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INTRODUCTION

Mechanics, like any science that makes perceptible ifsotbject of study, is, above
all, experimental and inductive, and that is the chardattat it possesses in a classical
treatise. However, one can also try to attach $onbe unique general concept and give it
a deductive form. In that manner, one confers upomévapower to discover, and one
finds the explanation for some notions that were alreadyired inductively. Such was
the work of Lagrange a century ago in kigcanique analytique

In our epoch, an attempt of this type deserves tebewed, because the domain of
phenomena that are found to depend more or less corgplgieh mechanics has been
enlarged considerably. One of the paths that one canwfollas pointed out by
Helmholtz: He took his point of departure to be the metifddamilton’s variable action,
in such a way that the notion from which one must dedilla# the inductive principles
of mechanics is that @fction conveniently chosen. However, Helmholtz did notifglar
precisely just what was fundamental in that original cphciat would permit
generalization. In order to arrive at a complet@gstructive definition, one can observe
that the action that Maupertuis introduced into mechanicwariant under the group of
Euclidian displacementsThis same character is also found in the statics ofrchaible
bodies, which rests upon the consideration ofdieof space. In physics, the theory of
phenomena that are due to gravitation, heat, and electiiepends upon the study of
differential parameters that are likewise invariant urther group of displacements, as
was first shown by Laplace, Fourier, and Maxwell.

H. Poincaré once wrote that the notion of group alreadsts in our spirit, at least,
potentially, and is imposed upon us, not as a form that veeige, but as a form that we
understand. Following that philosophical idea, all of ctadsmechanics and all of
theoretical physics seems to be deducible from theesinglion of aEuclidian action
That is what we propose to establish in our present abtleast, insofar as it concerns
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the questions that belong to the usual scope of mechaniés.therefore present the
theory of Euclidian action for extension and motioBince we shall have no need to
employ the word “matter,” our considerations likewis# apply to theether In order to
have a more complete idea of the notion of mattee, maost deal with the concept of
entropy taking the profound viewpoint that Lippmann introduced ielectric theory;
that aspect of the question cannot be contained withntiis of our discussion here.



l. - STATICS OF THE DEFORMABLE LINE
AND THE DYNAMICS OF TRIHEDRA.

1. Deformable line. Natural state and deformed state- Consider a curveV)
that is described by a poii, whose coordinates,, Yo, zo With respect to the fixed
rectangular axe®x, Oy, Oz are functions of the same parameter — for exampdeartt
length 5, of the curve, when measured by starting from a welkéefiorigin and
proceeding in a well-defined sense. Attach a tri-rectangyuiteedron to each poiil, of
the curve o) whose axedM x,, M,y,, M,z, have direction cosines with respect to the
axesOx, Oy, Ozthat areao, a,, a,, K, By, By, 6, Vs» Vs, @nd which are functions of
the same parametex; . The continuous one-dimensional set of all suchetiia
M X, Y, Z, Will be what we call @eformable line

Give a displacememiloM to the pointMy . Let X, y, z be the coordinates of the point
M with respect to the fixed ax€¥, Oy, Oz In addition, give a rotation to the trihedron
M X Y,Z, that ultimately takes its axes to those of a tribadvix'y'Z that we attach to

the pointM. We define that rotation by giving the direction cosiaeg’, o', 5, B', B",
¥, v', y" of the axedvx, My, MZ with respect to the fixed axé3x, Oy, Oz The
continuous one-dimensional set of trihedda'y'z will be what we call thedeformed
state of the deformable line considered, which will be called nhtural statein its
original state.
Suppose that, varies, and that we shall let it play the role iofe for the moment.
We then let&, 7o, { denote the projections of the velocity of the orilyim of the axes
M,Y,, M,z, onto those axes, and Igb, qo, ro be the projections of the

instantaneous rotational velocity of the trihedidgx,y, z, onto the same axes. We {t

n, {andp, g, r be the analogous quantities for the trinddsay'Z when one refers them,
like the trihedronMx;Y,%, to the fixed trihedrorOxyz The elements that we just

introduced have values that are related as follows:

g:a%+a'ﬂ+a"iz

d% ds ds’

1) n= ﬁ—+,6’ dy+ﬁ" o

{= y—+V +V—
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_~v 98 _ _~ 0y

p Zy—d% Zﬁ—d%,

dy da

2 =S¥ __§y, %
(2) q Zad% Vs’
_ygd9_ 5,96

r—z,[z’d% ad%.

With these quantities, the linear elemdsbf the curve that is described by the point
M is defined by the formula:

3) d¢ = (£2+ 72+ ¢ dg.

Letx, Yy, Z be the projections of the line segm@#l on the axedx', My, MZ, in
such a way that the coordinates with respect to theseadutleefixed point Owill be —x',
-y, -Z. We will have the following known formulas:

- _qz+ry=0,
ds,
(4) q—ﬂ—rx'+ pZ =0,
ds
dZ
{———-py+ax=0,
ds,

which gives new expressions f§r7, .

Suppose that we give each of the trihedra of the detbstae an infinitely small
displacement that can vary with these trihedradonr@inuous fashion. Lek, oy, dz, &,
of, &, ..., oa, oa', ..., oy" be the variations of, y, z X, VY, Z, ..., a, a’', ..., V",

respectively. The variationéa, oa’, ..., oy" are expressed by formulas such as the
following ones:
(4) aa=XK -yqg,

by means of three auxiliary functiods, g', &, which are the components aloktx',
My, Mz of the well-known instantaneous rotation that isciiga to the infinitely small
displacement in question. To abbreviate the notatiargduce the projectiond, JY,
o'z of the displacemeni, dy, &z ontoMx', My, MZ. We will have:

OXx=0X+25 |- Yok,
(6) OYy=0y +XIK—- XJ1,
0z=07Z+ yol-%J |.

Having said that, we have, from (2) and (5):
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5p=ﬁ+q5k’— roj,
ds,

(7) 5q:ﬂ+ra"|’—p5k’,
ds,

or = dok +qoj' -ra’'.
ds,

Similarly, from (4), (6), and (7), we have:

5E=/75k'—551'+%(+q52— 3y,

oy

6) 5/7:55'—5&'+dd% FrEX-pdz

5Z=<‘5]'—/7&'+%+p5y—qé"x

2. Euclidian action of deformation on a deformable line. Exrnal force and
moment. Effort and moment of deformation at a point of a d®rmed line. —
Consider a functioW of two infinitely close positionsf the trihedrorMxy'zZ — i.e., a
functions of X, y, z, a, ', ..., y" and their first derivatives with respectgp. We seek
the form thatW must take in order for the integfalV dg , when taken over an arbitrary
portion of the line fp), to have a zero variation when one subjects thefsal trihedra
of the deformable line, when taken in its deformed st&tethe same arbitrary
infinitesimal displacement of the Euclidian displacement grouBy definition, it
amounts to determining/ in such a fashion that one hd& = 0, when, on the one hand,
the origin M of the trihedronMxy'Z is subjected to the following infinitely small
displacement:

oxX=(gt+tw,z-w,)ot
9) Sy =(a+wx-w3Jt
67=(a+@y-w,3 31

whereay, ap, a3, W, a, a are arbitrary constants, awtlis an infinitely small quantity
that is independent & , and when, on the other hand, the trihedvixhy'Z is subjected
to an infinitely small rotation whose components aldimg axesOx, Oy, Oz are w 4,
wa, awad. In the present case, the variati@gsdr, ¢, p, A, & of the six expressions
& n, 4 p,q,r are zero, since that would result from the well-knakeory of the moving
trihedron. We thus obtain a solution to the questiondbyng W to be an arbitrary
function ofsy and the six expressios 77, ¢, p, q, r. We thus have the general solution
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(*). Indeed, relations (2) permit one to express thedisivatives of the nine cosines
a, ..., y" with respect ta in terms of these cosines apdg, r. On the other hand, the
formulas (1) give the nine cosinegs o, ..., y" in terms ofé n, ¢, and the first
derivatives ok, y, zwith respect t& . We can therefore finally write:

dx dy dz

W:W[%,XMZ— 5/7( nqa

ds 'ds  ds

Since the variation®d¢, on, o, &, &, & are zero, by virtue of formulas (9), and for
all a;, ap, a3, @, @, az, we must have:

ow . ow +6W52+6W5 dx+6W5 d)_/FG W5 d_

ox+ 1) —t—F—0—F——0— =
ox dy T adX dg Ay ds 5 dz° ds
ds, dg ds
Replacedx, dy, & with their values in (9) aneﬂﬂ o— dy 5£ with the values
dy~ dg  ds

that one deduces by differentiation. One then get®otlosving conditions:

a_W: , a_W:O’ a_W_O
0x oy 0z

oW dz_ oW dy_

d dz d =0,
o Y y ds;) 5 9% dsg

ds, ds

oW dx_ oW dz_
aﬂ ds aﬂ( ds
ds, ds

OW dy OW dx_
a9 dx ds, P dy d§
ds, dg

The first three show th&V is independent of, y, z. The last three express the idea
that W depends upodx/ dg , dy/ ds , dz/ ds only by the intermediary of the quantity

() In the sequel, we suppose that the deformable lisesiseptible to all possible deformatipssthe
deformed state can be taken to be absolutely arbitr@ye can express this by saying that the deformable
is free
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2 2 2
o), [dy ), fdz , which, from (3), is equal td? + 7% + % We finally see
ds, ds, ds

thatthe desired function W has the remarkable for(e\W¥, 7, ¢, p, q, 1).
Just as the value of the integjag—sd% , when taken between two poirfs andBg
S

of the curve {lp), will determine thdengthof the arc between the corresponding ponts
and B of the curve ), similarly, upon associating, in the same spirig tiotion of
actionfor the passage from the natural statg) (o the deformed statd/, we attach the
function W to the defining elements of the deformable line, andayethat the integral
W ds, when taken between the same poiAtsand By of (My), is the action of
deformationon the deformed line between the poidtandB. We also say thaw is the
densityof the action of deformatioat a pointof the deformed line, when referred to the
unit of length of the undeformed lin&/ ds, / ds will be that density of action at a point
when referred to the unit of length of the deformed line.

Consider ararbitrary variation of the action of deformation between twonpoA
andB of the line M), namely:

B B(OW . W . aW_, OW_ dW_ 9 W,
5[ "wdg = +=— N +— O +—Op+—03q+—0r | ds .
Lo ) Lo(agé‘( on "8z ¢ op °" " aq X ar j N

By virtue of formulas (7) and (8) of no. 1, and upon integgalby parts the terms that
refer to a derivative with respectdgexplicitly, we can write:

5j2°w ds = [F'ox+G0 y+ HE z+ 151+ 35 [+ KOK],

—jZ"(x;cyxwocy vt 20 2 L3+ MJ j+ NI R ds,

where we have set:

F’=M, G,ZO_VV, H,:aw’ |':6W, J,za W, K’=a W
o0& on lil4 ap Jaq or
,_dow__oW_ow ddW oW 6W awaw
0= to—>—r—— L=—-—7-*q Z
(16) ds0 0é o on dg op O0r aq (014
. dOW 6W ow . _ ddW oW 9 W awav\
YO _p 4 0 r p +Z _5 1
ds0 6/7 65 i 14 d§ 0q op or o0& 0
,_ d oW paw 6W N,)_iaw paw_qaw+ 6W_I76 w
0" ds 07 ' on ds or dqg dp dn &’

If we first consider the integral that appearshie expression fo5jZ°W dg then we

can call the line segments that issue fldmvhose projections onto the axels’, My,
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Mz are X,, Y;, Z;, and Ly, M, N, respectively, thexternal force and external
moment at the point M, when referred to the undeformed unit of leegth, If we then

consider the partially-integrated part 63'Z°W dg then we can call the line segments

that issue fronB whose projections onto the axelx’, My, MZ are the values that the
expressions ', -G',-H',and ', -J', —K', respectively, take at the poid} the
external effort and external moment of deformatdrthe point B resp. We call the
analogous line segments that are composed of the vahiethe¢ expressionsH', + G,
+H', and +l ', + J, + K' take at the poink, the external effort and external moment of
deformation at the point ,Aesp. The pointé andB do not present themselves in the
same fashion here, because we agreed to define thgimtbe sense ohoBy .

Suppose that one cuts the deformed Mat the pointM and then one mentally
separates the two padl andMB. One can regard the two line segments (— G,
-H")Yand (H',-J', — K') that are determined for the polMtas the external effort and
moment of deformation of the pakiM at the pointM and regard the two line segments
(+F',+G',+H")and (+l ', +J', + K') that are determined for the same pdihas the
external effort and moment of the pMB at the pointM. It will be the same thing if,
instead of consideringM andMB, one imagines two portions of the deformable line that
belong toAM and MB, respectively, and have one extremityat By reason of these
remarks, we say that~',-G',-H',and ', -J', - K' are the components along the
axesMx', My, Mz of the effort and moment of deformation at the point Mt thee
exerted upon AM and any portion of AM that is bathdy M and that ', +G', + H
yand +1 ', + J, + K" are the components along the akks, My, MZ of theeffort and
moment of deformation at the point M that are eecedpon MB and any portion of MB
that is bounded by M

2. Equations of Lord Kelvin and Tait. Varignon’s theorem. Nbtions of energy
of deformation and the natural state of the deformable line- The various elements
that were introduced in the preceding section are coupledhéyotlowing relations,
which result immediately from comparing the formulaat serve as their definition:

dF’ dl’

—+gH'-rG'-X;=0, —+gK-rJ+7pH-{G- =0,

as 9 0 ag @ nH=-¢G-1
(11) d—G+rF'—pH'—YO’:O, d—J+rI'—pK’+ZF’—EH’—M(’)=0,

ds dg

dH’ dK’

—+pG-gF-2%4=0, —+ pJ-ql+éG-n F- N=0.
ds, pG -qgF - % ds pJ- ql+¢ G- N

One can propose to transform the relations that wewuwoteindependently of the
values of the quantities that appear in them tha&t ealculated by using W Indeed,
instead of defining the line segments that we have atatheéhe pointM by their
projections ontdVIx, My, MZ, we can just as well define them by their projection®s ont
other axes.
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First, consider the fixed axé&3x, Oy, Oz Let Xo, Yo, Zo andLo, Mo, No denote the
projections onto these axes of the external forceraoment at an arbitrary poiM of
the deformed line, and 1€, G, H andl, J, K denote the projections of the effort and
moment of deformation, whose projections onto the &ke, My, MZ areF', G', H' and
I’ J, K', resp. We can regard the external force and momemtisasbuted in a
continuous manner along the line and referred to the unéngfth of the undeformed
line. In order to have the external force and momeiatrired to the unit of length of the
deformed line, it suffices to multiplyX;, Yy, Z;, Ly, Mgy, Ny or Xo, Yo, Zo, Lo, Mo, No
by ds / ds whereds is the linear element of the deformed line that cornedpdo the
linear element of the undeformed line. Introduce thegptmnsX, Y, Z, L, M, N onto the
fixed axesOx, Oy, Oz of the external force and moment, thus referred ¢éouthit of
length of the deformed line. We will then have thetietes:

E—X-O, ﬂ+H$/—GEZ—L=O,
ds ds ds ds

(12) 96 _yoo, Hypdz & pyoy
ds ds ds ds
d_H—Z:O’ %+GQ(—F£y_N:0,
ds ds ds ds

which are identical to the ones that were considereldobg Kelvin and Tait. However,
the latter are obtained by applying what one callsassital mechanidfe principle of
solidification and by starting with tha priori notion of forces and couples, which are
then expressed as functions of the deformatiomposteriori and by virtue of the
hypotheses. Moreover, Lord Kelvin and Tait have imaginelg an infinitely small
deformation, whereas we have presently placed ourseltbe general case.

Now, let there be a tri-rectangular trihedrbhx; y, Z that moves wittM, and whose

axis Mx; is subjected to being directed along the tangent to thve @ and pointing in
the sense of increasing arc length. IL.&t 1" denote the direction cosines bl relative
to the trihedrorMx'y'Z, letm, m', m" denote those oMy, , and letn, n', n" denote those

of Mz . Upon settings = /& +n°+7%, we will havel = &/ g 1" =nlgl" =&
Moreovermé+mn+m'¢=0,né+n'n+n"{=0. Ifthe trihedrorM x Y, Z is referred

to the fixed trihedrof©xyz ands, plays the role of time then the projectigmsq;, r1 of
the instantaneous rotation of the trihedidnx; y; Z into the axesMx;, My, , Mz will be

given by formulas such as the following ones:

I n dm
pr=Ilp+lI'q+I"r+ » n—.

ds

I

On the other hand, leX;, Y/, Z/, L, M;, N; denote the projections onto
Mx ,My;, Mz of the external force and moment at an arbitrarytpdiof the deformed
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line, when referred to the unit of length of the undefortive} and letF,, G/, H;, I,

J;, K, denote the projections of the effort and moment ofrdedtion. The transforms
of equations (11) are obviously:

dF; dl!

d_$j+q1Hi_ rle'l_ X'1: 0, d_§+ Q1K'1_ rl‘]’l - L'1: 0,
d ! I I I d' I I I I
(13) %'*' rlFl_lel_leo' d_;l'*' rll 1 le 1_‘9H 1_M 1~ 0,
dH, , , dK
+ -qF-Z=0, —+pJ-ql+esG- N=0.
ds, pG-qFR-Z ds pd- ql+e G- N;

If one hasL, = 0 andg: = 0 in the fourth equation of (13) then one gets:

i—rlJi =0,
ds,

which implies the proposition that was established byseaishat forlL; = 0, M, = 0,
N; = 0,q. = 0if J; = Othen one will have thal; = const.

Among the theorems that one can deduce from the sygfidmsand (12), we insist
upon the following fundamental proposition of statics,0sé main idea, but not its
present form, is due to Varignon, and which one encouagas on the interpretation
that Saint-Guilhem gave for the relations that cotipdeexternal forces and quantities of
motion in dynamics. Assign the effort and moment dbdeation at a poinM of the
line (M) to the resultant and resultant moment of a sysiémwectors that relate to the
pointM. LetPv, Pobe the general resultant and resultant moment tlede te a poinP
in space. Likewise, assign the external force and embiat a poinM; , when referred to
the unit of length ofi{), to the resultant and resultant moment of a systewectors that
relate to the poinl. LetPN andPSbe the resultant and resultant moment that relate to
point P of space. One has the propositidrthe arc length s is regarded as time then the
velocities of the geometric pointsand o are equal and parallel to the segments PN and
PS This proposition is obviously a translation of equatid®y. We can further arrive
at it in the following manner: We give the nameeaferior workdone on the deformed
line AB under an arbitrary virtual deformation to the equivaéxqressions:

OT.=- [F'&x+GJ y+ HF z+ 151+ 35 [+ K& K]
+ j(x’5’x+Y’5’ y+ 20 # [5'i+ M3 |+ NI K d

= - [Fox+Gdy+ HIz+ 13+ I3 j+ KK’
+j(x5x+Y5y+ Zoz L0 MO NJ K d,
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where a, g, & are the projections onto the fixed axes of the lingm&nt whose
projections ontaMx', My, MZ ared’, g', &, resp. We thus have:

["owdg =- o,

whered7, is taken betweeA andM. SincedW must be identically zero, by virtue of the

invariance ofW under the group of Euclidian displacements, when thatiars Jx, Jy,
oz are given by formulas (9) and whén= aw &, § = w» &, &k = a3 &, and this must be
true for any values of the constaatsay, as, W, a», a3, we conclude that we must have:

[F! -] xds=0, [a]!~["vds=0, [H]!-['Zds=0,

[I +yH —zG]r —I:A(L+ yZ- zV¥ d =0,

and two analogous formulasn these relations, one can regard M as varialaled they
are thus equivalent to equations (12). One remarkshbse formulas are deduced easily
from the ones that one ordinarily writes by meandefgdrinciple of solidification.

Imagine two statesMp) and M) of a deformable line, and consider an arbitrary
sequence of states that begin wikly and arrive atNl). To that effect, it suffices to
consider functions, vy, z, a, @, ..., ) of 5 and a variablé that reduce too, Yo, 20, o,

a,, ..., vy, respectively, wheh has the value zero, and reduce to valyes z, a, o,

..., ' that relate toNl) whenh equalsh. Upon making the parametewnary from O toh

in a continuous fashion, we obtain a continuous deformakiat permits us to pass from
the statelflp) to the stateNl). During this continuous deformation, ttetal workthat is
performed by the external forces and moments thatpglesd to the various elements of
the line and by the efforts and moments of deformdhah are applied to its extremities
is obtained by integrating from O tothe differential that is obtained by replacing the

variations o, y, z, a, @, ..., Y in JI with the partial differentials that correspond to the
increaseadh in h:

h( 8 OW
-7 UAO Wo|soj dh
-~ '[Zo [W(so, & 17, ¢, P, 0, 1) —W(So, o, 770, o5 Pos Cos T0)] 0 -

The work considered is independent of the intermediatessand depends upon only the
extreme statesMp) and M). This leads us to introduce the notion of dreergy of
deformation which must be distinguished from that of the actibat was previously
envisioned. We say thatWis the density of the energy of deformation
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The natural statethat we just considered was the initial state of a sesp®f
deformed states. The external force and the analogjeo®ents that relate to them are
not necessarily zero. It is important to remark thaeddition, they are not essentially
distinguished from the other states and that one makebétnary deformed state play the
role of natural state. LetMy) be that state, where we denote the arc lengthoby
Moreover, upon letting?®, 79, 29 p@ @, r® represent wha¥, n, ¢, p, q, r, resp.,
become when one lesg) play the role that is played Isy — in such a way that one has,
for example £ = &9 dgg) / ds, — it will suffice for us to consider the function:

VV(O)(SO, 5(0), ,7(0), Z(O), p(O)’ q(O)’ r(O))’

which is the expression for:

W[% £O Ao, e 9% o d%)j ds,
ds, dg ds ) dg,
d
in which s, ;—% ,ﬂ are replaced as functionsspy . Instead of making the notion of
S0)

the natural state correspond simply to the idea of ecplatistate, we can therefore, and
in a more general fashion, make it correspond to theoiflea arbitrary state that we start
with in order to study the deformation.

4. Normal form for the equations of the deformable line.Castigliano’s principle
of minimum work. — We can consider equations (10) of no. 2 to be diffelegizations
that relate to the unknowmsy, z and three parametefs, A,, A3, by means of which, one
expressew®, o, ..., Y. Assume thako, Yo, Zo, Lo, Mo, Np are given functions o, X, v,

z, A1, A2, A3 . The expressioW will be, as far as it is concerned, a well-definedction

of s, %ﬂﬂ 1, A2, A, d)ll, d4, ,d)l?’ , and from the relation:
dg dsg ds dg ds ds
(14) 5jfo°w de +8L=0,

we can replace the system (10) with the equivalent emsat

d ow d oW dow
—_ - :0, ———Y=O, — - =01
dg g dx 7 ds 5 dy ds 5 0z %

(15) ds, ds ds

d oW W d oW oW dow aw
— £, =0, ———— === M, =0, —————-—=N\,=0,
dy 50% 04 0 g, dk o1, 0T Tas,dk on, ¢
ds, ds ds,
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in which Lo, Mo, No denote expressions that have the same natuke, &, No, and

which are known at the same time as them.
Introduce the auxiliary variables:

Fo QW gl W OW

s, O 9 ds

as) W oW ow
e YTan Mo

ds, ds ds,

From these six relations, if we suppose that the HessfaW with respect to
dx dy dz dA dA, di,. :
is non-zero then we can infer some values for thatser |

dg 'ds 'ds  ds ds ds
six derivatives as functions &F, G, H, Z, J, K. Transport these values into the

expression:

_dx oW dy oW dzo W dA o0 W

== +—2 +— + ! -W.
ds a% dg aﬂ d§aiz d@aﬂ
ds dg ds ds

After substitution, we obtain a function &f A1, A2, A3, F, G, H, Z, J, K that we
continue to denote by the lettér Now, the total differential of the latter funatias

obviously:

X W ges 92 gps YA g7 I dJ + A o -OW dg—zﬂv o,
ds ds ds ds ds ds 0s 4

and one has, in turn, the following form for the systeat definex, y, z, A1, A2, A3, F, G,

H, 7, J, K:

dx _of dy _9¢ dz _ 9 dA _of dA, _ 9 di _og
’ - ’ _alcl

ds oF dg oG dg oH' ds oI ds o7 ds
dF dG dH
2 _x.=0, 2 _v,=o0, = _z=0,
ds, ds, a5 2
d_I+a_g—£O:0, d_‘7+a_g—/\/l0:0, d_IC+a_g—_/\/'O:O_
ds, 04, ds, 04, ds oA,
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We have supposed that we can exp¥s¥o, Zo, Lo, Mo, Ao as functions o$, X, v,

z, A1, A2, A3 by virtue of the formulas that defingy, z, A1, A2, A3 as functions o%,. This

is possible in an infinitude of manners, and one can alelgysse the new forms o,

Yo, Zo, Lo, Mo, Nop in such a fashion that they are the partial derivativeth (e sign
00 00 00 00 00 00

changed) , respectively, of the same functi and are
9o oy oz Tax "o, ot oPecvel @

either independent @& or not. Suppose that this is true, and@edenote the function of

X, Y, Z, A1, A2, A3 (and possiblys)) that is defined by the formul@ = £ + O. The
preceding system then takes the form:

dx _ 09 dy _ 99 dz _ 09

45 OF' ds 96’ dg oH’
dA _0Q di, _0Q di, _0Q

ds, 0T dg, 0J dg 0K

dF __0Q dG __0Q dH __09
ds, ox ' ds, oy ds 0z '
dZ _ 99 dJ __ 99 dk __ a9

ds, 0A ' ds oA,  ds oA,

Here, we have equations that are presented in thedbidamilton’s equations of
dynamics. If we suppose, in particular, that the nenm$ forXo, Yo, Zo, Lo, Mo, Ny are
chosen in such a fashion (and this is always posshde$, does not appear and that they
are the partial derivatives of a functidhof x, y, z, A1, A2, A3, and if, in addition, we

suppose thaW(sy, & 72, ¢, p, G, r) does not depend upa then we will have, more
particularly, a system of canonical equations.

Equations (14), in the case where the external foeoes moments are zero,
corresponds to Castigliano’s principle of minimum woskiich was already considered
by Vene, Courant, Menabres, and others. The normel for the equations of the
deformable line likewise leads to what one calls @lastigliano theorems.Indeed, one
has, for example:

J-Bo o0&

XB — Xa —d% FB_FA:JZOXOd%-

If one supposes thah = Yy = Zy = 0 then the efforF, G, H is independent of, , and one
can write:

xB—xA——I Eds),

along with analogous formulas.
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5. Notions of hidden trihedron and hidden action. The fikeible and inextensible
line of Lagrange. The flexible and inextensible line oflassical mechanics= In the
study of the deformable line, it is natural to devote spatiantion to the curve that is
traced out by the summit of the trihedron and to consider, ..., y” to be auxiliary
functions. One is then led to introduce the notiomidflen trihedron and to make a
classification of the various circumstances thatma&sent themselves in the elimination
of a, @, ..., y". One can also abstract from the deformation that perome to pass
from the stateNlo) to the stateNl); one often adopts the latter viewpoint in classical
mechanics. Finally, one can make some particular hypattesehe trinedron that is
attached to the poin¥l, and similarly, on the curveV). This amounts to imagining
some particular deformations of a deformable line ihantirely free. If the relations
that one imposes are true between sindply, ¢, p, g, r then one can account for them in
the calculation o#V and deduce some more particular functions fi@m The question
that is then posed will be that of the direct introductid the particular forms and the
consideration of the general action that serves apdim of departure as being, in some
way, hidden We shall show that one can therefore summarigestjuations that have
been studied up to now by way of some particular cases fhey arise from the same
origin.

First suppose thal/ depends upon onbg, ¢, 77, {. Equations (15) then reduce to the
following ones:

ia_W—XO:O, ia_W—YO:O, iaw -Zo =0,
ds, a% ds, aﬂ ds aﬂ
ds, ds, ds,
a_W+[,O:O, a—W+/\/l0 =0, a—W+No:0.
6/]1 aAz aAS

Imagine the case where the functiahys Mo, Ny are zero. The equation%\)/llz 0,
1

W _ 0, W _ 0 then amount to:

oA, oA

22|o

2|

H
izl
ds

and upon denoting the common value of these ratiosThythe result of eliminating,
A2, A3can be written:

(16) i(‘r%}+x:0, E(Tﬂj‘*Y:O, E(Td—ZJ+Z:0
ds\ ds ds\ ds ds\ ds

with respect to the deformed line. The effort now reduoeaneffort of tension T Let
the two states of the lineMg) and M), be given. When the function, Mo, Ny are
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zero, this result can present itself accidentally; éwaw, it can also happen that it presents
itself for any deformed lineM) and as a consequence of the form\bfThe functionw
then depends simply upag and &2 + 777 + ¢, or — what amounts to the same thing —
upons, andi =ds/ ds — 1 (wherem represents the linear dilatation at the pMnt and
one hasl =-0W/ou . If we consider the particular case in whggtdoes not appear
explicitly then we arrive in this manner at Lagrange’otlieof theflexible filament that
is, at the same time, extensible and contractiel@ich was then taken up again by Lamé
and Duhem. At no point do we have to appeal — even inlyirecto the notion of
dynamical force, which was introduced into mechanics adgrange only because of a
remark of J. Bertrand. We have argued on the basiedtatic force that imeasured by
means of the deformation.

How can we conceive of tleexible and inextensible filamenthile maintaining the
same viewpoint? It will suffice for us to follow tlgath that is usually adoptedit in
the opposite senseWe impose the condition upon the general deformableofim®. 2
that an arbitrary portion oM) must have the same length as ¢tberespondingportion
of (Mo), which amounts to saying that one subjectg z to the condition thatls = ds, .
Instead of considering an arbitrary deformatit) ©Of the natural stateMp), we direct
our attention to the deformety for which one hads=ds. We use the formulas of no.
2 as the definition of force, and apply them to the mowstof the deformable line that
coincide with those of the given inextensible linen garticular, if we imagine the
flexible and inextensible line then we can define theeftcY, Z by the system (16),

ou
order to obtain aeterminateproblem, it will not be necessary, moreover, to supplose

the functionT is known; it will suffice to adjoin some convenient ddgions at the
extremities to the system (16).

We shall not insist upon the case in whith Mo, Ao are non-zero. It corresponds

to the case that was imagined by Darboux in which theidingubject to an external
moment that is analogous to a magnetic moment.

whereT represents the function efthat is defined by the formula = - [Mj . In
H1=0

6. Deformable line where the axi$1x is tangent to(M) at M. Deformable line of
Lord Kelvin and Tait. Equations of Binet and Wantzel. — Consider just the
deformations ) of the general deformable line for which the ais is tangent to the
curve M) at each point, and also suppose thgfx, is tangent toNlp) at Mo, so that
these deformations will define a continuous sequencettdrds at ). This amounts to

d—XO, a, = % a, = d_zo; a= 2(, a = ﬂ, a' = d—Z, where orr
ds ds ds ds ds ds
=n=0,¢%=¢=0. The fact that we have limited the study of defdiona of (MO) to
those deformed\) that verify the latter conditions and the fact tivathave admitted the
new concept of a line that is susceptible to only the deftons in question can be
regarded as identical here. This conforms absolutelyetprihciple of solidification that

is introduced by classical authonsthe opposite ordeio the one that we followed.

the conditionsyg =
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Let £, B, B be the direction cosines of the principal normal tociinee M) at M
with respect to the fixed ax&x, Oy, Oz resp., letys, ), J4 those of the binormal, and

let w be the angle that the axidy’ makes with the principal normal. One gets the
formulas:
ds 1 dw  ds _ sinw  ds _ cosw

ds 71 ds’ ds 0 ds 0

upon settlng— Z,[;’lda 1 Zyld’[))l, and recalling thatZa yl = 0. The

expressions 1 p and 1 /7 are equal in absolute value to the curvature ansion
(cambrureto Barré de Saint-Venartrtuosityto Lord Kelvin and Tait) ai.

When one takes into account the conditions thairaposed upon the deformed)(
one can imagine that the actidl is partially hidden and defined simply by the
knowledge oMy, ¢, 77, ¢, p, 0, r). Upon settingé =ds/ds =1 +4, F, G, H become
three auxiliary variables, in regard to which om@Ws only that one has:

|:%jLGdy dz _ oW 7
ds ds ds a,u

One can propose to eliminate them from the sygtiét) and one then has the four
equations:
d de dK—N dy (dJ M—d—X:O,
ds ds ds ds | ds ds
dfrdr,dy)ee (o),
ds ds \ ds ds\ ds ds
df_dz, (dJ_Mj_dx_(_dl_Lj_d _s-0
ds ds \ ds ds\ ds d
ﬂ—L dx E—M dy _dK_ Nd—z -0
ds ds ds ds ds ds
in which one has replacedJ, K, T with their values as functions of the directiorsices

of the axes of the trihedravixX'y'Z and the derivatives of the partially-hidden activyn
with respect t@, q, r, i. If sdoes not figure explicitly in the givens then @am appeal

(17)

2 2 2
to the relation (%) +(%j +(%j = 1 in order to eliminatds and the relations (17)
S S

will provide four differential equations that dedin, y, z, was functions o$, .

It is remarkable that the system (17) can be cdesdéanto a form that one can deduce
from the calculus of variations. We shall not depethe calculations that lead to that
reduction here, but we shall give only the restlere, the expressiomMs, 1 +4, 0, 0,p,
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g, r) depends upos, in addition, by the intermediary of p, q, r, the arguments) g_a)
S

and the derivatives of the first three orders,of, z with respect tax . One arrives at a
system that can be summarized in the equation:

(18) j: (OW +X,0x+ NI y+ 20 7= Ldw) ds=0
upon setting:

d’s
2 ne
Xo—Xo+d_ K rfy 9 di +—[d%s(aN a"MO)}

& ET

dx

with two analogous formulas, and upon writibg = L,—+ M, dy+ N,— dz , conforming
S

° ds d¢
to our earlier notations.

The preceding considerations are attached todfegmable line that was studied by
Lord Kelvin and Tait, which one can deduce from pineceding or imagine directly. It
will suffice to add the following conditiop = 0 — i.e.,& = 1 — to the ones that were
considered. Equation (18) is presently true, bytuei of the fact that

dx)* (dy)® (dz)’_ —
— | +| — | +| —| =1, and one has, more simply:
ds ds d

2

d ' d ' "
Xo =Xo + E(lel—o)ﬁLd—%(a’ No—a"M,),

with two analogous formulas.

Instead of employing equations (17), it can be anoonvenient to return to the
starting equations. For example, suppose XpaYo, Zo are zero. One concludes from
this thatF, G, H are constants that are equal to the vallgs G, ,H, at one of the

extremitiesAy , and one then has the three equations:

dl dy _
L in £\ =0,
ds, * ds G d§ b =
dJ dz dx

+F, 22y, XN, =0,
ds, “dg % ds °
dK dx dy

+G, X_F, Y_p, =0,
ds, ™dg "~ dsg °

which are the original equations, and whmiesentlyresult from the elimination of
from the system (17). If one has, Mo, No equal to zero, in addition — i.e., if the
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deformed i) is subject to only forces that are applied to the exties then one will
have:

| +H,y -G, z=const.
(19 J+F, y-H, z=const.
K+G, y- F, z=const.

Having made these remarks, consider the caseichwime functionVof s, p, q, r is
of the form1 A(G? + 1% +Bp + C, whereA, B, C are constants. One will hal/e=B, J =

Aqg, K' =Ar. The vectorl(, J, K') or (I, J, K) is the resultant of a constant vector that is
equal toB and directed along the tangawiik and a vector that is directed along the
binormal that has the same absolute valu@ A®. The three equations (19) are, up to
notations, identical to the equations:

2 —
wdyd z- dzd ):«9% +cy—bz+ay,

ds?
dzdf x-— dxd : _ ,dy
w =f—= +az-cx+ay,
ds ds

dxd®y-dyd x _ _dz
w = f— +bx—ay+az,
ds’ ds Y+ &

that were considered by Binet, Wantzel, and Herramel in whichw, 6, a, b, ¢, a1, a, a3
are constants. Lagrange has considered the casbich & = 0, and J. Bertrand has
treated the one in which the three equations:

cy—bz+a; =0, az—cx+a; =0, bx—ay+a;=0

represent a line — ie., the case in which the leoyp,.J,.K,) and the effort
(Fa, G, H, ) have a unique resultant.

One can present the foregoing as follows: If tifere of deformation of the line
considered at the beginning of this section is @edpular to the principal normal then

one will have ra—W—qa—W: 0. If one supposes that this condition resuisnf the

0q or
nature of the line thew must depend upog andr only by the intermediary af® + r.
If we suppose that this condition is verified thénom the remark of Poisson that was
mentioned in no. 3, them the equations of the mblvill imply thatl" = const. If we
suppose that this condition results from the natdithe line then this will amount to the
condition that:
ow _
op
B being a constant, and we will find that:

Bl
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W=Bp+ ¢,

in which ¢ is a function of + r* = 1 / /. Upon supposing that is of first degree with
respect tay + r?, we recover the action that was envisioned above.

7. Deformable line for which the planeMx'y’ osculates(M) at M. Lagrange’s
line, as generalized by Binet and studied by Poisson. Instead of simply supposing
thatMx' is the tangent to the curv®l), we can imagine the case in which the plsixg/
is the osculating plane to that curve. We then haeedlations)o=7=0,{%=¢=0,0
= q = 0, to which, in order to simplify the question, we agpéine inextensibility
conditionu =0, oré=1. We continue to la denote the partially-hidden action:

W(s, 1, 0, 0, O,r)

and suppose that this single function is known. The quemxt, G', H' become four
auxiliary functions and we have simply the relatiohs= oW /dp, J =0W/or. The three

equations (11) of the line give, in particulagll%— rJ’ = 0 when the given functionk;,
S

M;, N, are zero. If the functiow/ does not depend up@rthen we will havd' = 0, and

in turn,J = 0, if we suppose thatz 0. Therefore, in the present case the moment of
deformation is directed along the binormal of the cMg In this manner, we have a
line such as the one that Lagrange considered. The teatilwas obtained on the
moment of deformation and equations (12) for the line parsiib set:

F=a X d(Zd), G= 29y d(Zd%), H= 292_ d(Z d%2).
ds ds ds
If we substitute these in the left-hand side of equat{d@2) then we will have the same
equations as Lagrange:

X ds— a2 9%+ d*(Z d*) = 0,
ds

Y ds- d%’+ d*(Z d%y) = 0,
Adz

Z ds- d=—=+d*¥Z d*2) = 0.
ds

For this type of deformable line, the moment of defation is normal to the
osculating plane. Binet proposed to consider the a@aswhich the moment of
deformation is simply perpendicular to the principal n@irm The hypothesig' = 0

implies thatg:—I = 0, and if we assume that this result depends upompéuatzation of
S

W then we will have, as a consequence, Yiat ¢(so, r) + mp, in whichm is a constant.
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Upon supposing, in particular, théy / or reduces to an expression of the farin —ro),
wheren is a constant, one has, by repladipg@s a function 0%, the hypothesis that was
made explicitly by Binet and then developed by Poissgnn Hddition, the curveMo) is

a straight line and X, Y, Z are zero, in such a way that changiMy)(into (M) comes
about solely from the efforts and moments of defoionathat are applied to the
extremities, then one will recover the problem of éirand Wantzel that we were
occupied with in the preceding section. Upon supposingtha0, one falls back upon
the Lagrange case above.

8. Deformable line that is subject to constraints. Canooal equations.— In all of
the foregoing, we have considered a deformable line teajualified with the wordree
i.e., the theory was developed without making exterigmhents intervene and by means
of a functionW that was composed of the proper elements of the liite matural state
and deformed state.

By directing our attention to certain deformatiomsing the notion of aidden Wwe
have recovered the equations that were proposed fousdies by the authors.

One can replace that exposition with another orvhilch one envisions a line that is
deformablesui generisfor which the definition already takes into accosnime well-
defined conditions that are verified by the particularodeftions that we studied
previously.

First, observe that the conditions that are impagexh the functions, y, z, a, a’, ...,
y” can be of two kinds:

1. Conditions between these functions and their d&re® wheres, is arbitrary.

2. Conditions that are verified for certain valuesyaf

If we limit ourselves to conditions of the firstnkii and if, to fix ideas; = 0,f, = 0 are
two conditions or constraint equations then we will agteat the identity of no. 2 that
introduces the definitions of the forces and effortstrpuesently be true by virtue of the
two constraint equations, or we further envision a deddtenline whose theory results,
by definition, from a functioM(sy, ¢, 7, ¢, p, 0, r) and two auxiliary functiond; , A, of
S , by means of the identity:

j/:" (W + A1 &+ Ay &) dsoz[F'o“x+G'o“y+...]Z—j:°(x;5 x+ Y3 y..) ds,

in which all of the variations are arbitrary, thime.

We further remark that in the case where somdneféft-hand sideg, f,, ... of the
constraint equations refer to only the argumenras$ #ppear iV, one can conceive of
either a process such as we just spoke of or, blgamge of auxiliary variables, one
introduces the given of these particular constragpations intoV a priori; this once
more brings us to the notion ofladden W This new way of looking at things is
especially interesting in the study of the paricdines that we studied previously, and it
leads notably to an extension of the results ofb§b to all cases, as well as the
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reduction to the canonical form that was obtained ferfldxible and inextensible line by
Appell, Legoux, and Marcolongo.

9. States that are infinitely close to the natural state. Hooke’'s moduli of
deformation and general moduli. Critical values of the gearal moduli. — Let us
return to the general deformable line. Suppose that tlenastzero in the natural state,
as well as the effort and moment of deformations, amdasly, the external force and
moment. In this case, not just the functid®must be annulled identically, but also the
six partial derivatives ofV with respect taf, 7, ¢, p, g, r for the valuest, 1, <o, Po, Jo,
ro, resp., of these symbols. Assume, moreover,\hat developable in a neighborhood
of = 4o, 7= 170, {= o, P =Po, d =qo, I =0 in positive integer powers @ o, 17 = 1o,

..., I = ro . Under these conditions, one will have:

W=W,+W5+ ...,

in which W,, W5, ... represent homogeneous polynomials of degree 2, 3, .hein t
differences¢ - &, - o, ..., I —Io.

Let the coordinates of a poiM, of the line M) in the natural state and the three
parameters by means of which one expresses the direxigines of the axes of the
trihedron that is attached to that point®eyo, 2, A10, A20, A30 , respectively, and suppose
that the coordinates y, z of the corresponding pointd in the deformed statévl) and
the parameterd;, A,, A; that relate to the axes of the trihedron that iacatd to it are
functions ofs, andh that are developable in powershdby the formulas:

X=X +Xg+ ... +X + ..., AM=Ao+ A+ ...+ A4+ ...,
Y=YotV1+...+tyi+ ..., A=A+ o1+ ...+ A5+ ...,
2=2 t2z1+ ...tz + ..., A3=Az0+A31+ ...+ A3+ ...,

in whichx, Vi, z, A1, A2, A5 denote the terms that involteas a factor. We introduce
these series developments in order to abbreviate fusiwns, and we assume that they
pertain to the ordinary calculation procedures. Form(l&$ and (15 permit us to

calculate the developments Bf G, H, Z, 7, K; Xo, Yo, Zo, Lo, Mo, Np in powers ofh.
The terms that are independenthodire zero, and the termrs, Gi, Hi, 71, J1, K1) Xou,
Yo1, Zo1, Lo1, Mo1, Noz are given by the formulas:

0w 0w 0w,
Fl_ad—)((zl)l Gl_ad—y(zl)l Hl_adz(zl)l
ds ds ds
ow, ow, oW,
Il:—zl \]l.:—za lCl:—za
5 447 5 420 5 4A7

ds ds ds
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d ow, d ow d oW
= £ , Y - 2 , - 2 ,
1= s 5B U ds yay” 217 Gg 582
ds, ds, ds,
Loz 3 W oW o d oW, oW . _d oW, oW
dg ,dA” 3D dg , dA”  9AD dg, , dA 94D
ds, ds, ds,

in which one sets:
XD =xo + Xy, y(l) =Yo *t Y1, 2 =z +z,
/]l(l) = Ao+ A1y, /]2(1) = Ay + Ao1, /1351) = Az0 + a1

We consider — under the name dftate of deformation that is infinitely close te th
natural state— the stateNi) where the poinM has the coordinateg”, y\*, Z and

where the parameters that relate to the trinedrorigtedatached to it have the valug$,
AP, AW On the other hand, if we let the teraffort moment of deformatioexternal
force, and external momenrgfer to the vectord, Gi, H1), (Za, J1, K1), (Xo1, Yo1, Zo1),
(Lo, Mo, Noz), whereLos, Mos, Noz are calculated by means i, Azo, Aso, Lo1, Mo1, Noz

in the same fashion &3, Mo, Ny are calculated by means &f, A2, Az, Lo, Mo, No, then

we will arrive at the hypotheses that were generalgenby the classical authors, where
the first two vectors are linear functions of the edats that characterize the deformed
state considered. As a consequence, we recover \wbhatalls thegeneralized Hooke
law, but when one limits it, as is convenient, the condition that it must respect the
principle of the conservation of energyn the classical method, in order to satisfy that
condition one must repeat the path that we just foklbweour exposition, but in the
opposite sense.

The coefficients in the linear functions that exprds®ke’s law are thenoduli of
deformationof the deformable line in its state that is infinitelgse to the natural state;
they areinvariable at a given point of the line. This notion of modwndoe generalized
by envisioning the first and second derivatives of the fandt;, aside from the case in
which the general moduli are defined and continuous, ameaasider the one in which
they have critical values.

The preceding considerations can be easily repeatedhéowvdrious particular
deformable lines.

10. Dynamics of the trihedron.— The dynamics of the trihedron is related to the
foregoing in a completely direct manner. It suffio@sdgard the arg, astime t and the
deformable line as @majectory. That simple assertion immediately explains thedages
have been known for a long time between the classigphmics of the point and
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invariable body and the statics of the deformable limea previous work'}, to which
we shall not return here, we have envisioned dynamiga the viewpoint that we just
pointed out.

We recall only that classical dynamics appears tthéetudy oktates of motion that
are infinitely close to the state of restAs Lamé has already remarked, kinetic mass
presents itself as the power or coefficient of thastance to change of the motion, a
definition that is analogous to that of the coefficgewf elasticity. One can, with
Laplace, consider an arbitrary state of motion thawisinfinitely close to the rest state,
and one must then distinguish the kinetic mass from thmikbnian mass and the
Maupertuisian mass.

Consider, to simplify, the case in whigtis independent gf, g, r, and where there
is no external moment. The action has the velocifgr its only argument, and the
analogue of the effort of deformation is the quantifyn@tion in the trajectory. In
classical dynamics, the work that is done by the queotimotion is not, like that of the
effort of deformation of the deformable line, combinedhvtite work that is done by the
external force, but it is united with the variationtbé action in order to introduce the
notion ofkinetic energy In the simple case that we have envisioned, one has

_1dW dx G_1dey H_l dW d:

(20) v dv dt’ v dv dt v dv dt
X = d_F, Y = d_G , Z: ﬁ ,
dt dt dt
and one deduces from this that:
(21) X dx+Y dy+Z dz= d(vZ—W—Wj.
\%
The quantity:
(22) E= vd—W -W
dv

is what one calls thkinetic energy In the case of the statics of the deformable line,
energy of deformation is equal to the action obdehtion W, with the opposite sigas
we showed in no. 3. Later on, we shall return to thgemtial distinction between the
action of deformation and energy of deformation.

() E. and F. COSSERAT, “Note sur la dynamique du point et dpscimvariable,” inTraité de
Physique by O.-D. Chwolson, French ed., t. |, pp. 236-273, P2886.



Il. - STATICS OF THE DEFORMABLE SURFACE
AND THE DYNAMICS OF THE DEFORMABLE LINE.

11. Euclidian action of deformation on a deformable surface.External force
and moment. Effort and moment of deformation.— The developments into which we
have entered in regard to the deformable line will peasito be briefer in regard to the
theories of the deformable surface and the three-diovaalsdeformable medium, in
which they are reproduced with almost no changes. Wermeethe preceding notations,
but now suppose that v, z, a, o, ..., ) are functions of two parametews and o,
instead of depending upon just the paramsier The trihedrorMx'y'Z then describes
what we call adeformable surfageand, with Darboux, we will have twelve kinematic
argumentss, 74, &, pi, G, 1i (1 = 1, 2) to consider that are given by formulas (1) andiri2)
which the ordinary derivatives with respect $p must be replaced with the partial
derivatives with respect to . The linear element of the surface will be giventhoy
formula:

ds = £dp? +2F dp, dp,+G do?,

E=&+ni+{, F=a&+mm+a L, G=E&+n;+{;. We will have analogous
formulas in the undeformed state, which we continue tindisish by the index zero.
If we setdo = /§,G,—Fy , where&, Fo, Go are the analogues ¢f F, G for the

natural state, and if we seek the form that the fand of two infinitely close positions
of the trihedrorMX'y’Z must take in order for the integffW Ao do; do> , when taken
over an arbitrary portion of the surfaddy, to have zero variation under a likewise
arbitrary infinitesimal transformation from the group afdidian displacements then we
will be led to the followingemarkable form:

W(or, 22; é1, M1, §15 Pa, Ou, 115 &2, 172, §23 P2, G, T2).
The argument is identical to the one that we gave .i”2no

Let A denote the quantity that is analogoughtcand is defined by the formula =
JEG-F? . If we multiplyW by the element of area:

da =Ap dor do

of the surfaceNlp) then the produdiV A, dor do, will be an invariant under the group of
Euclidian displacements that is analogous to the alemeat of the surfaceM).

Similarly, when the integraﬂCDAAAOdpldpz = J'L:Ad,ald,a2 Is taken over the interior
0

of a contourCy on the surfaceMo), or the corresponding contoGron the surfaceM),
this will determine thareaof the domain onN\{) that is delimited byC. Likewise, in the
same spirit, by associating the action for the passage the natural statéviy) to the
deformed statelM), we attach the functiow to the defining elements of the deformable
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surface, and we say that the integﬁ%!) WA, dp,dp, is theaction of deformatioffior the

interior of the contouC on the deformed surface. On the other hand, we say\tis
the densityof the action of deformation at a point of the defed surface when referred

to the unit of area of the undeformed surfagef, / A will be that density at a point
when referred to the unit of area of the deformed surface

Consider anarbitrary variation of the action of deformation in the interiof a
contourC on the surfaceM), namely, JHCOWAO do,do,. By virtue of formulas (7) and

(8), when extended to the case of two independent panawmtand o, , and after
applying Green’s formula to the terms that refer exico a derivative with respect to

o or o, we will have, upon lettinds, denote the absolute value of the element of arc
length of the contou€y that is traced on the surfaddd):

s jCOWAO do, do,
= [, (ROX+ G & y+ Hy 2+ 3T+ 3,8 ]+ K,oK) dg
~[[ OGO x+ %S yr 38 2 (5T MO I+ NORA, b, b,

in which we have set:

F =1, [aw dp, OW dplj’
0¢, dsg, 096, dg

G = o [aw dp, OW dplj,
on, ds, 07, ds

HE = o [aw dp, OW dplj,
0, ds, 0, dg

1" = A oWdp, dWdp,

’ op, dg dp dg)’

3 = o oWdp, dWdp, |
oq, dg, 0q dg

K! = Ao oWdp, dWdp, |
or, ds, dr, ds

in which the signs oflo, anddp, are specified by the sense of positive traversal of the
curvilinear integral, and, in addition:

. 1 0 oW oW oW
Xi = Z{A——(A j+q - }
| 0

- | — = —
op\ °9& ) “a¢ 'on
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10 ow ow oW
Y, =S| ——|A +r——p, ,

1 0 ow ow ow
22 =% =2 a8 +p T g 2T
; Z{Am(%a}”an qaé}

1 0 ow ow ow ow oW,
i —— A . - ] - ,
- Z{ 6(° j”"arﬁ "oq "7 Z'afz}

M;:Zii[Aoa\Njﬂ.aW— OW, L OW_OW

and

op Par T4 TS

1 0 oW oW oW _dW oW
N =% =2 | A L -V .

Upon first regarding the double integral that feg in the expression for
o I%WAO do,do,, we shall call the line segments that have thegires atM and whose

projections onto the axdéx', My, MZ are X;, Y, , Z, and L,,M, N;, respectively, the
external force and external moment at the pointwien referred to the unit of area of
the undeformed surfaceUpon then regarding the curvilinear integral, then call the
line segments that issue fravh and whose projections onto the akés, My, MZ are
-F,, -G;, —H, and-1;, —=J;, —K_, respectively, theexternal effort and external
moment of deformation at the point M on the con©@wf the deformed surfaceyhen
referred to the unit of length on the contowr.CAs is easy to see, at a well-defined point
M of C, these last six quantitieepend upon only the direction of the exterior reirto

the curveCoy, when it is drawn through the poidb in the plane that is tangent tdd). It
remains invariable if the direction of the extenmrmal does not change when the region
of (Mp) considered varies, and it changes sign if thagction is replaced with the
opposite direction.

Suppose that one traces out a khén the interior of the deformed surface that is
bounded by the conto@ that circumscribes a subs@) ©f the surface, either by itself or
along with a portion of the conto@, and let B) denote what remains of the surface
outside of the subsef). LetZ, be the curve on\y) that corresponds to the curkeof
(M), and let Ay) and Bp) be the regions of\M) that correspond to the regioms) @nd
(B) of (M), resp. Mentally separate the two subsdjsapd B8). One can regard the two
line segments<F,, -G,, —H;) and €1, —-J;, —K,) that are determined for the poMt
and for the direction of the normal that is dralwrotighZ, in the plane that is tangent to
(M) and to the exterior of) as the external effort and moment of deformatiesp., at
the pointM of the contourz to the region4). One can likewise regard the two line
segments tF,, +G,, +H;) and ¢1,, +J,, +K;) as the external effort and moment of

deformation, resp., at the poikt of the contoui to the regionB). By reason of that

I

remark, we say thatF,, -G,, —H, and-1,, —J,, —K_ are the components along the
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axesMx', My, MZ of the effort and moment of deformation, resp., that are exerted at M
on the portion(A) of the surfacgM), and that+F,, +G;, +H, and+1,, +J,, +K, are

the components along the aXdg’, My, MZ of the effort and moment of deformation,
resp., that are exerted at M on the port(@) of the surfacéM).

12. Diverse specifications of the effort and moment of dmimation. Notions of
the energy of deformation and the natural state- Set:

i 5 6/7. z
P =Ap—, ' = Ng—, =Ng——.
=hgs P Q =arg P R =0 an

NN e AN
Mx', My, MZ of the effort and the moment of deformation, redgat tire exerted at the
point M on a curve that admits the same tangemt asconst. That effort and moment of
deformationare referred to the unit of length of the undefadngentour. In regard tgo

R represent the projections onto

. o 1,
= const., the effort and moment of deformation have grojections — A,

J%

—C, and , respectively. The new efforts and

21 Qz )
RN N e N
momenta of deformations that we just defined are couplatie¢celements that were
introduced in no. 11 by the following relations:

ro— 4 1o ,dp ,dp
Do X, = + F=Are_pn-H
0 o Z[ q| FBJ 0 Ald% Azd%
AY'=Z '+r o =p32_pgdo
0 To ‘ A pcr o Bld% Bzd%’
. aC/ . . ,dp. , do
NZ, = —+pB-qA|, H =Cfz2-c 24
04 Z[a i p|3 q |j 0 ld% 2 d%
Dol = Z R qR-1Q+1G-¢ B, ;=R _pda
op | ds dg

, 0Q . d d
AoM0=Z[62+rP AR +{ A- mj 5=q%-g 8,

"= a_R' - - ' = %— %
AONO _Z[a,q+piq qlij+4?B n Aj’ Ko F{d% Rz d%.
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One can propose, as in no. 3, to transform theioefathat we just wrote down
independently of the values of the quantities that figure in them thatbneated by
means of W Indeed, instead of defining the line segments thatave httached to the
point M by their projections ontdx', My, MZ, we can just as well define them by their
projections onto other axes.

First, consider the fixed ax&3x, Oy, Oz Let Xy, Yo, Zo andLy, Mo, No denote the
projections onto these axes of the external forceeaternal moment, respectively, at an
arbitrary pointM of the deformed medium. Lé&%, Gy, Ho andlo, Jo, Ko denote the
projections of the effort and moment of deformaticaspr, that relate to the direction
(doi, dp) of the tangent to a curvg, which are referred to the unit of length of the
undeformed curv€,, and which were defined previously; &t B, C; andP;, Q,, R be
the projections of the effortA, B, G) and the moment of deformatiqi®’, Q, K), resp.

The transforms of the preceding relations are obviously

_0A L 0A _ad0,_, dp
Do Xo= —+—=, Fo= A—=-A—,
0o, 0p, ds ds

_0B 0B _p 90, _, do
NoYo=—"2L+——2, Go=B—2-B,—1,
0o, 0p, ds ds

0C, 0dC do do
A =1+ -2 Ho=C —22-C -2
°% 50 ap, T Ty ds

ok 0P, oy oy 0z 0z do do
Nlo=—2+—2+C +C -B—-B : lo= B—2-pB—2,

oo 0p, Op,  0p, 0p,  9p, "dg  Cds

0Q 0Q 0z 0z 0 X 0 X do do
DNoMo= L+ 2+ + - - o J=Q—2-Q—,
oMo =50 " om, Mo, Map, “op, “op, Ydg,  dg
_O0R  OR 0X 0x oy oy _ 5 dp, dp,
BoNo= -1 +-"2+B—+B,—— ~A_>-A_—>,  Ko=R_2-R—2.
oo, 0p, 0py “O0p, “O0p, “0p, ds ds

dp and% can be replaced by:
ds, ds,
1 0%, Y, 07, 1 0X, ay, 07,
-—1 A + +v , —— A + +v ,
Ao( “00, "op, ' op, 8,00, "0, "op,

respectively, aneldﬁ and%, by:
ds ds

1(, ox oy 0z 1(, ox oy 0z
-—A +Uu +v : -—A +u +v :
A "op, "op, " op, a"op Top op,
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respectively, if one denotes the direction cosines oéfterior normal a€, with respect
to the fixed axes by, Lo, W, and letsd, 1, v be those of the exterior normal@Gt These
equations give, in particular, the equations that re@atbdinfinitely small deformation
of a planar surface that were used by Lord Kelvin and Tai

Instead of referring the elements that relate topiiat M to the fixed axe©xyz
imagine a tri-rectangular trinedravix; y; Z whose axisMz is normal to the surfacé/]

at M, andM; is referred to the trihnedrox'y'Z. Letl, I', 1" be the direction cosines of
Mx relative to the axes of the latter, fat m', m" be those ofMy;, and letn, ', n" be

those ofMz . We define the cosings ', n" precisely by the formulas:

(L& —4 &), n"==(&m—=& ).

>| =
>| =

n:%(/h =12 ), n =

We assume that the trinedriMx Y, Z has the same disposition as the other ones, and,
for the moment, we do not make any particular hypothes#seasther cosines. We then

let &9, ¥, ¢ denote the components of the velocity of the originf the axesMx;
My;, Mz along those axes when omlyvaries and plays the role of time. We likewise
let p®, @, r® be the projections onto these same axes of thentaskous rotation of

the trihedronMx y, Z relative to the parametgr. In the latter definitions, the trihedron
Mx Y, Z is naturally referred to the fixed trihedr@xyz We will have:

g(Ti(l) :|§(i+|' /7i+|"5,
/7|(l):m§(|+n'f/7|+m"5,
Zi(l) :n§(|+n' ,7i+n"£:0,

and three formulas such as the following one:

om
pY =Ipi+lI'g+1"ri+ Y n—,

op,

in which the trihedra considered are supposed to have e diaposition.

Let X7, Y, , Z; andL;, M,, N, denote the projections ontdx , My,, Mz of the
external force and external moment, respectivelgnatrbitrary poini of the deformed
surface, and which are referred to the unit of areaeutideformed surface. L&,

Gy, H, andl;, J;, K; be the projections onto the same axes of the €fforGo, Ho)
and momentlg, Jo, Ko), resp., and le®y’, B", C" and P", Q", R" be the projections of
the effort (A, B, G) and moment(P,Q, R), resp., that were defined previously. The
transforms of the preceding relations or the origiakdtions are obviously:
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+o0c - (R @
Z‘[ap. q’C'- "B j

5[

n aB n
AoY, :Z a,ol +rOA- p(l)q(l)j

0 =2 g%w‘”R’— Q+7¢,

31

n

e g2 0

ds ds
n "dp U dp
G'= 2 _ 1
0 Bldso B, ds

Hr= 9P da
ds ds

1= r92_plh

Ydy °dg’
n a 5 n U I " "d d
DMy = Z{a—q+ﬁ(l)'?‘ﬂ(l)3+f(l)¢ : Ql Pl
i 1% %
n a " l I/ n
AoNg = Z{a_§+ Q- P P+ED B~

One can replace—== d'ol and de,

,dp. ,do
Ki= R—=2-R—2.
0 ds, ds

: 1 1

Wlth _ - A l)+ "o (1) and__ A" (l)+ "o (1) ,
4 4 AN A7)
resp., here, ifi", /', 0 denote the direction cosines of the exterior nbtmghe contour
C with respect to the trihedroMx y,Z. One then obtains

rdS | QIR ENR PR A
®ds A TH A ’
08 _ p EVRHEIR, LRGP,
®ds A A

and two systems of analogous formulas
These formulas lead one to replace the twelve ianxifunctions A

the preceding expressions for the efforts and moments vdferred to the unit of length

, BIII , C." PII ,
Q", R" with twelve new auxiliary functions that will be theefficients ofA” andy/" in
onC, or will be related to these coefficients in a sienfashion. We set

( SN HEPR)= Ny,

(/7‘”/3{’+/7(”A’;) =T-%,
( VB +EPB)=T+ S, Z(’?f” B/+78"B}) =Ny,
n n 1 n n

A (51‘”01 +&PC) =S, A (n®Cy+nPCy) =

upon introducing six primary auxiliary functiohs, N, T, S, $, &, and similarly
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1 n 1 n

(PR EPRD= N SR YR =TS,
1 n U 1 n U
Z(ffl)Qﬁ P =T+Ss, Z(ﬂfl)Q1+/7§1)Q'z) =Nz,

1 I U 1 I U
LR EIR)= 5, LUOR+IIR) =51,

upon introducing six other auxiliary functions. The tweéguations that just wrote
down can be solved immediately with respect the origingdliary functions A", B",

C', P", Q", R". Upon remarking thaf®n{’ —&"n® = A, one gets:

A =N =8(T-S), A = E(T-S)-n0N,
B =7’ (T+8)-& N, B} = &N, -n(T+S),
Cl =1S,-&’S, C; =&°S-n’s,

and six analogous formulas f&", Q", R", with italic symbols in the right-hand sides.

One can obviously give notations to the components efetiort and moment of
deformation that we just introduced that are analogotiset@nes that are in use for the
deformable line. Therefore, one can chill, N, the efforts of tension while the
componentsl — S, T + S are theshearing effortan the plane that is tangent to the
deformed surface; the componefiis $; are theshearing effortshat are normal to the

deformed surface. Likewise, the componekiis A, are themoments of torsignwhile
the component§ — S3, 7 + S; have the character afoments of flexureéhe components

S1, Sz can be called themoments of geodesic flexure

The notions of energy of deformation and natural ptedemselves here exactly as
they do for the deformable line.

13. The flexible and inextensible surface of Poisson andamé. The fluid
membrane, referred to as a particular case of the surfacthat was envisioned by
Lagrange, Poisson, and Duhem. The flexible and inextensb surface of the
geometers— The reader can extend for himself the general remaaksvih made at the
end of no. 3 in regard to the deformable line, and ateélgehing of no. 5 on the subject
of the notions ohidden trihedrorandhidden action

First, suppose tha/ depends upon onpg, o, &, m, &, &, 2, & . In this case, the
equations of no. 12 reduce to the following ones:

0 OWA,) , 9 (WA, Ao o= W
apl aﬁ 6,02 0 2 6/11

ap, ap,

Ao Xo =
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Do Yo = 0 6(\NA0)+ 0 6(WAO)’ AoMo:—a—W,
apl aﬂ 6,02 aﬂ 6/12
Jo) 00,
Do Zo = 0 6(\NA) 0 6(WAO)’ AONO:_G_W’
apl 00— 0z 6,02 aﬂ 6/13
Jo) 00,
in which A1, A,, A3 are three parameters, by means of which one expresses..., V',
andW is a function of onlyo, o, % 9z , A1, A2, A3, Lo, Mo, No here that has
op, ' 0p,

the same significance that it did in no. 4.

Imagine the case in which the functiofig Mo, No are zero. The equatio%,\)/lxz
1

0, M =0, M = 0 amount to either:
oA, oA,
6y ay
Bl+ C - B2 0,

601 601 602 ’ 602

0z

A- C1+ Ar Cz =

0p,

1) 0X

5)’ 5 y
B-—A+—B-—A=0,
0p = 0py ~ 0p, © 0p,

ortoS =S =S =0, in such a way that the effort at a point of doitieary curve is in the
plane that is tangent to the deformed surface and darish efforts that are exerted on
two rectangular directions are equal.

Let the two states of the surfac®&lof and M), be given. When the function,
Mo, Np are zero, this can present itself accidentally oafor deformed surfacéM) as a

consequence of the form 8. The functionW will depend simply upom, o, &, F, G,
and one will have:

Ny = 22 (GW 2 gtl(l)gz(l) oW (1)2)

o€ e
6W
T = A ( ag (1),71(1) ( (1) (1) 1(1),7 (1)) + 2 gt 2(1}7 (Dj
ow 6W ow
N, = 2=2 (1)2 @ (1)+ (1)2j.
2 ( ag b ToF T Rs

The trihedron is completely hidden, and we cal aégard the surface as simply
point-like.
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The consideration of the infinitely small deformatiavhen applied to the preceding
surface, permits us to recover the surface membrane- that was studied by Poisson
and Lamé.

A particularly interesting case that we call tieid membraneis obtained by
supposing that one hds= 0, N; = N, in regard to the three functions thus defined. It is

easy to see thaW then depends upaf) F, G only by the intermediary df = /G - F?

and that it is, in turn, a function @, 0,, andy =A /Ay — 1. Upon continuing to layv
denote the expression f@ in terms ofoi, 0., i, one will have:

N]_:Nz:a—W:N, T=0.

ou

If we suppose, in addition, theéf depends upon only then we will find ourselves in
the presence of the surface that was considered by Igegeand studied by Poisson and
Duhem. If one introduces the variabley then one is led to the system:

ON _ A, 0z ON _ A 0z
— =2 X, +Z,— |, — =0 |v +7 = ,
ox A( ° Oaxj ay A ( ° Zoayj

N i+—1 :ﬁ(xon+Yon’+Zon"),
R R, A

whereR; andR; are the principal radii of curvature of the deformedasef\).

Return to the general case in whidhis an arbitrary function of, o, &, F, G. We
imagine that we direct our attention to just the deftirons of the surface for which one
has& = &, F = Fo, G=Go . It will suffice to introduce these hypotheses indbénitions
of the forces. The usual problems that corresponteaiven of the functiolV and to
the case wheré - &, F — Fo, G — Go are not generally zero can then be posed only for
special givens.

If we suppose thainly the functionWs that is obtained by settirg= &, F = Fo, G =
Go INW(p1, 22, &, F, G) is given, and that one does not know the values odeheatives

of W with respect t&, F, G for £ = &, F = Fo, G = Go , sothe action is hidderthen we

see thalN;, T, N, become three auxiliary functions that one can attaghy, z in such a
way that in the case where the forces that act uppeldments of the surface are given
we will have six partial differential equations in six uokm functions; one will then
have a determinate problem only if one adds some acgessuditions. If the deformed
figure is assignea priori then one will have three equations in the unknowntfans
N1, T, No.

The equations to which we have thus arrived are thetbaeslefine thdlexible and
inextensible surfacef the geometers. The considerations that relatedet flexible and
inextensible line are repeated in regard to the lattercri@hich can thus be defined
priori.
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14. Deformable surface where the axisZ is normal to (M) at M. Surface of
Sophie Germain and Poisson. Surface of Lord Kelvin and Tait— We propose to
introduce the condition théllZ be normal to the surfac&j. One can do this either by
starting with the previously-defined, general, deformableasaerfand studyingnly the
deformations that verify the conditions that= > = 0, or by defining a new deformable
surface for which one develops the theory by analogy thih of the former, but while
observing theonditionsthat{; = (> = 0.

If we place ourselves at the first viewpoint thenwill suffice to append the
hypothesesi = > = 0 to the formulas that serve to define the force amalogous
elements. One sees that if the functirthat serves as the point of departurgiien
then one cannot give the external forces and momelitsaaily, since one appends the
two equationg = ¢> = 0 to the six equations that determine them.

If one wishes to pursue the idea of specializing the gesriace then one must not
suppose that the functioW is given, but introduce the notion of hidden action, cluhi
takes on an entirely special aspect here.

By the fact of the conditiong = { = 0, the trihedron, instead of depending upon the
Six parameters, v, z, A1, A2, A3, now depends upon only four parameters — for example,
X, Y, z, m, where the last one is the angle thbf makes with the curveof) at M. The
translations can be calculated by means of the system:

%:tanm, E+ni =& &+mm=F  &+n; =G

1

As for the rotations, if one introduces the quantitied arboux denoted by, D',
D" and the two Christoffel symbols:

5 =1 (_gagﬂgag_fagj,
9P, oo, 0p,

5= 1 (5ag_fagj
oo, 0p,

then they will have the expressions:

1 1
pp=— (& D -&D), P2=— (& D" -&D),

A A

1 1 n I
QJ_:E(/]lD'—/]ZD), QZ:E(UJ_D -n. D),
__0om_ XA __0m_ ZA
n=-—+——, r,=- + )

o, £ ap, &
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If one substitutes these values into the functionithabtained setting: = & =0 in

W then one will obtain a functiow, that depends upaom, 02, m, g_m g_m andx, y, z,
A 0P,

and their first and second derivatives by the intermgdiinine independent expressions
m, & F, G, o, o2, D, D', D", wheread\ refers totenarguments apart from, 0., {1, {.

That reduction comes about from one of the equationshtochwbarboux gave the name
of Codazzi equationsvhich is writtenp; 7. — 1 & —p2 1 + Q2 & = 0, here.When just
the function Wis known,we will thus have, by definition, three auxiliary unkvts.
Nevertheless, these three auxiliary functions cabeakliminated, even if they lead to a
total number of functions that is greater by one unit th@nnumber of equations when
they are combined with the other elements that are dieting\, .

One recovers the same remarkable result that wedglr@ointed out for the
deformable line, and which we must also confine ourselgesimply stating. The
equations of statics of the deformable surface that ageeptly considered can be
summarized in the following relation:

[ [aAWo 2) + B (Xo &+ Vo & + Zo &~ am)] dpr dpz = O,
where:
) ) ) aax _faa A
X+Mo y+N0 Zj_ pZ plAONE)
0P, 0P, 0P, AE

Do Xo = Do Xo + 2 yﬂ(L0

oo, |~ A

0| A, 0X oy 0z
-2 e 2w
6pi A( oo,  ‘0p,  ‘0p,

with analogous formulas, in whigh ), ' are the direction cosines of the norriwld to
(M). A patrticularly interesting case is the one whake\, / A does not depend upon
r,, and whose only arguments axg 0, and the two expressions:

1 _ DD"-D” 1,1 _GD+&D"-27D

1
RR, A* R R, N’ ’
in which’R; andR, denote the principal radii of curvature of thefsce. If one takes,

y to be variables then one is led to a generalimaiicthe equations that were envisioned
by Sophie Germain, Lagrange, and Poisson.
One can further adopt the specification of therfand moment of deformation by

means of the twelve auxiliary functioh, T, Nz, S, S, & ; N1, 7, N2, S1, S2, S3. The
fact thatC|, C, become unknowns fafi = & = 0 whenW is hiddenthen translates into
saying that the two auxiliary functior® and$S, are unknowns. Now, suppose th&
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does not contain the arguments 2 and depends upom, Qi, P2, G2 only by the
intermediary of the expressions:

pié1 + Qi P12 + Qu/fz + P2é1 + Gt P2&2 + Ql72 ;

one has the relation$; = S; = S5 = 0. The three preceding expressions@esently

(i.e., & = & = 0) the coefficients ofl g7, dor doz , dp? in the differential equation for

the lines of curvature o).

The preceding permits one to pass easily to the infingelall deformation, which
wasthe only onghat was considered by Kelvin and Tait, and to recowecaise in which
their theory gives the results that were firstesdabty Sophie Germain and Poisson.

15. Dynamics of the deformable line— The dynamics of the deformable line is
associated with the preceding exposition, for which It suffice to regard one of the
parameters 8,, for example — as the tinte One then has an action of deformation and
motion simultaneously. Under the influence of thaddron, the velocity of a point of
the deformable line enters inW by way of the three argumengs 7., {, and one finds
oneself in the presence of the notion kafietic anisotropythat was envisioned by
Rankine, and which was subsequently introduced in sevesali¢ls of physics; for
example, in the theories of double refraction and ¢kegtional polarization of light. Even
if Wis independent of rotations and leads to zero externademts, the argument of pure

deformation & +n7+{? and the purely kinetic argumed +77+{7 are generally

accompanied by the mixed argumenf, + 7177, + (1{. An argument of this type is no
longer new in mechanics, and appears notably, as weskalv, in the theory of the
action of forces at a distance. Whatdoes not contain the mixed arguménf. + 71772

+ (&, one must, in general, consider the state of defoomaand motion that is
infinitely close to the natural state in order to findeeelf in the case of classical
mechanics, where thaction of deformation is completely separate from the kinetic
action One then obtains d’Alembert’s principle by supposing tti@ external force and
external moment are zero; i.e., by expressing the ltdahe deformable line is subject
to no action from the outside world and by introducingurn, the fundamental notion of
theisolated systemwhich Duhem has found to be necessary for thenaticonstruction
of mechanics.



lll. — STATICS AND DYNAMICS OF THE DEFORMABLE MEDIUM

16. Euclidian action of deformation for a deformable medium. External force
and moment. Effort and moment of deformation.— The theories of the deformable
line and deformable surface that we just presented leadinggine a deformable, three-
dimensional medium that is more general than thetloetehas been the usual object of
the theory of elasticity. Consider a spabi)(that is described by a poiM, whose
coordinates arg, Yo, Zo With respect to three fixed rectangular ages Oy, Oz We can
regard these coordinates as functions of three paresyete, o; that are chosen in an
arbitrary manner. However, to simplify, we suppose xpat o1, Yo = &, o = o5, and
according to what is convenient, we sometimes emptoyurn, the notation, Yo, 2,
and sometimes the notatign 0,, 3. While preserving our usual notations, we suppose
thatx, vy, z a, o, ..., Yy are functions ok, Yo, z . The trihedrorMx'y'Z will then
describe what we call deformable mediumand we will have eighteen kinematical
argumentss, 7, &, pi, Gi, i (i = 1, 2, 3) that are given by formulas (1) and (2), whieee
ordinary derivatives with respect & must be replaced with partial derivatives with
respect toxo, Yo, o, Or, if one prefers, with respect @ . The linear element of the
deformed mediumM), when referred to the independent variablgsyo, 2o, will be
defined by the formula:

d€ = (1+29) d¢ + (1 +2) dy? + (1 +23) dZ
+ 21 dyo dzp + 2)5 dzo dxo + 25 dxo dyo

whereg&, &, &, W, )5, )5 are calculated by the following formulas:

a=31(&+n2+2-1), NW=E&G+ M+ &G,
&=1(&+n2+2-1), p=&&+mm+ {4,
£=3(E+n2+2-1), K= &tmm+ide.

We will have analogous formulas for the undeformed gtdi, which we continue
to distinguish by the index zero. We also introducektievn quantityA that is defined
D(x, Y. 2)
D(%: Yo, %)
)5, )5 In the following manner:

by the formulaA = , whose square is expressed as a functian, @, &, U,

1+2¢  y, Vs
N = v, l1+2e,
Yo v, 1+ 2,

If we seek what the functiow of two infinitely close positions of the trihedron
Mx'y'Z must be in order for the integfdl W dx dyo dz, which is taken over an arbitrary
portion of the spacd\y), to have a zero variation under iafinitesimal transformation
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of the group of Euclidian displacementen, as before, we will be led to the following
remarkable form:

WI(Xo, Yo, 20, & 7i, &, Piy G, Ti)-

The argument will always remain identical to the ors the made in no. 2.

If we multiply W by the volume elemerdx, dy, dz of the spaceMy) then the
product W dx, dys dz that is obtained is an invariant under the group of Hiacli
displacements that is analogous to the volume eleofetiite medium ). Just as the

common value of the integra!gj'%|A| dx dyo dz, J'Hsdxdy dz which are taken over

the interior of a surfac& in the medium Nlp) and the interior of the corresponding
surfaceS of the medium N1), respectively, determine thelumeof the domain that is
bounded by the surfac® similarly, upon associating, in that spirit, the oatof action
for the passage from the natural statk)(to the deformed stateM, we attach the
function W to the defining elements of the deformable medium, aadsay that the

integral .UJ‘S)W dx dyo dz is theaction of deformatioffor the interior of the surfacgon

the deformed medium. On the other hand, we saywhiatthedensityof the action of
deformationat a pointof the deformed medium, when referred to the unitadime of
the undeformed medium and that/ | A | is the density of that action at a point, when
referred to the unit of deformed volume.

Consider amarbitrary variation of the action of deformation for the mbe of a
surface § on the mediumN]), namely:

5msow dx dyo dz .

By virtue of formulas (7) and (8), when extended to thgecof three independent
parameterso, Yo, zo or g (i = 1, 2, 3), and after applying Green'’s formula to the terms
that refer to a derivative with respect to one of Yaeiablesg explicitly, it becomes,
upon lettinglo, My, No denote the direction cosines with respect to thel feceesOx, Oy,

Oz of the exterior normal to the surfac®, which bounds the medium before
deformation, and lettindop denote the area element of that surface:

5IJ‘J’SDW dxo dyo dzo
= [[L (ROX+GLO y+ H 2+ 1,31+ 3,8 1+ KydK) @,
= [l (X Ox+ Y8 y+ 25 2+ Lo+ MG T+ NS K dydy

where one has set:
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W OW. W ., W W W
m n , 1= ly=—+m/—+n;

op, op, 0p;

I m J"IaW+man+nan

“on,  om, “on,. 0 Yéq,  0q, 0q,

ow ow ow 6W+m6W oW

+m +n ., K =1 +n
° %o, o, Cor,

(23) | Gi=

9 OW AW W
Xo=) | ——+ -r :
=250 08 T Voq 'MJ
[0 oW, ow_ ow
~\0p on '9& T oG )

0 oW ow ow
Z = — + - ,
o2 3597 Py qaéj

(24)
' 0 oW oW oW, _JdW o0
=> | — +q -r +n - :
“=2lonm Vor Tag g Z'afm
My =Y iaw+riaw_riaw+ iaW_gziaW |
—\ 0p, 0q on oy 0¢; a¢,

0 oW ow ow oW o0
N, = — + - +¢ -n :
=290 o Mo ‘ap on ”'afq

If we first regard the triple integral that figures e texpression foﬁm'%w dx dyo

dz then we will call the line segments that have thagions atM and whose projections
onto the axedx', My, MZ are X;, Y;, Z, and L,, My, N; the external forceand

external moment at the point Mgspectivelywhen referred to the volume element of the
undeformed medium

Upon then regarding the surface integral that figure§.|]'|f%w dx dyp dz, we then

call the line segments that issue from the pMnivhose projections onto the axes’,
My, Mz are-F,, -G, —H, and-1;, —J;, —K; theexternal effort and external moment

of deformationrespectivelyat the point M of the surface ®hich bounds the deformed
medium,when referred to the unit of area of the surfage 3\t a well-defined poinM

of (9, these last six quantities depend upon only the diredtidhe exterior normal to
the surface®. They remain invariable if the direction of the ektenormal does not
change when the region consideredMj yaries, and they change sign if the direction is
replaced with the opposite direction. Suppose thatt@ees out a surfac&) in the
interior of the deformed medium that is bounded ®)y\Which circumscribes a subs#) (

of the medium, either by itself or along with a pamtiof the surface§), and let B)
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denote what remains of the medium outside of the suByetlLet o) be the surface of
(M) that corresponds to the surfa@g 6f (M), and let Ao) and Bo) be the regions of
(Mo) that correspond to the regio® @nd @) of (M). Mentally separate the two subsets
(A) and B). One can regard the two segmentf(, —-G,, —H,) and €1,, —=J;, —K;)
that are determined favl and for the direction of the normal that is drawrotigh ¢o)
towards the exterior o) as the external effort and moment of deformatiespr, at the
point M of the frontier ) of the region &). One can likewise regard the two line
segments (F,, +G,, +H,) and (H,, +J;, +K;) as the external effort and moment of
deformation, resp., at the poibt of the frontier ) of the regionB). By reason of that

!

remark, we say thatF,, -G,, —H, and-1,, —-J,, —K_ are the components along the

axesMx', My, MZ of the effort and moment of deformation, resp., that are exerted at M
on the portion(A) of the mediunfM), and that +,, +G;, +H, and H,, +J;, +K, are

the components along the aXdg’, My', Mz of the effort and moment of deformation,
resp., that are exerted at M on the porti@) of the mediunM).

17. Various specifications of the effort and moment of defmation. Notions of
energy of deformation and the natural state. Clapeyron’s the@m. — Set:

! aW’ BI'—aW, CI'—aW F?':a_w, i':a_W’ R’:a_w
i on, ¢, op g or,

A, B, C, P, Q, R represent the projections onttx', My, Mz of the effort and

moment of deformation, respectively, that are exeatatle pointM of a surface that has,

before deformation, an interior normal at the padititthat is parallel to the coordinate
axis Ox, Oy, Oz that corresponds to the index That effort and moment of deformation
are referred to the unit of area of the undeformedasarf The new efforts and moments
of deformations that were just defined are coupled t@kments that were introduced in
no. 16 by the following formulas:
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x=% Z—jwc—rs}

[ aB: ’
Yo:Z 6_,0.+riA'_ QQJ,

aC!
7 =% % g Al
‘ iZapiﬂqE? q.j
(25)
P’

=3 9y TR+ C-¢ B

[ a " [
Mi=| ST iR =R+ A-EC

. oR'
N;=Y a—§+nq—qﬁ’+<ﬁa—sz

Fo = 1A+ moAy+ no Ay
Gy =1,B,+m,B,+ n, B,
Ho =1Cy+ MG+ nyCy
(26)
lo =1 P+ meP%+ noF,
Jo =1Qi+ MG+ nQ,
Ko =loRi+ MR+ n R

As in nos. 3 and 12, one can propose to transform tagores that we just wrote
downindependently of the values of the quantities that figure in them thaalardated
by means of Windeed, instead of defining the line segments thatave attached to the
point M by their projections ontdx', My, MZ, we can just as well define them by their
projections onto other axes.

We confine ourselves to the consideration of fixed @0y, Oz Let X, Yo, Zo
andLo, Mo, No denote the projections onto these axes of the extinea and external
moment at an arbitrary poiM of the deformed medium, and e, Go, Ho andlo, Jo, Ko
denote the projections of the effort and moment of reddion, respectively, onto a
surface whose interior normal had the direction casinen, np before deformation. Let
A, B, C and P, Q, R denote the projections of the effoffy, B,G) and moment

(P,Q,R) of deformation , respectively. The transforms of pheceding relations are
obviously:
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X a'Al-i-a_AZ.i-a_Aj
°ox, oy, 0%
_0B 0B, 0B,
° "o, Oy 02
, 290G, , G, , oC,
° 0%, Oy, 0%z
(27)
oR, 6P 6P oy ay 6y 0z 0z
= —2+-24C,—=>+C,— 2 _B-—=--B—~-- B
0" 0%, 6yo 620 0%, 5)6 Bl BZ 83
_0Q, 0Q, 0dQ 0z 62 62 ax ax
M 1y <2 4 U3 < —-C—-C,—-C,—,
T, oy, 0z, oy oy %o Cl Sy, 0z
_O0R _O0R OR 6x 6y gy gy
N +—2+ —+ —_— —— A—- A—- A—,
° "o, Oy, azoBl BZ "853 0 0y 03
Fo = 1A+ MA+ m A
GOZIOBl+rnOBZ+n])B$
HO :|OC1+mOCZ+ rrl)c:&
(28)

I =P +meP,+ myB
Jo =1Q + M Q,+ mQ,
Ko =lR+tmR+ mR

which are relations that are the three-dimensigeakralizations of the equations of Lord
Kelvin and Tait for one and two dimensions, andthad ones that we developed in a
previous work. We can transform them in such aifasas to obtain the generalizations
of the well-known equations of the theory of elasyithat relate to effort. Moreover, if
the surface of the mediunMj that corresponds to the surfaBg of (My) is always
indicated bySthen we letX, Y, Z, L, M, N denote the projections onto tbx, Oy, Oz of
the external force and moment, resp., that areexppd the poinMM and referred to the
unit of volume of the deformed mediunM), and letF, G, H, I, J, K denote the
projections ontoOx, Oy, Oz of the effort and moment of deformation, resphattare
exerted onS at the pointM, when referred to the unit of area &f In addition, we
introduce eighteen new auxiliary functioms, ..., g« ... by the formulas:

ox oX ox 0X oX

A pux = Al—+AZ— @—, Agx=B—+BR—+B—,
Y, Yox, oy, 0%

ay ay 6y ay ay
Apx=A_——+A—=+ Pg , Agx=P-—2+P—=+R==,
0, A Zo Yox, oy, 0%
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0z 0z 0z 0z
—_, Agpxy=P—+P—+P—,
%azo O ox

0z
—+ 2
dy, 0%z

0z
Apx=A—+A

0% Y
and analogous formulas that are obtained by repla&ingo, Az, Pxx, Pyx Pz P1, P2, Ps,

qXX1 qu1 qZX Wlth Bla BZa B3l pxy’ pyy’ pzy, Qll QZ! Q3! qu’ an qul and then WltrCl, C21 C31
Pxz Pyz Pz Ri, Ro, Rs, Oz Qyz Qzz respectively. It is easy to see that one obtdies t

transformed equations:

X = P, + 9Py + apzx’
ox 0y 0z
v = 9Py +6pyy+6pzy’
ox 0y 0z
Z - apxz + apyz + apzz ,
ox dy 0z
(29)
L:aqxx +aqyx +anX+ p Z_ pz,
ox oy o0z 7 Y
M = aqu + aqyy + any+ pZX - pXZl
ox o0y 0z
N = aqxz + aqyz + aqzz+ px - p X7
ox ody 0z o
F =Ip, +mp, + np,,
G =lp,, +mp,+ np,,
H = Ipxz + mpyz+ npzz
(30)
| =lq,, +mq,, + nq,,
J =lq,, +mqg, + nq,,
K= Iqxz + mqyz+ nqzz
The significance of the eighteen new auxiliary funtdi@uy, ..., Ok, ... results

immediately from the relations that just found. Indee, clear that the coefficienfsy,

Pxy: Pxz Of I in the expressions fdt, G, H represent the projections ordx, Oy, Oz of the
effort that is exerted at the poikt on a surface whose interior normal is paralleDto
and that the coefficientsy, Oxy, Oxz Of | in the expressions fdr J, K are the projections
onto Ox, Oy, Oz of the moment of deformation M relative to the same surface. The
coefficients ofm andn give rise to an analogous interpretation in regard tstinaces
whose interior normals are parallel@y andOz
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The notions of energy of deformation and naturdesagain present themselves here
exactly as they did for the line and surface. By camsig the infinitely small
deformation, that leads immediately to Clapeyron’s téen

18. The continuous medium of the usual theory of elasticity.The invariable
body. — The general remarks that we made at the end of naegard to the deformable
line and at the beginning of no. 5 in the context ofrtbBons ofhidden trihedronand
hidden actiorextend to not only the deformable surface,-bat we said in no. 13also
to the deformable medium that we presently consider. &apthatW depends upon
only the quantitiego, Yo, 20, &, i, §, and not upom;, g, ri . In this case, the equations of
no. 17 reduce to the following ones:

0 W _d AW 2 aW _ W

XO__ +— +_—l £0___1

axoa% a)’oa% azoaﬂ 0
0% Y, 0%

9 W 9 AW 4 OW _ W

0— — +— +_—l MO___l

axoaﬂ a)’oaﬂ azoaﬂ 04,
0% Y, A

@ OW . 9 W 8 OW oW

= +— +— , No=—- —,

O o 502 0y, 92 0z, 07 Y
0% Y, 0%,

in which A1, A5, A3 are three parameters, by means of which one expresggs..., )/,

andW is a function of onlyo, Yo, 2, S—X :_z , A1, A2, A3, here;Lo, Mo, No have the
%o 2%

same significance as they did in no. 4.

Imagine the case in which the functiofis, Mo, Ny are zero. The equation((;s\)/llz
1

0, a—Wz 0, a—Wz 0 amount to:
ar, oA

oy ay dy _ 0z 0z _0z

s, i -gl2-52%2-pg2%0,
S YA C3620 Blc’m %6% %6%
0z 0z 0z 0 X 0 X 0 X

A—+tA—+A—-C—-C—-GCG—=0,
0, A 0z, 0% Yy, 03

x, o O

X oy oy oy_ .
24 +B—-A2-_ A pA" =0
Mo oy, oz oy Tty ez

I.€., Pyz= Pzy» P2x = Pxz» Pxy = Pyx » Which are relations whose interpretation is imratsi
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Having said that, observe, as before, that if onésstath two positionsNlp) and M)
that are assumed to gezenthen it can happen that this result presents itseilfi@ctally
in the case where the three functidhs Mo, Np are zero; i.e., for a certain set of special
deformed media. However, it can happen that it pressets for any sort of deformed
medium M) and results from the form &Y.

Imagine the latter case, which is particularly indérg). The trihedron is completely
hidden, and we can also regard the medium as simply lda@nt-W is then a simple

function of o1, 22, 05, and the six expressioss y that are defined by the formulas of no.
16, and the equations of no. 17 reduce to either:

Xo :Z[g—gwiq—(gj, Fo = 1A +meA+ n A,

Yo Z[Z_E'*'rip\'_qu’

Z[a_q*'piBI_QAJ’

—~\ 0P

G, = 1B, +myB, + n, B,

Z,

Ho = 1Ci+ MG, + G,

in which one has:

ow ow A
':A A + +¢, ’
ow ow A -
B’:A ] + +n. , |,,k:1,2,3,
ow ow A
C' =A + +{ )
or to:
XO:a_Al+a_A2+a_A\", Fo=loAr+my Az + o Az,
0%, 0y, 0%
YOZaBl‘*'aBZ‘*‘aBS’ Go=1oBi+myB,+ngBs,
0%, 0y, 0%
20:6C1+6C2+6C3, H0:|0C1+moC2+n0C31
ox, 0y, 0z
in which one has:
oX _ O0Xx _ O0X
A=Q —+=,—+= —
1 16X0 Sayo 2620
_ OX oxX _ O0X
A==, Qo+,
2 36X0 Sayo 1620
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_— Ox  _ OX 0x
TPox, 'Oy, 9z

and

6y — 6y _ 0y
Bi=Q 2 -2
ST Y VT
Bo==,— oy +Q,— ay = 6y
0% 6% oz,

-0y _ 0 0
83 = :Z_y y Q3_y’
o 0y, 0%
0z _ 0z _ 0z
C=Q +z,— —
o oy, 0%
_ 0z 0z _ 0z
C=zZ,—+Q,—+=,—
T, COy, '0g
_ 0z _ 0z 0z
C =, —t=,— —,
T, Yoy, 0%

upon setting; = gﬂ == gﬂ to abbreviate the notation. Furthermore, let:
E

x - apxx + apyx apzx

F=1pw+mpx+n px,

ox oy 09z
op,, Op, Op

Y= 2+ 24+ 2 G=lpy+mpy+npy,
x oy 0z’ Pxy By + N Pzy
ap,, . 9p,, .9p

Z= xz y Y Z H=Ipz+mp:+np;,
ox oy 0z P & P

in which one has:

pxle Ql(ﬁj 10 (axj +Q(6xj Zzlaxax+Z 6x6x Esﬂ(a_x,
0% Y, Yo 0Y,0% 6%6% 0 %0 ¥

A

and analogous formulas fpy, ... As one sees, one recovers the deformable continuous
medium that the usual theory of elasticity is conedrwith.

A particularly interesting case is obtained by lookingthe form thawV must take if

one is to hav@y, = 0,p,,= 0, pyxy = O for any:— ... One finds thatV must be a simple
%o

function ofxo, Yo, Zo, and the expressiaihthat was defined in no. 15, and one has:
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DPxz = :pZ:a_W
2= Py N

If one supposes thaV depends upon onlf, and if one setp = %—\2/ and ifX, Y, Z

are given as functions of, y, zthen the equations will reduce to the following ones:

X=—=, Y= F=Ip, G=mp H=np

vlg
ols
N
1
vlg

which serve as the basis for hydrostatics. If the tfancW is hidden thenp is an
auxiliary function whose significance is well-known.

We start with a medium in whidl is a function o¥o, Yo, 2, &, ), Since the function
W is hidden We can conceive that one directs one’s attentmnjust those
transformations of the medium for which one gas )y = 0. It suffices to introduce these
hypotheses into the definitions of forces, etc., andhef forces are given, to introduce
these six conditions. In the latter case, the usudllgmts, which correspond to being
given the functio’W and the general case in whighy are not zero, can be posed only if
the givens are special. If we suppose thay the functionWy,, which is obtained by
settingg = y = 0 inW, is given, and that one does not know the values ad¢higatives
of Wwith respect tag, ) for & = y = 0— soW is hidden- then we see thgky, ..., P, for
example, become six auxiliary functions that one rapgend to, y, zin such a way that
in the case where the forces that act on the vokismaents are given, we will have nine
partial differential equations in nine unknowns. Thegnal of the systeng = y =0
corresponds to a collective displacement of the medthatis assumed to be deformed in
a continuous manner. It therefore remains for us to meterthe six integration
constants and the six auxiliary functigns, ..., p.z. One sees that by leaving aside the
latter, one recovers the usual problems of the mechahibsinvariable body.

We can also conceive that one might seek to defineedium sui generiswhose
definition already takes the conditiogs= y = 0 into account. Start with the defining
identity:

jjjsoavvdmdyodzo:
.U%(Fo'é’x+---+ K. oK) dao—mso(xga" x+...+ N, K) dy dy dg.

This identity must no longer be true wher= )y = 0, and we will be led to append the
expression 0 + b 06 + 3 O + Uy O + s O + s O)s t0 AN in the integral of the
left-hand side, which contains six auxiliary function ..., 1 of Xo, Yo, 2. We thus fall
back upon the theory of the medium that correspondisetdunctionW, =W + 1 d& +

b 06 + 15 08 + [y O + s O + s O)s when we confine ourselves to studying the
deformations that relate 9 = yy = 0. If, by a change of auxiliary functions, we take t
latter conditions into account W a priori then we must simply apply the theory to the
functiontn o6 + ... + s O)5, and upon supposing that, ..., (s areunknown we are
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reduced to a theory of the invariable body of the kind dim@ can create from the ideas
of Lagrange.

We finally point out a third method of constituting amariable medium that follows
Lord Kelvin and Tait, which is always subject to the saquations and which will be a
limiting case of the original mediunMoreover, like that of Lagrange, it also applies to
the various cases of the deformable line and surfatemgine that the functiow that
serves as the definition of the original medium isalale. In order to fix ideas, suppose
that forg, ..., )5 that are close to zeil¥ is developable in a MacLaurin series by means
of the formula:

W=W,+Wo+ ... +W + ..,

whereW represents the set of termsi'Bfdegree, and assume that the coefficienta/of
(which can depend upom, Yo, Z) can increase indefinitely under their variatidf.we
desire that W should preserve a finite valben we must suppose that) tend to zero.
In other words, we can then consider only the deformatioatt satisfys = )y = 0, and the
body that we will arrive at in the limit can take only collective displacements. We
make the preceding more precise by regarding the coefdewt;, W., ... as functions
of a parameteth such that wherh tends to zero the coefficients M, increase
indefinitely; for example, they might be functionstthae linear with respect to h/ On
the other hand, we supposzey, z vary with h in such a manner that when y are
developed in positive powers bf the first terms in the development will be the oimes

h. Under these condition¥y will tend to zero, whileg—w, gﬂ will tend to certain

& 4
limits (which can be functions o4, Yo, 20). The equations of no. 16 that serve to define
the external force and moment finally lead us to sammadlasin which the notion of the

function W will have disappearegdnd in which six auxiliary functions;, G;, Hy, |;,
Jo» Ky will figure.

In order to not leave the scope of this note — i.eorder to remain within the domain
of mechanics, properly speaking — we must confine oursedvesinting out that the case
in which the functiongo, M, Np are not zero leads to the consideration of media such
as thecontractible etherof Lord Kelvin, for example. We also mention tha¢ ttmost
general case, in which traces of the derivatives ofattteon W with respect to the

rotationsp;, g, ri remain in the expressions for the external momentisléa the most
natural manner to the notion wlagnetic inductionhat was introduced by Maxwell.

19. Euclidian action of deformation and motion for a continuous rdium in
motion. The notion of Euclidian energy of deformation and mobn. — What we said
in no. 15 about the dynamics of the deformable line estevith no difficulty to the
derivatives of the deformable surface. Since we @m#r into the statics of media that
depend upon more than three geometric parameters hershaledirectly present the
theory of the notion of a deformable, three-dimeraionedium. The functions y, z, a,

a, ..., y" then depend upory, Yo, 2, t, where the coordinates, Yo, 7o define the
position at the instarty . The continuous, three-dimensional set of trinddixa/Z for a
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given value oft will be what we callthe deformed statef the deformable medium
considered at the instant The continuous, four-dimensional set of trihellbdy'Z that
is obtained by making vary will be thetrajectory of the deformed statef the
deformable medium. In its original state at the imistathe medium will be said to be in
the natural stateand its trajectory, when one then makeary, will be thetrajectory of
the natural stateor alsothe natural state of motion of the medium

To the kinematical argumenés 7, ¢, pi, G, i of no. 16, one appends the six new
arguments:

dx dy a" dz (0]

a—+a' = ; =)y

<= dt dt W PTLrg

(30big n=pp D +ﬁ"£z, q=Ya-7,
dt dt dt

adr

= —+ Yy b r= —

¢= dt V dt V Z'B dt

We further seek to determine a functidtof two infinitely close positions of trihedra
Mx'y'Z such that the quadruple integ[ﬁ”W dx dy dg d, when taken over an arbitrary

portion of the spacéMp) and the time interval that is found between theaimst; andt,

will have a zero variation when one submits the gatlarihedra on what we have called
the trajectory of the deformed state the same arbitrary infinitesimal transformation of
the group of Euclidian displacements. We are alwaysdethe remarkable form/(xo,

Yo, 20, t, &, i, G, L O 1y & 17, G Py G, ). We say that the integral:
t
(31) L 1] LOWO"S dy dz d

is theaction of deformation and motian the interior of the surfac® on a deformable
medium and in the time interval that is comprised betwide instant; andt, . On the
other hand, we say thaV is thedensityof the action of deformation and motian a
point of the deformed medium that is taka&tna given instantand referred to the unit of
volume of the undeformed medium and to the unit of tinkpon givingA the same
significance as it had in no. 18// | A | will be the density of that action at a point and a
given instant, when referred to the unit of volumehaf deformed medium and the unit
of time.

Consider ararbitrary variation of the action of deformation and motion (3By a
calculation that is completely similar to the oneno. 16, we will be led to formulas such
as (23), where one must giV¥ its present significancand to the following six new
formulas:

(32) A,_GW B,_aw C,_aw p:a_w, Q’:M, R = 6W
oé on 0 ap 0q or

Moreover, one must add the terms:
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£6W+q6W_r6W d6W qa w ra W 6 WZG W
dtac 'a¢ odn' dtap ar  aq 6( on’

d6W 6W_p6W d6W 6Wp6WZG wgav\
dt 6/7 (014 a¢ " dt 0q op or 0é 07’

dow, oW _ oW  dOW, W 0W.0wW 2 W
dtac "a¢ af’ dtar oaq ‘ap an a&’

+

(33)

respectively, to the formulas (24), and we will éav

5[5 JIT wa dy dg

t
:[m (AFx+BJy+ CI z PJ'i+ QJ j+ RI R doqufJ%
(34) ) H
+H7 [, (ROx+ G o y+ Ho 2+ 1,51+ 3,0 [+ K,OK) oyl

_.[EJ‘J‘J‘SO(X('JJX”L%J y+ 40 z L'+ MJ j+ NO K dydydzc

We call the line segments that have originsland whose projections onto the axes
Mx, My, MZ areA', B, C andP', Q', R the quantity of motion and moment of the
guantity of motion, respectively, at the point M of the deformed métHyat the instant
t. We say that the first terms of the externaldo¥,, Y,, Z, and external momerit,,

My, Ny, which are given by the right-hand sides of forasu(24), wher&V must take

the significance:
W(Xo, Yo, 20, t, i, /7, &, i, O Ti, &, 77, €, P, G, )

represent thestatic partof that external force and moment. The additideams (33)
will be thedynamical part. Moreover, as in no. 17, we can introduce some uvaneay

of specifying the effort and moment of deformatioas well as the quantity of motion
and moment of the quantity of motion. The rightihasides of formulas (25) will
constitute the static part of the external forcd emment. The dynamical part that one
must add to it will be given by the expressions:

dA dP

—+qC -rB, —+gR -rQ' + nC' - ¢B',
at q at q Q +/C - (B
dB dQ

—+T1A" —pC, —+rP' -pR + A - &C,
. —p p PR + A" - dt

dA dR

—+pB -0A, —+ P+ A
at pE —q at qQ -aqP + B -

The static part of the external force and momeittt vespect to the axe3x, Oy, Oz
will be given by the right-hand sides of formul@3), and if one let#, B, C andP, Q, R
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denote the projections of the quantity of motion angl tmoment of the quantity of

motion, respectively, onto the ax@x, Oy, Ozthen the dynamical part will be given by
the expressions:

dA P . dy dz
dt dt dt dt
d8  dQ, ,dz_
dt dt dt dt
% , ﬁ+ BQ(— Aiy.
dt dt dt dt

Likewise, to the static part that is represented byriflg-hand sides of formulas (29),
one will add the dynamical part that is defined by thiewahg expressions:

1dA  1dP Cdy Bd

Adt’ Adt Adt Adt
1 dB 1dQ Adz Cd

Adt’ Adt Adt Adt’
1dC 1dR+ Bdx Ady

Adt'’ Adt Adt Adt

If we write the equality (34) in the form:
t
(35) 5L msow dy, dy, dg d= - J7¢

then dZ. will be the external virtual work and can be given aasiexpressions according

to the specifications that were adopted for the elod moment of deformation, and for
the quantity of motion and moment of quantity of motid®ince W must be identically
zero for an arbitrary Euclidian virtual displacement, Viyue of the invariance oW
under the group of Euclidian displacements, one will Hbgegelations:

T, Adsana] [, Bar, e[ % ox cy oz e

(36)

:J'J'J'SD(P+ Cy- B2 dx dy dozI2

#[. 1, Go+Hoy -G dood=[F[[[ (Lo 2y~ %7 dy dy oz eko,

and some analogous equalities. One thus obtagngdheralization of Saint-Guilhem’s

theorem, and upon introducing the notioniropulsion the generalization of the classical
theory ofimpulsions
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We remark that the present exposition contains thestat deformable bodies as a
special case. Indeed, it suffices to considevarsible virtual modification of the actipn
in the sense of Duhem, instead of imagining, as we jukt @lirealizable virtual
modification

This observation will lead us to the notion of enen§geformation and motion. We
propose to determine the work that is done by the extéoreds and moments and the
efforts and external moments of deformation during &itrary time interval for aeal
modification For this, it will suffice for us to calculate teéementary work that relates
to the timedt. The latter is:

Uﬂso(fxé+'7\6+'") dy, dy d%—ﬂso(f E+y G+-) d} C

If one replacesX,, Y, , ..., F,, G;, ... with their expressions as functions of the action

and if one performs a calculation that is inverse tootiethat led to their definition then
one will obtain immediately, by virtue of the Codazguations:

1125+ 2 on oz | o

ow ow oW oW, dW JW
+n +{ +p +q +r -
o& on 4 op oq  or

upon setting:

(37) E=¢ W.

If one considers, in particular, the case in whigldoes not contaih explicitly, in
ow . . L
such a way thatg is zero, then the preceding value becomes the demgatvith

respect to time of the expression:
JIJ, E dwdyo dao,

which can be called thenergy of deformation and motion at the instant t.

At the point to which we have arrived in our expositive,can make some important
general remarks that will once more find their appitcain the theory of the Euclidian
action in what follows.

The only notion of Euclidian action of deformatiordamotion thatsufficesfor us
provides — in a very extended case eoastructivedefinition of the quantity of motion
and moment of the quantity of motion, the effort arel tloment of deformation, and of
the external force and moment. The distinction thvat have made between the
dynamical part and the static part of the externatefaand moment, which amount to
grouping, on the one hand, the terms that contain omgical acceleration, and on the
other hand, the terms that contain only what one edirtlee kinematical acceleratian
obviously express an extension@Alembert’s principle Likewise, the reasoning that
we made in order to arrive at the notion of energy odmhedition and motion shows that
there is a sort of separation of that energy into parts — the one dynamical, and the
other, kinematical. If we suppose that the external wlorie is zero then the energy of
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deformation and motion will be constant, and consequettie total dynamical and
kinematical energy will remain constant in time. Wmus obtain the notion of
conservation of energyhich simply translates into the hypothesis thatrteslium is
isolated from the external world. We recover, in turn, dlitbe fundamental ideas of
classical mechanics, and it is obvious that the partidalan that it takes in the latter
case leads one to envision only the state of motion andneition that isnfinitely close
to the natural statewhere one supposes that the acthand its derivatives are zero.

We can further remark that the deductive path that we Falowed sidesteps the
objection that Carnot already raised a century ago dgamseverse progress in classical
mechanics. In it, the force and analogous quantitiesagoeori notions. True, the
dynamical force can receive a definition in such a way it expresses the second law of
motion that was posed by Newton in Risncipia. Likewise, if one prefers, static force
can be regarded as defined by Hooke’s law when the deformatiofinitely small, as
Reech has proposed. Finally, the force that relatdsetstate of deformation and motion
can be expressed by d’Alembert’s principle. However, owest further submit to
definitions that possess a certain arbitrary and contirgeracter, such as saying that it
must verify the principle of the conservation of eneagpriori in due course, and one
can only postpone the difficulty by introducing energyaasietaphysical notion. The
same thing is not true for the Euclidian action fromakhive have derived everything,
since it analogous to the distance between two infynitkdse points, and consequently
translates into simply the idea of measure in the dvoflphenomena, and in a manner
that has been consecrated by all past experimentsowasre

Finally, it appears that the generality of the fornthaf action that we adopted in our
exposition, and which corresponds to an arbitrary stat@ation and deformation, is
found to be justified, not only by the consideratiortha critical phenomenabf motion
and deformation, but also by the fact that it introdubesregular and uniform method
that one must follow by definition, even when one corfiomeself to a state that is
infinitely close to the natural state in order to essabbr verify the conservation of
energy.



IV. — EUCLIDIAN ACTION AT A DISTANCE.
THE ACTION OF CONSTRAINT AND DISSIPATIVE ACTION.

20. Euclidian action of deformation and motion for a discontinous medium.—
Consider a discrete systemmtrihedra, in which each trihedron is distinguished by an
index i that consequently takes the values 1, 2,n..,Let M. X'y Z be the trihedron
whose index i3 and whose summM; will have the coordinates, yi, z, and the axes
M.x, M.y, M.z will have the direction cosines, a', a’, 3, B, B, % V., ) with
respect to the three fixed rectangular a®esOy, Oz We suppose that the quantiti¢s
Vi, Z, &i, ..., Y are functions of timg¢ and we introduce the six argumeétsy, &, pi, g,
ri that are defined by the formulas (30) with the index

Imagine a functioW of two infinitely close positions of the system oihédra
M,xy Z; ie., a function of, x, v, z, &, ..., )/, and their first derivatives with respect
tot (wheni takes the values 1, 2, .n). We propose to determine the form tihamust
take in order for that function to remain invariant undemdihitesimal transformations
of the group of Euclidian displacements such as (9). e@bsthat the relations (30)
permit one to express by means of well-known formulasthe first derivatives of the
nine cosinesr, a; Y/ with respect td in terms of these cosines amdq;, ri , and on

the other hand, to express the nine cosmesr, ..., )/ in terms of&, 7, &, and the
first derivatives ok, yi, z with respect td. We can thus finally express the functibh

that we seek as a functiontk;, yi, z, and their first derivatives, and finally &t 7, ¢,
pi, Gi, i, which we indicate by writing:

dx dy d
WW(txyzdet( Zf/zi.,.p,.qj

Since the variation®é, o, o4, i, &, & are zero in the present case, as this
would result from the well-known theory of the mayitrihedron, we must write the new
form of W, by virtue of formulas (9), when taken with thelexi, and for anya,, a,, as,

W, G, G

S OW 5 W OW s OW sdx QW dy 0 Widz)
—| 0x ay 0z adX dt sdy  dt 5dz - dt
dt dt dt

Replacedx, dyi, daz with their values in (9) andf? 5? 5%
that one deduces by differentiation, and equatedledficients ofa, ap, as, W, w, ax to

zero. One then gets the following conditions:

(38) z‘; z

with the values

Z—-O

oy
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and

(39) ——t—

|V "oy dt,dz diydy
dt dt

S|y W _, W dy oW _dg oW

with two analogous relations.
If we suppose thahe points(x;, i, z) can describe all possible trajectoriésen we
will arrive at some identities that are verified bg flanctionW of 6n arguments;, Vi, z,

(fj—):, % % and some further argumerds i, ¢, pi, G, ri, which we can leave aside
for the moment. We seek to exhibit the form thatltedar W.
We commence by treating the case of the systenrex gquations:

$ yaﬂ_zaﬂjz
"oz Toay)
o (0w dW
40 OW_OWI_p,
(40) Z;, 2o )‘a;j
Loy Tox )

which determine a functiow of 3n argumentss, i, z . We have already encountered
this system in the context of the dynamics of anppand the statics of a line, and of the
surface and continuous, three-dimensional mediuthdrcases whege=1,p=2,p = 3,
respectively. We leave aside the case sfl, where the three equations reduce to two.
Forp = 2 andp = 3, we have three equations that define a comigstem. Fop = 2,

we have three equations, six variables, and timéependent solutions:

X+y+7 (=12, XXtnytzuzn.
Forp = 3, we have three equations, nine variables, enddependent solutions:
X+y+7Z (i=1,23), xx+yiy+zz  (,j=123).

Forp > 3, the system is still complete. In order tovar this, it suffices to show that
it admits  — 3 independent solutions, since the number oftapus is 3, and the
number of variables ispg3 Now, we first have essentially tpesolutions:

X+y+7Z (i=1,2,...0),
and then the solution:
X Xo+tY1 Yo+ 24 2,
and finally the 2§ — 2) solutions:
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XX ty1yitzaz, XXtyvitzz (i=3,4,5,..p),

which are all independentW is then a function of the 8(- 1) independent arguments
that we just enumerated.

We now return to the proposed system that was defirredathditions (38) and (39).
The conditions (38) prove th&Y depends upory, ..., Xn, Y1, --.s Yy 4, ..., Z, ONly by the
intermediary of the expressions:

Xo =Xo — X1, X3 =X3 —X1, ey Xn = Xn =Xy,
Yo = Yo — Vi, Y3 =Yz —Vi, vy Yn=Yn—VYi,
2, =2—1n, 23=73—1n, ey Ln=Zn—71.

On the other hand, set:

9% _y Ay 4z _,
n+l = In+i, - &ntl o

=X
dt dt dt

and write that equations (39) are verified by the funcédaf the argumentX;, Xs, ...,

Xan; Yo, Y3, ..., Yan ; 2o, Z3, ..., Z3n . FoOr example, consider the first of equations (39). |
becomes:

(oW ew aw LW, aw
"oz, Tzt a; oy, Y

ow
+(y + Y. -z +2) —+ ... =0.
(V1 2) 622 (2 +2o) o,

y1 andz; disappear, and what remains is the first of the equations

2n 6W B
le 0z, Z_j %
(9w

aT—x_zj ’

2 -
;%:
o

S\ "oy, T ox

We thus fall back upon the system (40), whergi, z are replaced witb.1, Yi+1, Zi+1,
andp is replaced with2— 1.

If we first suppose thah = 2 then we will see thatV is — abstracting from the
argumentss, 7, ¢, pi, G, i — a function of the independent expressions:

XZ+Y7+ 22 = (o — %) + (Y2 —Y1)° +(z2 —21)%,
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) dx % i
Xg+¥o+ 7 = (dtj (dtj (dtj TRUALS

dx, )" (dy) [ dz
xf+y42+zj:(aj +(Tt2j (dtj 52+/72+Z2

dx dy; dz
Xo X +Ya Ya + 2575 = (Ko = X1) 2 + (ya —y2) D +(z,—7) 2
2 X3+ Yo Y3+ 2o Z3 = (X2 —X1) p V2 —w1) it (z2—2) p

d d d
XoXa+YoYa+ 224 = (Xz—Xl)—XZ + (yz—yl)% +(22—Zl)d_2t2

dx d)g dy dg dz d;
+Ys Y4+ = L 2y £
KO XN VAT L L= T e dt

Therefore, we finally have th&V is a function ot, &, 7, ¢, pi, G, Ii, and thefour
arguments:
(X2 —Xl) + (2 —Y1) + (2 —21)2,

d
(e -3 Xl (s y)dyl +-z)

d
(XZ‘Xl)TXE * ‘yz_yl)d—yf *@-2) 2

dy o, dy dy, dz dz
dt dt dt dt dt dt

If we suppose that > 2 then we will see thaW/ is — abstracting from the arguments
& i, &, pi, G, ri — a function of & — 1) independent expressions:

either 6 —x F+ (Y- %J+ (z— zf (FL12.. ,n)
XP+Y2+2% = dx, Y.
or (Ej [dtj (dtj =&tk

XoXz+YaYa+2Zo7Z3 = (Xo—X1) (Xa—X0) + (Y2—Y1) (Y3 —Y1) + (22 —2) (3 —20),

either ¢, —x )X = %)+ (= ¥)(y— Y+ (2- (2 2
X Xi+YoYi+22 7 = N o Oy _ A9z
or (%, Xi)a +(Y, yl)a +(z 4)E’

either ¢ —x )= x )1+ (%= Y)I(y- Y+ (z- 2(,z 2

XaXi+YaYi+ 257 = Lo o dy . dg
or (6 =X) (% Wt (3 D

We remark that one has:
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(X —%) (6 —x) + i —y) Vi =¥ + @ —2) (z—2) = 3(r7 +ri-rs),

wherer is the distance between two points of the syst@&w.reason of symmetry, one
might have to make arguments that ac¢ independentigure in W, and one can take
then the following arguments independenthéo;, &, pi, G, Ii:

2= =)+ 0 -y’ + @ - 2),
_dxdx dydy dzdz

U gtat Tar e Tt
dx, dy dz,
ik = (% —x) ot Vi -V ot @ —-2) ot

The last ones consist of argumens with two indices and argumentg with three
indices. The latter figure only when there are moea tfivo points, and one sees that in
this case the action on two points is influenced byhthe other points. It is easy to
establish the very complex relations that exist betvthese non-independent arguments.
They are analogous to the known relations between sttendes;; when the number of
points is> 5.

If we know the expression for the Euclidian actdhon the system of trihedra
considered then we can easily, by a calculation tkaeats what we have done
previously, find the expression for the external forcel amoment on an arbitrary

trihedron. Since the actiokdV is a function ofx, Vi, z , (jj—): % % by the
intermediary ofrij, ¢, Aik , it is convenient to first regaMy/ as a function ok, yi, z ,

dx dy dz .
—,—',—andof i, M, G 0L L. We Il have:
dt ' dt’ dt <o M 45 P d will hav
&
5L1Wdt
&

= {Z(Aéx +BOy+ Coz+ B i+ QD)+ iRik}

7]

B J.ttZZ(xié)ﬁ +YOy+ 20 z+ 1o i+ Mo j+ NOK d,

upon setting:

ow ow ow ow ow ow
i = qa. + + ) , Pi=a +8 +V
A= T g a0 Fag Ve

,OW OW ow , 0w OW ow
i = a, +h ¥ ' i =4 +h ¥

oc Fan Moz Q= an Hag g
G = W, g W, W Rz W, gOW, OW

) a )
105 Ton T a¢ ' op, aq ar
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where @, B, C) and P, Q,, R) are the quantity of motion and the moment of the
guantity of motion, respectively, of the trihedron witdexi, and:

x=0A, dlow | ow L dR . dy_pdz
dt dt| 5dx | ox dt dt dt

dt
v =948, dj oW | oW M= 99 002 o A
dt di| 5d% | 9y dt dt dt

dt
79,4/ oW )| oW dR pdx_, dy
dt dt| 592 | 0z dt dt dt

dt

where &, Yi, Z) and (i, M;, N;) are the external force and external moment, reispéct
of the trihedron with index In these calculations, one sees that it is eagxhibit the
argumentsij, ¢, /]ijk .

We remark that the expression for the external fegdeund to decompose into two
parts: The first one, which depends upon the line segr&ni;, C)) and @, Q;, R), and
their derivatives, is the properly dynamical part, wttie second one, which results from
the presence of the argumentsy;, Aik in W, corresponds to the force that the trinedron
with indexi is subjected to under the influence of all the othé&ethia of the system.
Consider the expression:

dx dy dz
Xi—+Y—+Z—
Z[ 'dt+ ' dt+Z dt

+L@p+Bq+yN+M@p+Ba+yn+N@p+pia+yn]d,

which represents the sum of the elementary worksatetdone by the forces that are
applied to the various trihedra. If we calculate thgmeplacingX;, Yi, Z, Li, Mi, N; with
the preceding values then we will find the following eegmion for the elementary work
that relates to the dynamical part of the externaef@nd external moment:

Zggawmawﬁaw+ oW, 9W 0
dtl "a& "an ' a¢ 'qap qaq Frair

- M%_{_@_\N%_{_*_G_\Nﬂ d'[,
oé dt adn dt or dt

which is analogous to what we have already obtained.id%oand the elementary work
that is done by the forces that are exerted betwesetitiedra of the system:
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zdd_)gaw Ldy oW  dzow
dt| dt 5% dt,dy dtydz
dt dt dt

oW d’x  OW d’y oW &z dWdx dWdy 0 Wz dt
adx d* dy d* ;dz d® ox dt dy dt az dt
dt dt dt

If we add these two expressions, and if we set:

n, : B e
oc Man oz Mog TVoq TTor Tar,dx di,dy  dr, d
dt dt dt

E= Zfaﬂ g O, W, QW OW, W dx oW dyo W dzo W

then we will see that the sum of the elementary wstks

dE+aaﬂdt

Upon supposing thaW is independent dfand givinge the name oénergy of motion
and positionfor the system in question, we will obtain a propositibat is entirely
analogous to the one in no. 19.

It is easy to deduce a dynamical law for systems ftenforegoing that is established
on the same plane as in classical mechanics, withauihdy to restrict oneself to
envisioning central forces, as one does in that theblgreover, the present exposition
has the advantage of giving the true origins to the wariaws of force and distance that
were studied by Gauss, Riemann, Weber, and Clausius, whiaftraduce just the
argumentsij, ¢, A . We shall not insist upon this point, which leavestthditional
scope of mechanics, and which is mainly of interedteéorietical physics.

21. The Euclidian action of constraint and the dissipative Elidian action. —

The considerations that we just developed in regard t&deédian action at a distance
lead to the notion ofonstraintin a most natural manner, which is due to Gauss and was,
as one knows, applied by Hertz to the study of the foionsabf mechanics by following

a path that was already traversed by Beltrami, R. hipscand G. Darboux.

To simplify, let there be given a point that describetsajectory that is defined by
three functionsq, Yo, Zo of timet when its motion igree  On the other hand, lety, z
denote the functions of tintethat define the trajectory when it is subject to tamsts.

We can envision the two pointX,(Y, Z), (Xo, Yo, Zo) whose coordinates are obtained, for
example, from the formulas:
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dx . 1d°x dx, .. 1d*x

X= +—dt+——dt Xo=Xo + dt+= de,
a2 e 0T o e
dy . 1dy dy, 1 d*y,

Yzy+ —2dt+= de, Yo=Vo+ —2dt+= de?,
TR T 0=V 4t M2
dz , 1dz dz, 1 &z

Z=z+ —dt+=—=df?, dt+= de,
dt 2 de L =Yt g Ao e

which come from the Taylor development, when iinsited to the first three terms.
Upon assuming that the constraints &retionless one can write that at the instant
considered, one will have:

dx _ dx, dy _ dy, dz _dz,
X = Xo, X = Xo, X = Xp, —_—=—, — = — =",
X X X dt dt dt dt dt dt

Having said that, after having considered Euelidian action at a distancei(t) for
the two points X, Y, 2) and &o, Yo, Zo), whose separation we denote hythe
introduction of the notion of constraint that isedio Gauss amounts to replacingith
its value, in such a way that one is led to thectiom U of the argumenythat is defined
by the formula:

2 = d’x_d*x 2+ d’y d’y 2+ dfz &z 2.
dt®  dt? dtt  dt dt  df
If we then apply the method of variable actiomtiage will get:

2 2 2 2
A = x(ad——ad >‘0j+v(5d y_sd %j (5—— ﬂj

dt? dt? dt® dt? df dt
by setting:

1du(d2x dzxoj 1du(d2y dzyoj 1du(dzz d zoj
-—2 Y= . Z= . .
ydy\ df® dt ydyl dt  dt ydyl dt* df

If, with Gauss, one calls the argumerthe constraintthen the force, Y, Z can be
called theforce of constrainthat is applied to the poink,(y, 2), and can be regarded as
having the effect of preventing the motion of tleenp from beingfree  On the contrary,
the force —X, — Y, — Z is applied to the pointx{, Yo, Zo) in order to bring about the
transformation from free motion into constrainedtio.

The essential difference between the present ptinceof force and the one that
results from Newton’'s laws of motion is the follai In the latter, one considers the
action that relates to two infinitely close posuso— the one, present, the other, future —
on the same trajectoryIn the way that Gauss and Hertz looked at thitigs action is
referred to two future positions, one of which s the trajectory that is called tieee
one, while the other is on the trajectory thatafled theconstrainedone. In the two
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cases, one obviously has a theory that permits opeetbcta future motion, which is the
objective of the dynamics of a point. However, in addit- and this is the point that we
would like to demonstrate especially — the actioBuslidian

On this subject, it is interesting to remark that Gawss explicitly established an
agreement between the action of constraint anththef errors which does indeed have
the same form. One thus sees that the fundamentalctéaof the law of errors is the
Euclidian invarianceof that law, and that the new branch of mechanicswhatcreated
by Maxwell, Boltzmann, and W. Gibbs under the namestafistical mechanicgan
likewise take on the deductive form that we have triegite to ordinary mechanics
here.

We can further observe that the forces of condtain just as well translate into the
mechanics that one deduces from the ideas of Newtam the imechanics that one can
deduce from the Gauss’s notion of constraint, whicm im@eterminacythat is produced
in the definition of force, and which leads one to idtroe the Lagrange multipliers.

Gauss’s idea can also be applied to friction by imagiairiuclidian action on the
two points:

X:x+2(dt, Xo:xo+d—X°dt,
dt dt
dy dy,

Y=y+ —=dt, Yo =Yo + =2 dft,

T 0= Tt
dz dz,

Z=z+ —dt, =z, + —2dt,
at L=nt g

where the poinky, Yo, z is referred to a free trajectory and the paint, z, to a trajectory
that is traversed with friction. As it amounts telaling friction here, one must set=
dx dx, dy dy, dz dz, : .
Y=Y02=2, —=f —,— = u—, — = u—>. One is then led to an action
o y=Yorm o g T G w M T a Y a

2 2 2
that is a function of the velocity = \/(Z—Tj +(%} +(%j that is affected with the
factor 1 —u, which describes precisely the notiondissipation of the free action at the
point %, Yo, Z .

The arguments;, ¢, Aikx that we have considered in no. 20 translates defifytae
analogous idea in regard to a trihedron that is assumiee iplated in the system of
trihedra that is envisioned. One can, if one prefersndisish these arguments and say
thatr; is apotentialargument, whilag;, Aix aredissipative The central-force hypothesis
thus amounts to considering only the dynamics of systeth®uwtifriction at a distance
in mechanics. On the other hand, one can derive theabpegumentr; / dt of Weber
from the arguments;, ¢;, Ak , and if one passes from the discontinuous medium to a
continuousmedium, the conception of which is based upon considenindst of space,

then one is then led to introduce thiscosity argumentsdgl, dsz’ dg?’, dyl,
dt =~ dt dt dt
%% into the actiolW.  Aside from such arguments, which were envisioned for

the first time by Navier and Poisson, one must obvioaldy present arguments such as
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the mixed argumené; & + 7 . + & & that was at issue in no. 15. We confine
ourselves to these summary observations about viscesitgh has not been studied in a
sufficiently systematic manner up to now, moreover.



V. - THE EUCLIDIAN ACTION FROM THE EULERIAN VIEWPOIN T.

22. The action of deformation and motion of a continuous mediunrom the
Eulerian viewpoint. The notion of the radiation of energy.— In the statics and
dynamics of deformable continuous media, we took the indgmivariables to be), yo,

2, andxo, Yo, %, t, respectively. In the case of statigs, Yo, 20 were the coordinates of
the pointMg of the natural stateMp). In the case of dynamicsgy, Yo, z0 were the
coordinates at the instatf of the pointM that became the poifdl at timet. The
independent variables that we thus considered weleati@nge variables.

One can now imagine that one performs a change ofbl@sian the independent
variables. In particular, by analogy with what onesdmehydrodynamics, one can take
X, ¥, Z0rx Y, z t to be the new independent variables, and with this patichbice one
has what one calls theuler variables xo, Yo, 20, @, @, ..., y then become functions &f
y, z or of X, y, z t according to whether one is dealing with statics or dycgm
respectively.

Along with the Lagrange variables, we have considered thediuncargumentss,

i, & P, G, ri, & n ¢ p g r. Along with the Euler variables, we envision the new
argumentsd), (7). (<), (), (@), (ri); ($), (1), (), (), (@), (r). We shall define them and
show that they are, like the former, Euclidian invagant/pon recalling thaty = o1, yo =

0», 20 = 03, Set:

1= 92 1= 92 1= 92
@=2.  m=%. =2

0 0 0
(SEDWZ [qﬂ=2y6—€, r=Yv %2,

with analogous formulas fop{], [a], [r2] and [ps], [ag], [r3] that are obtained by first
changingy; S into a, f§ and then intgB, a. The arguments&), (77), (&) will be the
projection onto the axddx’, My, MZ of the vector whose projections onto the a®as
Oy, Oz are [], [7], [{]- Similarly, @), (g), (ri) will be the projections onto the axes
Mx', My', MZ of the vector whose projections onto the a®gsOy, Ozare pi, [q], [ri]-

In addition, in the case where there is motion, aket

_0p _0p, _ 9p,
(é) = T () = 3 () o
< 08 _~ .08 _v,98
(p) = Zy—ax . @@= Zy—ay . M=y 5
It is easy to see that one has:

G +mm+4a(@) =1 () +mm+G(d)=0 (=K,

(& +<é(&)+n(im)+{(Q)=0
(M +¢(&)+n() +{(H)=0
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() +&(&) +n (1) +{ (&) =0,
(pl)zzpi(fi), (Q1):Zpi(’7i), (rl):_zpi(zi)’

and then:

with analogous formulas foipf), (), (r2) and 0s), (0z), (r3) that are obtained by first
changingp; into g;, and then inta;. Finally:

(P) =pa($) +p2A(n) + pPs() +p,

with analogous formulas fog) and ¢) that are obtained by changipgp; into q, ¢, and
then intor, ri . One sees that the Eulerian arguments, beingtifuns of only the
Lagrangian arguments, are indeed also Euclidiaariamts.

Suppose thatV, which we call thd.agrangian action densityis expressed by means

of the Eulerian arguments), (7), (), (), @), (), (), (1), (), (p), (@), (1), and set:
W=QA.

We callQ, which will have the remarkable form:

Qx0, Yo, 20, 1, (6), (), (), (P, (@), (ri), ($). (). (). (), (@), ("],

the Eulerian action density The action will take the form:

J:ZJHQ dx dy dz dt

When the integration ovet y, z is taken, as before, over the volume that is bedruy
the surfaces of the deformed medium — i.e.damain that varies with time we will get
the Lagrangian action. On the contrary, if theegnation is taken over faxed domain
that is independent ofthen we will get the Eulerian action.

In order to apply the calculus of variations toamion that is taken in one or the
other of the forms that we just pointed out, icanvenient- following the example of
Poincaré- to establish the following distinction between tlaiations that a functiox
of X, y, z t can receive. From the Eulerian viewpoint, thecfiom V experiences a
variation that we will denote byY) and which is due to eéhange of the functionFrom
the Lagrangian viewpoint, it experiences the varmat

N = () + a—\/5x+a—\/5y+a—v5z,
0x oy 0z

that one can call thimtal — or Lagrangiarn- variation. Thespecial rolethat is played in
the present theory by the functioxs yo, zo Of X, y, z t translates into writing that their
Lagrangian variations arzerq in such a way that one will have three formulashsas
the following one:
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0= (o) + a_xodx+a_xoa_y+a_)%5zl
0x oy 0z

A distinction that is analogous to the preceding onetrhesmade between the
derivatives with respect to time of the functign The Eulerian derivative is what one
usually distinguishes by the symladl / dt. As for the total — or Lagrangian — derivative,
it is expressed by the formula:

dv_av oV dx aVdy 9V d

ot ot ax di dy dt 9z dt

The signd commutes W|thi i i d , and the signd) commutes W|thi
0%, 0y, 0z, 0X

aiy’ % % Similarly, in a Lagrangian integral whose domain esanvith time, one
cannot invert the integration with respect @nd the system of integrations that relate to
X, ¥, z One can make that inversion only when one is dealitigthe variabley, Yo, zo,
and the integrations by parts must be true for the Lagmarggrivativesd / dt. For an
Eulerian integral, one can invert the integration wéspect tad and the integration with
respect to the field of variablesy, z, and when that inversion has been performed, the
integration with respect to time must be done by imagithadyx, y, z are constant. The
integrations by parts must refer to the derivato/égt, and not the derivatives/ dt.

First, consider the Lagrangian action. Its variatmll be:

j jjj(Ad)+Qcﬁ)d>@dyodzodt—j m(mm‘ﬁj dx dy dz dt

hﬁ%- 00x , 00y 00z,
= + + :

or furthermore, upon remarking t
ox dy 0z

[l o T oy cean
y

If one carries out the calculations along the sames lagein no. 19, and takes into
account the remarks that we just made a moment agmtieewill recover the formulas

that we already know:

0P , Py, 0P, , 1 dA
ox 0y 0z A dt’
oy , 9P,y 0P, 1dB
ox 0y 0z Adt

X =

Y =
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Z= P, +0pyz +6pzz+1d_C’
ox 0y 0z A dt

L = aqxx +6qyx +aqzx+ Z pZ T~ . N . T
ox oy oadz 7 YA dt A dt A dt
— aqu +aqyy+aqzy+ p.— P +£@+Aﬂz—_c_d),
ox oy 9z ¥ T A dt A dt A dt

N - aqXZ +aqy2+aqzz+ px — px ld_R+_B£X—_A_d),
ox dy 0z VOO A dt A dt A dt

1dP Cdy Bdz
+ + -

M

[ Pyx+ N Prx+ N Pox,
I Pxy +N Py + NPy,
[ Pz + N Pz+N Pz,

F
G
H
[ Oxx + N Qyx + N O,

I Oxy + N Gy + N Gy,
[0+ N Qz+N Gy.

I
J
K

However, if one sets, by analogy with the notatiohno. 16:

0Q 0Q 0Q
) = ——, B) = —, C) = —,
A (<) &) o(17,) ) a({))
0Q 0Q 0Q
A) =——, B) =——, cC) =——,
) a($) ®) o(17) ©) a({)
0Q 0Q 0Q
P) = _—, i’ =—), AN— —_—
® a(p) @ a(q) ®) o(r)
0Q 0Q 0Q
P) =——, )y = — R) =——,
®) a(p) @) a(q) ®) a(r)

where (A), (B), (C). (B). (@).(R). &), B). (C), (P). @). (R) define four
vectors, respectively, that are referred to thesde, My, MZ, where we denote the

components with respect ©x, Oy, Oz by [A], [Bi], [Ci], [P], [Q], [R], [Al, [B], [C],
[P], [Q], [R], respectively, then one will find that:

2= - @lal - @)1E - L& - P)pd - @)lpd - RPd

Pxx = Q = [Ad] [&1] = [A2] [&2] = [Ad] [ &3] = [Pa] [pa] = [P2] [p2] = [P3] [p3] - 2%(
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(B (6] - [ [&] - [B] [&] ~[Q1[Qd - [Qd [P - [Qal [pd - £,
- [C[&] - [C [&] - 1G] [&] - [R] [pd] - [R [P - [Rl [pd] - 2=

with analogous formulas fd3, C, andpxy, Pyy, Pzy Pxz Pyz Pzz. 1IN addition:

= a[Py] + BIPA + yIP4] - %j—tx
G = a[Qu] + AQd + ¥[Qd - %j—ty 2P=P)
= a[R]+ AIR] + VIRI - © jtz

with analogous formulas fd@, R, anddyy, Oy, Oz, Oxz, Oyz, Gz These results are also
obtained by directly transforming the formulas of no. & means of the relations
between the Lagrangian arguments and the Euleriamrmamgs that were discussed
above.

We can likewise obtain the density of energy thatesponds to the notion of
Lagrangian action by one or another of the paths tegust pointed out. We have seen
thatwhen it is referred to the space @f y, 2 this density is:

FOW, OW, OW, W, OW, OV,
o& ~on 4 op oq  or '

This same densitywhen it is referred to the space gfyxz and expressed by means of

the functionQ of the Eulerian argumentgy, (1), (£), (), (@), (ri); (), (1), (), (), (@),
(r), is:
9Q 9Q 90

(5)6(5) ()a() (Z)% (D)a() (Q)a(q)+(f)a(r)—

In no. 19, we found that the elementary work thas done by the external forces and
external moments, as well as the external effartsraoments of deformations that were
exercised on a portiotM) of the medium that occupied the portidvig] of the natural
state at the instantad the expression:

I, G onwes @

in whichW is supposed to be independent.ofThe same result persists if one considers
afixed regiorfM) of space. Therefore, if we observe that we thgdollowing identity:
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1dE_ Q(E}%EQ}E(E&}&Z(_EE?
Adt ot\A) ox\Adt) oylA dt) 9z A di’

which was employed by Poincaré and which is applied tarlitrary function, then we
will arrive at the following expression for the newratntary work:

Gl goarae [ 5 £ ) s la e s al|ooreh o

0 E E( d d d
allgoorom L G e ) o] o

The double integral that figures in the coefficiendbtorresponds to what one can
call theenergy flux of deformation and motidmat traverses the fixed surfaan the
deformed body.

Now, consider the action from the Eulerian viewpoitttis, first of all, interesting to
confirm that the values of the external forces andreai moments remain the same, but
that the following terms disappear in the expressionsie effort9uy, Pyx Pax:

or

_ Adx _Q_de _Q_Cdz

=Q - —, = —— = —_,
Thx A dt X A dt * A dt

and the following terms in the expressions for the mdshehdeformatiory, Qyx, Gex:

)( = - EQ( X = - gﬂ X = - Biz
Toadt] O oAt T oadt’
with analogous expressions for the quantitigs 7zy, ..., Xxy, Xyy, ... It results from this

that the elementary work that is obtained in the pregedase must be augmented with a
new surface integral, which has the expression:

dx dy dz}_ 1 ., > ..
{U{Q(Ia+ma+naj A(f +n°+{°)(IA+ mB+ nQ

—%(p5+q7+ri)(lP+mQ+ nF}} df} d.

One can call this new integral thediant energy flux that traverses the frontier S of
the deformed body.

The argument that was made in no. 19 and was founded upoiEutiidian
invariance of the action density will no longer leadhi® same conclusions (36) in regard
to the external forces and moments, as well as irrdegathenewexternal efforts and
moments of deformation. One can express this by saymigthle new efforts and
moments of deformation no longer satisfy what Poiicalled theprinciple of reaction
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As one knows, this latter conclusion is likewise hemt in the electrical theories of
Lorentz. However, the existence of the radiatiort tha just exhibited permits us to
reconcile the efforts and moments of deformatign 77y, ,,,, Yo Xyx ... With those of
Maxwell using considerations that are inferred fromeleetromagnetic theory of light,
and which Bartoli, in the context of thermodynamics, talted thepressure of radiant
energy so that one can therefore once more respegriheple of reaction




