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Physics. —The tensions that are created in an elastic body by Volterra distodiwhshe
consequent accidental double refractiorNote by O. M. Corbino, presented to the
society by V. Volterra.

1. The experimental verification of the theory of éizisy has led two difficulties so
far: Indeed, except for a few simple cases, the extdance is ordinarily exerted in a
discontinuous way along the points of the surface, wihide predicted distribution of
tensions or deformations inside of the body is notefloee accessible to experiment, in
general.

The first difficulty is eliminated by the particular fdemations that were considered
by prof. Volterra in his memoir “Sull’equilibrio dei carplastici a connessioni multiple,”
because it is then possible to create a system osingule deformations or tensions in
the body without the intervention of external forces

The predicted variations in form can be confirmed intyealy using cylindrical rings
of caoutchouc such that after removing part of the sulestahe faces of the cut were
glued together. It is therefore natural to examinectihesequences of the theory more
thoroughly using a transparent, elastic body, such atrgedad to study the distribution
of tensions that are created by the distortions by meatise accidental birefringence
that is acquired.

Since the theoretical predictions of the observaliecest can be complete, it will be
advantageous to suppose that aftexdaal or parallel cuthas been made and the faces of
the cut are glued back together, a ring of small breadtkamined in parallel polarized
light thatpropagates in the direction of the axis of the cylind€he figure that one then
obtains when the image of the ring is projected ontor@es and through an analyzer,
and then observed through a nicol permits a very rigorousotaf the theory in the
most interesting part that relates to the tensiortsetkiat in thexy-plane that is normal to
the axis of the cylinder.

The analytic expressions for these tensions weeady given in prof. Volterra’'s
memoir. It will be the objective of this note pretyséo examine the fundamental
formulas and their interpretation in regard to the himng&nce effects that accompany the
distortions, in order to move on to the comparisoin e results of the experiments that
were performed on my advice by Trabacchi, who overcaoteworthy technical
difficulties to succeed in also confirming some more utiotable details of the
consequences of the theory.

2. The formula of prof. Volterra that relates to tlelial and parallel cuts gives the
tensiondss, ty2 that are parallel to two fixed axes and the shearaehs for any pointx,
y of the ring. From that, one passes immediatelyéadilatations4s, )52 in the direction
of the axis and to the shegg, by virtue of the relations:
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(1) t]_l:L@‘FZ(}/j_l, t22:L@+Z<Jéz, t]_z:%ﬁz,

in which® is the cubic dilatation, aridandK are the two elastic constants of the body.
On the other hand, if one denotes phimcipal dilatations at each point of the body

(in the directions of the principal axes of deformativhich vary from point to point) by

¥, and y,, then the birefringencA at each point will be proportional to the difference

¥i,— Vi, Which is a result of all experiments on accidentalde refraction. Now letr

denote the angle that is formed between the principzd akove and the fixed axes, so
the directions of the principal axes will be given athepoint by:

@) tanzr= Y2
ii= Vi

so, from(1), one will have:

3) tan 2r= ltl—z
2 (t11 _tlz)

We have analogously:

A= A(Vll_ Vlz)

for the birefringencéd, in whichA denotes a quantity that is constant for a givemna.
However:

V= Vi) = A= 162)° + Vo,
and one can then measudyéwith a convenient unit) from:
4) A = 1ty —tp)? + 1.

One obtains an obvious connection with the thexfrgonics from this result: One
gets a right triangle (Fig. 1) that hasand ; (t11 —txo) for its opposite sides and an angle

that is opposite to the former that equalg @nd determines the direction of the
birefringence at each point, while the hypotenuseasures the intensity of that
birefringence.

t1o

2a

2 (t11 —1t2)

Figure 1.

Now suppose that the lamina is between two crogsekdtizers, and lep be the angle
that is formed between the principal section of pldarizer and the-direction, along
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which one makes the cut. The intensitf the light that emerges from each point of the
lamina will be given by:

? = sirf(a — @) sirf(hA),

in which h is a constant that depends upon the wave length of theeemciight for a
given lamina.

One will then observe a system of absolutely blaoslithat pass through all points
for which
5) sin26-¢)A=0,

and thus the equations of the black line will be:

(6) A=0
for arbitrary values og, and:
(7) sin26-¢)=0
for arbitrary values oA.
By the property that is clearly exhibited by Fig. 1, e Felation will become:

(8) t12=0,

for ¢ = 0, and:

9) tio—122=0
for ¢ = 45°.

Therefore, the black lines that are observed by crosskdizers, one of which is
directed along the line of the cut that corresponds to egué), and the other of which,
will be observed when the cut is°4Bom polarizer that corresponds to equation (9).

3. Case of a radial cut— From Volterra’s formula, one gets:

ty, = ax—z[l— R’ Rf('Og2 F}f—zlog Fg)i} |
r R -R r

tio—trx=a
r? RI-R r

y - % {1_ R*R(log R -log R) g}

in this case, in which is a constant, is the distance from the poixty to the center, and
R: andR; are the inner and outer radii of the cylindrical riregpectively.
If one sety / x = tan then (3) will give:

(20) tan 2z = tan 25,

namely, the radius vector and its normal are the pahaxes of the dilatation at any
point, and the direction of the axis of birefringencencimies with one of the lines.
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Observe that one will have a black line between crogsdarizers for arbitrary
orientations of the lamina at the points where:

A =0,
i.e., where one then has collectively:

t11 —t2 =0, t12=0,

and since the equation of that line will be:

2 - RR(og K -log B)
R-R

that will represent a circumference of radius:

_ logR* -log R
=R R )
r J R-R

In addition, one will get the other correspondings from equation (7), which, from
(10), becomes:

T
d=¢+m >
in whichm is an arbitrary integer.

One then has a circle and a cross whose armsasaflep to the principal sections of
the polarizers; be that as it may, if one oriehtslamina in its plane then the circle will
persist, and the cross will keep its arms permdyeniented along the principal sections
of the crossed polarizers.

One finally notes that the circumference alongcokhihe lamina remains devoid of
birefringence (i.e.A = 0) does not coincide with Volterra'eutral axis which is to be
expected, since the latter is defined by diffeamditions.

4. Case of a parallel cut—- From Volterra’s formula that relates to thate;aghen it
is transformed into polar coordinates and one detls, ¢, d, e denote the independent
coefficients of the coordinates of the points tbat successively encounters in the
formula that gives$;,, one will obtain, from a simple calculation:

tlzzésinﬂ{b—l+ 2 (4c083 - 1@ if—fjm }

t12—t22:$C0&9{b—1— Z (4sihd - ]@ if—?j+e }
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in whicha contains the amplitude of the cat,b, c are the elastic constants of the body,
d is the radiusk; or R, of the ring, anck is the elastic constant of the radii.

In the case of gelatin, one can set the Poissefficent equal to 1 / 2, and the
coefficients will then become:

, A 2

e=

R+R’ R+R

If one examines the lamina between crossed potarizben the direction of the cut is
parallel or normal to the plane of polarization rthene will observe the lines that
correspond to the equation:

b=0, c

N

t12=0,
which will give two lines: One corresponds to:
sing=0,

which represents the direction of the cut, while thther one corresponds to the equation
r andZ.

r*+ 2p?cos 9r°—(1+2cos &) o' =0,
in which, one sets:

pf:Rl—;Rf, F=RiR.

Let € denote the ratio of the outer radiBds = R and the inner on& , and solve the
preceding equation with respectrfa One will obtain:

(11) r’= 1+¢” R?| [cos 2+ (¥ 2cos2 e _ cos®
262 él+ £?Y '

One recognizes immediately that the curve thatessmtsr as a function of? is
symmetric with respect to the axes. It is consedicas in Fig. 2, from the points for
which € = 2, 5, which is a condition that is close to dme that is realized in experiment.
For 9 =9, one has:

r=R

for any¢, and the curve will be tangent to the outer ciatléhat point.

A second solution, which corresponds to the negatalue of the radical, gives
values ofr that are, in general, less than the inner radidbeoenvelope, and which then
have no significance for us. Howeveér= 90° will correspond to a value= R, and thus,
also to pointdv, N that satisfy the conditiota, = O.

If one orients the cut of the lamina af 4fith respect to the polarizers then the black
lines will correspond to the equation:
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ti1—t21 =0,
which defines a line:
cosd=0
that is normal to the line of the cut and a curve lilagtthe equation:

r*-2p2(l-cos D) r’+(1-2cosd o =0.

Solving this forr? will give:

1+ &2

4£°
12 r? = R?| |[(1-cos® ¥+ € ¥ 2cos2 + 4 co?..
(12) g7 N ( F+ € ?71 v )

It is noteworthy that this relation is obtained frtme preceding one (11) by replacing

cos 2% with cos 22— 1. The same thing can be saidié?— and@.
sing cos?

That will permit us to establish a simple graphicalespondence between the angles
for which the two curves possess the same radius vedibe valued = AB (Fig. 3)
corresponds to a certain valpef the radius vector along the curve (11). If one Béls
= AB and draw<CD normal toOA then the ar©C’ of the circle whose center &’ will
be twice the ar@’that corresponds to one-half the valueo@ff the radius vector under
the curve (12). Naturally, the law of correspondence pelimit one to pass to the
inverse.
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Figure 2. Figure 3.
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Figure 4.

One then deduces that the curve (12) begins with a vallre oadius vector foi? =
0 that is equal to that of the curve (11) fd 45°, and when one increasésthe radius
will increase until it become® (viz., the radius of the inner circle) fof = 45’
Beyond45°, the curve will no longer develop, and since it mustspmmetric with
respect to the two axes, it will be comprised on tgbtrand left by two lines that form
angles of + 45and — 48 with the x-axis (Fig. 4). For 45, one will again have the
singular solutions = R; that correspond to the poires Q, R, Sin the figure, which are
analogous to the poindg, N in Fig. 2.

The two curves (10) and (11), along with thendy axes, divide the lamina into six
regions; passing from one to a contiguous one will inthextsign ot;, ort;; —to2 . The
general distribution of the directions and intensitéshe birefringence can be inferred
from this.

The two systems of lines, when considered togethdrgivé points in their common
part where one simultaneously has:

tin—1t2=0, t12=0,
namely:
A=0.

Now, the two curves (11), (12) have no common pointhaseasily recognizes, since
one always has> 1. Therefore, the lamina does not possess any néogato it has
no birefringence, but only six neutral points, and they @nexisely the points of
intersection of the curve (11) with tlkeaxis of the cut.

This is a truly remarkable result.

The four regions into which the ring is divided, actiog to the Volterra figure, and
within which the substance is alternatively compressed ditaded, behave quite
differently in regard to birefringence. This apparent caiitton should not be
surprising, since Volterra was concerned with the ovexalbic dilatation of the four
regions, while birefringence depends upon the differencevele® the principal
dilatations in thexy-plane.
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After one introduces thés in the zdirection, in addition the that have been
considered up to now, an analogous calculation must berpedoin order to correctly
interpret the Rolla experiment, in which the doubleastion with respect to the light
that propagated at 2%o the cut and normal to tlzeaxis was observed through tubes that
were embedded into the gelatin and parallel tocskglane.

The direction of the birefringence at each pointv&giby (3) as:

2 2 2 4
tan 2o = Etanﬂr w:2,01 (fos_z’f ]JZ (4_CO§79 J? .
2 r*—4p7 (sildy >+ (4sifd— 1p

For each value of tang2, this equation define a curvenns that be called isogonic,
and that is the locus of all points where the directd birefringence is equally inclined
with respect to the line of the cut. Thus, (10) and (1p)esent the isogonic far= 0
and a = 45. Experimentally, if the polarizers make an angdlevith the cut then the
black line that one gets will be the isogonic that relavethe angler = ¢.

For 2 = 90, the preceding relation will give the result that weferred to before,
namely, that the lamina will be birefringent along tleenmal line to the line of the cut
and will have an axis that is directed af #bthat line.

For A = constant (4) will define a system of lines along which the birgfence has
the same value. However, the discussion of that doatptl equation is not feasible.

All of the preceding presupposed that the conditions umdech the Volterra
formula from which we began would be valid were realizaginely, that the cut was
very small, and that the bases were taken to berndeanthinitially at a distance from each
other. However, it is clear that if we observelight in the direction of the-axis, as we
assumed, then the forces that must be applied toatesbn order to make them planar
and at a normal distance will not have a very grefiiance on the observed effects,
especially if the ring is reduced in théirection to a disc of small height.

Furthermore, in truth, experiments have confirmed cdlithe details that were
predicted above, without any need for taking the ring betwevo layers of glass that
would render the bases absolutely planar and at thealrgjstance.



