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INTRODUCTION 
 

 Mechanics, like any science that makes perceptible facts its object of study, is, above 
all, experimental and inductive, and that is the character that it possesses in a classical 
treatise.  However, one can also try to attach to it some unique general concept and give it 
a deductive form.  In that manner, one confers upon it a new power to discover, and one 
finds the explanation for some notions that were already acquired inductively.  Such was 
the work of Lagrange a century ago in his Mécanique analytique. 
 In our epoch, an attempt of this type deserves to be renewed, because the domain of 
phenomena that are found to depend more or less completely upon mechanics has been 
enlarged considerably.  One of the paths that one can follow was pointed out by 
Helmholtz: He took his point of departure to be the method of Hamilton’s variable action, 
in such a way that the notion from which one must deduce all of the inductive principles 
of mechanics is that of action, conveniently chosen.  However, Helmholtz did not clarify 
precisely just what was fundamental in that original concept that would permit 
generalization.  In order to arrive at a completely constructive definition, one can observe 
that the action that Maupertuis introduced into mechanics is invariant under the group of 
Euclidian displacements.  This same character is also found in the statics of deformable 
bodies, which rests upon the consideration of the ds2 of space.  In physics, the theory of 
phenomena that are due to gravitation, heat, and electricity depends upon the study of 
differential parameters that are likewise invariant under the group of displacements, as 
was first shown by Laplace, Fourier, and Maxwell. 
 H. Poincaré once wrote that the notion of group already exists in our spirit, at least, 
potentially, and is imposed upon us, not as a form that we perceive, but as a form that we 
understand.  Following that philosophical idea, all of classical mechanics and all of 
theoretical physics seems to be deducible from the single notion of a Euclidian action.  
That is what we propose to establish in our present note, at least, insofar as it concerns 
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the questions that belong to the usual scope of mechanics.  We therefore present the 
theory of Euclidian action for extension and motion.  Since we shall have no need to 
employ the word “matter,” our considerations likewise will apply to the ether.  In order to 
have a more complete idea of the notion of matter, one must deal with the concept of 
entropy, taking the profound viewpoint that Lippmann introduced into electric theory; 
that aspect of the question cannot be contained with the limits of our discussion here. 
 
 



I. – STATICS OF THE DEFORMABLE LINE  
AND THE DYNAMICS OF TRIHEDRA. 

 
 

 1.  Deformable line.  Natural state and deformed state. – Consider a curve (M0) 
that is described by a point M0 whose coordinates x0, y0, z0 with respect to the fixed 
rectangular axes Ox, Oy, Oz are functions of the same parameter – for example, the arc 
length s0 of the curve, when measured by starting from a well-defined origin and 
proceeding in a well-defined sense.  Attach a tri-rectangular trihedron to each point M0 of 
the curve (M0) whose axes 0 0M x′ , 0 0M y′ , 0 0M z′  have direction cosines with respect to the 

axes Ox, Oy, Oz that are α0, 0α ′ , 0α ′′ , β0, 0β ′ , 0β ′′ , γ0, 0γ ′ , 0 γ ′′ , and which are functions of 

the same parameter s0 .  The continuous one-dimensional set of all such trihedra 

0 0 0 0M x y z′ ′ ′  will be what we call a deformable line. 

 Give a displacement M0M to the point M0 . Let x, y, z be the coordinates of the point 
M with respect to the fixed axes Ox, Oy, Oz.  In addition, give a rotation to the trihedron 

0 0 0 0M x y z′ ′ ′  that ultimately takes its axes to those of a trihedron Mx′y′z′ that we attach to 

the point M.  We define that rotation by giving the direction cosines α, α ′, α″, β, β ′, β ″, 
γ, γ ′, γ ″ of the axes Mx′, My′, Mz′ with respect to the fixed axes Ox, Oy, Oz.  The 
continuous one-dimensional set of trihedra Mx′y′z′ will be what we call the deformed 
state of the deformable line considered, which will be called the natural state in its 
original state. 
 Suppose that s0 varies, and that we shall let it play the role of time for the moment.  
We then let ξ0, η0, ζ0 denote the projections of the velocity of the origin M0 of the axes 

0 0M x′ , 0 0M y′ , 0 0M z′  onto those axes, and let p0, q0, r0 be the projections of the 

instantaneous rotational velocity of the trihedron 0 0 0 0M x y z′ ′ ′  onto the same axes.  We let ξ, 

η, ζ and p, q, r be the analogous quantities for the trihedra Mx′y′z′ when one refers them, 
like the trihedron 0 0 0 0M x y z′ ′ ′ , to the fixed trihedron Oxyz.  The elements that we just 

introduced have values that are related as follows: 
 

(1)    

0 0 0

0 0 0

0 0 0

,

,

,

dx dy dz

ds ds ds

dx dy dz

ds ds ds

dx dy dz

ds ds ds

ξ α α α

η β β β

ζ γ γ γ


′ ′′= + +




′ ′′= + +



′ ′′= + +

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(2)    

0 0

0 0

0 0

,

,

.

d d
p

ds ds

d d
q

ds ds

d d
r

ds ds

β γγ β

γ αα γ

α ββ α


= = −




= = −



= = −


∑ ∑

∑ ∑

∑ ∑

 

 
 With these quantities, the linear element ds of the curve that is described by the point 
M is defined by the formula: 
(3)      ds2 = (ξ 2 + η2 + ζ 2) 2

0ds . 

 
 Let x′, y′, z′ be the projections of the line segment OM on the axes Mx′, My′, Mz′, in 
such a way that the coordinates with respect to these axes of the fixed point O will be – x′, 
− y′, −z′.  We will have the following known formulas: 
 

(4)     

0

0

0

0,

0,

0,

dx
qz ry

ds

dy
rx pz

ds

dz
py qx

ds

ξ

η

ζ

 ′ ′ ′− − + =

 ′ ′ ′− − + =

 ′ ′ ′− − + =


 

 
which gives new expressions for ξ, η, ζ. 
 Suppose that we give each of the trihedra of the deformed state an infinitely small 
displacement that can vary with these trihedra in a continuous fashion.  Let δx, δy, δz, δx′, 
δy′, δz′, …, δα, δα ′, …, δγ ″ be the variations of x, y, z, x′, y′, z′, …, α, α ′, …, γ ″, 
respectively.  The variations δα, δα ′, …, δγ ″ are expressed by formulas such as the 
following ones: 
(4)     δα = β δk′ – γ δj′, 
 
by means of three auxiliary functions δi′, δj′, δk′, which are the components along Mx′, 
My′, Mz′ of the well-known instantaneous rotation that is attached to the infinitely small 
displacement in question.  To abbreviate the notation, introduce the projections δ′x, δ′y, 
δ′z of the displacement δx, δy, δz onto Mx′, My′, Mz′.  We will have: 
 

(6)     

,

,

.

x x z j y k

y y x k x i

z z y i x j

δ δ δ δ
δ δ δ δ
δ δ δ δ

′ ′ ′ ′ ′ ′= + −
 ′ ′ ′ ′ ′ ′= + −
 ′ ′ ′ ′ ′ ′= + −

 

 
 Having said that, we have, from (2) and (5): 
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(7)     

0

0

0

,

,

.

d i
p q k r j

ds

d j
q r i p k

ds

d k
r q j r i

ds

δδ δ δ

δδ δ δ

δδ δ δ

 ′ ′ ′= + −

 ′ ′ ′= + −

 ′ ′ ′= + −


 

 
 Similarly, from (4), (6), and (7), we have: 
 

(8)    

0

0

0

,

,

.

d x
k j q z r y

ds

d y
i k r x p z

ds

d z
j i p y q x

ds

δδξ η δ ζ δ δ δ

δδη ζ δ ξ δ δ δ

δδζ ξ δ η δ δ δ

 ′′ ′ ′ ′= − + + −

 ′′ ′ ′ ′= − + + −

 ′′ ′ ′ ′= − + + −


 

 
 
 2.  Euclidian action of deformation on a deformable line.  External force and 
moment.  Effort and moment of deformation at a point of a deformed line. – 
Consider a function W of two infinitely close positions of the trihedron Mx′y′z′ – i.e., a 
function s0 of x, y, z, α, α′, …, γ ″ and their first derivatives with respect to s0 .  We seek 
the form that W must take in order for the integral ∫ W ds0 , when taken over an arbitrary 
portion of the line (M0), to have a zero variation when one subjects the set of all trihedra 
of the deformable line, when taken in its deformed state, to the same arbitrary 
infinitesimal displacement of the Euclidian displacement group.  By definition, it 
amounts to determining W in such a fashion that one has δW = 0, when, on the one hand, 
the origin M of the trihedron Mx′y′z′ is subjected to the following infinitely small 
displacement: 

(9)     
1 2 3

2 3 1

3 1 2

( ) ,

( ) ,

( ) ,

x a z y t

y a x z t

z a y x t

δ ω ω δ
δ ω ω δ
δ ω ω δ

= + −
 = + −
 = + −

 

 
where a1, a2, a3, ω1, ω2, ω3 are arbitrary constants, and δt is an infinitely small quantity 
that is independent of s0 , and when, on the other hand, the trihedron Mx′y′z′ is subjected 
to an infinitely small rotation whose components along the axes Ox, Oy, Oz are ω1δt, 
ω2δt, ω3δt.  In the present case, the variations δξ, δη, δζ, δp, δq, δr of the six expressions 
ξ, η, ζ, p, q, r are zero, since that would result from the well-known theory of the moving 
trihedron.  We thus obtain a solution to the question by taking W to be an arbitrary 
function of s0 and the six expressions ξ, η, ζ, p, q, r.  We thus have the general solution 
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(1).  Indeed, relations (2) permit one to express the first derivatives of the nine cosines α, 
α′, …, γ ″ with respect to s0 in terms of these cosines and p, q, r.  On the other hand, the 
formulas (1) give the nine cosines α, α′, …, γ ″ in terms of ξ, η, ζ, and the first 
derivatives of x, y, z with respect to s0 .  We can therefore finally write: 
 

W = 0
0 0 0

, , , , , , , , , , , ,
dx dy dz

W s x y z p q r
ds ds ds

ξ η ζ
 
 
 

. 

 
 Since the variations δξ, δη, δζ, δp, δq, δr are zero, by virtue of formulas (9), and for 
all a1, a2, a3, ω1, ω2, ω3, we must have: 
 

0 0 0

0 0 0

W W W W dx W dy W dz
x y z

dx dy dzx y z ds ds ds
ds ds ds

δ δ δ δ δ δ∂ ∂ ∂ ∂ ∂ ∂+ + + + +
∂ ∂ ∂ ∂ ∂ ∂

 = 0. 

 

 Replace δx, δy, δz with their values in (9) and 
0

dx

ds
δ , 

0

dy

ds
δ , 

0

dz

ds
δ  with the values 

that one deduces by differentiation.  One then gets the following conditions: 
 

W

x

∂
∂

= 0, 
W

y

∂
∂

 = 0, 
W

z

∂
∂

 = 0, 

 

0 0

0 0

W dz W dy
dy dzds ds
ds ds

∂ ∂−
∂ ∂

 = 0, 

 

0 0

0 0

W dx W dz
dz dxds ds
ds ds

∂ ∂−
∂ ∂

 = 0, 

 

0 0

0 0

W dy W dx
dx dyds ds
ds ds

∂ ∂−
∂ ∂

 = 0. 

 
 The first three show that W is independent of x, y, z .  The last three express the idea 
that W depends upon dx / ds0 , dy / ds0 , dz / ds0 only by the intermediary of the quantity 

                                                
 (1) In the sequel, we suppose that the deformable line is susceptible to all possible deformations, so the 
deformed state can be taken to be absolutely arbitrary.  One can express this by saying that the deformable 
is free. 
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2

0

dx

ds

 
 
 

+ 
2

0

dy

ds

 
 
 

+
2

0

dz

ds

 
 
 

, which, from (3), is equal to ξ 2 + η 2 + ζ 2.  We finally see 

that the desired function W has the remarkable form W(s0, ξ, η, ζ, p, q, r). 

 Just as the value of the integral 0
0

ds
ds

ds∫ , when taken between two points A0 and B0 

of the curve (M0), will determine the length of the arc between the corresponding points A 
and B of the curve (M), similarly, upon associating, in the same spirit, the notion of 
action for the passage from the natural state (M0) to the deformed state (M), we attach the 
function W to the defining elements of the deformable line, and we say that the integral ∫ 
W ds0, when taken between the same points A0 and B0 of (M0), is the action of 
deformation on the deformed line between the points A and B.  We also say that W is the 
density of the action of deformation at a point of the deformed line, when referred to the 
unit of length of the undeformed line. W ds0 / ds will be that density of action at a point 
when referred to the unit of length of the deformed line. 
 Consider an arbitrary variation of the action of deformation between two points A 
and B of the line (M), namely: 
 

0

0
0

B

A
W dsδ ∫  = 

0

0

B

A

W W W W W W
p q r

p q r
δξ δη δζ δ δ δ

ξ η ζ
 ∂ ∂ ∂ ∂ ∂ ∂+ + + + + ∂ ∂ ∂ ∂ ∂ ∂ 

∫  ds0 . 

 
 By virtue of formulas (7) and (8) of no. 1, and upon integrating by parts the terms that 
refer to a derivative with respect to s0 explicitly, we can write: 
 

0

0
0

B

A
W dsδ ∫ = [ ] 0

0

B

A
F x G y H z I i J j K kδ δ δ δ δ δ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + + + +  

− 
0

0
0 0 0 0 0 0 0( )

B

A
X x Y y Z z L i M j N k dsδ δ δ δ δ δ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + + + +∫ , 

 
where we have set: 
 

(16) 
0 0

0 0

0 0
0 0

0 0
0

, , , , , ,

, ,

, ,

,

W W W W W W
F G H I J K

p q r

d W W W d W W W W W
X q r L q r

ds ds p r q

d W W W d W W W W W
Y r p M r p

ds ds q p r

d W W W
Z p q N

ds

ξ η ζ

η ζ
ξ ζ η ζ η

ζ ξ
η ξ ζ ξ ζ

ζ η ξ

∂ ∂ ∂ ∂ ∂ ∂′ ′ ′ ′ ′ ′= = = = = =
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂′ ′= + − = + − + −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂′ ′= + − = + − + −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂′ ′= + −
∂ ∂ ∂ 0

.
d W W W W W

p q
ds r q p

ξ η
η ξ










 ∂ ∂ ∂ ∂ ∂ = + − + −
 ∂ ∂ ∂ ∂ ∂

 

 

 If we first consider the integral that appears in the expression for 
0

0
0

B

A
W dsδ ∫  then we 

can call the line segments that issue from M whose projections onto the axes Mx′, My′, 
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Mz′ are 0X ′ , 0Y′ , 0Z′ , and 0L′ , 0M ′ , 0N′ , respectively, the external force and external 

moment at the point M, when referred to the undeformed unit of length, resp.  If we then 

consider the partially-integrated part of 
0

0
0

B

A
W dsδ ∫  then we can call the line segments 

that issue from B whose projections onto the axes Mx′, My′, Mz′ are the values that the 
expressions – F ′, − G ′, − H ′, and – I ′, − J ′, − K ′, respectively, take at the point B0 the 
external effort and external moment of deformation at the point B, resp.  We call the 
analogous line segments that are composed of the values that the expressions + F ′, + G ′, 
+ H ′, and + I ′, + J′, + K′ take at the point A0 the external effort and external moment of 
deformation at the point A, resp.  The points A and B do not present themselves in the 
same fashion here, because we agreed to define the arc s0 in the sense of A0B0 . 
 Suppose that one cuts the deformed line AB at the point M and then one mentally 
separates the two parts AM and MB.  One can regard the two line segments (– F ′, − G ′, 
−H ′) and (– I ′, − J ′, − K ′) that are determined for the point M as the external effort and 
moment of deformation of the part AM at the point M and regard the two line segments 
(+F ′, + G ′, + H ′) and (+ I ′, + J ′, + K ′) that are determined for the same point M as the 
external effort and moment of the part MB at the point M.  It will be the same thing if, 
instead of considering AM and MB, one imagines two portions of the deformable line that 
belong to AM and MB, respectively, and have one extremity at M.  By reason of these 
remarks, we say that – F ′, − G ′, − H ′, and – I ′, − J ′, − K ′ are the components along the 
axes Mx′, My′, Mz′ of the effort and moment of deformation at the point M that are 
exerted upon AM and any portion of AM that is bounded by M, and that + F ′, + G ′, + H 
′, and + I ′, + J′, + K′ are the components along the axes Mx′, My′, Mz′ of the effort and 
moment of deformation at the point M that are exerted upon MB and any portion of MB 
that is bounded by M. 
 
 
 2.  Equations of Lord Kelvin and Tait.  Varignon’s theorem.  Notions of energy 
of deformation and the natural state of the deformable line. – The various elements 
that were introduced in the preceding section are coupled by the following relations, 
which result immediately from comparing the formulas that serve as their definition: 
 

(11) 

0 0
0 0

0 0
0 0

0 0
0 0

0, 0,

0, 0,

0, 0.

dF dI
qH rG X qK rJ H G L

ds ds

dG dJ
rF pH Y rI pK F H M

ds ds

dH dK
pG qF Z pJ qI G F N

ds ds

η ζ

ζ ξ

ξ η

 ′ ′′ ′ ′ ′ ′ ′ ′ ′+ − − = + − + − − =

 ′ ′′ ′ ′ ′ ′ ′ ′ ′+ − − = + − + − − =

 ′ ′′ ′ ′ ′ ′ ′ ′ ′+ − − = + − + − − =


 

 
 One can propose to transform the relations that we just wrote independently of the 
values of the quantities that appear in them that are calculated by using W.  Indeed, 
instead of defining the line segments that we have attached to the point M by their 
projections onto Mx′, My′, Mz′, we can just as well define them by their projections onto 
other axes. 
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 First, consider the fixed axes Ox, Oy, Oz.  Let X0, Y0, Z0 and L0, M0, N0 denote the 
projections onto these axes of the external force and moment at an arbitrary point M of 
the deformed line, and let F, G, H and I, J, K denote the projections of the effort and 
moment of deformation, whose projections onto the axes Mx′, My′, Mz′ are F′, G′, H′ and 
I′, J′, K′, resp.  We can regard the external force and moment as distributed in a 
continuous manner along the line and referred to the unit of length of the undeformed 
line.  In order to have the external force and moment referred to the unit of length of the 
deformed line, it suffices to multiply 0X ′ , 0Y′ , 0Z′ , 0L′ , 0M ′ , 0N′  or X0, Y0, Z0, L0, M0, N0 

by ds0 / ds, where ds is the linear element of the deformed line that corresponds to the 
linear element of the undeformed line.  Introduce the projections X, Y, Z, L, M, N onto the 
fixed axes Ox, Oy, Oz of the external force and moment, thus referred to the unit of 
length of the deformed line.  We will then have the relations: 
 

(12)   

0, 0,

0, 0,

0, 0,

dF dI dy dz
X H G L

ds ds ds ds
dG dJ dz dx

Y F H M
ds ds ds ds

dH dK dx dy
Z G F N

ds ds ds ds

 − = + − − =

 − = + − − =

 − = + − − =


 

 
which are identical to the ones that were considered by Lord Kelvin and Tait.  However, 
the latter are obtained by applying what one calls in classical mechanics the principle of 
solidification, and by starting with the a priori notion of forces and couples, which are 
then expressed as functions of the deformation a posteriori and by virtue of the 
hypotheses.  Moreover, Lord Kelvin and Tait have imagined only an infinitely small 
deformation, whereas we have presently placed ourselves in the general case. 
 Now, let there be a tri-rectangular trihedron 1 1 1M x y z′ ′ ′  that moves with M, and whose 

axis 1Mx′  is subjected to being directed along the tangent to the curve (M) and pointing in 

the sense of increasing arc length.  Let l, l′, l″ denote the direction cosines of 1Mx′  relative 

to the trihedron Mx′y′z′, let m, m′, m″ denote those of 1My′ , and let n, n′, n″ denote those 

of 1Mz′ .  Upon setting ε = 2 2 2ξ η ζ+ + , we will have l = ξ / ε, l′ = η / ε, l″ = ζ / ε.  

Moreover, mξ + m′η + m″ζ = 0, nξ + n′η + n″ζ = 0.  If the trihedron 1 1 1M x y z′ ′ ′  is referred 

to the fixed trihedron Oxyz, and s0 plays the role of time then the projections p1, q1, r1 of 
the instantaneous rotation of the trihedron 1 1 1M x y z′ ′ ′  into the axes 1Mx′ , 1My′ , 1Mz′  will be 

given by formulas such as the following ones: 
 

p1 = lp + l′q + l″r + 
0

dm
n

ds
∑ . 

 
 On the other hand, let 1X ′ , 1Y′ , 1Z′ , 1L′ , 1M ′ , 1N′  denote the projections onto 

1Mx′ , 1My′ , 1Mz′  of the external force and moment at an arbitrary point M of the deformed 
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line, when referred to the unit of length of the undeformed line, and let 1F ′ , 1G′ , 1H ′ , 1I ′ , 

1J′ , 1K ′  denote the projections of the effort and moment of deformation.  The transforms 

of equations (11) are obviously: 
 

(13) 

1 1
1 1 1 1 1 1 1 1 1 1

0 0

1 1
1 1 1 1 1 1 1 1 1 1 1

0 0

1 1
1 1 1 1 1 1 1 1 1 1 1

0 0

0, 0,

0, 0,

0, 0.

dF dI
q H rG X q K r J L

ds ds

dG dJ
r F p H Y r I p K H M

ds ds

dH dK
p G q F Z p J q I G N

ds ds

ε

ε

 ′ ′′ ′ ′ ′ ′ ′+ − − = + − − =

 ′ ′′ ′ ′ ′ ′ ′ ′+ − − = + − − − =

 ′ ′′ ′ ′ ′ ′ ′ ′+ − − = + − + − =


 

 
 If one has 1L′  = 0 and q1 = 0 in the fourth equation of (13) then one gets: 

 

1
1 1

0

dI
r J

ds

′ ′−  = 0, 

 
which implies the proposition that was established by Poisson that for 1L′  = 0, 1M ′ = 0, 

1N′  = 0, q1 = 0 if 1J′  = 0 then one will have that 1I ′  = const. 

 Among the theorems that one can deduce from the systems (11) and (12), we insist 
upon the following fundamental proposition of statics, whose main idea, but not its 
present form, is due to Varignon, and which one encounters again on the interpretation 
that Saint-Guilhem gave for the relations that couple the external forces and quantities of 
motion in dynamics.  Assign the effort and moment of deformation at a point M of the 
line (M) to the resultant and resultant moment of a system of vectors that relate to the 
point M.  Let Pν¸ Pσ be the general resultant and resultant moment that relate to a point P 
in space.  Likewise, assign the external force and moment at a point M1 , when referred to 
the unit of length of (M), to the resultant and resultant moment of a system of vectors that 
relate to the point M.  Let PN and PS be the resultant and resultant moment that relate to a 
point P of space.  One has the proposition: If the arc length s is regarded as time then the 
velocities of the geometric points ν and σ are equal and parallel to the segments PN and 
PS.  This proposition is obviously a translation of equations (12).  We can further arrive 
at it in the following manner: We give the name of exterior work done on the deformed 
line AB under an arbitrary virtual deformation to the equivalent expressions: 
 

 δTe = − [ ]B

A
F x G y H z I i J j K kδ δ δ δ δ δ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + + + +  

 + ( )X x Y y Z z L i M j N k dsδ δ δ δ δ δ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + + + +∫  

 

 = − [ ]B

A
F x G y H z I i J j K kδ δ δ δ δ δ+ + + + +  

  + ( )X x Y y Z z L i M j N k dsδ δ δ δ δ δ+ + + + +∫ , 
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where δi, δj, δk are the projections onto the fixed axes of the line segment whose 
projections onto Mx′, My′, Mz′ are δi′, δj′, δk′, resp.  We thus have: 
 

0

M

A
W dsδ∫  = − δTe , 

 
where δTe is taken between A and M.  Since δW must be identically zero, by virtue of the 

invariance of W under the group of Euclidian displacements, when the variations δx, δy, 
δz are given by formulas (9) and when δi = ω1 δt, δj = ω2 δt, δk = ω3 δt, and this must be 
true for any values of the constants a1, a2, a3, ω1, ω2, ω3, we conclude that we must have: 
 

[ ] MM

A A
F X ds− ∫  = 0, [ ] MM

A A
G Y ds− ∫  = 0, [ ] MM

A A
H Z ds− ∫  = 0, 

 

[ ] ( )
MM

A A
I yH zG L yZ zY ds+ − − + −∫  = 0, 

 
and two analogous formulas.  In these relations, one can regard M as variable, and they 
are thus equivalent to equations (12).  One remarks that these formulas are deduced easily 
from the ones that one ordinarily writes by means of the principle of solidification. 

 Imagine two states (M0) and (M) of a deformable line, and consider an arbitrary 
sequence of states that begin with (M0) and arrive at (M).  To that effect, it suffices to 
consider functions x, y, z, α, α′, …, γ″ of s0 and a variable h that reduce to x0, y0, z0, α0, 

0α ′ , …, 0γ ′′ , respectively, when h has the value zero, and reduce to values x, y, z, α, α′, 
…, γ″ that relate to (M) when h equals h.  Upon making the parameter h vary from 0 to h 
in a continuous fashion, we obtain a continuous deformation that permits us to pass from 
the state (M0) to the state (M).  During this continuous deformation, the total work that is 
performed by the external forces and moments that are applied to the various elements of 
the line and by the efforts and moments of deformation that are applied to its extremities 
is obtained by integrating from 0 to h the differential that is obtained by replacing the 
variations of x, y, z, α, α′, …, γ″ in δTe with the partial differentials that correspond to the 

increase dh in h: 
 

 − 0

0
00

h B

A

W
ds dh

h

∂ 
 ∂ 

∫ ∫  

 = − 
0

0

B

A∫ [W(s0, ξ, η, ζ, p, q, r) – W(s0, ξ0, η0, ζ0, p0, q0, r0)] ds0 . 

The work considered is independent of the intermediate states and depends upon only the 
extreme states (M0) and (M).  This leads us to introduce the notion of the energy of 
deformation, which must be distinguished from that of the action that was previously 
envisioned.  We say that – W is the density of the energy of deformation. 
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 The natural state that we just considered was the initial state of a sequence of 
deformed states.  The external force and the analogous elements that relate to them are 
not necessarily zero.  It is important to remark that, in addition, they are not essentially 
distinguished from the other states and that one make an arbitrary deformed state play the 
role of natural state.  Let (M(0)) be that state, where we denote the arc length by s(0) .  
Moreover, upon letting ξ(0), η(0), ζ(0), p(0), q(0), r(0) represent what ξ, η, ζ, p, q, r, resp., 
become when one lets s(0) play the role that is played by s0 − in such a way that one has, 
for example, ξ = ξ(0) ds(0) / ds0 − it will suffice for us to consider the function: 
 

W(0)(s0, ξ(0), η(0), ζ(0), p(0), q(0), r(0)), 
 
which is the expression for: 
 

(0) (0) (0)(0) (0) (0) 0
0

0 0 0 (0)

, , , ,
ds ds ds ds

W s r
ds ds ds ds

ξ η
 
 
 

… , 

 

in which s0, 0

(0)

ds

ds
, (0)

0

ds

ds
 are replaced as functions of s(0) .  Instead of making the notion of 

the natural state correspond simply to the idea of a particular state, we can therefore, and 
in a more general fashion, make it correspond to the idea of an arbitrary state that we start 
with in order to study the deformation. 
 
 
 4.  Normal form for the equations of the deformable line.  Castigliano’s principle 
of minimum work.  – We can consider equations (10) of no. 2 to be differential equations 
that relate to the unknowns x, y, z and three parameters λ1, λ2, λ3, by means of which, one 
expresses α, α′, …, γ″.  Assume that X0, Y0, Z0, L0, M0, N0 are given functions of s0, x, y, 
z, λ1, λ2, λ3 .  The expression W will be, as far as it is concerned, a well-defined function 

of s0, 
0

dx

ds
,

0

dy

ds
,

0

dz

ds
, λ1, λ2, λ3, 1

0

d

ds

λ
, 2

0

d

ds

λ
, 3

0

d

ds

λ
, and from the relation: 

 

(14)     
0

0

B

A
Wδ ∫ ds0 + δTe = 0 , 

 
we can replace the system (10) with the equivalent equations: 
 

(15) 

0 0 0
0 0 0

0 0 0

0 0 0
1 2 30 1 0 2 0 3

0 0 0

0, 0, 0,

0, 0, 0,

d W d W d W
X Y Z

dx dy dzds ds ds
ds ds ds

d W W d W W d W W
d d dds ds ds
ds ds ds

λ λ λλ λ λ

∂ ∂ ∂ − = − = − =
∂ ∂ ∂


 ∂ ∂ ∂ ∂ ∂ ∂ − − = − − = − − =
 ∂ ∂ ∂∂ ∂ ∂


L M N
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in which L0, M0, N0 denote expressions that have the same nature as L0, M0, N0, and 

which are known at the same time as them. 
 Introduce the auxiliary variables: 
 

(15′)   0 0 0

1 2 3

0 0 0

, , ,

, , .

W W W
F G H

dx dy dz

ds ds ds

W W W
d d d

ds ds ds

λ λ λ

∂ ∂ ∂ = = =
∂ ∂ ∂


 ∂ ∂ ∂ = = =
 ∂ ∂ ∂


I J K

 

 
 From these six relations, if we suppose that the Hessian of W with respect to 

0

dx

ds
,

0

dy

ds
,

0

dz

ds
, 1

0

d

ds

λ
, 2

0

d

ds

λ
, 3

0

d

ds

λ
is non-zero then we can infer some values for these latter 

six derivatives as functions of F, G, H, I, J, K.  Transport these values into the 

expression: 

E = 
0 0 0 0

0 0 0 0

i

i

ddx W dy W dz W W
dx dy dz dds ds ds ds
ds ds ds ds

λ
λ

∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂

∑  − W. 

 
 After substitution, we obtain a function of s0, λ1, λ2, λ3, F, G, H, I, J, K that we 

continue to denote by the letter E.  Now, the total differential of the latter function is 

obviously: 
 

0 0 0

dx dy dz
dF dG dH

ds ds ds
+ + + 31 2

0
0 0 0 0

i
i

dd d W dW
d d d ds d

ds ds ds s d

λλ λ λ
λ

∂+ + − −
∂ ∑I J K , 

 
and one has, in turn, the following form for the system that defines x, y, z, λ1, λ2, λ3, F, G, 
H, I, J, K: 

 

0

dx

ds
 = 

F

∂
∂
E

, 
0

dy

ds
 = 

G

∂
∂
E

, 
0

dz

ds
 = 

H

∂
∂
E

, 1

0

d

ds

λ
 = 

∂
∂
E

I
, 2

0

d

ds

λ
 = 

∂
∂
E

J
, 3

0

d

ds

λ
 = 

∂
∂
E

K
, 

 

0

dF

ds
 − X0 = 0,  

0

dG

ds
 − Y0 = 0,  

0

dH

ds
 − Z0 = 0, 

 

0

d

ds

I
+

1λ
∂
∂
E − L0 = 0,  

0

d

ds

J
+

2λ
∂
∂
E − M0 = 0,  

0

d

ds

K
+

3λ
∂
∂
E − N0 = 0. 
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 We have supposed that we can express X0, Y0, Z0, L0, M0, N0 as functions of s0, x, y, 

z, λ1, λ2, λ3  by virtue of the formulas that define x, y, z, λ1, λ2, λ3 as functions of s0 .  This 
is possible in an infinitude of manners, and one can always choose the new forms for X0, 
Y0, Z0, L0, M0, N0 in such a fashion that they are the partial derivatives (with the sign 

changed) 
x

∂
∂
O

,
y

∂
∂
O

,
z

∂
∂
O

,
1λ

∂
∂
O

,
2λ

∂
∂
O

,
3λ

∂
∂
O

, respectively, of the same function O, and are 

either independent of s0 or not.  Suppose that this is true, and let Q denote the function of 

x, y, z, λ1, λ2, λ3 (and possibly s0) that is defined by the formula Q = E + O.  The 

preceding system then takes the form: 
 

0

dx

ds
 = 

F

∂
∂
Q

, 
0

dy

ds
 = 

G

∂
∂
Q

, 
0

dz

ds
 = 

H

∂
∂
Q

, 

1

0

d

ds

λ
 = 

∂
∂
Q

I
, 2

0

d

ds

λ
 = 

∂
∂
Q

J
, 3

0

d

ds

λ
 = 

∂
∂
Q

K
, 

 

0

dF

ds
 = −

x

∂
∂
Q

, 
0

dG

ds
 = −

y

∂
∂
Q

, 
0

dH

ds
 = −

z

∂
∂
Q

, 

0

d

ds

I
 = −

1λ
∂
∂
Q

, 
0

d

ds

J
 = −

2λ
∂
∂
Q

, 
0

d

ds

K
 = −

3λ
∂
∂
Q

. 

 
 Here, we have equations that are presented in the form of Hamilton’s equations of 
dynamics.  If we suppose, in particular, that the new forms for X0, Y0, Z0, L0, M0, N0 are 

chosen in such a fashion (and this is always possible) that s0 does not appear and that they 
are the partial derivatives of a function O of x, y, z, λ1, λ2, λ3 , and if, in addition, we 

suppose that W(s0, ξ, η, ζ, p, q, r) does not depend upon s0 then we will have, more 
particularly, a system of canonical equations. 
 Equations (14), in the case where the external forces and moments are zero, 
corresponds to Castigliano’s principle of minimum work, which was already considered 
by Vène, Courant, Menabres, and others.  The normal form for the equations of the 
deformable line likewise leads to what one calls the Castigliano theorems.  Indeed, one 
has, for example: 

xB – xA = 
0

0
0

B

A
ds

F

∂
∂∫
E

,  FB – FA = 
0

0
0 0

B

A
X ds∫ . 

 
If one supposes that X0 = Y0 = Z0 = 0 then the effort F, G, H is independent of s0 , and one 
can write: 

xB – xA = 
0

0
0

B

A
ds

F

∂
∂ ∫ E , 

along with analogous formulas. 
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 5.  Notions of hidden trihedron and hidden action.  The flexible and inextensible 
line of Lagrange.  The flexible and inextensible line of classical mechanics. – In the 
study of the deformable line, it is natural to devote special attention to the curve that is 
traced out by the summit of the trihedron and to consider α, α′, …, γ ″ to be auxiliary 
functions.  One is then led to introduce the notion of hidden trihedron, and to make a 
classification of the various circumstances that can present themselves in the elimination 
of α, α′, …, γ ″.  One can also abstract from the deformation that permits one to pass 
from the state (M0) to the state (M); one often adopts the latter viewpoint in classical 
mechanics.  Finally, one can make some particular hypotheses on the trihedron that is 
attached to the point M, and similarly, on the curve (M).  This amounts to imagining 
some particular deformations of a deformable line that is entirely free.  If the relations 
that one imposes are true between simply ξ, η, ζ, p, q, r then one can account for them in 
the calculation of W and deduce some more particular functions from W.  The question 
that is then posed will be that of the direct introduction of the particular forms and the 
consideration of the general action that serves as the point of departure as being, in some 
way, hidden.  We shall show that one can therefore summarize the equations that have 
been studied up to now by way of some particular cases, since they arise from the same 
origin. 
 First suppose that W depends upon only s0, ξ, η, ζ.  Equations (15) then reduce to the 
following ones: 

 
0

0

d W
dxds
ds

∂

∂
 − X0 = 0, 

0

0

d W
dyds
ds

∂

∂
 − Y0 = 0, 

0

0

d W
dzds
ds

∂

∂
 − Z0 = 0, 

 

 
1

W

λ
∂
∂

+ L0  = 0, 
2

W

λ
∂
∂

+ M0  = 0, 
3

W

λ
∂
∂

+ N0 = 0. 

 

 Imagine the case where the functions L0, M0, N0 are zero.  The equations 
1

W

λ
∂
∂

= 0, 

2

W

λ
∂
∂

= 0, 
3

W

λ
∂
∂

= 0 then amount to: 

F
dx

ds

 = 
G
dy

ds

= 
H
dz

ds

, 

 
and upon denoting the common value of these ratios by – T, the result of eliminating λ1, 
λ2, λ3 can be written: 
 

(16)  
d dx

T
ds ds
 
 
 

 + X = 0, 
d dy

T
ds ds
 
 
 

 + Y = 0, 
d dz

T
ds ds
 
 
 

 + Z = 0 

 
with respect to the deformed line.  The effort now reduces to an effort of tension T.  Let 
the two states of the line, (M0) and (M), be given.  When the functions L0, M0, N0 are 
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zero, this result can present itself accidentally; however, it can also happen that it presents 
itself for any deformed line (M) and as a consequence of the form of W.  The function W 
then depends simply upon s0 and ξ 2 + η2 + ζ 2, or − what amounts to the same thing – 
upon s0 and µ = ds / ds0 – 1 (where m represents the linear dilatation at the point M), and 
one has T = − ∂W / ∂µ .  If we consider the particular case in which s0 does not appear 
explicitly then we arrive in this manner at Lagrange’s theory of the flexible filament that 
is, at the same time, extensible and contractible, which was then taken up again by Lamé 
and Duhem.  At no point do we have to appeal – even indirectly – to the notion of 
dynamical force, which was introduced into mechanics by Lagrange only because of a 
remark of J. Bertrand.  We have argued on the basis of the static force that is measured by 
means of the deformation. 
 How can we conceive of the flexible and inextensible filament while maintaining the 
same viewpoint?  It will suffice for us to follow the path that is usually adopted, but in 
the opposite sense.  We impose the condition upon the general deformable line of no. 2 
that an arbitrary portion of (M) must have the same length as the corresponding portion 
of (M0), which amounts to saying that one subjects x, y, z to the condition that ds = ds0 .  
Instead of considering an arbitrary deformation (M) of the natural state (M0), we direct 
our attention to the deformed (M) for which one has ds = ds0 .  We use the formulas of no. 
2 as the definition of force, and apply them to the positions of the deformable line that 
coincide with those of the given inextensible line.  In particular, if we imagine the 
flexible and inextensible line then we can define the force X, Y, Z by the system (16), 

where T represents the function of s that is defined by the formula T = − 
0

W

µµ =

 ∂
 ∂ 

.  In 

order to obtain a determinate problem, it will not be necessary, moreover, to suppose that 
the function T is known; it will suffice to adjoin some convenient conditions at the 
extremities to the system (16). 
 We shall not insist upon the case in which L0, M0, N0 are non-zero.  It corresponds 

to the case that was imagined by Darboux in which the line is subject to an external 
moment that is analogous to a magnetic moment. 
 
 
 6.  Deformable line where the axis Mx′ is tangent to (M) at M.  Deformable line of 
Lord Kelvin and Tait.  Equations of Binet and Wantzel. – Consider just the 
deformations (M) of the general deformable line for which the axis Mx′ is tangent to the 
curve (M) at each point, and also suppose that 0 0M x′  is tangent to (M0) at M0, so that 

these deformations will define a continuous sequence that starts at (M0).  This amounts to 

the conditions α0 = 0dx

ds
, 0α ′  = 0dy

ds
, 0α ′′ = 0dz

ds
; α = 

dx

ds
, α′ = 

dy

ds
, α″ = 

dz

ds
, where or η0 

= η = 0, ζ0 = ζ = 0.  The fact that we have limited the study of deformations of (M0) to 
those deformed (M) that verify the latter conditions and the fact that we have admitted the 
new concept of a line that is susceptible to only the deformations in question can be 
regarded as identical here.  This conforms absolutely to the principle of solidification that 
is introduced by classical authors in the opposite order to the one that we followed. 
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 Let β1, 1β ′ , 1β ′′  be the direction cosines of the principal normal to the curve (M) at M 

with respect to the fixed axes Ox, Oy, Oz, resp., let γ1, 1γ ′ , 1γ ′′  those of the binormal, and 

let ω be the angle that the axis My′ makes with the principal normal.  One gets the 
formulas: 

0ds
p

ds
 = 

1 d

ds

ω
τ

− , 0ds
q

ds
 = − sinω

ρ
, 0ds

r
ds

 = 
cosω

ρ
, 

 

upon setting 
1

ρ
= 1

d

ds

αβ∑ , 
1

τ
= 1

1

d

ds

βγ∑ , and recalling that 1d

ds

γα∑  = 0.  The 

expressions 1 / ρ and 1 / τ are equal in absolute value to the curvature and torsion 
(cambrure to Barré de Saint-Venant, tortuosity to Lord Kelvin and Tait) at M. 
 When one takes into account the conditions that are imposed upon the deformed (M), 
one can imagine that the action W is partially hidden and defined simply by the 
knowledge of W(s0, ξ, η, ζ, p, q, r).  Upon setting ξ = ds / ds0 = 1 + µ, F, G, H become 
three auxiliary variables, in regard to which one knows only that one has: 
 

dx dy dz
F G H

ds ds ds
+ +  = 

W

µ
∂
∂

= − T. 

 
 One can propose to eliminate them from the system (12), and one then has the four 
equations: 

(17)  

0,

0,

0,

d dx dK dy dJ dz
T N M X

ds ds ds ds ds ds

d dy dI dz dK dz
T L N Y

ds ds ds ds ds ds

d dz dJ dx dI dy
T M L Z

ds ds ds ds ds ds

dI dx dJ dy dK
L M

ds ds ds ds ds

    − + − − − − =    
    

    − + − − − − =    
    

    − + − − − − =    
    

   − + − +   
   

0,
dz

N
ds











  − = 

 

 

 
in which one has replaced I, J, K, T with their values as functions of the direction cosines 
of the axes of the trihedron Mx′y′z′ and the derivatives of the partially-hidden action W 
with respect to p, q, r, µ .  If s does not figure explicitly in the givens then one can appeal 

to the relation  
2 2 2

dx dy dz

ds ds ds
     + +     
     

= 1 in order to eliminate ds, and the relations (17) 

will provide four differential equations that define x, y, z, ω as functions of s0 . 
 It is remarkable that the system (17) can be converted into a form that one can deduce 
from the calculus of variations.  We shall not develop the calculations that lead to that 
reduction here, but we shall give only the result.  Here, the expression W(s0, 1 + µ, 0, 0, p, 
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q, r) depends upon s0, in addition, by the intermediary of µ, p, q, r, the arguments ω, 
0

d

ds

ω
, 

and the derivatives of the first three orders of x, y, z with respect to s0 .  One arrives at a 
system that can be summarized in the equation: 
 

(18)   
0

0
0 0 0 0 0( )

s

s
W x y z L dsδ δ δ δ δω

′
′+ + + −∫ X Y Z = 0 

upon setting: 

X0 = X0 + 

2

1 22
0 01

0 02 22
0 0 0

0 0

( )

d s

ds dsd d d
L L N M

ds ds ds dsds ds

ds ds

γ ρ
γ ρ α α

   
   

    ′ ′ ′ ′′+ + −            
            

, 

 

with two analogous formulas, and upon writing 0L′  = 0 0 0

dx dy dz
L M N

ds ds ds
+ + , conforming 

to our earlier notations. 
 The preceding considerations are attached to the deformable line that was studied by 
Lord Kelvin and Tait, which one can deduce from the preceding or imagine directly.  It 
will suffice to add the following condition µ = 0 – i.e., ξ = 1 − to the ones that were 
considered.  Equation (18) is presently true, by virtue of the fact that  

2 2 2
dx dy dz

ds ds ds
     + +     
     

= 1, and one has, more simply: 

 

X0 = X0 + 
2

1 0 0 02
0 0

( ) ( )
d d

L N M
ds ds

γ ρ α α′ ′ ′′+ − , 

 
with two analogous formulas. 
 Instead of employing equations (17), it can be more convenient to return to the 
starting equations.  For example, suppose that X0, Y0, Z0 are zero.  One concludes from 
this that F, G, H are constants that are equal to the values 

0AF , 
0AG ,

0AH  at one of the 

extremities A0 , and one then has the three equations: 
 

0 0 0
0 0 0

A A

dI dy dz
H G L

ds ds ds
+ − −  = 0, 

0 0 0
0 0 0

A A

dJ dz dx
F H N

ds ds ds
+ − −  = 0, 

0 0 0
0 0 0

A A

dK dx dy
G F N

ds ds ds
+ − −  = 0, 

 
which are the original equations, and which presently result from the elimination of T 
from the system (17).  If one has L0, M0, N0 equal to zero, in addition – i.e., if the 



E. and F. COSSERAT – Note on the theory of Euclidian action.                      19 

deformed (M) is subject to only forces that are applied to the extremities – then one will 
have: 

(19)    
0 0

0 0

0 0

const.,

const.,

const.

A A

A A

A A

I H y G z

J F y H z

K G y F z

 + − =
 + − =
 + − =

 

 
 Having made these remarks, consider the case in which the function W of s0, p, q, r is 
of the form 12  A(q2 + r2) + Bp + C, where A, B, C are constants.  One will have I′ = B, J′ = 

Aq, K′ = Ar.  The vector (I′, J′, K′) or (I, J, K) is the resultant of a constant vector that is 
equal to B and directed along the tangent Mx′ and a vector that is directed along the 
binormal that has the same absolute value as A / ρ.  The three equations (19) are, up to 
notations, identical to the equations: 
 

 
2 2

2

dy d z dz d y

ds
ϖ −

 = 
dx

ds
θ  + cy – bz + a1 , 

 
2 2

2

dz d x dx d z

ds
ϖ −

 = 
dy

ds
θ  + az – cx + a2 , 

 
2 2

2

dx d y dy d x

ds
ϖ −

 = 
dz

ds
θ  + bx – ay + a3 , 

 
that were considered by Binet, Wantzel, and Hermite, and in which ϖ, θ, a, b, c, a1, a2, a3 
are constants.  Lagrange has considered the case in which θ = 0, and J. Bertrand has 
treated the one in which the three equations: 
 

cy – bz + a1 = 0, az – cx + a2  = 0, bx – ay + a3 = 0 
 

represent a line – i.e., the case in which the couple 
0 0 0

( , , )A A AI J K  and the effort 

0 0 0
( , , )A A AF G H  have a unique resultant. 

 One can present the foregoing as follows: If the effort of deformation of the line 
considered at the beginning of this section is perpendicular to the principal normal then 

one will have 
W W

r q
q r

∂ ∂−
∂ ∂

= 0.  If one supposes that this condition results from the 

nature of the line then W must depend upon q and r only by the intermediary of q2 + r2.  
If we suppose that this condition is verified then, from the remark of Poisson that was 
mentioned in no. 3, them the equations of the problem will imply that I′ = const.  If we 
suppose that this condition results from the nature of the line then this will amount to the 
condition that: 

W

p

∂
∂

= B, 

B being a constant, and we will find that: 
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W = Bp + ϕ, 
 
in which ϕ is a function of q2 + r2 = 1 / ρ2.  Upon supposing that ϕ is of first degree with 
respect to q2 + r2, we recover the action that was envisioned above. 
 
 
 7.  Deformable line for which the plane Mx′y′ osculates (M) at M.  Lagrange’s 
line, as generalized by Binet and studied by Poisson. – Instead of simply supposing 
that Mx′ is the tangent to the curve (M), we can imagine the case in which the plane Mx′y′ 
is the osculating plane to that curve.  We then have the relations η0 = η = 0, ζ0 = ζ = 0, q0 
= q = 0, to which, in order to simplify the question, we append the inextensibility 
condition µ = 0, or ξ = 1.  We continue to let W denote the partially-hidden action: 
 

W(s0, 1, 0, 0, p, 0, r) 
 
and suppose that this single function is known.  The quantities F′, G′, H′ become four 
auxiliary functions, and we have simply the relations I′ = ∂W / ∂p, J′ = ∂W / ∂r.  The three 

equations (11) of the line give, in particular, 
0

dI

ds

′
− rJ′ = 0 when the given functions 0L′ , 

0M ′ , 0N′  are zero.  If the function W does not depend upon p then we will have I′ = 0, and 

in turn, J′ = 0, if we suppose that r ≠ 0.  Therefore, in the present case the moment of 
deformation is directed along the binormal of the curve (M).  In this manner, we have a 
line such as the one that Lagrange considered.  The result that was obtained on the 
moment of deformation and equations (12) for the line permit us to set: 
 

F = λ dx

ds
− d(I d2x), G = λ dy

ds
− d(I d2y), H = λ dz

ds
− d(I d2z). 

 
If we substitute these in the left-hand side of equations (12) then we will have the same 
equations as Lagrange: 

 X ds − d dx

ds

λ + d2(I d2x) = 0, 

 Y ds − d dy

ds

λ + d2(I d2y) = 0, 

 Z ds − d dz

ds

λ + d2(I d2z) = 0. 

 
 For this type of deformable line, the moment of deformation is normal to the 
osculating plane.  Binet proposed to consider the case in which the moment of 
deformation is simply perpendicular to the principal normal.  The hypothesis J′ = 0 

implies that 
0

dI

ds

′
 = 0, and if we assume that this result depends upon the specialization of 

W then we will have, as a consequence, that W = ϕ(s0, r) + mp, in which m is a constant.  
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Upon supposing, in particular, that ∂ϕ / ∂r reduces to an expression of the form n (r – r0), 
where n is a constant, one has, by replacing r0 as a function of s0, the hypothesis that was 
made explicitly by Binet and then developed by Poisson.  If, in addition, the curve (M0) is 
a straight line and if X, Y, Z are zero, in such a way that changing (M0) into (M) comes 
about solely from the efforts and moments of deformation that are applied to the 
extremities, then one will recover the problem of Binet and Wantzel that we were 
occupied with in the preceding section.  Upon supposing that m = 0, one falls back upon 
the Lagrange case above. 
 
 
 8.  Deformable line that is subject to constraints.  Canonical equations. – In all of 
the foregoing, we have considered a deformable line that we qualified with the word free; 
i.e., the theory was developed without making external elements intervene and by means 
of a function W that was composed of the proper elements of the line in its natural state 
and deformed state. 
 By directing our attention to certain deformations, using the notion of a hidden W, we 
have recovered the equations that were proposed for various lines by the authors. 
 One can replace that exposition with another one in which one envisions a line that is 
deformable sui generis, for which the definition already takes into account some well-
defined conditions that are verified by the particular deformations that we studied 
previously. 
 First, observe that the conditions that are imposed upon the functions x, y, z, α, α′, …, 
γ″ can be of two kinds: 
 1. Conditions between these functions and their derivatives, where s0 is arbitrary. 
 2. Conditions that are verified for certain values of s0 . 
 

 If we limit ourselves to conditions of the first kind and if, to fix ideas, f1 = 0, f2 = 0 are 
two conditions or constraint equations then we will agree that the identity of no. 2 that 
introduces the definitions of the forces and efforts must presently be true by virtue of the 
two constraint equations, or we further envision a deformable line whose theory results, 
by definition, from a function W(s0, ξ, η, ζ, p, q, r) and two auxiliary functions λ1 , λ2 of 
s0 , by means of the identity: 

0

0

B

A∫ (δW + λ1 δf1 + λ2 δf2) ds0 = [ ] 00

0 0
0 0 0( )

BB

A A
F x G y X x Y y dsδ δ δ δ′ ′ ′ ′ ′ ′ ′ ′+ + − + +∫… … , 

 
in which all of the variations are arbitrary, this time. 
 We further remark that in the case where some of the left-hand sides f1, f2, … of the 
constraint equations refer to only the arguments that appear in W, one can conceive of 
either a process such as we just spoke of or, by a change of auxiliary variables, one 
introduces the given of these particular constraint equations into W a priori; this once 
more brings us to the notion of a hidden W.  This new way of looking at things is 
especially interesting in the study of the particular lines that we studied previously, and it 
leads notably to an extension of the results of Clebsch to all cases, as well as the 
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reduction to the canonical form that was obtained for the flexible and inextensible line by 
Appell, Legoux, and Marcolongo. 
 
 
 9.  States that are infinitely close to the natural state.  Hooke’s moduli of 
deformation and general moduli.  Critical values of the general moduli. – Let us 
return to the general deformable line.  Suppose that the action is zero in the natural state, 
as well as the effort and moment of deformations, and similarly, the external force and 
moment.  In this case, not just the function W must be annulled identically, but also the 
six partial derivatives of W with respect to ξ, η, ζ, p, q, r for the values ξ0, η0, ζ0, p0, q0, 
r0, resp., of these symbols.  Assume, moreover, that W is developable in a neighborhood 
of ξ = ξ0, η = η0, ζ = ζ0, p = p0, q = q0, r = r0 in positive integer powers of ξ − ξ0, η − η0, 
…, r − r0 .  Under these conditions, one will have: 
 

W = W2 + W3 + …, 

in which W2, W3, … represent homogeneous polynomials of degree 2, 3, … in the 
differences ξ − ξ0, η − η0, …, r − r0 . 
 Let the coordinates of a point M0 of the line (M0) in the natural state and the three 
parameters by means of which one expresses the direction cosines of the axes of the 
trihedron that is attached to that point be x0, y0, z0, λ10, λ20, λ30 , respectively, and suppose 
that the coordinates x, y, z of the corresponding points M in the deformed state (M) and 
the parameters λ1, λ2, λ3 that relate to the axes of the trihedron that is attached to it are 
functions of s0 and h that are developable in powers of h by the formulas: 
 
 x = x0 + x1 + … + xi + …,  λ1 = λ10 + λ11 + … + λ1i + …, 
 y = y0 + y1 + … + yi + …,  λ2 = λ20 + λ21 + … + λ2i + …, 
 z = z0  + z1 + … + zi + …,  λ3 = λ30 + λ31 + … + λ3i + …, 
 
in which xi , yi , zi , λ1i , λ2i , λ3i denote the terms that involve hi as a factor.  We introduce 
these series developments in order to abbreviate the expositions, and we assume that they 
pertain to the ordinary calculation procedures.  Formulas (15) and (15′) permit us to 
calculate the developments of F, G, H, I, J, K; X0, Y0, Z0, L0, M0, N0 in powers of h.  

The terms that are independent of h are zero, and the terms F1, G1, H1, I1, J1, K1; X01, 

Y01, Z01, L01, M01, N01 are given by the formulas: 

 

 F1 = 2
(1)

0

W

dx

ds

∂

∂
, G1 = 2

(1)

0

W

dy

ds

∂

∂
, H1 = 2

(1)

0

W

dz

ds

∂

∂
, 

 

 I1 = 2
(1)

1

0

W

d

ds

λ
∂

∂
, J1 = 2

(1)
2

0

W

d

ds

λ
∂

∂
, K1 = 2

(1)
3

0

W

d

ds

λ
∂

∂
, 
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 X01 = 2
(1)

0

0

Wd

dxds
ds

∂

∂
, Y01 = 2

(1)
0

0

Wd

dyds
ds

∂

∂
, Z01 = 2

(1)
0

0

Wd

dzds
ds

∂

∂
, 

 

 L01 = 2 2
(1) (1)

10 1

0

W Wd

dds
ds

λ λ
∂ ∂−

∂∂
, M01 = 2 2

(1) (1)
20 2

0

W Wd

dds
ds

λ λ
∂ ∂−

∂∂
, N01 = 2 2

(1) (1)
30 3

0

W Wd

dds
ds

λ λ
∂ ∂−

∂∂
, 

 
in which one sets: 
  x(1)  = x0 + x1,  y(1)  = y0 + y1,  z(1)  = z0 + z1, 
 (1)

1λ  = λ10 + λ11, 
(1)
2λ  = λ20 + λ21, 

(1)
3λ  = λ30 + λ31. 

 
 We consider – under the name of a state of deformation that is infinitely close to the 
natural state – the state (M) where the point M has the coordinates x(1), y(1), z(1), and 
where the parameters that relate to the trihedron that is attached to it have the values (1)

1λ , 
(1)
2λ , (1)

3λ .  On the other hand, if we let the terms effort, moment of deformation, external 

force, and external moment refer to the vectors (F1, G1, H1), (I1, J1, K1), (X01, Y01, Z01), 

(L01, M01, N01), where L01, M01, N01 are calculated by means of λ10, λ20, λ30, L01, M01, N01 

in the same fashion as L0, M0, N0 are calculated by means of λ1, λ2, λ3, L0, M0, N0, then 

we will arrive at the hypotheses that were generally made by the classical authors, where 
the first two vectors are linear functions of the elements that characterize the deformed 
state considered.  As a consequence, we recover what one calls the generalized Hooke 
law, but when one limits it, as is convenient, by the condition that it must respect the 
principle of the conservation of energy.  In the classical method, in order to satisfy that 
condition one must repeat the path that we just followed in our exposition, but in the 
opposite sense. 
 The coefficients in the linear functions that express Hooke’s law are the moduli of 
deformation of the deformable line in its state that is infinitely close to the natural state; 
they are invariable at a given point of the line.  This notion of moduli can be generalized 
by envisioning the first and second derivatives of the function W; aside from the case in 
which the general moduli are defined and continuous, one can consider the one in which 
they have critical values. 
 The preceding considerations can be easily repeated for the various particular 
deformable lines. 
 
 
 10.  Dynamics of the trihedron. – The dynamics of the trihedron is related to the 
foregoing in a completely direct manner.  It suffices to regard the arc s0 as time t, and the 
deformable line as a trajectory.  That simple assertion immediately explains the analogies 
have been known for a long time between the classical dynamics of the point and 
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invariable body and the statics of the deformable line.  In a previous work (1), to which 
we shall not return here, we have envisioned dynamics from the viewpoint that we just 
pointed out. 
 We recall only that classical dynamics appears to be the study of states of motion that 
are infinitely close to the state of rest.  As Lamé has already remarked, kinetic mass 
presents itself as the power or coefficient of the resistance to change of the motion, a 
definition that is analogous to that of the coefficients of elasticity.  One can, with 
Laplace, consider an arbitrary state of motion that is not infinitely close to the rest state, 
and one must then distinguish the kinetic mass from the Hamiltonian mass and the 
Maupertuisian mass. 
 Consider, to simplify, the case in which W is independent of p, q, r, and where there 
is no external moment.  The action has the velocity v for its only argument, and the 
analogue of the effort of deformation is the quantity of motion in the trajectory.  In 
classical dynamics, the work that is done by the quantity of motion is not, like that of the 
effort of deformation of the deformable line, combined with the work that is done by the 
external force, but it is united with the variation of the action in order to introduce the 
notion of kinetic energy.  In the simple case that we have envisioned, one has: 
 

(20)   

1 1 1
, , ,

, , ,

dW dx dW dy dW dz
F G H

v dv dt v dv dt v dv dt
dF dG dH

X Y Z
dt dt dt

 = = =

 = = =


 

 
and one deduces from this that: 

(21)    X dx + Y dy + Z dz = 
dW

d v W
dv

 − 
 

. 

 The quantity: 

(22)     E = 
dW

v
dv

 − W 

 
is what one calls the kinetic energy.  In the case of the statics of the deformable line, the 
energy of deformation is equal to the action of deformation W, with the opposite sign, as 
we showed in no. 3.  Later on, we shall return to this essential distinction between the 
action of deformation and energy of deformation. 

                                                
 (1) E. and F. COSSERAT, “Note sur la dynamique du point et du corps invariable,” in Traité de 
Physique, by O.-D. Chwolson, French ed., t. I, pp. 236-273, Paris, 1906. 



II. – STATICS OF THE DEFORMABLE SURFACE  
AND THE DYNAMICS OF THE DEFORMABLE LINE. 

 
 

 11.  Euclidian action of deformation on a deformable surface.  External force 
and moment.  Effort and moment of deformation. – The developments into which we 
have entered in regard to the deformable line will permit us to be briefer in regard to the 
theories of the deformable surface and the three-dimensional deformable medium, in 
which they are reproduced with almost no changes.  We preserve the preceding notations, 
but now suppose that x, y, z, α, α′, …, γ″ are functions of two parameters ρ1 and ρ2, 
instead of depending upon just the parameter s0 .  The trihedron Mx′y′z′ then describes 
what we call a deformable surface, and, with Darboux, we will have twelve kinematic 
arguments ξi, ηi, ζi, pi, qi, r i (i = 1, 2) to consider that are given by formulas (1) and (2), in 
which the ordinary derivatives with respect to s0 must be replaced with the partial 
derivatives with respect to ρi .  The linear element of the surface will be given by the 
formula: 

ds2 = 2 2
1 1 2 22d d d dρ ρ ρ ρ+ +E F G , 

 
E = 2 2 2

1 1 1ξ η ζ+ + , F = ξ1 ξ2 + η1 η2 + ζ1 ζ2 , G = 2 2 2
2 2 2ξ η ζ+ + .  We will have analogous 

formulas in the undeformed state, which we continue to distinguish by the index zero. 

 If we set ∆0 = 2
0 0 0−E G F , where E0, F0, G0 are the analogues of E, F, G for the 

natural state, and if we seek the form that the function W of two infinitely close positions 
of the trihedron Mx′y′z′ must take in order for the integral ∫∫ W ∆0 dρ1 dρ2 , when taken 
over an arbitrary portion of the surface (M0), to have zero variation under a likewise 
arbitrary infinitesimal transformation from the group of Euclidian displacements then we 
will be led to the following remarkable form: 
 

W(ρ1, ρ2; ξ1, η1, ζ1; p1, q1, r1; ξ2, η2, ζ2; p2, q2, r2). 
 

The argument is identical to the one that we gave in no. 2. 
 Let ∆ denote the quantity that is analogous to ∆0 and is defined by the formula ∆ = 

2−E G F .  If we multiply W by the element of area: 

 
dσ0 = ∆0 dρ1 dρ2 

 
of the surface (M0) then the product W ∆0 dρ1 dρ2 will be an invariant under the group of 
Euclidian displacements that is analogous to the area element of the surface (M).  

Similarly, when the integral 
0

0 1 2
0

C
d dρ ρ∆ ∆

∆∫∫  = 1 2C
d dρ ρ∆∫∫  is taken over the interior 

of a contour C0 on the surface (M0), or the corresponding contour C on the surface (M), 
this will determine the area of the domain on (M) that is delimited by C.  Likewise, in the 
same spirit, by associating the action for the passage from the natural state (M0) to the 
deformed state (M), we attach the function W to the defining elements of the deformable 
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surface, and we say that the integral 
0

0 1 2C
W d dρ ρ∆∫∫  is the action of deformation for the 

interior of the contour C on the deformed surface.  On the other hand, we say that W is 
the density of the action of deformation at a point of the deformed surface when referred 
to the unit of area of the undeformed surface; W ∆0 / ∆ will be that density at a point 
when referred to the unit of area of the deformed surface. 
 Consider an arbitrary variation of the action of deformation in the interior of a 

contour C on the surface (M), namely, 
0

0 1 2C
W d dδ ρ ρ∆∫∫ .  By virtue of formulas (7) and 

(8), when extended to the case of two independent parameters ρ1 and ρ2 , and after 
applying Green’s formula to the terms that refer explicitly to a derivative with respect to 
ρ1 or ρ2 , we will have, upon letting ds0 denote the absolute value of the element of arc 
length of the contour C0 that is traced on the surface (M0): 
 

 
0

0 1 2C
W d dδ ρ ρ∆∫∫  

   = 
0

0 0 0 0 0 0 0( )
C

F x G y H z I i J j K k dsδ δ δ δ δ δ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + + + +∫  

   − 
0

0 0 0 0 0 0 0 1 2( )
C

X x Y y Z z L i M j N k d dδ δ δ δ δ δ ρ ρ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + + + + ∆∫∫ , 

 
in which we have set: 

 0F ′  = ∆0 2 1

1 0 2 0

d dW W

ds ds

ρ ρ
ξ ξ

 ∂ ∂− ∂ ∂ 
, 

 0G′  = ∆0 2 1

1 0 2 0

d dW W

ds ds

ρ ρ
η η

 ∂ ∂− ∂ ∂ 
, 

 0H ′  = ∆0 2 1

1 0 2 0

d dW W

ds ds

ρ ρ
ζ ζ

 ∂ ∂− ∂ ∂ 
, 

 0I ′  = ∆0 2 1

1 0 2 0

d dW W

p ds p ds

ρ ρ ∂ ∂− ∂ ∂ 
, 

 0J′  = ∆0 2 1

1 0 2 0

d dW W

q ds q ds

ρ ρ ∂ ∂− ∂ ∂ 
, 

 0K ′  = ∆0 2 1

1 0 2 0

d dW W

r ds r ds

ρ ρ ∂ ∂− ∂ ∂ 
, 

 
in which the signs of dρ1 and dρ2 are specified by the sense of positive traversal of the 
curvilinear integral, and, in addition: 
 

 0X ′  = 0
0

1
i i

i i i i i

W W W
q r

ρ ξ ζ η
  ∂ ∂ ∂ ∂∆ + −  ∆ ∂ ∂ ∂ ∂  

∑ , 
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 0Y′  = 0
0

1
i i

i i i i i

W W W
r p

ρ η ξ ζ
  ∂ ∂ ∂ ∂∆ + −  ∆ ∂ ∂ ∂ ∂  

∑ , 

 0Z′  = 0
0

1
i i

i i i i i

W W W
p q

ρ ζ η ξ
  ∂ ∂ ∂ ∂∆ + −  ∆ ∂ ∂ ∂ ∂  

∑  

and 

 0L′  = 0
0

1
i i i i

i i i i i i i

W W W W W
q r

p r q
η ζ

ρ ζ η
  ∂ ∂ ∂ ∂ ∂ ∂∆ + − + −  ∆ ∂ ∂ ∂ ∂ ∂ ∂  

∑ , 

 0M ′  = 0
0

1
i i i i

i i i i i i i

W W W W W
r p

q p r
ζ ξ

ρ ξ ζ
  ∂ ∂ ∂ ∂ ∂ ∂∆ + − + −  ∆ ∂ ∂ ∂ ∂ ∂ ∂  

∑ , 

 0N′  = 0
0

1
i i i i

i i i i i i i

W W W W W
p q

r q p
ξ η

ρ η ξ
  ∂ ∂ ∂ ∂ ∂ ∂∆ + − + −  ∆ ∂ ∂ ∂ ∂ ∂ ∂  

∑ . 

 
 Upon first regarding the double integral that figures in the expression for 

0
0 1 2C

W d dδ ρ ρ∆∫∫ , we shall call the line segments that have their origins at M and whose 

projections onto the axes Mx′, My′, Mz′ are 0X ′ , 0Y′ , 0Z′  and 0L′ , 0M ′ , 0N′ , respectively, the 

external force and external moment at the point M, when referred to the unit of area of 
the undeformed surface.  Upon then regarding the curvilinear integral, we then call the 
line segments that issue from M and whose projections onto the axes Mx′, My′, Mz′ are 

0F ′− , − 0G′ , − 0H ′  and − 0I ′ , − 0J′ , − 0K ′ , respectively, the external effort and external 

moment of deformation at the point M on the contour C of the deformed surface, when 
referred to the unit of length on the contour C0 .  As is easy to see, at a well-defined point 
M of C, these last six quantities depend upon only the direction of the exterior normal to 
the curve C0, when it is drawn through the point M0 in the plane that is tangent to (M0).  It 
remains invariable if the direction of the exterior normal does not change when the region 
of (M0) considered varies, and it changes sign if that direction is replaced with the 
opposite direction. 
 Suppose that one traces out a line Σ in the interior of the deformed surface that is 
bounded by the contour C that circumscribes a subset (A) of the surface, either by itself or 
along with a portion of the contour C, and let (B) denote what remains of the surface 
outside of the subset (A).  Let Σ0 be the curve on (M0) that corresponds to the curve Σ of 
(M), and let (A0) and (B0) be the regions of (M0) that correspond to the regions (A) and 
(B) of (M), resp.  Mentally separate the two subsets (A) and (B).  One can regard the two 
line segments ( 0F ′− , − 0G′ , − 0H ′ ) and (− 0I ′ , − 0J′ , − 0K ′ ) that are determined for the point M 

and for the direction of the normal that is drawn through Σ0 in the plane that is tangent to 
(M0) and to the exterior of (A0) as the external effort and moment of deformation, resp., at 
the point M of the contour Σ to the region (A).  One can likewise regard the two line 
segments ( 0F ′+ , + 0G′ , + 0H ′ ) and (+ 0I ′ , + 0J′ , + 0K ′ ) as the external effort and moment of 

deformation, resp., at the point M of the contour Σ to the region (B).  By reason of that 
remark, we say that 0F ′− , − 0G′ , − 0H ′  and − 0I ′ , − 0J′ , − 0K ′  are the components along the 
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axes Mx′, My′, Mz′ of the effort and moment of deformation, resp., that are exerted at M 
on the portion (A) of the surface (M), and that 0F ′+ , + 0G′ , + 0H ′  and + 0I ′ , + 0J′ , + 0K ′  are 

the components along the axes Mx′, My′, Mz′ of the effort and moment of deformation, 
resp., that are exerted at M on the portion (B) of the surface (M). 
 
 
 12.  Diverse specifications of the effort and moment of deformation.  Notions of 
the energy of deformation and the natural state. – Set: 
 

 iA′  = ∆0
i

W

ξ
∂
∂

, iB′  = ∆0
i

W

η
∂
∂

, iC′  = ∆0
i

W

ζ
∂
∂

, 

 iP′  = ∆0
i

W

p

∂
∂

, iQ′  = ∆0
i

W

q

∂
∂

, iR′  = ∆0
i

W

r

∂
∂

. 

 

1

0

1
A′

G
, 1

0

1
B′

G
, 1

0

1
C′

G
 and 1

0

1
P′

G
, 1

0

1
Q′

G
, 1

0

1
R′

G
 represent the projections onto 

Mx′, My′, Mz′ of the effort and the moment of deformation, resp., that are exerted at the 
point M on a curve that admits the same tangent as ρ1 = const.  That effort and moment of 
deformation are referred to the unit of length of the undeformed contour.  In regard to ρ1 

= const., the effort and moment of deformation have the projections 2

0

1
A′

G
, 

2

0

1
B′

G
, 2

0

1
C′

G
 and 2

0

1
P′

G
, 2

0

1
Q′

G
, 2

0

1
R′

G
, respectively.  The new efforts and 

momenta of deformations that we just defined are coupled to the elements that were 
introduced in no. 11 by the following relations: 
 

 ∆0 0X ′  = i
i i i i

i i

A
q C r B

ρ
 ′∂ ′ ′+ − ∂ 

∑ , 0F ′  = 2 1
1 2

0 0

d d
A A

ds ds

ρ ρ′ ′− , 

 ∆0 0Y′  = i
i i i i

i i

B
r A p C

ρ
 ′∂ ′ ′+ − ∂ 

∑ , 0G′  = 2 1
1 2

0 0

d d
B B

ds ds

ρ ρ′ ′− , 

 ∆0 0Z′  = i
i i i i

i i

C
p B q A

ρ
 ′∂ ′ ′+ − ∂ 

∑ , 0H ′  = 2 1
1 2

0 0

d d
C C

ds ds

ρ ρ′ ′− , 

 

 ∆0 0L′  = i
i i i i i i i i

i i

P
q R rQ C Bη ζ

ρ
 ′∂ ′ ′ ′ ′+ − + − ∂ 

∑ , 0I ′  = 2 1
1 2

0 0

d d
P P

ds ds

ρ ρ′ ′− , 

 ∆0 0M ′  = i
i i i i i i i i

i i

Q
r P p R A Cζ ξ

ρ
 ′∂ ′ ′ ′ ′+ − + − ∂ 

∑ , 0J′  = 2 1
1 2

0 0

d d
Q Q

ds ds

ρ ρ′ ′− , 

 ∆0 0N′  = i
i i i i i i i i

i i

R
p Q q P B Aξ η

ρ
 ′∂ ′ ′ ′ ′+ − + − ∂ 

∑ , 0K ′  = 2 1
1 2

0 0

d d
R R

ds ds

ρ ρ′ ′− . 
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 One can propose, as in no. 3, to transform the relations that we just wrote down 
independently of the values of the quantities that figure in them that are calculated by 
means of W.  Indeed, instead of defining the line segments that we have attached to the 
point M by their projections onto Mx′, My′, Mz′, we can just as well define them by their 
projections onto other axes. 
 First, consider the fixed axes Ox, Oy, Oz.  Let X0, Y0, Z0 and L0, M0, N0 denote the 
projections onto these axes of the external force and external moment, respectively, at an 
arbitrary point M of the deformed medium.  Let F0, G0, H0 and I0, J0, K0 denote the 
projections of the effort and moment of deformation, resp., that relate to the direction 
(dρ1, dρ2) of the tangent to a curve C, which are referred to the unit of length of the 
undeformed curve C0, and which were defined previously; let Ai, Bi, Ci and Pi, Qi, Ri be 
the projections of the effort ( , , )i i iA B C′ ′ ′  and the moment of deformation ( , , )i i iP Q R′ ′ ′ , resp.  

The transforms of the preceding relations are obviously: 
 

∆0 X0 = 1 2

1 2

A A

ρ ρ
∂ ∂+
∂ ∂

, F0 = 2 1
1 2

0 0

d d
A A

ds ds

ρ ρ− , 

∆0 Y0 = 1 2
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B B

ρ ρ
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d d
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ρ ρ− , 
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C C

ρ ρ
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1 2

0 0
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C C
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1 2 1 2 1 2
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∂ ∂ ∂ ∂ ∂ ∂+ + + − −
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1 2
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1 2
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1 2
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d d
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ρ
 can be replaced by: 

 

− 0 0 0
0 0 0

0 2 2 2

1 x y zλ µ ν
ρ ρ ρ

 ∂ ∂ ∂+ + ∆ ∂ ∂ ∂ 
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 ∂ ∂ ∂+ + ∆ ∂ ∂ ∂ 
, 

 

respectively, and 1d

ds

ρ
 and 2d

ds

ρ
, by: 

 

− 
2 2 2

1 x y zλ µ ν
ρ ρ ρ

 ∂ ∂ ∂+ + ∆ ∂ ∂ ∂ 
, − 

1 1 1

1 x y zλ µ ν
ρ ρ ρ

 ∂ ∂ ∂+ + ∆ ∂ ∂ ∂ 
, 
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respectively, if one denotes the direction cosines of the exterior normal at C0 with respect 
to the fixed axes by λ0, µ0, ν0, and lets λ, µ¸ ν be those of the exterior normal at C.  These 
equations give, in particular, the equations that relate to the infinitely small deformation 
of a planar surface that were used by Lord Kelvin and Tait. 
 Instead of referring the elements that relate to the point M to the fixed axes Oxyz, 
imagine a tri-rectangular trihedron 1 1 1Mx y z′ ′ ′  whose axis 1Mz′  is normal to the surface (M) 

at M, and M1 is referred to the trihedron Mx′y′z′.  Let l, l′, l″ be the direction cosines of 

1Mx′  relative to the axes of the latter, let m, m′, m″ be those of 1My′ , and let n, n′, n″ be 

those of 1Mz′ .  We define the cosines n, n′, n″ precisely by the formulas: 

 

n = 
1

∆
(η1 ζ1 – η2 ζ2),  n′ = 

1

∆
(ζ1 ξ1 – ζ2 ξ2),  n″ = 

1

∆
(ξ1 η1 – ξ2 η2). 

 
 We assume that the trihedron 1 1 1Mx y z′ ′ ′  has the same disposition as the other ones, and, 

for the moment, we do not make any particular hypotheses on the other cosines.  We then 
let (1)

iξ , (1)
iη , (1)

iζ  denote the components of the velocity of the origin M of the axes 1Mx′ , 

1My′ , 1Mz′  along those axes when only ρi varies and plays the role of time.  We likewise 

let (1)
ip , (1)

iq , (1)
ir  be the projections onto these same axes of the instantaneous rotation of 

the trihedron 1 1 1Mx y z′ ′ ′  relative to the parameter ρi .  In the latter definitions, the trihedron 

1 1 1Mx y z′ ′ ′  is naturally referred to the fixed trihedron Oxyz.  We will have: 

 
 (1)

iξ  = l ξi + l′ ηi + l″ ζi , 

 (1)
iη  = m ξi + m′ ηi + m″ ζi , 

 (1)
iζ  = n ξi + n′ ηi + n″ ζi = 0, 

 
and three formulas such as the following one: 
 

(1)
ip  = l pi + l′ qi + l″ ri + 

i

m
n

ρ
∂
∂∑ , 

 
in which the trihedra considered are supposed to have the same disposition. 
 Let 0X ′′ , 0Y′′ , 0Z′′  and 0L′′ , 0M ′′ , 0N′′  denote the projections onto 1Mx′ , 1My′ , 1Mz′  of the 

external force and external moment, respectively, at an arbitrary point M of the deformed 
surface, and which are referred to the unit of area of the undeformed surface.  Let 0F ′′ , 

0G′′ , 0H ′′  and 0I ′′ , 0J′′ , 0K ′′  be the projections onto the same axes of the effort (F0, G0, H0) 

and moment (I0, J0, K0), resp., and let iA′′ , iB′′ , iC′′  and iP′′ , iQ′′ , iR′′  be the projections of 

the effort ( , , )i i iA B C′ ′ ′  and moment ( , , )i i iP Q R′ ′ ′ , resp., that were defined previously.  The 

transforms of the preceding relations or the original relations are obviously: 
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ρ
 and 2d

ds

ρ
 with − (1) (1)

2 2

1
( )λ ξ µ η′′ ′′+

∆
 and − (1) (1)

1 1

1
( )λ ξ µ η′′ ′′+

∆
, 

resp., here, if λ″, µ″, 0 denote the direction cosines of the exterior normal to the contour 
C with respect to the trihedron 1 1 1Mx y z′ ′ ′ .  One then obtains: 
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0

ds
F

ds
′′  = 

(1) (1) (1) (1)
1 1 2 2 1 1 2 2A A A Aξ ξ η ηλ µ

′′ ′′ ′′ ′′+ +′′ ′′+
∆ ∆

, 

 0
0

ds
I

ds
′′  = 

(1) (1) (1) (1)
1 1 2 2 1 1 2 2P P P Pξ ξ η ηλ µ+ +′′ ′′+

∆ ∆
, 

 
and two systems of analogous formulas. 
 These formulas lead one to replace the twelve auxiliary functions iA′′ , iB′′ , iC′′ , iP′′ , 

iQ′′ , iR′′  with twelve new auxiliary functions that will be the coefficients of λ″ and µ″ in 

the preceding expressions for the efforts and moments when referred to the unit of length 
on C, or will be related to these coefficients in a simple fashion.  We set: 
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= S2 , 

(1) (1)
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1
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∆
 = S1 , 

 
upon introducing six primary auxiliary functions N1, N2, T, S1, S2, S3 , and similarly: 
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1
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upon introducing six other auxiliary functions.  The twelve equations that just wrote 
down can be solved immediately with respect the original auxiliary functions iA′′ , iB′′ , 

iC′′ , iP′′ , iQ′′ , iR′′ .  Upon remarking that (1) (1) (1) (1)
1 2 2 1ξ η ξ η−  = ∆, one gets: 

 
 1A′′  = (1) (1)

2 1 2 3( )N T Sη ξ− − , 2A′′  = (1) (1)
1 3 1 1( )T S Nξ η− − , 

 1B′′  = (1) (1)
2 3 2 2( )T S Nη ξ+ − , 2B′′  = (1) (1)

1 2 1 3( )N T Sξ η− + , 

 1C′′  = (1) (1)
2 2 2 1S Sη ξ− , 2C′′  = (1) (1)

1 1 1 2S Sξ η− , 

 
and six analogous formulas for iP′′ , iQ′′ , iR′′ , with italic symbols in the right-hand sides.  

One can obviously give notations to the components of the effort and moment of 
deformation that we just introduced that are analogous to the ones that are in use for the 
deformable line.  Therefore, one can call N1, N2 the efforts of tension, while the 
components T − S3, T + S3 are the shearing efforts in the plane that is tangent to the 
deformed surface; the components S1, S2 are the shearing efforts that are normal to the 
deformed surface.  Likewise, the components N1, N2 are the moments of torsion, while 

the components T − S3, T + S3 have the character of moments of flexure; the components 

S1, S2 can be called the moments of geodesic flexure. 

 The notions of energy of deformation and natural present themselves here exactly as 
they do for the deformable line. 
 
 
 13.  The flexible and inextensible surface of Poisson and Lamé.  The fluid 
membrane, referred to as a particular case of the surface that was envisioned by 
Lagrange, Poisson, and Duhem.  The flexible and inextensible surface of the 
geometers. – The reader can extend for himself the general remarks that we made at the 
end of no. 3 in regard to the deformable line, and at the beginning of no. 5 on the subject 
of the notions of hidden trihedron and hidden action. 
 First, suppose that W depends upon only ρ1, ρ2, ξ1, η1, ζ1, ξ2, η2, ζ2 .  In this case, the 
equations of no. 12 reduce to the following ones: 
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in which λ1, λ2, λ3 are three parameters, by means of which one expresses α, α′, …, γ″, 

and W is a function of only ρ1, ρ2, 
1

x

ρ
∂
∂

, …, 
2

z

ρ
∂

∂
, λ1, λ2, λ3 ; L0, M0, N0 here that has 

the same significance that it did in no. 4. 

 Imagine the case in which the functions L0, M0, N0  are zero.  The equations 
1
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λ
∂
∂
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0, 
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 = 0 amount to either: 
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 = 0, 

 
or to S1 = S2 = S3 = 0, in such a way that the effort at a point of an arbitrary curve is in the 
plane that is tangent to the deformed surface and the shearing efforts that are exerted on 
two rectangular directions are equal. 
 Let the two states of the surface, (M0) and (M), be given.  When the functions L0, 

M0, N0 are zero, this can present itself accidentally or for any deformed surface (M) as a 

consequence of the form of W.  The function W will depend simply upon ρ1, ρ2, E, F, G, 

and one will have: 
 

 N1 = (1)2 (1) (1) (1)20
1 1 2 22

W W Wξ ξ ξ ξ∆ ∂ ∂ ∂ + + ∆ ∂ ∂ ∂ E F G
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1 1 2 2 1 2 2 22 ( ) 2
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, 

 N2 = (1)2 (1) (1) (1)20
1 1 2 22

W W Wη η η η∆ ∂ ∂ ∂ + + ∆ ∂ ∂ ∂ E F G
. 

 
 The trihedron is completely hidden, and we can also regard the surface as simply 
point-like. 
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 The consideration of the infinitely small deformation, when applied to the preceding 
surface, permits us to recover the surface – or membrane – that was studied by Poisson 
and Lamé. 
 A particularly interesting case that we call the fluid membrane is obtained by 
supposing that one has T = 0, N1 = N2 in regard to the three functions thus defined.  It is 

easy to see that W then depends upon E, F, G only by the intermediary of ∆ = 2−EG F  

and that it is, in turn, a function of ρ1, ρ2, and µ = ∆ / ∆0 – 1.  Upon continuing to let W 
denote the expression for W in terms of ρ1, ρ2, µ, one will have: 
 

N1 = N2 = 
W

µ
∂
∂

= N,  T = 0. 

 
 If we suppose, in addition, that W depends upon only µ then we will find ourselves in 
the presence of the surface that was considered by Lagrange and studied by Poisson and 
Duhem.  If one introduces the variables x, y then one is led to the system: 
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, 

1 2

1 1
N
 

+ 
 R R

 = 0∆
∆

(X0 n + Y0 n′ + Z0 n″), 

 
where R1 and R2 are the principal radii of curvature of the deformed surface (M). 

 Return to the general case in which W is an arbitrary function of ρ1, ρ2, E, F, G.  We 

imagine that we direct our attention to just the deformations of the surface for which one 
has E = E0, F = F0, G = G0 .  It will suffice to introduce these hypotheses in the definitions 

of the forces.  The usual problems that correspond to the given of the function W and to 
the case where E − E0, F − F0, G − G0 are not generally zero can then be posed only for 

special givens. 
 If we suppose that only the function W0 that is obtained by setting E = E0, F = F0, G = 

G0 in W(ρ1, ρ2, E, F, G) is given, and that one does not know the values of the derivatives 

of W with respect to E, F, G for E = E0, F = F0, G = G0 , so the action is hidden, then we 

see that N1, T, N2 become three auxiliary functions that one can attach to x, y, z, in such a 
way that in the case where the forces that act upon the elements of the surface are given 
we will have six partial differential equations in six unknown functions; one will then 
have a determinate problem only if one adds some accessory conditions.  If the deformed 
figure is assigned a priori then one will have three equations in the unknown functions 
N1, T, N2. 
 The equations to which we have thus arrived are the ones that define the flexible and 
inextensible surface of the geometers.  The considerations that related to the flexible and 
inextensible line are repeated in regard to the latter surface, which can thus be defined a 
priori . 
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 14.  Deformable surface where the axis Mz′ is normal to (M) at M.  Surface of 
Sophie Germain and Poisson.  Surface of Lord Kelvin and Tait. – We propose to 
introduce the condition that Mz′ be normal to the surface (M).  One can do this either by 
starting with the previously-defined, general, deformable surface and studying only the 
deformations that verify the conditions that ζ1 = ζ2 = 0, or by defining a new deformable 
surface for which one develops the theory by analogy with that of the former, but while 
observing the conditions that ζ1 = ζ2 = 0. 
 If we place ourselves at the first viewpoint then it will suffice to append the 
hypotheses ζ1 = ζ2 = 0 to the formulas that serve to define the force and analogous 
elements.  One sees that if the function W that serves as the point of departure is given 
then one cannot give the external forces and moments arbitrarily, since one appends the 
two equations ζ1 = ζ2 = 0 to the six equations that determine them. 
 If one wishes to pursue the idea of specializing the general surface then one must not 
suppose that the function W is given, but introduce the notion of hidden action, which 
takes on an entirely special aspect here. 
 By the fact of the conditions ζ1 = ζ2 = 0, the trihedron, instead of depending upon the 
six parameters x, y, z, λ1, λ2, λ3, now depends upon only four parameters – for example, 
x, y, z, m, where the last one is the angle that Mx′ makes with the curve (ρ2) at M.  The 
translations can be calculated by means of the system: 
 

1

1

η
ξ

= tan m, 2 2
1 1ξ η+  = E, ξ1 ξ2 + η1 η2 = F, 2 2

2 2ξ η+  = G. 

 
 As for the rotations, if one introduces the quantities that Darboux denoted by D, D′, 
D″ and the two Christoffel symbols: 
 

 Σ1 = 
2

2 1 1

1
2

2 ρ ρ ρ
 ∂ ∂ ∂− + − ∆ ∂ ∂ ∂ 

E E E
E E F , 

 Σ2 = 
2

1 2

1

2 ρ ρ
 ∂ ∂− ∆ ∂ ∂ 

G E
E F  

 
then they will have the expressions: 
 

 p1 = 
2

1

∆
(ξ1 D′ – ξ2 D), p2 = 

2

1

∆
(ξ1 D″ – ξ2 D′), 

 q1 = 
2

1

∆
(η1 D′ – η2 D), q2 = 

2

1

∆
(η1 D″ – η2 D′), 

 r1 = − 1

1

m

ρ
Σ ∆∂ +

∂ E
, r2 = − 2

2

m

ρ
Σ ∆∂ +

∂ E
. 
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 If one substitutes these values into the function that is obtained setting ζ1 = ζ2 = 0 in 

W then one will obtain a function W0 that depends upon ρ1, ρ2, m, 
1

m

ρ
∂
∂

, 
2

m

ρ
∂
∂

, and x, y, z, 

and their first and second derivatives by the intermediary of nine independent expressions 
m, E, F, G, ρ1, ρ2, D, D′, D″, whereas W refers to ten arguments apart from ρ1, ρ2, ζ1, ζ2.  

That reduction comes about from one of the equations to which Darboux gave the name 
of Codazzi equations, which is written p1 η2 – q1 ξ2 – p2 η1 + q2 ξ1 = 0, here.  When just 
the function W0 is known, we will thus have, by definition, three auxiliary unknowns.  
Nevertheless, these three auxiliary functions can all be eliminated, even if they lead to a 
total number of functions that is greater by one unit than the number of equations when 
they are combined with the other elements that are defined by W0 . 
 One recovers the same remarkable result that we already pointed out for the 
deformable line, and which we must also confine ourselves to simply stating.  The 
equations of statics of the deformable surface that are presently considered can be 
summarized in the following relation: 
 

∫∫ [δ(W0 ∆0) + ∆0 (X0 δx + Y0 δy + Z0 δz – δm)] dρ1 dρ2 = 0, 

where: 

 ∆0 X0 = ∆0 X0 + 0 2 1
0 0 0 0 0

1 2 2 2

x x

x y z
L M N N

ρ ργ
ρ ρ ρ ρ

∂ ∂ −  ∆ ∂ ∂∂ ∂ ∂ ∂ ′ + + − ∆ ∂ ∆ ∂ ∂ ∂ ∆  
  

E F

E
 

 

 − 0
0 0 0

2 1 1 1

x y z
L M Nγ

ρ ρ ρ ρ
  ∆∂ ∂ ∂ ∂+ +  ∂ ∆ ∂ ∂ ∂  

, 

 
with analogous formulas, in which γ, γ ′, γ″ are the direction cosines of the normal Mz′ to 
(M).  A particularly interesting case is the one where W0 ∆0 / ∆ does not depend upon r1, 
r2, and whose only arguments are ρ1, ρ2, and the two expressions: 
 

1 2

1

RR
 = 

2

4

DD D′′ ′−
∆

,  
1 2

1 1+
R R

 = 
2

2D D D′ ′′ ′+ −
∆

G E F
, 

 
in which R1 and R2 denote the principal radii of curvature of the surface.  If one takes x, 

y to be variables then one is led to a generalization of the equations that were envisioned 
by Sophie Germain, Lagrange, and Poisson. 
 One can further adopt the specification of the effort and moment of deformation by 
means of the twelve auxiliary functions N1, T, N2, S1, S2, S3 ; N1, T, N2, S1, S2, S3 .  The 

fact that 1C′ , 2C′  become unknowns for ζ1 = ζ2 = 0 when W is hidden then translates into 

saying that the two auxiliary functions S1 and S2 are unknowns.  Now, suppose that W0 
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does not contain the arguments ρ1, ρ2 and depends upon p1, q1, p2, q2 only by the 
intermediary of the expressions: 
 

p1ξ1 + q1η1,  p1ξ2 + q1η2 + p2ξ1 + q2η1,  p2ξ2 + q2η2 ; 
 
one has the relations S1 = S2 = S3 = 0.  The three preceding expressions are presently 

(i.e., ζ1 = ζ2 = 0) the coefficients of 2
1dρ , dρ1 dρ2 , 

2
2dρ  in the differential equation for 

the lines of curvature of (M). 
 The preceding permits one to pass easily to the infinitely small deformation, which 
was the only one that was considered by Kelvin and Tait, and to recover the case in which 
their theory gives the results that were first stated by Sophie Germain and Poisson. 
 
 
 15.  Dynamics of the deformable line. – The dynamics of the deformable line is 
associated with the preceding exposition, for which it will suffice to regard one of the 
parameters – ρ2, for example – as the time t.  One then has an action of deformation and 
motion simultaneously.  Under the influence of the trihedron, the velocity of a point of 
the deformable line enters into W by way of the three arguments ξ2, η2, ζ2, and one finds 
oneself in the presence of the notion of kinetic anisotropy that was envisioned by 
Rankine, and which was subsequently introduced in several theories of physics; for 
example, in the theories of double refraction and the rotational polarization of light.  Even 
if W is independent of rotations and leads to zero external moments, the argument of pure 
deformation 2 2 2

1 1 1ξ η ζ+ +  and the purely kinetic argument 2 2 2
2 2 2ξ η ζ+ +  are generally 

accompanied by the mixed argument ξ1ξ2 + η1η2 + ζ1ζ2 .  An argument of this type is no 
longer new in mechanics, and appears notably, as we will show, in the theory of the 
action of forces at a distance.  When W does not contain the mixed argument ξ1ξ2 + η1η2 
+ ζ1ζ2, one must, in general, consider the state of deformation and motion that is 
infinitely close to the natural state in order to find oneself in the case of classical 
mechanics, where the action of deformation is completely separate from the kinetic 
action.  One then obtains d’Alembert’s principle by supposing that the external force and 
external moment are zero; i.e., by expressing the idea that the deformable line is subject 
to no action from the outside world and by introducing, in turn, the fundamental notion of 
the isolated system, which Duhem has found to be necessary for the rational construction 
of mechanics. 



III. – STATICS AND DYNAMICS OF THE DEFORMABLE MEDIUM . 
 
 

 16.  Euclidian action of deformation for a deformable medium.  External force 
and moment.  Effort and moment of deformation. – The theories of the deformable 
line and deformable surface that we just presented lead us to imagine a deformable, three-
dimensional medium that is more general than the one that has been the usual object of 
the theory of elasticity.  Consider a space (M0) that is described by a point M0 whose 
coordinates are x0, y0, z0 with respect to three fixed rectangular axes Ox, Oy, Oz.  We can 
regard these coordinates as functions of three parameters ρ1, ρ2, ρ3 that are chosen in an 
arbitrary manner.  However, to simplify, we suppose that x0 = ρ1, y0 = ρ2, z0 = ρ3 , and 
according to what is convenient, we sometimes employ, in turn, the notation x0, y0, z0, 
and sometimes the notation ρ1, ρ2, ρ3 .  While preserving our usual notations, we suppose 
that x, y, z, α, α′, …, γ″ are functions of x0, y0, z0 .  The trihedron Mx′y′z′ will then 
describe what we call a deformable medium, and we will have eighteen kinematical 
arguments ξi, ηi, ζi, pi, qi, r i (i = 1, 2, 3) that are given by formulas (1) and (2), where the 
ordinary derivatives with respect to s0 must be replaced with partial derivatives with 
respect to x0, y0, z0, or, if one prefers, with respect to ρi .  The linear element of the 
deformed medium (M), when referred to the independent variables x0, y0, z0, will be 
defined by the formula: 
 

ds2 = (1 + 2ε1) 
2
0dx  + (1 + 2ε2) 

2
0dy  + (1 + 2ε3) 

2
0dz  

+ 2γ1 dy0 dz0 + 2γ2 dz0 dx0 + 2γ3 dx0 dy0 , 
 

where ε1, ε2, ε3, γ1, γ2, γ3 are calculated by the following formulas: 
 
 ε1 = 2 2 21

1 1 12 ( 1)ξ η ζ+ + − , γ1 = ξ2 ξ3 + η2 η3 + ζ2 ζ3 , 

 ε2 = 2 2 21
2 2 22 ( 1)ξ η ζ+ + − , γ2 = ξ3 ξ1 + η3 η1 + ζ3 ζ1 , 

 ε3 = 2 2 21
3 3 32 ( 1)ξ η ζ+ + − , γ3 = ξ1 ξ2 + η1 η2 + ζ1 ζ2 . 

 
 We will have analogous formulas for the undeformed state (M0), which we continue 
to distinguish by the index zero.  We also introduce the known quantity ∆ that is defined 

by the formula ∆ = 
0 0 0

( , , )

( , , )

D x y z

D x y z
, whose square is expressed as a function of ε1, ε2, ε3, γ1, 

γ2, γ3 in the following manner: 

∆2 = 
1 3 2

3 2 1

2 1 3

1 2

1 2

1 2

ε γ γ
γ ε γ
γ γ ε

+
+

+
 . 

 
 If we seek what the function W of two infinitely close positions of the trihedron 
Mx′y′z′ must be in order for the integral ∫∫∫ W dx0 dy0 dz0, which is taken over an arbitrary 
portion of the space (M0), to have a zero variation under an infinitesimal transformation 



E. and F. COSSERAT – Note on the theory of Euclidian action.                      39 

of the group of Euclidian displacements then, as before, we will be led to the following 
remarkable form: 

W(x0, y0, z0, ξi, ηi, ζi, pi, qi, r i). 
 

The argument will always remain identical to the one that we made in no. 2. 
 If we multiply W by the volume element dx0 dy0 dz0 of the space (M0) then the 
product W dx0 dy0 dz0 that is obtained is an invariant under the group of Euclidian 
displacements that is analogous to the volume element of the medium (M).  Just as the 

common value of the integrals 
0

| |
S

∆∫∫∫  dx0 dy0 dz0, 
S
dx∫∫∫ dy dz, which are taken over 

the interior of a surface S0 in the medium (M0) and the interior of the corresponding 
surface S of the medium (M), respectively, determine the volume of the domain that is 
bounded by the surface S, similarly, upon associating, in that spirit, the notion of action 
for the passage from the natural state (M0) to the deformed state (M), we attach the 
function W to the defining elements of the deformable medium, and we say that the 

integral 
0S
W∫∫∫  dx0 dy0 dz0 is the action of deformation for the interior of the surface S on 

the deformed medium.  On the other hand, we say that W is the density of the action of 
deformation at a point of the deformed medium, when referred to the unit of volume of 
the undeformed medium and that W / | ∆ | is the density of that action at a point, when 
referred to the unit of deformed volume. 
 Consider an arbitrary variation of the action of deformation for the interior of a 
surface (S) on the medium (M), namely: 
 

0S
Wδ ∫∫∫  dx0 dy0 dz0 . 

 
 By virtue of formulas (7) and (8), when extended to the case of three independent 
parameters x0, y0, z0 or ρi (i = 1, 2, 3), and after applying Green’s formula to the terms 
that refer to a derivative with respect to one of the variables ρi explicitly, it becomes, 
upon letting l0, m0, n0 denote the direction cosines with respect to the fixed axes Ox, Oy, 
Oz of the exterior normal to the surface S0, which bounds the medium before 
deformation, and letting dσ0 denote the area element of that surface: 
 

 
0S
Wδ ∫∫∫  dx0 dy0 dz0 

  = 
0

0 0 0 0 0 0 0( )
S

F x G y H z I i J j K k dδ δ δ δ δ δ σ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + + + +∫∫  

  − 
0

0 0 0 0 0 0 0 0 0( )
S

X x Y y Z z L i M j N k dx dy dzδ δ δ δ δ δ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + + + +∫∫∫ , 

 
where one has set: 
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(23) 
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  ∂ ∂ ∂ ∂ ∂ ∂
 ′ = + − + − ∂ ∂ ∂ ∂ ∂ ∂  

∑

∑

 

 

 If we first regard the triple integral that figures in the expression for 
0S
Wδ ∫∫∫  dx0 dy0 

dz0 then we will call the line segments that have their origins at M and whose projections 
onto the axes Mx′, My′, Mz′ are 0X ′ , 0Y′ , 0Z′  and 0L′ , 0M ′ , 0N′  the external force and 

external moment at the point M, respectively, when referred to the volume element of the 
undeformed medium. 

 Upon then regarding the surface integral that figures in 
0S
Wδ ∫∫∫  dx0 dy0 dz0 , we then 

call the line segments that issue from the point M whose projections onto the axes Mx′, 
My′, Mz′ are − 0F ′ , − 0G′ , − 0H ′  and − 0I ′ , − 0J′ , − 0K ′  the external effort and external moment 

of deformation, respectively, at the point M of the surface S, which bounds the deformed 
medium, when referred to the unit of area of the surface S0 .  At a well-defined point M 
of (S), these last six quantities depend upon only the direction of the exterior normal to 
the surface (S).  They remain invariable if the direction of the exterior normal does not 
change when the region considered of (M) varies, and they change sign if the direction is 
replaced with the opposite direction.  Suppose that one traces out a surface (Σ) in the 
interior of the deformed medium that is bounded by (S), which circumscribes a subset (A) 
of the medium, either by itself or along with a portion of the surface (S), and let (B) 



E. and F. COSSERAT – Note on the theory of Euclidian action.                      41 

denote what remains of the medium outside of the subset (A).  Let (Σ0) be the surface of 
(M0) that corresponds to the surface (Σ) of (M), and let (A0) and (B0) be the regions of 
(M0) that correspond to the regions (A) and (B) of (M).  Mentally separate the two subsets 
(A) and (B).  One can regard the two segments (− 0F ′ , − 0G′ , − 0H ′ ) and (− 0I ′ , − 0J′ , − 0K ′ ) 
that are determined for M and for the direction of the normal that is drawn through (Σ0) 
towards the exterior of (A0) as the external effort and moment of deformation, resp., at the 
point M of the frontier (Σ) of the region (A).  One can likewise regard the two line 
segments (+0F ′ , + 0G′ , + 0H ′ ) and (+ 0I ′ , + 0J′ , + 0K ′ ) as the external effort and moment of 

deformation, resp., at the point M of the frontier (Σ) of the region (B).  By reason of that 
remark, we say that − 0F ′ , − 0G′ , − 0H ′  and − 0I ′ , − 0J′ , − 0K ′  are the components along the 

axes Mx′, My′, Mz′ of the effort and moment of deformation, resp., that are exerted at M 
on the portion (A) of the medium (M), and that + 0F ′ , + 0G′ , + 0H ′  and + 0I ′ , + 0J′ , + 0K ′  are 

the components along the axes Mx′, My′, Mz′ of the effort and moment of deformation, 
resp., that are exerted at M on the portion (B) of the medium (M). 
 
 
 17.  Various specifications of the effort and moment of deformation.  Notions of 
energy of deformation and the natural state.  Clapeyron’s theorem. – Set: 
 

iA′  = 
i

W

ξ
∂
∂

, iB′  = 
i

W

η
∂
∂

, iC′  = 
i

W

ζ
∂
∂

, iP′  = 
i

W

p

∂
∂

, iQ′  = 
i

W

q

∂
∂

, iR′  = 
i

W

r

∂
∂

. 

 

iA′ , iB′ , iC′ , iP′ , iQ′ , iR′  represent the projections onto Mx′, My′, Mz′ of the effort and 

moment of deformation, respectively, that are exerted at the point M of a surface that has, 
before deformation, an interior normal at the point M0 that is parallel to the coordinate 
axis Ox, Oy, Oz that corresponds to the index i.  That effort and moment of deformation 
are referred to the unit of area of the undeformed surface.  The new efforts and moments 
of deformations that were just defined are coupled to the elements that were introduced in 
no. 16 by the following formulas: 
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 As in nos. 3 and 12, one can propose to transform the relations that we just wrote 
down independently of the values of the quantities that figure in them that are calculated 
by means of W.  Indeed, instead of defining the line segments that we have attached to the 
point M by their projections onto Mx′, My′, Mz′, we can just as well define them by their 
projections onto other axes. 
 We confine ourselves to the consideration of fixed axes Ox, Oy, Oz.  Let X0, Y0, Z0 
and L0, M0, N0 denote the projections onto these axes of the external force and external 
moment at an arbitrary point M of the deformed medium, and let F0, G0, H0 and I0, J0, K0 
denote the projections of the effort and moment of deformation, respectively, onto a 
surface whose interior normal had the direction cosines l0, m0, n0 before deformation.  Let 
Ai, Bi, Ci and Pi, Qi, Ri denote the projections of the effort ( , , )i i iA B C′ ′ ′  and moment 

( , , )i i iP Q R′ ′ ′  of deformation , respectively.  The transforms of the preceding relations are 

obviously: 
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(27) 

31 2
0

0 0 0

31 2
0

0 0 0

31 2
0

0 0 0

31 2
0 1 2 3 1 2 3

0 0 0 0 0 0 0 0 0

31 2
0 1 2 3 1

0 0 0 0 0 0 0

,

,

,

,

AA A
X

x y z

BB B
Y

x y z

CC C
Z

x y z

PP P y y y z z z
L C C C B B B

x y z x y z x y z

QQ Q z z z x
M A A A C

x y z x y z x

∂∂ ∂= + +
∂ ∂ ∂

∂∂ ∂= + +
∂ ∂ ∂

∂∂ ∂= + +
∂ ∂ ∂

∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= + + + + + − − −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂∂ ∂ ∂ ∂ ∂ ∂= + + + + + − −
∂ ∂ ∂ ∂ ∂ ∂ ∂ 2 3

0 0

31 2
0 1 2 3 1 2 3

0 0 0 0 0 0 0 0 0

,

,

x x
C C

y z

RR R x x x y y y
N B B B A A A

x y z x y z x y z















 ∂ ∂ −

∂ ∂
 ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ = + + + + + − − −
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 

 

(28)    

0 0 1 0 2 0 3

0 0 1 0 2 0 3

0 0 1 0 2 0 3

0 0 1 0 2 0 3

0 0 1 0 2 0 3

0 0 1 0 2 0 3

,

,

,

,

,

,

F l A m A m A

G l B m B m B

H l C m C m C

I l P m P m P

J l Q m Q m Q

K l R m R m R

= + +
 = + +
 = + +


 = + +


= + +
 = + +

 

 
which are relations that are the three-dimensional generalizations of the equations of Lord 
Kelvin and Tait for one and two dimensions, and of the ones that we developed in a 
previous work.  We can transform them in such a fashion as to obtain the generalizations 
of the well-known equations of the theory of elasticity that relate to effort.  Moreover, if 
the surface of the medium (M) that corresponds to the surface S0 of (M0) is always 
indicated by S then we let X, Y, Z, L, M, N denote the projections onto the Ox, Oy, Oz of 
the external force and moment, resp., that are applied to the point M and referred to the 
unit of volume of the deformed medium (M), and let F, G, H, I, J, K denote the 
projections onto Ox, Oy, Oz of the effort and moment of deformation, resp.,  that are 
exerted on S at the point M, when referred to the unit of area of S.  In addition, we 
introduce eighteen new auxiliary functions pxx, …, qxx, … by the formulas: 
 

 ∆ pxx = 1 2 3
0 0 0

x x x
A A A

x y z

∂ ∂ ∂+ +
∂ ∂ ∂

, ∆ qxx = 1 2 3
0 0 0

x x x
P P P

x y z

∂ ∂ ∂+ +
∂ ∂ ∂

, 

 ∆ pyx = 1 2 3
0 0 0

y y y
A A A

x y z

∂ ∂ ∂+ +
∂ ∂ ∂

, ∆ qyx = 1 2 3
0 0 0

y y y
P P P

x y z

∂ ∂ ∂+ +
∂ ∂ ∂

, 
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 ∆ pzx = 1 2 3
0 0 0

z z z
A A A

x y z

∂ ∂ ∂+ +
∂ ∂ ∂

, ∆ qzx = 1 2 3
0 0 0

z z z
P P P

x y z

∂ ∂ ∂+ +
∂ ∂ ∂

, 

 
and analogous formulas that are obtained by replacing A1, A2, A3, pxx, pyx, pzx, P1, P2, P3, 
qxx, qyx, qzx with B1, B2, B3, pxy, pyy, pzy, Q1, Q2, Q3, qxy, qyy, qzy , and then with C1, C2, C3, 
pxz, pyz, pzz, R1, R2, R3, qxz, qyz, qzz, respectively.  It is easy to see that one obtains the 
transformed equations: 
 

(29) 

,

,

,

,

,

,

yxxx zx

xy yy zy

yzxz zz

yxxx zx
yz zy

xy yy zy
zx xz

yzxz zz
xy yx

pp p
X

x y z

p p p
Y

x y z

pp p
Z

x y z

qq q
L p p

x y z

q q q
M p p

x y z

qq q
N p p

x y z

∂ ∂ ∂= + + ∂ ∂ ∂
 ∂ ∂ ∂

= + + ∂ ∂ ∂
 ∂∂ ∂
 = + +

∂ ∂ ∂


 ∂∂ ∂ = + + + −
 ∂ ∂ ∂
 ∂ ∂ ∂ = + + + −
 ∂ ∂ ∂


∂∂ ∂ = + + + − ∂ ∂ ∂

 

 

(30)   

,

,

,

,

,

.

xx yx zx

xy yy zy

xz yz zz

xx yx zx

xy yy zy

xz yz zz

F lp mp np

G lp mp np

H lp mp np

I lq mq nq

J lq mq nq

K lq mq nq

= + +
 = + +
 = + +


 = + +


= + +
 = + +

 

 
 The significance of the eighteen new auxiliary functions pxx, …, qxx, … results 
immediately from the relations that just found.  Indeed, it is clear that the coefficients pxx, 
pxy, pxz of l in the expressions for F, G, H represent the projections onto Ox, Oy, Oz of the 
effort that is exerted at the point M on a surface whose interior normal is parallel to Ox, 
and that the coefficients qxx, qxy, qxz of l in the expressions for I, J, K are the projections 
onto Ox, Oy, Oz of the moment of deformation at M relative to the same surface.  The 
coefficients of m and n give rise to an analogous interpretation in regard to the surfaces 
whose interior normals are parallel to Oy and Oz. 
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 The notions of energy of deformation and natural state again present themselves here 
exactly as they did for the line and surface.  By considering the infinitely small 
deformation, that leads immediately to Clapeyron’s theorem. 
 
 
 18.  The continuous medium of the usual theory of elasticity.  The invariable 
body. – The general remarks that we made at the end of no. 3 in regard to the deformable 
line and at the beginning of no. 5 in the context of the notions of hidden trihedron and 
hidden action extend to not only the deformable surface, but − as we said in no. 13 − also 
to the deformable medium that we presently consider.  Suppose that W depends upon 
only the quantities x0, y0, z0, ξi, ηi, ζi, and not upon pi, qi, r i .  In this case, the equations of 
no. 17 reduce to the following ones: 
 

 X0 = 
0 0 0

0 0 0

W W W
x x xx y z
x y z

∂ ∂ ∂ ∂ ∂ ∂+ +∂ ∂ ∂∂ ∂ ∂∂ ∂ ∂
∂ ∂ ∂

, L0 = − 
1

W

λ
∂
∂

, 

 Y0 = 
0 0 0

0 0 0

W W W
y y yx y z
x y z

∂ ∂ ∂ ∂ ∂ ∂+ +∂ ∂ ∂∂ ∂ ∂∂ ∂ ∂
∂ ∂ ∂

, M0 = − 
2

W

λ
∂
∂

, 

 Z0 = 
0 0 0

0 0 0

W W W
z z zx y z
x y z

∂ ∂ ∂ ∂ ∂ ∂+ +∂ ∂ ∂∂ ∂ ∂∂ ∂ ∂
∂ ∂ ∂

, N0 = − 
3

W

λ
∂
∂

, 

 

in which λ1, λ2, λ3 are three parameters, by means of which one expresses α, α′, …, γ″, 

and W is a function of only x0, y0, z0, 
0

x

x

∂
∂

, …, 
0

z

z

∂
∂

, λ1, λ2, λ3, here; L0 , M0 , N0 have the 

same significance as they did in no. 4. 

 Imagine the case in which the functions L0 , M0 , N0 are zero.  The equations 
1

W

λ
∂
∂

= 

0, 
2

W

λ
∂
∂

= 0, 
3

W

λ
∂
∂

= 0 amount to: 

 

 1 2 3 1 2 3
0 0 0 0 0 0

y y y z z z
C C C B B B

x y z x y z

∂ ∂ ∂ ∂ ∂ ∂+ + − − −
∂ ∂ ∂ ∂ ∂ ∂

= 0, 

 1 2 3 1 2 3
0 0 0 0 0 0

z z z x x x
A A A C C C

x y z x y z

∂ ∂ ∂ ∂ ∂ ∂+ + − − −
∂ ∂ ∂ ∂ ∂ ∂

= 0, 

 1 2 3 1 2 3
0 0 0 0 0 0

x x x y y y
B B B A A A

x y z x y z

∂ ∂ ∂ ∂ ∂ ∂+ + − − −
∂ ∂ ∂ ∂ ∂ ∂

= 0; 

 
i.e., pyz = pzy , pzx = pxz , pxy = pyx , which are relations whose interpretation is immediate. 
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 Having said that, observe, as before, that if one starts with two positions (M0) and (M) 
that are assumed to be given then it can happen that this result presents itself accidentally 
in the case where the three functions L0 , M0 , N0 are zero; i.e., for a certain set of special 

deformed media.  However, it can happen that it presents itself for any sort of deformed 
medium (M) and results from the form of W. 
 Imagine the latter case, which is particularly interesting.  The trihedron is completely 
hidden, and we can also regard the medium as simply point-like.  W is then a simple 
function of ρ1, ρ2, ρ3 , and the six expressions εi, γi that are defined by the formulas of no. 
16, and the equations of no. 17 reduce to either: 
 

 0X ′  = i
i i i i

i i

A
q C r B

ρ
 ′∂ ′ ′+ − ∂ 

∑ , 0F ′  = 0 1 0 2 0 3l A m A n A′ ′ ′+ + , 

 0Y′  = i
i i i i

i i

B
r A p C

ρ
 ′∂ ′ ′+ − ∂ 

∑ , 0G′  = 0 1 0 2 0 3l B m B n B′ ′ ′+ + , 

 0Z′  = i
i i i i

i i

C
p B q A

ρ
 ′∂ ′ ′+ − ∂ 

∑ , 0H ′  = 0 1 0 2 0 3l C m C n C′ ′ ′+ + , 

 
in which one has: 
 

 

,

,

,

i i k j
i j k

i i k j
i j k

i i k j
i j k

W W W
A

W W W
B

W W W
C

ξ ξ ξ
ε γ γ

η η η
ε γ γ

ζ ζ ζ
ε γ γ

 ∂ ∂ ∂′ = ∆ + +   ∂ ∂ ∂  


 ∂ ∂ ∂ ′ = ∆ + +   ∂ ∂ ∂  


 ∂ ∂ ∂ ′ = ∆ + +   ∂ ∂ ∂  

 (i, j, k = 1, 2, 3), 

or to: 

 X0 = 31 2

0 0 0

AA A

x y z

∂∂ ∂+ +
∂ ∂ ∂

, F0 = l0 A1 + m0 A2 + n0 A3 , 

 Y0 = 31 2

0 0 0

BB B

x y z

∂∂ ∂+ +
∂ ∂ ∂

, G0 = l0 B1 + m0 B2 + n0 B3 , 

 Z0 = 31 2

0 0 0

CC C

x y z

∂∂ ∂+ +
∂ ∂ ∂

, H0 = l0 C1 + m0 C2 + n0 C3 , 

 
in which one has: 

 A1 = 1 3 2
0 0 0

x x x

x y z

∂ ∂ ∂Ω + Ξ + Ξ
∂ ∂ ∂

 

 A2 = 3 3 1
0 0 0

x x x

x y z

∂ ∂ ∂Ξ + Ω + Ξ
∂ ∂ ∂
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 A3 = 2 1 3
0 0 0

x x x

x y z

∂ ∂ ∂Ξ + Ξ + Ω
∂ ∂ ∂

, 

and 

 B1 = 1 3 2
0 0 0

y y y

x y z

∂ ∂ ∂Ω + Ξ + Ξ
∂ ∂ ∂

 

 B2 = 3 3 1
0 0 0

y y y

x y z

∂ ∂ ∂Ξ + Ω + Ξ
∂ ∂ ∂

 

 B3 = 2 1 3
0 0 0

y y y

x y z

∂ ∂ ∂Ξ + Ξ + Ω
∂ ∂ ∂

, 

 

 C1 = 1 3 2
0 0 0

z z z

x y z

∂ ∂ ∂Ω + Ξ + Ξ
∂ ∂ ∂

 

 C2 = 3 3 1
0 0 0

z z z

x y z

∂ ∂ ∂Ξ + Ω + Ξ
∂ ∂ ∂

 

 C3 = 2 1 3
0 0 0

z z z

x y z

∂ ∂ ∂Ξ + Ξ + Ω
∂ ∂ ∂

, 

  

upon setting Ωi = 
i

W

ε
∂
∂

, Ξi = 
i

W

γ
∂
∂

, to abbreviate the notation.  Furthermore, let: 

 

 X = yxxx zx
pp p

x y z

∂∂ ∂+ +
∂ ∂ ∂

, F = l pxx + m pyx + n pzx , 

 Y = xy yy zyp p p

x y z

∂ ∂ ∂
+ +

∂ ∂ ∂
, G = l pxy + m pyy + n pzy , 

 Z = yzxz zz
pp p

x y z

∂∂ ∂+ +
∂ ∂ ∂

, H = l pxz + m pyz + n pzz , 

in which one has: 
 

pxx = 
2 2 2

1 2 3 1 2 3
0 0 0 0 0 0 0 0 0

1
2 2 2

x x x x x x x x x

x y y y z z x x x

      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 Ω + Ω + Ω + Ξ + Ξ + Ξ     ∆ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂       

, 

 
and analogous formulas for pyz, …  As one sees, one recovers the deformable continuous 
medium that the usual theory of elasticity is concerned with. 
 A particularly interesting case is obtained by looking for the form that W must take if 

one is to have pyz = 0, pzz = 0, pxy = 0 for any 
0

x

x

∂
∂

, …  One finds that W must be a simple 

function of x0, y0, z0, and the expression ∆ that was defined in no. 15, and one has: 
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pxz = pyy = pzz = 
W∂

∂∆
. 

 

 If one supposes that W depends upon only ∆, and if one sets p = 
W∂

∂∆
, and if X, Y, Z 

are given as functions of  x, y, z then the equations will reduce to the following ones: 
 

X = 
p

x

∂
∂

, Y = 
p

y

∂
∂

, Z = 
p

z

∂
∂

, F = l p,  G = m p, H = n p, 

 
which serve as the basis for hydrostatics.  If the function W is hidden then p is an 
auxiliary function whose significance is well-known. 
 We start with a medium in which W is a function of x0, y0, z0, εi, γi , since the function 
W is hidden.  We can conceive that one directs one’s attention to just those 
transformations of the medium for which one has εi = γi = 0.  It suffices to introduce these 
hypotheses into the definitions of forces, etc., and if the forces are given, to introduce 
these six conditions.  In the latter case, the usual problems, which correspond to being 
given the function W and the general case in which εi, γi are not zero, can be posed only if 
the givens are special.  If we suppose that only the function W0, which is obtained by 
setting εi = γi = 0 in W, is given, and that one does not know the values of the derivatives 
of W with respect to εi, γi for εi = γi = 0 − so W is hidden − then we see that pxx, …, pzz, for 
example, become six auxiliary functions that one must append to x, y, z in such a way that 
in the case where the forces that act on the volume elements are given, we will have nine 
partial differential equations in nine unknowns.  The integral of the system εi = γi = 0 
corresponds to a collective displacement of the medium that is assumed to be deformed in 
a continuous manner.  It therefore remains for us to determine the six integration 
constants and the six auxiliary functions pxx, …, pzz .  One sees that by leaving aside the 
latter, one recovers the usual problems of the mechanics of the invariable body. 
 We can also conceive that one might seek to define a medium sui generis whose 
definition already takes the conditions εi = γi = 0 into account.  Start with the defining 
identity: 
 

 
0S

Wδ∫∫∫ dx0 dy0 dz0 =  

0 0
0 0 0 0 0 0 0 0( ) ( )

S S
F x K k d X x N k dx dy dzδ δ σ δ δ′ ′ ′ ′ ′ ′ ′ ′ ′+ + − + +∫∫ ∫∫∫⋯ … . 

 
This identity must no longer be true when εi = γi = 0, and we will be led to append the 
expression µ1 δε1 + µ2 δε2 + µ3 δε3 + µ4 δγ1 + µ5 δγ2 + µ6 δγ3 to δW in the integral of the 
left-hand side, which contains six auxiliary function µ1, …, µ6 of x0, y0, z0.  We thus fall 
back upon the theory of the medium that corresponds to the function W1 = W + µ1 δε1 + 
µ2 δε2 + µ3 δε3 + µ4 δγ1 + µ5 δγ2 + µ6 δγ3 when we confine ourselves to studying the 
deformations that relate to εi = γi = 0.  If, by a change of auxiliary functions, we take the 
latter conditions into account in W a priori then we must simply apply the theory to the 
function µ1 δε1 + ... + µ6 δγ3 , and upon supposing that µ1, …, µ6 are unknown, we are 
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reduced to a theory of the invariable body of the kind that one can create from the ideas 
of Lagrange. 
 We finally point out a third method of constituting an invariable medium that follows 
Lord Kelvin and Tait, which is always subject to the same equations and which will be a 
limiting case of the original medium.  Moreover, like that of Lagrange, it also applies to 
the various cases of the deformable line and surfaces.  Imagine that the function W that 
serves as the definition of the original medium is variable.  In order to fix ideas, suppose 
that for ε1, …, γ3  that are close to zero W is developable in a MacLaurin series by means 
of the formula: 

W = W1 + W2 + … + Wi + …, 
 

where Wi represents the set of terms of i th degree, and assume that the coefficients of W2 
(which can depend upon x0, y0, z0) can increase indefinitely under their variation.  If we 
desire that W should preserve a finite value then we must suppose that εi, γi tend to zero.  
In other words, we can then consider only the deformations that satisfy εi = γi = 0, and the 
body that we will arrive at in the limit can take on only collective displacements.  We 
make the preceding more precise by regarding the coefficients in W1, W2, … as functions 
of a parameter h such that when h tends to zero the coefficients in W2 increase 
indefinitely; for example, they might be functions that are linear with respect to 1 / h.  On 
the other hand, we suppose x, y, z vary with h in such a manner that when εi, γi are 
developed in positive powers of h, the first terms in the development will be the ones in 

h.  Under these conditions, W will tend to zero, while 
i

W

ε
∂
∂

, 
i

W

γ
∂
∂

 will tend to certain 

limits (which can be functions of x0, y0, z0).  The equations of no. 16 that serve to define 
the external force and moment finally lead us to some formulas in which the notion of the 
function W will have disappeared, and in which six auxiliary functions 0F ′ , 0G′ , 0H ′ , 0I ′ , 

0J′ , 0K ′  will figure. 

 In order to not leave the scope of this note – i.e., in order to remain within the domain 
of mechanics, properly speaking – we must confine ourselves to pointing out that the case 
in which the functions L0, M0, N0 are not zero leads to the consideration of media such 

as the contractible ether of Lord Kelvin, for example.  We also mention that the most 
general case, in which traces of the derivatives of the action W with respect to the 
rotations pi, qi, r i remain in the expressions for the external moment, leads in the most 
natural manner to the notion of magnetic induction that was introduced by Maxwell. 
 
 
 19.  Euclidian action of deformation and motion for a continuous medium in 
motion.  The notion of Euclidian energy of deformation and motion. − What we said 
in no. 15 about the dynamics of the deformable line extends with no difficulty to the 
derivatives of the deformable surface.  Since we shall enter into the statics of media that 
depend upon more than three geometric parameters here, we shall directly present the 
theory of the notion of a deformable, three-dimensional medium.  The functions x, y, z, α, 
α′, …, γ ″ then depend upon x0, y0, z0, t, where the coordinates x0, y0, z0 define the 
position at the instant t0 .  The continuous, three-dimensional set of trihedra Mx′y′z′ for a 
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given value of t will be what we call the deformed state of the deformable medium 
considered at the instant t.  The continuous, four-dimensional set of trihedra Mx′y′z′ that 
is obtained by making t vary will be the trajectory of the deformed state of the 
deformable medium.  In its original state at the instant t, the medium will be said to be in 
the natural state, and its trajectory, when one then makes t vary, will be the trajectory of 
the natural state, or also the natural state of motion of the medium. 
 To the kinematical arguments ξi, ηi, ζi, pi, qi, r i of no. 16, one appends the six new 
arguments: 

(30 bis)  

, ,

, ,

, .

dx dy dz d
p

dt dt dt dt
dx dy dz d

q
dt dt dt dt
dx dy dz d

r
dt dt dt dt

βξ α α α γ

γη β β β α

αζ γ γ γ β

 ′ ′′= + + =

 ′ ′′= + + =

 ′ ′′= + + =


∑

∑

∑

 

 

 We further seek to determine a function W of two infinitely close positions of trihedra 

Mx′y′z′ such that the quadruple integral 0 0 0W dx dy dz dt∫∫∫ ∫ , when taken over an arbitrary 

portion of the space (M0) and the time interval that is found between the instants t1 and t2, 
will have a zero variation when one submits the set of all trihedra on what we have called 
the trajectory of the deformed state to the same arbitrary infinitesimal transformation of 
the group of Euclidian displacements.  We are always led to the remarkable form W(x0, 
y0, z0, t, ξi, ηi, ζi, pi, qi, r i, ξ, η, ζ, p, q, r).  We say that the integral: 

(31)     
2

1 0
0 0 0

t

t S
Wdx dy dz dt∫ ∫∫∫  

 
is the action of deformation and motion in the interior of the surface S on a deformable 
medium and in the time interval that is comprised between the instant t1 and t2 .  On the 
other hand, we say that W is the density of the action of deformation and motion at a 
point of the deformed medium that is taken at a given instant, and referred to the unit of 
volume of the undeformed medium and to the unit of time.  Upon giving ∆ the same 
significance as it had in no. 16, W / | ∆ | will be the density of that action at a point and a 
given instant, when referred to the unit of volume of the deformed medium and the unit 
of time. 
 Consider an arbitrary variation of the action of deformation and motion (31).  By a 
calculation that is completely similar to the one in no. 16, we will be led to formulas such 
as (23), where one must give W its present significance and to the following six new 
formulas: 

(32) A′ = 
W

ξ
∂
∂

,    B′ = 
W

η
∂
∂

,    C′ = 
W

ζ
∂
∂

,    P′ = 
W

p

∂
∂

,    Q′ = 
W

q

∂
∂

,    R′ = 
W

r

∂
∂

. 

 
Moreover, one must add the terms: 
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(33) 

, ,

, ,

, ,

d W W W d W W W W W
q r q r

dt dt p r q

d W W W d W W W W W
r p r p

dt dt q p r

d W W W d W W W W W
p q p q

dt dt r q p

η ζ
ξ ζ η ζ η

ζ ξ
η ζ ζ ξ ζ

ξ η
ζ ζ ξ η ξ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ − + − + − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ − + − + − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ − + − + − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 

 
respectively, to the formulas (24), and we will have: 
 

(34) 

2

1 0

2

0
1

2

1 0

0 0 0

0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

( )

( )

( ) .

t

t S

t

S t

t

t S

S

Wdx dy dz dt

A x B y C z P i Q j R k dx dy dz

F x G y H z I i J j K k d dt

X x Y y Z z L i M j N k dx dy dz dt

δ

δ δ δ δ δ δ

δ δ δ δ δ δ σ

δ δ δ δ δ δ

 ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + + + + +
  

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + + + + +

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− + + + + +

∫ ∫∫∫

∫∫∫

∫ ∫∫
2

1 0

t

t











 ∫ ∫∫∫

 

 
 We call the line segments that have origins at M and whose projections onto the axes 
Mx′, My′, Mz′ are A′, B′, C′ and P′, Q′, R′ the quantity of motion and moment of the 
quantity of motion, respectively, at the point M of the deformed medium (M) at the instant 
t.  We say that the first terms of the external force 0X ′ , 0Y′ , 0Z′  and external moment 0L′ , 

0M ′ , 0N′ , which are given by the right-hand sides of formulas (24), where W must take 

the significance: 
W(x0, y0, z0, t, ξi, ηi, ζi, pi, qi, r i, ξ, η, ζ, p, q, r) 

 
represent the static part of that external force and moment.  The additional terms (33) 
will be the dynamical part.  Moreover, as in no. 17, we can introduce some various way 
of specifying the effort and moment of deformations, as well as the quantity of motion 
and moment of the quantity of motion.  The right-hand sides of formulas (25) will 
constitute the static part of the external force and moment.  The dynamical part that one 
must add to it will be given by the expressions: 
 

 
dA

dt

′
+ qC′ – r B′, dP

dt

′
+ qR′ − rQ′ + ηC′ − ζB′, 

 
dB

dt

′
+ rA′ – pC′, dQ

dt

′
+ rP′ − pR′ + ζA′ − ξC′, 

 
dA

dt

′
+ pB′ – qA′, dR

dt

′
+ qQ′ − qP′ + ξB′ − ηA′. 

 
 The static part of the external force and moment with respect to the axes Ox, Oy, Oz 
will be given by the right-hand sides of formulas (27), and if one lets A, B, C and P, Q, R 
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denote the projections of the quantity of motion and the moment of the quantity of 
motion, respectively, onto the axes Ox, Oy, Oz then the dynamical part will be given by 
the expressions: 

 
dA

dt
, 

dP dy dz
C B

dt dt dt
+ − , 

 
dB

dt
, 

dQ dz dx
A C

dt dt dt
+ − , 

 
dC

dt
, 

dR dx dy
B A

dt dt dt
+ − . 

 
Likewise, to the static part that is represented by the right-hand sides of formulas (29), 
one will add the dynamical part that is defined by the following expressions: 
 

 
1

∆
dA

dt
, 

1 dP C dy B dz

dt dt dt
+ −

∆ ∆ ∆
, 

 
1

∆
dB

dt
, 

1 dQ A dz C dx

dt dt dt
+ −

∆ ∆ ∆
, 

 
1

∆
dC

dt
, 

1 dR B dx A dy

dt dt dt
+ −

∆ ∆ ∆
. 

 
 If we write the equality (34) in the form: 
 

(35)    
2

1 0
0 0 0

t

t S
W dx dy dz dtδ ∫ ∫∫∫ = − δTe  

 
then δTe will be the external virtual work and can be given various expressions according 

to the specifications that were adopted for the effort and moment of deformation, and for 
the quantity of motion and moment of quantity of motion.  Since δW must be identically 
zero for an arbitrary Euclidian virtual displacement, by virtue of the invariance of W 
under the group of Euclidian displacements, one will have the relations: 
 

(36) 

2
2 2

0 1 0 1 0
1

2

0
1

2 2

1 0 1 0

0 0 0 0 0 0 0 0 0

0 0 0

0 0 0 0 0 0 0 0 0 0

0,

( )

( ) ( ) 0,

t t t

S t S t St

t

S t

t t

t S t S

Adx dy dz F d dt X dx dy dz dt

P Cy Bz dx dy dz

I H y G z d dt L Z y X z dx dy dz dt

σ

σ

   + − =   



  + −   


+ + − − + − =

∫∫∫ ∫ ∫∫ ∫ ∫∫∫

∫∫∫

∫ ∫∫ ∫ ∫∫∫

 

 
and some analogous equalities.  One thus obtains the generalization of Saint-Guilhem’s 
theorem, and upon introducing the notion of impulsion, the generalization of the classical 
theory of impulsions. 
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 We remark that the present exposition contains the statics of deformable bodies as a 
special case.  Indeed, it suffices to consider a reversible virtual modification of the action, 
in the sense of Duhem, instead of imagining, as we just did, a realizable virtual 
modification. 
 This observation will lead us to the notion of energy of deformation and motion.  We 
propose to determine the work that is done by the external forces and moments and the 
efforts and external moments of deformation during an arbitrary time interval for a real 
modification.  For this, it will suffice for us to calculate the elementary work that relates 
to the time dt.  The latter is: 
 

0 0
0 0 0 0 0 0 0( ) ( )

S S
X Y dx dy dz F G d dtξ η ξ η σ ′ ′ ′ ′+ + − + +

  ∫∫∫ ∫∫⋯ ⋯ . 

 
If one replaces 0X ′ , 0Y′ , …, 0F ′ , 0G′ , … with their expressions as functions of the action 

and if one performs a calculation that is inverse to the one that led to their definition then 
one will obtain immediately, by virtue of the Codazzi equations: 
 

0
0 0 0S

dE W
dx dy dz dt

dt t

 ∂  +  ∂  
∫∫∫ , 

upon setting: 

(37)  E = 
W W W W W W

p q r
p q r

ξ η ζ
ξ η ζ

∂ ∂ ∂ ∂ ∂ ∂+ + + + +
∂ ∂ ∂ ∂ ∂ ∂

 − W. 

 
 If one considers, in particular, the case in which W does not contain t explicitly, in 

such a way that 
W

t

∂
∂

 is zero, then the preceding value becomes the derivatives with 

respect to time of the expression: 

0S
E∫∫∫  dx0 dy0 dz0 , 

 
which can be called the energy of deformation and motion at the instant t. 
 At the point to which we have arrived in our exposition, we can make some important 
general remarks that will once more find their application in the theory of the Euclidian 
action in what follows. 
 The only notion of Euclidian action of deformation and motion that suffices for us 
provides – in a very extended case – a constructive definition of the quantity of motion 
and moment of the quantity of motion, the effort and the moment of deformation, and of 
the external force and moment.  The distinction that we have made between the 
dynamical part and the static part of the external force and moment, which amount to 
grouping, on the one hand, the terms that contain only dynamical acceleration, and on the 
other hand, the terms that contain only what one can call the kinematical acceleration, 
obviously express an extension of d’Alembert’s principle.  Likewise, the reasoning that 
we made in order to arrive at the notion of energy of deformation and motion shows that 
there is a sort of separation of that energy into two parts – the one dynamical, and the 
other, kinematical.  If we suppose that the external work done is zero then the energy of 
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deformation and motion will be constant, and consequently, the total dynamical and 
kinematical energy will remain constant in time.  We thus obtain the notion of 
conservation of energy, which simply translates into the hypothesis that the medium is 
isolated from the external world.  We recover, in turn, all of the fundamental ideas of 
classical mechanics, and it is obvious that the particular form that it takes in the latter 
case leads one to envision only the state of motion and deformation that is infinitely close 
to the natural state, where one supposes that the action W and its derivatives are zero. 
 We can further remark that the deductive path that we have followed sidesteps the 
objection that Carnot already raised a century ago against the reverse progress in classical 
mechanics.  In it, the force and analogous quantities are a priori notions.  True, the 
dynamical force can receive a definition in such a way that it expresses the second law of 
motion that was posed by Newton in his Principia.  Likewise, if one prefers, static force 
can be regarded as defined by Hooke’s law when the deformation is infinitely small, as 
Reech has proposed.  Finally, the force that relates to the state of deformation and motion 
can be expressed by d’Alembert’s principle.  However, one must further submit to 
definitions that possess a certain arbitrary and contingent character, such as saying that it 
must verify the principle of the conservation of energy a priori in due course, and one 
can only postpone the difficulty by introducing energy as a metaphysical notion.  The 
same thing is not true for the Euclidian action from which we have derived everything, 
since it analogous to the distance between two infinitely close points, and consequently 
translates into simply the idea of measure in the world of phenomena, and in a manner 
that has been consecrated by all past experiments, moreover. 
 Finally, it appears that the generality of the form of the action that we adopted in our 
exposition, and which corresponds to an arbitrary state of motion and deformation, is 
found to be justified, not only by the consideration of the critical phenomena of motion 
and deformation, but also by the fact that it introduces the regular and uniform method 
that one must follow by definition, even when one confines oneself to a state that is 
infinitely close to the natural state in order to establish or verify the conservation of 
energy. 



IV.  –  EUCLIDIAN ACTION AT A DISTANCE. 
THE ACTION OF CONSTRAINT AND DISSIPATIVE ACTION.  

 
 
 20.  Euclidian action of deformation and motion for a discontinuous medium. – 
Consider a discrete system of n trihedra, in which each trihedron is distinguished by an 
index i that consequently takes the values 1, 2, …, n.  Let i i i iM x y z′ ′ ′  be the trihedron 

whose index is i and whose summit Mi will have the coordinates xi, yi, zi, and the axes 

i iM x′ , i iM y′ , i iM z′  will have the direction cosines αi, iα ′ , iα ′′ , βi, iβ ′ , iβ ′′ , γi, iγ ′ , iγ ′′  with 

respect to the three fixed rectangular axes Ox, Oy, Oz.  We suppose that the quantities xi, 
yi, zi, αi, …, iγ ′′  are functions of time t, and we introduce the six arguments ξi, ηi, ζi, pi, qi, 

r i that are defined by the formulas (30) with the index i. 
 Imagine a function W of two infinitely close positions of the system of trihedra 

i i i iM x y z′ ′ ′ ; i.e., a function of t, xi, yi, zi, αi, …, iγ ′′ , and their first derivatives with respect 

to t (when i takes the values 1, 2, …, n).  We propose to determine the form that W must 
take in order for that function to remain invariant under all infinitesimal transformations 
of the group of Euclidian displacements such as (9).  Observe that the relations (30) 
permit one to express − by means of well-known formulas − the first derivatives of the 
nine cosines αi, iα ′ , …, iγ ′′  with respect to t in terms of these cosines and pi, qi, r i , and on 

the other hand, to express the nine cosines αi, iα ′ , …, iγ ′′  in terms of ξi, ηi, ζi, and the 

first derivatives of xi, yi, zi with respect to t.  We can thus finally express the function W 
that we seek as a function of t, xi, yi, zi, and their first derivatives, and finally of ξi, ηi, ζi, 
pi, qi, r i, which we indicate by writing: 
 

W = , , , , , , , , , , , ,i i i
i i i i i i i i i

dx dy dz
W t x y z p q r

dt dt dt
ξ η ζ 

 
 

. 

 
 Since the variations δξi, δηi, δζi, δpi, δqi, δr i are zero in the present case, as this 
would result from the well-known theory of the moving trihedron, we must write the new 
form of W, by virtue of formulas (9), when taken with the index i, and for any a1, a2, a3, 
ω1, ω2, ω3: 

i i i
i i i

i i ii i i i

dx dy dzW W W W W W
x y z

dx dy dzx y z dt dt dt
dt dt dt

δ δ δ δ δ δ

 
 ∂ ∂ ∂ ∂ ∂ ∂+ + + + + ∂ ∂ ∂ ∂ ∂ ∂
 

∑  = 0. 

 

 Replace δxi, δyi, δzi with their values in (9) and idx

dt
δ , idy

dt
δ , idz

dt
δ  with the values 

that one deduces by differentiation, and equate the coefficients of a1, a2, a3, ω1, ω2, ω3 to 
zero.  One then gets the following conditions: 
 

(38)   
i i

W

x

∂
∂∑  = 0, 

i i

W

y

∂
∂∑  = 0, 

i i

W

z

∂
∂∑  = 0, 
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and 

(39)   i i
i i

i ii i i

dy dzW W W W
y z

dz dyz y dt dt
dt dt

 
 ∂ ∂ ∂ ∂− + − ∂ ∂ ∂ ∂
 

∑  = 0, 

 
with two analogous relations. 
 If we suppose that the points (xi, yi, zi) can describe all possible trajectories then we 
will arrive at some identities that are verified by the function W of 6n arguments xi, yi, zi, 

idx

dt
, idy

dt
, idz

dt
, and some further arguments ξi, ηi, ζi, pi, qi, r i, which we can leave aside 

for the moment.  We seek to exhibit the form that results for W. 
 We commence by treating the case of the system of three equations: 
 

(40)    

1

1

1

0,

0,

0,

p

i i
i i i

p

i i
i i i

p

i i
i i i

W W
y z

z y

W W
z x

x z

W W
x y

y x

=

=

=

  ∂ ∂− =  ∂ ∂ 
  ∂ ∂ − =  ∂ ∂ 
  ∂ ∂ − = 
 ∂ ∂ 

∑

∑

∑

 

 
which determine a function W of 3n arguments xi, yi, zi .  We have already encountered 
this system in the context of the dynamics of a point and the statics of a line, and of the 
surface and continuous, three-dimensional medium in the cases where p = 1, p = 2, p = 3, 
respectively.  We leave aside the case of p = 1, where the three equations reduce to two.  
For p = 2 and p = 3, we have three equations that define a complete system.  For p = 2, 
we have three equations, six variables, and three independent solutions: 
 

2 2 2
i i ix y z+ +  (i = 1, 2), x1 x2 + y1 y2 + z1 z2 . 

 
 For p = 3, we have three equations, nine variables, and six independent solutions: 
 

2 2 2
i i ix y z+ +  (i = 1, 2, 3), xi xj + yi yj + zi zj  (i, j = 1, 2, 3). 

 
 For p > 3, the system is still complete.  In order to prove this, it suffices to show that 
it admits 3p – 3 independent solutions, since the number of equations is 3, and the 
number of variables is 3p.  Now, we first have essentially the p solutions: 
 

2 2 2
i i ix y z+ +  (i = 1, 2, …, p), 

and then the solution: 
x1 x2 + y1 y2 + z1 z2, 

and finally the 2(p − 2) solutions: 
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x1 xi + y1 yi + z1 zi , x2 xi + y2 yi + z2 zi  (i = 3, 4, 5, …, p), 
 

which are all independent.  W is then a function of the 3(p − 1) independent arguments 
that we just enumerated. 
 We now return to the proposed system that was defined the conditions (38) and (39).  
The conditions (38) prove that W depends upon x1, …, xn, y1, …, yn, z1, …, zn only by the 
intermediary of the expressions: 
 
 X2 = x2 – x1, X3 = x3 – x1, …, Xn = xn – x1, 
 Y2 = y2 – y1, Y3 = y3 – y1, …, Yn = yn – y1, 
 Z2 = z2 – z1, Z3 = z3 – z1, …, Zn = zn – z1 . 
 
 On the other hand, set: 
 

idx

dt
= Xn+i , idy

dt
= Yn+i , idz

dt
= Zn+i , 

 
and write that equations (39) are verified by the function W of the arguments X2, X3, …, 
X3n ; Y2, Y3, …, Y3n ; Z2, Z3, …, Z3n .  For example, consider the first of equations (39).  It 
becomes: 
 

 − y1 
2 3 n

W W W

Z Z Z

 ∂ ∂ ∂+ + + ∂ ∂ ∂ 
⋯  + z1 

2 3 n

W W W

Y Y Y

 ∂ ∂ ∂+ + + ∂ ∂ ∂ 
⋯   

+ (y1 + Y2) 
2

W

Z

∂
∂

− (z1 + Z2) 
2

W

Y

∂
∂

+ … = 0. 

 
y1 and z1 disappear, and what remains is the first of the equations: 
 

 
2

1

n

i i
i i i

W W
Y Z

Z Y=

 ∂ ∂− ∂ ∂ 
∑   = 0, 

 
2

1

n

i i
i i i

W W
Z X

X Z=

 ∂ ∂− ∂ ∂ 
∑  = 0, 

 
2

1

n

i i
i i i

W W
X Y

Y X=

 ∂ ∂− ∂ ∂ 
∑   = 0. 

 
We thus fall back upon the system (40), where xi, yi, zi are replaced with Xi+1, Yi+1, Zi+1, 
and p is replaced with 2n – 1. 
 If we first suppose that n = 2 then we will see that W is – abstracting from the 
arguments ξi, ηi, ζi, pi, qi, r i – a function of the independent expressions: 
 
   2 2 2

2 2 2X Y Z+ +  = (x2 – x1)
2 + (y2 – y1)

2 +(z2 – z1)
2, 
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   2 2 2
3 3 3X Y Z+ +  = 

2 2 2

1 1 1dx dy dz

dt dt dt
     + +     
     

= 2 2 2
1 1 1ξ η ζ+ + , 

   2 2 2
4 4 4X Y Z+ +  = 

2 2 2

2 2 2dx dy dz

dt dt dt
     + +     
     

= 2 2 2
2 2 2ξ η ζ+ + , 

 

  X2 X3 + Y2 Y3 + Z2 Z3 = (x2 – x1) 1dx

dt
 + (y2 – y1) 1dy

dt
 +(z2 – z1) 1dz

dt
, 

  X2 X4 + Y2 Y4 + Z2 Z4 = (x2 – x1) 2dx

dt
 + (y2 – y1) 2dy

dt
 +(z2 – z1) 2dz

dt
, 

  X3 X4 + Y3 Y4 + Z3 Z4 = 1 2 1 2 1 2dx dx dy dy dz dz

dt dt dt dt dt dt
+ + . 

 
 Therefore, we finally have that W is a function of t, ξi, ηi, ζi, pi, qi, r i, and the four 
arguments: 

(x2 – x1)
2 + (y2 – y1)

2 + (z2 – z1)
2, 

(x2 – x1) 1dx

dt
 + (y2 – y1) 1dy

dt
 + (z2 – z1) 1dz

dt
, 

(x2 – x1) 2dx

dt
 + (y2 – y1) 2dy

dt
 + (z2 – z1) 2dz

dt
, 

1 2 1 2 1 2dx dx dy dy dz dz

dt dt dt dt dt dt
+ + . 

 
 If we suppose that n > 2 then we will see that W is − abstracting from the arguments 
ξi, ηi, ζi, pi, qi, r i – a function of 6(n – 1) independent expressions: 
 

 2 2 2
i i iX Y Z+ +   = 

2 2 2
1 1 1

2 2 2
2 2 2

either ( ) ( ) ( ) ( 1,2, , ),

or ,

i i i

k k k
k k k

x x y y z z i n

dx dy dz

dt dt dt
ξ η ζ

 − + − + − =

      + + = + +      

     

…

 

 
X2 X3 + Y2 Y3 + Z2 Z3  = (x2 – x1) (x3 – x1) + (y2 – y1) (y3 – y1) + (z2 – z1) (z3 – z1), 
 

X2 Xi + Y2 Yi + Z2 Zi  = 
2 1 1 2 1 1 2 1 1

2 1 2 1 2 1

either ( )( ) ( )( ) ( )( ),

or ( ) ( ) ( ) ,

i i i

k k k

x x x x y y y y z z z z

dx dy dz
x x y y z z

dt dt dt

− − + − − + − −

 − + − + −

 

 

X3 Xi + Y3 Yi + Z3 Zi  = 
3 1 1 3 1 1 3 1 1

3 1 3 1 3 1

either ( )( ) ( )( ) ( )( ),

or ( ) ( ) ( ) .

i i i

k k k

x x x x y y y y z z z z

dx dy dz
x x y y z z

dt dt dt

− − + − − + − −

 − + − + −

 

 
 We remark that one has: 
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(xi – xj) (xi – xk) + (yi – yj) (yi – yk) + (zi – zj) (zi – zk) = 2 2 21
2 ( )ij ik kjr r r+ − , 

 
where r is the distance between two points of the system.  By reason of symmetry, one 
might have to make arguments that are not independent figure in W, and one can take 
then the following arguments independently of ξi, ηi, ζi, pi, qi, r i : 
 
 2

ijr  = (xi – xj)
2 + (yi – yj)

2 + (zi – zj)
2, 

 ψij = j j ji i i
dx dy dzdx dy dz

dt dt dt dt dt dt
+ + , 

 λijk = (xi – xj) kdx

dt
 + (yi – yj) kdy

dt
 + (zi – zj) kdz

dt
. 

 
The last ones consist of arguments λiji  with two indices and arguments λijk with three 
indices.  The latter figure only when there are more then two points, and one sees that in 
this case the action on two points is influenced by all of the other points.  It is easy to 
establish the very complex relations that exist between these non-independent arguments.  
They are analogous to the known relations between the distances r ij when the number of 
points is ≥ 5. 
 If we know the expression for the Euclidian action W on the system of trihedra 
considered then we can easily, by a calculation that repeats what we have done 
previously, find the expression for the external force and moment on an arbitrary 

trihedron.  Since the action W is a function of xi, yi, zi , idx

dt
, idy

dt
, idz

dt
 by the 

intermediary of r ij, ψij, λijk , it is convenient to first regard W as a function of xi, yi, zi , 

idx

dt
, idy

dt
, idz

dt
and of ξi, ηi, ζi, pi, qi, r i .  We will have: 

 

 
2

1

t

t
W dtδ ∫  

 = 
2

1

(
t

i i i i i i i i i i i i
i t

A x B y C z P i Q j R kδ δ δ δ δ δ + + + + + 
 
∑  

  − 
2

1

( )
t

i i i i i i i i i i i it
i

X x Y y Z z L i M j N k dtδ δ δ δ δ δ+ + + + +∑∫ , 

 
upon setting: 
 

 Ai = i i i
i i i

W W Wα β γ
ξ η ζ

∂ ∂ ∂+ +
∂ ∂ ∂

, Pi = i i i
i i i

W W W

p q r
α β γ∂ ∂ ∂+ +

∂ ∂ ∂
, 

 Bi = i i i
i i i

W W Wα β γ
ξ η ζ

∂ ∂ ∂′ ′ ′+ +
∂ ∂ ∂

, Qi = i i i
i i i

W W W

p q r
α β γ∂ ∂ ∂′ ′ ′+ +

∂ ∂ ∂
, 

 Ci = i i i
i i i

W W Wα β γ
ξ η ζ

∂ ∂ ∂′′ ′′ ′′+ +
∂ ∂ ∂

, Ri = i i i
i i i

W W W

p q r
α β γ∂ ∂ ∂′′ ′′ ′′+ +

∂ ∂ ∂
, 



E. and F. COSSERAT – Note on the theory of Euclidian action.                      60 

where (Ai, Bi, Ci) and (Pi, Qi, Ri) are the quantity of motion and the moment of the 
quantity of motion, respectively, of the trihedron with index i, and: 
 

 Xi = i

i i

dA d W W
dxdt dt x
dt

 
 ∂ ∂+ −  ∂ ∂
 

, Li = i i i
i i

dP dy dz
C B

dt dt dt
+ − , 

 Yi = i

i i

dB d W W
dydt dt y
dt

 
 ∂ ∂+ −  ∂ ∂
 

, Mi = i i i
i i

dQ dz dx
A C

dt dt dt
+ − , 

 Zi = i

i i

dC d W W
dzdt dt z
dt

 
 ∂ ∂+ −  ∂ ∂
 

, Ni = i i i
i i

dR dx dy
B A

dt dt dt
+ − , 

 
where (Xi, Yi, Zi) and (Li, Mi, Ni) are the external force and external moment, respectively, 
of the trihedron with index i.  In these calculations, one sees that it is easy to exhibit the 
arguments r ij, ψij, λijk . 
 We remark that the expression for the external force is found to decompose into two 
parts: The first one, which depends upon the line segments (Ai, Bi, Ci) and (Pi, Qi, Ri), and 
their derivatives, is the properly dynamical part, while the second one, which results from 
the presence of the arguments r ij, ψij, λijk in W, corresponds to the force that the trihedron 
with index i is subjected to under the influence of all the other trihedra of the system.  
Consider the expression: 
 

 i i i
i i i

i

dx dy dz
X Y Z

dt dt dt
 + +


∑  

+ ]( ) ( ) ( )i i i i i i i i i i i i i i i i i i i i iL p q r M p q r N p q r dtα β γ α β γ α β γ′ ′ ′ ′′ ′′ ′′+ + + + + + + + , 

 
which represents the sum of the elementary works that are done by the forces that are 
applied to the various trihedra.  If we calculate them by replacing Xi, Yi, Zi, Li, Mi, Ni with 
the preceding values then we will find the following expression for the elementary work 
that relates to the dynamical part of the external force and external moment: 
 

 i i i i i i
i i i i i i

d W W W W W W
p q r

dt p q r
ξ η ζ

ξ η ζ
  ∂ ∂ ∂ ∂ ∂ ∂+ + + + +  ∂ ∂ ∂ ∂ ∂ ∂ 

∑  

− i i i

i i i

d d drW W W
dt

dt dt r dt

ξ η
ξ η

 ∂ ∂ ∂+ + +  ∂ ∂ ∂ 
⋯ , 

 
which is analogous to what we have already obtained in no. 19, and the elementary work 
that is done by the forces that are exerted between the trihedra of the system: 
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 i i i

i i ii

dx dy dzd W W W
dx dy dzdt dt dt dt
dt dt dt

  
  ∂ ∂ ∂+ +  
  ∂ ∂ ∂
  

∑  

− 
2 2 2

2 2 2
i i i i i i

i i i i i i

d x d y d z dx dy dzW W W W W W
dt

dx dy dzdt dt dt x dt y dt z dt
dt dt dt

 
 ∂ ∂ ∂ ∂ ∂ ∂+ + + + +  ∂ ∂ ∂  ∂ ∂ ∂
 

. 

 
 If we add these two expressions, and if we set: 
 

E = i i i
i i i i i i

i i ii i i i i i i

dx dy dzW W W W W W W W W
p q r W

dx dy dzp q r dt dt dt
dt dt dt

ξ η ζ
ξ η ζ

 
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + + + + + + − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 

∑  

 
then we will see that the sum of the elementary works is: 
 

dE + 
W

t

∂
∂

dt. 

 
 Upon supposing that W is independent of t and giving E the name of energy of motion 
and position for the system in question, we will obtain a proposition that is entirely 
analogous to the one in no. 19. 
 It is easy to deduce a dynamical law for systems from the foregoing that is established 
on the same plane as in classical mechanics, without having to restrict oneself to 
envisioning central forces, as one does in that theory.  Moreover, the present exposition 
has the advantage of giving the true origins to the various laws of force and distance that 
were studied by Gauss, Riemann, Weber, and Clausius, which all introduce just the 
arguments r ij, ψij, λijk .  We shall not insist upon this point, which leaves the traditional 
scope of mechanics, and which is mainly of interest to theoretical physics. 
 
 
 21.  The Euclidian action of constraint and the dissipative Euclidian action. – 
The considerations that we just developed in regard to the Euclidian action at a distance 
lead to the notion of constraint in a most natural manner, which is due to Gauss and was, 
as one knows, applied by Hertz to the study of the foundations of mechanics by following 
a path that was already traversed by Beltrami, R. Lipschitz, and G. Darboux. 
 To simplify, let there be given a point that describes a trajectory that is defined by 
three functions x0, y0, z0 of time t when its motion is free.  On the other hand, let x, y, z 
denote the functions of time t that define the trajectory when it is subject to constraints.  
We can envision the two points (X, Y, Z), (X0, Y0, Z0) whose coordinates are obtained, for 
example, from the formulas: 
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 X = x + 
2

2
2

1

2

dx d x
dt dt

dt dt
+ , X0 = x0 + 

2
20 0

2

1

2

dx d x
dt dt

dt dt
+ , 

 Y = y + 
2

2
2

1

2

dy d y
dt dt

dt dt
+ , Y0 = y0 + 

2
20 0

2

1

2

dy d y
dt dt

dt dt
+ , 

 Z = z + 
2

2
2

1

2

dz d z
dt dt

dt dt
+ , Z0 = y0 + 

2
20 0

2

1

2

dz d z
dt dt

dt dt
+ , 

 
which come from the Taylor development, when it is limited to the first three terms.  
Upon assuming that the constraints are frictionless, one can write that at the instant t 
considered, one will have: 
 

x = x0,     x = x0,     x = x0,     
dx

dt
= 0dx

dt
,     

dy

dt
= 0dy

dt
,     

dz

dt
= 0dz

dt
. 

 
 Having said that, after having considered the Euclidian action at a distance U1(r) for 
the two points (X, Y, Z) and (X0, Y0, Z0), whose separation we denote by r, the 
introduction of the notion of constraint that is due to Gauss amounts to replacing r with 
its value, in such a way that one is led to the function U of the argument γ that is defined 
by the formula: 

2γɺ  = 
2 2 22 2 22 2 2

0 0 0
2 2 2 2 2 2

d x d y d zd x d y d z

dt dt dt dt dt dt

     
− + − + −     

     
. 

 
 If we then apply the method of variable action then we will get: 
 

δU = 
2 2 22 2 2

0 0 0
2 2 2 2 2 2

d x d y d zd x d y d z
X Y Z

dt dt dt dt dt dt
δ δ δ δ δ δ
     

− + − + −     
     

, 

by setting: 
 

X = 
22

0
2 2

1 d xdU d x

d dt dtγ γ
 

− 
 

, Y = 
22

0
2 2

1 d ydU d y

d dt dtγ γ
 

− 
 

, Z = 
22

0
2 2

1 d zdU d z

d dt dtγ γ
 

− 
 

. 

 
 If, with Gauss, one calls the argument γ the constraint then the force X, Y, Z can be 
called the force of constraint that is applied to the point (x, y, z), and can be regarded as 
having the effect of preventing the motion of the point from being free.  On the contrary, 
the force – X, − Y, − Z is applied to the point (x0, y0, z0) in order to bring about the 
transformation from free motion into constrained motion. 
 The essential difference between the present conception of force and the one that 
results from Newton’s laws of motion is the following: In the latter, one considers the 
action that relates to two infinitely close positions – the one, present, the other, future – 
on the same trajectory.  In the way that Gauss and Hertz looked at things, the action is 
referred to two future positions, one of which is on the trajectory that is called the free 
one, while the other is on the trajectory that is called the constrained one.  In the two 



E. and F. COSSERAT – Note on the theory of Euclidian action.                      63 

cases, one obviously has a theory that permits one to predict a future motion, which is the 
objective of the dynamics of a point.  However, in addition – and this is the point that we 
would like to demonstrate especially – the action is Euclidian. 
 On this subject, it is interesting to remark that Gauss has explicitly established an 
agreement between the action of constraint and the law of errors, which does indeed have 
the same form.  One thus sees that the fundamental character of the law of errors is the 
Euclidian invariance of that law, and that the new branch of mechanics that was created 
by Maxwell, Boltzmann, and W. Gibbs under the name of statistical mechanics can 
likewise take on the deductive form that we have tried to give to ordinary mechanics 
here. 
 We can further observe that the forces of constraint can just as well translate into the 
mechanics that one deduces from the ideas of Newton as in the mechanics that one can 
deduce from the Gauss’s notion of constraint, which is an indeterminacy that is produced 
in the definition of force, and which leads one to introduce the Lagrange multipliers. 
 Gauss’s idea can also be applied to friction by imagining a Euclidian action on the 
two points: 

 X = x + 
dx

dt
dt, X0 = x0 + 0dx

dt
dt, 

 Y = y + 
dy

dt
dt, Y0 = y0 + 0dy

dt
dt, 

 Z = z + 
dz

dt
dt, Z0 = z0 + 0dz

dt
dt, 

 
where the point x0, y0, z0 is referred to a free trajectory and the point x, y, z, to a trajectory 
that is traversed with friction.  As it amounts to a sliding friction here, one must set x = 

x0, y = y0, z = z0, 
dx

dt
= µ 0dx

dt
,
dy

dt
 = µ 0dy

dt
, 

dz

dt
 = µ 0dz

dt
.  One is then led to an action 

that is a function of the velocity v0 = 
2 2 2

0 0 0dx dy dz

dt dt dt
     + +     
     

 that is affected with the 

factor 1 – µ, which describes precisely the notion of dissipation of the free action at the 
point x0, y0, z0 . 
 The arguments r ij, ψij, λijk that we have considered in no. 20 translates definitively an 
analogous idea in regard to a trihedron that is assumed to be isolated in the system of n 
trihedra that is envisioned.  One can, if one prefers, distinguish these arguments and say 
that r ij is a potential argument, while ψij, λijk are dissipative.  The central-force hypothesis 
thus amounts to considering only the dynamics of systems without friction at a distance 
in mechanics.  On the other hand, one can derive the special argument drij / dt of Weber 
from the arguments r ij, ψij, λijk , and if one passes from the discontinuous medium to a 
continuous medium, the conception of which is based upon considering the ds2 of space, 

then one is then led to introduce the viscosity arguments 1d

dt

ε
, 2d

dt

ε
, 3d

dt

ε
, 1d

dt

γ
, 

2d

dt

γ
, 3d

dt

γ
 into the action W.    Aside from such arguments, which were envisioned for 

the first time by Navier and Poisson, one must obviously also present arguments such as 
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the mixed argument ξ1 ξ2 + η1 η2 + ζ1 ζ2 that was at issue in no. 15.  We confine 
ourselves to these summary observations about viscosity, which has not been studied in a 
sufficiently systematic manner up to now, moreover. 



V. – THE EUCLIDIAN ACTION FROM THE EULERIAN VIEWPOIN T. 
 
 

 22.  The action of deformation and motion of a continuous medium from the 
Eulerian viewpoint.  The notion of the radiation of energy. – In the statics and 
dynamics of deformable continuous media, we took the independent variables to be x0, y0, 
z0, and x0, y0, z0, t, respectively.  In the case of statics, x0, y0, z0 were the coordinates of 
the point M0 of the natural state (M0).  In the case of dynamics, x0, y0, z0 were the 
coordinates at the instant t0 of the point M0 that became the point M at time t.  The 
independent variables that we thus considered were the Lagrange variables. 
 One can now imagine that one performs a change of variables on the independent 
variables.  In particular, by analogy with what one does in hydrodynamics, one can take 
x, y, z or x, y, z, t to be the new independent variables, and with this particular choice one 
has what one calls the Euler variables.  x0, y0, z0, α, α′, …, γ″ then become functions of x, 
y, z or of x, y, z, t according to whether one is dealing with statics or dynamics, 
respectively. 
 Along with the Lagrange variables, we have considered the Euclidian arguments ξi, 
ηi, ζi, pi, qi, r i, ξ, η, ζ, p, q, r.  Along with the Euler variables, we envision the new 
arguments (ξi), (ηi), (ζi), (pi), (qi), (r i); (ξ), (η), (ζ), (p), (q), (r).  We shall define them and 
show that they are, like the former, Euclidian invariants.  Upon recalling that x0 = ρ1, y0 = 
ρ2, z0 = ρ3, set: 

  [ξi] = i

x

ρ∂
∂

, [ηi] = i

y

ρ∂
∂

, [ζi] = i

z

ρ∂
∂

, 

 [p1] = 
x

βγ ∂
∂∑ , [q1] = 

y

βγ ∂
∂∑ , [r1] = 

z

βγ ∂
∂∑ , 

 
with analogous formulas for [p2], [q2], [r2] and [p3], [q3], [r3] that are obtained by first 
changing γ, β into α, β and then into β, α.  The arguments (ξi), (ηi), (ζi) will be the 
projection onto the axes Mx′, My′, Mz′ of the vector whose projections onto the axes Ox, 
Oy, Oz are [ξi], [ηi], [ζi].  Similarly, (pi), (qi), (r i) will be the projections onto the axes 
Mx′, My′, Mz′ of the vector whose projections onto the axes Ox, Oy, Oz are [pi], [qi], [r i].  
In addition, in the case where there is motion, we take: 
 

 (ξ) = 1

t

ρ∂
∂

, (η) = 2

t

ρ∂
∂

, (η) = 3

t

ρ∂
∂

, 

 (p) = 
x

βγ ∂
∂∑ , (q) = 

y

βγ ∂
∂∑ , (r) = 

z

βγ ∂
∂∑ . 

 
It is easy to see that one has: 
 

ξi (ξi) + ηi (ηi) + ζi (ζi) = 1, ξj (ξk) + ηj (ηk) + ζj (ζk) = 0 (j ≠ k), 
 

(ξ) + ξ (ξ1) + η (η1) + ζ (ζ1) = 0 
(η) + ξ (ξ2) + η (η2) + ζ (ζ2) = 0 
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(ζ) + ξ (ξ3) + η (η3) + ζ (ζ3) = 0, 
and then: 

(p1) = ( )i i
i

p ξ∑ ,  (q1) = ( )i i
i

p η∑ ,  (r1) = ( )i i
i

p ζ∑ , 

 
with analogous formulas for (p2), (q2), (r2) and (p3), (q3), (r3) that are obtained by first 
changing pi into qi, and then into r i .  Finally: 
 

(p) = p1(ξ) + p2(η) + p3(ζ) + p, 
 

with analogous formulas for (q) and (r) that are obtained by changing p, pi into q, qi, and 
then into r, r i .  One sees that the Eulerian arguments, being functions of only the 
Lagrangian arguments, are indeed also Euclidian invariants. 
 Suppose that W, which we call the Lagrangian action density, is expressed by means 
of the Eulerian arguments (ξi), (ηi), (ζi), (pi), (qi), (r i), (ξ), (η), (ζ), (p), (q), (r), and set: 
 

W = Ω ∆. 
 
We call Ω, which will have the remarkable form: 
 

Ω[x0, y0, z0, t, (ξi), (ηi), (ζi), (pi), (qi), (r i), (ξ), (η), (ζ), (p), (q), (r)], 
 
the Eulerian action density.  The action will take the form: 
 

2

1

t

t
Ω∫ ∫∫∫  dx dy dz dt. 

 
When the integration over x, y, z is taken, as before, over the volume that is bounded by 
the surface S of the deformed medium – i.e., a domain that varies with time – we will get 
the Lagrangian action.  On the contrary, if the integration is taken over a fixed domain 
that is independent of t then we will get the Eulerian action. 
 In order to apply the calculus of variations to an action that is taken in one or the 
other of the forms that we just pointed out, it is convenient − following the example of 
Poincaré − to establish the following distinction between the variations that a function V 
of x, y, z, t can receive.  From the Eulerian viewpoint, the function V experiences a 
variation that we will denote by (δV) and which is due to a change of the function.  From 
the Lagrangian viewpoint, it experiences the variation: 
 

δV = (δV) + 
V V V

x y z
x y z

δ δ δ∂ ∂ ∂+ +
∂ ∂ ∂

, 

 
that one can call the total – or Lagrangian − variation.  The special role that is played in 
the present theory by the functions x0, y0, z0 of x, y, z, t translates into writing that their 
Lagrangian variations are zero, in such a way that one will have three formulas such as 
the following one: 
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0 = (δx0) + 0 0 0x x x
x y z

x y z
δ δ δ∂ ∂ ∂+ +

∂ ∂ ∂
. 

 
 A distinction that is analogous to the preceding one must be made between the 
derivatives with respect to time of the function V.  The Eulerian derivative is what one 
usually distinguishes by the symbol ∂V / ∂t.  As for the total – or Lagrangian – derivative, 
it is expressed by the formula: 
 

dV

dt
= 

V V dx V dy V dz

t x dt y dt z dt

∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂

. 

 

 The sign δ commutes with 
0x

∂
∂

, 
0y

∂
∂

, 
0z

∂
∂

, 
d

dt
, and the sign (δ) commutes with 

x

∂
∂

, 

y

∂
∂

, 
z

∂
∂

, 
t

∂
∂

.  Similarly, in a Lagrangian integral whose domain varies with time, one 

cannot invert the integration with respect to t and the system of integrations that relate to 
x, y, z.  One can make that inversion only when one is dealing with the variables x0, y0, z0, 
and the integrations by parts must be true for the Lagrangian derivatives d / dt.  For an 
Eulerian integral, one can invert the integration with respect to t and the integration with 
respect to the field of variables x, y, z, and when that inversion has been performed, the 
integration with respect to time must be done by imagining that x, y, z are constant.  The 
integrations by parts must refer to the derivatives ∂ / ∂t, and not the derivatives d / dt. 
 First, consider the Lagrangian action.  Its variation will be: 
 

2

1

( )
t

t
δ δ∆ Ω + Ω ∆∫ ∫∫∫ dx0 dy0 dz0 dt = 

2

1

t

t

δδ ∆ Ω + Ω ∆ 
∫ ∫∫∫  dx dy dz dt, 

 

or furthermore, upon remarking that 
δ∆
∆

= 
x y z

x y z

δ δ δ∂ ∂ ∂+ +
∂ ∂ ∂

: 

 

2

1

t

t

x y z

x y z

δ δ δδ
  ∂ ∂ ∂Ω + Ω + +  ∂ ∂ ∂  

∫ ∫∫∫  dx dy dz dt. 

 
 If one carries out the calculations along the same lines as in no. 19, and takes into 
account the remarks that we just made a moment ago then one will recover the formulas 
that we already know: 
 

 X = 
1yxxx zx

pp p dA

x y z dt

∂∂ ∂+ + +
∂ ∂ ∂ ∆

, 

 Y = 
1xy yy zyp p p dB

x y z dt

∂ ∂ ∂
+ + +

∂ ∂ ∂ ∆
, 
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 Z = 
1yzxz zz

pp p dC

x y z dt

∂∂ ∂+ + +
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, 

 

 L = 
1yxxx zx

yz zy

qq q dP C dy B dz
p p

x y z dt dt dt

∂∂ ∂+ + + − + + −
∂ ∂ ∂ ∆ ∆ ∆

, 

 M = 
1xy yy zy

zx xz

q q q dQ A dz C dx
p p

x y z dt dt dt

∂ ∂ ∂
+ + + − + + −

∂ ∂ ∂ ∆ ∆ ∆
, 

 N = 
1yzxz zz

xy yx

qq q dR B dx A dy
p p

x y z dt dt dt

∂∂ ∂+ + + − + + −
∂ ∂ ∂ ∆ ∆ ∆

, 

 
 F = l pxx + n pyx + n pzx , 
 G = l pxy + n pyy + n pzy , 
 H = l pxz + n pyz + n pzz , 
 
 I  = l qxx + n qyx + n qzx , 
 J  = l qxy + n qyy + n qzy , 
 K = l qxz + n qyz + n qzz . 
 
 However, if one sets, by analogy with the notations of no. 16: 
 

 ( )iA′  = 
( )iξ
∂Ω

∂
, ( )iB′  = 

( )iη
∂Ω

∂
, ( )iC′  = 

( )iζ
∂Ω

∂
, 

 (A′)   = 
( )ξ

∂Ω
∂

, (B′)   = 
( )η

∂Ω
∂

, (C′)   = 
( )ζ
∂Ω

∂
, 

 

 ( )iP′  = 
( )ip

∂Ω
∂

, ( )iQ′  = 
( )iq

∂Ω
∂

, ( )iR′  = 
( )ir

∂Ω
∂

, 

 (P′)   = 
( )p

∂Ω
∂

, (Q′)   = 
( )q

∂Ω
∂

, (R′)   = 
( )r

∂Ω
∂

, 

 
where ( )iA′ , ( )iB′ , ( )iC′ , ( )iP′ , ( )iQ′ , ( )iR′ , (A′), (B′), (C′), (P′), (Q′), (R′) define four 

vectors, respectively, that are referred to the axes Mx′, My′, Mz′, where we denote the 
components with respect to Ox, Oy, Oz by [Ai], [Bi], [Ci], [Pi], [Qi], [Ri], [A], [B], [C], 
[P], [Q], [R], respectively, then one will find that: 
 

 
A

∆
= − (A′)[ξ1] − (B′)[ξ2] − (A′)[ξ3] − (P′)[p1] − (Q′)[p2] − (R′)[p3] , 

 

 pxx = Ω − [A1] [ξ1] − [A2] [ξ2] − [A3] [ξ3] − [P1] [p1] − [P2] [p2] − [P3] [p3] − 
A dx

dt∆
, 
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 pyx = Ω − [B1] [ξ1] − [B2] [ξ2] − [B3] [ξ3] − [Q1] [Q1] − [Q2] [p2] − [Q3] [p3] − 
A dy

dt∆
, 

 pzx = Ω − [C1] [ξ1] − [C2] [ξ2] − [C3] [ξ3] − [R1] [p1] − [R2] [p2] − [R3] [p3] − 
A dz

dt∆
, 

 
with analogous formulas for B, C, and pxy, pyy, pzy, pxz, pyz, pzz .  In addition: 
 

 qxx = α [P1] + β [P2] + γ [P3] − 
P dx

dt∆
, 

 qyx = α [Q1] + β [Q2] + γ [Q3] − 
P dy

dt∆
, 

1
P

∆
= [P], 

 qzx = α [R1] + β [R2] + γ [R3] − 
P dz

dt∆
, 

 
with analogous formulas for Q, R, and qxy , qyy , qzy , qxz , qyz , qzz .  These results are also 
obtained by directly transforming the formulas of no. 19 by means of the relations 
between the Lagrangian arguments and the Eulerian arguments that were discussed 
above. 
 We can likewise obtain the density of energy that corresponds to the notion of 
Lagrangian action by one or another of the paths that we just pointed out.  We have seen 
that when it is referred to the space of x0, y0, z0 this density is: 
 

W W W W W W
p q r

p q r
ξ η ζ

ξ η ζ
∂ ∂ ∂ ∂ ∂ ∂+ + + + +
∂ ∂ ∂ ∂ ∂ ∂

− W. 

 
This same density, when it is referred to the space of x, y, z and expressed by means of 
the function Ω of the Eulerian arguments (ξi), (ηi), (ζi), (pi), (qi), (r i); (ξ), (η), (ζ), (p), (q), 
(r), is: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

p q r
p q r

ξ η ζ
ξ η ζ

∂Ω ∂Ω ∂Ω ∂Ω ∂Ω ∂Ω+ + + + +
∂ ∂ ∂ ∂ ∂ ∂

− Ω. 

 
 In no. 19, we found that the elementary work that was done by the external forces and 
external moments, as well as the external efforts and moments of deformations that were 
exercised on a portion (M) of the medium that occupied the portion (M0) of the natural 
state at the instant t had the expression: 
 

0
0 0 0S

dE
dx dy dz dt

dt
 
 
 
∫∫∫ , 

 
in which W is supposed to be independent of t.  The same result persists if one considers 
a fixed region(M) of space.  Therefore, if we observe that we have the following identity: 
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1 dE

dt∆
= 

E E dx E dy E dz

t x dt y dt z dt

∂ ∂ ∂ ∂       + + +       ∂ ∆ ∂ ∆ ∂ ∆ ∂ ∆       
, 

 
which was employed by Poincaré and which is applied to an arbitrary function, then we 
will arrive at the following expression for the new elementary work: 
 

S

E
dx dy dz

t

∂
∂ ∆
∫∫∫  + 

S

E dx E dy E dz
dx dy dz dt

x dt y dt z dt

 ∂ ∂ ∂     + +       ∂ ∆ ∂ ∆ ∂ ∆       
∫∫∫ , 

or 

S S

E E dx dy dz
dx dy dz l m n d dt

t dt dt dt
σ ∂  + + +  ∂ ∆ ∆   

∫∫∫ ∫∫ . 

 
 The double integral that figures in the coefficient of dt corresponds to what one can 
call the energy flux of deformation and motion that traverses the fixed surface S in the 
deformed body. 
 Now, consider the action from the Eulerian viewpoint.  It is, first of all, interesting to 
confirm that the values of the external forces and external moments remain the same, but 
that the following terms disappear in the expressions for the efforts pxx, pyx, pzx : 
 

πxx = Ω − 
A dx

dt∆
, πyx = Ω − 

B dy

dt∆
, πzx = Ω − 

C dz

dt∆
, 

 
and the following terms in the expressions for the moments of deformation qxx, qyx, qzx : 
 

χxx = − 
P dx

dt∆
,  χyx = − 

Q dy

dt∆
,  χzx = − 

R dz

dt∆
, 

 
with analogous expressions for the quantities πxy , πyy , …, χxy , χyy , …  It results from this 
that the elementary work that is obtained in the preceding case must be augmented with a 
new surface integral, which has the expression: 
 

 2 2 21
( )( )

S

dx dy dz
l m n lA mB nC

dt dt dt
ξ η ζ

   Ω + + − + + + +   ∆ 
∫∫  

− 
1

( )( )p q r lP mQ nR d dtξ η ζ σ + + + + ∆  
. 

 
 One can call this new integral the radiant energy flux that traverses the frontier S of 
the deformed body. 
 The argument that was made in no. 19 and was founded upon the Euclidian 
invariance of the action density will no longer lead to the same conclusions (36) in regard 
to the external forces and moments, as well as in regard to the new external efforts and 
moments of deformation.  One can express this by saying that the new efforts and 
moments of deformation no longer satisfy what Poincaré called the principle of reaction.  
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As one knows, this latter conclusion is likewise reached in the electrical theories of 
Lorentz.  However, the existence of the radiation that we just exhibited permits us to 
reconcile the efforts and moments of deformation πxx, πyx, ,,,, χxx, χyx, … with those of 
Maxwell using considerations that are inferred from the electromagnetic theory of light, 
and which Bartoli, in the context of thermodynamics, has called the pressure of radiant 
energy, so that one can therefore once more respect the principle of reaction. 
 
 

________________ 
 

 
 


