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FOREWORD

This volume contains the development of a summatg on theThéorie de I'action
euclidiennethat APPELL has seen fit to introduce in tH¥ &dition of hisTraité de
mécanique rationelle. The reproduction of an appendix to the French editiothef
Traité de physiquef CHWOLSON, explains several peculiarities of théiegl and the
reference that we make to a prior work on the dynamiche point and rigid body,
which is likewise combined with the work of the Russiavasd We profited from that
new printing by correcting several mistakes in our text.

We do not seek to actually deduce all of the consequemt¢ks general results that
we will arrive at; throughout, we strive only to redigeo and clarify the classical
doctrines. In order for this sort of verification d¢iettheory of the Euclidian action to
appear more complete in each of the parts of our exposie will have to establish the
form that the equations of deformable bodies take when isnémited to the
consideration ofnfinitely close stateshowever, this is a point that we have already
addressed, with all of the necessary details, inRsamiere mémoire sur la Théorie de
I'élasticité that we wrote in 1896Anhnales de la Faculté des Sciences de Touldumage
X). We suppose, moreover, that the masterful lessb@ DARBOUX on theThéorie
générale des surfacese completely familiar to the reader.

Our researches will make sense only when have shownohe may envision the
theories of heat and electricity by following the patttive follow. We dedicate two
notes in tomes Ill and IV of the treatise of CHWOUS®@ this subject. Thsubdivision,
to use the language of pragmatism, appears to be a scieetiessity; nevertheless, one
must not lose sight of the fact that it solves gravestjues. We have attempted to give
an idea of these difficulties in our note on feéorie of corps mincepublished in 1908
in the Comptes Rendus de I'Acadie des Sciences and whose substance was also
indicated by APPELL in his treatise.

E. & F. COSSERAT
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THEORY

OF

DEFORMABLE BODIES

By Messr<E. and F. COSSERAT

|. - GENERAL CONSIDERATIONS

1. Development of the idea of a continuous medium.The notion of a deformable
body has played an important role in the developmemhedretical physics in the last
century, and FRESNEL) has to be regarded as the equal of NAVIER, POISS@H, a
CAUCHY (® as one of the precursors to the present theory sffi@tg. At the time of
these savants, under the influence of Newtonian ida@s,considered only discrete
systems of points. With the memorable research dBBEEN {), continuous systems
of points appeared. One has since attempted to enlargietdseof GREEN, which are
insufficient to give the theory of luminous wavesthit it requires. In particular, LORD
KELVIN (% is associated with defining a continuous medium in whiofoeent may be
exerted at any point. The same tendency has been attriiot the school of
HELMHOLTZ (°), and the contradiction, due to J. BERTRANY) i regard to the
theory of electromagnetism, is quite characteri€boe may return to the origin of this

! FRESNEL. -Oeuvres compléteRaris, 1886; see the introduction by I. VERDET.

2 See ISAAC TODHUNTER and KARL PEARSON.A History of the Theory of Elasticity and the
Strength of Materials, fronGALILEI to the present timé/ol. I, GALILEI to SAINT-VENANT, 1886;
Vol. Il, Part | and Il, SAINT-VENANT to LORD KELVIN 1893. This remarkable work contains a very
complete and very precise analysis of the work of thedersof the theory of elasticity.

® G. GREEN. Math. Papersedited by N.M. FERRERS, facsimile reprint, Paris, &ridann, 1903.

* LORD KELVIN. - Math. and phys. Papersplume |, 1882; vol. Il, 1884; vol. lll, 189®eprint of
Papers on Electrostatics and Magnetis?f ed. 1884Baltimore Lectures on Molecular Dynamics and the
Wave Theory of Light1904; W. THOMSON and P.G. TAITTreatise on Natural Philosophyl® ed.
Oxford 1867; ¥ ed. Cambridge 1879-1883.

> HELMHOLTZ. - Vorles. iiber die Dynamik diskreter MassenpunBetlin 1897;Vorles. iber die
electromagnetische Theorie des Lichtespzig 1897;Wiss. Abhand|.3 vol. Leipzig, 1892-1895.

® J. BERTRAND. -C.R.73, pp. 965,75, pp. 860;77, pp. 1049; see also H. POINCAHH|ectricité et
Optique, I, Les théories delELMHOLTZ et les experiences ##ERTZ, Paris, 1891, pp. 51°%&d. 1901,
pp. 275.



2 Mechanics of Deformable Bodies

evolution, which was, on the one hand, the conceptsuéige introduced in the theory of
the resistance of materials by BERNOULLI and EULER &nd, on the other hand,
POINSOT's theory of coupled)( One is therefore naturally led to unite the various
concepts of deformable bodies that one considers todaatural philosophy into a
single geometric definition. A deformable line is a continuous one-parameter set of
triads, a deformable surface is a two-parameter set, and a deformablemmisda three-
parameter set(p); when there is motion, one must add time t to these geometric
parametersg . As one knows, the mathematical continuity tha¢ supposes in such a
definition leaves the trace of an invariant solid umgjeal at every point. As a result, one
may anticipate that the well-known moments that Haeen studied in line and surface
elasticity since EULER and BERNOULLI, and which LORDEKVIN and
HELMHOLTZ have sought to find in three-dimensional medamll appear in the
mechanical viewpoint.

2. Difficulties presented by the inductive method irmechanics.- The primary
form of mechanics is inductive; this is what one neatlycgees in the theory of
deformable bodies. This theory imprinted propositiors thlate to the notion of static
force on the mechanics of invariable bodies, which ogm@ies by the principle of
solidification; next, the relation between effort awm@formation was established
hypothetically (generalized Hooke’s law), and one soughtpsteriori, the conditions
under which energy is conserved (GREEN). A century @4&RNOT () pointed out
the problem with that method: that one constantly appea priori notions and that the
path that one follows is not always certain. Indekd,static force has no constructive
definition in our classical form for mechanics, and tfmportance of the revision that
REECH {9 has proposed in regards to that in 1852 has remainedylangeicognized

" See TODHUNTER and PEARSONOQ. cit.

& AUGUST COMPTE. Cours de Philosophie positive5" ed. Paris, 1907, Tome I, page 338: “No matter
what the fundamental qualities of the conception of F&IN that relate to statics may be in reality, one
must nevertheless recognize, it seems to me, thsat #bove all, essentially destined, by its nature, to
represent the quintessence of dynamics; moreover, indrdgathat, one may be assured that this
conception has not exerted its ultimate influence upisgohint in time.”

® CARNOT, in his 1783Essai sur les machines en généraho foresaw in 1803Jes Principes
fondamentaux de I'équilibre et du mouvemesdiight to reduce mechanics to precise definitions and
principles that were completely devoid of any metaphysicaftacter and vague terms that the philosophers
dispute to no avail. This reaction took CARNOT adittbo far, since it led him to contest the legitimacy of
the notion of force, a notion that was obscure acogrtth him, and for which he would like to substitute
the idea of motion exclusively. By the same reasorfirgyould not accept as rigorous any of the known
proofs of the force parallelogram rule: “the very existe of the word force in the stated proposition
renders this proof impossible by the very nature ofghi’ (Cf. COMBES, PHILLIPS, and COLLIGNON,
eds. Exposé de la situation de la mécanique appliqRéeis 1867).

10 F. REECH. Cours de Mécanique, d’aprés la nature généralement flexible eigélastes corpsParis
1852. This work was written by the illustrious marine aagr in order to revise the teaching of mechanics
at 'Ecole Polytechnique. His ideas have been discussétef by J. ANDRADE] econs de mécanique
physique Paris, 1898, and by marine engineer in chief, MARBEC, irel@mentary course imechanics
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up to our present time. Perhaps this is due to the arabig uncertainty that elasticians
have about making Hooke’s law one of the rationahftations. Analogous reservations
alrle, moreover, manifest in almost the same formlinfahe other domains of physics
).

To avoid these difficulties, HELMHOLTZ has attemptedcbnstruct what one calls
energeticswhich rests on the least action principle and orsme idea of energy; force,
whatever its origin, then becomes a secondary nofi@eductive origin. However, the
principle of a minimum in natural phenomen3 @nd the concept of energ¥)(itself are
things we replace on account of the defects of the induatethod. Why a minimum,
and what definition can be given to energy if one wdwde not merely a physical
theory, but a truly mechanical theory? HELMHOLTZ daes appear to have responded
to these questions. Nonetheless, he has contributesl coopletely than anyone before
him to establishing the distinction between two notions #ipgpear to agree in classical
dynamics: energy and action. We believe it is gttt that we must begin with in order
to describe the viewpoint of HELMHOLTZ with full preasi, and to give mechanics,
or, more generally, theoretical physics, a perfectudave form.

3. Theory of the Euclidian action. - When one is concerned with the motion of a
point, the essential element that enters into thaitleh of the action is the Euclidian
distance between two infinitely close positions of ti@ving point. We have previously
shown ¢ that one can deduce all of the fundamental definitiondasisical mechanics
from this notion alone, such as those of the quantityation, of force and of energy.

We actually propose to establish that one may followdantical path in the study of
static or dynamic deformations of discrete systefpomnts and of continuous bodies
and that one thus arrives at the constructiongdreeral theory of action on the extension

at 'Ecole de Maistrance de Toulon (1906). See alsordinP&raité de Chimie physique, les Principes,
Paris 1903.

' The remarks of LORD KELVIN, in hiBaltimore Lecturepp. 131, on the work of BLANCHET, is
particularly interesting in this regard; he points out P@SSON, CORIOLIS, and STURM(R.7, pp.
1143), as well as CAUCHY, LIOUVILLE and DUHAMEL (1841) hamecepted the 36 coefficients that
BLANCHET introduced into the generalized Hooke law withobjeotion. LORD KELVIN has also
argued against WEBER’s law of force at a distance fronsainee viewpoint in the®ledition ofNatural
Philosophy. More recently, the application of the static adimbtiw to the study of waves of finite
amplitude was criticized by LORD RAYLEIGH for the saneasons, and one knows that HUGONIOT has
proposed a dynamic adiabatic law.

12 MAUPERTUIS himself has warned of the danger of thegiple that he introduced into mechanics
when he wrote in 1744: “We do not know very well whag dbjective of Nature is, and we may
misunderstand the quantity that we will regard as its icothe production of its effects.” LAGRANGE
first had the intention of making the least actiomgple the basis for hignalytical mechanicsbut, much
later, he recognized the superiority of the method thadisted of considering the virtual works.

13 HERTZ,Die Prinzipien der Mechanik, etcl894; see the introduction, in particular.

4 Note sur la dynamique du point et du corps invariabtene |, page 236.



4 Mechanics of Deformable Bodies

and the motionwhich embraces all that is directly subject to @#&d of mechanics in
theoretical physics.

Here, the action will likewise be a function of twements that are infinitely close
elements, both in time and in the space of the medamsidered. Upon introducing the
condition of invariance into the groups of Euclidian dispiments and defining the
medium that we indicated in sectidrthe action density at a point will have the same
remarkable form as the one that we have already encountered in the dyranthe
point and the invariable bodyWith the notations of theecons of DARBOUX, let (,

i, ¢), (pi, G, 1) be the geometric velocities of translation and rotabf the elementary
triad, and let £ 77, {), (p, q, r), be the analogous velocities relative to the motibthe
triad. The action will be the integral:

[T Wt .60 P66 PG, -+, D it

It will suffice to consider the variation of thaiction if we are to be led to the
definition of the quantity of motion and to thosé tbe effort and the moment of
deformation, of force and external moment, andllfmao those of the energy of
deformation and motion, by the intermediary of nioéion of work.

In that theory, statics becomes entirely auton@nathich conforms to the views of
CARNOT and REECH. For this, one will have to takdy an action densityV that is
independent of the velocities, (7, ) and ¢, q, 1, i.e., to consider a bodwithout
inertia, or again, a body endowed with an inertia, butlendondition that we regard the
deformation as seversible transformatiomn the sense of DUHEM. On the other hand,
upon appealing to the notion bidden argumentsne will recover all of the concepts of
mechanical origin that are employed in physics.r &ample, those of flexible and
inextensible line, flexible and inextensible sugfaand of invariable body, as well as the
less particular definitions that have been propofedthe deformable line from D.
BERNOULLI and EULER up to THOMSON and TAIT, for thieformable surface from
SOPHIE GERMAIN and LAGRANGE up to LORD RAYLEIGH, dnfor the
deformable medium from NAVIER and GREEN up to LORBLVIN and W. VOIGT.

Upon envisioning deformation and motion at the s@ime one will arrive at the idea
that contains d’Alembert’s principle in a purelyddetive manner, a principle that relates
only to the case whetbe action of deformation is completely separatenfithe kinetic
action. Finally, if one suppose that the deformable bisdyot subject to any action from
the exterior world, and if one introduces, in tuthe fundamental notion dgolated
systempf which DUHEM {°), and subsequently LE ROY?| have seen the necessity in
the rational construction of theoretical physicse avill be naturally led to the idea of a
minimum that HELMHOLTZ took for his point of depare, at the same time as the
appearance of the principle of the conservatioerargy, which is at the basis for our
present scientific system.

5 p. DUHEM. -Commentaire aux principes de la Thermodynamid882;la Théorie physique, its objet
et sa structurel906.

8 E. LE ROY. -La Science positive et les philosophies de la libert¢, Corigtéde PhilosophieT. |,
1900.
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Apparently, one will thus ultimately avoid all of tkficulties, as well as the trial and
error of inductive research, as we have previously said.

4. A critique of the principles of mechanics: In the form that we just sketched out,
the theory of Euclidian action makes a primary contidn to the critique of the
principles of mechanics.

Its generality permits us to foresee that there iagukar phenomena for the action of
the motion, as well as in the deformation of theemsion; for example, the speed of
solids in the plastic state or when close to a ruptumd that of fluids under great efforts
(*"). Under ordinary circumstances, this generality mayduluced by the consideration
of states that are infinitely close to the naturalestthis is a point that we discussed in
our preceding note.

However, one may also suppose that one or more diomsnsf the deformable body
becomes infinitely small and envision what one might @aslender body(*?). This
notion was developed in 1828 by POISSON and also, a ke, lby CAUCHY:; their
objective, as of all of the elasticians that wereupted with that arduous question later
on, was to establish a passage between the distinctebedrbodies of one, two, and
three dimensions. One knows that one very impogpant of the work of BARRI de
SAINT-VENANT and of KIRCHHOFF is attached to the dission of the research of
POISSON and CAUCHY. Nevertheless, these savantdatardtheir disciples, have not
extricated themselves from the veritable difficulty the question. This difficulty
consists in the fact thafenerally the zero value of the parameter that was introduced is
not an ordinary point, as was assumedif)ISSONand CAUCHY, nor even a pole, but
an essential singular poinfThis important fact justifies the separate stodiyhe line, the
surface and the medium that is found in the present Wdjrk (

In concluding these preliminary observations we remagt the theory of the
Euclidian action rests on the notiondffferential invariant,taken in its simplest form. If
one enlarges this notion in such a manner as to understandeth of adifferential
parameterthen modern theoretical physics appears as an immeghakengation of
mechanics, properly speaking, the Eulerian viewpointand one is naturally led to the
principles of the theory of heat and to present etectoctrines. This new field of
research, in which we commence to enter into the dedtuctithe idea of the radiation of
energy from the consideration of deformable bodiels,b&iexplored more completely in
an ultimate work. We may thus introduce a new precisiga the views of H.

" E. and F. COSSERAT .Sur la mécanique générale, CR5, pp. 1139, 1907.
18 E. and F. COSSERAT .Sur la théorie des corps minces, CIR6 pp 169, 1908.

9 1t is true that the interest and the importance oftikeries of the deformable line and surface are poorl
appreciated nowadays; there is no place for them iEniegclopédie des Sciences mathématiques pures et
appliguées,which is presently published in Germany. W. THOMSON a#dT are guarded about
omitting them from theiNatural Philosophyand they are presentbéforethe theory of the elastic body

in three dimensions; similarly for P. DUHEMydrodynamique, Elasticité, Acoustiqurgris, 1891.



Mechanics of Deformable Bodies

LORENTZ (% and H. POINCARE?#) on the subject of what one calls tenciple of
reactionin mechanics.

2 H, LORENTZ. -Versuch einer Theorie der electrischen und optischen ErsheiniingBewegten

Korpern, Leiden 1895; reprinted in Leipzig in 190@&bhandl. gber theoretische Physii§07;Encyklop.
Der Math. WissenschafteYl,, Elektronen theorie]1903.

2L H. POINCARE. Electricité et Optique?™® ed., 1901, pp. 448.



Il. - STATICS OF THE DEFORMABLE LINE

5. Deformable line. Natural state and deformed state. Consider a curveMp)
that is described by a poilt; whose coordinates, Yo, Zo with respect to the three fixed
rectangular axe®x, Oy, Oz are functions of the same parameter, which we suppose i
the sequel to be the arc lengthof the curve, measured from a definite origin in some
definite sense. Add to each poi of the curve o) a tri-rectangular triad whose
axeM x,,M,y,, M, 2z, have the direction cosines,a,,a,,8,,8y:80:Vo:Ve'Vo
respectively, with respect to the axeg, Oy, Oz, and which are functions of the same
parametes,.

The continuous one-dimensional set of such tritis;y,zwill be what we call a
deformable line.

Give a displacememiipM to the pointMy. Letx, y, z be the coordinates of a poivit
with respect to the fixed ax&3x, Oy, Oz In addition, endow the triaM ,x;y,z,with a

rotation that will ultimately make these axes agred whibse of a triadMXy Z that we
affix to the pointM. We define this rotation upon giving the axis(, My, MZ the
direction cosinesy,a’,a",3.,8 .8" .y .V /' with respect to the fixed ax€¥, Oy, Oz

The continuous one-dimensional set of trislds/Zwill be what we call the

deformed statef the deformable line, which, when consideredsrprimitive state, will
be called thenatural state.

6. Kinematical elements that relate to the states of thdeformable line.- Suppose
that $ varies and that, for the moment, we make it pegyrble of time. Upon employing
the notations of DARBOUX?), we denote the projections of the velocity of tigin
Mo onto the axedM x;, M, Y,, M Z,by &, o, &, and the projections of the velocity of

instantaneous rotation of the trisld x; y; Z, onto the same axes by, do, ro. We denote
the analogous quantities for the tridg'y' Zwhen one refers it, like the triadl ,x; Y, Z,, to

the fixed triadOxyzby ¢, n, {, and p, q, r.
The elements that we introduced are calculatatearhabitual fashion; in particular,
one has:

22 G. DARBOUX. -Lecons sur la théorie générale des surfades,, Paris, 1887.
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A . dy . dz o= yd[)’:_ ’[),dy,
5—0’d%+a d% +a d%, Z d% z d%

dx , , dy ,, dz dy da

1 = + + , 2 = — =— —_—,
(1) nﬁdd% ﬁ((ijso ﬁg% () andSO Vas
_ ., ox y . 0z da dg

C_y +V +V ' = - =- L

ds, ~ ds ds, r Zl[”d% ad%'

With these quantities, the linear elemedstof the curve described by the poMtis defined by
the formula:

ds’ = (&% +n% +¢%)ds.

Denote the projections of the segméentl onto the axesdvix, My, MZby X', y',Z', in such a
way that the coordinates of tliged pointO with respect to these axes ar&',-y,-Z2. We
have the well-known formulas:

gt_%_qz'.}.ry’:o’ ”—ﬂ—rx’+ pz’:o’ C—E—py'+qx':0,
ds, ds, ds,

which give the new expressions #@r7, {.

7. Expressions for the variations of the velocities of tratation and rotation of the triad
relative to the deformed state.- Suppose that one endows each of the triadseofléfiormed
state with an infinitely small displacement thatymaary in a continuous fashion with these
triads. Denote the variations ofx,y,zX,y,z;a,a',---,y" by & oy, &
X,oy', o', oa,da’, ..., 0", respectively. The variatiod®,oa’,---,0)" are expressed by
formulas such as the following:

oa = XK' - yd)',

by means of the three auxiliary variablés,d’, K" whjch are the components of the well-

known instantaneous rotation attached to the itefinsmall displacement under consideration,
relative taMx’,My',Mz' . The variationgdx, dy, dz are the projections of the infinitely small

displacement experienced ByontoOx, Oy, Oz the projection®'x,d'y,d zof this displacement
onto Mx' ,My ,MZ are deduced immediately, and have the values:

(6) OX=X+7ZAd"-y XK', 0z=¢'+xXXK'-2'a’, 0z=3&'+yad"'-xX&K'

We propose to determine the variatia¥s dn, o, &, A, & that are experienced &y 7, {, p,
g, r. From formulas (2), we have:
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Z( dJ,B |

d%

dy doy
: oa ,
a=3|Laraly

a
Z{Eaﬁwd—% .

a

If we replaceda by its value XK' - yA)',and da’,---,dy" by their analogous values,

then we get
@ &= iqa-ra, @=9%ra-pa
ds, ds,
&:chK +pd’'-qd’,

Similarly, formulas (4) give us three formulas, whéhe first one is:

55_(;&*_(1&: r@'+2'dﬁ]—y'd’.
S

If we replacedp, &, &, by their values as given by formulas (7) thenol&ain:

of =ndK' - ¢Ad’ +%+q5§<—r5y

(14) 5= - &K + dz)yﬂay— 052,

5c=5d1'—nd'+%+p5’z—q5x

where we have introduced the three symbols,d',dz which are defined by formulas
(6), to abbreviate the notation.

8. Euclidian action of deformation on a deformable line- Consider a functiolV
of two infinitely close positionsf the triad Mx'y Z, i.e., a function of, of X, y, z, a,

a',---,)y",and of their first derivatives with respect to Ve propose to determine what
the form ofW must be in order for the integral:

des),
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when taken over an arbitrary portion of the liny), to have a null variation when one
subjects the set of all the triads of the deformable, liaken in its deformed state,the
same arbitrary infinitesimal transformation from the group of Euclideaplatements.

By definition, this amounts to determinikigin such a fashion that one has:

AWN=0

when, on the one hand, the oridihof the triad Mx'y Z is subject to an infinitely small
displacement whose projectiods dy, oz on the axe®©x, Oy, Ozare:

&=(a, +w,z-wy)&,
(15) oy = (a, + WX~ w,2)&,
= (a; +wy - wX)4&,

whereay, ay, as, W, &, ax are six arbitrary constant adtlis an infinitely small quantity
that is independent &, and where, on the other hand, the tliddy Z is subjected to an

infinitely small rotation whose components along thkes®x, Oy, Oz are:
wd, ad, wd.

Observe that, in the present case, the variatdfirn, o, o, A, & of the six
expressionst, 17, ¢, p, q, r are null, since this results from the well-knownatye of
moving triads, and as we have, moreover, verified imately by means of formulas (7)
and (8), upon replacing’x,d’l by their present values:

. ox=a(a tw,z-wy)d+a'(a, + wx—-wz)&+a’"(a, + wy-w,X)&
©) ' , "
d'=(aw +a'w, +a"w,)X,

and o'y 0'zpJ 9 Kwith their analogous present values. It resulbsnfithis we have
obtained a solution to the question, upon takinganitrary function of gand the six
expressionst, 7, ¢, p, q, r for W, we shall now show that we thus obtain the general
solution ¢ to the problem that we have posed.

To that effect, observe that by means of well-kndarmulas relations (2) permit us
to express the first derivatives of the nine cosimea’,-- -, )" with respect ta by means
of the cosines op, g, r. On the other hand, we remark that formulas €)mi us to
conceive that one expresses the nine cosines,---,)" by means of thé, n, ¢, and the
first derivatives ofx, y, z with respect tos,. Therefore, we may finally express the
desired functionW as a function ofs, andx, y, z and their first derivatives, and
ultimately ofé, n, {, p, q, r, which we indicate upon writing:

% We suppose, in what follows, that the deformableiirsisceptible to all possible deformatioasd, as
a result, thathe deformed state may be taken to be absolutely arbititzig/is what one may express upon
saying that the deformable linefise.
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dx dy dz
W =W(s,, %, —————6,/1,6, P, 0, r
(S0, %y, 2 ds,'ds, ds $./7,6,p,q,r).

Since the variation®X, odn, of, &, A, & are null in the present case, as we have
remarked that there is such an instant, we finladlye to write the new form A that
one obtains, by virtue of formulas (9), and for anyay, as, @, &,

OW s W o OW o OW sdx  OW cdy W s dz
0X oy 0z g X ds, Sdy dg ,dz d

ds, ds, ds,

We replacadx, dy, dz by their values (9) anaﬁ(;j—x o ;}Iy 5izby the values that one
S ?

ds
deduces upon differentiating; equating the coedffits ofay, ay, as, @, &, a to zero; we
obtain the following six conditions:

—= —=0, —=0
0X oy 0z
oW dz oW dy _ oW dx oW dz _ oW dy oW dx _
- =0, - =0, - =
o dy ds 5 dz ds 50z dg 5 dxds g X ds 5 dyds
ds, ds, ds, ds, ds, ds,

The first three show, as we may easily foresed,\Wh& independent af, y, z the last

three express thav depends ond—x % izonIy by the intermediary of the quantity:
S 0%

ds

dx) [y, (dz

ds, ds, d%
and since the latter is, from formula (3), equalfer 777+ ¢ we finally see thathe
desired functioW has the remarkable form:

W(so, 6, 77,4 p, Q. 1)

If we multiply W by ds, then the producds that we obtain is an invariant of the
group of Euclidean displacements that is analogouke one that, under the name of
linear elementprovides the distance between two infinitely clpséts of the curve\)
that is described by the poiltL

Similarly, the common value of the integrals:

o, ds

o
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when taken between two poirdg andB, of the curve ) and the corresponding points
A andB on the curveN!), determines thé&ength of the arcAB of that curve (1); in the
same spirit, upon associating the notioracfion to the passage from that natural state
(Mo) to the deformed statdlj we add the functiolV to the elements of the definition of
the deformable line, and we say that the integral:

L:OW ds

is theaction of deformatioron the deformed line between two poidtsand B, which
correspond to the poin, andBy of (Mg). In this definition and in what follows, we
suppose that the arssands, are regarded in the sensefgfgoing toBy andA going to
B, or conversely, that the notatioAs, By, A, B denote the extremities of the line in the
natural state and the deformed state, correspondigt@onvention.

We also say tha¥V is the density of the action of deformatioat a pointof the

deformed line relative to the unit of length of the undemjrﬁne;W?) will be the

-

action density at a point relative to the unit of léngt the deformed line.

9. Force and external moment. Effort and the moment ofxéernal deformation.
Effort and the moment of deformation at a point of the debrmed line. - Consider an
arbitrary variation of the action of deformation between twant®A andB of the line
(M), namely:

LOW . W . OW . oW . W . oW
s[*wds = [ + 2V 5+ + + + 2V 5 lds..
J Wds, j%(agéf on T F g &y B AT js)

By virtue of formulas (7) and (8) of set.we may write this as:

(?)
LIPS R R e pd’z
on ds,
+6ﬂ Ed]'—/]d’+@+ pdYy —qox
0¢ ds,
+6ﬂ ﬂ+q5K'—rdJ’ +aﬂ dar +rd'—-q&'’
op { ds, oq { ds,
oW [ dX'’
+— +pdl'-qd’ ||ds,.
|9+ e s
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We integrate the six terms that refer explicitly be derivatives with respect & by
parts and obtain:

By
5]8“\/\101% ox+ W 5y + W 5 4 OW 50 OW g0 OW 5
05 on ¢ op aq or N
_IBO d 6W+ 6W_r6W 5%+ d 6W+r6W_ ow 5y
A ds, 0& 0¢ on ds, an 0¢ 0¢
d ow ow 6W d ow ow ow oW W),
+ +p 0zZ+ g —r——-N———-¢—|d
ds, 0¢ on 65 ds, dp or 0q 0¢ on
N d 6W+r6W_p6W+,76W_56W o
ds, dq ap or 0¢ 0¢
N d 6W+ ow 6W_56W_ ow X' |ds,
ds, or aq op on o0&
Set:
poOW L OW W W OW W
¢ on ¢ op aq or
,_ d 6W 6W_r6W
° ds 65 ac  an’
- d 6W 6W ow
ds, a/7 65 o¢’
,_d 6W 6W_q6W
ds, 6c on  90&’
,_ dow oW _ oW oW oW
+q =T + -¢ ,
ds, op or oq 0¢ on
, _d oW oW ow ow _ow
M, = +r -p +q -¢ ,
ds, or op or 0é ¢
,_ d 6W ow oW _owW oW
ds, 6q 0q ap on o0&
We have:

5jz\Nd§) = [F'OX+G'SY + H'Gz+1'A" + J'@' + K'K']®

—jf0°(xgas<+v(;5y+ Z:0z+ LA+ M ;&' + N XK")ds,.
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Upon first considering the integral that figures in thpression ofdsz\N ds,, we call

the segments that issue fromM whose projections on the axes
MxX, My, MZ areX,,Y;,, Z,and L;,M;,N; theexternal force and external moment at the

point M relative to the unit of length of the undeformede]irespectively. Upon
regarding the completely integrated partcbﬁzD\N ds,,we call the segments that issue

from B whose projections on the axé My Mz have the valuesF; ,-Gg ,—Hg and
—lg ,=Jg .~ Ky that the expressionsF' -G' —H"and -I" -J' -K'take at the poinBo
the external effort and external moment of deformagabmthe pointB, respectively. We
call the analogous segments that are formed froen vildues -F, ,-G, ,—H’, and
=1, ,=J,,~K), that the expressionsF’ -G' —~H"and -I" -J' -K' take at the poinfy
theexternal effort and external moment of deformatibthe pointA, respectively.

The pointsA andB are not presented in the same fashion here, vdoicforms to the
convention that distinguishes them and the conearitiat was made regarding the sense
of the arcs.

Suppose that one cuts the deformed ABeat the point M, and that one separates the
two parts AM and MB; one may regard the two segmen{sF'-G',-H' and
(=1",-J3',-K") that are determined by the poMtas the effort and the external moment
of deformation of the parAM at the pointM, and the two segmentd-',G',H' and
(1',J",K") as the effort and the external moment of the péBt at the pointM. It
amounts to the same thing if, instead of consigeAM and MB one imagines two
portions of the deformable line that belongAM and MB, respectively, and have an
extremity atM. By reason of these remarks, we say tHat -G' —H',and-I' -J' ~K'
are the components tie effort and the moment of deformation exerted\ihand on
any portion of AMending at M at the point Milong the axedMx',My',Mz' and that
F',G,H"and I',J',K" are the components tiie effort and moment of deformation
exerted on MBand any portion of MBending at M at the poinM along the axes
Mx', My',MZ'.

We observe that if one replaces the trida'y Zby a triad that is invariably related

then one is led to conclusions that are identioathe ones that we have previously
indicated t%).

10. Relations between the elements defined in the pesling section; diverse
transformations of these relations.- The different elements that were introducechin t
preceding section are coupled by the followingtretes, which result immediately from
comparing the formulas that serve to define them:

24 Note sur la dynamique du point et du corps invariabtame |, pages 260 and 269.
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dF’ dl’

—+gH' -1G'-X; =0, —+gK-rJ+n7H-¢G-L;=0,

as O 0 ag ¢ nH-¢G- 1
(11) d—G+rF'—pH'—Y0’:O, £+rl'—pK'+cHF'EH’—M{):O,

ds dg

dH’ dK’

—+pG-qgF-4=0, —+ pJ-qgl+{G-n F- N=0.
ds, pG -qgF - % ds pJ- ql+¢ G- )

One may propose to transform the relations that weged to writeindependently of
the values of the quantities that figure in them that are calculated laysnef W
Indeed, these relations apply between the segmentarehatttached to the poikt, and
which we have given names to. Instead of defining theseesgg by their projections
on Mx',My',MZ', we can just as well define them by their projewion other axes.
These latter projections will be coupled by relasidhat are transforms of the preceding
ones.

The transformed relations are obtained immediatedye remarks that the primitive
formulas have a simple and immediate interpretabigrthe addition of axes that are
parallel translated from the poi@tto the moving axes.

1. First consider fixed axé3x, Oy, Oz Denote the projections of the force and
external moment at an arbitrary point of the defeinfine onto these axes By, Yo, Zo
andLo, Mo, No, and the projections of the effort and the monwndeformation on the
same axes b¥, G, H andl, J, K, so the projections of the above on tk' My, MZ,
axes will beF',G',H" and|’,J',K". Evidently, the transforms of the preceding relasi
are:

dF

—=X, =0

ds,

dl T H dy G dZ—LO:O,
d, dy dg
d_G—YO:O,

ds,

dJ L F dZ—H dX—MO:O,
d, dg ds
d_H—ZOZO,

ds,

dK X g dY_\ o

dy dg ds

We may regard the forc&,,Y,, Z,and the momert;,M,,N, or, if one prefers, the

force Xo, Yo, Zo and the momernito, Mo, No as distributed in a continuous manner along
the line; this force and moment will be referredte unit of length of the undeformed
line. In order to have the force and moment reféto the unit of length of the deformed
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O(Ij% ,where
dsis the linear element of the deformed line that cpoeds to the linear elemeds, of

the undeformed line. We introduce the projections ofdhee and external moment on
the fixed axex, Oy, Oz namely,X, Y, Z, L, M, N, which are referred to the unit of

length of the deformed line; we obtain the relations:

line, it suffices to multiplyX,,Y,,Z, Ly, Mg, Ng,0r Xo, Yo, Zo, Lo, Mo, No by

d—F—X-O, ﬂ+H$’—Gd—Z—L=O,
ds ds ds ds

(12) 9C _yv=o Mgz X oy
ds ds ds ds
d_H_z: d_K+G%—F$/—N=O,
ds ds ds ds

which are identical with those considered by severabasttand, in particular, by LORD
KELVIN and TAIT (**. However, the latter are obtained upon applying whataais,

in classical mechanics, the principle of solidificatiand upon starting with the notions
of forces and couplesa priori, which are thus expressed as a function of the
deformationsa posteriori,by virtue of the hypotheses. Under these hypotheses, wee ha
imagined only infinitely small deformations up till nowhereas now we presently place
ourselves in the most general case.

2. One may give a new form to the equations relatovhe fixed axe©x, Oy, Oz
We may express the nine cosinesr’,a",...,)/ by means of three auxiliary variables; let

A1, A2, A3 be these three auxiliary variables. Set:

S 16 = -Y. Ay = @, +@idd, + @,
Zady: _Z}da = X104, +x,dA, + xadA;,
ZﬂdaI—Zadﬂ:01dﬂ1+0J2d42+0J3d43.

The functionsw, x/,c’ of A1, A2, A3 so defined satisfy the relations:

0w’ /
_J_ﬂ.i-)(i'g’j —X'jg'i' =0,
YRV
oy’ !
A—%+0’i’w} —O"j(Ui' :O, (I,j = 1, 2, 3)
o4, o4,
0o’ 9o’
Ty gy - ' =0,
oA, 0, i m A

and one has:

% LORD KELVIN AND TAIT. - Natural PhilosophyPart. I, sec614
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_ o, aA , dA, , dA;
p=a, tw, 2 ,

ds, ds, ds,
,dA, ., dA dA

= + Yl —2+ 3
q de% X2 ds, A3 ds,
rzaid)l1+0‘2d)l2+a'3d)l3.

d ds

When we denote the projections on the fix@d Oy, Oz axes of the segment whose
projections on theVix',My', Mz axes areu,, x;,0’ by @, xi, ¢ we have:

a’da" + ﬂ’dﬂ" + yldy" - _(a"dal + ﬂﬂdﬂ’ + y"dyl) - Zw,ldAl ,
a'da + B'dB +y'dy =~(ada" + fUB" +)dy") =) xidA,
ada’ + BB’ + ydy’ =—(@da+pds+ydy) =) o,dA,

by virtue of which ), the new functions, x;, & of A1, A, As satisfy the relations:

0w, _%—XU - X.0

oA aa, T AT

X, oy,

ﬁ_%zaiwj_aj(vi (.j=123),
i j

do;, a0, _

3, oa, EATEX

We again make the remark, which will be of userlain, that if one denotes the
variations ofA;, A2, A3 that correspond to the variatiahs, oa',---,d)" of a,a’',---,y" by
OA1, Ay, A3 then one will have:

d'=w, o, +w,0N, + w0,
Q' = X0, + Yy, + YA,
XK' =0,0A, +0,0M, + 0,04,,
Ad=ad"+pA"+yXK' =aw,lL,+ M, +0,N,,

% These formulas may serve to define the functiang;, o directly, and may be substituted for:

@ =aw + By +)0,
X, =a'@ + By 4y, (i=1,2,3)

[[— ny,r " 1

ai =awi +,6’)(i +yai.
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A=ad +pa'+yXK =w,l,+x,M, +0,N,,
K=a"d"+ A"+ YK =w,L, + x;M, +0;N,,

whered, aJ, XK are the projections onto the fixed axes of the segymbose projections
onto MX, My ,MZared',a", XK' .
Now set:
IT=wl'+xJd'+oK' =w]| +xJ+oK
J=wl'+ ' +oK =w,l +x,J+oK
K=al'+xJ' +oK' =w,] + y,J +oK
Ly=@lyt Mo+t ONy =@ L+ y M to N,
My =@ Lo+ Y Mot N =@ Lt Y M o N
No=aLo+ M+ O N=m L+ y M Fo N,

and we will have the equation:

a7 _ [ dm,
ds, dg

dy ( do’ ,
—L+qo; —r)(lj (Txgﬂw’l— poaj—K (—d; PX1— qﬂlj
+F'(xi¢c-oy) +G' (o ~wg)+ H (@p - x¢E) - L,=0,

with two analogous equations. If one remarks that functionsé, n, {, p, g, r of

M1, Ao, A3, — dA, di, dA, —2 give rise to the formulas:
dg ' ds ' ds

0é Op _da;
—+ on =0, =—L+qo -1
o Xi¢-oin= o) ds, +q Xis
M+ gig-aic=0 99 W g - por,
oA, oA, ds
¢ or _do] , ,
—+a 0, —=——+p); —qQw,
o = Xié = ok ds PX: — A,

which result from the defining relations for thenétionso’, x;,o0; and the nine identities
that they verify, then one may give a new formht® preceding equation:

9T [ 0¢ 01 \,.0¢ 0D .09 . Or

—COZO,
ds, oA 8A  9A,  9A,  9A, oA,

with two analogous equations.
Upon setting:

I'=a,(I'+yH'-ZG)+ x;(J+ ZF- xH)+oy( K+ kG- VB,
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L=a(LytYZ,=29)+ x( Myt 22X~ XQ+o{ N+t xX¥ "y
with analogous formulas fgf', ', M, , N ;one similarly finds the form of the equation:

dI’ 1 1 1 ] ap aq 1 ] ] U ar 1
—-(I'+yH'-ZG)—-(J+ 2F- xH)— -(K'+XG - yF)—-£4;=0,
ds (I'+y )a)l1 ( )6A1 ( y )6Al Ly

with two analogous expressions.

We will soon apply the transformations that wet juslicated; for the moment, we
limit ourselves to making the remark thhe expressiongl ', ', XK', andd, aJ, XK are
not exact differentials.

3. Instead of referring the elements that reflatéhe pointM to the fixed axe®©xyz
imagine that in order to define these elementsirectangular triad/x'y'Z moving with

M, whose axisMx; is subject to being directed along the tangenhéocurve 1) given
the sense of the increasing arc length. To defie triad Mx y,Z refer it to the

triadMx'y'Z ,and let 1,I"',| " be the direction cosines ®fix; with respect to the latter triad,
m,m’,m’,those ofMy; ,and n,n’,n" those ofMz . The cosinesl,|'|"will be defined
by the formulas:
ds, 0% v 0%
| = , ' = , |" = ,
J ds 7 ds ¢ ds
i.e., by the following:
=< =1 Im=%
g’ g’ g’

upon setting:

£= /52+,72+C2.

We assume that the triddx Y, Z has the same disposition as the others. We make no

other particular hypotheses on the other cosimes) their definition, they will be simply
subject to verifying the relations:

mé+m'n+m'¢ =0,
né+n'n+n"¢=0.

Suppose that, varies and that, for an instant, one makes it pteyrole of time.
Moreover, refer the triadVixy,Z to the fixed triadOxyz and denote the respective

projections of the instantaneous rotation of tiedtMx Yy, Z onto the axedvix, My,, MZ
by p1, a1, r1 in such a way that one will have three formulashsas the following:
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I n dm
p, =lp+l'g+I"r+>» n—,

ds,

upon admitting the same disposition for the triads.
Finally, denote the projections of the force amtemal moment at an arbitrary poidt of
the deformed lineMx;, My;, Mz onto (?) by (?) and referred to the unit of lengththe

undeformed line, and the projections of the effortl the moment of deformation bk, G, H;
and |, J;,K; .The transforms of the equations of the precedsugien are obviously:

dF’ 12 12 12 dI’ I I L —
%_Sj'+ oH; -G - X; =0 dJC'l_St+qlKl_rlJl -L=0
(13) Gl+r1F1'_p1Hi_Yl':O d_§j+rl|i_lei_€Hi_M1:O
dH’ ! ! ! dK’ ! ! ! o
dSOl+plGl_qul_Zl:O d_%l'*'pl‘]l_ql 1~&6,-N; =0

In the strength of materials, one calis theeffort of tensionthe component§s;, H; are the
shear effortsin the plane normal to the deformed line. Sinlathe componentl, of the
moment of deformation is moment of torsionthe components,, K; are called thenoments of

flexion.
If, in the fourth equation (13), one has= afdaq; = O, then it follows that:

ﬂ—rlJi =0,
S

from which results the proposition, which was etisaled by POISSON?() for the case where
L,=0,M;=0, N;=0,0 =0, thatf J;= 0then one hal = const.

11. External virtual work. Varignon’s theorem. Remarkson the auxiliary variables
introduced in the preceding section.- For the deformed lindB, given an arbitrary virtual
deformation, we give the name @fternal workto the expression:

07, =-[F'dx+Gdy+ HO z+ 51+ J6 I+ Ko K]z

2 POISSON. Sur les lignes élastiques & double courb@etrespondance sur 'Ecole Polytechnique, T. lIl, no.
3, pp. 355-360, January 1816. POISSON’S proposition is independaet fofmulas that define the effort and the
moment of deformation by means of W; POISSON estadtighem by writing the equations of equilibrium of a
portion of the line by the principle of solidificatioBERTRAND gave them a proof in a note in thié&canique
analytigueof LAGRANGE, which we will review.
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+j2°(x(;55<+v(;5y+ Z!5z+ LA+ M + NLXK)ds,.

From the preceding section, upon serﬁngg%, ...,L’:Lg(jj—s';, ..., one may give the

following forms to that expression:

0T, =-[Fox+Goy+ HIz+ D1+ J5 J+ KI K",
+ [ {(X+Ydy+Zaz+ LA +MA + NXK)ds

0T, =-Fox+GOy+ HO z+ IO, + TN, + KN 5
+[(XOX+ Y8 y+ 23 2t LA+ MBK, + NSA,) d,

0T, =—F'Ix+GJ y+ HI z+ I, + TN, + KNS
+jf(xga“x+ YO v+ 23 2 LI+ MO, + N d.

We will apply the last two later on. As for thiest two, we shall deduce a fundamental
proposition of statics here, where the idea, thoogihits present form, is due to VARIGNON,
and which we have encountered already in the irgeapon given by SAINT-GUILHEM of the
relations that couple the external forces and duesitof motion in dynamics. Identifying the
effort and the moment of deformation at a pdvhtof the lineM with the resultant and the
resultant moment of a system of vectors relativehe pointM; let Pv, Po be the general
resultant and the resultant moment relative to iatg® of space. Similarly, identify the force
and the external moment at a pdihtreferred to the unit of length oA}, with the resultant and
the resultant moment of a system of vectors redatv the pointM; let PN and PS be the
resultant and the resultant moment relative toiat poof space; one has this proposition:

When arc length is identified with time, the velocities ofgia@metric pointy’ and o are
equal and parallel to the segments BN PSrespectively.

This proposition is obviously the translation gliations (12), which one may write:

I ox=0, La+Hy-G-(L+ 2y Vi=0
ds ds

(12) OI—G—Yzo, ﬁ(J+ Fz- HY- (M+ Xz Zx=0,
ds ds
d—H—Z:O, E(K+Gx— Fy)— (N+ Yx Xy=0.
ds ds

We may also arrive at this result in the followmg@nner. Start with:

[ ow dg =-0T,,
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where J7 is taken betwee and B. Since AW may be identically null, by virtue of the
invariance oW under the group of Euclidean displacements, when thesswpnso'x, ...,d1",
... are given by the formula®’) or, what amounts to the same thing, widndy, dz are given

by formulas (9), an®' = &, 3= wd, K= wd&, and this is true for any value of the
constantsy, ay, az, a, &, az , from which we conclude that one has:

[FI5-[ Xds=0, 612 -["vas=0, [H]S-["zds=0,

M
[I +yH-2zG]" —jA (L+yZ-2Y)ds=0,

and two analogous formulas; these relations, one may regarddd variable,and they are also
equivalent to equation2’ )One will remark that these formulas are easilguted from the
ones that one ordinarily write by means of the @ple of solidification; we will return to this
point later on in the context of the reasoning mayl® OISSON and reprised by BERTRAND in
regard to the deformable line considered by BINET.

Along with the expressiong’,G',H',l',J',K" that were first introduced, we have imagined
other expressions that one may propose to calcul@e the other hand, in these calculations,
one may make functions appear explicitly that ameoduces according to the nature of the
problem, which will be, for example, y, zor X', y',Z' ,and three parameteds, A,, A3, by means
of which, one expresses,a’,---,y" (*%).

If one introduces, y, zandA;, A2, Asthen one will have:

R
dx 5 dy 59z
ds, ds, ds,

oW W W

Lea I tE I
ds, ds, ds,

oW oW oW
F = —, y G = —, y H = —, y
o & o 0%
ds, ds, ds,

oW oW oW
Ir - ’ jr - ’ IC! - )
dA, da, 394

ds ds ds,

2 For the auxiliary variabled,, A, A; one may take, for example, the components of rotati@nmake the fixed
axesOx, Oy, Oz parallel toMx', My', Mz' .
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12. Notion of the energy of deformation: Imagine the two stateM() or A;By and M) or
AB of a deformable line, and consider an arbitrary sequeirgtates that start fronMp) and end

4

at M). To that effect, it suffices to consider funcsony, z, a,a’,---,) of s and one variable
h, which reduce tow, Yo, 20; a,,a,,--+,V,, respectively, for the value zero bf and to the
valuesx, y, z, a,a’',---,y", respectively, for the value of h relative to ().

Upon making the parametér vary fromh to O in a continuous fashion, we obtain a
continuous deformation that permits us to pass fthenstateA,By to the stateAB. For this
continuous deformation, imagine thetal work performed by the forces and external moments

of deformation that are applied to the extremigéthe line. To obtain the total work, it suffices
to integrate the differential so obtained from htapon starting with one of the expressions for

Jdl. that were defined in the preceding section, arobtduting the partial differentials that
correspond to increasirdgby h for the variations of, y, z a,a’,---,)/ . The formula:

57;:—jfo°éw ds

gives the expressiOHJ:O%—Vr\]/dh ds for the present value @7, and we obtain:

h( rBOW _
- {1258 05 Jin=
[ W($: €., B G D-W5.60770.6, B. 9, O]

for the total work.

The work considered is independent of the interangdstates and depends only on the
extreme statesVp) and M).

This leads us to introduce the notion of tbeergy of deformationwhich must be
distinguished from the preceding action we desdrilpee say thatW is thedeformation energy
density referred to the unit of length of the deformenxkli

13. Natural state of the deformable line. General indations of the problems that the
consideration of that line leads to. In the foregoing, we started with a state ofdeéormable
line that we calleahatural, and we were given a state that we calletbrmed;we have indicated
the formulas that permit us to calculate the exteforce and the elements that are analogous to
the ones that are adjoined to the function, W, téptesents the action of deformation at a point
for the deformable line.

Let us pause for a moment on the notiomatural state. The latter is, in the preceding, a
state that has not been subjected to any deformatiBegard the functions, y, z ... as
determining the deformed state, which depends wmenparameter such that one recovers the
natural state for a particular value of this parsmethe latter will thus appear as a particular
case of the deformed state, and we are led to ptttenapply the notions relating to the latter.

One may, without changing the values of the elemdafined by formulas (10), replace the
functionW by that function augmented by an arbitrdgfinite function ofs,, and if one was left
inspired by the idea @fctionthat we associated to the passage from the natiatal o) to the
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deformed statelM) one may, if one prefers, suppose that the functicg tfat is defined by the
expression:

W(so, o, 10, o, Po, Go, T'o)

is identically null; however, the values obtained fbe external force and the analogous
elements in regard to the natural state will not beessarily null;, we say that they define the
external force and the analogous elements relativeetodtural stat&?).

In what we just discussed, the natural state predésedf as the initial state of a sequence of
deformed states, as a state with which to begin our stuthe deformation. As a result, one is
led to demand that it is not possible for it to plag role of one of the deformed states, since the
role that we have made the natural state play, &edvise the elements that were defined in
section 9, (external force, external effort, .hgttwere calculated for the other deformed states,
have the same value if one refers the first of tledsaents to the unit of length of the deformed
line. This question receives a response only if one intexdand clarifies the notion of action
corresponding to the passage from a deformed state tceadetiormed state.

The simplest hypothesis consists of assuming thalaties action is obtained by subtracting
the action that corresponds to the passage from theahatate o) to the first deformed state
(M) from the action that corresponds to the passage fnenmatural stateMp) to the second
deformed stateM). If we denote the arc length dflg) by so), and the quantities that are
analogous td, 72, ¢, p, q, r by o), 7), {0, P): o), I'(0) then one is led to adopt the expression:

B
(14) '[Ao [\N(%1§(1/716’ pagn-wW §!§((o)/7(o) oy kyr &y (%))] dE
Introduces) for the independent variable insteadsgfand denote the variables that become

& 1, p g r, when one makesy play the role that was played kyby &2, 79, &9, p©, q©,
r®: one will have relations such as the following:

dsg,
ds,

¢=4,

and, upon denoting the points ® ) that correspond to the poirks, Bo of (Mo) by Ay, B
expression (14) becomes:

Bo
(15) '[A(;\NO(O) (S € © p© O O GO © )dsg) .

upon denoting the expression:

29 We may then speak of the external force and momangftbrt and moment of deformation, because we regard
the natural state as the limit of a sequence of stateshich we know the external force and moments, ffaete
and the moment of deformation; this is because the extéonce and moment, the effort and moment of
deformation, are defined, up till now, only when th&ea deformation that makes it possible to manifest and
measure them.
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ds
dsg,

ds, 7o ds,

©
[W(s,.¢ as, ds,

ds
"f(O)d—;?)—w(sof(owﬂ(ow‘“’)]

by W (s0), &, 7%, &9, p9, @, 1), in whichs, is replaced as a function ).

Furthermore, from the remark made at the beginning ostusion, one may, if one
prefers, substitute the following expression:

I Bo
(15 ) '[A((O))W(O) ( §0) , g(o) /7(0)’((0), p(o)’ do)’ r(O)) d%)

for (15), where the function(se), &2, 79, Z9, p@, @, r©), is the expression:

W(501§((0) dS(O) !"'1r(0) %)a
ds, ds,

d
;s) : 30 are expressed as functionssgj.
0)

One immediately confirms that the application bé tformulas of section 9 to
expression (15) or expressiqib’ g)ves, upon starting withMg)) as the natural state,
the same values for the external force and monadatiie to the statéV), referred to the
unit of length of M), as well as the same values for the effort ared rttoment of
deformation.

Therefore we may consideM) as a deformed state whew§) is the natural state,
provided that the functiohV that is associated to the staid) (is presentiyW and
W ().

We now give several general indications aboutgteblems that may lead to the
consideration of the deformable line.

In the preceding, as well as in what we already @e gave formulas that determined
the external force and the analogous elements whersupposed that the functions,

z, ... ofg that define the deformed state were known.
We immediately remark that if one starts with gmeens ofx, y, z, ..., and if one
calculates X,,Y,,Z, — to fix ideas— then, after doing all the calculations, one olgtain

definite functions ofs, . However, by virtue of the formulas that defiqey, z ... as
functions ofsy, one may obviously express,,Y,, Z,by means o&, X, Y, z, ..., and their
derivatives up to whatever order one desires. Upmagining a problem in
whichX,,Y,,Z,, for example, figure among the givens, we may imeagihat these
expressions are given as functionspbut we may just as well suppose that they nefer
Y, Z, ..., and the derivatives of the latter with redpe .

in which s,

% As we said at the beginning of this section, this permstto generalize the notion of natural state that
we first introduced. Instead of simply making the idea ph#icular state correspond to that word, we
may, in a more general fashion, make it correspondetada of an arbitrary state that we start with to
study the deformation.
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Consider a problem in which the projections of the extdomee and moment, either
on the fixed axe®x, Oy, Oz or on the axedx’,My',MZ', figure among the givens, and

suppose, to fix ideas, that these projections awengfunctions ofs, X, vy, z
a,a',---,y",and their first and second order derivatives. ddition, suppose that the
external force and moment are referred to theafriéngth of M) and thatxy, yo, 2o, are
given functions o%,. It is clear that under these conditions the fdas of section 9 that
serve to defin&,Y,, Z, L,, M,, N, become six differential equations between the

unknownsy, vy, z, A1, A2, A3 the last three being three auxiliary functions,hgans of
which one may express the nine cosiaeg’,---,)" . These differential equations, with
the hypothesis that one proceeds to make on thernaktforce and moment, do not
involve derivatives of order higher than two.

To complete the search for the unknowns, if tlebj@m we posed is well-defined, or
at least if it does not involve an indeterminacygesat as the one that results in only the
differential equations that we will eventually diss, then one will have to take the
complementary givens into account. The latter fp@yimit conditions, i.e., conditions
that are satisfied by the unknowns at the extreswy and By; for example, one may
give the values af, andBy of a certain number of expressioxsy, z, A1, A2, A3, and
expressions such ak,,G,, Hy,1;,J5,Kthat relate to the effort and the moment of

deformation, or similarly to functions more often than not, linearof x, y, z, A1, A2, A3
and F,,Gy,Hy, 15,34, K, -

We shall show, by particular examples, with patéc hypotheses, how differential
equations and complementary conditions may correspom various problems; however,
one may vary the questions.

If the arc lengths figures explicitly in the givens then one will der s as a
supplementary variable, and one may adjoin theioeta

2 2 2
(o) () (e =
ds ds ds

It often happens that one may devote most of catention to the deformed lin#f
with the line Mp) remaining in the background, so to speak. Ifsuppose that the
expression o¥V as a function o, x, h, z, p, g, r is given and does not necessitate being
given (Mo) for its determination then the functid will finally be a function ofs, the
first derivatives ofx, y, z, of A1, A2, A3, and the first derivatives ofy, A2, A3 . If the
external force and moment are also given expli@ittyneans o, X, y, z, A1, A2, A3 and
their derivatives then it is clear that the probleray be considered as comprising, on the
one hand, the determination of the st&f¢ Ioy means of a variable relating to that state
s, for example- or one of the letters, y, z, and, on the other hand, the determination of

the relation that couples ands. With the hypotheses that we just maslemay figure
explicitly, and, in additioni), its differentialds, may figure, or, if one prefers, the

31 |f one gives the external force and moment referetie unit of length of\), and, more generally, if
one gives these elements as functions,0§, X, ..., and the first derivatives with respect to on¢heke
letters.



THE DEFORMABLE LINE 27

expressmnd—Sb or its mverse(;j—s. We remark that the notion of the quotient, whaores
S S

the derivative of with respect tcs, corresponds to the linear dilatation felt by tine
elementds, that issues from the poiMy of (Mp), and which becomes the elemdsthat
issues from the poinM of (M) that corresponds to the poiMy. We return to the
dilatation that LAME specifically imagined for thgarticular deformable line that he
studied {?).

Another type of problem will be developed latervamen we seek to attach some very
special lines that were considered by geometersushd to be occupied with the present
subject, to the deformable line that was definedilupow, i.e., thefree line(*®), which is
susceptible to all possible deformations, upon imag the study of the former as the
study of particular deformations of the free line.

14. Normal form for the equations of the deformable linewhen the external
force and moment are given as simple functions o and elements that fix the

| -

position of the triad Mx'y'z. Castigliano’s minimum work principle. — Conforming

to the indications of the preceding section, suppgbsat the external force and moment
are given by means of simple functionsspfand elements that fix the position of the
triadMx'y'z'. Suppose, moreover, that the natural state isngiWe may consider the
equations of sec. 9 as differential equations & gimknownsx, y, z and the three
parametersis, A;, A3 by means of which one expressesa’,---,y" or, again, in the

unknowns X', Y, Zand the three parametets A,, A3, which corresponds to a change of

variables. These two viewpoints are the onesrtitet naturally present themselves. In

the first case, the expressidng, ¢, p, g, r are functions of% dy E,/ll, A2, As,

ds, 'ds, 'ds,
aA %,%that one may calculate by means of formulas (1) @hd In the second

ds, ' dg ds
ax’ dA,

case, these will be functions of,y', 2 — A1, e
S

, ... that one may calculate
ds,

by means of formulas (2) and (4).

The first case is the most interesting, by readfadhe analogy that exists between the
present question and dynamics of points, and betweads and rigid bodies. We
examine it first.

1. Assume thaX,,Y,,Z;,L;, My, N, ar, what amounts to the same thixg, Yo, Zo,
Lo, Mo, No are given functions o$, X, Vy, z A1, A2, As.  The expressioW is, after

32 LAME. - Legons sur la théorie mathématique de I'élasticité des corjdesp?™ ed., pp. 98-99 (8
lesson, seatl, entitledDilatation du fil).

3 Here, the expressiorirée” signifies that the theory starts with the functidtthat depends on elements
that result from considering only that line, and whid susceptible to all possible variations.
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substituting values foé, 7, ¢, p, q, r that are related by formulas (1) and (2) to definite

functions ofsy,, — dx dy dz , A1, A2, As, 4, % dA, , which we continue to denote by
ds,'ds, " ds, ds, ' ds, " ds,
W, and the equations of the problem may be written:
d ow d ow 9w
— - X, =0, -£,=0,
dg 5 dx 7 ds 504 oA
ds, ds,
d ow d oW oW
— =Y, =0, - _/\/{0 =0,
dg, 5 dy  ° ds, 544, a4,
ds, ds,
d ow d oW oW
— -Z,=0, — -N, =0,
dg 5 dz " d 504 a4, °
ds, ds,

Lo, Mo, No, are functions oy, X, Y, z, A1, A2, Az that result in the functions of sekd.
This results immediately either from the formute#sthe preceding sections or, in a
more immediate fashion, from the formulas of thénitéon of X, Yo, Zo, Lo, Mo, No, F,

G, H, Z, J, K may be summarized in the relation:

B, _
5jADW dg +07, =0,
i.e., in:

5jZ°w ds=[ FOx+ Gy H # IOk, +J3, + KA
—jfo"(xoaxﬂga Y+ 20 # LA+ MO+ N G1) ds.
We may replace the preceding system by a systerfirsif order equations upon

introducing six unknown auxiliary variables for whj instead of first order derivatives
of X, y, z A1, A2, A3, we choose the six expressions that we just cereskd

I
% Y 322
ds, ds, ds,
AW W W
LEdn I S

ds, ds, ds,
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Upon supposing that the Hessian \Wfwith respect ted—X dy iz ﬂ ﬂ d)l

dg, dg ds ds ds q
non-null (which amounts to supposing that the Hessif the functionV is non-null
when it is expressed in terms éfn, ¢, p, q, r), we may derive values for the last six

derivatives% ..... % as functions of, G, H, Z, 7, K. We substitute these values in
S S
the expression:

c= dx 6W+dy6W+ dzo W dA o W

7 I + —W’
d% dx  dg aﬂ d§aiz d@a ch
d% ds ds ds,

which is none other than the expression of:

FOW W W OW oW OW
o on " oc op aq or ’

dx dy dz )ll,n-,d)ll?’,n- After substitution, we obtain a function ®f
ds,’ds, ds, ds,

A, A2, A3, F, G, H, Z, 7, K, which we continue to denote by the lettér Now, the total
differential of the latter functions is obviously:

as a function ofs,,—

ﬂd ow +ot d)l 6W 6Wd% zaﬂd)l
dg, 5.dx ds, ad/' 0s, 04,
ds, ds,
or
WX ar+ B g+ 92 gy g Mo gy W gy W o 5 OW g5

ds, ds, ds, ds, ds, ds, 0s, 0,
and as a result one has the following form fordystem that defines vy, z, A1, A2, A3, F, G, H,
1, J K.

dx _ o€ dy ¢ dz _ 8  dA _dc  dA,_dE  dA, _ o€

ds OF ds 080G ds OH' dg 07  dg 0J dg oK’

d_F—XO:O, dG—Y O d—H—ZOZO,
ds, ds, ds,
dZ  9& dJ , 0 dK . o
—+—-[£,=0, —S+-M,=0, —+_——-N,=0.
ds 04, b ds 04, Mo = dg, a4, = °

We have supposed that, by virtue of the formutas dlefinex, y, z, A1, A2, A3 as functions of
S, One can expresé, Yo, Zo, Lo, Mo, Np as a function oy, X, Y, z A1, Az, A3; this is possible in
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an infinitude of ways, and one may choose the new fdomXo, Yo, Zo, Lo, Mo, Np in such a

way that the partial derivative(’fl,‘li,a—U,aU ’6U ’6U ’6U ,respectively, change the sign of the
0X 0y 0z 0A, 04, 04,

same function o#/, which is or is not independent &f Suppose that this is the case and’let

denote the function of y, z, A1, A2, A3 (and maybes) that is defined by the formula:

V=E+U,
the preceding system takes the form:

dx _ 9y dy _ov  dz_ov  dA_adv  dA _ov  dA _av

ds oF ds 0G dg oH ds o7’ dg oJ ds oK’

dF _ _aV dG _ oV dH __aV
& ox as ay oy o7
a7 __ov a7 __ov ac __ov
ds, 04, ds, 04, ds, 04,

Here we have equations that are presented inattme 6f HAMILTON’'S equations from
dynamics. In particular, if we suppose that the fems ofXo, Yo, Zo, Lo, Mo, No are chosen,
as is always possible, in such a fashion shdbes not figure and that they are partial denvesti
of a function— U of x, y, z, A1, A2, A3, and if, in addition, we suppose thékso, & 77, ¢, p, q, 1)
does not depend @ (3%, then we have, more particularly, a canonicalesysof equations.

2. Now look at the functions,y',z',and suppose furthermore that the functions
a,a',--,) are expressed by means of three auxiliary functiohsA,, As. Assume
that X;,Y,,Z;, Ly,M,Nyare given functions ok, X,y',z', A1, A2, A3. The expressioW is,
after substituting the values fér n, ¢, p, q, r that are derived from formulas (2) and (4), a well

defined function ok, X,y',Z', A1, A2, Azthat we continue to denote WY, and the equations of
the problem may be written:

d ow d ow

— =X, =0, — -L£ =0,

ds, 500 °70 Gy Ak
ds, ds,

d ow d ow

— =Y, =0, ————-M/=0,

d%aﬂ ’ d%a% Mo
ds, ds,

3 To express this hypothesis one may say that in &isis cand by definition - the linelismogenous.
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d ow

-7'=0, ——— -
’ ds, a%
ds,

No

:O,

31
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wheref,, M;, N jare the functions ab, X',y',Z, A1, A2, A3 that result from sedO.

We may replace the preceding system by a systefirsbforder equations upon
introducing six auxiliary unknowns for which, inate of first order derivatives of

X,y 7, A1, A2, A3, we choose the six preceding expressions thaiready envisioned:

ow ow ow
F':_’, G':_’, H':—'
adx ady o

ds, ds, ds,
oW W, W
Pelan T Ay M d
ds, ds, ds,

Upon  supposing that the Hessian ofW  with  respect to

S ’dy : u ,d)ll,d)lz ,d)le’,is non-null, we may derive values for these laséer
dg, ds, dg ds ds ds

derivatives as functions &', G', H', 7, J, K' from these six relations; we transport
these values into the expression:

,_dX 6W+dy6W+ dza W+ dA 6W_W
d% s sl dx  dg F dy a dz d@aﬂ ’
ds, dg ds ds,

we obtain, after substitution, a functionssfx’,y',z', A1, A2, A3, F', G', H', 7', 7, K' that
we continue to denote by the lettgr Now, the total differential of this latter fummh is
obviously:

—dF+Oly G+—dH’ dA, az' + 4, d7+ A o’
ds, dg ds ds d;S ds
ow ow ow oW oW
-—dg —— X' - - ' ->» —dA,
0s, % ox' oy' v 0z z oA

and, as a result, one has the following form fersiistem that define§ y', z', A1, A2, A3,
F,.G,H,7,7, K"

dX _oc dy _og  dZ_0g  dA _9¢  dA,_og  dA _o¢

ds oF ds 0G' dg oH  dg o' ds oJ dg oK'’
dFLO8 sy 46,08 dH' L og
ds) 6)( ds) ay ds) 61
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d7' 081 g 47,9 g de', oK' _

=+ =2 +ZX NI =0.
ds 04, ds 04, ds 04,

By virtue of the formulas that defingy',z', A1, A2, A3 as functions of, we have
supposed that one can express them as functiorss, of,y',z', A1, A2, A3. This is
possible in an infinitude of ways and one may ckabe new forms for them in such a
way that they are the partial derivatives, up ¢msof the same functiordg, which may

or may not be independent &f Suppose that this is true and introduce thetiomof
X, y',Z, A1, A2, A3, (and maybey) that is defined by the formula:

V=&+U;
the preceding system then takes the form:

dX 9V dy _aV'  dZ_9V  dA _9f  di _aV  dA _aV

ds oF ds 0G' dg oH  ds o' ds oJ dg oK'’

dF'__ov' aG __ov ad’_ oV
ds, ox’ ds, oy’ ds, 02°
dz' _ oV d7' __aV dic’ _ oV’
dg, 94 dy A, dg, oA,

In the case where the forces and external monaeatzero, the equation:
5[w dg+57, =0

corresponds to Castigliano’principle of minimum work(*®), which was already
considered by VINE, COURNOT, MENABREA, and others.
Consider the equations in the normal form:

dx _ o0& dF _
— =, —=X, =0,
ds, OF ds
Upon integrating fromd\, to By, they become:
_ (& 0& B
%, =%, = [, 9508 Fo —Fy =], Xods, ..

%5 CASTIGLIANO. - Théorie de I'équilibre des systémes élastiques et ses aijtis, Turin 1879. See
also MULLER-BRESLAU,Die neueren Methoden der Festigkeitsleld®ed., Leipzig, 1904.
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For example, if one supposes th&, Yo, Zo are null then one haB = const.
=Fg =F, = G=const, H =const. In the three formulas such as:

By 65
%=1y 5 ¢

F, G, H are independent @, and one may write:

Xg, = Xy, aFI £ds.

If Lo, Mo, No are null, and |fa—g—a—5—a—g—0 then one obtains analogous

0A, 04, 04,
theorems that relate té, A, A3. One is therefore led, in a very direct and radtur
manner, to what one calls the theorems of CASTIGQ@AIn the strength of materials.
One therefore generally imagines the simple casa affinitely small deformationyV is

a quadratic form, and the same things are trueffas those we deduced f@f as its
adjoint form.

15. Notions of hidden triad and hiddenw. - In the study of the deformable line, it
is natural to direct one’s attention to the curesatibed by the line, in particular, This
amounts to starting witk, y, zand consideringr,a’,---,)/ as simple auxiliary variables.

This is what we may likewise express by imaginingttone ignores the existence of the
triads that determine the deformable line, and tma knows only the vertices of these
triads. Upon taking this viewpoint, in order tovesion the differential equations that one
is led to in this case, we may introduce the notbhidden triad,and we are led to a
resulting classification of the diverse circumsesithat may present themselves in the
elimination ofa,a’,---,y" .

A first question that presents itself is thereftimat of the reductions that may be
produced in the elimination of the,a’,---,)" . In the corresponding particular case

where our attention is directed almost exclusivepon the curve described by the
deformed line 1) one may occasionally make an abstraction frdfg),(and, as a result,
from the deformation that permits us to pass frdvig) (to (M). It is from this latter
viewpoint that we may recover the line that is@alflexible and inextensible in rational
mechanics.

The triad may be considered in another fashione day make several particular
hypotheses on it, and similarly on the curvg,(which amounts to envisioning particular
deformations of the free deformable line. If tldations that we impose are simple
relations betweeld, 7, ¢, p, q, r, as will be the case in the applications that aeehto
study, we may account for these relations in theutations of W and derive more
particular functions fronW. The interesting question that this poses willtdeimply
introduce these particular forms, and to considergeneral functiolV that will serve as
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point of departure as hidden, in a way. We will theeefbave aheory that will be
special to the particular forms suggested by the given relations betwveged, p, g, r.

We verify that one may thus, by means of the thedrthe free deformable line,
assemble the equations that are the result of sgolblems that one encounters in the
habitual exposition of rational mechanics and in thesital theory of elasticity under
the title of particular cases with a common origin.

In the latter theory, one often places oneselh@dppropriate circumstances so as to
avoid the consideration of deformations; in reality, thed to be completed. In
practical applications this is what one may do when imag the infinitely small
deformation.

Take the case where the force and the external moreét only to the first
derivatives of the unknowns y, z and A1, A2, A3 . The second derivatives of these
unknowns will be introduced into the differential equationty by way ofW. Now, the
derivatives of, y, z figure only iné, n, { and those ofl;, A2, A3 present themselves only
inp, g, r. One therefore sees thatVif depends only o, 7, { or only onp, g, r then
there will be a reduction in the orders of the derivatitleat enter into the system of
differential equations, and, as a result, there wslb dde a reduction in the system that is
obtained by the elimination @f g, r. We commence to examine the first two cases.

16. Case wher&Vdepends only orsy, ¢, 17, { How one recovers the equations of
Lagrange’s theory of the flexible and inextensible line: Suppose thaty depends only
onsy, & 1, {. The equations of set4 then reduce to the following:

d ow ow

— -X,=0, —+ /L, =0,

ds, 5 dx o,
ds,

d ow ow

— =Y, =0, —+M,=0,

ds gy ¢ on,
ds,

d ow ow

— -Z,=0, —+M, =0,

ds g dz on, "
ds,

in which W depends only om,%,ﬂ,ﬂ,)ll, A2, A3. We show that if we take the
ds, ds, ds

simple case whereo, Yo, Zo, A1, A2, A3 are given functions*f) of s, x, vy, z

dx dy E,)ll, A2, A3 then the three equations on the right may be dolfoe

ds, 'ds, 'ds,
A1, A2, A3, and one finally obtains three differential eqoasi that involve only, X, y, z
and the first and second derivatives.

% In order to simplify the exposition, and to indicaterenconveniently the things to which we are
alluding, we suppose th&b, Yo, Zo, Lo, Mo, Ng do not refer to the derivatives &f, A, As.
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First, imagine the particular case where the givestfons £o, My, No are null; the

same will be true for the corresponding values of thections of any of the systems:
(L',M",N"), (Lo, Mo, No), (L, M, N). From this, it results that the following equais:

a_W = O, a_W = O, a_W = O,
04, 04, 04,
amount to:
F_G_H
dx dy dz’
ds ds ds

and, upon denoting the common value of these ratiesT, the equations (?), in which it
IS necessary to carwy, A,, A3, may be written:

i[T%j’on =0, i[Tﬂj+Yo =0, i[Td_Zj+ZO =0,
ds,\ ds ds \ ds ds \ ds
or, if one prefers:
E[Ti(j+X:O, E[T$IJ+Y:O, E[TOI—ZJ+Z:O,
ds\ ds ds\ ds ds\ ds

The effort actually reduces to affort of tensiorT.
Having said this, observe that if one starts with positions o) and M), which are

assumedjiven,and one deduces the functiofs Mo, Ny from them, as in se®.and10,

then in the case where the three functions areamdlmay arrive at the conclusion that
this result presents itself accidentally, i.e., yorfor a certain set of particular
deformations. However, one may also arrive atctheclusion that it presents itself for
anydeformed i), since it is a consequence of the naturdf (.e., the form oi\.

Imagine the latter case, which is particularlyenetsting:W is then a simple function

of s and&+ 7+ &, or, from (37), what amounts to the same thingsy@fnd O(If) . The
equationsg7w =0, (i= 1, 2, 3) reduce to identities (38) and ieosupposes thaw is

ds

expressed by means sfand ,uzd——l(where,u represents the linear dilatation at the
s

point), then all that remains are the equations:

. . . . . d :
37 One may also say th¥l{ is a function of, and the linear dilatatiop = diss) —1lat the pointM, as was

considered by LAME in hisegons sur la théorie mathématique de I'élasticité des corpdesppp. 98,
99, in the 2 edition.

3 Thetriad is completely hidden; we may also understand that wedpemtlikeline.
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ET% +X =0, i[Tilj+Y:O, i[TOI—ZJ+Z:O,
ds\ ds ds\ ds ds\ ds
where one has:
ra-W
ou

If we suppose that the functidM is known, then that gives 0§Y, Z or Xo, Yo, Zo as
functions ofs, s, X, Y, z, and the fourth derivatives of the latter (39)hariespect to one of
the others; the preceding equations, combined with:

2 2 2
(&) (&) &) -
ds ds ds
provide four differential equations that define rfai the variablesy, s, x, y, z by means
of the fifth.

If sdoes not figure explicitly then one may elimindsby means of the relation that
one derives, and what remains are three diffedeetimations that define the three
unknownsx, y, z as functions o$.

If we imagine the particular case in whidhdepends on only ands, does not figure
explicitly then we find ourselves in the present¢he equations that were proposed by
LAGRANGE (40) for the study of the line that he Gfied as a “flexible and, at the same
time, extensible and contractible filament.” Wesntemark that explanations given by
LAGRANGE, in the second of the sections that heickdd to the question (sec. 43)
must be revised in the following fashion: if we aed)\W as a given function gt then the
same is also true fdar (which corresponds to the assertion of LAGRANG# #xpresses

— with these notations the fact thaf is a given function of(;j—s). We may substitute
o

the unknowr for the unknownu since the knowledge of one of them as a functios o
implies the same for the other, and finally onéed to the study of four functions ef

T, X, ¥, zby means of the four preceding equations ( anglsagentary conditions if they
are given). One observes, in addition, that ifLASRANGE seems to have supposed,
the given expressions of, Y, Z do not refer tcs explicitly then one is limited to the
consideration of the first three equations and ttivee variablest, y, z, where the
differential ofs was eliminated by means of the fourth equation.

39 One may suppose that derivatives of order higher thdirshbave been introduced.

0 LAGRANGE. —Mécanique analytiquel™ part, Section V, par. 11, nos. 42-43, etlition, pp. 156-158.
The same question has been raised by LAME, inég®ns sur la théorie mathématique de I'élasticité des
corps solides2™ edition, &' lesson, and then by DUHEM, in Tome Il of his wokkydrodynamique,
Elasticité, Acoustiquepp. 1 and following. The exposition of LAME, as well &g tremarks of
TODHUNTER and PEARSON on page 235 of Tome | of thigtory, etc., is the reproduction of the one
that was given by POISSON, on pages 422 and following, oM&moire sur le mouvement des corps
élastiquesprinted in 1829 in Tome VIII of thémoires de I'Institut de France.
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In the first of the sections that we cited (no. 4AGRANGE remarked that he was
led to the same equations for the filament that he heddy considered in his exposition
under the name of flexible and inextensible filament,iantb. 44 he returned to tension.
It seems to us that there is some confusion in the ékpo®f LAGRANGE on the
subject of the notion of force (a confusion that wasamly pointed out by J.
BERTRAND from the viewpoint of dynamics alone in theenbe appended to no. 44).
Indeed, it is clear that the viewpoint of LAGRANGE it of dynamics, and that the
word equilibrium is equivalent to the worgest in his exposition. Upon introducing, at
the beginning of no. 44, “the forde by which every elemerds of the filament curve
tends to be contracted,” LAGRANGE introduced a notionfarte that no longer
conforms to the definition posed at the beginning of hiskwipage 1), which is not a
kinetic force, but a force that we may qualify astatic force,which is measured by
means of the deformations.

17. The flexible and inextensible filament.— How, while remaining in the domain
of the section on statics, where one measures fosc@seans of deformation, may one
conceive and introduce the notion féxible and inextensible filament?To give a
definition of flexible and inextensible filament, it wdlffice for us to follow but in the
opposite sense the path that is habitually adopted, i.e., what ondténanspired to call
the solidification principlg™).

In a general manner, imagine the deformable line ofSexith its natural state\Vp)
and its deformed statéVlj. Suppose that for the deformations of the line, wiaich
defined as in se&, i.e., by acorrespondencéetween the points oMp) and those of the
deformation K1), we impose the conditiorfj that an arbitrary portion oM) has the
same length as tlerrespondingportion, which amounts to saying that one subjecys
z to the condition,

ds=ds,

upon supposing, as we did before, tiaand ds have the same sign. One must assume
that for such a line one would like to define the elesiestterior force, ... We imagine

a deformable line of the type considered up till now, andtead of considering an
arbitrary deformationN]) of the natural stateMp), we direct our attention towards the
deformations ) for which one hads=ds . As far as the position of the points and the
associated triads are concerned, these deformationsdeowith the deformations of the
given inextensible line. For the definition of extdrfwace, ..., acting on the latter, we
assume the preceding formulas that we adopted wgardeto any deformable line,
which one applies to the positions of that line that @da with those of the given
inextensible line.

“1 APPELL. — £ edition, T. I, no. 132, pp. 165; in th& 2dition, T. I, no. 120, pp. 161, the expression
solidification principle is omitted; the same is true for THOMSON and TAlllreatise on Natural
Philosophyyvol. I, Part Il, sec564 pp. 110.

2 We shall repeat this assumption in different analogiasrostances where one is led to adjoin what we
shall later call later thmternal constraintf the system that we previously studied.
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In particular, if we imagine a flexible and inextensililee then we deduce the
definition of external forces, relative to that linbat act on the line considered before,
and for whichW is a simple function of andy, by considering the deformations of the
latter for which the functiop reduces to zeroRetaining only the lettes X, Y, Z (since
S=%, X=Xo, Y=Y, Z=2), one is led to the system:

E[T dxj +X=0 i[ dyj +Y =0, E[T OIZj+z 0
ds\ ds ds\ ds ds\ ds

2 2
in which [dxj [ﬂj +[d_zj =1, and whereT represents the function sfthat is
ds ds ds

defined by the formulal = _[a_Wj :
ou =0

It will not be necessary for us to suppose that ftinctionT is known in order to
obtain awell-definedproblem; it will suffice to adjoin suitable limite the conditions.

18. Case whereW depends only onsy, ¢, 77, {, and where Lo, Mo, Np are non-
null. — Now imagine the general case, whése My, Ny are not all three of them null.
Upon introducing the auxiliary functios G, H the equations:

ow
W, 0, W, 0, —+N,=0,
oA b= 04, M= A, °
amount to the relations:

dy _c4z dz _L=0

dc ds

dz dx _M=0

dc dc

X FW _N=g
ds ds

in such a way that in the present case the compaieghe effort that is tangent to the
line, which one may call theffort of tensionthe component of the effort that is normal
to the line, which one may call thensverse effortas is it is called in the strength of
materials, and finally, the vectdr,(M, N) determine a tri-rectangular triad.

Again introduce the effort of tension:

T= (F%+Gdy+H dZJ
ds ds ds

as an auxiliary, and we obtain:
S VI R
ds ds ds’
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-G :Tﬂ+ Ld_Z—Ni(,
ds ds ds
—H=TY S
< ds ds
LI W N

ds ds ds

- - -

As aresult, ifX, Y, Z, L, M, N are given as functions sfx, y, zand their first derivatives
then one comes upon three equations such as the following:

i(TQ(J+X +E(NQ—M d—ZJ =0,
ds\ ds ds\ ds ds

to which we may adjoin:

— |+ =] || =1 L—+M-—2+N-—"<=0,
ds ds ds < ds ds

in such a way thdor the last problem we posedke havefive differential equations that
refer tofour unknowns, namely, y, z, and the auxiliary unknown.

19. Case whereW depends only onsy, p, g, r. — Suppose thal/ depends only os,
p, g, r. The equations of set4, which reduce to the following:

d oW _aw
X, =0, & oW 9% =0,
’ d%a% oA b
ds
d W W
Y, =0, & AN _IW_ap =0
: ds 0% o1, ¢
ds
d oW _aw
Z —O, — ___N :Ol
’ d%a% G2
ds,
di, di, di

, 2 then show us that if we take
dg, ds ds
the simple case wheb&, Yo, Zo do not refer to the derivatives rvfy, z then one may
obtainx, y, z from the equations on the left and substituter thelues into the equations

on the right, i.e., intaCo, Mo, No. If these latter three do not refer to the ddiwes of
order higher than the first of y, z then, whenXo, Yo, Zp refer only tos, X, y, z, Ai, and

in which W depends only omy, A1, A2, As,




THE DEFORMABLE LINE 41

dx dy dz A dA  d’A
ds, ' ds,'ds, ' ds, ' ds
to three second order equations that detervhing,, As.

The particular case in which the given functiofis Yo, Zo are identically null is
particularly interesting. One has simply the theggiations on the right which, 4,

Lo, Mo, No refer only tos, X, Y, z, ,one then comes down

Mo, Ny depend only oMy, Az, As, and their derivatives, constitute three diffeiast
equations that determink, A,, As.

20. Case whereW s a function ofsy, ¢, 1, {, p, q, r that depends oné, 7, { only
by the intermediary of &+ r*+ ¢, or, what amounts to the same thing, by the
intermediary of u :O(lj—s—l. - Consider the effort at a point of the deformed larel

S

suppose thator any deformationt reduces to a tension effort. This amountsayirg
that the functiotW of sy, & 7, ¢, p, q, r verifies the identities:

ow ow ow
06 _dn _ 3

'3 Ui ¢

i.e., they depend 0§ 7, ¢ only by the intermediary of the quantif§+ /7 + ¢, or, what

amounts to the same thing, the quantity o(lj_s -1
S

Once again, we presently have:

F_G_H
dx ~dy " dz’
ds ds ds

and, upon introducing the common vald€ of these ratios, which is defined by the
formula:

=W
oy’
we may give the system the following form:
d (. dx d oW oW
—| T— |+ X =0, 1+ u)— -——-L,=0,
ds[ dsj ( ”)dsad/'l 04, .
ds,
d(.dy d oW JW
—| T—|+Y =0, 1+ y)——————-M, =0,
ds[ dsj ( ”)dsad/'z 04, M

ds
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d(,.dz d ow oW
—| T— |+Z =0, 1+ p)——~—-——-N, =0,
ds[ dsj s dsydd 04, ~°
ds,
by whichx, y, z, A1, A2, A3, ands, are defined as functions sthere,u denotes% -1.
ds,

If we envision- to fix ideas— the case in whiclX, Y, Z are given functions of only
the letterss, X, y, z then one sees that one may separately detemmnipez, and the
auxiliary T by means of the system of differential equations:

E[Td_Xj+x:o, E[Td_ij:o, E[Td_j+z:o,
ds\ ds ds\ ds ds\ ds

2 2 2
ERERHE
ds ds ds

Once again, we recover the system that was preséntie context of LAGRANGE'S
flexible and inextensible filament, and in the @atof the flexible inextensible filament.

21. The deformable line that is obtained by supposing thatix' is the tangent to
(M) at M. — We may repeat what we said about the passagetlre flexible inextensible
filament of LAGRANGE to the flexible inextensibldament of rational mechanics in
regard to the general case and thatadfitrary particular deformations. We shall
consider the following case, which is importanthe theory of the strength of materials,
and will lead us later on to the deformable linenas studied by LORD KELVIN and
TAIT, in particular, but only, as we have alreadyserved, from the standpoint of
infinitely small deformations®f).

We refer back to the deformable line of s&cand suppose that we have defined the
external force, etc., as in s€c. Now imagine that we direct our attention excle$y to
the deformationNl) of (Mp), where the axisMx' is tangent to the curvev) at each
point, and suppose, moreover, and in such a waly tttkese deformations form a
continuous sequence starting witof, that the latter is constructed such thax;, is a

tangent tdvl,. By a convenient choice of the sense in whichurerstands, ands this
amounts to supposing that one has:

_d_XO a'—% a'"—d_zo

ao_d ' O_d ' O_d '

(14) S S S
_dx L dy . _dz

ds ds’ ds’

3 W. THOMSON and TAIT. Treatise on Natural Philosophypl. I, Part Il, 1883 edition, se6388 ff.,
pp. 130 ff.
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or that:

(15) n=mn=0, <¢=&=0, &=1, 5:£

ds,

The application of these definitions gives us defiexpressions for the external force,
etc.. We may say that the study of these expressiad the problems they lead to by the
repetition of all that has been said constitutesdhject of the study of the line that is
subject to the conditions defined by formulas (@4q (15).

Limiting the deformations ofMo) to those deformationdW) that verify conditions
(14) or (15) or admitting the new conception ofiaelthat is susceptible only to
deformations that verify the preceding conditions @egarded as identical here from the
standpoint of calculations that define elementdsag external force, etc. This way of
thinking is absolutely consistent with the prineiptalled solidification, which is
introduced by the authors ihe opposite orderin a sense, as we have said.

Before considering the form that the formulasesd.9 take here, we establish several

| B -

formulas that relate to the trialix'y'z', either under particular conditions or as they
presently present themselves. Suppose that wettakerincipal normaMn and the
binormalMb to the curve 1) atM. If they, along withMx' form a triad Mx'nb with the
same disposition as the triddx'y'Z then we may designate the direction cosineslof
andMb with respect to the axedlx’ My', Mz, respectively, by 0, cos) sin &y and 0,

- sin w cosa which amounts to saying that we have, moreover:

B =p,cosw-y,sinw, y=pG sinw-y,cosw,
(16) L' =pcosw-y,;sinw )y = fsinw-y, cosw,
B" = p/cosw-y/sinw y' = f'sinw-y; cosw,

upon denoting the direction cosinesMh with respect to the fixed ax&3x, Oy, Oz
byg,, 5, fG;,and those oMb with respect to the same axes py y;,,);, and upon
introducing an auxiliary variablev as well, which is the angléy’ makes withMn,
taken in a convenient sense.

We may then determin@ by means of the expressions that we already intredl
The principal normal is the tangent to the indizatf P. SERRET, considered to be the
point whose coordinates are 1, 0, 0, with respec¢his triad, for which the verte® is
fixed and the axes are parallel to thosevbfy Z. The projections of the displacement of

| R -

this point onto the axes of the moving triad, otoathose ofMx'y'z' jare:

0, rds, —qds,
and one has:
cosa _ _sina

r r

One may obtain more complete formulas upon repdathe cosiness, £5,...,)" in
the formulas (2) of se® with their expression (16); they become:
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ds, _ dg _ dg, dw
P~as Zyds Lh de  ds’
ds, dy dy | dB,
— =Y g—>-=Ccoswy a—=+sinw :
a ds Z ds Z ds Z ds
ds, da da . da
r = = cosw —-sinw) —,
ds LA ds 24 ds st
ie.,
gy _1_dw
ds 7 ds’
(17) rd_s):_sma),
ds P
ds p
upon setting
1_ da 1_ dg,
p zﬁl ds’ I Zyl dS ’

% =0. The expressionsj; and% are equal in absolute value
to the curvature and torsion (tlkambrureof BARRE DE SAINT-VENANT and the
tortuosity of THOMSON and TAIT) of the curveM) at M; the latter two formulas (17)
correspond to the remarks made by THOMSON and TA)T

We arrive at the formulas of se&. For the moment, denote the function tlét
becomes when one takes conditions (15) into acdouwt, i.e., set:

and recalling thal) o

Wi = W(so, & 72, ¢, P, G, )] =0.020 = W0, &, O, 0,p, g, 1).

Furthermore, upon remarking that from formulas (14)

5 = E =1+ M,
ds,
we set:
Wi =W(so, 1 +4, 0, 0,p, q, 1).
We have
o] o]
0§ |00 06 O ’ an UZOFO’

* W. THOMSON and TAIT. Jreatise on Natural Philosophyol. |, Part Il, 1883 edition, se690, pp.
131.
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% o
6( 1n=0,¢=0 ap n=0,c=0 ap

J,{aﬂ} oW, K= [aw} _ oW
09 |, 04 or |, oc0 OF

If we would therefore like to introduce only thenttionW;, i.e., the value taken by
W at 7=¢= 0, and if we suppose that one is not given tHeegthat are taken by the

derivatives%ﬂ,%—w for n=¢= 0 then we find ourselves in the presence of six
n o¢

expressions, where only four of thef,,G',J',K’, may be considered as given, and two
of them,G',H" ,are left to be determine&®). In other words, knowledge ®¥, uniquely
entails knowledge of the tension effértand the moment of deformati@ii, J', K" ).

If we introduce the expressioRsG, H, I, J, K then we may say that the first three are
three auxiliaries, in regard to which, one knowsgdy that one has')):

(18) FIX, g,y d2_oW
ds ds ds du

and the last three may be calculated by meanseobbthe systems:

a,l +a,'J +a"K:a—W, I— 6W ﬁ 6W,

op op or
(19) I[ﬂ+,3'J+,3"K:%—V(;/, 9 {J=a aw ﬁaw ;/a(;’rv,
”+VJ+VK :aa_\i-v’ K: "aW IB"GW naavrv’

wherea,a’',a”,...,y" are defined by formulas (14) and (16).

The external force and moment result from thentheyformulas of se® and10, in
the measure where they may be determined WHeadone is given.

Suppose that one is presently given the exteomeéfand moment. The equations:

5. If we admit that we know only the functidé, then we may suppose that we ignore the existence of the
function W that has served as our point of departure, since thaidnaris, in a sensdidden, along with
the positions of the triad/x'y’'Z for which Mx' is not tangent to the cury{#).

46. From now on, we denote the functidhof s, £ p, g, r by W.
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d—F—X:O, dl Hﬂ—Gd—Z—Lzo,
ds ds ds ds

(20) 4G _y oy, A pdz X oy,
ds ds ds ds
d_H—Z:O, dK G%—de N =0,
ds ds ds ds

combined with equations (18) and (19), and the relation:

dx )’ dy dz
21 — | +| =
(21) [dsj [dsj [dsj =1
provide a system of eight differential equations in fitéhese variables (as functions of

the sixth) and of, G, H whenX, Y, Z, L, M, N or Xo, Yo, Zo, Lo, Mo, Np are given

functions ofsy, S, X, ¥, z awy and the derivatives of these variables with respeeiati
other.

If s does not figure explicitly in the given functions themeomay use (21) to
eliminateds and, upon takingo, for example, to be the independent variable one will

have a system of seven differential equations thahel¢fie seven unknownsy, z, @
andF, G, H.

In the case at hand, where the functbhthat we started with is hidden, the
expressions=, G, H are simple auxiliary functions that are defined by thHtemntial
equations of which we speak; we may propose to eliminaen.th However, that
elimination is easy, since they figure linearly and thigrivatives are excluded from

relation (18) and the three relations on the right-hsidd of (20); these four relations
give:

e (S| (@
ds ds ds \ds ds

R LR

22) S S S S S
oo 8 (o

ds \ds ds \ds ds
LN NSNS
ds ds \ds ds ds ds

To abbreviate the notation, we set:

aw

(23) T=—alu,

from which, by elimination oF, G, H we obtain the system of four equations:
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R I
ds: ds ds ds \ds ds

28) df_cdy, ﬂ_Ljd_z_[d_K_de_x v=o
ds: ds \ds ds \ ds ds
df_pdz (4, d_x_[ﬂ_Ljd_v _z=0
ds| ds \ds ds \ds ds

(25) ﬂ_L %.}. E_M ﬂ.}.[d_K—de_Z:O,
ds ds \ds ds ds ds

in which we have replacedd J, K, T with their values from(19') and (23), and which,
with (21), form a system of five differential eqigats that relate five of the variableg

S, X, Y, Z, a to the remaining one. Hdoes not figure in the given variables explicitly
then one may use (21) to eliminatis and relations (24) and (25) provide four
differential equations that defingy, z, was functions o$,.

22. Reduction of the system of the preceding section to a fornmat one may
deduce from the calculus of variations— In the preceding section, we finally found a

function W which, by the intermediary ofy, p, g, r, depends upon
do dx  dX
"ds’'ds,’ ' ds
Observe that upon taking these latter argumembtsaocount, equation (25) may be
written:

as well as om.

d | ow aw+[L0g<+Moﬂ+N dzj o

ds, | 5 dw w ds °ds

ds,

We examine whether successively combining eaclgoét@gons (24) and (25) will give
three equations that are susceptible to being @edirom the calculus of variations
directly, i.e., equations such as the following:

d® ow _d> ow _ d ow _
ds ,d°x ds ,d’x dsg 5 dX
0 0
ds’ dsf ds,

XO +...=0,

where the terms not written depend only upon theraal moments.

If we remark that the equations considered rededdrivatives that are of order at
most five then one sees that one must seek tadimteothe third derivatives of equations
(25), which may be written:
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d (aw}+qaw_raw_[Log<+M L dzj o

ds, or oq ds ds °ds
or

_d (oW oW oW
= +(q —-r
ds, or oq

with the notation of se®.
Consider the first equation of (24); it is written:

Ay O [ _ds Ay o x, =0,
ds, ds | ds, ds | ds,

d ds,( d oW d ow N d ow d ow oW
-Ta+ - Y - py
ds|” ds, dq dsg, or pds Op ds, Jq or

d 1 n
—d—S;(aN0 —a MO)}—XO =0.

d® ow
Upon forming the first term— ———+---one easily confirms, by a calculation whose

$ 5 dx
ds
details will not be given here, that the combinatio
Nne—— d’s
2 1
Ul+d— NP \% +i di

dg |(ds) | 99 |( ds)’
ds, ds
reproduces the different terms of the expressioquiestion, as well as those that go to
zero with the external forces.
If we set:
d’s

2 ne— 5
d LI N ds L, +—[ d%s(aN a”MO)}

IS |(ds)" 7| 98| ds) 7| 9
ds, dg

and if we designate the analogous expressionsateadbtained by replacing, ) with

Yo, i, and thenZ,, ), respectively, and then making the required perrntstin the

last term by, Zo, we obtain the system in the following form:

Xy =X, +
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A oW oW dow_
d$  d  d$ L d’x  ds, dx
0—— - 0

ds dg ds
& oW & oW dow
ag &’y d§ Py dsady
ds g ds
& oW _ oW doW_
ds .d°z d€ .z ds 5 9z
0—= M =
ds dg ds

0

-), =0,

0=

d ow _an{L LA Nod—zj=0,
ds, 6% ow ds °ds ds
ds,

which one may summarize in the formula:
L? (W +X,0x+ )0 y+ Z,0 = lPw) dg=0,

where one considers only the terms that ultimgpedsent themselves under the integral
sign (47).

This summarized form to which one is led, and Whigust be treated according to
the rules of the calculus of variations, is paftcly convenient for the purpose of
effecting changes of variables.

Upon supposing thako, Yo, Zo, L, are of a particular form, one will have the
equations for the extremals of a problem of thewdak of variations.

If we consider the case in which denotes a function ofx, y, z

a =1% a’ =Eﬂ a’ —lzthen we have:

fdg  &dg &ds

ou ., U Y

:—’ 0=

° 7 ax oy’ °" oz

1[M dz dyj_ U {au a(au dx , U dy , au dzﬂ
r 0
¢

&\%ds °ds) 5 dx &l oa &l oads Toa' ds,  0a” ds,
ds,

t

*” One has a forr]({l(éT +U")dt =0for HAMILTON'S principle that is analogous to the one thats
0

given by TISSERAND, pp. 4 of Tome | of hisaité de Mécanique céleste.
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E[N dx L%j: 0U _1[aU _a'(9u dx du dy 93U dz
U %ds °ds sy ¢loa’ &\ da ds, aaols0 Toa ds,
ds,
E[L dy_,, %j: 0U _1[9U _a"(0u dx U dy U dz
El%ds °ds 592 ¢&loa” &\ da ds, "o ds, "o ds,
ds,
L, em, YN, 922

ds, ds, ds,

or, what amounts to the same thing:

ouU ou ouU
=—, Y, =—, Z, =—,
° ax ° oy ° 9z
Lo :[a’a—u,,—a"a—u,j, M, :[a"a—u—aa—unj, N, :[aa—u a a—Uj
oa oa oa oa oa’ oa
One then has:

:a_U—i_aU y :a_U—i_aU Z :a_U—i_aU
"Tox dg dx T oy dg,dy’ 0 oz dg,dz
ds, ds, ds,

as the extremal equations relative to the integral:
j (W +U)ds,.

Another particular case, which one may combiné wite preceding, is the one in
whichW is of the formBp + ¢(qf +r?, &), whereB is a constantW may then be written:

Bp + o, €, p).

If one supposes, in addition, thig} =0 then the four equations reduce to three, since the

fourth equation reduces to an identity.
The case that we will now examine comprises, migqdar, the one in whichV is of
the form,

AiZ+C,

0

with A andB constant. This amounts to the case considered. BERNOULLI, and
later by EULER; it is the case that inspired SOPIHERMAIN and POISSON in their
researches on elastic surfaces.
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23. The inextensible deformable line whereMx'is the tangent to(M) at M. —
Instead of simply supposing, as in the preceding casegtieabas introduced conditions
(14) and (15), we may suppose, in addition, that the lingeigensible, which, by virtue
of (14), amounts to adjoining:

é=1.

If we admit that one knows only the value of the fiowcE§sy, ¢, 77, {, p, g, r) for £ =
1,7=0, {= 0, or then again, starting with the line of the pdaug section, to which we
adjoin the conditionz = 0, that we know simply the value of the functidh for 1= 0
then we see that all three BfG, H become indeterminate and we presently have either
equations (20), wherg J, K are replaced by the valug€k'), in whichW denotesMso,

1, 0, O,p, q, r) or Wi)=0, and which form, with relation (21), a system efven
differential equations that define the unknownsy, z, F, G, H as functions o§ = s, or
equations (24) and (25), whdrel, K are replaced by the same valy@8 and which,
with relation (21), a system of five differentiajieations that define the unknowxsy, z,
a T as functions of = .

However, the system so obtained coincides with dhe that was introduced by
THOMSON and TAIT t8), upon supposing that(s, 1, 0, 0,p, g, r) is obtained by the
substitution of the values qf, 0o, ro as functions of sinto a quadratic form (with
constant coefficients) in the expressignspo, q—0o, r —ro . This is what we will arrive
at if we suppose, for example, that the expresgmat the beginning of the preceding
section is obtained by substituting the valuep®fqe, ro as functions of, for these
variables in a quadratic form pgl + ) —po, a(1 + ) — o, r(1 + 1) —ro.

Observe, in addition, that in the applications enag THOMSON and TAIT of the
considerations in their se614, namely, for example, the application made in 646,
they put themselves in the case of an infinitehalimleformation; we therefore recover,
in a completely natural way, the applications nered by starting with the functiov
in general and considering infinitely small defotimas.

Here we may develop considerations that are aoa®dp the ones relating to the
preceding line; the only difference is that oneoad:

2 2 2
) (] o)
ds, ds, ds,

One presently arrives at the formula:

j: (OW +X,0x+ NI y+ 20 - LLdw) dg=0,

which must happehy virtue of the fact that:

*8 THOMSON and TAIT. -Treatise on Natural Philosophyol. |, Part. Il, sec614 pp. 152-155.
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d 2 d 2 2
X + y + dz =1
ds, ds, ds,
and whereXy, Yo, Zo have a significance that we shall describe.
Indeed, the equilibrium system of equations is\eqant to the following:

& ow o oW df oW __ dd_ ., _,
dg ,d°x dg , d°x ds a% ds| °
ds ds ds,
d®> oW o oW . d| a W d
+— -T—?|-) =0,
4§, a7y a5,y ds, & | ds
ds = ds,
3 2
d_6V;/_d 6\/2V+_d aW—T—dZ—ZOIO,
d§ ,d’z dg, &z ds| 502 ds
i 0—= —
ds ds ds,
d oW ow dx dz

dy
AL Y A V)
dg 0@ 09w “ds " “ds “ds

ds,

where one must set:
— d2 ! d I n

Xo = xo+—§(y1pLo)+—(a No=a"My)

d2

%= %

Z, = %

(V1,0L0)+—(0"N —aMy,

(V L0)+ (aN -a'M.

24. Case where the external forces and moments are nuharticular form of W
that leads to the equations treated by Binet and Wantzek Instead of using equations
(24) and (25), it may be more convenient to reitedl equations we began with; it may

also be useful to appeal to the geometric inteapicet.
For example, suppose thé, Yo, Zo are null. One concludes from this tikatG, H

are constants equal to the valugs,G, , H, that they take at the one of the extremities
Ao, and one has three equations:
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dl dy dz

D wn, Yo, 2 =0
ds, ™ds “dg °
dJ dz dx

SR Zon, ®om, =0
ds, ™ds  ™ds 0
dKig, g, W _p, =0

dg,  dg  Mdg

which are the primitive equations aadtually result from the elimination of from (24)
and (25).

If one has, in addition, that, Mo, No are null i.e., if the deformedW) is subjected
only to forces applied at its extremities, thenhage:

| +H, y-G, z=const,
J +FAoz—HA0x:const,
K+G, x-F, y=const,

relations that one also obtains from the geometttierpretation of the equations by
means of formulas such dS)(

MO
IMo —HMOyM —GMozM = I,Ao +HA0yA—GAozA—LO (Y,z-Z,y-L,)ds,.

Havin(go)made these remarks, consider the case wnefanctionW of s, p, g, r is of the
form (*°):

1 A(g* +r?)+Bp+C,

whereA, B, C are constants. One will have:

9 One will observe that the reasoning of BERTRAKSRr I'équilibre d’une ligne élastiquéyote Il of
the Mécanique analytiquef LAGRANGE, pp. 460-464 of Tome Xl of Oeuvres de LAGRANGE)ounts
to the use of these formulas, or, more preciselggtovalent ones such as:

I -1 =Gz -H y -G z +H vy
M A A M A M A A A A
0 0 0 0 0 0

™M _ _ M __ (M )

jAo(YOz Z y-L)ds +y0jAono|sO szAoYOdsO ;
0 0 0

it suffices to refer to se®, where we said that the effort and the moment of deftom atA, are

F',G" ,H" ), (0" ,3" ,K'"), ie.,thevaluesofF',G',H' XI', J',K") atA.

(F, .G H ). .0 K ) of X ) atAo

0 0 0 0 0 0

0 |f Wis obtained by replacing, oo, ro with their values as a function pf—pg, q — 0o, I — ro then we
suppose that, = g = 1o = 0, in such a way thati)? + (ro)> = 0, and the curveMy) is a straight line.
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' =B, J' = Aq, K'=Ar;

the vector(l',J',K") or (, J, K) is the resultant of a constant vector equaBtihat is
directed along the tangelutx’and a vector that is directed along the binorméllaas the

A .
same absolute value as. The three equations:
P

| +H, y-G, z=const, J+F,z-H, x=const, K+G, x-F, y=const,
are, up to notations, identical with the equations:

0 dyd’z-dzd’y _  dx

=@—+cy—-bz+a,
ds® de Y .

2y _ 2
ded Xd 3dxd Z:€%+az—cx+bl,

2y, _ 2
ded 3;(3dyd X :eg—:+bx—ay+cl,

that were considered by BINETY, WANTZEL (°%, HERMITE (%), in whichp, 6, a, b,
C, a1, by, ¢; are constants.

In the previously cited note, which placed usha tealm of the analytical mechanics
of LAGRANGE, and where we were said to have imdate method discussed by
POISSON in the article that was mentioned in 9€.and recalled in the following
section, J. BERTRAND has treated, after WANTZELg thase where the three
equations:

cy—bz+a; =0, az—cx+b; =0, bx—ay+c; =0,

represent a straight line; if this straight linedentified by:
HA(Y —Ya) —Ga(z—2n) =14,
FA(Z—21) —Ha(X —Xa) = Ja,
Ga(X —Xa) —Fa(y —Yya) = Ka

then the preceding hypothesis amounts to:

Fala + GaJa + HaKa = 0,

*LJ. BINET. —Mémoire sur lintégration des équations de la courbe élastique B eoctlirbure

(Extract), C.R., 18, pp. 1115-1119, 17 June 1844Réflexions sur l'intégration des formulas de la tige
élastique B double courbure, C.R9, pp. 1-3,  July 1844,

2 WANTZEL. —Note sur l'intégration des équations de la courbe élastique B double ceu®iR.18,
pp. 1197-1201, 24 June 1844.

3 Ch. HERMITE. -Sur quelques applications des functions elliptiques, ®IRpp. 478, 8 March 1880;
see also the work of that title that appeared in 18855(s285).



THE DEFORMABLE LINE 55

and this amounts to supposing that the coupleJs, Ka) and the forceKa, Ga, Ha)
reduce to a unique force.

From relation (2) on page 463 of LAGRANGE, this line, wliteis of issue, does not
encounter the curveM); this remark was made by J. BERTRAND in the caserevhe
defined it. What might appear strange is that a hypothegreserved at the top of page
462 that, from the note on page 463, entails the rel&0.

Upon supposing that the const&hof BINET is null, i.e., with our notations, upon
makingB = 0, one has the particular curve considered by LAGRANGE.

Observe that in the present case the unknown thatawe denoted byv does not
appear in the equations; however, the three equations:

di T H dy_G dZ:O,

d, dg dg
d‘]+F dZ—H dX:O,
d, dg ds
dK+G dX—F dy:O’

dg, dg ds

reduce to two because upon multiplying themd@;’,ﬂ,iz and adding them one gets
S

dg ds
zero for the particular form of J, K that was considered in the last example.
We recover the preceding line in the followingt&et this leads us to remark that
one may present the following as it is.
We seek the case in which the effort of defornmatid the line in the preceding
section is perpendicular to the principal normal.
We have the condition:

If we suppose that this condition results frommniagure of the line, i.e., from the form
of its W, then this condition is a partial differential etjon that is verified byV, from
which W must depend og andr only by the intermediary af + r% If this condition is
verified then, from the remark of POISSON that wealled in secl0, the equations of
the problem entail that

| = const

If we suppose that this conclusion results fromnhature of the line, i.e., the form of
its W, then this amounts to the condition:

a_W:B’

op
whereB is a constant, and we find
W=Bp+ ¢,
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L. upon supposing that is of first degree i + r?

whereg is a function of g® +r? =—;

we recover th&V that served as the point of departure for thisicec

25. The deformable line for which the planeMx'y is the osculating plane o{M)

at M; the case in which the line is inextensible, in adddn; the line considered by
Lagrange and its generalization due to Binet and studied by d¥sson.— We may
proceed further with the hypotheses that were nfadéhe deformations of a deformable
line. Instead of assuming simply thiskx’ is tangent to the curvé), we may suppose
that the plan&ix'y is the osculating plane to the curi)(

1. First, leave aside the hypothesis of inextelitsi Assume that one still has
relations (14) or (15), and, in addition:

q=0go=0.

If, for the moment, we e\, denote the function that is obtained by settpg{=q=0
in W, orq = 0 inW; then we have:

Fr=Me g

W, W,
oy’ op

Coor

As for G',H’,J’,they may be calculated W is the only given, and may be considered
as three auxiliary variables that are defined leyeuations.

In the present case, equations (20) are combingdrelations (18), (21), and the
following:

oW oW
|l =a—+[ +y—,
o TP
(26) J =a’a—W+,[>’U'+y'a—W,
op or
K :a'"a_W+13"\]'+V'a_W’
op or

in whichW designates the expressidh takes wherX, Y, Z, L, M, N or Xy, Yo, Zo, Lo, Mo,

No are given functions ab, S, X, y, z, and their derivatives with respect to one of thea
system of eight differential equations in four lné$e variables (as a function of the fifth)
andF, G, H, J'.

As in the preceding, we may eliminake G, H, and what remains are the four
equations (24) and (25), in which we have repld¢ddK, T with their values from (26)
and (23), and which, with (21), form a system ekfdifferential equations that relate
five of the variables, s, X, Y, z, J’ to the other one.

2. In addition, introduce inextensibility by thedations:
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=4 =1.

Continue to designate the functi®s, 1, 0, O,p, O, r) by W and suppose that this
function alone is continuous. We simply have thatiehs:

|' = a_W, K'= a_W
op or

As a result, itX, Y, Z, L, M, N or Xo, Yo, Zo, Lo, Mo, Np are given functions ab, s, X,
y, z, and their derivatives with respect to one of thaen we have the seven equations
(20) and (21), wherk J, K are replaced by their values from (26), and whletermines
the seven unknownsy, z, F, G, H, J’ as functions o$,, for example. Upon eliminating
F, G, H, we have the four equations (24) and (25) thahdehe four unknowns, y, z, J*
as functions o.

It is easy to deduce the cases that were envisibgeLAGRANGE, BINET, and
POISSON from the case we shall now consider.

Suppose that the given functiobsM, N are null; the three right-hand equations of
(20) form a system that is equivalent to the follmyv

d—l—rJ’:O,
, ds
£+rl’—pK’—H’:O,
ds ,
dOII<c Fp)'+G =0,

which the system of sett0 reduces to; just the same, one or two of thesetbquations
may replace one or two of the equations on the-tigind side of (20), in general.
In particular, the relation:

(27) —-1J'=0

that is obtained by adding the three equations henright-hand side of (20), after

multiplying them bya:%,a’ :%,a" :g—f, may be substituted for any one of the
aforementioned right-hand equations of (20), inegah
Having said this, suppose first that the funcéof s, p, r that presently figures in

relations (26) does not depend pn We will have |’ =0, and relation (27) will give

J =0 upon supposing thatz 0. Hence, in the present case, the moment of mefmn
is directed along the binormal to the curt®.( In equations (20), we have repladed,
K by the values:
ow ow ow
| =y—, J=y—, K'=y'—.
4 or y or 4 or
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The three right-hand equations of (20) reduce to two.

We thus obtain the case envisioned by LAGRANGE in nantbthe following ones
of sec. Ill, chapter llI, first part, section V, ofstiMécanique analytiquépp. 162, et seq.
of Tome | of the first edition).

It might be useful to show the identity with the expiosi of LAGRANGE. We may
suppose:

| = Jy(dy dz—dzd?),
J = Jy(dzd?x —dxd*2),
K = Ji(dx o’y —dy d?X),

since the vectol, J, K is perpendicular to the osculating planeMj.(
The right-hand equations of (20), which may really betemi. =M =N = 0):

dy dJ:d%2) —dz dJ,d%y) =-H dy+ G dz
dz dJ,d*X) —dx dJ,1d%2) = - F dz+ G dx
dx dJ; d%y) —dy dJ,d’X) = - G dx+ F dy,
or
d(J,d*x)+F _d(J,d*y)+G _d(J,d?*z)+H
dx dy dz ’

which permits us to set:

F= )I%— d(J,d?x),

G= )I%/ —d(J3,d2%y),

H :)lg—f—d(Jldzz),

after introducing an auxiliary variabke
If we transport these values into the three laftchequations of (20) then we recover
the equations that were given by LAGRANGE at thgito@ing of his no. 48:

Xds-d "d‘ix+ d2(3,d%%) = 0,
Yds-d )'iy +d?(J3,d%y) =0,
Zds-d "d‘iz+ d2(3,d%2) =0.

In the preceding theory presented by LAGRANGE mhement of deformation is
normal to the osculating plane. BINE™)(has proposed to consider the case where this

> J. BINET. -Mémoire sur I'expression analytique de I'élasticité et dealdeur des courbes B double
courbure (Bull. De la Soc. Philomatiqu&814, pp. 159-16Qjourn. de I'Ec. Polyt., Note 17, T. X, pp.
418-456, 1815).
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moment of deformation is simply perpendicular to thegyple normal. On the other
hand, BINET supposed that the line elements were subjestérnal forces in a way that
we shall also do in the case whére M =N = 0. From (27), the hypothesl$= 0 that
was made by BINET entails that

| = const

This result, as we pointed out in s&6, in the general form that is independent\f
and which is due to POISSORF) may come about either because of the specificafion
the forces or the specification \0f

If we assume the latter case, we have:

W= ¢(so, 1) + mp,
wherem is a constant; as a result:
=8

l'=m, .
or
With this hypothesis, one sees that # 0 then condition (27) amounts to saying that the

unknownd”’ is equal to zero, and, as a result, one hasplaage, J, K in equations (20)
with their values:

0¢
=am+y——,
yar
J :a’m+;/—¢,
or
K =a"m+y"%,

and the three right-hand equations of (20) redadsvo. In particular, if%—f is derived

from an expression of the fornfr —ro), wheren is constant, and if one replacgsas a
function of 5 then one has the hypothesis that was explicitlglanby BINET and
POISSON. Upon supposing, in addition, that thee@lo) is a straight line and that the
external forces are null, in such a way that tlaadformation of ¥lp) into (M) comes
about only from forces and moments applied to #ieeenities, one recovers the problem
treated by BINET and WANTZEL, upon which we presbustopped.

Upon supposing thath = 0 in all of what we proceed to discuss we ret@the case
of LAGRANGE.

26. The rectilinear deformations of a deformable line— If we suppose thalp) is
a straight line then we must direct our attentmmhie deformationd\) that are likewise

5 POISSON. Sur les lignes élastiques B double courbure, Correspondance sulel’BotytechniqueT.
I, no. 3, pp. 355-360, January, 1816. This work may be considsmestined to complete what preceded
it, which was due to BINET.
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straight lines such that, in addition, the aMig’ is directed along the lind/) and M ;x,
is directed alongM).

1. If one first supposes that the line is extensthlen we have:
n=rmn=0, {=¢{(=0, dg=qv=0, r=ro=0.
Upon continuing to denote the functidfs,, 1 +4, 0, O,p, O, 0) byW, we have:

_oW

ow ,:6W
ou’

= ==
op

As for G',H',J',K’, they may be calculated by means of only the kndgdeof the
functionW(sy, 1 + 4, 0, O,p, 0, 0). If this function is the only given one shiconsider
G',H',J, K as four auxiliary variables that are defined by élquations.

In the present case, whi¥nY, Z, L, M, N or Xo, Yo, Zo, Lo, Mo, No are given functions
of %, S, X, ¥, z and the derivatives of these variables with respe one of the others,
equations (20), combined with relations, (18), (2hd the following:

=W g,
op

(28) R =a'%—vg’+,83'+yk',

K :a"a_W+ﬁ"\]'+VK',
ap

provide a system of eight differential equationsfoar of the above variables (as a
function of the fifth) andey F, G, H, J',K’; in addition, one has two first degree

equations (whose coefficients are to be determimex])y, z

As before, one may eliminake G, H.

A particular case is the one wher#)( coincides with o) point-by-point
(coincidence of the triad vertices).

2. In addition, if one introduces inextensibility the relations:
§=4=1,

and if one continues to denote the functitéfs, 1, O, O,p, 0, 0) byW, one will have,
upon supposing that only the this latter funct®known, simply the relation:

_ 0w

==
op
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If X, Y, Z, L, M, N orXo, Yo, Zo, Lo, Mo, Ng are given functions ab, s, X, y, z, and the
derivatives of these variables with respect to onehef dthers then we have seven
equations (20) and (21), whergJ, K are replaced by their values (28) and which,
combined with two relations of first degree ¥y, z (with the coefficients to be
determined by accessory conditions) determine the nineowmisx, y, z, g F, G, H,
J',K' as a function o.

As before, one may eliminake G, H.

27. The deformable line obtained by adjoining the conditio®ip = po, q =0, I =
ro, and, in particular, p=po = 0,9 =qo = 0,r =ro = 0. — This deformable line may be
studied in various fashions, either by considetimg deformationsM) of the general
deformable line that verify the indicated condigpir by starting wittW in general and
defining a new line by the consideration of theextaconditions, or by starting witlv as
a function ofsy, ¢, 77, ¢, and defining the line that conforms to these ddwtk.

Imagine the first viewpoint. For the moment, desie bywW; whatW becomes when
one takes the conditions:

P = Po, g = o, I =ro,
into account; i.e., set:

W, =[W(85,$.77,€, P, A, )] o=, g=gour=r, = W(S5:€.77,6, Po, o To)-

We have: i
SR
: ag P=Pg,4=0p.r =g ag ap P=Pg.4=0p.r =y
s
L 6,7 P=Pg,q=0p.r =g 6,7 aq P=Pg,4=0p.r =y
H': M:| :6VV1 K':[a_w}
- ac P=Po,d=0o." =To ac or P=Po.9=0o.r=ro

Therefore, ifwe would like to introduce only the function W s, ¢, 1, ¢, i.e., the
value taken byV for p = po, 9 = qo, I = ro, and if we suppose that we are not given the

values taken by the derivativeasvl,a—w ow for p =po, g = o, I = rp then we find

op 0q odr
ourselves in the presence of six expressions, tmge of whictF',G',H may be
considered as given, and three of whichl',K" are left to be determined.

The equations in question are then:

d [ oW, + oa\Nl_roa\Nl_X(’):O,
ds | o0& 0¢ on

d [N +roa\Nl_poa\Nl_Y0':O’
ds \ 97 0¢ 0¢
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%(a(;/v;j+ OZ—V,\;l—qO%—V:(/l—Z[) =0,
j_;+qOK’—rOJ’+/76(;/Zl —Ca(,;/,\;l -L, =0,
(%HOI’— pOK’+ca(;N§(l —566—V€\{1—M(’) =0,
(;_:+ pOJ’—q0|’+5aé;/,\7/1 —/7?2!1 -N; =0,

to which we must adg = po, g = qo, I = I, and which give us, in all, nine equations in
the nine unknownsg, y, z, A1, A2, A3, 1", 3", K".

The last three formulas are similar to the oneswibat MAXWELL has called the
magnetic induction in the interior of a magnet.

In the particularly simple casg=po = 0,9=qo = 0,r =rp = 0, the preceding
formulas take a very simply form.

28. Deformable line subject to constraints. Canonical equans. — In all of the
foregoing, we have considered a deformable line weahave qualified aee, i.e., the
theory was developed without the intervention akeexal elements, and by means of a
functionW that is defined by the elements of the line imasural and deformed states.

Directing our attention to certain deformationgpn adding the notion offaddenwW
we may recover the equations that were proposeléguthors for various lines.

Instead of this exposition, we may give anothewlich, instead of considering the
deformable line of sec5 and 9 for which the deformations satisfy certain deénit
conditions, we imagine a&ui generisdeformable line, wherg¢he definition already
accounts forthe definite conditions satisfied by the particueformations of the
preceding line.

Here is how we proceed to define the new line latémaining in the same general
neighborhood as before.

First, observe that the conditions imposed orfuhetionsx, y, z, a,a’',---,y" may be
of two kinds: 1. conditions between functions ahélirt derivatives %), for anys, . 2.
conditions satisfied for certain valuessaf

We restrict ourselves to conditions of the figgid.

To fix ideas, let

fl = 0, fz =0

be two conditions oequations of constraint.Instead of constructing the preceding
expressions that we defined by means of the identit

j:’éWd% Z[F'OX+G'y+HSz+1'A" + @ + K'K']S

5 QOur exposition is not concerned with the distinctietween holonomic and non-holonomic constraints.
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—jZ°(X'55<+Y'5y+ Z'52+L'd"+M'&' +N'&K')ds,,

as functions of,, where we introducedr’,G',H',1',J",K"; X", Y',Z',L"'M",N’, to fix
ideas, we say that - by definition — the precedtiemtity must make sense by virtue of:

f1:0, f2:01

or again that — by definition — we imagine a defabfe line such that the theory results
from the consideration of a functidi(sy, & 77, ¢, p, 9, r) and two auxiliary functionds,
A2 of 55, by means of the identity:

BO ! ! ! L ! ! ! ! ! I
jAo(awulaluzaz)d% =[F'ox+G'oy+H'dz+1'd"+J3'A +K5K]2

—j2°(X'55<+Y'5y+ Z'52+L'd"+M'&' +N'&K')ds,,

where, this time, all of the variations are arlifrave must then add

fl = 0, fz = 0,
a posteriori.

Observe, moreover, that in the case where ceofaihe left-hand sideg, f,, ..., of
the equations of constraint refer to only the argot®s that figure iW, one may conceive
that either one proceeds in a manner as we shatride, or that by a change of the
auxiliary variables one introduces the data oféheguations with particular constraints
into W a priori; this brings us back to the notion ofiiddenW. We stop ourselves at this
point in the particular cases that follow and whiteepresent remarks apply.

1. FLEXIBLE AND INEXTENSIBLE LINE. — Start with afunction W of
,u:(;j—s—land S, and add the condition thagy = 0. We define the functions
S

F',G',H', X",Y', Z by starting with:

j:’(aw +Adu)ds=[F'Ox+G' 3y + H'5Z®

- jfo°(x(;55<+v(;5y+ Z!57)ds,.

This amounts to replacing/ with W, = W + Ay in the preceding, and it leads to the
formulas:
_OW oW w

dc CTody T dz
ds, ds, ds,

F
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aF _
ds,

ds _
ds,

dH

X, =0 hutll
0 ds,

Y, =0 Z, =0,

in which we have taken = 0 into account, and which thus deternfi&s, H, Xo, Yo, Zo.

As one sees, we come down to a theory of the bilexinextensible line that
generalizes the theory of LAGRANGE, which correggmto the functioWV; of s andy,
and where we limit ourselves to the study of defatioms that correspond o= 0. If we
take the case in whicW, is hiddenthen we suppose that one knows simply the value
Wo(s0) thatW andW; take simultaneously fo = 0, and we therefore have the classical
system of mechanics.

Observe that if, in order to construct the flegibhextensible line, we take the
condition = 0 into account iW, a priori, by a change of the auxiliary variables, then
we are led to replad® with A in the calculations relating to the general defabla line,
and we arrive at formulas that lead furthermoreh® study of the flexible extensible
filament, where we limit ourselves to considerirgfaitmations that correspond to= 0O;
upon supposing that is unknownthese formulas also lead us to the classical syste
mechanics.

We conclude with the following remark. Supposa tiby virtue of the formulas that
define the deformation, one has expressgdyp, Zp as functions o, X, y, z in such a
way thatXo dx + Yo dy + Z, dzis the total differential of a functiog of s, X, y, z with
respect tax, y, z Suppose, in addition, that we are dealing whigh ¢ase of the hidden
Wi, or in the case envisioned in the latter contexsuch a way that we are reduced to
the case of mechanics. From the foregoing, onevees the remark that served as the
point of departure for CLEBSCH] that the equations in question, in whiX$ Yo, Zo
figure, are none other than the extremal equat@hnthe problem of the calculus of
variations that consists of determining an extrenfimmnthe integral:

B,
j », Pds,
under the conditior™}):

If we set:

> A. CLEBSCH. —Uber die Gleichgewichtsfigur eines biegsamen Fadens, Journ. éiireifie und
angewandte MathT. LVII, pp. 93-116 [1859], 1860.

8 We must distinguish between the present question anzhehtreated by APPELIraité de Mécanique
rationelle, T. I, I ed., sec158 pp. 205 ff.; 2 ed., sec146 pp. 201 ff.
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and apply the considerations developed by JORDZEN e may reduce this system to
its canonical form. If we put; in place ofT then the system expresses the idea that one
nullifies the first variation of the integral:

B
jAO Fds,
upon setting:
F==(¢+ ).
The equations:
oF _ oF oF _ _
a% pl’ aﬂ_DZ’ E_p?ﬁ’ llJ]_—O,
ds, ds, ds,
permit us to express the variablaszﬁ, y' :ﬂ, zZ :£,A1 as functions of the
ds, ds, ds,

variablesx, vy, z, p1, p2, ps by means of the formulas:

A=y PEFps + s, x=biy=Pe B

If we substitute these values into:
pX + P,y + pyZ —F,

H=g(5, % Y, I+ B+ B+ B,

and upon denoting the coordinates/, z by o1, Gp, s, as in APPELL ), we have the
equations (which are canonicakifdoes not figure ip):

we obtain the function:

dg, _ 0H dp, _ _0H

ds, dp ds, dg

to determine the variablesy, z, p1, p2, ps.
As one sees, we recover the results that werénebtdoy APPELL (%), in a simple
form that was first given by LEGOUX?), and then by MARCOLONGO®), and from

%9 JORDAN. —Cours d’Analyse de I'Ecole Polytechnigte,lll, 2" edition, no. 375, pp. 501, 502.

0 APPELL. —Traité de mécanique rationellé ed., T. I, Exercise 14, pp. 48-49“2d., T. |, Exercise
14, pp. 583-584.

¢ APPELL. —Reduction & la forme canonique des équations d'un fil flexibleesténsible, C.R96, pp.
688-691, 12 March 1883yraité de mécanique rationellmc. cit.
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which one may pass to the method of JACOBI and thetsegivien in the first place by
CLEBSCH, in the previously-cited memoff)

One may also present the preceding exposition asdv®dihe dynamics of a point
in our first Note and for the deformable line in general.

Begin with the equations:

d ) x =0 At W)y -g A9, -0
ds, | ds ds, | ds ds, | ds
or rather, the system that gave rise to them:
— —_— 3
ds, ds, ds,
d_F_X():O’ d_G—YOZO, d_H—ZOZO,
ds, ds, ds,

which may be considered as defining the six unkrsawg, z, F, G, H. Suppose thaXo,
Yo, Zp are given functions ab, x, y, z

If we add the three equations of the first linffgerasquaring, then we see thatis
defined as a function &%, G, H by the relation:

T2:F2+GZ+H2,
from which, it results that:

F_aT G _oT H _aT

T oF T oG T oH

The normal form of the system considered is, Esalt:

dx _ oM dy  oH dz oM
65" oF g 06 ds ow
aF__on  d6__aw  dH__oH
ds,  ox’ ds, ay’ ds, 0z

2. ELASTIC LINE OF LORD KELVIN AND TAIT. — We mayepeat for this line
what we did for the flexible inextensible line. aBtwith a functiorW of s, &, 17, ¢, p, g,

%2 A. LEGOUX. —Equations canoniques, application & la recherché de I'équilibre defidilible et des
courbes brachistrochrones, Mém. de I'’Acad. des Sciences, inscrigtidnsles lettres de Toulousg"
Series, TVIII , 2" semester, pp. 159-184, 1885.

% R. MARCOLONGO. -Sull’ equilibrio di un filo flessible ed inestensibile, Rend. déticad. delle
scienze fisiche e matematiche (Sezione della Socie#Bdigfdapoli),2" Series, vol. I, pp. 363-368, 1888.
64 Likewise, consult APPELLSur I'équilibre d’un fil flexible et inextensible, Ann. de la FBes Sc. de
Toulouse(1), 1, pp. B-Bs, 1887.
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r, and add the conditions:
é=&=1, n=n=0, {=¢{(=0.

We define the functiors’,G',H’,1",J",K";X},Y), %, L, M,, N, by means of the
identity:
[ (OW + 4,8 + 1,00 + p1,6) s, =[F'Sx+ GOy +---+ K'K T2

—j:°(x(;55<+v(;5y+...+ NLAK')ds,

this amounts to replacingV with Wy, + (4(&—1) + tbn + 15¢ in the preceding and
including the indicated formulaS= & =1, n=10=0, {= { = 0 in these equations.

As one sees, we come downthe theory of the deformable line that correspotads
the functionW, of s, & 7, {, p, @, r, and when one limits oneself to the study of
deformations that correspond o= & =1, 7= =0, {= { = 0. If we put ourselves in
the case where Ws hiddenthen we suppose that one knows simply the fundfss, 1,

0, 0, 0,p, g, r) thatW andW,; simultaneously reduce to fgr= =1, n=10=0, {= (o=
0, and we recover thteeory developed lyORD KELVIN and TAIT.

Observe that if, to construct the preceding lme,account fokV a priori in the three
conditionsé=&=1,n=n=0, {= ¢ = 0 by a change of auxiliary variables then we
are led to replaceV by W(sy, 1, 0, O,p, q, r) + ta(é—1) + ton + 3¢ in the calculations
that relate to the general deformable line, andowtin formulas that further reduce to
the study of a deformable line when one is limitedimagining deformations that
correspond to the three conditiofis & =1, 7= =0, {= { = 0. Upon supposing that
1, Lk, 1 are not knownthese formulas lead us once more to the theorkQRD
KELVIN and TAIT.

Suppose that by virtue of the formulas that detsenthe deformation, one has
expresseXo, Yo, Zo, Lo, Mo, Np as functions o, X, y, z, A1, A2, A3 in such a way that

XodX+Yody+ZodZ+[,od/]1 + ModA,+ NodAs

is the total differential of a functiod of s, X, Y, z, A1, A2, A3, considered simply with
respect to, y, z, A1, A2, A3. In addition, suppose that we are in the cadeidefen\W or
the case envisioned in the latter example. Framptkeceding, the equations in question,

in which Xo, Yo, Zo, Lo, Mo, N figure, are none other than the extremal equatibnke
problem in the calculus of variations that consstdetermining an extremal for the
integral:

j:’(\N+U)ds),

whereW is a given function o, p, g, r, upon supposing that the six unknown functions
X, Y, Z, A1, A2, A3 verify the three differential equations:
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§-1=0, =0 {=0

If we setyyn=¢6-1,¢p=n, Ysr=¢ and apply the considerations developed by
JORDAN then we may reduce the system to canonical fddgon puttingF',G', H" in

place of the variables;, A,, A3 of JORDAN, the system expresses that one nullihes
first variation of the integraj/:o}" ds, upon setting:

F=W+U+Fy,+Gn+ Hg.
The equations:

OF _ OF _ OF _ OF _ oF ., 9F _
a%_pl’ a%_pl’ a%_pl’ a%_pm a%_ps %_p6
ds, ds, ds, ds, ds, ds,

¢ =0, % =0, ¥=0

permit us to express the nine variablez‘s:ﬁ, y' :ﬂ, z :E, Al :%,
ds, ds, ds, ds,
! dAZ ! dAS ! ] ] . .
Ay = ot A; :d—, F',G',H" as functions of the twelve variablgsy, z, A1, A2, A3, p1,
S S
P2, .., Ps by means of the formulas:
X’:a, yI:al’ Z’:a",
F’:apl+a’p2+a"p3’ G’:,&)1+,3’p2+,3"p3, H’:J'p1+Vp2+Vb3’

and by solving the formulas:

ow , ow , oW ,

Shaad/, +— 0
P, ap 1 aq X1 ar 1

ow ow , oW

(29) Ps = Wy +—— X, +—0,

- a_p Jq or

= aWw’ +M ! +6_W0-'

IDG_a_p3 aq " or °

where we preserve the notations of S .for the moment.
Substituting these values into:

p1>(+ p2y+ Q2+ Q)"ﬁ rswz'*' rews_}—’

we obtain the functiof of s, X, Y, z, A1, A2, A3, P1, P2, --., Ps, Which is deduced from:
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“W-U+ap+a' p+a’ p+ IDaﬂ+ GMJF Glalv
op daq dqg

by the substitution of the values forq, r as functions o$,, A1, A2, As, p1, P2 ..., Ps that
one deduces from equations (29).

To determine the twelve variablesy, z, A1, A2, As, p1, P2, ..., Ps, We have the
equations (which are canonicakifdoes not figure explicitly):

dx _oH dy 0K  dz _oH  dA _oH  dA, _9oH  dA,_ oK

ds, op  ds op,  ds op  ds op ds)zag’ ds)zapg’
dp, __0H dp,_ 0K dp,_ OH dp,_ _OH dp __0H dp __O0H

ds, ox ds 9y ds 9z ds 94 ds 04, dg oA,
by which one may conclude the application of the methHodA€COBI to the line in
guestion.

One may also present the preceding exposition asdvidthe general deformable
line as well as for the dynamics of a point in oustfimote.

3. DEFORMABLE LINE WHEREMXx' IS TANGENT TOM AT (M). As always,
start with a functioW of s, & 77, {, p, g, r, and add the conditions that=770=0, {= {
= 0. We define the functios,G',H',1',J",K',X;.,Y,, %, L, M,,N, by means of the
identity:

[ (OW + 14,07+ 1,8)ds = [F'OX+ GGy +oo0+ KK,

—j:°(x(;55<+v(;5y+...+ NI ')ds,.

This amounts to replacingy with Wy =W + (41 + 16, in the preceding, and adding the
indicated conditiong = 170 =0, {= { = 0 to the formulas.

As one sees, we recovire theory of the deformable line that correspotwshe
functionW; of s, & 77, ¢ p, 9, r when we limit ourselves to studying the deformation
that correspond ta7 =1 =0, {={ = 0. If we put ourselves in the case of hidd&n
then we suppose that one knows simply the fundtiss, ¢, O, O,p, g, r) thatW andW;
simultaneously reduce to far= =0, {= { = 0.

If, to construct the preceding line, we accountr fthe two conditions
n=n=0,¢{=4¢ =0inW a priori, by a change of the auxiliary variables, then we a
led to replacaV with W(so, ¢, 0, 0,p, g, 1) + 14 + (& in the calculations that relate to
the general deformable line, and we arrive at fdasithat once again reduce to the study
of a deformable line when one is limited to studydeformations that correspond to the
two conditions;7 = o, {= (.

Suppose that, by virtue of the formulas that deiee the deformation, one has
expresseo, Yo, Zo, Lo, Mo, Ng as functions oy, X, Y, z, A1, A2, A3, in such a way that:



70 THEORY OF DEFORMABLE BODIES

XodX+Yody+ZodZ+[,od/]1 + ModA, + NpdAs

is the total differential of a functio of s, X, y, z, A1, A2, A3, considered simply with
respect tax, y, z, A1, A2, A3. Suppose, in addition, that we are dealing with the cés
hidden W or in the case envisioned in the latter example. mFtbe preceding, the
equations in question, in whicky, Yo, Zo, Lo, Mo, No figure, are none other than the

extremal equations for the problem of the calculus afatians that consists of
determining an extremum for the integral:

j:’(\N+U)ds),

whereW is a given function o, ¢ 7, ¢, p, Q, r, upon supposing that the six unknown
functionsx, y, z, A1, A2, A3 verify the two differential equationg=0, { = 0. The earlier
considerations are thus repeated and it will beséime for all of the other particular lines
that we have envisioned.

29. States infinitely close to the natural state. Hooketsodulus of deformation.
Critical values of the general moduli. Concurrence withthe dynamics of triads.—
Return to the general deformable line. Suppodethieaaction is null in the natural state,
as well as the effort and the moment of deformatsma similarly, the external force and
moment. In this case, not only does the funciéwanish identically, but also the six
partial derivatives oW with respect tcf, 77, {, p, q, r, for the value<o, 70, o, Po, Jo, r'o Of
these variables. Suppose, moreover, & developable in a neighborhooddof &, 77
=10, { =40, P =Po, q=0o, I =ro In positive integer powers &- &, 7— 1o, ..., F = Io .
Under these conditions, one will have:

W=W,+Ws + ...

upon representing\b, W5, ... by homogenous polynomials of degree 2, 3, ..., & th
differences¢ - &, n— no, ..., r — ro.

Suppose that the coordinates of a pMatof the line Mo) in the normal state and the
three parameters by means of which one expresseahrdction cosines of the axes of the
triad associated with that point axg Yo, Zo, A0, A20, A30, respectively, and that the
coordinates, y, z of the corresponding poit in the deformed staté), and that the
parametersl;, A;, A3 that define the axes of the associated triad wetibns ofs, andh
that are developable in powershoby the formulas:

X=Xg+Xg+ ... +X + ..., AM=Ao+ A+ ...+ + ...,
Y=YotV1+ ...ty + ..., A=A+ o1+ ...+ A5+ ...,
2=t +...+z+ ..., A3=Az0+A31+ ... + A3+ ...,

in which x,, Vi, z, A1, A2, A3 denote terms that refer to thefactor. We introduce these
series developments to abbreviate the expositiah va® assume that they obey the
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ordinary rules of calculus. The formulas of sde permit us to calculate the
developments of, G, H, Z, 7, K; Xo, Yo, Zo, Lo, Mo, No in powers ot; the terms that

are independent dfare null, and the termts;, G, Ha, 71, J1, K1; Xo1, Yo1, Zo1, Lo1, Moa,
Noz are given by the formulas:

AW, oW, AW, AW, AW, oW,

Fl:adT’ Gl:adT’ leadzm’ Il:ad)ll‘”’ jl:adW’ ]Cl:d—)l:f”’
ds, ds, ds, ds, ds ds,
_daw, o _dow,  , _d aw
"Tas,0f " My o " dy jat
Cd oW, oW _d ow, _ow —d oW, __ow
“ a0 o e o o T e i o
ds, ds, ds,
where we have set:
X® = x +x,, yO =y +y, z% =z, +2,
AP =N+ Ay, AP = Ao+ Ay, AP =N + Ay

If we consider, under the nameddformation state one that is infinitely closehe t
natural statethen the stateM), where the poinM has the coordinate$”, y, 7V, and

where the parameters that relate to the assodiaaeichave the valueg™, A%, A, and

if, on the other hand, we call the vectoFs, (G1, H1), (Z1, J1, K1), Xo1, Yo1, Zo1), (Lox,
Moz, No1) theeffort, moment of deformation, external force, arternal momentgelative
to that state, wherfiey;, Moy, No; are calculated by means.bib, A2o, Az0, Lo, Mo, Noa,

in the same manner &g, Mo, Ny are calculated fromy, Ao, A3, Lo, Mo, No, then we

arrive at the general hypotheses made by the clssuthors, and where the first two
vectors are linear functions of the elements thadracterize the deformed state in
guestion. As a consequence, we recover what teas fieemed thgeneralizedHOOKE
law, but limited, as is convenient, blye condition that we respect the principle of gyer
conservation. To satisfy this condition in the classical methb@ necessary to retrace
the path that we followed in our exposition, buthe opposite sense.

The coefficients in the linear functions that eegg HOOKE'S law are the
deformation modulf the deformable line in its state of being ity close to the
natural state; they arevariant at a given point of the line. This notion of magumay
be generalized upon envisioning the first and seécderivatives of the functioiV.
Instead of the case where the general moduli afmedieand continuous, one may
consider the one where they have critical values.

The preceding considerations are easily repeatedifferent particular deformable
lines; they must be reconciled with the ones thatd@veloped in our first note. Indeed,
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the dynamics of triads is attached to the foregoing rtompletely direct manner. It
suffices to regard the asg astimet, and the deformable line asrajectory. This simple
statement immediately explains the analogies the¢ l@en recognized for quite some
time between the classical dynamics of a point andigiek body, and the statics of the
deformable line.

Observe that, as in the preceding proposition that wairsnl £°) for the case of the
rigid body, with regard to the kinetic energy, there esponds a proposition for the
deformable line, from which, wheW does not depend on sxplicitly, formulas (10)
entail that the expression:

(§Xo +1Ys +6Zy + ply +qM g +TN;)ds;,
which may be put into the form:
Xodx + Yody+ Zodz+ LodAL + MpdAs + ./\/’OCM&

is equal to the differential of the quantity:

ow . ow , oW ow oW oW
+n +¢ +p + +r

¢ o& " on ¢ op aq or

-W,

that was already introduced in séd.

On the other hand, observe that one may add cenasions that are analogous to the
ones that were developed in the present work,raasfaonstraints are concerned, for the
deformable line to the developments that were gimeour first note with regard to the
rigid body.

% Note sur la dynamique du point et du corps invariabtame |, pp. 261.



lll. - STATICS OF THE DEFORMABLE SURFACE
AND DYNAMICS OF THE DEFORMABLE LINE

30. Deformable surface. Natural state and deformed state.As we shall see, the
developments that we deduced in regard to the deformableile reproduced, almost
unchanged, in the theories of the deformable surfacelefdmable three-dimensional
medium. This repetition shows the fecundity of tlmmeept of Euclidian action. It
suggests numerous approaches and opens up a vast field ohstuithe tfirst researchers
began to explore only with great difficulty, but whichnew possible to begin more
successfully, given the present state of the general geontieeory of surfaces and
curvilinear coordinates, such as what DARBOUX has predénteis great works'),

Consider a surfaceMp) that is described by a poiMy, whose coordinates, Yo, 2
with respect to three rectangular ax®s Oy, Oz are functions of two parameters, which
we assume are chosen in a arbitrary manner and agnhaesi byo, andp,. Adjoin a
trirectangular triad with axed  x,, MY, MZ;to each poinMy of the surfaceN]o), whose
direction cosines with respect to the axe®©x, Oy, Oz are
a,,a,,04; By, By Boi Vo, Vor Vs, rESPectively, and are functions of the same parameters
pLandp,. The continuous two-dimensional set of all such trits Y, Z, will be what
we call adeformable surface.

Give a displacemenioM to the pointMy, and letx, y, z be the coordinates of the
point M with respect to the fixed ax€x, Oy, Oz In addition, give the triadM x,Y,%, a
rotation that ultimately brings the axes of the triath iagreement with those of a triad
MxyZ that we adjoin to the poiritl; we define that rotation by giving the direction
cosinesr,a',a"; B,B'. 8", v,V .,y of the axedx My MZwith respect to the fixed axes.
The continuous two-dimensional set of all suchdgidMx'y Z will be called thedeformed
stateof the deformable surface under considerationclvhin its primitive state, will be
called thenatural state.

31. Kinematical elements that relate to the state of the tiemable surface. —Let
&9.n®,¢?denote thecomponents of the velocity of the origM, of the axes

M, %, M,Y,, MZ along these axes when eagglalone varies and plays the role of time.
Likewise, let p©@,q®,r® be the quantities that define the projectionstase axes of
the instantaneous rotation of the trilt}x, Y, z, relative to the parametgr. We denote
the analogous quantities for the tridd'y Zby &, 7, &, andp;, g;, r; when one refers it,
like the triadV ;% Y, 7, to the fixed triaddxyz

The elements that we just introduced are calatilis¢he habitual fashion; one has:

! GASTON DARBOUX. —Lecons sur la théorie générale des surfadesl., Paris, 1887-1896econs
sur les systémes orthogonaux et les coordinées curvilioe® |, Paris, 1898.
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__0X , oy , 0Z _ 5 _ oy
= +a +a = ——=- —
d o, 0p  0p i’ zyapi zﬁapi
1604 oy . 0Z oy oa
(B0) =B _—+B_—+B Bl) (a=2a—="2V-—
apl apl pl Z apl Z apl
0x oy , 0z

= + + = -

“ Voo Y 0p, Y op; zﬁap. 2. 6p.

The linear elementsds, andds of the surface in its natural and deformed staliebe
defined by the formulas:

ds =& do; + 27,00, do,+ G,  ds’ =Edo] +2F do, ¢o, +G oy,

whereé&, F, G are calculated from the following double formulas:

2
0x oy 0z
=| = | +| = +n?+
(m} (m} (mj Era
_ 00X 0Xx ay 6y+6262
~9p, 9p, apl 0p, 0p,0p,

2
0x oy 0z
= —| +| === | + +n5+
’ [apzj (apzj (apzj SETG
and wherefy, Fo, Go are calculated by analogous formulas.
Denote the projections of the segmén onto the axeBIx, My, MZ by X,Vy,Z, in

such a way that the coordinates of the fixed p@mill be —x,-y,-Z with respect to
these axes. We have the following well-known folasu

(32)

=662t M1+ €K

é —a—x—qi+ ry =0,
P
YA
(33) 1~ -+ p =0,
0z
G-~ py+ax=0,
op,

which give the new expressions ¢ 7 , ¢ .

32. Expressions for the variations of the translational andatational velocities
relative to the deformed state.— Suppose that one gives an infinitely small
displacement to each of the triads of the deforstates in a manner that may vary in a
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continuous fashion with the triads. Designate the vanat of x, y, z
X,y,zZ,a,a',--y by X o, d& X,V o;d,oa', -0y, respectively. The
variationsda, da’',--- .dy" are expressed by formulas such as the following:

(34) dar = BOK' - yBJ'

by means of the three auxiliary functiods’,aJ’',K" which are the components with
respect toMx My MZ of the well-known instantaneous rotation thatttached to the

infinitely small displacement in question. Theiaons &, dy, & are the projections on
Ox, Oy, Oz of the infinitely small displacement given to theint M; the projections
J'X,0'Y,0 zof this displacement oMx My MZ are deduced immediately and have the

values:
OX=0X+20J- yo K,

(35) Fy=0y+ XK - 231,
52=32+ Yo - %5 J.

We propose to the determine the variati@ds, on , o , i , & , a; that are
implied for& ,ni, 4 ,pi, G, i, respectively. From the formulas (31), we have:

d)i :Z(S_ﬁay+y@ '

a0
oy 65y
- oa + ,
ml Z(apl apl

& = Z(—éﬁ ,/55 .

We replaceda by its valueBXK' - yAa' ,andda’,---.0)" by their analogous values; we
obtain:

op = %i+q5K roJ,
(36) op =222 1 51— poxk,
o
oK’
or =298 4 p 83 -qal.
I apl pl q

Likewise, formulas (35) give us three formulas, firg of which is:

&-—ﬂw.&’—r@ —Y'a&;
0P
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if we replacedp , &4 , & by the values they are given from formulas (36) then we
obtain:

(4 :Oid<’_6id]’+aa;;5(+qi55(_ri5y’
37) o, =G - £ 0+ 410y - p o
%, =E& -0 A"+ 2%+ pox-q 6%

where, to abbreviate the notation, we have intredube three symbodsx, d'y, 0’ zthat
are defined by formulas (35).

33. Euclidian action for the deformation of a deformable suace. - Consider a

| -

function W of two infinitely close positionsf the triadVIX'y'z' ,i.e., a function oo, o»,
XY, za,a',---.y", and their first derivatives with respeet andp,. If we preserve the

notations of sec. 31, and set:
A, = \/50}—0 _gcz)

then we propose to determine what sort of form iWatmust have in order for the
integral:

[Jwndo,do,

to have a null variation when taken over an arbjitg@ortion of the surfaceMp), and

when one subjects the set of all triads of the mhedible surface in its deformed state to

the same arbitrary infinitesimal transformationtbé group of Euclidian displacements.
By definition, this amounts to determinikigin such a fashion that one has:

AWN=0
when, on the one hand, the origihof the triadMIXy' Z is subjected to an infinitely small
displacement whose projectiar, dy, oz on the axe®x, Oy, Ozare:
x=(a +w,z-wy)d
(38) oy = (a, + WX~ wz2)&
a=(a;twy-wX)4&,
whereay, a, as, W, w, & are six arbitrary constants addis an infinitely small quantity

that is independent g#, 0, and when, on the other hand, this trisld'y Zis subjected
to an infinitely small rotation whose componentthwespect to the ax€x, Oy, Ozare:
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adx, wd, wd

Observe that in the present case the variat®dnsong:, o1, o1, A, X1, 0, Ao,
00, O, A, A2 Of the twelve expressiond, /71, (1, P1, O, 11 &2, 172, {2, P2, O, T2 ArE
null, since this results from the well-known theofytlee moving triad, and as we may,
moreover, immediately verify by means of formulas (26)d (37) by replacing
0%,0Y,0z 01',01',0K" with their present values. It results from thimtt we may
obtain a solution of the question when weWiébe an arbitrary function g#, 0, and the
twelve expressiongs, 171, {1, P1, th, r'1; &, 72, {2, P2, O, 2; We shall now show that we
also obtain the solution to the general probl&nthat we now pose.

To that effect, observe that the relations (31)mteus — by means of well-known
formulas — to express the first derivatives of tiee cosineg,a’,---.))' with respect to
o and, by means of the cosines aol qs, r1; P2, O, r2. On the other hand, we remark
that formulas (30) permit us to conceive that ongresses the nine cosines
a,a',--- )y by means ofy, 771, (1, and the first derivatives of y, z with respecio;, or by
means of,, 172, {, and the first derivatives of y, z with respect tgp. Furthermore, in
this case it is useless to make a hypothesis omtude of solution, since it is clear that
we do not obtain a more general form than the baé Wwe are led to upon ultimately
supposing that the functioff that we seek is an arbitrary function®f 0,, and ofx, y, z,
and their first derivatives with respectgg 0., and finally, ofé, 71, {1, p1, th, 1; &, 172,

{2, P2, Q2, 2, Which we indicate by writing:

ox 0y 0z O0X
dp, 0p, 0p, 0P,

W:W(pl,pz,x,y,z, ""’51’,71141’52""’ P, 0y, pz,...).

Since the variationdé, ..., &, d&, ..., &, are null in the present case, as they are for
some instant, as we have remarked, we finally cate whe new form oW that obtains
from formulas (38) and for arg, ay, as, W, w, w:

6W&+6W@+6W52+2 ow 56x N ow 56y N ow 562 o
0x oy 0z aﬁ 0p, aﬂ 0p, 02 0p,
0P, 0p; 0p;
If we replacedx, dy, oz by their values in (38), and’ﬁ,éﬂ,éE by the values
op 0p O0p

that one deduces by differentiating, and set thedfictents ofay, ap, as, @, @, a3 then
we obtain the following six conditions:

! In what follows, we suppose that tHeformable surface is susceptible to all possible deformatéores,
that, as a resulthe deformed state may be taken absolutely arbitratilis, is what mean when we say that
the surface is free.
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oW _

oW _ 6W_O ow _
o0x

0, =0, R
oy 0z

Oa

oW 0z OW oy | _ oW ox O0W oz
> - =0, ¥ - =0
~1 5 Y 9o, 502 9p, " 592 0p, 50X 9p,

0p, 0P, 0P, 0P,

S| W oy ow o
i aaX op, aﬂapi

0p; 0p;

:O,

which are identities if we assume that the expoessthat figure iW have been reduced
to the smallest number.

The first three then show us, as one may easigsé®e, thatV is independent of, vy,
z The last three express thatdepends on the first derivatives xfy, z only by the
intermediary of the quantitie§, F, G that were defined by the formulas (32). We

therefore finally see thahe desired functiokV has the remarkable form:

W(o1, 02, &1, M1y 15 &2, 12y &25 P1y O, T2 P2y i, T2),

which is analogous to the one we encountered pusljidor the deformable line.
Let A denote the quantity that is analogoudg@nd is defined by the formula:

A=\EF -G .

If we multiply W by the area elemeloy = Ay dondo» of the surfaceNlp) then the
productW Ao dowdp, so obtained is an invariant that is analogous¢oarea element of
the surfaceN!) in the group of Euclidian displacements. Theeasrirue for the value of
the integral:

JI., = Bdade, = || Adp,do,
0

that is taken over the interior of a contdCy of the surfaceNlp) or a corresponding
contourC of the surfaceM) that determines tharea of the domain delimited b€ on
(M). Similarly, in the spirit of the notion of actidor the passage from the natural state
(Mo) to the deformed staté, we adjoin the functiokV to the elements of the definition
of the deformable surface, and we say that thgiate

JI. Wagdo,dp,.

is the action of deformatioaf the interior of the contou® of the deformed surface.
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On the other hand, we say thdts thedensityof the action of deformation at a point
of the deformed surface when referred to the unit of tmethe non-deformed surface,;

W% will be that density at a point when referred to timé of area of the deformed

surface.

34. External force and moment; the effort and moment oéxternal deformation;
the effort and moment of deformation at a point of the dedrmed surface. —Consider
an arbitrary variation of the action of deformation of the mbe of a contourC of the
surface M), namely:

_ oW . OW _  OW
Jﬂ%WAodpldpz-jjcoz[a 7 5‘(‘+a/7, N, i i +
oW oW, W
+op 0P+ =00 += =37 |Agdpyd
a0 0P g 09 5 rj £.00,.

By virtue of formulas (36) and (37) of s&2, we may write:

5”;:0WAOd,01d,02 :.UCOZ{Z_&V\_/(M%'_Cid]"*'%;;k*'qa'z_riayj

6W A ' —&XK' +65y+r5x p,oz
6/7I 0p,
+aﬂ &'N'-nd’ +@+ poYy—xoz
0¢; 0p,
+aﬂ ﬂ.}.qd( _rd] ++6_W _adj +r d _pld(
op; \ 9p; dq; \ dp,
oW ([ oK'
— +pd'-qgd'||A,dodo,.
ari (apl p| q| j:| 0 pl p2

If we apply GREEN'S formula to the terms that redeplicitly to the derivatives with
respect tqo, or o, then we obtain:

ow ow ow ow ow ow
ol| WA dp,do, = oX+ oy+ o0z+ a'+ A+ XK'A.d
J'J.Co 0 pl pz '[CO |:( agzl 6/71 y aCl apl aql arl jAO pz

_(aw OW o OW . W _, OW _, W ﬂAd

oxX+ oy + oz+ a'+ aA'+—X'
¢, 017, ¢, op, 0d, ar,
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19 (, aw), aw  ow |,
”Co{izh_o 3p, (AO 0¢ j+qi o, on }5)(

1 9 oW) oW oW
+ — A +r -p e}
Z‘ A, op |\ °an ) o& P ac& y
+z ii Aoa_W + p| ow ow 5’2
~ A, 0P, 0¢;

) on og

+ — A +0Q, - +1. =G
Z‘ 8,00 %op, ) Mo "aq Mog

+Zia AOaw +r_aw_piawmaw_fiawd],
~ 8o 00, "~ 0q r i
. 10 (, 0w oW W W oW

Yt -a +& -n. XK' A do.do,.
Oari p| aq q| ap 5|al7l ,7| ag,:| }Opl 102

1 @ W oW AW oW aw}d,

The curvilinear integral that figures in the préiog formula must be clarified by
specifying the sense of its traversal; as one knows sense is defined by means of the
rotation that is given to the positive part of tueve (), i.e., the part that corresponds to
the sense in whicjm varies on that augmented curve at the edge obakeive part of
the curve ). One may further specify that curvilinear int@lgras in the example of
BELTRAMI upon giving it the form that is provided lapplying the formulas:

)y p, | ¢
d d ozt Fo2 | ds,
[l 32 anan,=[ [ £,92+ 722 | Lo

9w, ¢
ﬂco _dade, = I[ GoanJAods),

whereg denotes a function g#, 0, whereds is the absolute value of the linear element
of the curve Co), and where indicates the direction of the normal to the cont()
traced in the tangent plane to the surfdde) (and directed towards the exterior of the
region delimited by that contour. To obtain thevrierm of the curvilinear integral, it
will suffice to replace thelp, anddp, found under the integral sign in the first fornatth
we obtained with the following values:

£, 0P ds (08 0P, 0%
6no o, ) B, "o, "o,
respectively.
If we let Ay, 14,,v,denote the direction cosines of the exterior nortmahe contour

Co in question with respect to the trislx;y,Z, then one may give the following forms
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to the preceding two expressions that must be substititegfanddp,, respectivelyl):
© © © 2O 4 O 4 0y 9%
(39) - (Aogz + /'10,7 + VoCz ) (Aogl + ,1,10/71 + VoCl )_
A0 A0
by virtue of the formulas:

op 0p. op op : 0Py . 0 9P
A =09, g0 0P 0% 0P 0%, 0P
° on, ¢2 an, Ho = an, T2 on, ' 0 =41 an, ¢ an,’

that determinel;, 1, v,

If dg denotes the absolute value of the element ofaarthé contouCy traced on the
surface (M) then set:

. oW dp, OW dp, . oW dp, 0W dp,
=A, 3 d - : G, =4, - :
§ ds, 04, ds, on, ds, 077, ds,
He :A{aw do, W d,ol}
d¢; ds, 0¢, ds
A (aw do, oW d,olj 3 =A (aw do, W d,olj

"\ 0p, ds, 0Op, ds, ) > °log, ds, 0q, ds, )

K' = A oW dp, oW dp,
° "%or dg or,ds )

where the signs adp; anddp, are made precise by the sense of traversal irdiciove
for the curvilinear integral, or again, the valuglsdp, anddp, are the ones that one
indicates and in which the exterior normal to thatourCy, that is situated in the tangent
plane to Mo) figure. In addition, if we set:

1 0 (,. W W AW | _ .
z N A0 +q - - Xo’
~ D 0P, 0¢; 0¢; on,
Zi 0 AOaw +riaw_piaw -,
~| 8 0p " 0n, 04 e

1 0 (. W oW aw|_ _,
dl—=——A, +p S -—q =2y,
~ 8 0p " 0¢, o, 04

! One naturally has analogous formulas upon introducing tieetidin cosines)’, i/,V' of the exterior
normal to the contout that corresponds 16, with respect to the triddx'y'z'.
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z_ia p W) W W oW ow ),
= 8, 9o\ o, ‘or. 'agq 'a¢ an, o
Zi 9 AOaw +riaW—piaW+ciaW—<ﬁaW m,
i _Ao 0p; aq; op; ar, 0¢; a¢;
19 oW oW _ oW W
— A +p -q, +& -1, =N,
Z_AO 6,0, 0 ari pl aql ql apl gl a I ,7| agl:| 0

then we have:

4| jCOWAOdpldpz = jCO(F(;as<+G(;5y+ Hidz+ 1" +3.A0" + K. K ")ds,
| jco (XeOX+Y 0+ 2007+ Lid" + M’ + N, K ")A,do,dp,.

If we first consider the double integral that figures ihe t expression for
JHCOWAOdpldpzthen we call the segments that have their originsMatwhose

components along the axédx, My, MZ are X,Y;, Z, and L;,M,N; , respectively,
the external force and external moment at the pointeffémed to the unit of area of the
non-deformed surface.lf we next consider the curvilinear integral thaures in

JHCOWAOdpldpzthen we call the segments that issue from the pdntwhose

projections on the axesMx My MZ are -F;,-G,,—H;, and -1;,,-J;,-K;,
respectively, thexternal effort and external moment of deformatbthe contourC of
the deformed surface at the poitreferred to the unit of length of the contdLy:

As we have seen, at a specific pdvhiof C these last six quantities depend only on
the direction of the exterior normal to the cug taken at the poirtl, in the tangent
plane to o). They remain invariant when the direction of eéheerior normal does not
change when one varies the regibh)(in question, and they change sign if that dioacti
is replace by the opposite direction.

Suppose that one traces a liBein the interior of the deformed surface that is
bounded by the conto@ in such a way that it circumscribes a subggtof the surface,
either alone or with a portion of the contdiirand denote the rest of the surface outside
of the subsetA) by B). LetZ, be the curve of\lp) that corresponds to the curkeof
(M), and let Ag) and Bp) be the regions of\y) that correspond tod] and 8) of (M).
Imagine that the subsetd)(and B) are separate. One may regard the two segments
(-F,,-G,,—H,) and (-1,,-J3,,—-K;) that are determined by the poMit the direction of
the normal t@& in the tangent plane tdlp), and the exterior toAy) as the external effort
and the moment of deformation at the pduhtof the contourZ of the region A).
Similarly, one may regard the two segme(fg,G;,H, and (1,,J,,K;) as the external
effort and moment of deformation at the pdihtof the contou of the regionB). By
reason of this remark, we say thef,,-G;,—H; and -1;,-J,,-K; are the components
of theeffort and moment of deformation that are exerceselll by the portior{A) of the
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surface(M) with respect to the axdglx’, My',Mz', and thatF,,G;,H; |,,J;,K; are the

components of theffort and moment of deformation that is exerceselll on the portion
(B) of the surfacéM).

The observation made at the close of $son the subject of replacing the triad
MxXyZ with a triad that is invariably related to it mde repeated here without
modification.

35. Diverse specifications for the effort and moment ofedormation. — Set:

A A M Bi’:AOM’ C A M
°o¢ " a7, g
ow ow ow
P=A—, = A, —, =N, —
i 0 ap, Q 0 aq, F\y 0 o,
so that C, and

Q, R represent the projections on
NN e

Mx',My',MZ', respectively, of the effort and moment of defoiomatthat is exerted at
the pointM of the a curve that admits the same tangent; as const. This effort and
moment of deformation areferred to the unit of length of the non-deformedtour As

for P = const the effort and moment of deformation ehathe projections

EAERES ™ EYEYE

The new efforts and the new moments of deformatahwe shall define are related
to the elements that we introduced in the precedmfion by way of the following
relations:

R,, respectively.

aA' , / ' f , do, , do,
—+q9gC -rB |=A X/, £ = _ |
Z‘ op, " J oo 0 A—d% Az—d%
3 oB; +r, A —pCl |=4,Y,, G =B dp, _g 92 dp,
P ds, ‘dg’
o do do
—-+pB - A |=14,Z,, H =C 9P _cr 900
Zi: 6,0, pl : qIAJ 0“0 d% Zd%
0P’ 4o 0
—L+ rO' +nC' - =A L, =P X _pda ]
Z op, AR TTQITACmGE j T dy, °ds’
a_Qi' ! ! ! ] ] d :d
2|9 +riR_pﬁR+’7iA‘5Cij=AoMo, 3, =Q pz—QZ—dz:,
a 4 ' ' 1 ] ' , ’d ,d
Z 65 +piQi_qui +§(iBi_,7iAj:AONO, KO:F\)lﬁ_R2 ,01,

ds, ds,
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where, if one preferslo, anddp, are replaced by their values (39) in the equations on the
right.

One may propose to transform the relations that wewuste independently of the
values of the quantities that figure in them that weteutated by means dV. Indeed,
these relations apply to the segments that are attachthe pointM, and that we gave
names to. Instead of defining these segments by thgeghions onMx', My', Mz, we
may just as well define them by their projectiomstioe other axes; the latter projections
will be coupled by relations that are transformshef preceding.

Moreover, the transformed relations are obtainechediately if one remarks that the
primitive formulas have simple and immediate intetations f) by the adjunction of
axes that are assumed parallel to the ones abthe(pto the moving axes.

1. First consider the fixed ax@x, Oy, Oz Denote the projections on these axes of
the external force and external moment at an argifpointM of the deformed medium
by Xo, Yo, Zo andLy, Mo, No, respectively. The projections of the effort dhd moment
of deformation that are related to the directidm(dp,) of the tangent to a curve are
designated byo, Go, Ho andlo, Jo, Ko, respectively. They are referred to the unit of
length of the non-deformed cur@, and have been previously defined. The projestion
of the effort (A, B/,C. ),and the moment of deformatiqi®’,Q’,R" aje denoted b,

B, G, and P, Q;, R, respectively. The transforms of the precedin@tiens are
obviously:

O LAy Foopd0_p 90
op, 0p, dv, " ds
ﬁ+aBz :AOYO’ GO:Bl%—Bzﬂ,
oo, 0p, dv, " dg
9,9 _p x, Hy=C, %2 ¢, %
0o, 0P, ds, ds,
6P1+6P2 +C, % +C, ay_Bl aZ_Bl 0z =AL,, |0:|31%—P2%,
0o, 0P, 0P, 0o, “O0p, 0P ds, ds,
B Lp P X Xopm,, 3,20 -0,
0o, 0p, 0o, 0P, oo, " 0p ds, ds,
6R1+6R2+816X+BZ ox _A&ay_p&ay AN, KOZRlde—Rzﬂ.
0o, 0p, 0P, 0p, 0p, “0p ds, ds,
do, and% must be replaced by:

ds, ds,

! An interesting interpretation of note is the analogfithe one that was given by VARIGNON in the
context of statics and by P. SAINT_GUILHEM in the contaf dynamics.
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_L(AO axo +/'10 ayo + VO azo j, _L(AO axo +ﬂ0 ayo + VO azo jl
D\ "C0p, "Cop, °op, £\ Cop, Cop, Cop
respectively, whereaglo'%l and d(’i 2 must be replaced by:
—E(A 0x +’uay iy 62} —E(A 6x+’u6y+vaz}
A" op, Top,  op, A" op, Tap,  op,

respectively, where we have notated the directionnessof the exterior normal tGo
with respect to the fixed axes Ry, 1o, Vo, and the exterior normal © by A, y, v.

In particular, these equations give the equations ahtimetely small deformation of
a plane surfaceéhat were used by LORD KELVIN and TAIT)(

2. One may give a new form to the equations relatingeadixed axex, Oy, Oz
We may express the nine cosinesa’',---,)) by means of three auxiliary variables;

let A1, A,, A3 be three such functions. Set:
> B ==Y Aly = @idA, +@yd), +@idh,,

Zady:_zyda:XidAl'*')('szz + X3dA;,
Zﬂda = —Zadﬁ = 0,04, + 0,dA, + g,dA,.

The functionsw, x/,0’ of A1, A2, A3 that are so defined satisfy the relations:

0w’ :

_J—a_w'l+)(i’g"j —X’jg'i' =0,

a4, oA,

' oy

X X\ o —o'ar =0, (.i=1 2 3),
o) oA, e

60} oo’

L Ty wy —w y =0,
oa oA TN X

]
and one has:

04, ‘@, 04, i@ 0, |
0p; 0p; 0p;

pi :ml

o =y O Ok O
" Top, "top Cop
0N L 0N, oA,

=0, +0, :
0p; 00, 0P,

! Treatise on Natural Philosophyol. I, Part Il, sec644, pp. 186-188.
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Let @, X, g denote the projections ddx, Oy, Oz of the segment whose projections
on the axedvIx, My, MZ arew;, x;,0/ . We have:

Y ada" =-) a'da’ = w,dA, +w,dA, +@,dA;,
Y a'da =-) ada" = y,dA, + x,dA, + x,dA,,
S ada’ = - a'da = 0,d), +0,dA, +0,dA,,

by virtue of which (1) the new functiorsg, x;, & of A1, Ay, A3 satisfy the relations:

0w, .

el —EﬂLXiU,- -X,0, =0,

04 0,

oy, _

X Xsow 0@ =0, (=129,
04, 04, b

0o, oo

G_)L_GT.IHDin —a, X, =0.

J

Again we make the remark, which will serve usrlate, that if one denotes the

variations of Aj, A2, A3 by A1, Iy, s, which corresponds to the variations
oa,oa',---, 0y of a,a',---,y" then one will have:

d'=w, o, +w,0N, + w0,

Q' = X0, + Y0, + Yl

XK' =00/, +0,0A, + 0,04,,

A =ad"+ LA+ yXK' =w,dl, +w,, +w,0,,

D =a'd"+ LA +yXK' = x,0M, + x,0h, + X:00,,
XK=a"d"+['A"+y'K' =00 +0,01, +0,0],,

whered, 4J, XK are the projections onto the fixed axes of therssd whose projections
ontoMx ,My ,MZared',dl',XK'.

Now set:
Iy=myl o+t xJotoKy=w] o+ xJ +oK,
Jo=lot X ot o Ky=w) +xJ oK,
Ko =l o+ X ot oK =w] + xJ to K,

! These formulas may serve to directly define the fanstm@, );, &, and may be substituted for
@, =aw + fx; +yo;
/Yi:a,w}'-‘-B'/Yi'-‘-y,a-i' (i'jzl’2’3)

[ "y, 0

—_— "1
o =a'w + ) +yo.
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Ly=ml,+ xMy+oN=adl +xM +0o N,
My=w Ly + Y M+a Ny=w L+ xy M +o N,
No=a Lo+ YMo+o'N;=w L+ Y M Fo N,

In addition, introduce the following notation:

M, =@[P'+ xQ +OiR =@ + x,Q + IR,
X, =@P+ X,Q + O3R =@,P + X,Q + TR,
5, =@R'+ X;Q + O4R =@,P+ X,Q+ 0, R

we then have the following in place of the latter eysin which eithe®’, Q, Ror P;, Q;,
R figure:

L= ZB—Q—A’(% ~X6)-B@§ -04)-C(X§ ~wg)

1 aw’ ] ] I a A !
_Pi(apl+qi01_rinj_Qi(a_)p(l+riwi_pia-lj

(00, ,
- F{apl +p X —qiwlﬂ,

with two analogous equations. If one remarks tiatfunctionss, 7, &, pi, G;, ri of

A1, A2, As, oA % 04, ,which are related by the formulas:
dp, 0p, 0p,
& op, _ 0w, :
-o'n =0, it Bl s T
04, HXiG = 04, 0p T4 ThA
_ - ox;
%4-0';6 —mgci:(), ﬂ:i-{-riw’j_pig;
04, 04, 9p
q . o, 00,
—+awn -x& =0, —=—+ a’
04 = X6 04, 0dp, tRX; - a@)

J J

that result from the definition of the functioms, x/,o' and the nine identities that they
verify, then one may give the preceding systermgwe form:

oM, _p0& g0 _ 0§ _pdn 504 _ por
b= Z Ao 8o " %ar Yo %o R,

with two analogous equations.
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3. Instead of referring the elements that relatd¢opintM to the fixed axe®x,

Oy, Oz imagine that we define these elements in terms dfextangular triadMx; Y, Z
that is moving wittM such that the axMz is normal to the surfacél) atM. To define
this triad Mx;y;z;, we refer it to the triadMx'y'Z, and letl,I’,|” be the direction cosines
of Mx, with mm',m", those of My, ,and n,n",n", those of Mz with respect to the

latter axes.
More precisely, we define the direction cosimes’, i' by the formulas:

1 I 1 n 1
n :Z(Olcz _ﬂzcl)’ n :Z(Clgz _ngl)’ n :Z(ﬁ/?z _52/71)-

We assume that the tridk y,Z has the same disposition as the others and, &r th
moment, we make no other particular hypothesesi@wother cosines.
Therefore, let&®,n®,¢® denote the components of the velocity of the aridiof

the axesMx, My;, Mz with respect to these axes whearlone varies and plays the role
of time. Likewise, letp®,q®, r® be the projections of instantaneous rotation ef th
triadMx Y, Z relative to the parametgr on these same axes. In these latter definitions,
the triad Mx Y, Z is naturally referred to the fixed trigdkyz We have:

in(l) =& +1'n, +1'¢;, ,7i(l) =mé +mp +m'g, Ci(l) =né +n'7, +n"¢ =0,

and three formulas such as the following:

1 n am
pi(l)zlpi+|qi+|ri+ n—,

0P,

in which the triads being considered have the s@isposition.

Let X;,Y,, Z, and Ly,Mg,Ng be the projections on thilx, My,, MZ of the external
force and external moment, respectively, at artrarlyi pointM of the deformed surface,
referred to the unit of surface of the non-deforreadace. Furthermore, Ié%,G;, H;
and 1;,J,,K; be the projections of the efforfd, Go, Ho) and the momentld, Jo, Ko),
respectively, on the same axes, andAldB’, G' and P’ Q’, R be the projections of the
effort (A, B, G)and the momentP’,Q/,R" pespectively, as previously defined.

The transforms of the preceding relations (or ghenitive relations) are obviously

():

' 1t suffices to replacé ,---, A, ---with £¥,---, A",--- and take the hypothesig”’ = 0 into account; for an
arbitrary triad with vertexM one will have the same calculations.
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aA" [(\PaY O pr " " " dp 2 " dp 1
L 4+q0C!-r,OB |= A X, Fo=A—2-p
iz apl ql i i i 0“%0 0 A& d% AZ dS)
> B o a-pocy|= 8., Gy =g ey 9,
= 9o ds, “dg
5|24 por-q@ AT = 8,2, Hy =y % ;92
z a_l:)|" + q(]_) Ri" _ I’-(l)Q-" +,7(]_) C" - A L" I — P"dpz _ P"%

: 6,0, i i i i i 0=0" 0 1 d% 2 d% '
aQ'" @ pr @ pr [((\FaX n n n dp 2 n dp 1
—~L 4+ WP"-pPR"+EVC" =AM, J, = -Q,—,

iz 6,0, i i pl R g(Tl i 0" o0 0 Ql d% QZ d%
aR" [((Wra @ pr @ pr @ par n n ] dp 2 ] dp 1
D 4 pPQ -qPP +EYB - YA = AN, KL= -R

iz 6,0, pl QI ql i g(Tl i ,7| A 0" "0 0 Rl d% d%

Instead of replacindpoi, de, in the right-hand equations with their values38)(or
their analogues relative tMj, we may give them the following values:

/] (/] ds " " dS
S 2 —ED )2,

in which we have denoted the direction cosineshefdxterior normal to the contoGr
with respect to the triatx y,Z by (A", 1" 0). We thus obtain:

erdS _ L EONEDR P A0

(41) tds AL N
IndS):An{l()l:)l-'-{Z()PZ+ﬂlll7]F)Rl.+,7§)P2
° ds A A

and two systems of analogous formulas.

These formulas lead us to substitute twelve newliaty functions for the twelve
auxiliary functionsA', B",C", P Q", R" which will be the coefficients of” and x" in the
preceding expressions for the efforts and momeviien referred to the unit of length of
C, or they will be related to these coefficientaisimple manner. We set:

ON+EPON neN+nPA
B S N,, R e— =T-8S,
VB +&0B, —T+s, B +n{B; - N
A ’ A 2’
ferefcy n0Cinlc; _ g

A A
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in which we have introduced the first six auxiliary funciioth, N, T, S, S, S, and
similarly:

A A
(1)R11+5(1)R2 ,71(1)@ +/7(1)R2
a7 s

in which we have introduced the other six auxiliary fiows N1, N>, 7, S1, So, Ss.

The twelve equations that we write may be solved imnelgliavith respect to the
primitive auxiliary variablegy,B’,C", P, Q’,R" .Observe that by virtue of the hypotheses

made on the common disposition of all of the triahe has:

I I' I"
U m" :l
n

3

U

m
n

as a consequence, the formulas that deffie® give:

(1) n l(1) (1) n l(1)
As a result, we obtain:
Af: N1/7(l) —(T—SS)E(D, Az (T S ) o _ 1,71(1)’
By = (T +S)7% —N&f", B; = N,&" - (T +S,)7%,
C/=8n" -8, 1= SEP -

and six analogous formulas f&",Q’,R" with the letters in italics on the right-hand side.

When we substitute these values in relations (40) and &L )vill have the equations
that relate to the efforts and moments of deformatas well as the forces and external
moments, in the form that they take with the new éanyilvariables ).

Obviously, one may give names to the components oftefiod the moment of
deformation that are analogous to the ones that we umedhé deformable line.
Therefore, one may call the componeNts N, of the effort, theeffort of tension. The
componentd — S, T + S are thetruncated effortsn the plane tangent to the deformed
surface. The componersg $; are thetruncated effortsiormal to the deformed surface.

Similarly, the components/;, N> of the moment of deformation may be regarded as the

1 We remark that the coefficient &f in the third equation isull.
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moments of torsiorthe component% — S3, 7 + Sz have the character of tiheoments of
flexion; the components;, S, may be called thenoments of geodesic flexion.

36. Remarks concerning the component§, $;, S and S;, Sy, S3. — With regard to

the expressionS;, $, S, and their analogue$, S, Ss, we clarify the following remark

that we used above in order to write the transformed eqsat
In a general fashion, suppose we have a segment whgsetiprss onOx, Oy, Oz
are:

oy o oy

_Bi ! A i ! i
apl apl apl apl apl apl

If we think of this segment as the moment of ame, B;, C) that is applied to the

point [% oy ﬂj then one sees that the projectionshxi, My', Mz', will be:

0p. 0p 0p
n.C - ¢B, GA 4G, $B A,
and onMx, My,, Mz they will be:
noc, -gocr EOB - A"

From this, it results that the segment whose ptigjas onOx, Oy, Oz are:

Z(ﬂq —EBJ, Z( A-Zc j Z(ax . ﬂAj

0p, 0p, op, ~ 0p, 0p,
will have:
Z(’]ici’_CiBi’)! Z(CiA'_fiCi’)a Z(Q(.B:_’Z R)

for its projections orMx My MZ and:

2.n0Cl =48, -2 &0C!=-1s,, 2 (&R -V K) =208,

for its projections orMx;, My;, Mz, .
Naturally, there is an identical proposition foetitalicized variables.
From this, one deduces that the conditions:

S =0, $=0, S$=0



92 THEORY OF DEFORMABLE BODIES

amount to the following:
2.(C-¢B) =0 D (GA-GC)=0 D (GBI -nA)=0
and that the conditions:
S1=0, S2=0, S53=0,
come down to:

Z(”i R -¢Q)=0 Z(Ci P'-&R) =0, Z(C(lQl' -nR) =0

In these two cases, one arrives at a system ofetyations that do not depend on the
choice of triadMx; y; z.

If the conditionsS, = 0,$; = 0, S = 0 areconditions that result from the form of W
thenW verifies the three partial differential equations:

oW ow | a_W_ aﬂ = -M_ 'a_W =
Z(’?ia_q‘é‘iﬁj_o’ Z(q 04, C"'acij > Z(5'6/7 ”‘aaj )

which entails thatV depends o, /7, & only by the intermediary of the expressions:
E=&+ni+cl,  F=&64N11,16K, G=& +1;+¢;.

If the conditionsS; = 0,52 = 0, S3 = 0 areconditions that result from the form ¥
thenV verifies the three partial differential equations:

W oW oW oW oW  OW
W _ W, -, T =0, S5 |=0,
Z(n o © 6qu Z(c o, S arij Z(é 2 " apij

which entails that)V depends orp;, q, ri only by the intermediary of the three
expressions:

p1éL + /L + 111, Puéa + Quife + 1ot P2éy + Qo + 1247, P26 + Qoffo + 124>,

expressions that reduce to the coefficientsdpf,dp,do, and do’ in the equation of

the lines of curvature oM) when{; = & = 0.
Furthermore, observe that if one simply imposesctimditions:

S =0, S =0,
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which amount to saying that the segment whose projeaio Mx;, My;, MZ has the
indicated values from the preceding page is parallézbor that it is perpendicular to
both of the vectors&, n1, {1) and &, ., ), which gives the conditions:

51(’72C’2 _CzB;) +/71(62A’2 _52C;) +Cl(528; _/72A;) =0,
52(’71C1 - ClBi) +,72(ClAi _Qici) + Cz(lei _/71AD =0,

which may be written:

(’71(2 _41/72)A'2 +(<1§(2 _5142)8'2 +(§(1/72 _/7152)C; =0,
(’71(2 - 61/72)'6{ + (Clgz _5162)81 + (51/72 _’7152)Ci =0,

and, in that form express that the vectpfs, B;,C, anl (A, B,,C,) are perpendicular
to the normalMz; . One thus find¢wo conditions that are independent of the choitce o

triad Mx y;z, and may be verified immediatedy posterioriwhen one gives them the

meaning of the truncated effoi®g S. If the conditionss; = 0, S, = 0 areconditions that
result from the form of WhenW verifies the two partial differential equations:

ow oW oW
(1.6, = 6i1,) —+(6.&, —€.¢,)—+(én, —nié,) — =0,
152 12651 152 126/71 112 lzacl
oW oW oW
(1.6, = 6i1,) — +(¢.&, —€.6,) — + (6, —né,)— =0,
152 112 652 152 152 6/72 112 152 acz

which entails thaWV is a function that depends o#, 7, ¢ only by the intermediary of
the three expressiods 7, G.
The same reasoning proves that the conditions:

amount to two conditions that are independent efdhoice of triadVix;y;z; which one
may ultimately write:

(’71C2 - Cl,72)Pl’ + (Clgz _5162)Qi + (51/72 _’7152)Ri =0,
(16 = 61,)Ps + (66, = &16,)Q, + (67, —1m&,)R, = 0.

If the conditionsS; = 0, S; = 0 are conditionshat result from the form oV then W
verifies the two partial differential equations:

ow oW oW
(’71(2 - C1,72)6_p1+ (Clgz _51C2)a—ql + (51/72 —ﬂlfz)a_rl =0,
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ow oW oW
(,7162 - Cl”Z)E + (lez _5142)E + (51’72 _’7152)6—"2 =0,

which entails thatV is a function that depends only ping;, ri only by the intermediary
of the four expressions:

Piéy + Qup +11le,  Piéo+ Uz + 114 P2é1 + o + 1281, Paéo + Qol +124>.

Similarly, imagine the condition:
$=0.

It expresses that the segment whose projectionMgnMy;, MZ have the indicated
values from the page (?) is perpendiculaMg which gives the condition:

(1.6, — 61’72)2 (’7iCi’ -G BI’) +(61$, _flcz)z(ci A' _fiCi’)
+ (51’72 _/71{2)2 (fl Bi' =1, A') =0,

which does not depend on thhoice of triadVx Y, Z and leads to a partial differential
equation that is verified byW when the conditioiss = O results from the form oWV.

This equation is:

(&5 -EF) oW

ow ow
6_51-}-(,725 ’hf)a—nl‘*‘(é'zg Cf)a—cl

oW oW _
(7 F Ulg)WJr(Cf CQ)I =0,

2 2

aw,

+(§(2f_§(1g) af

which is easily integrated because it admits theetlparticular integrals defined By 7,

g, respectively.
The same reasoning applies to the condition:

S3=0,

which, moreover, corresponds tea@ndition that is independent of the choice oftttzel
Mx Y, Z and, when it results from the form¥£ leads to the partial differential equation:

oW oW oW
(&€ flf)aﬂnzﬁ mf)aﬂczﬁ cf)a—Irl

oW oW oW _
+HE,F flg)a—l%Jf(/?zf Ulg)a—qur(Cf 69)6—5—0,

whose integration is immediate.
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37. Equations that are obtained by introducing the coordinatesx, y as
independent variables in place ofoi, 0, as in Poisson’s example- We propose to
form equations that are analogous to those of 38cbut in which the independent
variables are, y by pursuing a certain analogy that we will also makeHerdeformable
three-dimensional medium.

To abbreviate notation, denote the left-hand sideeofrdnsformation relations by
Xy, Vg Zo, Loy My, Ny e, set:

Xé_a_pl+a_'AE AX %' aBl+aBz AY é_ﬁ_*_ac —AZ
00, 0P, 0p, 0P, 0p 0p,

op, 0p, ' 0p,
, _0Q 0Q 0z 0z 6 X
My=—T+——2+A—+A Cl
0pp 0p, “O0p,  “0p, ap o
p =R OR g OX, g OX_ _ _
opp 0p, 0pp “0p, 0P, 0P,

We may summarize the twelve relations of 8&¢.in which we referred the elements
to fixed axes, by the following:

0= [[ (XaA, 4V, + Zip g+ Tt o+ Tt 7+ K4t Y p

j{(F Aldp2 +A2dple {G -B, 2‘8’5 +B, 3;’)1}1

d d d dp
+(H0 _CldL;j+Czd_2J/]3+(lo —PldL;)z+P2d—%l}ul

(J —Ql Qz j{Ko—Rl‘f'j‘s’?sz—@us}dso,

in which A1, A2, As, t4, L&, 15 are arbitrary functions, and the integrals aretaklong the
curveCy, of the surfaceNlp) and over the domain bounded by them.

Applying GREEN'S formula, the relation becomes tbkowing one:

_.”(Xo/]l +Y0/]2 + Zo/]a + LO:ul + Mo,uz + Nolua)Aodpldpz
+j(F A 4GoA, +Hody + Lofy + Jobty + Koty )ds,

oA 04 oz oz
_ 1 1 2 2 3 3
H( ‘A o PR By Tty +czapjdpldp2

1 2 1 2
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ou, o, o, U, OHs | o OHs
- P, +P + + + do,d
i ( Yop, rop,  Xap, T ap, T Rap, e op, JH

oy oy 0z 0z
+J.J-(a,01 C + 6,02 C, - 6,01 B, - 6,02 BZJPldpldPZ

0z 0z 0X 0X
+ + - C, - C do,d
”(apf& 50, 35 T op szzplpz

2

0x 0x ay oy _
+J.J-(a,01 Bl+a,02 B, _6,01 Ai_apz Az}ﬂsdpldpz =0.

We seek to transform this latter equation when onestties function, y of o1, 0,
for new variables. If one denotes an arbitrary funcobdno, 0, which becomes a
function ofx, y, byj then the elementary formulas for the change oblbes are:

0p _op x  op oy

0p,  0X apl dy 0p,
09 _0p Ox  0g oy
0p, 0x 0p, 6y op,

Apply these formulas to the functioAg A, As, 14, L&, (5. Furthermore, i€ always
denotes the curve oM) that corresponds to the curnvgy) of (Mg) then we denote the
projections of the force and external moment thatpplied to the poif¥l onto Ox, Oy,
Ozhy X, Y, Z, L, M, N when referred to the unit of area for the deformedace ), and
the projections of the effort and the moment obdefation that is exerted at the polwit
on C onto Ox, Oy, Oz by F, G, H, I, J, K when referred to the unit of length @h
Finally, introduce twelve new auxiliary functionsA®,B®,Cc® AP B® CY;

P®,Q%,RY; PY, QY RY by the formulas:

A A 1) 0x
= A&(l) = A1 + A2 — P P —+ P

A, P 6,02 A, 6101 6,02
A _ ay oy A W ay oy
A=A T A P +P,

A, oo, " 0p, A, ” " oo, “op,’

and by the analogous formulas obtained upon regaci

AA A AD PP, R PP,
by:

B B B(l) B(l) Ql Q2 (l), él),
and then by:

C C C(l) C(l) R1 Rz Rl(l) (l)
respectively.
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We call the analogue &, A;; therefore, we set:

o= i) (2]

We obtain the transformed relation:

= [JOAAYA, + ZAs + Lt + Mpty + Nug) A cxdly
+j(F/1 +GA, + HA, + 1y, + Ju, + Ku,)ds

”( A a/|l - AD oA, B o, , g 9% 04, row 9 04, row 0,

dxdy
oy 0x ay 0x oy

”(p(l) a:“l +PY aéUl +QW a:uz +QW % aﬂz +RY %5 Ofs RY a:?’jdXdy
y 0X y

0z 0z 0z
fff[er-S2ar -2 Bé”}ﬂﬁ(&Af”—a—yAz(”—Cz(”Jﬂﬁ(Bf”—Az(”)ﬂs}dxdw 0

where the integrals are taken over the cutvef the surfaceMl) and the domain it
bounds, ands denotes the element of arc-lengthCof
We apply GREEN'S formula to the terms that invalve derivatives ofl1, Az, A3, L4,

Lb, L3 With respect t, y; sincels, Az, As, (4, Lb, 1 are arbitrary they become:

@ ®
A" L OA =AX, F :Afl)ﬂ_Az(l)%’
0x oy ds ds
® ®
a?l N G=po ¥_pp X
X oy ds ds’
acl(l) acy =AZ, =co dy —cp & dx
0x ay ds ds’
0pl(1) + aPZ(l) + Cz(l) _% Bl(l) _% BS—) _ AlL’ I _ P(l) dy Pz(l) dX
0x oy 0x oy ds ds’
© QY oz d dx
((’)?x ((’)?y Ai(l) o Aél) +CO =AM, J= Ql(l) y —Qw & o
Rl(l) R +BO _ A0 - RO dy o dX
B, =AN, K =R® %Y _go X
ox oy A ! R ds R ds

These formulas may be deduaegosteriorifrom the ones we previously gave. For
example, take the ones on the right. We have &85, 1) thatF, G, H may be

do, . .
ds

obtained upon replacing the expressie%fé},
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do, _, do, do, _ do, do, _. dp,
- : B -B : C -C ,
A&ds Azds Yds % ds Yde % ds
with
_l()l ox +u oy +v aXJ, l(}l ox +’u6y +V ax}
Al dp, " 0p, Op, A 0p, " 0p,  Op,

respectively, in which, u, v denote the direction cosines of the exterior normal.t
This gives:

1 0z 0z

F=={[A+v % |+ A0 y+v % a0 |
A, _[ ox FATH ay & |
1| 0z 0z |

G=—||A+v—|+BP| u+v—|BY |,
A, _[ ax) ot (H T ey )" |
1] 0z 0z

H=—|[A+v22|+C®| y+v==1cP |,
A, _[ ox) T H T oy 2

and similarly:

=L [)l +V— jP(l){,LHva jPﬂ
A, oy

j= 1 [)l+v jQ(l)+ ,u+va (1)_
A, ' ay _’
1 0z

K=—||A+v— |R® +| u+v— |RY" |,
A, K le (,U GYJ ]

which amounts to saying that one has:

0z +y %
ﬂ’:)HV& dx _ H 6y.

ds A, ds A,

However, these latter relations result from theniolas:

dx dy dz 0z 0z

A—+u—=+v—=0, dz——dx+—d
ds H ds ds o0X oy ¥
which entails that
dx dy dz
ds __ds __ ds _ 1

oz 0z 0z 0z ’
_ ’U+VJ A+v— A——pu— 1+[62j az\’
( dy 0x oy 0x ax ay
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where the sign in the latter relation corresponds ¢éostnse in which we traversg
which figures in the use of GREEN'S formula.

38. Introduction of new auxiliary functions provided by consilering non-tri-
rectangular triads formed from Mz and the tangents to the curvegp) and (02). —

In sec.35, 3, we envisioned a tri-rectangular tridely, Zin which the Mz, axis is
normal to M). The formulas that givd=,Gg, Hy,15,J5,K% lead us to introduce new
auxiliary functions; however, we may also consider theagons to be indefinite and
refer them to a triad that is no longer tri-rectangutageneral, which is formed from the
Mz axis and the tangents to the)(and () curves. This is easily accomplished by
using the calculations we already performed by the intéiame of Mx y,z,. It suffices
for us to start with the equations that are obthw&h regard to the latter and show the
combinations:

X" (l) +Y/7(l), Xn (l) +Y/7§l), Ln (l) + Monfl), Ln (l) + Monél)
Set:
./41" (l)A;’+/7(1) Bn A2" (l)A; +,7(1) Bn
B" g(l)A;'i'/]}_l) Bl , B" g(l)Alzl +,7(1) B"

as well as four analogous formulas BtQ,,7,,Q, from them, we deduce:

1 "_ (1) "
U ,75 )Bl ,71 Al

e o =B

A A
(l)Ain Q(fl)B" B" B Q(l(l)Ag_gél)B;
2 71 1 71 , = —————=—=

&= A A

as well as analogous formulas Bt Q/,R,Q, The equations may be written:

A 400 5 A3 A1-0 BI-0 B ADC-AD'C'= A (£ X373V,

o, 0p,
OBy 9B, 5 A3 M50 Bi-© Bl ADC- AD'C= A (€9 X' 19Y),
0o, 0p,
0C!,0C; _ED'=FD ;. G'D=FD' po ED"=FD' 4, GD=FD' o0\ 70
0p, 0p, A A A

ZP +Zi Z,P-Z,P-0Q1-0 Q- ADR-AD"R,-AC=A (€9 L M),
P 0P,
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A3 -3 P 000 @ ADRI- DRyt ACE A (€9 Lt M),

1 2

oR' oR 5D'—f’D D - f’D . ED"-FD' _, GD'-FD" _,

R1+ i R+ g Q'+ 7:)2-*'g <

o, 0p, A A

EAI+ F(A3-B) -GB;
A

=A,N! .

In these formulas, the six CHRISTOFFEL symbols @esignated by, 3, 23,
@1, @2, @31

e 08 g0 _ L 0 GO L g 08 _, OF
) 0. 90 op " op
1 2A2 ! 1~ 2 AZ !
09 _ o GO _ ;90
. o " op, o - 00 " op
2 2A? ’ 2 2A? ’
99 +F 9G _ 2F oF zg oF _ G 9G _ 67(-;
s = 6,02 0p, 00, o. = 0p, 0p, apz
T 2N’ ! T 2N’ !

and we letA”D,A*D',A*D" denote the three determinants that are defined by thetjden
):

Ox 0X 0°X 0%x
2L dor+2—" " dp.d X4
00, 00,002+ 73 16 p, P 602 &
. ] dy dy 0%y 0’y 0%y
A (Ddp? +2D'dp. do, + D" dp?) =|— )
(Ddp? +2D'dp,dp,+ D' dpl) = 2323 doi+ 25 o, .+ o, @’
0z 0z 0°z 0%z
92920 24242 % % 4nd “q
00,9, 00% " “apgp, P o2 &

In the preceding calculations, we used the reiatio

pl(l) — gzl(l)Dn _ g(z(l)D’ Ou(l) — /71(1)D' -n él)D ,
P = D" -0, & =D -nD,
0¢ B 0¢. 0¢; _
a_pl_’71r1 _@151'*'2152’ 6_102_,72rl 6,01 —Ir, = 251'*'2252’
1 1 2
0¢.
6,02 1,0, = G)351 + 2352

1 As we will reiterate later on, here we are lettidfD,A*D’ A*D" denote the quantities that
DARBOUX denoted byD, D', D".
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6/7 _ 6/7 _ 6,7 —

on
a_pz +&,1, =04, + 247,

39. External virtual work; a theorem analogous to those of Vagnon and Saint-
Guilhem. Remarks on the auxiliary functions introducedin the preceding sections.
— We give the namexternal virtual workdone on the deformed surfadd)(by an
arbitrary virtual deformation to the expression:

o7, = —jco (FIOX+GLO y+ HO z+ [ I+ I T+ KJ K) ds
+| jc (XeOXHYOY +Z00Z+ LA + MA@’ + N KA, dp,dp,.

One may give other forms to this formula by introducother elements. For
example, suppose that one introduces the expressiphs Zo, Lo, Mo, No; Fo, Go, Ho, lo,
Jo, Ko. To that effect, we lefl, &, K denote the projections onto the fixed axes of the
segment whose projections X, My, MZ are 4',4",XK", in such a way that, for

example:
_d :alléal+ﬂlléﬂl+y115yl = _(aléall+ﬂléﬂll+y15yll)’

by always supposing that the axes we are consgidéia@ve the same disposition. We
then have:

o7, :—j%(F05x+Goay+ HOz+ 10 1+ JJ I+ KJ K) ds
+”C (X K AY, 0y + Z, 02+ L, A + M, + N,K)A,dp,dp,.

The force(X;,Y,,Z, )or Xo, Yo, Zo), the moment(L,,M,,N; 9or (Lo, Mo, No) are
referred to the unit of area of then-deformedsurface. The effor{F;,G;,H, pr (Fo,
Go, Ho), and the moment of deformatidhy, J;, K, 0} (lo, Jo, Ko) are referred to the unit

of length of thenon-deformeatontourCy.
Start with the formula:

.UCO o(WA,)dp, do, = =07,

taken over an arbitrary portion of the deformalidasce bounded by a contoQs.

Since AWA,) must be identically null, by virtue of the invance ofW andA, under
the group of Euclidian displacements, when theatmms Jx, dy, & are given by the
formulas (9), page (?), namely:
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X= (a1 + wz— wy)q,
oy = (a2 + X — w2q,
o= (az+ wy— wx)4q,

andd, 4J, XK are given by:
ad =awd, A= wa, XK = wd,

and the fact that this is true for any valuesfy, as, W, a, a3, we conclude, from the
preceding expression 6., that one has:

'[Co Fods, — -”Co XoBodoydo, =0, '[Co G,ds, - -”Co Yol ,do,do, =0,
'[Co Hods, - -”Co Z,A.dpdp, =0,
.[co(l o tYH, ~2Gy)ds, _-”Co (Lo +YZ, = ZY;)A0dp,dp, =0,

and two analogous formulas.

These six formulas that are easily deduced from thetbaésne ordinarily writes by
means of the principle of solidificatio)( In these formulas, one may imagine that the
contourCy is variable.

The auxiliary functions that were introduced in the pilewesections are not the only
ones that one may envision. We restrict ourselvebeio tonsideration and simply add
several obvious remarks.

By definition, we have introduced two systems of effoand moments of
deformation relative to a poiMl of the deformed surface. The first ones are the ones
that are exerted on the curvgs)(and (). The others are the ones that are exerted on
orthogonal curves that are arbitrary and to be spdcifigth tangent®x , My, that have

arbitrary rectangular and unspecified directions in thegthat is tangent td1] atM.

Now suppose that one introduces the functddn The first efforts and moments of
deformation have the expressions we already indicabeldpae immediately deduces the
expressions relative to the second from this. Howewethese calculations one may
explicitly describe the functions that one encountersodling to the nature of the
problem, and which are, for exampley, z, and three parameterd 1, A2, A3, by means

n

of which one expressesa’,---,)".
If one introduces, v, z, A1, A2, A3, and if one continues to I8V denote the function

that depends om, 0., the first derivatives of, y, z with respect tqo, 0> on A1, Az, As,

and their first derivatives with respect m, 0, and, after replacing the different

! The passage from elements referred to the unit ofcdir@®4,) and the length oE, to elements referred to
the unit of area of\]) and length ofC is so immediate that it suffices to limit ourselveghte first ones, for
example, as we have done.

2 For such auxiliary functiong, A, As, one may take, for example, the components of theiontétat
makes the axe®x, Oy, Oz parallel taMix’, My', Mz' respectively.
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quantitiesé, i, &, pi, G, ri with the values they are given by means of formu3&$ &nd
(31), we will have:

A=A, "‘é\)’( Bi=AoaTW, Ci:Aoa_‘(;V,
9-2% oY 9-%%

op, op, P,
oW _ W W
WS ST TR
ap| 6,0, 6,0,

40. Notion of the energy of deformation. Natural state of aedlormable surface.
— Envision two statedMp) and M) of the deformable surface bounded by the contGgrs
and C, and consider an arbitrary sequence of states startthg(M4) and ending with
(M). To accomplish this, it suffices to consider fumesx, y, z,a,a’,---,y" of p1, o2, and
a variableh such that for the value O &f the functions reduce tw, Yo, 20, X, Y, Z
a,,a,, -, Vs, respectively, and for the valde of h they reduce to the valuesy, z
a,a',---,) relative to M).

If we make the parametharvary in a continuous fashion then we obtain a iooous
deformation that permits us to pass from the gt to the stateNl). Imagine theotal
work performed by the external forces and moments ahatapplied to the different
surface elements of the surface and the effortsmanchents of deformation that are
applied to the contour during this continuous defation. To obtain this total work, it

suffices to take the differential obtained by startwith one of the expressions fdr. in

the preceding section, substituting the partigeddntials that correspond to increadas
in h for the variation, y, z, a,a’,---,)" in that expression, and integrate it from thto
Since the formula:

0T, =-|[. sWa,)dp,dp,

gives the expressioﬂk%dh dpo, dp, for the actual value of7, we obtain:

Iy [ILO@(WA)d dpzjdh-—jj (B ~(VWay),,, ] i, b,

for the total work.

The work considered is independent of the interargdstates and depends on only
the extreme states consider&th) and (M).

This leads us to introduce the notion of #reergy of deformationwhich must be
distinguished from that of action as we previoushyisioned. We say thatW is the
density of the energy of deformatioeferred to the unit of area of the non-deformed
surface.
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These considerations are only the repetition of tles dimat we presented in sée;
similarly, the observations relating to thatural stateof the deformable line, which was
the object of sed 3, may be reproduced with regard to the deformable surface.

41. Notion of hidden triad and of hiddenW. — In the study of the deformable
surface, as it is in the case of the deformable linis,natural to direct one’s attention to
the particular manner in which the geometric surfackas/n by the deformable surface.
This amounts to thinking in terms of y, z and consideringa,a’,---,)y" as simple

auxiliary functions. This is what we may likewise expriegsmagining that one ignores

the existence of the triads that determine the defornsaiface and that one knows only
the vertices of these triads. If we take this viewpainbrder to envision the partial

differential equations that one is led to in this cdm® we may introduce the notion of
hidden triad,and we are led to a resulting classification efv¥harious circumstances that
may present themselves when we elimiagtg,---, )"

The first study that presents itself is that af tieductions that are produced by the
elimination of a,a’,---,y" . In the corresponding particular case in whicleraton is
devoted almost exclusively on the point-like suefabat is drawn by the deformed
surface, one may sometimes make a similar absiraofi Mo), and, as a result, of the
deformation that permits us to pass frdviy)to (M). It is by taking the latter viewpoint
that we may recover the surface called flexible imedtensible in geometry.

The triad may be employed in another fashion: vesy make particular hypotheses
on it and, similarly, on the surfac#). All of this amounts to envisioning particular
deformations of the free deformable surface. éf thlations that we impose are simple
relations betweed, 7, &, pi, 4, ri, as will be the case in the applications we wilidy,
then we may account for the relations in the catemh ofW and deduce more particular
functions fromW. The interesting question that is posed is topbinmtroduce these
functions and consider the general functidithat serves as our point of departure as
hidden, in some sense. We thus haveheory that will be special to the particular
deformations that are suggested by the given relafomg, &, pi, g, ri.

We confirm that one may thus collect all of thetpalar cases and give the same
origin to the equations that are the result of Edgroblems whose solutions have only
been begun up till now by means of the theory ef ftlee deformable surface. In the
latter problems, one sometimes finds oneself inpifper circumstances to avoid the
consideration of deformations. In reality, theyl steed to be completed. This is what
one may do in practical applications when we eauignfinitely small deformations.

Take the case where the external force and moratarnt at the very most, to only the
first derivatives of the unknowns y, z and A, A2, A3.  The second derivatives of these
unknowns will be introduced into the partial dif@tial equations only bW, however,
the derivatives oX, y, z figure only iné, 7, &, and those ofl;, A;, A3 present themselves
only inp;, g, ri. One sees that W depends only upod, 7, { or only uporp;, g, ri then
there will be a reduction of the orders of the datives that enter into the system of
partial differential equations. We proceed to exenthe first of these two cases.
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42. Case whereVN depends only uponoy, o1, &, i, &, &, 12, { . The surface
that leads to the membrane studied by Poisson and Lamé indltase of the infinitely
small deformation. The fluid surface that refers to thesurface envisioned by
Lagrange, Poisson, and Duhem as a particular case.Suppose thatV depends only
on the quantitiesa, &, 7;, §, and not on they, g, ri. The equations reduce to the
following:

9 6(\NA0)+ 9 a(WAO):AOXo, a—W+Ao|—o:0,
apl aﬁ 6,02 aﬁ a/]l
0p, 90,
9 6(\NA0)+ 9 a(WAO):AoYo, a—W+Ao|—o:0,
apl aﬂ 6,02 aﬂ 6/12
0p, 0P,
9 6(\NA0)+ 9 a(WAO):AoZo, a—W+Ao|—o:0,
apl ag 6,02 aﬂ 6/13
0p, 0p,
. . 0X 0z .
in which W depends only oy, 0o, —,-+-, , A1, A2, A3 . If we take the simple case
0o, 0p,
where Xo, Yo, Zo, Lo, Mo Mo are given functions Y of o, 0 X Y, Z

0x ---,E,)ll, A2, A3 they show us that the three equations may be doWtd respect

oo, 0p,
to A1, A2, A3, and one finally obtains three partial differehgguations that, under our
hypotheses, refer only 1@, 0, X, y, z and their first and second derivatives.

We confine ourselves to the particular case inctvihe given functiongo, Mo, No
are null. The same will be true for the correspogdralues of the functions of any
arbitrary one of the systemd:o( Mo, No), (Ly,Mgy,Ng), (Lg,Mg,Ng). It then results
from this that the equations:

0w _ 0 ow _ ow

Sl oo o
A, oA, oA,

amount to either:

oy C, - 0z B+ oy C, - 0z C, =0,
opy ~ 0p ~ 0p, ° 0p,
0z , OX

0z [6)4

A-Zc + %A c, =0,
oo, 0o - 0p, © 0p,
0x oy X oy

B-Y A+ g - A=
oo, 0o T 0p, = 0p,

! To simplify the discussion and indicate more easilytwiawill be alluding to, we suppose thé; Yo,
Zo, Lo, Mo, Npdo not refer to the derivatives &f, A,, A5.
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or to:
S =0, $ =0, S$=0

in such a way that the effort at a point of an arbjtiaurve is in the plane tangent to the
deformed surface and the truncated efforts that areeelxert two rectangular directions

are equal.
This said, observe that if one starts with two posit (Mp) and (M1), which are

assumed to bgiven,and one deduces the functiofs Mo, N, as in section84 and35,

then, in the case where these three functions dteame may arrive at this result by
accident, i.e., for a certain set of particular defations. However, one may arrive at
this result in the case of arbitrary deformations\bf &s well, since it is a consequence of

the nature ofi), i.e., of the form o¥\.
Envision this latter case, which is particularly ingtirgy. W is then a simple function

@ of p, oo, & F, G with the latter three quantities being defined by forn{@2) of
sec.31. The equations deduced in s84¢.and35 then reduce to either:

Z(Zi'*'QiC;_riBi'j:on(’)’ F()':Ai%_A;%’

i i ds, ds,
0B/ do do
—+r A—-pC' [=A.Y,, G, =B —2-B,

Z(apl |A pl |j 0'0 0 1 d% Zd%
oC/ do. do
—+pB -gA [=AZ, H' =C/ /2 -C,—2,

Z(apl pl I qIAJ 0-0 0 1 d% 2 d%

in which one has:
ow ow ow ow
=N | 26—+ & — | = —+n,— |,
K=o 2650 6.5 o=, 20,50 +n.5 Y|
, ow ow
=0, 2655057
ow ow ow ow
= A —+ 25—, B, =A —+ -
w o e v2e S =0, (n S+ on, S
, ow ow
CZ:AO(C]‘E-FZCZEJ,
or to:
a_Ai+a'A\2 :AOXO’ FozAidpz—Azﬂ,
0p, 0P, ds, ds,
ﬁ_}_@Bz =A,Y,, G, = Bl%_Bzﬂ,
0o, 0P, ds, ds,

! The triad is completely hidden; we may also imaginewmshave a simple pointlike surface.
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9, ,C,_p 5 Ho=c 90 _c 9o
op,  0p, ds, ds,

in which:
Aonzaan 6x6W Bl_AozayGW 6y6W
0p, 06 0p, OF 0p, 06 0p, OF

C =n, 2626W azaw
0p, 0 0p, 0F )

AZ_A[axaw 26X6Wj Z_A(ayaw Zayawj,

0p, 0F  0p, 0G 0p, 0F  0p, 0G

0z OW dzoW
C,= +2
"l0p, 0F  “0p, 0G

or to:

5| P+ qoc-ro8 |=a,X:, Fo=n e 9,
0p, ds, ds,

Z % + ri(]_) A"_ pi(l)Ci" - AOYO", G" - B" dpz B" dp]_ ,
0P, dy, " ds

Z(?+ pVB -aP A" |=A,Z;, Hr=cr9P2 _cr 90

in which:
OW | L)W oW . OW
2 (Vi vy ’ " A (VR 1) ’
A= [5 zafj 8= [ N afj

C'=4,|2
1 (C o ¢ = oOF

A;':AO( 1(1) 6W+25(1)6WJ’ Bn A ( @ OV 6W (1)6WJ’

oF 298G > 9¢g
o2y ow Zc(l)a_vv)

C; =4, [cl

or, finally, to the equations:

OF 2 9G

6
o,

N QZ (6]

T QZ @

@
1

nd T

&)
T

® -
®
n Ny

1 _ @
1 r

2

apz

@
2

T QZ @

6
o,

g( @
1
@
" N,

0
+
op,

@
1 N, —

+r® -
o
no T

l

% " ds, “ds
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@ (l) gz(l) T (1) N
® 2 ® [ (@] 1=A Z",
Py N ,7(1) U T ,7(1) + P2 ,71(1) N2 —Q; n l(l) T 070
(;'?)_AN T, G(’)’?: = AT+ N, Ho=0,
in which:
lezﬁ{(f”)zaw PEPST e 1))“""’}
A, ow ow
7= teenp O €on s en ) 32t 990
ow oW ow
N, =252 Py S e npng af+<ns>>26g}

As we said, the effort is in the plane tangentht® deformed surfacelN; andN, are
normal efforts, i.e., efforts of tension or comies. T is an effort that is tangent to the
linear element on which it is exerted, i.e., a tated effort.

The consideration of infinitely small deformatiotigat are applied to the preceding
surface permits us to recover the surface or memehitzat was studied by POISSON and
LAME (%).

Observe that, in addition to the formula that vireaady used to obtaiA, we also
have the following:

E=EV (N FEE P, G=E ),

by virtue of whichNi, T, N, may be considered as the functions that are detednby

pu prand &P ,E0. 700 .
A particularly interesting case, which we call tese of théluid surface,is obtained
upon supposing, in regard to the three functiondedimed, that one has:

TZO, N]_:Nz.

If one observes that one has the identitigs (

(E0):G-26PE0F + ()€ =0
PG - (EMn O+ EM OV F + £ =0,
@0V G- 210 F + ()€ =0,

! POISSON. -Mémoire sur le mouvement des corps élastiqoes488 ff.,Mém. de I'Inst..T. VIII, 1829;
G. LAME, Lecons sur la théorie mathématique de I'élasticité des corpﬁ;esoﬂ”d edition, 1866, 9 and
10" Lessons.

2 By virtue of the second of these identitiesT i# Ofor any linear elemerthen one is led to the conditions
that follow, and, as a result; = N,; one may content oneself by settifig O.
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that result from the values:
E=(EM?+(n®)2,  F=EREP +nOnP, G=(EM)?2+(n)?

for the expressions, F, G that were defined by formula (32), one sees that tloe tw
conditions that we must set amount to the following:

ow oW oW
0 __0F _0G
g 2F &

which entails thaW depends orf, F, G only by the intermediary of the quantity

A=+EF -G* and is, as a result, a function@f o, and i :AA—L While continuing

0
to denote the expression\Wfin terms ofoi, 0., 1 by W, one will have:

N1=N2=%—VIL\1/, T=0.

It is easy to obtain the particular form that théferent systems of equations in
guestion take, which are, moreover, combinationsiraple consequences of each others.

In particular, by virtue of the equations verifiegl the &®,---,r®, and upon denoting
the expressio% by N, the system on page (?) takes the following form:

wON _ o ON
“op T 0p,
_rw ON | c0 ON

“ oo T op,

1,1\ A,
Zom) s

=00Xg,

=AY,

upon using the formula:

D@ _ D@ 1), V) _ 4Oy @
1,1 _ P& -pé +an - ah;

o 0,0 _ r0, @
73’1 RZ 1 ,7 2 2 ,7 1

in which’R; andR,, the radii of principle curvature of the defornmdaface W), figure.

If we envision the particular case in whidhdepends only o, and in which §o)
does not figure explicitly, then we find ourselves the presence of the surface
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considered by LAGRANGE?|, whose study has been reprised by DUHEM (Here,
we must make some observations that are absolutelpgans to the ones that we
presented in the context of the flexible and inexteaditdment of LAGRANGE. If, as
LAGRANGE and DUHEM supposed, the surfadé, does not figure explicitly then
that surface Nlp) figures only by the quantity; its existence is revealed only by that
quantity. If one supposes that the functWns given, like the quantityy that we may
introduce as an unknown auxiliary function in the uguablems, then we may substitute
the unknownN. If the functionW is hidden therN becomes, moreover, an unknown
auxiliary function; however, knowledge of that functieitl give us nothingn regard to
(Mo).

In the case where the surfadéy) figures only by the quantity, one may take two
other unknown variablesx, y, for example- instead ofo, andp,, and ifW is given then
one has two unknowns and three equation8V i hidden them figures only inwW, and
one is in the same case. In the first case, thariethat was made by POISSON is
repeated by DUHEM?. We shall develop this remark explicitly, while puttitiee
equations in the form that was given by LAGRANGE and, mapdiatly, by POISSON
and DUHEM ¢{).

If we solve the preceding equations with respecg—'éle and oN then we obtain:
00, 0P,
aN A n [} aN —_ A n n .
6_,01 = +KO(X0 1(1) +Y0/71(1))’ 6,02 - +KO(X0 2(1) +Y0’7§l))a
however, upon introducing, for the moment, the aliom cosinesl,|’|"of Mx,

m, m, M of My;,and n,n’, i’ of Mz, with respect to the fixed axes, one has:

g(I(l) :I aX +Il ay +|n az ,

ap; 0p; 00,
n® =m Ox +m 9%y +m" 9z
ap; 0p; 0p;

¢¥ =n ox +n % +n" 0z

ap; 0P, 0p;

and
X +Y, oy +Z, 0z .

Xn (l) +Y" (l) - X
0%i 0,7| 0 6,0, 6,0, 6,0,

! LAGRANGE. —Mécanique analytiquel™ Part, Section V, Chap. lll, sec. I, nos. 44-45, pp. 158-162, o
the 4" edition.

2 p. DUHEM. —Hydrodynamique, Elasticité, Acoustique,ll, pp. 78 ff.
3 P. DUHEM. — Ibid., T. Il, pp. 92 at the top of the page.

4 P. DUHEM. — Ibid., T. II, pp. 86 and 91.
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The preceding system may be written:

111

N _ AO( ax
— =21 X,
op, A 0p,

vy, Y iz

+y, oy ,, 0z j

d0p, °dp,

ON _AO( 0X azj
=—| Xo7 - 0 d
0o, A 0p, 0p,
1 1 A
N| —+— |==2(X,n+ Y, n+ Z 1);
[7?1 sz (X i+ 1)

op,

this is what one finds, up to notation, on page 86 of Thmmkthe book by DUHEM that
was already cited (the sense of the normaMypaglone is changed).

Introduce the variables, y, instead ofo, ; to that effect, observe that the two
relations that refer to the derivativeshfmay be summarized in the following:

dN = %(Xodx+ Y,dy + Z,d2),

which corresponds, in the particular case in whiclone figures, to the remark made by
DUHEM at the top of page 90 of Tome Il of his work.
If X, y are taken for variables then we have the system:

a_N :ﬁ(xo + ZO Ej,

op, A 00,

oN =5(Y0+zo oz j
op,

0o, A
1 1 A
N —+— |[=—2(X,n+ Y. N+ ZH);
RN

which is none other, up to notations and with a suitabiesention on the sense of the
normal, that equations (31) and (32) of DUHEM.
If we, with POISSON and DUHEM,

A A : .
KOXO, XOYO, %Zoare given functions oK, y, z (we may assume the same for the

derivatives ofz) then we have three equations that refer to the two wiksi, z
In the particular case in which the given function,of, z, insofar as they are of

consider the case inhiclw

: A : : : :
issue, are such tha{Ai(Xde+ Y,dy+ Z,dz) is the total differential of a functiovi then

the system of three equations, which may be writtemealsave said:

dN = %(Xodx+ Y,dy + Z,d2),
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1 1) A
N| —+— [==2(X,n+ "+ Z A
(7?1 sz A( oM+ %M+ % f)

amount to the following:

N -V = const. =C,

N - - :na—v+rfa—v+r1'a—v.
0x ay 0z

R R,

N is calculated from the formula:
N=V+C,

and the surface\M) verifies the equation (1):

Vo) =+t = n gy oV
R, R, 0X oy 0z

43. The flexible and inextensible surface of the geomete The incompressible
fluid surface. The Daniele surface— We have considered the particular case in which
W does not depend gm, g, ri and different special cases of this case. We shaW sh
how, by the study of particular deformations, one mayagyr the various surfaces that
were already considered, at least in part, by the authors

First, start with the simple case, in which thadris hidden, i.e., the definition of a
simple pointlike surface, and suppose that this is, merethre general case in whigh

is an arbitrary function gb,, o, &, F, G.

1. We may imagine that one pays attention only tad#fermations of the surface
for which one has:

&=6&, F = Fo, g=0.

In the definitions of forces, etc., it sufficesitbroduce these hypotheses and, if the
forces, etc., are given, to introduce these three gondit In the latter case the habitual

problems, which correspond to the given of the functigrmnd the general case whére
- &, F = Fo, G — Go are non-null may be posed only for particular givens.
If we suppose thainly the functionWs that is obtained by setting= &, F = Fo, G =

! Compare DUHEME lasticité, etc., T. Il, pp. 92, which inspired pages 179-181 of POISS®&oire
sur les surfaces élastiquashich was written on August 1, 1814, published by extrathénMay, 1815,
issue of Tome Il of th€orrespondence sur I'Ecole Polytechnigpe, 154-159, and then in tihimoires
de I'Institut de Francel1812, Part two, which appeared in 1816.
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Go In W(on, 22, &, F, G) is given, that one does not know the values of thvataeres of

W with respect t&, F, G for £ = &, F = Fo, G = Go, and thaW is hiddenas well, then we

see that\;, T, N, become three auxiliary functions that one must ad@iqy, zin such a
way that we have six partial differential equationsixusiknowns in the case where the
forces acting on the elements of the surface arengi@ne therefore has a well-defined
problem only if one adds the accessory conditions. elfdéformed figure is assignad
priori then one has three equations between the unknown funiskipghsN,.

The equations that we arrive at are the ones thated#dfe flexible and inextensible
surface of geometry.

2. We may imagine that one seeks to define a surfates tthaformablesui generis,
whosedefinition includeshe conditions:

&=&, F = Fo, g = Go.

To define the new surface while retaining the same ordigleak as in the preceding we
again defineF;, Gy, -, N by the identity:

JI. aBo)dodp, = [ (Fok+Gioy +-+ KodK')ds,
- J[L OGN Aoy

however, this identity no longer applies, by virtue of:
E=&, F = Fo, G = Go.

In other words, we envision a surface for which the mheesults from thea
posteriori adjunction of the condition§ = &, F = Fo, G = Go to the knowledge of a

functionW( o1, o, &, F, G), as well as three auxiliary functiops, (&, 15 of o1, 0, by
means of the identity:

JJ. [OW + (& = £) 41,0 F = F) + 4G -Gl Adpdp.
= ], (Fod%+Gyay +-+ KodK')ds, = [[L (X;0%+ Y50+ + NodK)Agdpydp,.

This amounts to replacingy with Wy = W + 14(€ — &) + o(F — Fo) + 15(G — Go) in the
preceding general theory rather than setfirgEy, F = Fo, G = Go.

As one sees, we return to the theory of the flexibiéase that corresponds to the
function W, of o1, o, &, F, G when one confines oneself to studying the deformations
that correspond t6 = &, F = Fo, G = Go.

If we put ourselves in the case ohadenW; then if we suppose that one knows
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simply the valueNy(o1, ©2) thatW andW; take simultaneously faf = &, F = Fo, G = Go

then we recover the classical theory of the flexibéxtensible surface.
Observe that if we constitute the flexible and inextdassurface by taking the

conditions¢& = &, F = Fo, G = Go on W into accounta priori by a change of variables

then we are led to repla®® with (a(€ — &) + to(F — Fo) + 15(G — Go) in the calculations

relating to the general deformable surface, and we coma do formulas that once
again bring us back to the study of a flexible surface when restricts oneself to

studying the deformations that correspond to &, F = Fo, G = Go. |If we suppose that

L, b, [ areunknownthen these formulas bring us back to the flexible andemsible
surface of the geometers. If we take this latter viemtpwe duplicate the exposition that
was given by BELTRAMI in sec2 of his well-known Mémoiradentically. We may
observe that in the case whetg Yo, Zo, as expressed by means of these equations, are
the partial derivatives of a functighof o1, 0, X, y, Z with respect tc, y, z the equations

in which Xo, Yo, Zo figure are none other than the extremal equationspoblalem of the
calculus of variations that consists of determining>dreenum for the integral:

[[a¢dpdp,
under the conditions:
E=E&, F = Fo, g = Go.

We consider the case where the surfddg (isappears from the givens and does not
present itself in the question. The variahlesp, appear as a system of coordinates to
which the surface is referred. If these variables ddigote in the givens then one may
introduce two other variables in their place at wiflwe take this viewpoint, which is the
one that is generally adopted, then the preceding equakignsay of particular cases,
give the various known equations that were studied bgutieors. We confine ourselves
to giving several bibliographic indications in the followingtsen.

Suppose that we start with a surface formed by meanfuataonW of o1, o, A, or,

if one prefers, opy, 0, and u :AA—L Imagine that one pays attentidy ¢nly to the
0
deformations of the surface for which one has:

U =0.

One will then find oneself in the case of tineompressible fluid surfaceln the
definitions of forces, etc., it suffices to intramuthis hypothesis, and, if the forces are
given, to pose this condition. In the latter cabe habitual problems that correspond to
the given of a functiolV and the general case wherés not null demand that the givens
be particular cases.

If we suppose thatnly the functionW that is obtained by setting= 0 in\W( o1, 02,

! This viewpoint appears to be the one that DUHEM assiim his work:Hydrodynamiqueetc.; see pp.
91 of Tome I, the last four lines, and pp. 92 at the ersob.
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M) is given, and that one does not know the valu%% for = 0, and thaW is hidden,

as well, then we see that the expres$ibbecomes an auxiliary function that one must
adjoin tox, y, z in such a way that we have four equations in four unkisow the case
of given forces.

One may again start with a functigv) which may refer to thé, 7, ¢, as well as the
pi, G, Ii, and look for the form that it must have in ordertfog effort that is exerted on an
arbitrary linear element to be normal and, moreovethe plane tangent tdj. It is
necessary and sufficient the&¥ depend ong, 7, ¢ only by the intermediary of the

expressiom =/EF -G> .

We also mention the surface that is deduced from difumd/ o1, 0», &, F, G) by the
adjunction of the condition§ = &, F = Fo, G = Go . In the case wher&/ does not
depend orF one arrives at a surface that was first studied by ARI (). The case in

which W depends ot agrees with that of the flexible and inextensible s@fan an

interesting manner. It seems to correspond — betterthigalatter- to what one may call
army surfacespr envelopes, such as those of aerostats that anedofrom an elastic
substance that is woven from inextensible filaments.

44. Several bibliographic indications that relate to theléxible and inextensible
surface of geometry. —The flexible and inextensible surface of geometry hesady
given rise to a great number of works, at least froentiechanical viewpoint. It seems
useful to us to assemble the following bibliographic indicet here, which are attached
to that surface.

LAGRANGE. —Mécanique analytiqued edition, Part 1, Section V, Chap. IIl, s€¢.pp. 138-143; Note
of J. BERTRAND, pp. 140;4edition, Tome Xl of th®euvres d& AGRANGE, Part 1, Section V, Chap.
1, sec.2, pp. 156-162; Note of DARBOUX, pp. 160.

POISSON. -Mémoire sur les surfaces élastiqueitten August 1, 1814; inserted in tMgmoires de la
classe des sciences mathématiques et physiques de I'Instixarde, 1812, Part 2, pp. 167-225.

CISA DE GROSY. Considérations sur I'équilibre des surfaces flexible et inextémgMemorie della R.
Accademia delle scienze di Torina). XXIII, Part I, pp. 259-294, 1818).

BORDONI. — Sull' equilibrio astratto delle volte (Memorie di Matematie di Fisica della Societa
Italiana delle Scienzeesidente in Modinal9, pp. 155-186, 1821Memorie dell’ I.R. Istituto Lombardo
di Scienze, Lettere ed Ar§, pp. 126-142, 186Fulla stabilita e I'equilibrio di un terrapieno (Memorie di
Matematica et di Fisica della Societa ltaliana delle Scieregidente in Moden&4, pp. 75-112, 1850);
Considerazioni sulle svolte delle strade (Memorie dell’ |.Rtul® Lombardo di Scienze. Lettere ed Atti,
9, pp. 143-154, 1863).

MOSSOTTI. -Lezioni di Meccanica razionalderirenze, 1851.

! E. DANIELE. —Sull’ equilibrio delle reti, Rend. del Circolo matematigicPalermo,13, pp. 28-85, 1899.
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BRIOSCHI. - Intorno ad alcuni punti della teorica delle superficie (Annali di Tortolfipp. 293-321,
1852).

JELLETT. —On the properties of inextensible surfaces (Transactions ofdfel Rish Academy22, pp.
343-378, 1853).

MAINARDI. — Note che risguardano alcuni argomenti della Maccanica razionale ed appl{Gornale
dell’ LR. Istituto Lombardo di Scienze, Lettere ed Atpp. 304-308, 1856).

LECORNU. —Sur I'équilibre des surfaces flexibles et inextensible (QR pp. 809-812, 188@ournal de
I'Ecole Polytechnique48" letter, pp. 1-109, 1880).

BELTRAMI. — Sull’ equilibrio delle superficie flessibili ed inestensibili §Morie della Academia delle
Scienze dell’ Istituto di Bologn&eries 43, pp. 217-265, 1882).

KOTTER. —Uber das Gleichgewicht biegsamer unausdehnbarer Flachen , InauguraltBizsg Halle,
6 February 1883;Anwendung der Abelschen Functionen auf ein Problem der Statik biegsamer
unausdehnbarer Flachen, (Journal fhr die reine und angewandte Mathefr@8ilpp. 44-74, 1888).

MORERA. —Sull' equilibrio delle superficie flessibili ed inestendilfiitti della R. Accad. Dei Lincei,
Rendiconti, TransfuntGeries 37, pp. 268-270, 1883).

VOLTERRA. —Sull’ equilibrio delle superficie flessibili ed inflessibillota | and Nota I(Atti della R.
Acc. Dei Lincei. TransuntSeries 38, pp. 214-217, 244-246, 1888ulla deformazione delle superficie
flessibili ed inestensibili (Atti della R. Accad. Dentei, RendicontiSeries 41, pp. 274-278, 1885).

MAGGI. — Sull’ equilibrio delle superficie flessibili e inestensib{iRendiconti del R. Istituto Lombardo di
Scienze ed Letter8geries 217, pp. 686-694, 1884).

PADOVA. — Ricerche sull’ equilibrio delle superficie flessibili e itessibili, Nota | and Nota II(Atti
della R. Acc. Dei Lincei, RendiconBeries 41, pp. 269-274, 306-309, 1885).

PENNACHIETTI. —Sull’ equilibrio delle superficie flessibili e inestensil{ffalermo Rend9, pp. 87-95,
1895). Sulle equazioni di equilibrio delle superficie flessibili e teasibili (Atti Acc. Gioenia4), 8,
1895). Sulla integrazione dell’ equazioni di equilibrio delle superficiesilei e inestensibili (Atti Acc.
Gionenia,(4), 8, 1895).

RAKHMANINOV. — Equilibre d’'une surface flexible inextensil{ia Russian)(Recueil de la Soc. Math.
de Moscoul9, pp. 110-181, 1895).

LECORNU. —Sur I'équilibre d'une envelope ellipsoidale (Comtes rendi®?, pp. 218-220, 1896;
Annales de 'Ecole normale supériey, 17, pp. 501-539, 1900.)

DE FRANCESCO. -Sul moto di un filo et sull" equilibrio di una superficie fib#is ed inestensibili,
Napoli Rend.(3), 9, pp. 227, 1903Napoli Atti(2), 12, 1905.

45. The deformable surface that is obtained by supposingdh Mz' is normal to
the surface (M). — We propose to introduce the condition tiht' is normal to the
surface M). We may imagine that this is accomplished, eitherstarting with the
previously-defined deformable surface and studying only the dafans of that surface
that verify the conditions:
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(42) & =0, =0,

or by defining a new deformable surface for which one develmsheory, by analogy
with the first one, but keeping conditions (42) in mind.

We take the first viewpoint and study the deformations(Mf that verify the
conditions (42); suppose, in additioh, (in view of the study of the infinitely small
deformation and in order to form a continuous sequencerfdces that start withvp),
that one has¢” =¢ = 0.

It suffices to introduce the hypotheses (42) into the titaisnof sec34 and following
in order to obtain the expressions of the various edsnéhat figure in the theory.
Conversely, if, to fix ideas, we are given the forces @xternal moments then one must
adjoin the two equations (42) to the six equations thsultrdrom that given, which
shows thaif the functionW, which serves as the point of departure, is gitlean one
may not give the forces and external moments arbitraril

However, observe that upon confining ourselves to theysif those that verify (42),
we have, above all, the goal of constituting a pasdicsilirface; upon following this idea,
we are therefore led to distinguish three cases:hd fuinctionw is hidden, and we know
the function Wy relative to the particular deformations under constiera and
constituted from the essential elements of the defiaon®g 2. the functioWV is again
hidden(i.e., not given), and we know relations (differentiar example) that relatés
and the traces (here, three functions) of the fandd. 3. the functionw still hidden, and
we know the functions that recall the existenc®¥\peither partially or totally.

We develop these possibilities by entering into theaildetof the calculations.
Because of conditions (42) the triad, instead of dependintpesix parameters vy, z
A1, A2, A3, depends on only four parameters, for exampye z, mwhere we are lettingn
designate the angle defined by the formula:

_'h
tgm=-—=,
3
which represents one of the angles that the lsbx's makes with the curveof) in (M).
Let A*D,A*D',A*D" designate the determinants defined by the idetiay we gave
in sec.38, page (?), which depend only on the derivatives, §f z, and are independent

of m and its derivatives. In addition, recall the fotas of the same paragraph
(CHRISTOFFEL symbols):

_5675+256i_f675
z - apz apl apl
1

2A2

* The conditions¢® = ¢\ may be omitted in our actual exposition and figure, in suiomaonly in the

study of the infinitely small deformation.
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0G 0
e -F2
0o, 0p,

>. =
2 2N?

and, from the conventions we made:

A=é&np— &

To determine the rotatioms, , r1, Pz, Gz, 2 one has the following formulad){

plzglp,_QZZD’ p1:§(1,D'_§(2’D,

p2 = 512)" _QZQD’ ) qz :/71D" _/72D’ )

_ om XA _ om Z,A

=——+— r,=——-+ ,
0o & op, ¢&

The translations are calculated from the prior system:

%:tgm’ & =E, &, =F. & +n;=G.
1

As one sees, the translations are expressed bysnaém and the first derivatives of
X, ¥, z The rotationgs, o1, p2, g2 are expressed by meansnofind the first and second
derivatives ofx, y, z Finally, the rotations, r, are expressed by means of the
derivatives ofn and the first and second derivativexoy, z.

If one substitutes these values in the functi@ hobtained by making = & =0 in
W, a function that we shall denote ¥, to avoid confusion, then we obtain the function

W of pl,pz,m,a—m,a—m, of X, y, z, and their first and second derivatives, whichaas

dp, 0p,

result, depend on the expressionsg—m,--- by the intermediary of the nine independent
2]
expressions:

ml gl f-l gl rll r2! DlD”D"l

or, what amounts to the same thing, by the ninepeddent expressiods 771, &, 172, I,
r., D, D", D".

Let W, designate the function of these nine latter gtiastithat givesw, upon
substitution for their valuedd/, results from\, by the substitution fops, g, p2, Go.

! DARBOUX, LeconsT. Il., pp. 363, pp. 378-379, nos. 495 and 503 give identical or deniarmulas;
we represent the quantities that DARBOUX denotedhyD’, D" in the formA°D, A*D',A*D" .
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We have a functiotW that refers to th@ine argumentshat we enumerated along

with o1, 0, whereasW refers to theten argumentséy, 71, &, 772, P1, a, 1, P2, G, F2,
along withpy, 0.

We must stop on an important point that results, bwyiieh, from the consideration
of one of the equations to which DARBOUX gave the nam@@DAZZI, namely,pi/.

- ué&— p21 + 261 =0, and study the equations of statics for the deformablaciih
the case that we examine.

The functionW, is deduced fronW° by substituting the following values fox, o,
P2, Q2
pl:flp’—fzp, Ou:’71D'_/72D’
p,=$D"-¢,D', o, =mD"-n,D",

it results from this that one has:

oW, _OW* oW oW . oW, _OW’ OW oW

0§, 05, Op op, 05, 05, 0p, op,
6V\/0:6V\l°+6\/\f)p,+6V\i’D,,, 6VV0:6V\I°_6V\PD_6V\?’D,,
o, 0n, 0 a9, 0, 0n, 00, a9,
ow, ow° ow, ow°
o, or, o, or,
ow,  ow° oW ow, . ow° owW°
- g(2 - ,72’ n 51 +,71 '

0D op, 0q, 0D op, 0q,

ow, . ow° ow° oW oW

P 51 _52 1 =17, J
oD op, op, o0q 0Q,

where we are continuing to I’ designate the result of substituting far g, pz, 0.

. . . om
Suppose that one introduces the expressions for theablearin terms ofn,a—
O
in these formulas, and that one takes (42) intowtc Observe that the formulas:

c=0,2% =2,
o6 oc,

do not permit us to calculat€;,C,, if, W is hidden because we must account for (42);

however, the other formulas give the other expoessA,--- , in terms of the derivatives
of WP. For instance, one has:

(G_Wj _ow’
apl 61=0,6,=0 apl

The nine formulas that we deduce are given by:
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8,5 = A+ DR D, 0, 2% = K- DR-D'R,

A, ‘ZW: =B+DQ+D'Q,, A, ZWS =B,-DQ-D'Q,

=R, 8, =R,

8, 2% ==£P-n 8,5k = P40 2,
8,5 = P Q- P .

where we writé\p instead oW, in order to indicate that one must replace thements

&,--, D" by their values as functions mg—m
P

When only the functiol, is known we no longer have to calculate the teqliaty
functions A ,--- , besidesC|,C, and the nine equations; by definitiomhenW, alone is
known,what remains are three arbitrary functions.

In order to study the system of equations forgtiagics of the deformable surface we

R -

apply the formulas that relate to the ti¥d y. Z to the triadMx'y'z". In the former triad,
we find auxiliary functions that are defined by tbemulas:

A=A+ Ay =R 41758,
Bl =&A+1.B,, B, =6A+1.B,

and four analogous ones f@,9;,7,,Q, The nine previous formulas may be written:

oW, , aw)
o0&, Tan,

a I I I n I
[52 7 W)}Alwﬂw P;, (52
26,

. j = A,-DP-D'P,,

aV\‘() ] ] ] n ! aW aV\6 ] ! ] ]

=B:+D'O:+D =B,-D9O.-D'QO.,

(51 agl l a’hj 1 Ql QZ (51 652 lanzj 2 Ql QZ
aw . 0W ,
6r ar =R

oW, 6 oW,

DNy—2=~F, . D=2 =0;
0 aD 731 a Ql OaD" QZ

Consider the six equilibrium equations that wavergin sec. 38; the first two of the
second group givé&C, andAC,
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ac; -Z_E+g% 2 P-IP-0 Q-0 Q- ADR-AD'R-D (§ L M)
1 2

-AC, = 09 + 09,

P 2

- 21731'_ 2 z,Pé -0 Q’l_ © le_ ADR’l_ AD' Rz_ A &5 1L’ ot MI )) .

Substitute these values in the three equations ofrdtegfoup; if we write the third
equation of the second group, and we are left with thersys

) ) oR op
U,=— (A +D'P+D"Pp+—(A,~DP,-D'PY+D—-L-2D' -1
=3, (A +DP ) 6,02( ) o, o,

9% 1D 9 (0P -5 (A DI+ D'PY) -3 (A~ DP-D'P)
00, 0o,

—0,(B+D'Q +D'Q,)-0(B,-D'Q\-D'Q)+2(Z D'-2 D" -Z D)P,

-(©,D-20,D;+0.D")(Q;-P,)-A(DD" -D'"*)R+ A (& X +17 X)

+A0,D’(§(2LE) +’72M ’o) -A 0,D"(§(1L,o+/7 M ’() =0,

a I I I n 1 a I I I I a I r
U, =— (B +D'Q+D"Q))+—(B,-DQ;-D'Q)+D—(Q,—P)
ap, ap, ap,
09, _pr 09, 673
00, 00, apl
—0,(B,+D'Q+D"Q;) -0 (B,-DQ,-D"Q)+2(-20 D'+O P"+O D) .
+(222D’ - len - 23'D)(Q1— ,Pé) + A(DD" - DIZ)RIZ_A 0(51X,0+/7 1Y()
+A0,D(§(2LE> +’72M ’o) -A O,D’(Qq—’o'*'n M ’() =0,

+2D' -5, (A!+D'Q,+D"P}) -5 ,(A,~ DP,- D'P))

212 2 1 _ 2y ] r
V :1[6 7321_6 (Ql 732) _a Q22j_®l+zzzapl+£lapl+£1 0 (Q1'_731')
0p0; 00,00, 00, A dp, Adp, Adp,
+91(Q1 2’) %aQZ + 292 + Z3 aQZ a Z a Z_ _(DD" DIZ) r
A dp. A 0p, A 6,02 0p, A 6,01 A A

0 6, 00, F
+ e S A DD"_DIZ l_rpl Mo Y M3 _ Y DD,,_D,Z '
LpzA TR )}(Ql 7)+ {ap NP )}QQ

e R GRE Yo Ao

P ey -9 | Do
—a_pl(’DR1+'D R,Z)+6_,02(DF£+ID R) 0 [A (&, L+, M()}

1

(B,-DQ-D'Q)

0 |A : : ,
L S M Az,
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W:a_Ri’+ﬂ+

&
el I+DIP1+D"P1
0p,  0p, At )

f [ ] 1y! 1 Y "~ 1 [ 1\ "
t A -DR-DP=(Bi+ D'+ D'yl —%(BZ—DQFD Q) -A N'=0,

upon remarking that for the formation of the firstethrequations the CODAZZI
equations are, with our notatiort3: (

DID" _ DIZ - ]C

9D oD +2,D-22,D'+2D" =0,
0p, 0p

oD" 0D’

-~ +0,D-20,D'+0D" =0,
o, 0p,

whereC designates the expression that is formed uniquely Eof G, and their first

and second derivatives, and represents the total curvatuhe surface, and we also
remark that:

dlogA —0,+3,, dlogA
0p, 0P,

=0, +3,,

2
and that, as a result, when we equate the two valugsl%% we get:
00,00,
00, 00, 0z, 0%,

0py  0p, 0p, 0P,

) @l_iezjzl(aez_ael_ez +@Zj
22 13

or:

0 z_iz_( 6,_06,).1
0o, A dp, A 0op, A 0p, A A\ 0p, 0p,
_i(azz oz,

A\ dp, dp,

-0,5, +9123}

46. Reduction of the system in the preceding section td@m that is analogous
to one that presents itself in the calculus of variations— From the preceding

calculations it results that the auxiliary varia¢,---, or, what amounts to the same
thing, the4, ... are all eliminated from these equations, even dghotheir number is

! These equations are immediately deduced from the ortesategiven in T. Ill, pp. 246, 248, becons
by DARBOUX upon performing a change of notations and refisg that:

dlogA dlogA
9 :@1+ZZ, 9 =0, +%

0p, 0p, ’

3"
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greater than one. This is alsoapriori consequence of the habitual considerations that
one makes in the calculus of variations when the sgpras for the external forces and
moments have a particular form.

We shall put the equations that result from this elinomainto a form that one may
deduce from the calculus of variations in the case whgpeessions for the external
forces and moments are given in a particular form.

We begin by replacing the argumegismi, &, n2 in Wy, which are functions of the

argumentsn, &, F, G by their expressions that one deduces from the formulas

%:tgm, E+ni=E, &&rnm=F, &=,
1

to which we adjoin the formula we already used:

i —Em=A
which only defines the sign @, 7..
From this, we deduce:

=/€ cosm, £, =% cosm-2 sinm,

JE JE

. . A
=/Esinm, n, =-—sinm--—— cosm,

© Ve JE

in which+/€ denotes a determination of the radical.
If we let o] denote, for the moment, the function@f o, andm, &, F, G, r1, ra,
D, D', D"so obtained then we have the relations:

oWl _ 1 56V\6 oW 156V\{ oW, 56\/3/
o8 26\ aé 16/71 206, 26/72 16/72 65

A __( AL awj
A 2 ’

0F ' ¢, 01,

oM, _1 56V\6 6V\6

g Al /72 652 ’

oW, ] a A oW, oW,
om _gl /71 afl "o 01, 7 0¢, .

To abbreviate the notation, we set:

= ‘/41 + D”]Dl’+ D",PI ’ al2 = AQI _D/P]-I_DI/PI ’
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B=B+DQ+D'Q, B =B-DY-DQ,.

We have the relations:

OWel;) ,  OWEA,) _ OWelly) , , OWelly) _

51 gl

&, " an, " &, 't oan, 7
0W,4,) oW4,) _ . oW,4,) oWLA,) _ .
+ =al, + =a,

g(l 651 ,72 6/71 al 52 652 ,72 6/72 2

from which we deduce the following expressionsther derivatives ofMbAo):

6(\N0A0) — /72b1 —/7181 6(\N0A0) — /72b; _/713-’2
08, A ¢, A

O(WsA,) - $a — 4§ 0(W,A,) _ glaz $5b;
on, A on, A

which permits us to calculate the different combores formed from the derivatives of
(Wolo) in termsay,bj,a,,b,. We thus obtain:

owJl _1,., 1 G ( F . &1, F . FG
Bo 0 _25b1 25a2+25A( mUZJrAde zm mzé? ZN? b
0[W]_ F .. G
b or Tt
ol _ & _,
A0 ag _2A2a2 2A2b2’
aw,] _€ ., F,, G
A == a - (d,- ) -~ Y,
°om A A(az o)) At&

from which one deduces:

8, AN 5 AN 6y AV

4= om Py oF
bl = 2&A, a[\/v0]+fA A :
o0& 0F
. o[W,] awj
aZ—AA{ +2G % }
6}" oG

in such a way that if we denote the functid] by Wo then theten auxiliary functions
other thanC,, C, are defined by the followingine formulas:
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J41'+D'731’+D"732’:%M+2}-6(V\6A0)+ga(V\6Ao)’

om o0& oF
! ! ! n a(\NA) a(WOA)
B+DQ +D'Q =260 4y ¢ o

i+ D, < A& OF

, Vi O(W,A,) 6(\/\4,A)}
A -DP'-D'P =N F— 00 4> o1
2 ! 2 { OF g G

, , , oW, A,) (WA )}
B.-DQ -DQ =N 4 oF oL
2 Ql Qz { oF 6g

c=n, Mo c,=n, M
or, or,

Define the direction cosineg, y/,)" of the normalMZ to (M) by the formulas:

-1 0v.2) =1 0(zx) o1 9(xy)

y 1 )
Ad(py, p,) A 0(p1, p5) A 0(p1, p,)

First, we have the following identity, in which weroduce the notations that we just
now defined in place of the derivativesWx:

62 a(\NOAO)_+_ 62 a(\NOAO)_+_ 62 a(\NOAO)_ a a(\NOAO)_ a a(\NOAO)
0p; 50°x  0pp, 5 9°x  0p; 40°x  Op 50X 0p, 4 OX

0p? 0P, 00 op, op,
62 V,P,j aZl:y 1_731:‘ 62(1/ rj
+6(VV0AO):_ (A 1 _ A(Ql 2) _ AQZ
ox 0pf 9p0p, 003
x_ oy £ OX_ 0y
+ 0| ad 00, 00, S 0 00, 00, c
dp, | 0p, &N Y| ap, &N

9 {E’Jr]-"za’z_fgﬂzj ox {_ﬁé?_gsz ox

ap |\ & &N EN* )ap, A* A% )dp,
9 5aax_f<fx 9 5aax_fsx
+ p2 pl _Dly C]’_+ p2 pl _Dny q

00, EA 0p, EA
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op _, oD , ., .. 0D" | o Fa,  Gh) ox
- B+ -P)+t——Q, ¢~ - +

o 0k (TR s Ry
Jo) oJe) 0p,

ga, FB,) ax o~ 0D
+( AZ AZ japz +DyCl+D yCZ aw,ljl

0P,

op' , ., ... 0D" _,
t——(Q P +—--

ox 0x

0— 0—

00, 0p,

In order to obtain this identity in the form that wedsve have to use the relatiofs (

o€
—= =2(£0, + F¥,),
apl ( 1 1)
297 99 _s0,-73,),
0o, 0p,
e
—= =2(FO,+35,),
apl ( 2 g 2)

o€
— =20, +F%,),
apz ( 2 2)
0F 0E
2~ - = = 2(FO, +G%,),
6,01 6,02 (F 1 g 1)
g
— = 2(FO,+Gz,),
apz ( 3 g 3)

whose solution gives the values of the CHRISTOFFEL sysiho 2, 23, ©;, ©,, O3, or,
conversely, the values of the six derivatives£ofF, G, and this permits us to eliminate

these derivatives & F, G. We have also used the relatiof)s (

2
a§=®16X+ZlaX+DAy,
0p; 0o, 0p,
2
0°X -0, ax+22 6X+D'Ay,
0000, 0P, 2
2
6)2(2636X+236X+D,,Ay,
0p; 0p, " 0p,

which permits us to eliminate the second derivatives nfz, and gives rise to two series
of formulas that are analogous to the ones obtaine@figaingx, yby v,y and z, )"

1 _ . dlogA
We continue to use the relations—— =0, +X

0p,

2 DARBOUX. —LeconsT. Ill, no. 702, pp. 251.

dlogA _

21

@, +3,.

0p,
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with the direction cosines defined by formulas that ackided from the formula foypby
circular permutation.

Consider the different expressions that are presemtie ipreceding calculations.

First, let:
g =B e 98 409 _p O
or, -_ & _ 0 00, 00, 00,
aﬁ aﬁ d 0X 20E

o 0p,  Op,
_0x 08 ., 0x0F _10x9F _ 0% x

__28%, 0x %, (o 0x_ o 0x), 0p,0p, 0p0p, 20p,0p, " 3p}
E* dp, NE\ dp,  0p, AE

ox ox 9% x
2% (ro,+05,)- 2% (g0,+ F5 ) - F 22
:_ZAZlﬁ_i gax_}_ 0X + 6101( ,+G2)) 6'02( 1 ) ,012.

£ dap, DE\ dp,  0p, AE ’

on the other hand, one has:

ox o 0x
0 0p, 0p
0P, AE
2 2
ggaax +5aaax _gf:)(_fg? aax_fgx 9
=9A0p, 0p0p, 0p,0p, 0Py_ 0P, 0P, 5(@1+Zz)+—5
AE AE

1

ox ox ax ax 9% x
2— (O, +FZ )+5(@ ——+Z +D’ij—(f@ +G2, +E0,+FZ,)-F_—
o, “0p Cop, op, TN T op

AE
g X ox
op,

x
—A—gzpl[e(el +3,)+2(€0,+ F3)].

From this, it results that:
>A gﬁ—j—“ 0x

£ _ 9 9p, " op
0 op af

op,

0

:—’D'y

Similarly, one has:
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AS, 0§ _ 08
or, _ 67 _ 0 00, 00,
aﬁ a% 0 ox 20NE

o, op  Op,
Ox 0G _10x 0 . 0°x

:_ZZZAﬁ_Zz( 0x _ . GX}Gplapl 20p,0p, ~ 3ppp,

& op, AE\ dp, T op, AE
2
2% (70, +g3,)- 2 (€0, +75,)-F O X
__2,A0x 2, . 0X ps 0Xx + 0p, 0p, 6,016,02.
E 0p, NE\ T 0p,  0p, AE
On the other hand:
X _ p 0X
0 0p, 0p
00, AE
0f Ox 0°X _OF 0x _ . 0°X 0X_ . 0Xx
_92,00, 0P, 0p,0p  0pPP,_ 0Py 0Py g L5y, 9E
AE AE? ,
ox ox X dx 9% x
29 (£0,+ 75 )+ £0, 2 +5, % 4 D'Ay)- OF (€0, + F5,+ FO,+ G5 ) - F
_0p p op, A -
AE
52"—??‘
- CPLE(0,+5,) +2(£0,+ F3 ),

AE

from which, it results that:
a ZZA gﬁ —f%

5 _ a a102 a101 :_D"y
00X 0p,  AC ’

0p,
Furthermore, one has:
P Az, _5675 + ZSGi - j-"ai
or, -_ & _ 0 00, 0P, 0p,
5 0x 5 oX 5 0Xx 2NE

0o, 0p,  0p,



THE DEFORMABLE SURFACE 12¢

Fx_1ox e
:—i gax -F 0x + aplz 26:016,01
E\ 0p,  0p EN
5(@ %+Z ﬁ+’DAy)—ﬁ(g@ +,7-2)
:_E 0Xx _ 0X + 16,01 16,02 6,01 1 1 :Dy
AE 6,02 apl EN y
s, 00, 08
arz :a E — 0 6,01 apz
9 ox P oX P 0X INE
d0p, 0p, 0P,
0°x _10x 9
:_é c ox _r 0Xx N 0p0p, 20p,0p,
AE\ 0p,  0p EN
5(@ %+Z ﬁ+'D'Ay)—ﬁ(g@) +Fy )
Cn o pox), MO0y Ty TN g, 00
AE( 0p, 0o, AE

We modify the identity that we obtained, which givas two analogous ones upon
replacingx, ywithy,)’, and then byz, y" .
We shall develop the parentheses in such a wag slsow us the left-hand sides of

the equations of statics of the deformable surfatk the forces abstracted. To that
effect, we use the relation§:(

dy _ FD'~GD dx , FD-ED' 0x
op; A dp A 0p,
dy _FD"'-GD' 3x  FD'-ED" 0x
0p, A 0p A 0p,

which gives rise to two analogous systems thabhtained by replacing, ywithy, ),
and then byz, y" and which entails that:

A_FD-GDOx  FD-ED 0x ©+3,
Jo) A 0p, A 0p, A

A _FD'-GD' 0x  FD'-€D" 0x _©,+3, y
0p, N 0p, A dp, A
lLe.:

! DARBOUX. —LeconsT. Ill, no. 698, pp. 244-245.
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0x oX 0Xx 0X
0r  Ea T an Y90 T o3
_A - P, Py -D P, Py _ 9, 2y
00, A? A? A

0Xx oX 0X ax
0 T Y50 T 0,43
_A:_D" p2 pl_D pl pZ_ 2 3y
00, A? A? A

We thus arrive at the statement that if one denbteteft-hand sides of the equations
of statics of the deformable surface Wy U1, V, YV then they express that we are led to

consider reproducing all of the terms that are independitite external forces and
moments that figure in:

G g Ox o Ox_ . 0x g 9% _ 0
oo apzul_ 00, " op, L0 | ap, oo, |

N? N? 2 0p AE

Changingx, yintoy, ), and then intaz, ) gives two analogous results.
On the other hand) = 0, may be written:

0 a(\NoA )+ 0 a(\Nvo)_a(\Nvo)

+A_N. =0.
0p, z0m 9p, zO0m  om  °°
0o, 0P,
One therefore sees that if one sets:
ox _ 0X

Bty = AX o+ 2| yPo L Py Yy 92| 0P 0P,
4o} “0p,  ‘op, 0p,) AE

_0 yﬁ(L ﬁ.;.M 9y +N, azj
op, op,  "op,  Cop,

and two analogous formulas that are obtained blacem Xy, Xo, X, y with Mo, Yo, V,

y',and then with2,, Zo, z, y", respectively (along With_oaa—X +-.- and Loﬁ +...), the
0

1 1
equations of statics for a deformable surface neagummarized in the following relation
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(1): [[ o) do,do, + [[A(X S xVP v+ 25 2 NG M g, =0,

in which one considers only the terms that aremaitely presented under the double
integral sign.

The preceding result may be generalized: suppgwgeone expresses, /71, &, 172 as
a functionm, &, F, G by the formulas:

& =-J€ cosm+ u), 52=%cos¢n+ u)—% sin(m+ u)
1, =~J€ sin(m+ u) n, =%sin(m+ u)+% cos(m+ u),

whereu denotes an arbitrary function of just 7, G; the equationV = 0 may then be
written:
0 0WA,) . 0 OWeh,) _ O(WeA,)
0P, aaﬂ 0P, aaﬂ om
0o, 0P,

+A, Ny =0.

Upon forming the combination:

GOX _pox o 0x_ . 0x
08 0py 0p ” Opy,
N? ! N? 2
ox _ . 0x
L0 20, d0p, 0u W L9 ] __ou
apl Ag 6% apl 6%
Jo) 0p,

and the two analogous ones that are obtained bBgciegx, ywith y, ', and then with
z,y",one finds three equations, the first of which is:

0> OWeD,) , 07 O(WA,) . 9”7 I(WAY _ 9 a(WA) _ 8 a(Wp) _
2 2 + 2 + 2 2 +A0XO - O
apl 0 0°X aplapZ 0 0°x 6,02 0 0°X apl 0 28 6,02 aiax
0o 0p.0P, 0p5 0p, 0p,

upon setting:

t
! This relation is analogous to the formﬁlla(éT +U")dt = 0that TISSERAND gave for HAMILTON's
0

principle on pp. 4 of T. | in hi$raité de Mécanique céleste.
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ax_j__ax

A0X02A0x0+i yAO L 6X+M 6y+Noaz N ou  0p, 00, AN,
P a% AE

0 A, 0x ay 0z ou .
- —|L,—*+M,—+N,— [———A/N, |.
apzyA(oapl 06,01 oaplj 5 0'vo

op,

These four equations may be summarized by:
JAXWAY + AL X O3+ Y x+ Z g x= Ng 0} b, b, =0 ,

in which one considers only terms that are ultimatedgented under the double integral.
The summary form that one is led to, and which wiltreated according to the rules
of the calculus of variations, is particularly conwaii for performing changes of
variables.
If we suppose that the expressics Vo, Zo, N, have a particular form then we will

have the extremal equations for a problem of the aadood variations.
We consider the particular cas® in which WeAA, does not depend om, r, and

depends oif, &, 1, 172 only by the intermediary of, 7, G; this amounts to saying that

the final expression foWwpA, does not depend om,a—m, om

dp, 0p,

, and is a function opx,

2, and the six functions:
E,F,.G, DD D"

of the first and second derivativesxol, z
In addition, if we suppose thif = iD;X,, )o, 2o do not depend om then we

ultimately have three equations that relate to anly z, and which may be summarized
in the formula:

jjco5(\/\/0A0)dpldp2+ﬂcoao(x05x+y(5wgﬁ3 b, b ,=0.

In the particular case in whicd denotes a function ob;, o, andx, y, z and

! What follows may also be applied to the case in whikh, is arbitrary; the essential hypothesis is the
one made foiZy, My, Mo. One may also imagine the case in whidgi\, is of degree one with respect to

r, r, . The coefficients of the latter are constants more generally, independent gb andp,
respectively.
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y=— ! M V.V, one has, in addition:

A, 9(p1, 0,)
NARL.URV UV
ox oy 0z
L3+M 6y+N0 0z _ _|0U 0dA +6U’ 0A +6U’ 0A
1 apl 00, oy aﬁ oy aﬂ oy aﬂ
0P, 0P, 0P,
L, 0X M, oy PN, 0z _| U oA +6U 0A +6U" 0A
00, 00, 0p, | 0y aﬁ oy’ aﬂ oy 62
0P, 0P, 0P,
Loy+Moy '+ Nyy' =0,
one then has:
_odua,) o0 oUap,) o0 oA
DX, = - - ,
X  0p 59%  0p, 50X
00, 0p,

the extremals

and two analogous formulas, and one obtains theetlequations for

relative to the integral:
[Ja.w, +U)do,dp,.

The preceding formulas amount to setting

ou
L —
0 Vay Vay
ouU ouU
M, =y & -y
0 V ay yayr
aU
N = -
0 51/ Vay

all of which result from the fact that thg/,)" verify the following system, which

defines a functior of ox ay oz :
op, 90, op,

oF oF oF oF oF oF
0x 3 oy 3 0z 0x 5 oy 5 0z
op, _ 9p __0p, 0p, _ 0P, _ 9P,
y y V' y y V'
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An interesting particular case of the precedingisribe case in which the expression

AW, .
%,when one takes andy as the variables, depends — other thar, gn- only on the

derivatives oz with respect tog, y; it is easy to find the form Afk.
Observe that the two expressions:

dx® +dy? +dz?, - (dydx+ dydy +dy'dz),
may be written:

&dp} +2Fdp,dp,+Gdp;, A(Ddp] +2D'dp,dp,+D"dp3),
from which it results, by virtue of the formulas:

o0X 0Xx
dx=—-dp, +—dp,,
oo, " op

3 3
dy=->dp, +~*-dp,,

0P, 00,
that one has the identities:

&dpf +2Fdp,dp,+Gdp; = (1+ ) dX+ 2 padxdy 1+ &) o

1
/1+p2+q2

From the theory of the invariants of quadratic feywne has:

A(Ddp? +2D'dp,dp, + D" dp? = (rd¥X + 2 sdxdy tdf).

EF-G*=(Q1+ p2+q2){ o(x, y) } ,
(01, P,)
A (DD"-D'?) = rtzs { 9% Y } ,
1+p°+q | 9(0,0,)

AGD + D" - 27y = A AN + A+ p) - 2pgs O (X y))T,

\[1+ p2 + q2 a(,Ol, P
and, as a result, when we pass to absolute invasiap get:

rt—s?
1+ p*+q°)*

GD+ED" -2FD' _ (1+¢°)r - 2pgs+ (I+ )t
A - (1+ pz + q2)3/2 :

DD" _ DIZ -

We recover two well-known expressions for the tetaivature and the mean curvature.
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: . . W, . .
The case that we are dealing with then the one miwﬁ%o is a functiong of pi,

P2, and the two expressions:

1 = pD' - 1,1 _gGD+éD"-2FD |
RR, R R, A
in which’R; andR, denote the radii of the principal curvatures.

If we takex, y for variables then the formula that summarizesetipgations of statics
of the deformable surface may be written:

5[] ¢+ 7+ o dxcly ] %(xoa XS W23 W1t pt § dxdy 0.

The function under thﬂ in the second integral is:

A, 0X [6)4 0Xx 0X
2 Xy=—+ Y — |00, +| Xo—+V,— |0p,+ ZPzZ;J1+ P +
A{[ “0p, y‘)aplj P ( “0p, y‘)apzj & ﬁ} Prd

and, as a result, singgdoes not refer to the derivatives gf o, the equations of the
problem become:

92 6(¢«/1+p2+q2)+_ 0 0@yt P+ ) Amz =0,

ox® ox aq
_(¢«/1+p +q )+[ X :})/j A 1+ P+ f =0,
—(¢\/1+p +q)+[ ox g’ng I+ F+q =0.

In particular, suppose that does not depend gm, o, and it depends uniquely on

! and ! ; this gives the equations:
R+ R, R/R,

2 2 2
626(¢\[1+p +q +.“+£ ’1+p2+q220:0,
0X or A

XQZO, yozo.

One may write:
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_[B, — o[ A o 4, 2(%,Y)
=Gl Ll e a2y ome ol Bl

_J A _i A, i Bo 9(x, y)
A°%_{A_V'Y° oyt p)} [VA( Yo N“q}}a(pppz)’

A _0f .4, 0] .4 a(x,y)
AOZO_{A_VZO ay_V A (L0+ No p)]*'ax[y A (M0+NOQ)}}—6(101”02)-

We may combine the two equatioAs = 0, Jp = 0 with the preceding ones. For
example, we may introduce the combinatjeti, + )/)) + )/ Z, upon taking:

0° 6(¢\/1+p ), A my (WX, + YN+ Z,)=0.

ox’°

If the givens in the equation that we write, or inestbombinations, are suitable then
o1, 22 might no longer appear and, by the preceding equationwidhéhus have an
equation for the surface. The equations:

serve to defingoy, o, as a function ok, y (or inversely), and may be left aside if one
abstracts from the natural state.
Consider the particular case in which the functior a linear function with constant

2
coefficients with respect tHj and 1 ;
R+ R, RR,

2
Al—L |+t g
7?’1+R2 RIRZ

i.e., a function of the form:

in whichA, B, C are constants. The const&ntlisappears from the question according to
a remark that was first made by POISSON in his nieowelastic surfaces)( and was
then reprised and generalized by OLINDE RODRIGUHSahd, in the case in which all
of the external forces are null, we summarize theadon in question by:

! POISSON. -Mémoire sur les surfaces élastiquiated August 1, 1814 (Mémoires de la Classe des
Sciences mathématiques et physiques, of I'Institut dade, year of 1812, second Part, pp. 167-225); an
extract of this memoir first appeared in the Bulletin lde SociJté Philomatique, and then in the
Correspondance sur I'Ecole Polytechnique, T. I, pp. 154-1895.

2 RODRIGUES. -Recherches sur la théorie analytique des lignes et des rayoosidrie des surfaces
et sur la transformation d’'une classe d'intégrales doubles, qui orapport direct aves les formulas de
cette theorie.Correspondence to I'Ecole Polytechnique, T. lll, pp. 162-1825; in particular, see pp.
172, et seq.
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5][(%+Ri2j \/1+ p® + gf dxdy+ CZFH\/H 6+ § dxdy O,

which is the conclusion that POISSON arrived at inolwe researches.

In conclusion, observe that by the consideration afitefy small deformations the
general developments of this section easily leadddlteories of THOMSON and TAIT
() and LORD RAYLEIGH {); we leave to the reader the burden of taking this approac
and studying the case with which one is concerned iril ¢8ta

47. Dynamics of the deformable line- The dynamics of the deformable line are
attached to the preceding exposition. To see this, fiitces to regard one of the
parameters -, for example — as time One will then have an action consisting of
simultaneous deformation and movement. Under the infuehthe triad, the velocity
of a point of the deformable line enters iNMbby way of the three argumenfs 7, {,
and one finds oneself in the presence of the noticandotropic kinematicshat was
already envisioned by RANKINE, and which has since beewduotred into several
theories of physics, such as the theories of doublectefmaand rotational polarization,
for example.

Similarly, if Wis independent of rotations and leads to null exteroahemts then the

argument of pure deformatiof’ +7,7 +¢/ and the argumenf’ +7Z +¢> are generally

accompanied by the argumefi, +7,/7, + ¢,¢,. Such a type of argument is no longer
new in mechanics and appears, notably, in the yheiorces at a distance, as we shall
show later on.

WhenW does not contain the mixed argumeff, +7/7,+¢ £, it is necessary, in

general, to consider the infinitesimal state obdefation and motion of the natural state
in order to find oneself in the case of classicachanics in whichthe action of
deformation is completely separate from the kinematical acti@ne thus obtains
D’ALEMBERT’S principle upon supposing that the extal force and moment are null,
i.e., upon expressing that the deformable line as subject to any action from the
external world, and introducing, as a result, thadamental notion of aisolated system,
of which we spoke at the beginning of this note.

The dynamics of the deformable surface may bebksited in the same manner by
means of the theory of the deformable medium addhdimensions, which we shall now
discuss.

! THOMSON and TAIT. -Treatise,Part II, no. 644.
2 LORD RAYLEIGH. —Theory of Soundjol. I, 2 ed., 1894, pp. 352.

% It amounts to thafinitely smalldeformation of an originallglanar surface.



