice of basis (i.e., the structure
constantsal., A, B, C=1, ..., 16) is given in Appendix D, along with the sub-tathes
define the symmetric and anti-symmetric parts of the prodiet, the structures
constantshi.= b%, and cf.= - ¢%;). Note that (2.2) implies the following relations
between the structure constants:

aBAC: b§C+ q?C’ bQC:%(aBAC-i_aéB)’ q?C:%(aBAC_aéB)' (26)

Some basic features of the algeldi@, /) can be derived from the tables by
inspection:

1. The square of any basis element is equalito
Hence, every basis element lkas a multiplicative inverse, which will be equaltt&a .

2. Any product of basis elements will either commute oti-cmmute. In
particular:

3. There are no divisors of zero amongst the bagisesis.
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However, the algebré(4, n) itself can have divisors of zero. For example:
(Eo + Bo)(Eo— Bs) = (E)* — (E)°=1-1=0.

Hence, the ring thai(4, ;) defines is not an integer domain, and therefore, dotision

algebra; in particular, not every elementCé4, ;7) will have a multiplicative inverse, but

only theunits which will define a multiplicative group. From thesti observation, that
group will not be trivial.

4. From 2, one will always have either:
EnEs = 3{Ea, Eg} oOr EaEg = $[Ea, Eg].

5. IfBis fixed andA ranges from 1 to 16 them[Eg (or Es Ea) will range through
the entire basis set. (This was pointed out by Paulbj.) That is, left (or right)
translation by any Ewill permute the basis elements, up to sign. In padic

6. The structure constantg,. are always equal tt 1 (this was also observed by
Pauli,loc. cit), and:

7. Left (or right) translation by anysBwill define a linear isomorphism of the 16-
dimensional vector space that under@iés, /7). Hence:

8. For every ordered pair (EEs), the mapCag : C(4, ) — C(4, n) that takes any
elementa O C(4, 1) to Ea a Eg will be a linear isomorphism.

9. Right-multiplying each Eby E;s produce ks-a for all A =0, ..., 16, and left-
multiplication by &s will producex Ejs-a (+ :A=0, 510, 15. - : A= 1-4, 11-14).

As we shall see, this last property of the algelfda 1) is closely analogous to the
way that the Hodge * operator acts upon the extergwbaé over Minkowski space.

b. Relationship betweefi(4, 1) and the exterior algebra oveR’. — Since the

underlying vector space @¥4, ) and that of the exterior algebfa(R*) over R* are

both 16-dimensional, a linear isomorphism will always exigtieed, the simplest way to
accomplish that is to define a basis for each spaceaasdciate corresponding basis
vectors.

If one starts with a basief, # =0, ..., 3} for R* then, for the present purposes, a

convenient basis for the underlying vector spacé(#o ;) will be defined by (2.5); of
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course, since the basis{EA = 0, ..., 15} that was subsequently defined above is simply
a permutation of those elements, it too can be usednifenient.

One can also define a basis far(R?) from all (linearly-independent) exterior

products of the basis vectasfor R*:

{1,e,, e, e1"e,e, e e e}, (2.7)
1y Su 7

in whichA < g <vin every case.
The obvious linear isomorphism betwe#a, 77) andA-(R?) is then to associate:

1 Aad 1, ey Aad e/j, e/jeu Aad e/j/\eu, e/] e'uev And e/]/\e/j/\eu,
e e gtate’es.

Note that as long as the bagidgs orthonormal, the Clifford products distinct basis
vectors will always be completely antisymmetric:

Hence, one can just as well denote the basis vectorgelgxpressions on the right-hand
side of this.

Although the association of basis vectors above willngeé linear isomorphism of
the two real vector spaces, it will not define an isggh@m of the algebras, despite the
fact that the Clifford product of distinct orthonormadsis vectors will be completely
antisymmetric, as will their exterior product. Indeede @an actually regard the algebra

A+«(R% as a degenerate case of a Clifford algebra for whigls¢hlar product of any two

vectors inR* is zero, since one must have:

vAw+w”rv =0 (=2w,w>) (2.9)
in every case.

The vector spaca-(R?) is gradedwith respect to the exterior product. That is, it can
be expressed as a direct sum of linear subspaces:

ARYON OALONA ONAsO N,

whose dimensions are 1, 4, 6, 4, 1, resp. (That isdithensions are equal to the

4
binomial coeﬁicients{k}, k=0, ..., 4. One then finds that a basis for each can be

given by 1, £,}, {e. e}, {ex* e, e}, & el e Mes resp. The sense in which
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A+«(R% is graded with respect to the exterior product is ifhatis ak-vector andBis anl-

vector thena * S will always be & + |-vector.
Although one can define a corresponding direct sum decatigroof C(4, 1) into

linear subspaces that are spanned by the corresponding leaséts, nonetheless, it
will not be graded with respect to the Clifford algebracsithe analogue produgf; of a

k-vector and a-vector inC(4, ) does not have to bekal-vector; e.g.ge1 andese, are

both “2-vectors,” but their produsheeie, = — e is another “2-vector,” not a “4-
vector.”

However, the Clifford algebra can be graded into actisamC(4, 77) = Codd I Ceven
since the product of odd-order elements will always be oddrpand the product of
even-order elements will always be even-order. Teesponding subspaces/df{R?)

will then beA; O Az and/A\o O Az OO A4, respectively. In both the cases, the subspaces
are 8-dimensional.

c. Matrix representations of the algebf&4, 7). — A (faithful) matrix representation

of C(4, n) is a vector spacki(n; K) (K = R or C) of nxn matrices and a set of four
linearly-independent matriceg{, #=0, ..., 3} has:

Wt W =2qwl, (2.10)

in whichl represents thexn identity matrix. Hence, if one associates the membéan
orthonormal basig, on Minkowski space with the corresponding matrigesand then

extends to corresponding products, one should get a Is@aorphism of’(4, 7) into a

subspace of1(n; K) such that the Clifford product {4, 77) goes to the matrix product
in M(n; K).

SinceM(n; K) acts uporK", one can also think of a matrix representatiog(df /)
as a linear actiog(4, n) x K" - K", (a, W) —aW¥. Hence, for every, the left-
translation map L: K" - K", W = aW¥ will be linear.

The question of finding matrix representations for tHéfa@d algebraC(4, ) is
closely related to the question of choosing the fiel¢espar the Dirac wave functiow,
since the matrices will have to act up#n Dirac himself chose to ugg® as the field
space, which meant that t€ coefficients would have to be represented %4 domplex
matrices. However, the complex dimension of the vespaceM(4; C) is 16, so its real
dimension will be 32. Hence, one cannot expect to fif@itaful representation of the
16-real-dimensional algebi@&4, #) in the entire 32-real-dimensional algeldig4; C),
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but only as a 16-dimensional real sub-algebra of itusJ&(4, 77) will sit in the matrix

algebraM(4; C) in a manner that is analogous to the way $hé2) sits insl(2; C).

Already, one begins to suspect that perh@hss not the proper choice for a field

space. Nonetheless, several ways of representing iiegtrices as ¥4 complex ones
arose.
The form that Dirac himself used ié][was:

0| L1 0 |0 2.11
VST YR T (1)

In his monumental work on the theory of groups gadntum mechanicg], which
was first published in the same year as Dirac’sisgnpaper, Hermann Weyl gave the
matrices the representation:

o_| 011 .| 0.7 2.12
AR y"a"ﬁi"é" (2.12)

Ettore Majoranad] gave theymatrices the representation:

o | 0107 ,_|io*] 0 2| 01-0" | 5_ :i_a_‘l_l__q_ 213
Velemo n YT _(5_1{_—_@5 R BET_(_)_ VT o T—ia‘l - (213)

which has the advantage of simplifying the chagugation operator that acts upon the
wave function to simply charge conjugation. Thecatled “Majorana spinors” will then
be real-valued wave functions in the Majorana regméation.

As an alternative t@*, Alexandru Procad] pointed out that the Clifford algebt44,

n) acts upon itself by left or right multiplicationso there would be nothing
mathematically inconsistent about usi{g, ») itself as the field space. That would have

the advantage of allowing one to “encode” even npirgsical observables in the wave
function without needing to change the wave equation his later years, Sir Arthur

Stanley Eddington developed that suggestion eveeu (see the posthumous book
[10]). Some other researchers who followed up on &sosuggestion were Ernst

Stueckelbergl1] and Nicholas Kemmerlp].

8 3. The Dirac equation.— In Paul Dirac’s landmark 1928 treati€, [his stated
purpose was to devise a quantum wave equatiorhéelectron that was both Lorentz-
invariant and correctly incorporated the spin af tlectron. He began by looking for a
square root of the Klein-Gordon operator, althouegilly he was defining a square root
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of the d’Alembertian operator, since he started witineal, first-order partial differential
operator of the form: _
in(0 + a'9;) —maB ¢ =ct), (3.1)

whose coefficientsxr', B were not necessarily scalars, but were expected tonaten
with the partial derivative operators. He then mukiplhis by its “conjugate” operator:

in(-0o+a'd) +maps,
which resulted in the operator:

n’[0Z-1i(a'a’ +ajd)6iaj] —ihmdd B+ Ba) o, + nt ¢p°.
In order for this to equal the Klein-Gordon operator, onalevaeed to have:
Ld'a' +a'd)=J", a' B+ pa =0, B?=1.

The last condition implies that ## is an element of an algebra with a unity element
then B will not only be invertible, but it will also be its ownverse. Hence, if one left-
multiplies the operator (3.1) hgthen if one defineg® =8, y' = Ba’',i = 1, 2, 3, as well
as the Compton wave number= mc/ #, and divides the operator (3.1) by, one can
express that operator in the form:

F+ik=y o, +ik w=0,..,3),
while its conjugate will take the form:
g—-ik=y"0,-ixk
The product of the last two operators will be the KiBordon operator iff:
vy +ylyEt=2n" w,v=0, ..., 3). (3.2)
If that is the case then the equation:
(F+ikW=0, (3.3)
in which the wave functionV takes its values in a vector space upon which acts the
algebra to which the coefficientg’ belong, will be théirac equationin its “covariant”
form, while the equation:

@o+a'd+ikPW=0 (3.4)

will be the Dirac equation in its “Hamiltonian” forrar more precisely:
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h%—w— Hop ¥, Hop= ca' Eaxi+ mCca. (3.5)

The Dirac equation that is conjugate to (3.3) is then:
B(F-in)=0,P) y* -ik®P=0, (3.6)
in which theDirac conjugateof W is defined to be:
P =yho (3.7)

Of course, the conditions that are expressed in (3.8uaio the statement that the
coefficients of the partial derivative operator in theabiequation must define a matrix

representation of the Clifford algebféd, 7). Various representations have been used in

the physics literature, but we shall show the forn ¢Ba8) takes with the Dirac and Weyl
representations that were defined above in (2.11) and (2.Epgatevely. The Dirac
representation gives the following pair of two-componeni@ equations:

9p i 0x

—5+0 = =-ikg,
0X ox (3.8)
X,y 9P_ +iky
ox° ox ’
while the Weyl representation gives:
op 9% _
+0 L =-iky,
aa))(( gf( (3.9)
<L -0 L-=-ikg,
a7 ox 4

which has the advantage of allowing one to essentidiouple” the up and down
components in Dirac wave functions as far as themfftiation is concerned into a pair
of equations for which the coupling is algebraic.

b. The Lagrangian formulation of the Dirac equatienThe Dirac equation for the
wave function of a free electron and its Dirac conjugzda be obtained from the
following Lagrangian density

7‘3 PFY-0FY+2cPY). (3.10)

(The arrows over the Dirac operator in this expressiditate which wave function they
act upon.) Note thaf = 0 whenever the wave functid¥h and its Dirac conjugate satisfy
the Dirac equations.
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The generalized forces and the momenta that are conjugditeand d¥ are:

oL ihc = _ 0L _inc
f=—=- g kY f=— =—(dW¥YW+2«V¥ 3.11
pTm ( g - ), pT (ﬂ ), (3.11)
m =9 =m—CLTJy“, = 95 :—Ih—cy“w. (3.12)
ow, 2 ow 2

One gets the equation fat when one varie§ with respect to¥ , andvice versa

c. Dirac current. — The Lagrangian density. is invariant under phase
transformations, which repla¢e with €W and ¥ with €” ¥ . The variations of the
wave functionsV and W will then take the form:

MN=-igW¥, M =ia V.
The Noether current that corresponds to this taleefotim:
HF=r'W+Pr =cPWpy/¥W=c g (3.13)
in which we have defined the basic “bilinear covariant”:
=Yy, (3.14)

which then defines the components of a vector 43S’ 0,,, and omitted a superfluous
multiplicative constant.S has the property that its Minkowski norm-squaeed

1 _ _
pP=wS' S'= gJZ: N, (WY)W Y'W) (3.15)

is real and can thus represent a matter density.
In fact:

=9y, (3.16)
which will equalp in the rest system, for whic' = 0.

d. Gordon decomposition- Walter Gordon (of Klein-Gordon fame) defined an
intriguing decomposition of the spatial partof the Dirac current inl[3] into a sum:

J'=3+J, (3.17)



§ 3. The Dirac equation. 333

in which J. represented the components of a “convection curremi,”J%nrepresented
the components of a “polarization current,” both of lahieere conserved individually:

0,J; =93, =0. (3.18)

Although Gordon’s decomposition seemed manifestly rootdtidrelectromagnetic
properties of the electron field, actually most ofutwéves the removal of an external
electromagnetic field. The first step in making thensformation ofl ' is not actually
purely algebraic, and amounts to using the Dirac equationtaridirac conjugate to

replace® with (i / K # W and ® with— (/)P J in S' separately, which will produce
two expressions:

s=toy 0w =L@y, R __(wyy'a W),
K K
i PP iy = o = i i
S=-—0,9yyV¥ =—— @By YW+ Py yw) =0, Pyy V).
K K K
If one adds these together then one will get:

S =L[Byyo,w-0,8yyy]

K
';[ yyow- awywz UPyyowv-09yyy
|_ —_

K

[0PW-Wo +Z —[®Pyyow-09yyy.

I¢]

If one then uses the fact that whehj, one will have:
V. r1=2/y

then one can expreSs as a sung, + $, in which:

S=—[0PW-PoV], S,=90 (3.19)
K
with:
Ql = Py v, 3.20
P (3.20)

In order to get to the Gordon expressions fronséhene must minimally-couple the
external electromagnetic field and multiply bogh and S‘p by a scaling constant that

gives those currents electromagnetic units. Ilicigaition of the subsection below in
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which we minimally-couple the electromagnetic fieldthe Dirac wave function and
define the conserved curredt'= — e ' that corresponds to the gauge invariance of the
action functional, we will then get:

(i: ien [LPDLP DDLIJLIJ] le: a| an Q'é =- ﬂq.’[yl y]l.]J (321)

m,C 2m,c
Here, we see the Bohr magneton reappear in botle€ipns as a coupling constant.

e. Velocity operator— The question of how to associate a velocity wlid Dirac
wave function, whether as a space-time vector f(g@iceferably time-like) or as an
operator on wave functions, is more problematit thaight first sound.

As Fock [14] observed, if one puts the Dirac equation intdHgsniltonian form (3.5)
then from the fact that F(t, X) is a differentiable operator then:

dF  oF i
—=—+—[H_,F], 3.22
dt ot h[ onr F] ( )
one can conclude that:
N
Vi=s—=_ X1=ca'. 3.23
i G (3.23)

Hence, at the quantum level, the velocity of thetter wave that is described Ky
will be a set of three matrix operatdrfs. Therefore, it will be a linear algebraic operato
on wave functions, not a linear differential operatike momentum, and one sees that
the velocity operator does not relate to the moomm@antperator in the classical manner of
P'=mV'. Thatis:

Z_~ #mca. (3.24)
i ox'

Furthermore, the eigenvalues\of will all be + ¢, which is perplexing, since whék
is the wave function of a massive particle, oneeeip that it should have a time-like
velocity as a wave, not a light-like one. The tiseness of the eigenvalues\of also
conflicts with the continuous spectrum of momentigenvalues for massive traveling
waves.

Breit [15 made some observations that were similar to tleddeock by putting the
Dirac Hamiltonian operator into the form):(

Hop=a’myc?+ca' P, (3.25)
and drawing an analogy with the relativistic Haomian for a moving point:

H=mé=(@1-B)mé+v' my, (3.26)

() We are now substituting the notatiohfor the matrix3in order to avoid confusion with the scafr
=v/c
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in whichm = m (1 —-3%) ™ is the relative mass whef=v / c. Under that analogy, one
will get the association of ' with ca' directly, as well as the association\df= (1 —
B with a®.

f. Zitterbewegung— As Schrodinger point outlf], an interesting aspect of the
velocity operatoV ' =ca' is that the corresponding acceleration operator:

av'_ i_C[H, all = %(moc[ao, al+[a' P, al)

does not generally vanish, so the motion of the fregcpathat is described by the wave
functionW will not actually be rectilinear.
Schrodinger then decomposed the velocity operator irdqests:

Vi=Vi+ &), (3.27)
in which:
V=Hlp=1p (3.28)
m

represents the rectilinear part of the velocity thaé avould expect from classical
considerations, and:

& (1) =crppe™” (3.29)

represents a time-periodic contribution to the vejocthat he attributed to
Zitterbewegund‘jittering motion”).
The frequency of zitterbewegung will then bEl 27 and its amplitude will be

;—f_l H ™7, , which Schrédinger estimated to be of ordér2mg or half the Compton wave
i

length of the particle in question.

g. Energy-momentum-stress tenserThe energy-momentum-stress tensor for the
Dirac equation was first discussed in 1928 by the Dutch pbiydtugo Tetrode 17].
However, his construction was heuristic and was not based a field Lagrangian.

If one starts with the Dirac Lagrangighabove (3.10) then the energy-momentum-
stress tensor will take the general form:

T = We+W_ a¥ -LO = W+ W, (3.30)

in which the fact thatt = 0 for a solution has produced the last equality.
With the substitutions (3.12), one will get:

i7ic

TH = 7(LTJ yro,w—-o Wy wy, (3.31)



336 Chapter IX — Relativistic, spinning particles.

which is essentially the Tetrode result, if one igoithe coupling to an external
electromagnetic field, which we shall introduce later.

SinceT/ are all real, we must have:

0,y 'Ww=—iWyo W, (3.32)
which will make:
Tw=ic Pyo,W. (3.33)

One sees that the linear momentum in, in fact,enves:
9,T/=0, (3.34)

which is consistent with the absence of externaleerc
The antisymmetric part df,, is then equal to:

Hovl

Ty =inc®y,0,W :""7‘3(@ yA,¥ -0, yW), (3.35)

which does not generally vanish, and suggests the existémc@an-vanishing spin to
the fieldW, which was to be expected.

If we recall the definition of the canonical momemt 77 in the first of equations
(3.12) then we can expregg,; in the form:

Tyv_Tvy:maqu_maqu:(ﬂAqu)yv, (3.36)
which is somewhat reminiscent of the team* u in the Frenkel equation for spin

precession, althoug is not precisely a generalized force, in such a way ithmight
be proportional to an acceleration in the same \Wwafytis proportional to a velocity.

h. Dirac spin tensar— The Lie algebra homomorphis®: so(1, 3) - gl(4, C)

represents the infinitesimal Lorentz transformatigh by the 4«4 complex matrix:
Dp(w)= D, .
In the present case, sinap, = — w,, , we have:
D -—l[y Wl ——i—y n
uv 8 1 s YV 4 Y

in which we have suppressed @ indices, which belong to the gamma matrices, and
lowered thev.
The total angular momentum tensor is:
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A A A
MJ, =L, +S),
with:
ij :T”ﬂx,—T”V)gl, (3.37)

fic —
YylyyW. (3.38)

A U] =4 _
S, = n”z)ww+wz)wn”-7

Note that as long as one is dealing with only distiatd ef indices the corresponding
tensor whose components &g, will be completely antisymmetric. Hence, one can
define a 3-form by way of:

s:% St A A A A (3.39)

However, it is important for the conservation laesiote that:

hc =

— _ _hc _
S, =-9, = ZL’JV#V#V.,"P =P £0; (3.40)

I.e., Sy is not completely antisymmetric, but only when onasaders distinct indices.
If we take the divergence chijw then we will get:

o,L) =T,-Ty, (3.41)

A=y

since linear momentum is conserved.
Meanwhile, the divergence (S‘;V is:

a/lszv == (T —Tw), (3.42)
which is consistent with the Belinfante-Rosenfeld tkear(This result also appeared in
Tetrode.) Hence, the spin will precess even in thenglsef an external torque, which

sounds reminiscent of Thomas precession.
Therefore, we have:

a,M;,=0, (3.43)

which is consistent with the absence of external t&@ueéing upon the matter wave.
We summarize the conservation laws that we hatesredd up to now:

O:ay Jﬂ, OzaﬂTVﬂ, Oza/]szv-i_TyV_Tluv, (344)
the last of which can also be expressed in the for#2)3.

i. Coupling to an external electromagnetic field.Since the Dirac equation is
Lorentz-invariant, one can couple to an external eewgnetic field by the usual
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minimal electromagnetic coupling prescription and replaeepartial derivative operator

o, with, =0, +;l—eA,, in the case of an electron. The Dirac equationtiwlh become:
c

(A+ik ¥ =0, (3.45)
and its Lagrangian density will become:

L-'h—c(wzw P AW +2ik PW) (3.46)

which will also be equal to zero for a solution.
One can also regarias the sum:

L=Lo—eAPy'V, (3.47)

in which Ly is the zero-field Dirac Lagrangian (3.10). We will dsglow that the
additional term takes the formA;J/', in which J/ is the conserved current that is

associated with gauge invariance; i.e., the electrigeheurrent density.
The generalized forces and the momenta that are conjogate and W are:

oL ihic = _ 0L _inc
f————— g kY f=—=—(UW+2«¥ 3.48
pTm (- ), P (4 ), (3.48)
ne=—9%& - I7/LI—C\TJy“, = 6§_ =- Ih—cy“w. (3.49)
ouw) 2 o(0,W¥) 2

When one compares these to the corresponding iddoeikpressions (3.11), (3.12), one
will see that the generalized forcésand f have picked up contributions oé (

2)A&,\TJy“and (e/2) A y*W, resp., while the conjugate momenta have not @wng

One will get the wave equation fét when one varieg with respect toW, andvice
versa

When we omit the superfluous multiplicative constahe conserved current that is
associated with global phase invarianc& a$ now:

F=N"W+H*=cWpy'W=c g (3.50)

which has not changed from (3.13), and the condeelectric current density that is
associated with the gauge-invarianceCaokill then be:
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Jh= = =—ePyrp=-Zg~ (3.51)

The energy-momentum-stress tensor that is assdcwith £ can be obtained from
the zero-field one (3.31) by minimal coupling of the extefiedd:

Tﬂ_ihc

v 7("'_"' V”DV‘-P _DELI_J y/‘l.IJ) = |hc¢yﬂ|]vl.|.l , (352)

which can also be expressed in the form of a sum:
TH=TH-eA@pW) =T ¥+ A I, (3.53)

[0}
in which T # now represents the zero-field expression (3.31).
The conservation of energy-momentum will now taleefdrm:

9,7 = F,J (3.54)

ue
in which the Lorentz force has made its predictable appea.

The balance of orbital angular momentum takes the:form

a/l L,/:w = a/]T/LX/ _6/1 T/:/ )$1 + T/IV - T/IV = f/l XI/ _fl/ X;/ + T/jv - T/jv ) (355)
in which we have abbreviated the Lorentz foFgeJ; tof, .
This time:

Ty = ihc‘TJy[ﬂD W=7 0W-m70W¥=@"0V),, (3.56)

v]
as opposed to (3.36).
The zero-field expression (3.38) for the spin tensor Neeb only the conjugate

momenta, which have not changed by the introductiomodxaernal field, so the spin
tensor will be the same as before, and we will B#ile:

The balance of total angular momentum will then talkefdnm:
aAM:V:fluXV_fv)(/[: (f/\x)/jy, (358)

which is missing a contribution from the coupling of th@¢ernal magnetic field to the
magnetic dipole moment, despite the fact that “squafeghe Dirac equation (i.e., the
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relativistic Pauli equation) includes such a coupling terra eessult of the differentiation
of the electromagnetic potential 1-for combined with the algebraic properties of the
gamma matrices. In particular:

(4 -ik)(4 +ik) = A% +K?, (3.59)
with:

72 = y"V’[G#VLIJ+—(Aﬂ6 W+ Ad W+0 /w){ j A Al. (3.60)

When one polarizes the matrix product according to:
vy =+ a", (3.61)
one will get:
7w = (? +7F T, (3.62)

which already includes the coupling of the anomslmagnetic moment to the external
electromagnetic field (i.e., the Pauli term), u@ttactor.

By contrast, if one wishes to introduce the P&iim into the Dirac equation, one
must do it “by hand”:

A +ik+

e
F,o" |¥ =0. 3.63
me (3.63)

This implies a corresponding alteration to the milly-coupled Dirac Lagrangian
densityLp that was defined in (3.46):

L' =Lp+ Lp, Lp= C‘z FWLPO"WLP (364)

Since the wave equation has changed, along with_glgeangian density, we will still
have that:

L' =0 (3.65)
for a solution to (3.63).
That means that the energy-momentum-stress téngois derived fronC' will not

change from the one that was derived frdi®, which was constructed from only
canonical momenta, anflr will not alter the latter. Of course, we emphasihat the
vanishing of£’ for a solution does not imply that it vanishesniagally. In particular,

0,L' does have to vanish for a solution, so when loaksthe balance of linear
momentum, one will pick up a contribution from:

fo==0,Lp=— —>_[3,F, P’ W +F,d,(Po”¥], (3.66)
m,¢

V' KA



§ 3. The Dirac equation. 341

whose first term belongs to the Frenkel equation.

J. — WKB approximation to the Dirac equation.One can use the WKB method to
get both the BMT equations for a homogeneous externdt@beagnetic field and, more
generally, the Frenkel equations. Although that apprcaadbti precisely along the lines
of what we are trying to understand in this survey, notfetheit does overlap with it to
some extent, so we shall briefly summarize somesahain advances.

The first researcher to apply the WKB method to thadequation was Pauli in
1932 [L8]. Rather than employ an asymptotic series of thex:for

W :Rexp{%lz% *Z@ ﬂ} (3.67)

Pauli chose to expand the amplitude in a series, olistea

Y= {z(?j R{lexp(iS/h). (3.68)

n=0

Hence, th&R, are wave functions with their valuesGi.

He started with the minimally-coupled Dirac eqaat{with no anomalous magnetic
moment term) in the Hamiltonian form:

[?(DO +aka)—qu8}w =0. (3.69)
If one introduces the abbreviations:
e e
mzaoS—Em m:—akS—EAk (3.70)

then with the substitution (3.68), (3.69) will givise to a series of equations for each
power of 7 :

[76- & a“-myc AR =0, (3.71)
/8- ma*-moc Ri=(@o+a*d) R, (3.72)
[76- 7% @~ moC [ R = @0 + a3 Ros. (3.73)

This is a recursive system of linear algebraicagigns for the successive complex 4-
vectorsR, . Moreover, the matrix on the left-hand side:

N=[m-ma“-mcpg (3.74)
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is the same in each case, as is the linear diff@lespgerator on the right when> 0. The
first system will then have non-trivial solutions tffe matrix is not invertible; i.e., if the
determinant of1 vanishes. That condition is equivalent to:

ﬂﬁ‘iﬂ# ng ¢, (3.75)

which is the Hamilton-Jacobi equation for the actiamcfionS.

Now, the rank off1 is actually two, so there will exist two linearly-indepdent
solutions Ry =R (76, 7%) to (3.71) that one can regard as “spin up” and “spin down.
Hence, the general solution will be a linear combimatibthem:

Ro=C ()R +C' () R;. (3.76)

Solving the successive equationsRay ... is more involved, and although Pauli does
make some illuminating transformations of the equatibeseventually admits that he
had yet to actually solve the resulting equations. He,dwo@sever, show that they
should lead to equations of motion that would corresporadsginless point particle. Of
course, one should recall that he was not includingeitme in the Dirac that would take
the anomalous magnetic moment of the electron §pgn) into account to be begin with.

In 1937, Vladimir Fock 19] showed how to simplify Pauli’s discussion of the B/K
approximation to the Dirac equation by means of the “prope* formulation of the
Dirac equation. Some time later in 1952, de Brod®@ gxpanded upon the role of the
geometrical optics approximation in the context of thea®iequation. He criticized
Pauli’'s method by pointing out that since spin has unit&/#, in the classical limit,
spin should vanish, and one would not expect to find aickscoupling of spin with an
external electromagnetic field. It was later in 195& tBargmann, Michel, and Telegdi
derived their formula for the relativistic precessidnaospin polarization vector in a
homogeneous electromagnetic field.

In 1963, S. I. Rubinow and Joseph Kel2t][showed that, in truth, both Pauli and de
Broglie were correct, although Pauli’s procedure was @iy at finite distances from
the field regions, but when the distance became cahfgmtol/7, one would have to
take the de Broglie argument into account. They thenegpgte WKB method to the
Dirac equation, including the anomalous magnetic momaumpling term:

ime—(9-1]19 £ ow |y =
{hJZHmOC (2 1ij2 F,o }P 0. (3.77)

The resulting system of equations in successive orderwés then:

lir,y* +m,d R =0, (3.78)
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i M - g_ € MV
[irz,y* +myd R= {,3{2 1)—2%(:2 F,o }RO, (3.79)
i M - g_ e MV
liz,y* +md R = {ﬂ +(2 1) @ F.0 }RH. (3.80)

As before, the solubility of first one will implyé Hamilton-Jacobi equation f&r
7=nfc. (3.81)

Rubinow and Keller went one step beyond Pauli, thoughshaded that the condition
for the solubility of the first-order system led toetlBMT equation, at least for a
homogeneous electromagnetic field.

A year later (1964), Kenneth Rafanelli and Ralph ScHi#&f showed that one could
simplify the derivation of the BMT equation by using Focki®per-time technique.
However, they also started with the relativistic Paguation, instead of the Dirac
equation.

In 1965, Marius KolsrudZ3] introduced a transformation of the Dirac equation ato
“semi-classical’ form that would be valid as long as oegarded7 as small. He
showed that to first-order ih, one would have:

) e. . €eg 1(g )
- _ F, S=——=[F,§-—|=-1 ulh, 3.82
u iy > [F,S] F(z j[ Suld (3.82)
along with the conditions:
WS=0, S S =const. (3.83)

These are then equivalent to the BMT equations.

A year later (1966), E. Plaht844 built upon the results of Kolsrud to show that by
applying the aforementioned transformation of thea®equation to semi-classical form
and going to second order in, one could extend the equations of motion to
inhomogeneous electromagnetic fields. The reguleguations were basically the
Frenkel equations, completed by a separate diffialeaquation foru, in addition to the
one for the energy-momentum 1-fopn He discussed that association in more detail in
follow-up article R4b], along with a discussion of “classical zitterbgwag.”

Much later (1977), John Stachel and Jerzy Plebaj®&} obtained the BMT
equations from the Dirac equation by applying th&KNexpansion to the Dirac
Lagrangian and then looking at the resulting Eulegrange equations.

8 4. Other forms of the Dirac equation— From the outset, one of the big objections
that the physics community had to Dirac’s proposgdation was precisely the fact that
the concept of Clifford algebras was so unfamibad esoteric to them that everyone
suspected that there must be a simpler way of egm@g the same equation.
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a. Darwin form of the Dirac equation= The physicist Charles Galton Darwin
(grandson of the naturalist) published a widely-cited ar{2b], which also appeared in
1928, and in which he simply presented the explicit formtler Dirac equation as a
system of four linear, first-order partial differentequations with complex coefficients
for the four complex-valued wave functions that repnesg the components of the Dirac
wave functionW. The Darwin form of the Dirac system is then esady (3.8) when
one substitutes the explicit components ofd¢heap, andy. At this point in the history, it
would not be productive to give that form explicitly, sintteere is more algebraic
structure to those quantities than would be apparerdun dquations in four complex
functions. MadelungZ7] also commented on the problem of simplifying the Dirac
equation.

However, in regard to the Darwin form of the Diraguation, it is important to
emphasize that it illustrates the fact that the ©&guation cannot be truly regarded as a
first-order partial differential equation in a single goex-valued wave function, like the
Klein-Gordon equation, but rather a first-order parti#fedential system for four
complex-valued wave functions. Since amyorder partial differential equation in a
single complex-valued function can be converted intostesy of first-order equations
for more than one complex-function, in effect, treler of the Klein-Gordon equation
hasnot been reduced by one. For instance, if one introducestdrenediate variables:

=,=0,¥

then one can express the Klein-Gordon equation as theadenti system of five linear,
first-order partial differential equations in the fiveneplex functions¥, =,;:

0,W==,, n"o,Z,=-k*W. (4.1)

In the language of jets, the replacementUfwith W, =, amounts to the “1-jet
prolongation” of¥.

b. Tensor forms of the Dirac equatienMuch of the discussion of so-called “tensor”
forms of the Dirac equation traced its roots back to ghper of Edmund Taylor
Whittaker R8], which was, to some extent, inverse to the paper ttd Oaporte and
George Uhlenbeck2B], which discussed the spinor formulation of Maxwediguations.
The sense in which the former paper was inverse to ttiee ia that what Whittaker was
defining was the equivalence of two-component Pauli spinaiith self-dual,

decomposable 2-forms o8* (or self-dual decomposable bivectors, for that matter),

while Laporte and Uhlenbeck were trying to define the oppesjuivalence (at least, in
effect).

The map that Whittaker defined started wigh ] O C? and defined the (complex)

components of a 2-form ai® by:

For= (@)’ - @)? Foe=-il(@)+ (@] Fos=-2¢0 @, (4.2)
and
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Fij =—1 &k Fo. (4.3)
One notes that:
(Foo)® + (Fo2)* + (Fo3* = 0, (4.4)

S0, in effect, the componeRg; is somewhat superfluous.
Indeed, one can invert the transformation by using BalandFo;:

1 - 1 -
ﬂ:ﬁm, @:ﬁ _F01+|Foz- (4.5)

Hence, one sees that the self-dual 2-formsCérthat have vanishing invariant (4.4)

represent only a 2-complex-dimensional submanifold of tleeovespace of all self-dual
2-forms, namely, a complex 2-sphere of radius O.
The form that the correspondence took in Laporte andnbbatk was to associate

“ %@

symmetric, 22 complex matrice%
QZ ¢22

} with complex components; by way of:

Foi=@1—@», Foz=—1[¢@1 + @2, Fos=—- 2@, (4.6)

along with (4.3). Note that the set of all matricegsh& kind in question is a complex
vector space of complex dimension three, so the sadpthe Laporte-Uhlenbeck
association is strictly broader than that of Whittaker

The way that (4.2) is included in this is to look at mharix of the tensor product of
[@, @] with itself:

{ﬂ[qq al {m ﬂﬂ (ie. @ = @ @). @.7)
% ae 2P,
This matrix will then have the basic property that dgtg] = 0. Hence, it would have
rank 1 as a complex matrix; i.e., it will have twcelanly-independent components. More
generally, the matrix ofa ¢ when @ and ¢, are linearly-independent will have a
determinant of@ ¢4 + @ b — @ (b — @ ¢n, which does not have to vanish. In the non-
vanishing case, the rank of the matrix will be 2, andlithvaive four linearly-independent
components, as would the most general Dirac bi-spinor.

One can define a much more direct association ofratnic, <2 complex matrices
with 2-forms by first associating their three independsmmponents with three complex
numbers with the notation:

ﬂ1:E1+iBl, @2:E2+i82, ﬂ2:E3+iB3, (48)
in which theE; andB; are real. One then associates the complex covissiahr

Fi=E +i Bi (49)
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with the real 2-form:
F=dt"E + #B, (4.10)
in which:
E=EdX, #B=21gB dx ~dx. (4.11)

This last step is, of course, the complex representatidhe electromagnetic field
strength 2-form that was first discussed by Riemann, lagwl developed by Silberstein,
Majorana, and Oppenheimer.

One might also confer the discussions of the tefegom of the Dirac equation that
are given in Ruse3)] and Taub 31].

c. The Dirac equation in terms of differential formsAn elegant way of seeing how
the Dirac equation relates to the calculus of extedifferential forms is to note that
d’Alembertian operatodl admits a square root in the form of the opergor=ds + J:

ﬂéz(d/\‘k@(d/\i'@:dj/\i'd/\azl:‘,

since bothd2and 42 must vanish.

Note that the operatod, will turn ank-form a into the (formal) sum of &-1-form
da andk+1-formdsa; i.e., a tensor field of mixed rank. Hence, the \ainig of g a is
equivalent to the system of two first-order linear paditierential equations fouo:

oa =0, d.a=0.
Hence, one can consolidate Maxwell's equations implst
dF =4m). (4.12)

Trying to represent the actual Dirac equation using thisabgers harder than it
sounds, though, since no homogeneous exterior form witbganother homogeneous
form of the same rank under the actiongf, much less a multiple of itself, and in fact,

the only kind of exterior form that could go to anothee ofthe same type would be the
formal sum of a 0-form, a 1-form, a 2-form, a 3-form¢g & 4-form. Hence, this form of
the Dirac operator is generally useful only in the stess case.

d. The Dirac equation for matrix-valued wave functiondVhen one uses matrix-
valued wave functions (cf.2]), one can express the Dirac equation while using only
Pauli matrices for coefficients. Namely, when thever function® has the form (1.1),
one can express the Dirac equation in the form:

%W+U‘%w03 =-ikV¥ g’ (4.13)
X



§ 4. Other forms of the Dirac equation. 347

and its Dirac conjugate will take the form:
— P+ — Yo' Ziko?VY. (4.14)

Although there is much to say about the Dirac equatiahis form, since we shall
have no further need for it in the remainder of thiskhawe shall have to be satisfied
with those cursory remarks. We will, however, poiat that in order to get from (4.13)
to the relativistic Pauli equation, one needs only tdacepthe partial derivatives with
covariant derivatives, rewrite (4.13) in the form:

[Oo()+0' O () o +ik() o ¥=0, (4.15)
and left-multiply by the operator:
[Oo()-0c' O () o®-ik() o],

while taking into account the multiplication rules fauli matrices.

8 5. Discussion— Something that appears to have been simplified coabigein
the usual discussions of quantum wave equations is tHeredi€e between the
kinematical state of a wave and its dynamical stdteat is because the association of a
dynamical state with an infinitesimal kinematical tetacomes about by way of a
mechanical constitutive law, and so far quantum mechanak®snthat association by
way of a fundamental constant in the form7of Hence, the difference between a wave
equation as a differential equation for the time evotutof a kinematical state and a
differential equation for the evolution of a dynamisthte becomes the rather trivial
difference between two equations that differ by anall/ewultiplicative constant.

Of course, in order for that difference to be trivaale must generally be considering
linear differential operators, which one typically dder free particles. When one goes
on to the time evolution of the states of interactingigas, which is usually treated in
the scattering approximation by quantum field theory, onstraxpect that the linearity
of the operator would break down.

Another aspect of the relationship between kinemadiodldynamical states of waves
that we have been emphasizing all along is that tgedtias a constant is subordinate to
the assumption that the matter being described by the fwagton is point-like, which
amounts to the statistical interpretation. As we ehaNscussed before, when one
considers the matter to be spatially-extended, it icewable that: will take the form
of a density function, not a constant.
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CHAPTER X

THE CONTINUUM-MECHANICAL FORM
OF THE DIRAC EQUATION

In this final discussion of the existing continuum-metbtal models for the quantum
wave equations, we come to the models that followed Boac’s quantum theory of the
electron. Here, one finds that the most-developed rmmaunti-mechanical models did not
follow from the introduction of polar coordinates intetfield space, as in the case of the
treatment of the Schroédinger equation by Madelung and Tg&sband the treatment of
the Klein-Gordon equation by Takabayasi and others, argkred polar coordinates for
higher-dimensional complex vector spaces, as in thériesd of the Pauli equation by
Bohm, Schiller, and Tiomno. Rather, the most expiditydrodynamical treatment of
the Dirac equation was by Takabayasi, who chose to lisedsicovariants, as he did for
his treatment of the Pauli equation.

Consequently, in this chapter, we shall take a slighitye casual approach to
surveying the literature, since the best way of convettiagDirac equation into a set of
continuum-mechanical equation has yet to be agreed updmetsaime extent as the
Madelung-Takabayasi transformation. In particularf t@nversion does not seem to
come about by introducing “generalized spherical cooré#ian the field space. The
particular attempts to convert the Dirac equation thatshall discuss are the ones that
were described by Jacques Yvdi) &nd Takabayasi?]. Bohm, Halbwachs, Lochak,
and Vigier B] made a similar attempt that proved to be equivalertabdf Takabayasi.

A purely classical (but relativistic) model for a relatic spinning fluid was
constructed by Jan Weyssenhoff and Antoni Raabe in 1847hft amounted to a
simplification of the Dirac electron in the senbattits energy-momentum-stress tensor
included the same kinetic part as that of the Dirac relectout none of the internal
stresses. In 1960, Francis Halbwachs (a student of de &ralgihg with Yvon, Costa da
Beauregard, Proca, Lochak, and Vigier) expanded upon tlegadeheory of relativistic
spinning fluids in a booky] that also included his own theory of general modelsdohs
media that also included internal stresses.

Among the internal stresses that one finds in theclalactron are the internal couple
stresses (i.e., torque stresses). Non-relativistidangih such internal couple stresses
had been discussed as early as 1887 by Woldemar V6jgin[the context of
ferromagnetic crystals and expanded into a more getieraty by Eugene and Frangois
Cosserat in their ground-breaking 1909 bo@k [The physical first principle at work
was based in action functionals for continuous mediawkee invariant under the action
of Euclidian rigid motions, and the ones in which onenfibinternal couple stresses came
to be called “Cosserat media.” As the author poided[8], the basic ideas of non-
relativistic Cosserat media can be generalized toiviskat ones, and those relativistic
Cosserat media include the Dirac electron, as veelVayssenhoff fluids, as examples.
Hence, the chapter will conclude with a discussiormefapproach to the Dirac electron.
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8 1 Bilinear covariants of the Dirac wave function — AS we mentioned in regard
to the Pauli equation (Chap. VIII), the “decoding” of pital observables from the Dirac

wave functions¥ and ¥ is traditionally achieved by way of the method of “biline
covariants’ If C(4, n) is the Clifford algebra of Minkowski space, anda{EA = 1, ...,

16} is a basis for the underlying vector spaceC@f, /7)), which is represented in the
matrix algebraM(4, C), then one can form 16 real scalar expressiE&WY (A= 1, ...,
16), which are bilinear i, and are then called thglinear covariantsthat are defined
by W.

a. Basic set of covariantss The most common way of defining the basisi€ by
distinct products of#matrices (with some choice of representation), &edttaditional
covariants that one deduces fr&n that way 9] are listed in the following table:

Table 10.1 Bilinear covariants of a Dirac wave functionV.

Type of object A Ea Symbol| Definition Dual definition
Scalar 0 I Q pyy
(Co-) Vector 14 |y, i P W = P16 Y Y yo ¥
Second-rank tensof  5-1Q y, y, My W W "My =i @ Jey g ¥
Pseudo-(co-) vectof  11-14y; y, i, | Siw Py | s, =P rp ¥
Pseudo-scalar 15 | QWV WynpnP | Q =0 py

In this table, we have defined:

Vid =5V ¥ = Vo w#v), (5.1)
and
V6 Vi =% i WY Vi = & Euvir vy (v, K, A distinct), (5.2)
using:
VBEVoVi1Va V3= 3 &wkd Yu Vv VeV (5.3)
That will make:
*S, :é Exruv S/],uv, Q_) :% € uvia ﬁK/‘ﬂV . (54)

It is essential that the components that are oddainom the bilinear covariants
should all be real numbers. That means that they allsoincide with their complex
conjugates:

(WE, W) = (W'yE, W) = W'E )W = WE, V. (5.5)
Whether or not this is true or only true up to sign wilpeled upon whetheE' ); equals
plus or minusy Ea . That will, in turn, depend upon both the sign conenthat is
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used for the Minkowski space scalar product and the repeg¢genthat is chosen for the
gamma matrices. We have chosen the (+) sign convention, while many quantum
theorists prefer the “imaginary time” convention. Tinain issue with the choice of
representation is whether the matpixproves to be Hermitian or anti-Hermitian. With
the three representations that we discussed before Rirac, Weyl, Majorana), one
gets:

Dirac, Majorana
t = { Yo J yi=-x (all reps). (5.6)

C -¥, Weyl,

In the cases wheré¥VE,W)"= - WE, W, one must multiply by in order to produce a
real number. Hence, the definitions that we gave @lao& consistent with the Dirac and
Majorana representations.

A useful property of# is that sincex must be equal to either 0, 1, 2, or 3, gnadvill
anti-commute with every, for whichv # g, but commute with itself, one must have:

VVu=—Vuls. (5.7)

Some other useful properties of the majgiare:

Dirac, Majorana

2 _ _ - Vs
(9% =-1, ¥ {_VS Wyl (5.8)

One can also define the corresponding contravariampcoonents by means of the
isomorphism that the Minkowski space scalar product defines (aising the indices).
Equivalently, one can simply raise the indices on @msbelements £in the same way
and form the bilinear expressions that the resulting esfmes E define. For an
orthonormal frame on Minkowski space, that means thairiel E will differ by at most
a sign, as matrices.

Clearly, the componentsy,, are antisymmetric in their indices. Hence, one can
define a dual tan,, by means of:

*m,uv:i lTJy5y[,uv]l'|',, (59)
with:
VsV = 5 Eurd Vikd] (5.10)
but one will see thatm,, cannot be linearly-independent of,, , since:
In the case of the pseudo-vectsy, {(or really, pseud@ovecto}, from (5.4), one can

just as well think of it as being defined by the componstftsof a trivector #+s, and if
one lowers the indices, the componesjts of a 3-form.



8 1. — Bilinear covariants. 353

Similarly, also from (5.4), one can also regard theigsescalarQ as the same thing
as the dual of a four-form:

QK/i,uv :quKyﬂyﬂquJZSKAyvﬁ- (512)

Therefore, the bilinear covariants can be used asaimponents of a scalar fiefd, a
1-formj, a 2-formm, a 3-forms, and a 4-forniQ, as follows:

j=jud, m=imy,dérdy, s=lispuddAdEAdy, Q= QV, (5.13)

respectively. In effect, the prefix “pseudo” indicatesttbne is dealing with the Hodge
dual of the geometric object.

In order to assign physical interpretations to thenddr covariants, one must keep in
mind that two of them are already associated with INaveturrents (up to a scale factor).
In particular,j* is associated with both the currents that come ttwarphase invariance
of the zero-field Dirac action functional and the gaugeaiiance of the minimally-
coupled Dirac action functional. Similarlg/*” is associated with the internal angular
momentum (i.e., spin) tensor that relates to Lorentariance. As a result, one must also
expect to find the conservation laws (or balance pies) that follow from Noether’s
theorem amongst the equations of motion that govermbitinear covariants, at least in
some form.

If one thinks of the basis elements Bs algebraic operators that act upon wave
functions W, while the wave functiot¥ represents the state of an electron then the
bilinear covariants?® E,¥ will amount to densities that give the expectatiolues of

the observables that the Eepresent when the electron is in the stltevhen they are
integrated over all space; i.e.:

<w|EA|w>:jjleJEAwdv. (5.14)

Hence, this approach to converting quantum equatdmotion into “classical” ones is

essentially Ehrenfest’s theorem. One should thercdreful to distinguish the subtle
difference between the equations that one firshiobtin terms of “mean-value densities”
(as de Broglie called them) and the ones that ate ip terms of mean values. It is
essentially the difference between equations ofred¢éd matter and equations of point-
like matter, respectively.

b. Basic algebraic identities- Although the basis elements Bre all linearly-
independent, they are not algebraically-independante twelve of them are defined in
terms of four of them (viz., the generators of "igebra). This also leads to some
algebraic dependencies between the bilinear couarias well, some of which were first
mentioned in 1931 by Otto Laporte and George Uldekl10], expanded upon by de
Broglie [11] in 1934, and then expanded upon further by Ha@]iin 1935 and 1936 and
his student Walter Kofink13] in his 1940 dissertation. Olivier Costa de Begard
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discussed them in his 1943 doctoral dissertatich {inder de Broglie, and they were
simplified somewhat by Gerard Petiau in 1948]]
The most elementary ones are:

P=-*=0%+ Q% q,*s>=0, Q*+Q*)mM=Q(**9)-Q*(j"*s). (5.15)
Hence,j is timelike, s is spacelike, and the two covectors are orthogonaael point.

One already sees that the 2-fgrfins seems to play a fundamental role in its own right.
One typically introduces a real densitguch that, by definition:

Q%+ Q% =n% (5.16)
As a consequence, one will have:
il =1sll=n (5.17)

One can then define unit vectors:

[}
1

i, Os (5.18)

—)
I
S|

S|k

that will make the pair of vector fielc{s'; § an orthonormal 2-frame field:
IilF=1 Isi=-1, <j$>=o0. (5.19)

Similarly, their metric dual§j, § will define an orthonormal 2-coframe field.
The last of the basic identities in (5.15) camthe given the simplified form:

m=-Qd- Q0F, (5.20)
SO:
*m=Qd -Qb, (5.21)

in which we have defined the basic 2-form:

G =*(j 09 (5.22)
and its Hodge dual:
6 =-]08, (5.23)

which will then have the properties:

i.o=i.0 =0, .06 =-§, .00 =]. (5.24)

i S i S
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Hence, with this definitiong has much in common with the spin 2-foom= *(u * 9
that we defined in Chapter VIII, 3

One can see from (5.20) that the 2-farms not a truly fundamental field that one
can derive fromtV, since it is an algebraic combination of the mossmeintary bilinear
covariants £, j, s, Q}. These, in turn, are not algebraically independentgsihey are
related by the first three identities in (5.15). Thall weave seven independent
components for those remaining four fields, which id stile short of the necessary
number, sincé! has eight real components. However, that will n&tae going on to
the differential identities, not looking for further abgeic identities.

Nonetheless, some further algebraic identities cadebwed from these basic ones
using the properties of the exterior algebra over Minkoggace, without having to refer
back to the Clifford algebra. For instance, one has:

n’g =—-Qm- Q*m, n?06 =-Qm+Q*m, (5.25)
im=Q§, i*m=Qs, iim=-Q7j, i*m=Q], (5.26)
<m, m>=2QQ, (mm =Q%- Q?. (5.27)

This already allows one to form an electromagnatialogy if one regards as the
electromagnetic field strength 2-forfhand | as a unit vector that points in the time

direction. Basically, that will mak@ the magnitude of the electric field strength 1nfor
E = Q8, while Q will be the magnitude of the magnetic field stiégng-formB = Q4.
However, the fact tha® and Q collectively giveF two degrees of freedom says that one
is not defining a perfectly gener) but a special class of them. If the scalar pctslu
<m, m> and (n, m) vanished then one would be dealing with an ed@aignetic field that
might be wave-like, but since they typically wilbtnboth vanish for the generd, one
must conclude that W describes a massive wave then (5.27) would haebdmacterize
its basic invariants.

The relation (5.16) allows one to think @fand Q as the Cartesian coordinates of a
point in a plane, so one can convert to polar doatds f, ), where the anglé is the
usual argument of the vector from the origin togb@t @, Q). One can then say that:

Q=ncosf Q =nsind (sotand= Q/Q). (5.28)
As a consequence of these definitions, since:
Q =ncos @- 71/ 2), (5.29)
one can just as well regafd are something that can be obtained fil@rhy a change of
the phase anglé

As mentioned elsewhere in this book, for Minkowskpace, the Hodge *
isomorphism defines an almost-complex structure-darms (or bivectors), since one
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has ¥ =— 1. That also allows one to define a complex structaréhe real vector space
N2 by way of:
C=A+iB=A+"*B. (5.30)

That also means that one can think of the two readitesQ and Q as defining a
complex number density: B _
Q+i Q =n(cos@+ising =née’, (5.31)

which then means that the real densityas been given a phase.
One can then put (5.20) into the complex form:

m=-Q+i Q)6 =-né€’s, (5.32)

Furthermore, the nine relations (5.15) are also suftidierderive all of the other
ones. As a result, one can say that the sixte@redil covariants have been reduced to
seven independent ones. Hence, the eight real contgarfahe complex wave function
W contain slightly more information than the informatthat will show up in the bilinear
covariants. Since we have exhausted the algebraic pitissipthe usual way of getting
more information out o¥ is to include differential identities, as well.

c. Basic differential identities— Some elementary differential identities can be
derived from the Dirac equation and its Dirac conjugatmechately. Recall that those
equations are:

Yo +ikW =0, 0,¥y* —ik,W=0. (5.33)

If one left-multiplies the Dirac equation by E* and right-multiplies its conjugate
(5.33) by E' ¥ then that will give:

PEM W +ikg PEAW=0, 09y ErV-ing PEMY =0
Adding and subtracting will give:

0,V ERWH+YEN MO, W =0, (5.34)
0¥y ErW-WEN MO W =2k W BN W (5.35)

Note that when one sums over ail as long as Eis notl, at each step of the
summation,y’” will coincide with one of the matricgs” in the product that defines*E
In that case, one can replace each such paif' ahd y” with + 7/ and then add to it the
sum overy when one treats the superscripts in the produéts” andE*y* as if they
were distinct. In those sums, one can simply emttmute the matrices in the products
as follows:

14 14

2 A A A A0 Gk (e A Y'Yyt - vty yY (5.36)
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along with (5.7).
As a result, one will get three types of expression®lving the derivatives:
Divergences of bilinear covariants:
0u(Wy EMW), (5.37)
expressions of the form:
0,V y'EN W - ENW, (5.39)

which we shall calskew divergencesaand expressions that come from the terms that
include thes”", which will come from both terms in the left-handles of (5.34) and
(5.35).

It is useful in calculations to generalize the skevedjences to skew differentials
(which are not the same as exterior derivatives), shah skew divergences become
contractions of the differentials. In particular will then have:

2,Q =i(@,¥Y¥-¥i W), (5.39)
0,j4 =i, Wy -Wyho W), (5.40)
0,M* =0 Wy W-Wyt o W, (5.41)
0,9 =0, Wy Y YW -WptF o W (5.42)
0, =9, Wy W -Wyryho W, (5.43)
2, Q =i(@,¥yY-Yyow). (5.44)

When an external electromagnetic field is minimalyupled to the wave function,
one simply replacesd, W with [0,¥, thTJ with DELTJ , and changes the notatiopto 0.

We then get 32 equations in terms of the 16 bilinear v which we exhibit in
the form of the following Table:

Table 10.2 — Differential identities associated with the baskelements.

A EA Divergence equation Skew divergence equation
(@ (b)
0 | 9,j*=0 i =260Q (5.45)
-4 |y’ 0y == 210" -0"Q o, nmY=-9"Q (5.46)
5-10 | py” [0, =-("j"-2"j") 04 SV = 2u M (5.47)
_ _ -@=0"}")
11-14 | y*y*y" | 0,Q = 2K *su = Euav 0" M | 0°Q = 94" (5.48)
15 |y 0% = 20 Q 0,*¢'=0 (5.49)

These equations apparently go back to a 1935 papkiby Walter Franz on the
methodology of the Dirac equation. They were alsousised by Costa de Beauregard,
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in his 1943 doctoral dissertatiohdg under de Broglie, who included his own discussion
of them in his 1952 booKL[Lb] on the Dirac electron.

Let us look at the divergence equations: (5&853%ays that the vector fieldis a
conserved current, which we already know from Noeth&esrem when it is applied to
either the phase or gauge invariance of the Dirac afttimtional.

(5.46)@) is strongly evocative of Maxwell's second equationthe electromagnetic
excitation bivector fields) if one interprets th¢” as the usual electric current-density
vector field, although the physical meaningodf2 as a current would still need to be
considered in more detail. Of course, one should réwalprevious comments about
whetherm is a fundamental field, which suggests that the tableqoftions above is
already somewhat redundant.

If one expresses”” as the components of the inverse Poincaré dual of-fbemi*s
(¢4 = ¢ *5) then (5.47)4) can also be seen as a constraint that is imposedtbpon
exterior derivatived-*s:

0u%Sy—0,*sy=— L g = 0. (5.50)

However, we shall shortly see that the equation intguesan also be interpreted as
a direct consequence of the conservation of the No_etineents.

(5.48)@) couples the gradient of the pseudo-sc&lato the 1-form s and the Hodge
dual of the skew differential an.

(5.49)@) says that the vector fields*is not actually a conserved current under the
motion that is dictated by the Dirac equation, but daource that relates to the non-
vanishing ofQ.

In order to interpret the “skew” divergence equatiohdhelps to go back to the
Noether currents that were derived from the Dirac Lagjeandensity when it is not
scaled to give an energy density [namély; i (VW - gWW) - 2« WV ].

SinceL = 0 for a solution, from (5.40), that will make the gyyemomentum-stress
tensor take the form:

t“ =N“, W+, W =i(Wyo, W-0,WyW)=-0,j" (5.51)
That will make:
t,uv_tv,uzb,ujv _va,u- (553)

If we refer to equations (5.4B)(then we will see that (5.52) implies that:
ty =- 2k Q, (5.54)
while the (5.47)) and (5.53) imply that:

0,8 =- (" - . (5.55)
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If we recall the definition of the Dirac spin teietor field that was derived in Chapter
IX, 8§ 3, namely:

s = 2@ty = o (5.56)

then the trivector field will clearly be proportional to the tensor of intermaluple-
stresses fok. The equation (5.55) is then typical of the conseraatibtotal angular
momentum for a relativistic Cosserat medium, whichshall discuss at the end of this
chapter.

Following Takabayas®?], and using (5.43), we define the “dual” t by way of:

YEi(@ryov-0,9y W) =-0,*d, (5.57)
which will make:
Tﬂv _Tv,u :D/I*SV_Dv*S/l- (5.59)

When one compares equations (5.58) and (5.59) to equations (5.&2}5&3),
respectively, one will see that the “duality” that retathem is the somewhat weaker
duality ofj and *s, although, in fact, they are algebraically independeptich other.

If we refer to the second of (5.49) then we will deset {5.58) implies that:

_;‘ =0. (5.60)
If we take the Poincaré duals of both sides of (5.59) that will give:
S =Lem (L, -1,,), (5.61)

which is essentially “skew-dual’ to the equation (5.55) (ugpido).
From (5.47)), we will also have:

,0/‘ S/],uv — 2K0 n.r\v_ (a/\jV_anﬂ),
or

G =Ty =3 Gt [260 M= (@1~ 0% )] = [2660 *M=*Chjl (5.62)

We summarize these changes to Table 10.2 in the fofiralbé 10.3. This table still
leaves the skew-gradierigQ, o ﬂf_l, and the skew-differential,m"” unaccounted for.

We shall return to that issue in a later section on Takady's treatment of the Dirac
equation.



360 Chapter X — The continuum-mechanical form for the Décp@tion

Table 10.3 — Revised differential identities associated withe basis elements.

A EA Divergence equation Skew divergence equatior
(@ (b)
0 I 9,j¥=0 t == 2k Q (5.63)
-4 |y’ 0, =2k ("~ 2"Q 0, nMY=-9"Q (5.64)
5-10 | yYy” |9, M= (" -t T, -,= (5.65)
-2k M+ drj]
1114 y 'y | 9,Q = - 260 Sy~ Gueaw 0 M | 0°Q =0, *m* (5.66)
15 |y 0,4 =- 260 =0 (5.67)

c. Pauli-Kofink identities.— What Pauli 12] first established was that all of the
algebraic identities between the bilinear covariantsiccde derived from the basic
operator relation (note the permutation of the lowdrces):

S LAY = 437 o7 (5.68)
>

A=l

That spawned fifteen other such identities by whalefh or right multiplication by a pair
of basis elements (£ E¢); e.g.:

Z[EBEA]IA( [EcELY = 4[ET[E]- (5.69)

A=l

One then gets identities in the bilinear covariaintsn these operator invariants by

evaluating (5.69) otwo Dirac wave function&’, W' and their Dirac conjugated , W',

resp., by way of:
16

D(WEEW)WEEW)=4WE W)W EW). (5.70)

A=l

In order to get back to the form of the basic id&® above, one restricts this
construction to the case in whigh=¥', W= W' |n that sense, the Pauli identity (5.68)
becomes a generalization of the basic identitied, l&ofink [134 basically expanded
upon the consequences of that fact in his theslsmuRauli.

Since the product (W E, W)W E.W)is really just the product of two real numbers,
the order of B and C is irrelevant. Hence, the bemnof possible algebraic identities will
be 136 = (16)(17). However, in truth, only nine of them che independent, and
expressing the Dirac equation as an equivalentesysof continuum-mechanical
equations generally depends upon making a goodeludithose identities, along with a
good choice of differential covariant. Similarip, order to make physical sense out of
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the purely algebraic expressions and identities that ave Introduced, one must also
make a judicious choice of physical interpretation tfog various bilinear covariants,
which usually amounts to rescaling them by means of @sapparameters.

As long as one evaluates the formula (5.69) for therlagstricted case, one can think
of it as being expressed more concisely as:

> (E:E)D (EE, )= 4E, U E.. (5.71)

Petiau 154 refined Pauli’s result by saying that since tl@angna matrices were, in
turn, direct products of Pauli matrices (includiag= 1), one could replace (5.68) with
the somewhat simpler relation:

3 3
Doy oplo) g = olo); olo]) s . (5.72)
p=1 p=1

The sense in which this is simpler is that the fies that one derives from (5.69) will
have at most seventeen terms to them, while the tha¢ come from (5.72) will have at
most six. Of course, one now has to evaluate dbatity on four distinct Pauli wave
functions, instead of two Dirac ones.

Pauli [12], Koffink [13b, ¢, d, and Petiau]5h] also expanded the list of differential
identities accordingly.

8 2. Yvon form of the Dirac equation.— In 1940, Jacques Yvoidd] attempted to
apply the same basic transformation to the Dirawewhinction that Madelung had

applied to the Schroédinger wave function. Howesgéarce the complex vector spacé
was not typically regarded as something that aéahijeneralized polar coordinates in
the same way a€ and C? (*) at the time, he mostly reverted to the use ohdsr

covariants and the algebraic identities that haahlset down by de Broglie in14.

Yvon’s physical interpretation of the covariantarsed by saying that the density
was a number density. He then associated the véetd | with an electric current
vector field of the moving electron that had corxexctype:

Jc=—-ecj=puU (oe=-en, (6.1)
in which:

us—j. (6.2)
n

() That is not to say that no such coordinates exigledd, if one regards* as the underlying vector

space for the algebra of complex quaternions then it besoratural to describe its non-zero points by
means of a complex number that represents the length amimgplex quaternion and three complex
coordinates that describe a point on the complex unit sgiegréhe quaternion projects to.
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Since:
u?=¢c% (6.3)

the vector fieldu could then be interpreted as the proper-time velocith@tlectron, so
L= Would become its electric charge density. One would hlaee |Pc || = |o: | C.
Yvon then interpreted the 2-formm as being proportional to the electromagnetic

polarization density: of the electron by way of the Bohr magneten

en
ﬂ:_ﬂBm:_Z—rTme. (64)

That also suggests that one can interpret ther@{ict., (5.20)]:
h ho= A A
=—m=—-[Q0 -Q 6.5
> 2[ ] (6.5)

as the spin density 2-form of the electron.
M then gave rise to an electric polarization cutrent

Je=divu (3} =0,u"), (6.6)

so to Yvon, the “true” electric current that was@sated with the motion of the electron
was:
J=Jc—Jp=pu—-divu. (6.7)

Similarly, the dual 2-formrh gave rise to a magnetic polarization current:
Iu=—-div*u. (6.8)

The pseudo-vectors¥(i.e., the 3-forns) was then assumed to be proportional to the
spin density covector:

ain .

s=2*s=18 (ISl =n/2). (6.9)

N | St

By rescaling (5.15), the following relations exs&tween the various covariants, and
they are derived immediately from the identitieg5ri5):

<J., S> =0, (6.10)

n? = (ij sz—(gj S (6.11)
ec /]

y:—yBm:—i[ﬁJCAS—Q*(JCAS)]. (6.12)
m, It
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One will also have:
<u, S =0. (6.13)

Hence, the spin density vector is orthogonal to ole-felocity.
The relation (6.12) can then be put into the form:

H=— s n[sin @(u”*s)—cos@*(u”*9), (6.14)
so one will also have:
u=-sn[cos@u"*s)+sin@*(u”*9). (6.15)

One can also write (6.15) in the complex form:

i u=—psné?un*s), (6.16)
which would make: _
U= psnielunxy), (6.17)

which would be consistent with (6.14).

By rescaling the basic differential identities, one darive the basic result thats a
conserved current:
divJ=0 [or div ou) = 0] (6.18)
from (5.45)@) and:
divS=-2mpc Q (6.19)

from (5.49)@). This last relation shows that the flow of thensgensityS vector field
will be relativistically incompressible precisely i vanishes. If one were to think of
Q asn sin 8 then that would be equivalent to saying that &iwould have to vanish,
such as whe#vanishes. Hence, the somewhat-mysterious athgéems to relate to the
conservation of spin density in this interpretation.

Yvon then makes a Madelung-type substitution for thed®ivave function:

Y=gy, (6.20)

although from that point onward, the logic of the neatltics becomes somewhat vague
and contrived. By his own admission, the seven-comgoresoras (A= 1, ..., 7) that
he defines in terms of linear combinations of the bilineaadants is not a true vector,
in the sense of its transformation properties. Wel shaly take his word that the
resulting flurry of calculations actually does convergéhe equation:

rmnsmewfﬁ%fgmedwp+unedw*my:SGyw. (6.21)

We recognize the first term in parentheses as beinguaentimber flux (i.e., the true
electric current divided by e which then gets combined with the magnetic polarization
current, also divided by € Multiplying that number flux byn, will then give it the
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character of an energy-momentum density. Henceatgebasically dealing with a
coupling of energy-momentum density with the spin dgnsit
Yvon then defines an energy-momentum density vectt By way of:

p=nP=n(mcosfu —(—SA ) +%:(cos€div,u— sin@div * ). (6.22)

Clearly, this energy-momentum density is not typicatlinear with the velocity, or
even the usual electromagnetically-coupled momentym — (e / ¢) A, but involves a
contribution from the polarization current, after anpdex rotation.

Yvon then manages to derive the following equation:

u
all s S
d 2| d,s| |0,u d d (6.23)
aﬂs aﬂu

from the fact thatd’¢ must vanish identically. This equation then tattes form of a

coupling of the dynamical vorticity of flow of theector field P with the spin of the
electron.
Yvon then shows that equations (6.21) and (6.22gquivalent to:

P:mocoseu—(—zA+#[(D€—%j AIVEARST (6.24)

ds_. .

d——ludS——lsdAu+#(D6?"u"S), (6.25)
T

respectively.

The full set of equations that one derives from Ehrac equation is then defined by
(6.18), (6.19), (6.21), (6.23), with the definitiari P that is given in (6.22) or (6.24).
Hence, every wave functidfl that is a solution to the minimally-coupled Direguation
will imply a solution to the latter system of eqgoat forn, 6, u, S, . However, as Yvon
points out, the converse is not true.

In the classical limit (i.e.;z —» 0), one will have sirf = 0, so co¥== 1, 16= 0.
Equations (6.22) and (6.23) will then become:

P=+mu-SA, dAP:J_rmodAu—izF:O, (6.26)
C

resp. HenceP will become the usual electromagnetically-coupdsergy-momentum
vector field for a point-particle, with a sign ometrest mass, while (6.23) says that the
flow of P is irrotational, which will lead to a coupling tfe kinematical vorticity of the
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flow of u with the external electromagnetic field that Takabayesls “quasi-
irrotationality.”

In the classical limitS and g will vanish, although (6.25) will still maintain some
meaning in the form of:

945 __icdu. (6.27)
dr

which can also be given the form:
95 _ vurs), du. (6.28)
dr

Upon substituting the second of equations (6.26), one will gle¢:

2=z F, (6.29)

which is the equation for the Larmor precession ofhia density vector.
The electromagnetic polarization density becomes:

[= F—*UN = s *(UN*S), (6.30)
IT[)C

which suggests that the 2-formu*t S can represent the generalized angular momentum
of the electron. If we compare (6.30) to the Pauatieh (6.4), we see that in order to be
consistent, we would need to hawe= *(u ”* *s), which is not true, from (5.20). Hence,
we might already begin to suspect the Yvon model foadsociation afn with the spin
2-form, rather than a “complex scalar multiple” oé tspin.

That notwithstanding, one can then put the equation (62%pin procession into
the form:

‘;_U: [u, Fl, (6.31)
r

which is the same as the one in Kramelg,[as Yvon observes. One can also go
directly from (6.28) to (6.31) by using the second of equati6r26), along with (6.30).

One convenient aspect of Yvon's form of the Dirac equas that when one goes to
the non-relativistic, quantum limit (but with a magnefield H along thez-axis), the
guasi-irrotationality constraint on electromagneticalbupled energy-momentumwill
imply that (locally) that 1-form will be exact, seere must be a differentiable functiBn
such thaP = dS and in the non-relativistic approximation, that \gille:

dsS=mov—(—2A§. (6.32)
That functionS must satisfy:
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(6.33)

z!

e W (AJn) en
=0,S—ep+ + - + H
0=0S—ep+|ldS c'AEII2 2%{ Jn j 2mc

which is the Madelung equation for conservatioemdrgy, when one adds the final term,
which accounts for the coupling of the electromgpithe external magnetic field. If one
combines that with the equation for the consermatd number density then one will

have the full set of Madelung equations.

In [1b], Yvon continued to examine his form of the Diraquation in the non-
relativistic approximation and found that he coaldo arrive at essentially the same
results that Bohm, Schiller, and Tiomno derived the Pauli equation, which we
discussed previously in Chapter VIl. Of courses thethod that the latter researchers
used was closer in spirit to the introduction ohgmelized spherical coordinates into the
field space of the wave functions.

8§ 3. Takabayasi form of the Dirac equation — For Takabayasi?], the seven
independent quantities could be chosen to be ditiseoriginal ten quantitiesy, Q, j,
*s}, when reduced by the three identities (5.15)therten derived quantities{6, u, s},
when they are reduced by the three identities:

u?=¢c? £=-1, <, §>=0. (7.1)

a. Quantities of the first kind- What Takabayasi was calling “quantities of tingt
kind” were the bilinear expressions of the foMhE*W. The physical interpretations
that Takabayasi then gave to them were then:

n Particle number density

u Particle velocity

] Particle number density-current

M= gm Spin bivector

S E% (s Spin density vector [see (6.9)]
S= %é Spin per particle vector [see (6.9)]

First, note that the three quantities in the st are all purely kinematical, while the
second set is composed of all dynamical quantitidewever, the effect of multiplying
the basic quantitiess* S, m by 7/2 is to convert the latter quantities, which all dake
units of angular velocity, from kinematical quaesstto dynamical ones.

Takabayasi chose to defer the physical interpogtadf & to a later point in the
treatise. Moreover, he pointed out that althougmes authors (e.g., Yvon) chose to
identify the bivector fieldm with the electromagnetic moment density tensotthef
electron, he did not think that was actually neagss



§ 3. — Takabayasi form of the Dirac equation. 367

b. Quantities of the second kind In order to account for the remaining one
independent quantity by way of a differential identity,kdlaayasi introduced the
“quantities of the second kind,” which were bilinear expimss inW, ¥, and their
differentials. He first defined a differential openab that acted upon the quantities of

the first kind and agreed with our previous definitions 5189)-(5.44), along with its
minimally-coupled form that acts on bilinear expressiopsvay of ():

WWEA) = OVEAYW-YE Y (7.2)
when an external electromagnetic field is present.

That allowed Takabayasi to associate each of the tjeantif the first kind with a
corresponding quantity of the second kind. We summane® in the following table:

1-form: j= iDQ,
2/(0

Second-rank tensor: T= iaj :
2/(0

Second-rank pseudo-tensoif = 1 olls,
2/(0

Third-rank tensor: N Ei om,
2/(0

Pseudo-vector: j= 1 20,
2/(0

in which « is the Compton wave length of the particle in goas (The minimally-
coupled expressions are then obtained by replaciwigh ".) These expressions differ

from our previous definitions by a factor of 14,2 so in particular:

- (7.3)
2K, 2K,
Furthermore, we have now associated the three skff@rentialsoQ, om, 2Q with
symbols. Of course, that is still not a physicaérpretation.
The quantitie and j are coupled by the relation:
=. = 1
Qi-Qj =—727, (7.4)
2KO
in which we have defined:
Z=<*s dj>=-<d*s, j>. (7.5)

() We are suppressing the possible leading factomathis, for brevity.
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Hence, eithej or j can serve as the eighth quantity, although, to be pregither one

represents four independent quantities. Thus, there lmustiree identities if one is to
reduce that number to one.

The identity that Takabayasi chose was based uponarmtmbination of and j :
K=Qj+Qj=n’k (7.6)
which makek the per-particle quantity. The identity is then:

dk = —%im[dmu Od,u- 50 4B, (7.7)

0

which he compared to the quasi-irrotationality ¢oaist that he had introduced in the
context of the Klein-Gordon equation. If one mialiy couples an external
electromagnetic fielf to the electron there( moc®) F will get subtracted from the right-
hand side.

Of course, (7.7) actually represents six idersgjtiet three. In order to reduce the six
to three, one first observes that since the lefidhside is an exact 2-form, it must be
closed. The condition thdtd-k = O then gives four identities, which reducesnbenber
of independent functions to two. Howeverk is exact, sk is defined only up to an
exact 1-formdA for some O-formd. Thus, one can say that, in effect, the only eegrf
freedom left fork is the one degree of freedom that it gets from

Hence, Takabayasi proposed that one could user¢fid setQ, Q, j, *s, j} with the
identities (5.15) and (7.7) or the equivalent s&td u, S, k} with the identities (7.1) and
(7.7) to be the basic set of eight independentaisées (viz., seven of the first kind and
one of the second kind) that one derives fldmFrom now on, we shall refer to the set
{Q, Q, ], *s j} as the “first set of basic variables” and the §®t 6, u, §, k} as the
“second set of basic variables.”

Furthermore, since either set of eight basic questis presumably complete, one
can express all kinematical and dynamical quastiiigcluding the remaining quantities
of the first and second kind, in terms of thoséhkig-or instance, the energy-momentum
density 1-form can be expressed as:

p=mycnk (7.8)

The spin 2-formg (per particle) can be obtained fromand §, and the first set of
basic variables by way (5.22):

G=#( 9 :%#(u’\é), (7.9)
and its density is obtained upon multiplying thysim/2:

. h—;ﬁz%#(uAS). (7.10)
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If we define the 2-form:

then, from (5.32), that will make:

M=-€%0g=-cosfo-sinfd*c.

369

(7.11)

(7.12)

Hence, the 2-fornM (and therefore the basic covarian differs from the spin 2-

form by the somewhat-enigmatic phase rotation througingte ofé.

The energy-momentum-stress ten$aand its dualT can be expressed in terms of

the first set of basic quantities in the form:

R T=K O+ [QD *s+ ¢’ 0 (6,dx)]

0

T =KD *S*ZKi[Qmj +(d0g’ 0(g,, dX)],

0
with:
Q=Qd0-QdQ =n*d4
We also get:

nZN:KDm+2Ki(—ZD*m+QY+ QvY),

0

with Z defined as in (7.5), and:
Y=jrdy - 30d,Os, Y=1vY,,,*(dx' 0d¥) 0 df.

In terms of the second set of basic variables vahget:

:C—r;{C kOu +2KL[C2 ded s +%duﬂ O (OA-M d)()]}’

0

T="{ckO§ +-2 [c 90 u+(d Oy’ O (G, d¥) 1),
c 2%,
and
N=n[kOm+—= (- z0 *m+y cosd— ysin 6],
2K0
with:
1. o 1.1
y=FY—u’\dAu—s’\dAs, y=FY. Z—FZ

Dually, one has:

(7.13)

(7.14)

(7.15)

(7.16)

(7.17)

(7.18)

(7.19)

(7.20)

(7.21)



370 Chapter X — The continuum-mechanical form for the Décp@tion

N=n[kO* m+2i( Z0 m+ gin 8+ ¢osH)]. (7.22)
K,

0

c. Equations of motion- The approach that Takabayasi took to obtaiatpgations
of motion for the basic quantities was the one s described above in the subsection
(8 1.c) on differential identities. One can re-expréese latter 32 equations in terms of
Takabayasi’s first set of basic quantities, whick assentially the same as the ones in
Table 10.3, so we revise it again:

Table 10.4 Equations of motion for Takabayasi’s first set of basivariables.

A EA Divergence equation(@) | Skew divergence equatiorib)

0 | divji=0 TH=-0Q (7.23)
1-4 |y’ 0ym* =2k (i = ) 0,Q =- 2N’ (7.24)
510 [y |0as¥=-260 (T =T%) | (di)w=2k0(T, -T,,-mw) |(7-25)
11141 'y [ 0,Q = 26(N,,—*s) | 0, Om* =-2k, 5" (7.26)
15 |y div *s=- 24, Q TH=0 (7.27)

When these equations are converted into the seseindf basic variables, one can
select a complete, but minimal, set of equations@tion in the form of:

div(nu) =0, (a)

div(ng) =-2«,n sing, ©)

& __i* S 1’

s@= [C2 (uOsO q]l)+2/(0(c<u, k >+cosé)], (9 (7.28)
ug=-*(uds0d 3 -2k, <§ k>, (9

dn+ = Ld(ng - {1 =T ni( W p+20"( @8k ()e
usS—idu=*(udsd &), ()

along with the constraints (7.1) and (7.7).

Although on the surface of things, (7.28) appet@rsrepresent 12 component
equations, in reality,ef and ) each involve two independent equations, due & th
subsidiary conditions (7.1). Hence, we have adfeeight equations for the eight
independent components of the original Dirac wawvetionV.
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d. Lagrangian formulation— In order to obtain a Lagrangian density for the
equations of motion (7.28), Takabayasi started with the amimally-coupled Dirac
Lagrangian with no anomalous magnetic moment term:

Lo=-i1(Py'0,W-0,0pW)-2¢PY,
which can be expressed in terms of the first set whbkes in the form:
Lo=-m ¢ (T/+Q), (7.29)

after rescaling byic/2. Note thatlp = O for a solution, which was also true g in
its wave function form.
WhenLp is expressed the result in terms of the second seasi¢ variables using
(7.18), it will become:
1

Lo=-& {3 K(U) +—[36 +—= d_u(&)] +c059} , (7.30)
C 2k, c

in which we have sef, = myn ¢&.

In order to incorporate the constraints (7.1) and (7T@kabayasi then introduced
Lagrange multipliersla, a= 1, 2, 3, and\* = - A" so he could define:

Li=3 M (' =C) +342(8+ 1) + 313 5(u), (7.31)
1 . A A e
L =3 moc? [ohk +§0 s (OhU A Ohu = 0h§ A0k §) — e Fl1 (). (7.32)

His total Lagrangian density then took the form:

L8 8, kA, A, ..)=Lo+Li+ Ly (7.33)

The relationship between the variationLodnd the equations in (7.28) is as follows:
Varying n gives €), and varyingd gives ). Varyingk gives:

d,A¥=—-nu, (7.34)

which implies @), since A" = — A*". Varying u and S eventually give €) and ¢),
respectively, while varying the Lagrange multiptievill yield the constraint equations,
as usual. In order to ged)( one can form the linear combinatién [&u] + u ~ [J9] of
the equations (viz.,di] and [d§]) that one obtains directly by varying and S,
respectively.
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e. Balance laws— The canonical energy-momentum-stress tensor tak&bBRyasi
obtains fromC is the previous on&,, , as it was defined in (7.18), but rescaled to give it
the dimensions of energy density:

T=myc® T=mocnk O u+c df0 S+%du”D[*(u"S)m dx’], (7.35)

into which we have re-introduced the 1-fo8w (#/2)s. We can further introduce the
energy-momentum density 1-forprfrom (7.8) and the spin 2-formnthat was defined in
(7.10) and put (7.35) into the form:

T=pOu+cdd0S+du' O (gs, dx) . (7.36)
The covariant components Dfare then:
Tw=pyUy+c0,0S,+d,u" a. (7.37)
The resulting conservation of linear energy-momenthen takes the form:
0,7; =0. (7.38)

When one minimally couples the charge of the wawuaction to an external
electromagnetic field, the right-hand side will bew n f., which is, of course, the
Lorentz force density.

One can think of as being composed of a kinetic term plus a stessoro :

T =Tyin + 6, (7.39)
in which:
Tkin=p O u, (7.40)
©=cdo0 S+du' O (g3, d¥). (7.41)

The covariant components 6fare then:
Ouw=c0,0S+0d,u" gy, . (7.42)
Since:
Su)=0 and og,u’=0,
the stress tens@ is “right-spatial,” in the sense that:

O U =0. (7.43)

As for the left contraction, that will be:
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W Q= (COS+ia0)y, (7.44)
in which:
A
é E%, o= (7.45)
dr dr

Hence, part of the stress tensor comes from a couplitite proper-time acceleration to
the spin, while the other part couples the proper-timecitglto the dual of the spin.
Furthermore, it is clear th& will vanish along withs

SinceT is not symmetric, neither & Its antisymmetric part gets a contribution from
both terms in the sum and defines a 2-form:

(T —Ty) ¥~ dX' =pru+c ddrS+du' » (g, dxX). (7.46)
Hence, the non-vanishing of this involves both the possiltiiétp is not collinear with

u, as well as the possibility th&tis non-vanishing.
From the first of (7.25), one will have:

T _TH = —%aA s (7.47)
which suggests that we can define the spin tensor tcelf fibrm:

S:%s:c*s (7.48)

so that:
(&) = 6/18;/111/ == (T =Ty (7.49)

The balance of total angular momentum will then talkefdnm:
0,[x,7; = x T, +S,1=0, (7.50)

but from (7.49), this will become an identity. Hencethe absence of external torques,
such as one would get from an anomalous magnetic mot@eni the essence of the
conservation of angular momentum is contained in (7.4@)ch relates to only the
coupling of internal torque stresses to internal angutanemtum — i.e., spin.

f. The detailed nature of the energy-momentumsstessor— One gets the energy-
momentum density frord by way of:

Tuo=(H,CG)=pulo+C0,0S+0,ul do, (7.51)
SO
H=UWwp+0S, (7.52)
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G=uwp+cd 8+ u go. (7.53)

The last term in the expression fgr takes the form of a coupling of the rate of
deformation to the temporal part gp .
The trace off takes the form of the particle rest energy timedithee ofT, which is

- Q [see (7.23)9)]:
T/ =-myc’ncosf=- & cosh (7.54)

Due to the presence of césas a factor, this trace can take on values thapaseive,
negative, and zero, instead of simply negative values, msre customary in relativistic
hydrodynamics.

From the fact tha® is right-spatial, one will have:

1
ck,=—=——T,W, 7.55
Mo KU nCz H ( )
S0 in the rest framaif = ¢, S = <S, u>=0):

moCKJ:E : n'bCK:igi- (7.56)
n,c Ny

Hence, one is justified in regarding:
P=myck (7.57)

as the energy-momentum 1-form of the particle wihenregarded as point-like and:
p=nP=mycn k (7.58)

as the corresponding energy-momentum density whemagarded as extended, which is
what we did in (7.8).
If one thinks of:

H
u=s (7.59)

as the mass density of the particle when it isndgghas extended then one can also think
of its proper mass densigs taking the form:

1
vy

1
Ho=—T(u,u) =
Cc Cc

T U, (7.60)
and from (7.55), that will give:

Mo = %mon K (u). (7.61)
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The fact thatp = 0 for a solution and (7.30) will then give:

Jr—— cose—% [SO+ du (* 9], (7.62)

Takabayasi points to the possibility of what he callss“like” behavior in this type of
dynamics, namely, momentum pointing in the oppositection to velocity due to
negative mass.

The proper mass densjy can differ from theest particle density

Po=1mon (7.63)
in more conventional relativistic hydrodynamics when ehir internal stress present

[18], so (7.61) and (7.62) give the precise form that theréiffiee takes in the present
case.

Ho=2 ok (U) = - py 0030 [S6+ du (O] (7.64)

In particular, the proper mass density can also takealues that are positive, negative,
or zero, according to the nature@®andsS.
Takabayasi defined theternal energy densitgf the medium to be:

E=pc®=p(u) (7.65)

[using (7.64)], along with itspecific internal energy:

2
_ HC
n

£= =-myc’cos@-c[*sf+ %dAu (* 0. (7.66)

If one goes back to the definition kfin (7.6) and substitutes the valuesj @ind j
that one gets from (7.24)and (7.26)}¢) then one will get:

K = %(cos@j+ sigj ¥ :%{cos o — L [0, 0™ +0,6*% d"}. (7.67)

0
From (7.58), one can then express the energy-mameaénsity 1-fornp in the form of:
p“=mcosfu -0, 0¥ -0a,6* a*. (7.68)

The projection op ontou is then:

pu:%p(u) :,obccos€+%dAu (0) +S6. (7.69)
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Hence, the transverse componen twill be:
1
pt=p" A p(u) W =-{8, 0% +9,0* 0" += [dwu (0) + ¢ SO] U}, (7.70)
Cc Cc

that is mostly due to a contribution from the spinnglavith one fromdé8. Note the
coupling of spin to the kinematical vorticity ofby way ofd-u (o).
One can further decompose the stress p&aftimatd:

G):izqu+r (7.71)
c
by defining:
g=i,0 (Qu=u"0u), (7.72)
rE@—izqu. (7.73)
c
From (7.44), that will make:
q=c #S+iaG, (7.74)
or
qw=c8S +a gu. (7.75)

This makeg) into a spacelike 1-form that is orthogonalto
q(u) =iyO(u) = u’ 0, =0. (7.76)
In the rest frame (vizd / d7 =0, ), q will take the form:
%=0:09=0, g=c@fS+a qg. (7.77)

Since g amounts to an energy flux, Takabayasi suggests thatmigiet regardg as
representingneat flux. Explicitly, one has:

q=cA(mo n) k—*[u” drs}. (7.78)
As for the remaining tensar it is purely spatial:
vy =1,u' =0, (7.79)
so Takabayasi identifies it with the mechanical sttieasacts in the medium.

He also derives an expression for the first lawhefmodynamics (i.e., conservation
of energy) in the form:

O:n%+divq+<p, a+r"o,uy, (7.80)
4
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which, he feels, further justifies the interpretationt e gave folg and 7. One should
observe that the last term takes the form of povwesighted by viscosity.
One can derive hydrostatic pressurél from 7 by way of:

N =37, =3[SH+du(u " 9)], (7.81)
and it relates to the internal energy density by way of

E=ne=—(1,)-1;) =Eocosf+ 1, (7.82)
in which:
Eo = moc? n (7.83)

is the rest-energy density that is solely due toe¢kémass.

8 4. The Weyssenhoff fluid— After the end of World War I, the Polish physicist
Jan Weyssenhoff, with the assistance of his docttudkst Antoni Raabe, published a
series of papers starting in 1944 (%) in which he defined the kinematics and dynamics
of a relativistic, spinning fluid that hearkened back te threnkel electron and
represented a simplification of the Dirac electr@ime model then attracted perhaps more
attention in the relativistic hydrodynamical communihan it did in the relativistic
guantum mechanical community, but it did at least attiteetearly attention of the de
Broglie school of quantum theory. It was discussed in 194%e Broglie’'s student
Olivier Costa de Beauregard in his book on special refatjtdb], as well as by de
Broglie himself in his first book on the theory of spi2-plarticles 11b] in 1952, and in
1960, another student of de Broglie, namely, Francis Halbwadbisshed a book on the
relativistic theory of spinning particle®][ in which he attempted to summarize the
various aspects of the problem and add some of his ownrajjgeagons. The
Weyssenhoff theory also had considerable overlap withgb&-dipole” approximation
to extended matter that had been introduced by another Bbjisitist — namely, Myron
Mathisson — and developed by Honl and Papapefjou (

a. Basic fields— The Weyssenhoff fluid can be defined by the followingo$dields
on a regiorR in Minkowski space:

o a mass density

u a flow velocity vector field

p an energy-momentum 1-form
o a spin 2-form

() As a tragic footnote to the first paper in the serifeyssenhoff pointed out that Raabe had been
captured by the Gestapo during the war and ultimately ai Auschwitz.

(®) For the references to Frenkel, Mathisson, Honl, aghpetrou, one can confer the bibliography to
the introductory chapter in this book in which classicaitet® models were discussed.
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The support opy is R itself, which one thinks of as a time-like world-tuladnile the
supports of the other fields are subsetR.ofThat will leave open the possibility that they
might still have zeroes, although in the case,ad zero would be a fixed point in space-
time, which is more problematic than a mere fixed pairgpace.

There are various algebraic constraints that ret@dasic fields. The first two come
from the usual restrictions om that it must represent the four-velocity of a massiv
distribution (i.e., it must be time-like) and thathiosild be parameterized by proper time:

u :%, u?=7(u, u) =c% (8.1)

Its covelocity 1-form is then defined as usual:

U=iu7 = (u U) dx’. (8.2)

The energy-momentum 1-form is not assumed to be convective, as usual, but
includes a transverse momentum contributmn

P=u+rz m(u) = g, W = 0. (8.3)
As a consequence of the definition, one can obafrom:

p(u)=p,u'=mc. (8.4)

One then refers tpy as therest mass density of inerfiavhile the rest mass density
that one gets from:

p*=n(p,p)=pic’+ = 1 c? (8.5)

is referred to as theest mass density of moment(Hn
Sincerris orthogonal ta, andu is time-like, 77will be space-like; i.e.77 < 0. Since:

7= (14 - ), (8.6)
that will imply that:
O<th<p. (8.7)

(Both densities are assumed to be positive at the int@wiats of their supports.)
The relationship in (8.6) carries with it the corolléinat the Minkowski norm of the
1-form 7zwill take the form:

qu 1/2
|| 77| =t C {1——(;} : (8.8)
o
which will clearly vanish iffto = o .

The spin 2-form is once more subjected to the K&ktonstraint:

() These notations are the opposite of the ones usedkapayasi.
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iyo=0. (8.9)

Hence, it will be a purely “magnetic” (i.e., spatiaiform, and if one defines the 1-
form:
S=ciy*o (8.10)
then one will have:

U:%%UA$:#MAS. (8.11)

Sinceois purely magnetic, its basic invariants will be:
<g,0>=0, (©@0=-5, [S$=7(89<0. (8.12)

The last relation amounts to the statement thaspire vector fieldS or its metric-dual 1-
form S are space-like, which is why the middle relation hasirus sign on the right-
hand side.

No other constraints are imposed upon the kinematiaaicigp and compressibility
of u or the dynamical vorticity and compressibilitymét this point.

b. Dynamical tensors- We shall derive the equations of motion for the Weykeff
fluid from the conservation laws for proper mass, gyenomentum, and angular
momentum in the manner of relativistic dynamics.sti-iwe need to define the energy-
momentum-stress (EMS) tensbrand the intrinsic angular momentum (i.e., spin) tenso
S.

The EMS tensor is given possibly the simplest forxt t@the basic dust cloud form
(viz., oo u O u), namely:

T=pOu (T/=p, ). (8.13)

If one compares this definition af with the corresponding one (7.39) for the Dirac
electron then one will see that the Weyssenhoff earsaf T basically drops the
contribution from®, which represents the internal stresses.

With the substitution (8.3) fqu, T will take the mixed-tensor form:

T=pulu+Z (Z=m0Ou), (8.14)
or the doubly-covariant form:
T=pulu+x (Z=mOdu). (8.15)
One gets the trace dfimmediately from (8.13):
Ti=p,W'=pmc, (8.16)

which, from (8.4), can then be regarded as the rest ederggity of inertia. One should
compare this expression for the tracd afith the corresponding expression in the Dirac
case (7.54), which also contains the phase factor 4.cos
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One gets the symmetric and antisymmetric parfs fobm its doubly-covariant form
(8.15):

Ty = Po Uy Uy + 5 (75 Uy + 75 Uy), Tym = 3 (T Uy = 7, Uy). (8.17)
The antisymmetric componentshf, can also be regarded as one-half the components of
the 2-formm™ u; i.e.:
T =Ty =T U)u . (8.18)
One sees thaf,,) consists of a contribution that takes the usual dusiddiorm and
one that represents an internal stress contributianishsolely due to the existence of

transverse momentum, th@,V] will vanish with that transverse momentum.
In a comoving framey’ =c, u' =0, sou =cd;,u=c dt andT/ will take the form:

c?lerm
o { puc 1 o } (8.19)

The orbital angular momentum tensois:
ij: X,u-lj//]_)&-l;j :(Xypv—xvpy)m=(xym—xu 7221)U/‘, (8.20)
which can be expressed in the form:

L=¢"ma0u (r = x, dxX). (8.21)

The spin tenso® is defined to be simply:
S=c0u (S), = o). (8.22)

wa will then be antisymmetric in its lower indices, althoutghtriply-covariant fornt,,,
will not necessarily be completely antisymmetricjrathe Dirac case.

c. Equations of motion- The conservation of mass takes the usual form:

0 =0, (o U, (8.23)

which is generally distinct from the vanishing of the dj@rce op, which would imply
that:

0u(po Uy ==0, 1t (8.24)

At this point, Weyssenhoff introduces tthensity derivativef a functionf :
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d,fza,,(fu"):%+)(kf. (8.25)

The origin of this derivative is that when one defirfesintegral of over any space-

like cross-sectiorz(7) of the world-tube that is swept out by whose spatial volume
element is theWs, one will get a function of proper time:

F( = [ f(z.x)V, (8.26)

such that its proper-time derivative will be:
dF _
. jz(d, f)#u. (8.27)

Hence, we can also write the conservation of nmadse form:
d; o =0. (8.28)

As for the conservation of energy-momentum, iftake the divergence o/ then
we will get:

a,uTvﬂ :uﬂallpV+pVa/1uu:c;_F:_/+Xk pV:drpv, (829)

in which we have introduced the kinematical comgitelty yi of u. Hence, the density

derivative of p, will agree with its proper-time derivative iffi is kinematically
incompressible, in the relativistic sense.

When energy-momentum is conserved, the divergeﬁd:év will take the form:

0,1, =Tuw—Ty=1muy, -~ Uy. (8.30)
The divergence 08§, takes the form:

9,S),=u"010u+0, U g =0d; Gy . (8.31)
Hence, the divergence of the total angular monmantil be:

0,(Ly, +S,,) =dr g+ muy — Uy (8.32)

The combined conservation laws for proper masgrggemomentum, and total
angular momentum will then take the Weyssenhofifor

dz',a) = 0, dz’ pl/: O, dz’ 0-/1|/+ %UV - 77|-/ Uy = 0 (833)
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If one contracts the last equation with then one will get an expression for the
transverse momentum:

1 1do, , 1
]y[ :—?UV dz’ U/[V:_? d;'l UV—_? U/ll/av . (834)

In the last step, we have differentiated the Fren&attraint in order to shift the proper-
time derivative from spin to velocity. Since thatlwake p take the form:

1.
P=pu—7ia0, (8.35)

one sees that energy-momentum will be proportiomgroper acceleration, as well as
velocity. That has the effect of raising the equabémmotion for energy-momentum
from a second-order equation in the proper-time derivat¥gsosition to a third-order
equation, which leads to some problems in the name shtigu

The Weyssenhoff model is sometimes touted as a @dhsaodel in which one still
finds a form of “Zitterbewegung,” due to the fact thia¢ trajectories of free spinning
mass distributions can take the form of helices, atjhoit has been pointed out on
numerous occasions that if one uses the numerica¢sdhat correspond to the electron
then one will get a radius for the circular partlef motion that is unphysically large, if
not macroscopic, while one expects the corresponding guaphenomenon to take
place at the scale of the Compton wave length. Heweas we pointed out, the
Weyssenhoff EMS tensor is actually a simplificatidrit@ Dirac electron in that part of
the internal stress contribution is missing — or ratbely the part that is due solely to the
transverse momentum is present. Perhaps the missitigoadion to the internal stresses
might reduce the effective radii of the helices imsowvay.

d. Halbwachs extensior. In Halbwachs'’s boolkg] on relativistic spinning fluids, he
included a chapter that summarized his own work on the derbemry of
hydrodynamical models, which was largely based upon thé& wat Takabayasi had
done along those lines.

Although it would take us too far afield from the currsatvey to present the details
of Halbwachs’s analysis, we will say that the clisaiion was based in giving the
energy-momentum-stress and spin tensors their mostrajefems as sums of
elementary terms and examining the physical consequerfdesluding only simpler
combinations of those terms.

8 5. Relativistic Cosserat media— If we return to form of the fundamental
dynamical tensors and their conservation equationsh®rfree Dirac electron and the
Weyssenhoff fluid then we will see that in both casesare dealing with an example of
a relativistic Cosserat medium, as it was defined bwtitieor in B].

In order to be talking about a Cosserat medium, inrgénene typically needs only
to justify that there are internal couple-stressewak that manifest themselves in the
form of an antisymmetric contribution to the energymentum-stress tensor. One can
also attribute the form of the equations of motion/dguum to the demand that the



References 383

action functional must be invariant under the actiorhefgroup of rigid motions, in the
non-relativistic case, and the Poincaré group, in tlaiveitic case.

Since we seem to be dealing with media that falhiwithe purview of Cosserat
media, it will be undoubtedly informative to pursue &xtension and application of the
growing volume of results that have been derived for-matativistic Cosserat media to
the relativistic case, with especial attention givernth Dirac electron. However, that
research could potentially expand into a future book in its ogt.
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EPILOGUE

Throughout the foregoing, we have been tacitly assuntiag the quantum wave
equations that we were discussing had a truly fundamentaatbato them. However,
despite their continuing popularity, which is based inrtlneany successes in regular
practice, especially the successes of the SchrodingeDaad equations, there are
actually some fundamental limitations to the quantum apsthat will eventually need
to be addressed if one is to advance the correspondingnwam-mechanical
interpretation accordingly. We shall first simpigtilsome of those limitations and then
discuss them in more detail in separate sections.

1. Quantum wave equations are linear wave equations.

Hence, the only interaction of waves that they caweri®s is simple linear superposition,
which can still lead to interference and diffractioneeté. Furthermore, due to that
linearity, there is no spatial confinement mechanisrmwwauld keep the support of the
wave function of an electron localized as it evoliretime.

2. To date, there is no adequate theory of the waveidnnat the photon.

Naturally, that might seem difficult to fathom, sineéectromagnetic waves were an
established fact of physics long before matter waves.

3. Ultimately, everything goes back to one’s conceptiothefquantum vacuum at
the fundamental level and its mathematical modeling.

In particular, if one thinks that quantum physics startedl lIde as the study of
electromagnetic phenomena at the atomic-to-subatsecaie then the deeper issue is how
one conceives and models the electromagnetic vacuterestdnat scale.

8 1. The introduction of nonlinearity. — When one is looking at natural phenomena
empirically, one must accept that nonlinearity is aerimatural” situation than linearity,
which invariably appears only as an approximation that pertaira limited parameter
regime. Quite often, that parameter regime amouotsthe realm of “small
displacements,” in some general sense of the term.

For instance, all that one has to do to see that Heodke in elasticity is a linear
approximation to something more involved is to browse fire chapter of any
elementary textbook on the strength of materialsnil&ily, one rapidly finds that Ohm’s
law of electricity does not apply to all materials (fostance, semi-conductors are an
obvious counterexample), and even when one is dealing fohmic” materials,
typically as the current in a resistor increasesytiats temperature, which will, in turn,
change the resistance, and with it, the linearitytled voltage vs. current curve.
Furthermore, Fourier's law of heat conduction and Fitde of diffusion have the same
sort of character as being simplifying approximations toremmvolved empirical
situations.
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Of course, there is a reason for those simplificej and it is simply that nonlinear
mathematics is a more ill-defined class of problems achniques than linear
mathematics. In the mathematical language of categonescan define a unique “linear
category” whose objects are linear spaces (i.e.,vsighslinear structures) and whose
morphisms are linear maps (i.e., maps that preservinde structure). However, one
cannot define a unique “nonlinear category,” since there namay candidates for
structures that are not linear structures, and evereinabse of “nonlinear” maps between
linear structures, one must decide whether the nonlinepgs mhould include the linear
ones, as well. In effect, the logical complemenatwell-defined concept is typically an
ill-defined one.

A further reason for the introduction of linearity tlestsentially follows from the last
one is that the methods for solving systems of nonliagaations, whether algebraic or
differential, become increasingly algorithmic in charaeted lack the intuitive appeal of
closed-form solutions, which exist only in what one miggit “toy models.” Indeed, in
the case of nonlinear partial differential equationsjtems might not even exist locally,
since that is already true for the linear case.

a. Nonlinear wave equations.lfone wishes to address the issue of extending the
guantum wave equations from the linear to the nonlinear idaitman one should start by
looking at some of the nonlinear extensions of thosetimsathat have found a place in
regular practice.

The equation that goes by the name of tbalinear Schroédinger equatiofi] is
clearly one of many possibilities, and basically amotmtan equation that governs only
waves in one-dimensional spaces. Typically, the viiay one introduces nonlinearity
into the Schrodinger equation is by defining potential flonstV (t, x, W) that depend
upon the wave functio® in addition to time and spatial position. The chotleat tis
typically made for the nonlinear Schrédinger equation is

V=1q|W¥|f. (9.1)

Hence, even in the stationary case, the resultingiltdeman form of the Schrodinger
equation:
HXp W)WY =EWY, (9.2)

will no longer be a linear eigenvalue equation, but a nonlioee, since the Hamiltonian
operatoH will also depend upo¥.

Another popular nonlinear extension of a basic quantum weguation is the so-
calledsine-Gordon equatiof?]:

OW +sin (k*)¥ =0, (9.3)

which is also typically applied to one-dimensional eg@vopagation. This equation will
be approximated by the usual linear Klein-Gordon equation wemwave numbek is
small enough that one can justify approximating &ir & — %(/(2)3 + ... by its first

term. One would then expect that the domain in which (8a)ld become unavoidable
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would be the domain of large wave numbers, which wouldespond to large momenta,
under the de Broglie relations. (Recall that the Comptave number of an electron has
on the order of 1§ waves per cm.)

The sine-Gordon equation has a fundamental physicad bashat if linear waves
propagate in media that are defined by coupled systemsesr lharmonic oscillators
then the sine-Gordon medium will be a coupled systephgsical pendula. Hence, the
extension is not purely mathematical and heuristic inrachar, since the physical
pendulum can be approximated by a simple harmonic osciftatemall enough angular
displacements.

Gerard Petiau did many years of work along analogous [Bjeby considering the
extension of the linear harmonic oscillator to the amleaxic oscillator, which amounts to
extending Hooke’s linear law = — k Ax to the next term in the Taylor series for an odd
function of displacemenix:

F=-kMx+1ibAX (9.4)

Unlike the exact solutions of the nonlinear Schrédingat sime-Gordon equations,
Petiau was addressing wave functions in three-dimensipaaks not one-dimensional
spaces. The use of elliptic functions entered cruciaity the study of those solutions.

Werner Heisenberg considered a nonlinear extensioredditlac equation (cf.4]),
which was, nonetheless, restricted to massless fesmion

AW+ y(Pyy W)W =0. (9.5)

Note that coefficient o in the second term includes the bilinear covarig” )W

that we called (¥ previously. Heisenberg foresaw great possibilities Hir monlinear
massless Dirac equation, which has also been callddeiisenberg equationn terms of
its role in strong interaction physics.

b. Nonlinear electromagnetisn5]. — It has long been this author’s strongest
suspicion that the path from classical physics to quarghysics is most definitively
paved by the transition from linear to nonlinear elecagnetism. Some of the reasons
for that are the fact that the earliest experimeataimalies that pointed to quantum
theory were basically electromagnetic phenomena, ssidhiaak-body radiation and the
energy levels of atomic electrons, and the fact tha¢ must expect that the field
strengths for the electric and magnetic fields ofmeletary charge distributions and
magnetic dipoles must be quite intense at the quantulem stdistances (i.e., atomic-to-
subatomic). Although many advocate simply abandoning thssical methods and
restarting one’s theory in the realm of quantum elegtmamics, one must note that the
fact that most of the established theory of quantumrelgghamics is subordinate to the
scattering approximation for the interaction of eleragntcharges will give the
methodology of quantum electrodynamics an unavoidably riglguc and
phenomenological character. However, despite tlwf ¢uantum electrodynamics can
still be regarded as a valid heuristic probe into the emigm‘what’s inside the box,”
when the box (i.e., the realm of quantum phenomenagually too small to be addressed
directly. In particular, the “effective models” thate derives from loop expansions in
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QED give one strongly-worded hints concerning the moshitie® nonlinear extensions
of Maxwellian electrodynamics.

Since reasoning by analogy (i.mwtatis mutanduins one of the most powerful tools
in the theoretical toolbox, it is probably best to cdesisome of the established nonlinear
models in classical electromagnetism. It is esaktdi understand that the difference
between linear and nonlinear electromagnetism is ineyithething that goes back to
the nature of the electromagnetic constitutive forrtfeglium in question; that is, the law
that associates electromagnetic excitatiosns $ (D, B) with electromagnetic field
strengthd= = F (E, H).

Two of the nonlinear extensions of electromagnetisan &re rooted in the demands
of quantum electrodynamics are tHeisenberg-Eulemodel and th&orn-Infeld model.

In the former case, what Heisenberg and his doctoral sttt#erst Euler were attempting
to do [6] was find a solution to the Dirac equation that would regrethe interaction of

an electron with a background electromagnetic field.wattays, the resulting model is
regarded as a one-loop effective model for that quantuenaction that includes the
possibility of vacuum polarization taking place at vieigh field strengths.

The latter model, which was developed by Max Born and Lidopdeld [7], came
about more heuristically as a way of investigating whatifications to Maxwellian
electromagnetism would be necessary in order to makstétie fields of a point-like
charge and magnetic dipole finite at the sources, rdkizer becoming infinite as with
Coulomb’s law of electrostatics and the inverse-cubetlkat pertains to the magnetic
field of a point-like dipole. The Born-Infeld model alkad the advantage of starting
with the most general electromagnetic Lagrangian tetisat would be both Lorentz-
invariant and gauge-invariant.

c. Nonlinear optics— One of the most-developed realms in the experimemtcl
applied physics of nonlinear waves, and nonlinear elecgoeta& waves, in particular, is
that of nonlinear optics8]. One not only finds applications of both the nonlmea
Schradinger equation and the sine-Gordon equation, wathcaged optical phenomena
(%), but one also finds that one of the most fundamengaériments in QED that has yet
to be configured satisfactorily is the one that all@xperimental physics to investigate
the process of “photon-photon” scattering.

The latter quantum phenomenon is a form of nonlineagrpagition that includes the
possibility that when the combined field strength of theeriacting photons is high
enough, they will temporarily produce virtual electron-posi pairs (if not muon-anti-
muon, pion-anti-pion pairgt al) that change the nature of the interaction fromalirte
nonlinear superposition and presumably produce a scatteringgesprdbat exhibits
corresponding quantum anomalies. The possibility oftghiphoton scattering was
suggested by Hans Eule®] [and Fritz Sauter10] almost immediately in the wake of
Heisenberg and Euler’s theory of electrons interaatiiy external fields. Although the
field strengths at which photon-photon scattering talk@sepcontinue to lie beyond the
state-of-the-art in laser technology, those experigrerhave been optimistic for decades.
That is perhaps because a closely-related phenomered Balbriick scatteringwhich

() Interestingly, the roles of time and space seem tegehuted in the optical applications of the
nonlinear Schrédinger equation.
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involves the nonlinear interaction of a photon with #lectrostatic field of an atomic
nucleus, has already been observed experimentally.

d. Solitons[11]. — One of the recurring physical properties of elementartiches
(however one regards that concept) is that they sedm tighly-localized in space, as
well as stable, in the sense that their spatial lpaadin does not seem to change in time,
at least in the absence of external agencies integaeith those particles.

One finds that this is not a property of linear waveganeral. Typically, unless a
wave is monochromatic, the existence of dispersidhgrambient medium would tend to
give the various frequency-wave number componentseofvlve packet different speeds
of propagation, which would lead to a change in shape ofiélve packet over time, and
typically a flattening of the wave function over acrneasing spatial support.

However, when one looks at nonlinear wave propagabioa finds that the existence
of nonlinearity can conspire with the existence opéision to produce stable wave
functions of localized spatial support. Since many o$¢hwave solutions maintain their
shape under interaction, they are referreddolions in general.

Perhaps the earliest example of a soliton was giwerli895 by the Dutch
mathematician Diederik Korteweg and his student Gustav des \[t2], who were
considering an approximate, but nonlinear, model for the patjmen of waves in
shallow water. They found that there were solutiorheir equation:

QW +PY-6WoW=0 (9.6)

that maintained the same shape after encountering arclebstach as a ship in the
water. This one-dimensional wave equation is now refieto as th&dV equationas an
abbreviation, and it is both nonlinear and dispersive.

The nonlinear Schrddinger, sine-Gordon, and Petiau eqeadisa exhibit solitonic
solutions (cf., 11]), such as “kinks,” and an active field of research irg-interaction
physics is the study of solitonic solutions to the YangsMield equations for quantum
chromodynamics. In particular, Tony Skyrme suggestet things in 1962 13|, and
nowadays solitons of the kind that he described arereefdo asSkyrmions Unlike
many of the exact solutions to nonlinear wave equations,sbitons are three-
dimensional, not one-dimensional.

8§ 2. The photon wave function — Since the concept of electromagnetic waves
predated the concept of matter waves by several decadesurprising to find that the
wave equations that one employs for the modeling of guamatter waves do not seem
appropriate for the modeling of photons, which are esdgnthe quantum analogue of
electromagnetic waves, even when one assumes &v@nieass.

One of the ways of establishing that fact is basedhenstatistical interpretation of
quantum wave functions. If one assumes that the medwjuared | |f of the photon
wave function¥ represents the probability density function for thespnee of goint-
like photon in a given region of space then one will encoymteblems when applies
Heisenberg’s uncertainty principle, in the fofixAk = 1, to that, since the only way that
the positionx of the photon can be localized is if its wave nunibé smeared over a
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large spectrum. Conversely, if that wave number is defprecisely then one cannot
localize a photon in space.

Of course, the main purpose of this book has been to piasEcists rethink the
wisdom of the statistical interpretation and reconsidérer interpretations, such as
continuum-mechanical ones. Hence, there is good me@mssimply regard traditional
guantum mechanics as being fundamentally incomplete inittigives one a better
picture of the behavior of the matter waves that defiree sources of fundamental
electromagnetic fields (electrons, positrons, et@htit does of those fields themselves.
Since the interaction between the source and its ifielddes the basis for the theory of
electromagnetic radiation (most of which never Ilsatke comfort zone of linear
electromagnetism, which allows one to continue to tee Fourier transform with
impunity), and the theory of radiation at the quantuwellewas one of the early
anomalies that asserted itself in quantum theory (e stability of the orbits of atomic
electrons when they should have been radiating energy to their centripetal
acceleration, the existence of a non-zero ground stdie)e is clearly room for the
theory to grow at that level.

One of the earliest attempts to develop a quantum tleddhe photon began in 1934
and was due to the work of the venerable and ubiquitous Loussatgie [14]. That
search for a quantum theory of the photon was a reguguest of his for the rest of his
research career. That work was also discussed in 1935 Istudent Jules Géhéniau
[15]. The work of Cornelius Lanczo4€] on obtaining a system of equations that would
include both the Dirac equation and the Maxwell equatiorsspaaticularly definitive as
an attempt to unify the wave theories of the electrod the photon. It was also
distinguished by its crucial reliance upon the use of cexguaternions, in place of the
usual Clifford algebra of Dirac matrices.

8 3. The electromagnetic vacuum and its constitutive law- As mentioned before,
the classical, linear electromagnetic vacuum is reglastea continuous ensemble of
coupled simple harmonic oscillators. However, thatup&treally pertains to the
“frequency-wave number” space that comes about under Fdramesformation, rather
than the “configuration space” in which the wave motiakes place. One should note
that typically the classical electromagnetic vacuumsdeot seem to exhibit such a thing
as a “natural frequency” and does not seem to interfate the propagation of
electromagnetic waves in a manner that depends upon ribgirehcy or wave number.
Indeed, the classical electromagnetic vacuum, whosersiispdaw isk’ = 0, does not
exhibit any dispersion in the sense of a dependency o$pgbedc of propagation of
electromagnetic waves upon the wave number of the.wave

a. The quantum electromagnetic vacuit/]. — By contrast, the quantum
electromagnetic vacuum is sometimes characterizedcbytenuous ensemble of coupled
guantum harmonic oscillators. Such oscillators are distgmed from the classical
simple harmonic oscillators by two key facts:

1. Quantum harmonic oscillators have a discrete (bt elosely spaced) spectrum
of energy levels, not a continuous one.
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2. The quantum harmonic oscillator has a non-zero (et small) ground-state
energy of iw,, whereay, is the natural frequency of the oscillator.

The spacing of energy levels is thém, . Since’ equals 1.054x168" J-s/rad, one can

see that an oscillator with a natural frequency ofdlsravill have a ground state energy
of 0.527 x10* J and a level spacing of 1.054%30J. If it also had an amplitude of 1
cm and a mass of 1 g then its energy would be on ter of 10’ J, which is many level
spacings above the ground state.

The existence of a non-zero ground state conspiresake b impossible for the
ensemble of quantum harmonic oscillators that comphisequantum wave to have a
finite number for its ground-state energy. That is beeaone is essentially adding
together an infinitude of finite numbers that are glla to $7w,. Clearly, something

needs to be rethought in that construction. Typicallyrecting for the infinite ground-
state energy of the quantum electromagnetic vacuum j&b for regularization and
renormalization, but one should really think of thatcgess as basically an “error-
correcting algorithm,”; i.e., a kludge.

Presumably, once one has found a more suitable wagefiring that quantum
electromagnetic ground state, one will arrive at wkatisually called the “zero-point
field.” The Casimir effect]8] is usually cited as experimental support for its existen
but some physicists have suggested that the attractibmooperfect capacitor plates in
the absence of an applied potential difference mitgat be due to unmodeled Van der
Walls forces that originate in the atomic ions of thgstal lattice.

Another definitive property of the quantum electromagneicuum is the existence
of vacuum polarization. That usually takes the formhef ¢reation and annihilation of
“virtual’ particle/anti-particle pairs in the intermetBastages of particle interactions,
such as the formation of electron-positron pairs dutimg collision of high-energy
photons. The reigning model for such a vacuum stateeisDirac Sea,” which amounts
to an infinitude of negative-energy states (i.e., pos#y that are all filled with electrons
in their ground state. Once again, the existence affaritude of electrons in the ground
state makes the total mass and charge infinite, as wieilth leads to the necessity of
charge and mass renormalization, resp.

b. Electromagnetic constitutive lak9]. — The classical electromagnetic vacuum is
characterized by two constitutive constants, namedyetéctrostatic dielectric strength
and the magnetic permeabilityy . That will lead to the speed of propagation of
electromagnetic waves in that medium:

1
&o Mo

Co (11.1)

;

and the linear dispersion law:
K=caw-3dkk =0, (11.2)

w=Coql k K . (11.3)

which can be solved faw:
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The use of the word “linear” in the context of (11.2)ere to the fact that the
electromagnetic constitutive law that is associateith wie constants, and 4o is the
simplest-possible linear electromagnetic constituave

D=gE,  B=uH. (11.4)

Such a medium is thought of as “unpolarized,” in thesesethat no electric or
magnetic dipoles actually form in response to the imposibf E andH. For more
general electromagnetic constitutive laws:

D =D (E, H), B =B (E, H), (11.5)
one regards the differences:
P(E,B)=D-gE, M (E,B)=B - H (11.6)

as measures of the densities of electric and magiipodes that have formed (relative to
the classical vacuum).

The classical electromagnetic vacuum is not justcdbapen a linear constitutive law
then, but it must also be electrically and magneticalbtropic in order for there to be
only two functionse (t, X) andu (t, X) after diagonalization, and it must be time-invariant
and homogeneous in order fer(t, x) and i (t, X) to reduce to the constants and (b.
Furthermore, in order for that diagonalization to be iessthere can be no Faraday
rotation or optical activity going on. Ultimately, order to justify proposing a purely
algebraic constitutive law, such as (11.5), even a nonlo@gra medium cannot exhibit
dispersion in an entirely different sense of thedymamely, the dependency of the local
state of the medium on past states or spatially-neigindp ones. That would then make it
necessary to use integral operators to BhamdH to D andB, instead of algebraic ones.

One can get “strongly-worded hints” regarding the eteafignetic constitutive law
of the quantum vacuum from looking at what one getsarHéisenberg-Euler and Born-
Infeld cases. However, sooner or later, someone wikk ha make a first attempt at a
fundamental model that is not purely phenomenologicaheuristic in character. The
fact that nobody has made any definitive attempts at tagard only shows that the
problem in question is one of the most perplexing in albtétical physics.

Another subtle issue that is associated with thesiclalselectromagnetic vacuum is
that even though it is at the basis for the geomdtMiokowski space, which is the soul
of the theory of relativity, nonetheless, the conadpt, and 14 being constants has no
Lorentz-invariant character to it. For one thing, tbaely come about when one makes a
time+space splitting of space-time, and for any otterice of such a splitting; and i
would not be constant, in general. The only thing thats dweve a relativistically-
invariant significance is their combination (11.1) in tlenf of co . It is therefore
interesting to go back to early discussions of theiap#teory of relativity, such as the
treatment that it was given in the first volume of Man Laue’s lecture note2(),
which was very much rooted in the electrodynamics of mowiadia.
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