IV. - STATICS AND DYNAMICS OF DEFORMABLE MEDIA.

48. Deformable medium. Natural state and deformed state. The theories of the
deformable line and the deformable surface that we dsdulemd, in a very natural
manner, to envisioning a more general deformable mediamthe one that is habitually
considered in the theory of elasticity, and seems, faauschieve the goal that was
pursued by LORD KELVIN and HELMHOLTZ in the theories @t and magnetism.

Consider a spacéVlp) that is described by a poiMy, whose coordinates, Yo, 2
with respect to three fixed rectangular ailes Oy, Oz We may regard these coordinates
as functions of the three parameters, ps, which are chosen in an arbitrary manner;
however, to simplify, we suppose that these coordinatestaken to be independent
variables. Affix a tri-rectangular triad to each pditg of the spaceMo), whose axes

M Xy, M, Yo, M Z, have direction cosines,,a,,a,; By, Bo: Bo Var Ver Ve With respect to
the axeOx, Oy, Oz and which are functions of the independent variatbles, z .
The continuous three-dimensional set of all suetd$rM ,x; Y, Z, will be what we call

adeformable medium.

Give a displacemer¥loM to a pointMo; let X, y, z be the coordinates of the poivit
with respect to the fixed tria®xyz In addition, endow the triad x,y,z, with a
rotation that will ultimately bring its axes into agmeent with those of a triadMX'y' Z
that we affix to the poinM. We define that rotation by giving the direction cosine
a,a,a":8,8,8"% v,V.,y ofthe axesMx My MZ with respect to the fixed axes.

The continuous three-dimensional set of all suigd$ Mxy Z will be what we call

the deformed stat®f the deformable medium under consideration, Wwihndl be called
the natural staten its original state.

49. Kinematical elements that relate to the states of thdeformable medium.—
For ease of notation, we sometimes introduce tterspo;, 0, s, instead ok, Yo, zo In
the sequel, as expressed by the formulas:

Xo = o1, Yo = 02, 2= 2,

so it will suffice to keep them in mind.
Denote the components of the velocity of the arldp of the axesM jx;, MY, M ,Z,

with respect to these axes f”,7,¢® whenp alone varies and plays the role of

time. Likewise, letp®,q?,® be the projections on these axes of the instaotene
rotation of the triadM x,y,Z, relative to the parametgr . We denote the analogous
guantities for the triadMXyZ by &, n, §, and p;, g, ri when they, like the triad

M X, YoZ,, are referred to the fixed trigoixyz

The elements that we introduced before are ca@dilan the usual fashion; in
particular, one has:
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, oy " 0z

9P, op,
, oy . 0Z
+ +
g 9P, g op,’
vy oy 0z

+ U
0p; Y op,’

+a

(43)

(44)

=y, 9B - 5%
P _zyﬁ_,oi_ Zﬁapi

g -y, 00
qi_zaa_pi_ zyapi

-y 599 _ v, 98
i _Zﬁapi zaapi.

The linear element of the deformed mediul),(when referred to the independent

variablesx, Yo, z, is defined by the formula:

ds”® = (L+2¢)dx; + 1+ 2¢,)dy; + L+ 2¢,)dZ
+ 2, dy,dz, ++2y,dz,dx, + +2),dx,dy,,

in which &, &, &, W, )5, )4 are calculated by the following double formulas:

2 5 )
X oy 0z .
£ =1 + + -1 =1 + + _l,
l ZKGXOJ (axoj (6x0j } (G ¢ -]
(ox) ) (az)
£=7 * + -1|=1(E2+n2 +¢c2 -2,
S (%J («Mj (ayoj } L&+ + 6 =)
— a 2 a 2 a 2
— X y 7 _
- o (GZOJ {azoj {azoJ " =HE T D,
Ox 0x 0y dy 0z oz
= + + - + + |
& 0y, 0z, 0y, 0z, 0Y, 0z, $283 T 112115+ €265
ox Ox dy dy 0z 0z
= + + - + + |
Y2 0z, 0x, 0z, 0x, 0z, 0%, $361 730+ 656,
ox Ox 0y dy 0z 0z
= + + - + + .
& aXO ayo aXo ayo aXO ayo 5152 i, * €62

Denote the projections of the segmént onto the axedx', My, MZ by X,y',Z', in

such a way that the coordinates of fhed pointO with respect to these axes become
-X',-y',—Z. We have the following well-known formulas:

@) - _qrary=0 5-Y
op. 0

which gives new expressions fér 7;, ¢ .

!

X'+ @ =0 ¢ —a—z—py'+QX'=0,

op.



140 THEORY OF DEFORMABLE MEDIA

50. Expressions for the variations of the velocities of trategion and rotation of
the triad relative to the deformed state.— Suppose that one endows each of the triads
of the deformed state with an infinitely small disglaent that may vary in a continuous
fashion with these triads. Denote the variations, of, z; X', y', Z'; a,a’,---,y" by X, Jy,
&, X,y & oa,da', -0y, respectively. The variationsda,da',---,0)" are
expressed by formulas such as the following:

(47) 3 = BK' — y)

by means of the three auxiliary functiah§Aa’,K' which are the components of well-
known instantaneous rotation that is attached & itlinitely small displacement in
question with respect tdx’', My',Mz' The variationsX, dy, &z are the projections of the

infinitely small displacement felt by the poif¥l onto Ox, Oy, Oz The
projection®)'x,J'y,d’ zof this displacement ontIxX' My MZ are deduced immediately

and have the values:

(48) OX=K +ZA -yXK', Yy=d'+xXK' -Zd', dz= +yAd' -xXA".

We propose to determine the variationds, on, oG, &, A, & felt by
& ., &, pi, G, ri, respectively. From the formulas (44), we have:

P Z( ‘Mﬁ}

6,0, api
_x[ 9y %y
%= Z(ap. 7Y j
o = Z[% B+ ﬂ%}

Replaceda by its valueBXK' — yal" ,and da’,---,dy" with their analogous values; we
obtain:

49) & =L sqx -1, & =22 ra-pax, & =2X
p 2 P

+pd’'—-qd’.

Similarly, formulas (46) give us three formuldse first of which is:

55— —%*'qlaz’ ricy +Z’d:li _y’&i'

Replacedp;, &, o with their values as given by formulas (49); wéamtn
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o :”id<’_6id]’+%;?(+qi5,)(_ri5y’
(50) o, =G~ £ 0+ 410y - p o
& = £ -nd'+ 7%+ poz-d%

in which we have introduced the three symhdls J'y,J’ z defined by formulas (48).

51. Euclidian action of deformation on a deformable medium- We preserve the
notations of sec49 and introduce the known quantitf, which is defined by the
formula:
ox o0x oOXx
0x, 0y, 0z,
_ D(xy.2) _|dy 9y dy

D(X.¥0:25) |0% 0y, 07
0z 0z o0z

0%, 0y, 0z

and whose square, which is formed by the rule faitiplication of determinants, is
expressed as a function&af &, &, U, )4 ) by the formula:

1+2¢ ), 2
A = Vs 1+2¢, V1
Yo V1 1+2¢,

L

Consider a functioW of two infinitely close positionsf the triad Mx'y'z' ,i.e., a
function fromxo, Yo, 20 tO X, vy, z,a, B, ya',B,y',a",B",y", and their first derivatives
with respect tow, Yo, 2. We propose to determine the form tWatnust take in order for
the integral:

[[Jwaxdy,dz,,

when taken over an arbitrary portion of the spadg) (0 have null variation when one
subjects the set of all triads of the deformableliom®, taken in its deformed state,the
same arbitrary infinitesimal transformation of tgeup of Euclidian displacements.

By definition, this amounts to determinikigin such a way that one has:

A =0,
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when, on the one hand, the origihof the triadVIXy' Z is subjected to an infinitely small
displacement whose projectiods dy, oz on the axe®©x, Oy, Ozare:

x=(a, + Wz~ wyy)4,
(51) d/ = (az +w3x—wlz)5t,
oz =(a; +wy-wXa,

whereay, a, as, W, w, ax are six arbitrary constants addis an infinitely small quantity
that is independent ofy, yo, 2, and when, on the other hand, the triftkyZ is

subjected to an infinitely small rotation whose componhatdng the axe@x, Oy, Ozare:
wd, wd, wd.

Observe that in the present case the variadgnarni, o¢; i, A, & of the eighteen
expressionss, 7, &; pi, Gi, ri are null, since this results from the well-knownaiyeof
moving frames, and as we may, moreover, verify imntelyidoy means of formulas (49)
and (50) by replacingd’x,d'y,d' zdI',dJ,0 K by their actual values. It results from
this that we obtain a solution to the questionditg W to be an arbitrary function o,

Yo, 2o, and the eighteen expressiofis/i, &; pi, O, ri. We shall now show that we thus
obtain the general solutiof) (of a problem that we now pose.

To that effect, we remark that the relations (4&ymit us to express the first

U

derivatives of the nine cosines,a’,---,)" with respect to6, Yo, 2 by means of these

cosines ang, g;, ri using well-known formulas. On the other handnfolas (43) permit
us to think of expressing the nine cosine®’',---,)' by means o, /1, {1, and the first

derivatives o, y, zwith respect to, or by means o, 7., &, and the first derivatives
of X, y, zwith respect toy, or, finally, by means ofs, 773, {3, and the first derivatives of
X, Y, zwith respect taz. Furthermore, it is useless in this case foraisnake any
hypothesis on the mode of solution because itaarcihat we will not obtain a more
general form than the one that we started withuppesing that the functiow that we
seek is an arbitrary function &f, yo, z andx, y, z,and their first derivatives with respect
to Xo, Yo, 2%, and ofé&, 7, &; pi, G, ri, which we indicate by using the notatigns= xo, 0,
= Yo, O3 = Zp, by writing:

ox o0y oz

W=W,| p,xV,z—, ' :
(p' V%90, 3p, o

$isl1:Gi s pi,qi,ri}

Since the variation®é, ani, d¢; &i, &, o are non-null in the actual case one remarks
that there is an instant, which we shall ultimatdgégcribe, for which we have, by virtue
of formulas (51), the new form f&W for anyay, ay, as, W, @, a3 :

! In all of what follows we suppose thhe medium is susceptible to all possible deformatismshat, as a
resultthe deformed state may be taken absolutely arbitrarily.
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6W&+6W@+6W52+2 6W56x+6W56y+6W562 o
ox oy 0z a% 0p; aﬂ 0p; az 0p;
ap| 6,0, 0,0,
. . ox 0y .0z .
We replace, dy, &z with their values (51) and—,0——,0—— with the values
op 0p O0p

that one deduces by differentiation. We set theffoeents ofay, a, as, @, @, ax; we
obtain the following six conditions:

a_W:O, a_W:O, a_W:O,
oX oy 0z

aﬂapi agapi agapi a%api
o o, o op,

oW 0z OW oy | _ oW ox o0W oz
2 - o 2 -

2 oW dy O0W 0x
20X 3p 50 op
0P, 0p;

:O,

which are identities, if we assume that the expoassthat figure iW have been reduced
to the smallest number.

The first three show us, as one may easily forede¢W is independent of, y, z.
The last three express thatdepends on the first derivatives»gfy, zwith respect tok,
Yo, Zo only by the intermediary of the quantities &, &, J, )5, )4 that were defined by
the formulas (45). Finally, we see tlia¢ desired functiolWV has the remarkable form:

W(xo, Yo, 2o, &is 171, Gi; Pis G, Ti),

which is analogous to the one that we encounteszéutd for the deformable line and the
deformable surface.

If we multiply W by the volume elemenbodyndz of the spaceMo) then the product
Wdxdysdz so obtained is an invariant in the group of Euahddisplacements that is
analogous to the volume element of the medilth (

Just as the common value of the integrals:

JIL 1 [dx,dy,dz,, [[[Ldxdydz

taken over the interior of a surfa& of the medium Nlp) and the interior of the
corresponding surfac® of the mediumNl), respectively, determines thelumeof the



144 THEORY OF DEFORMABLE MEDIA

domain bounded by the surfaBe Likewise, if we associate, in the same spirig, btion
of the action for the passage from the natural ¢Mggto the deformed statél] then we
add the functioW to the elements in the definition of a deformableline, and we say
that the integral:

I jSDde)dyodzo,

is theaction of deformatiorfor the interior of the surfacgin the deformed medium.
On the other hand, we say th#tis thedensityof the action of deformatioat a point
of the deformed medium when referred to the unit of velawithe undeformed medium,

and that% is the density of that action at a point when mefto the unit of volume of

the deformed medium.

52. The external force and moment. The external momermand effort. The
effort and moment of deformation at a point of the deformd medium. — Consider an
arbitrary variation of the action of deformation thie interior of a surfac& in the
medium M), namely:

s|| J‘SDde)dyOdzo

oW oW oW oW oW oW
= -+ on. + -+ + + o [dx,dy,dz,.
HLDZ(%&. an T o %t g P A j %Yoz

By virtue of formulas (49) and (50) of sec. 50, way write:

B oW, . 0% .,
5jjjsowd>sdyodzo -IH%Z{G—é(m% -¢a +6—A+qi5z—ri58/)
+ W car g+ 2% s ox-poy)

on. 0

+gﬂ(m'—md'+%+ 0.8y - q,5%)

ﬂ(ﬂmm_r@'}aﬂ@ﬂﬂid’_Wj

op; \ 00, aq; i
oW [ 0K’
+—| ——+pd'-qd’ | dxdy,dz,.
ari (apl pl ql j} ><0 yO ZO

We apply the GREEN formula to the terms that exyi refer to the derivative with
respect to one of the variables o, os. If we letly, my, Ny denote the direction cosines
with respect toOx, Oy, Oz of the exterior normal to the surfa& that bounds the
medium before deformation and the area elemeitadfdurface by then this gives:
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3{[[, Webgelyydz, = [[. { a\:fv rm g‘g’(\’ n, g\évjax

+

+ +n
0¢, Mo 0¢,

0

+(|06W ow awjay{loaw oW oW

on,  "on, on,

+ +n
op, m°6p2 ° op,

( oW oW oW
+|0

+ +n,
aq, o aq,

+ +n
or, o or, °or,

ow ow ow ), ow ow ow
+ 1, a'+1,

5K'}d0’0

14&

Set:
F'= 6W+moaw+n ow |’:|6_W+moa_w a_W
R A A A ° %op, “op, ‘op,’
G =| aW+mOaW+n ow Jr=| 6_W+ M M
° Ponm, Con, “on,’ ° %0q, “ag, °aq,’
He = 6W+moaw+n ow <=1, oW om2 oW oW
© %0 Vg, Cog %o Cor, Cor

0 oW ow ow
X, = +q. - ,
Z{api oc, ' ag, 'aa}

, 9 OW _ OW W
s }

r' i ’
0z Pac
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a oW oW oW
Z! = -q ,
° Z|:api 0¢; P a7, 4 ag(l
=3 d aw+q aw_raw+ aw_caw
0 dp dp, or 'aq ¢ 'an |
d W oW d oW oW
Mg = +r - . - :
° Z{GIO. aq; I op, P or; N 0¢, d aCJ
a oW oW 9 oW AW
Nl = +p - + & -n ,
6 Z{ap, o P, %, Q.al $5 . /7.64

we have:

([, Waxay,dz, = [[. (Fjox+Gi8Y + Hidz+1,d"+ 3, + K;dK)do,
- J[J, (Xo0%+ Y0y + Z582+ Lodk "+ Mo’ + NodK ), dlydz,.

If we first direct our attention to the triple ig@l that figures in the expression
foré'.[J‘J‘S{)deJ dy dzthen we call the segments that have their origiMaand whose

projections onto the axeMIx, My, MZ areX,,Y;, Z, and L;,M,, N, , respectively, the
external force and external moment at the pointeffiérred to the unit of volume of the
undeformed medium.

Next, directing our attention to the surface inéghat figures in:

s|| jSDde)dyodzo,

we call the segments that issue from the pdinand have projectionsF;,—-G;,—H,
and-1,,-J,,—-K,on the axeMx’,My',Mz' respectively, theexternal effort and external
moment of deformation at the poMtof the surface, that bounds the mediureferred
to the unit of area of the surfa&. At a definite poinM of (S these last six quantities
depend only on the direction of the exterior nortmathe surfaceS). They remain
invariant if the region in question is varied ahe direction of the exterior normal does
not change, but they change sign if this direcisoreplaced by the opposite direction.
Suppose that one traces a surféeir{ the interior of the deformed medium that is
bounded by the surfac&)(in such a way that{, together with a portion of surfacg)(
uniquely circumscribes a subs&) (of the medium, and letBj denote the rest of the
medium outside of the subs&)( Let &) be the surface oMp) that corresponds to the
surface § of (M), and let Ay) and By) be the regions ofMy) that correspond to the
regions A) and B) of (M). Mentally separate the two subse®$ &nd 8). One may
regard the two segmen({sF,,-G,,—H, and (-1,,-J,,—K;) that are determined by the
point M and the direction of the normal tByf that points towards the exterior @%J as
the external effort and moment of deformation & pleintM of the frontier ) of the
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region @). Similarly, one may regard the two segmetks,G;, H, and(l;,J,,K;) as
the external effort and moment of deformation atgbent M of the frontier £) of the
region @). By reason of that remark, we say thdt),-G,,—H, and-l;,-J,,—-K| are
the components with respect to the aXdx’, My, MZ of the effort and moment of
deformation that are exerted at ®h the portion(A) of the mediumM), and that
K, Gy, Hy andly,J;, K, are the components with respect to the &eésMy MZqf the
effort and moment of deformation that are exertelll @n the portion(B) of the medium
M).

( )The observation made at the end of s@@d34 on the subject of replacing the triad
MxXyZ by a triad that is invariantly related to it may bepeated here without

modification.

53. Various ways of specifying the effort and moment of deforation. — Set:

A’:a_w, Bi':a_W, Ci':a_W,
0¢; on; ¢,

Pi':a_W, QI' :a_W, ':a_W
op, aq, or,

A,B,G and P,Q,R represent the projections ontdx My MZ of the effort and

moment of deformation, respectively, that are ecet the poinM on a surface that has
an interior normal at the poiMl, that is parallel to the coordinate afix, Oy, Oz that
corresponds to the indexbefore deformation. Indeed, it suffices to retladlt one has
already agreed to replace the letteysyo, z, which correspond, by this notation, to the
indices 1, 2, 3, respectively, with, o, ps. If you recall, that effort and moment of
deformation are referred to the unit of area ofuhdeformed surface.

The new efforts and moments of deformation that deéine are related to the
elements introduced in the preceding section byak@wving relations:

Fo =loA+mA +ngAy, 1o = 1P +myP, +ngP;,
Gy =B +myB, +n,B;,  Jo =1,Q + myQ; +neQ;,
Ho =1,C+mC, +n,C;, Ko =1,R +myR, +ngRy,
Z ai-*_qici'_riBi'j_x(') =0,

2p.

) %Hﬁ'—pic:j—v(;:o,

Z -+ piBi'_in'j_Z(') =0,
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op.

)3 £+qﬂ'—riQ;+,7ic;—giB;j—Lg:0,
0Q’

2 —L +rP -pR +¢cA-&C [-M. =0,

oo PRFGA =S j ’

oR

z 4+ 0O -aP+&B -nA |-N.=0.

api p|Q| ql | g(I 1 OIAJ 0

We propose to transform these relations into onaisate independent of the values
of the quantities that we calculated by means\othat figure in them. Indeed, these
relations pertain to the segments that are attachdéaet pointM to which we gave the
names. Instead of defining these segments by theircpmje onMx', My', Mz', we may
define them by their projections on the other axles;latter projections will be coupled
by relations that are transforms of the precedimgso

Moreover, the transformed relations are obtainechediately if one remarks that the
original formulas have simple and immediate interations ¥) by the adjunction to these
moving axes of axes that are parallel to themeaptintO.

1. We confine ourselves to the considerationxadf axesOx, Oy, Oz Denote the
projections of the external force and external mains an arbitrary poinM of the
deformed medium onto these axesXy Yo, Zo, andLo, Mo, No, respectively, and the
projections of effort and moment of deformationabsurface whose interior normal has
the direction cosine$y, my, ny before deformation by, Go, Ho and lo, Jo, Ko,

respectively. The projections of the effd@y, B, G) and the moment of deformation

(P,Q,R) are denoted by, B, Ci andP;, Q;, R, respectively. The transforms of the
preceding relations are obviously:

F0:|0A1+rnOA2+nOA3’ |0:|0Pl+rnOP2+n0P’
GOZIOBl+rnOBZ+nOBS’ J0:|0Q1+rnOQ2+nOQ3’
H0:|0Cl+rn0C2+n0C3’ K0:|0R1+WIOR2+nOR3’

07 , 0% , 94 - X, =0,

0x, 0y, 0z,

0B, , 0B, 3B, . _.
ox, oy, 0z, °
aC, ,3C, ,C, _, _,
ox, 0Oy, 0z, =

6I31+6P2+6P3+Cl oy +C, oy +C, oy _B, 0z _B, 0z _B, 0z L, =0

0x, 0y, 0z, 0X, 9y, 0z, 0X, 0X, 0X,

! An interesting interpretation to note is the analogj ihe one given by P. SAINT-GUILHEM in the
context of the dynamics of triads.
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0Q, 0Q,  0Q, 0X 0X 0X _

+ + + -C -C -M, =0,
ox, oy, 0z, A& AZ A3 axo Zox,  Cox,  C
6R1+6R2+6R3+Bl +B, 6X+836X—A16y—A2ay—ASay—NO:O,
0x, 0y, 0z, 0%, 0y, 0z, 0X, 0X, 0X,

relations that are the three-dimensional generadimatof the two-dimensional equations
of LORD KELVIN and TAIT.

2. Now observe that we may express the nine cosmes---,)' by means of three
auxiliary functions; letd, A2, A3 be three such auxiliary functions. Set:

306 = -Y. Ay = @i, + @, + @d,
Zady:_zyda:XidAl'*')('szz + X3dA;,
Zﬂda = —Zadﬁ = 0,04, + 0,dA, + g,dA,.

The functionsw, x/, g of A1, A2, A3 so defined satisfy the relations:

aw aw’ ! ! 0
o, -x,0 =0
o1, aa TMOITXN
3%
A—a)(' +ow, —o,w, =0, @,)=1,2,3.
04, 04,
90, _0g]
+w x —w x =0,
a)l, A, X m@A
and one has:
0 = ia)ll sza)lz +wéa/|3’
api ap| apl
a4 =X le M2+X 94, (OrXo = p1, Yo = 02, 0 = P3)
i lapl 2 apl 3 apl y YO y
_ L0 , 0, 0/
ru _01_+ 2
api ap| apl

Let @, X, g denote the projections onto the fixed ag®s Oy, Oz of the segment
whose projections onto the axb' My, Mz arew;, x;,0; ; we have:

Y ada" =-) a'da’ =w,dA, +@,dA, +@,dA;,
Y a'da =-) ada" = y,dA, + x,dA, + x,dA,,
S ada’ = - a'da = g,d), +0,dA, +0,dA,,
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by virtue of which ), the new functionsa, x, & of A1, A2, A3 satisfy the relations:

9B 08 _ 5y o
oA aa, T AT
X N o —gm. (=123
04, 04, T
99 99 v —wy.
aA GA I | | |

Again, we make the remark, which will be of use later trat if one lets
o1, Ay, 3 denote the variations ofly, A, A3 that correspond to the variations
oa,oa',---, 0y of a,a',---,y" then one will have:

d'=w, o), +w,0\, +@,0A;,

A’ = X100, + X0, + X300,

XK' =000, +0,01, +0,0/,,

d=ad"+ A" +yXK'=w,d) +w,0M, +wW,,,
A=ad'+ LA +YXK' = x,0, + X,00, + x:0,,
K=a"d"+'A"+y'K'=0,01, +0,01, +0.,01,,

in which d, aJ, &K are the projections onto the fixed axes of themssg whose
projections ontavixX My MZared',a', XK' .
Now set:
Ly=ml o+ xJdotoKo=wm] t xJ +0K,
To =@ ot XAt o Ky=w ) ;tx ) o K,
Ko =alot X ot oKo=wm] o+ xJ 0K,
Ly=alyt Mot ON =@ L+ y M +o N,
My =@yt YMotON =@ Lt Y Mto N,
No=alo+ Mo+ ON =@ Lt Y M o N .

In addition, we introduce the following notations:

N, =@+ Q +OiR =@P + XQ + IR,

! These formulas may serve to define the functing;, ¢, directly, and the substitution is defined by:

w =aw + By +yo,
X =a'w +Bx +yo’, (i=1,2,3)

o =a'ag +L% +y'o.
i i i i
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X :wle)i’+X’2Qi’ +0J2Ri, =w,R +X,Q +0,R,
%, =@+ X,Q + iR =@,P + X,Q + 3R,

then, instead of the latter system in which eitRe€), Ror P;, Q;, R figure, we have the
following:

o o ' ax | o0 |
‘CO z |:apl |{ap +qU W‘le_q’(£+rw1— palj_iR[a-k p)(l_ iqv,]_j

+A(xis, - o) + B0 —~@c) +Cl(@n, - Xi&)),

with two analogous equations. If one remarks that thetions &, 7, &, pi, g, ri of

A1, Az, Az, —2 04, ,a)l 94 give rise to the formulas:
dp '0p dp

65 op, _ 0w
-o'n =0, —=—24+q.0/ -1 X/,
04, HXiG = 04, 0p, Y40 TnX
%-}-0’;6 —m]clzo, ﬂ:%.}.rjzvll_pja:,

04, 04, 9p,

64‘ o 00
+ ' & =0, — =—'+py -9,
o1 i~ X6 o1 op P X —a,@

that result from the defining relations of the ftioos @, x;,o; , and the nine identities
that they verify, then one may give the precedysiesn the new form:

My _p0& g0 36 o0 09 por
L=2, . Non, Ba)l1 c:a)ll oA, Qa;l Ra;ll

with two analogous equations.

3. The preceding equations that we introduced etsistitute the generalization of
the ones we developed in an earlier wdjk (Ve may transform them in such a way as to
obtain the generalization of the well-known equagiof the theory of elasticity that
relate to effort. To that effect, it will sufficeo reproduce the method we already
employed in the work that we mentioned.

To abbreviate the writing, lex,,)), 2, and(;, M;, N, denote- for the moment —
the left-hand sides of the transformation relatiomich refer toXo, Yo, Zo, Lo, Mo, No,

respectively, and observe that one may summariee ttfelve relations that we
established by the following:

1 E. and F. COSSERAT. Premier mémoire sur la théorie de I'élasticité; Annales dédmulté des
sciences de Touloug#), 10, pp. k — l115 1896.
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(][ oA+ VA, + ZA o+ Lopa o+ Mg o+ N' g Y dx gly giz

_'”{( Fo _IOAi —MmyA, - noAs)/]l + (Go _IOBl -m,B, - noBa)/]z

+(Ho _IOCl _moCz - nocs)/]s +( 0 _IOPl -myP, _nops),ul

+ (Jo _Ile - mon - non),uz + (Ko _IORl -myR, - noRs)/Js}dao =0,

in which Ay, Ay, As, 14, Lo, 15 are arbitrary functions and the integrals are takemn thee

surfaceS, of the mediumNlp) and the domain bounded by it. If we apply GREEN'S
formula then the relation that we wrote becomeddhewing one:

[[J (XA, +YoA, + ZoAs + Loty + Moz, + Nop)dxdy,dz,
_”.(Fo/]l +Go/]2 +H /] + |o:u1 + Joluz + Koﬂs)dao

9N, A 9A  _0A _ oA, _ dA
+ + + +B, L +B +B
m‘ (Ai 0X, AZ AS Yox, oy, 0z
¢, 2 4¢, %% 4 ¢, %% I ayyaz,
0X, oy, 0z,
+J’J‘I( a'ul+Pa'ul+Pa'ul+Qla'ul+Q26'u2 ng:uz
0 0 0

)78 0U, 0Us
+R + dx,dy,d

oy ay ay 0z 0z 0z
- C +C +C +B +B +B dx,dy,d
] e o2 iy

0x ox ox
- +C +C dx,dy,d
i A Az h Ciax "oy, 3620}2 %Yo

0x 0x 0x ay ay ay
- B +B +B + + + dx,dy,dz, = 0.
Bty By Aaxo Ao Asazo}wsxoyozo

0x, 9y,

We seek the transform of this latter relation whaa takes the functions y, zof xo,
Yo, % for the new variables. If one lesdenote an arbitrary function &, yo, % that
becomes a function of y, zthen the elementary formulas for the change otbdes are:

09 _0p x ,0¢ oy , 09 0z
0X, O0x0x, Oy oX, 0z 0X,
09 _0p 0x 09 dy A 09 0z
oy, Oxady, Oyody, 0zdy,
0p. _0p 0x _0g dy 03¢ oz
0z, O0X 620 6y 620 0z 620



THE DEFORMABLE MEDIUM 15¢

Apply these formulas to the functiods, A, As, t4, Lo, 5. With S always denoting
the surface of the mediunMj that corresponds to the surfa§gof (Mg), we further
denote the projections on€@x, Oy, Oz of the external force and external moment applied
to the pointM by X, Y, Z, L, M, N, which are referred to the unit of volume of the
deformed mediumM]), and the projection ontdx, Oy, Oz of the effort and the moment
of deformation that are exerted at the pdihof Sby F, G, H, I, J, K referred to the unit
of area orS. Finally, introduce the eighteen new auxiliary fuonSpyx, Pyx Prx Py Byys
P2y, Pz Bz Prz Goo Oy Goxe Ohys Ohys Gy Oz Oy Gz DY the formulas:

0Xx 0Xx 0x

Ap,, = A3 ,  Ag, =P +P +P ,
pxx Ai AZ q 1 6X0 2 ayo 3 azo
_ 6y 6y _p Oy oy oy

Ap. = + + A3 , Ag,, =P, + P +P ,
P Ala Xo &F yo Zy AR AL VAMEF
0z 0z 0z

Ap,, = A3 , 0g, =P +P +P

pzx A‘i AZ q 1 6X0 2 ayo 3 azo

and the analogous ones that are obtained by reglaci

All A21 A’gl pXXa Q/Xl pZXa Pll P21 P3! qXX1 q/Xl (1ZX

with:

B1, Bz, Ba, Pxys Byys Pza Q1, Q2, Qs, Oy Gy Chys
and then by:

Cl, CZ, C3, pxz, pyz, pzz, Rl, RZ, R’n qxz, C{yz, qZZ,
respectively.

We obtain the transformed relation:

JIJCRAAYA, + 225 + Ly + Mz, + Nug)dxdydz
—”(F/l +GA, + HA, + g, + I, + K )do

Y Y oA oA
+ 1 14 2 4 2 4 2
m(pxx Pyt Py TPy Py Py

0/
3 + 3
0X Pz 0X

O O, 0u, 0u,
+
m(qxx +q, 2 oy 0o gyt gt Sl

+ Py, +p,, %jdxdydz

0x

Ofs a, Ofs o 0Us
0Xx 0x 0Xx

= (118, = Pty + (P = Pt + (Pry = Py s Jixdlydz= 0,

+q,, jdxdydz

in which the integrals are taken over the surfaad the medium i), and the domain
bounded by it, witllo designating the area elementSof
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Once more, apply GREEN'S formula to the terms tledérrto the derivatives of
A1, A2, A3, L4, Lk, 15 With respect to, y, z,and letl, m, ndenote the direction cosines of
the exterior normal to the surfa&with respect to the fixed axes. Sindg A, A,
L, Lb, 5 are arbitrary, they become:

F zlpxx+mpyx+npzx’ I zqux+mqyx+nqzx’
G zlpxy +mpyy+npzy’ 'J zquy +mqyy+nqzy’
H zlpxz+mpyz+npzz’ K zquz+mqyz +nqzz’
apxx + apyx + apzx _ X - O,
0x oy 0z
apxy + apyy + apzy _Y — O,
0x oy 0z
apxz + apyz + apzz _ Z - O,
ox oy o0z
0
aqxx + qyx + aqzx + pyZ - pzy -L=0,
0x oy 0z
aqu + aqyy + any + pzx _ pxz _ M - O,
0x oy 0z
0
aqxz + qu + aqu + pxy — pyx — N - O
ox oy o0z
The significance of the eighteen new auxiliary dioms pxx, ..., O ... results

immediately from the relations that we just fourlddeed, it is clear that the coefficients
P Pxys Pz Of | in the expressions fdt, G, H represent the projections orix, Oy, Oz of
the effort that is exerted at the polviton the surface whose exterior normal is paradlel t
Ox, and that the coefficientg., 0, O Of | in the expressions for, J, K are the
projections ontdOx, Oy, Oz of the moment of deformation & relative to the same
surface. The coefficients af and ofn give rise to an analogous interpretation in regard
to surfaces whose interior normals are parall@y@andOz

The auxiliary functions that we just introducediahe equations that relate them do
not appear to have been envisioned in a form tlzest tat general up till now; to our
knowledge, they have been considered only in théicpar case in which the nine
guantitiesgyy, ..., 0.z are null, and the first work to treat that quests@ems to be that of
VOIGT (4.

! WALDEMAR VOIGT. — Theoretische Studien Uber die Elasticitatsverhéltnisse destélty, I, I,
Abhandlungen der koniglichen Gesellschaft der Wissenschaften zagéiitsd. 34, 1887. The first
section, entitledAbleitung der Grundgleichungen aus der Annahme mit Polaritét begabter Molb&g

49 pages (3-52), the second one, entitlddtersuchung des elastische Verhaltens eines Cylinders aus
krystallinscher Substanz, auf dessen Mantelflache keine Kwiiken, wenn in seinem Innern wirkenden
Spannungen langs der Cylinderaxe constant s&di8 pages (53-100). One may likewise consult the
work of VOIGT: L’Etat actuel de nos connaissances sur I'élasticité des cristRaport presented at the
International Congress of Physics convened in Paris @0,19. I, pp. 277-347), in which he alludes to
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In conclusion, we observe that if one performs a gbaof variables in the six
equations that involv, Y, Z, F, G, H in such a fashion as to introduce the original
variablesxo, Yo, 2 then one immediately finds equations whose firstetlo@nstitute the
generalization of the equations that were established hySBINESQ.

54. External virtual work. Theorem analogous to those of Vagnon and Saint-
Guilnem. Remarks on the auxiliary functions that werantroduced in the preceding
section.—We give the name @xternal virtual workon the deformed mediunv{ for an
arbitrary virtual deformation, to the expression:

o1, = —.U% (FOX+GO' y+ HI z+ 101 +J0 I+ KP K) dr,
+ ][ (Xo0x+ Y58y + Z50z +LoA " + Mo’ + Ny oK ')k, dyodz,.

We refer to the notations of séxf), and letd, &J, K denote the projections onto the
fixed axes of the segment whose projections dvitg My, MZ ared',aJ',K" , in such

a way that one has, for example:
_d :alléal+ﬂlléﬂl+y115yl = _(aléall+ﬂléﬂll+y15yll)’

upon always supposing that the axes in questioa ti@/same orientation.
This being the case, suppose as in S8dhat one gives the arbitrary functioAg
Ao, As, L4, Lo, 15 the significance defined from the formulas:

/]1: d(, /]2: d/, /]3: &, Hi= d, o= d], M= XK.

We then see that the previously-obtained relatlmgtsveen the auxiliary functions that
we introduced serves only to express the follovaagdition:
When any of the virtual displacements in Sg&are given to the deformed medium

the external virtual worki7e is given, either by the relation:

65x 65x 65x 65y 00y 00y
07, =~ +
m(pxx Pyt ot P Pt P
ooz ooz ooz
+ + + dxdydz
pxz 6X pyz ay pzz aZj y
_m-q ‘g ad g ad g ([ g ([ g ([
XX y ay %oz M ogx W ay Y oz

POISSON,Mém. de I'Acad.,T. XVIII, pp. 3, 1842 (see pp. 289). Also consult LARMO&n the
propagation of a disturbance in a gyrostatically loaded medium (Proc. Ldath. Soc.,Nov., 1891);
LOVE, Treatise on the Mathematical Theory of Elasticity (Cambyvélsity Press1 ed., 1892, %' ed.,
1906); COMBEBIAC,Sur les équations générales de I'élasticité, Bull. De la. $4ath. De FranceT.
XXX, pp. 108-110, and pp. 242-247, 1902.
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49, 9% 4q, 9% g, JKjdxolyclz

+ qyz
ox oy 0z
* .[I.[{( Py, = pZy)d + (pzx - pxy)m +(pxy - pyx)m}dXdde

where the integrals are taken over the deformedumedr by the relation:

65x oX 00X 65y 65y 65y
AT N

0d  _ad _ ad 0 0 0
- P +P +P + + +
m(laxo oy P T Qg T Qg TR

0 0
0K 0K 0K
+ +R +R dx,dy,d
Rl GXO 2 ayo 3 azoj XO yO ZO

oy ay g0y , 0z 0z _ 0z
+mCle+CZa +CSa B Bzy 53620 Adx,dy,dz,

ox ox ox
+ -C -C aJdx,dy,d
[] Al Az A3 Cia oy, sazoj Xdy,dz,

0x 0x ox oy oy ay
+ B +B +B - - - Kdx,dy,dz,,
~[ J- I Yox, oy, 0z A 0X, A ay, A azoj %84

in which the integrals are taken over the undefarmmedium, because the formula we
gave above:

o7, :—jjso(Fga“x+ GO y+ HO z+ 151 +I5 I+ K K)
+] jso (XeOX+Y 0y +Z00z+LLA " + M A’ + Ni K" dx,dy,dZ,.
to serve as the definition of external virtual wonky also be written:
o7, = —jj%(F05x+ GOY+ HOz+ 191+30 J+ KP K dr,
+.UJ‘SD(X0&(+Y0@+ Z,0" +L,d +M & + N, K )dx,dy,dz,,
by virtue of the significance o, Yo, ..., No, Fo, Go, ..., Ko, and likewise:

5Tez—jjs(F5x+ GIy+ HIz+ 15 1+30 I+ K K) do,



THE DEFORMABLE MEDIUM 157

+ij(x5<+Ycz/+za' +Ld + MA + N&K )dx,dy,dz,,

by virtue of the significance &, Y, ..., N, F, G, ..., K.
Start with the formula:

jjjsoavvmm dz+07. =0,

which is applied to an arbitrary portion of a medithat is bounded by a surfage
SincedWV must be identically null, by virtue of the invam@ ofW under the group of
Euclidean displacements with the variations givembmulas (51), namely:

X= (a1 + Wz— wy)dt,
oy = (a2 + wz— wy)dt,
&= (az + Wz — awy)dt,
andd, &, X by:
Jd=awd, A= wd, XK= w34,

and from this, and the expressions & on which we must insist){ we conclude that
one has:

”So Foda, _-”-[S) XX, dy,dz, =0,
J.J-So(l ot HOy_GOZ)dUO _.”.[SD(LO + ZOy_Yoz)dxodyodzo =0,

and four analogous equations. These six formuk®asily deduced from the ones that
one ordinarily writes by means of the principlesofidification.

One may imagine that the frontier S is variable in these formulas.

The auxiliary functions that were introduced ie fireceding paragraphs are not the
only ones that may be envisioned; if we confineselues to their consideration then we
simply add a few obvious remarks.

By definition, we have introduced two systems dfors and moments of
deformation relative to a poiM of the deformed medium. The first are the onas &ne
exerted on surfaces that have their normal paradl@ne of the fixed axe®x, Oy, Oz
before deformation. The second are the ones thagx@erted on surfaces that have their
normal parallel to one of the same fixed a®sOy, Oz

The formulas that we have indicated give the latements by means of the former;
however, by an immediate solution, which we shall stop to perform, one obtains,
conversely, the former elements in terms of thedat

Now suppose that we have introduced the funcWan The former efforts and
moments of deformation have the expressions wedrgave, and one immediately
deduces their expressions in terms of the lattemfithis. Nevertheless, in these
calculations one may specify the functions that amest introduce according to the

! The passage from elements referred to the unit of vohfntiee undeformed medium and area of the
frontier § to the elements referred to unit of volume for th@daed medium and the area of the fron8er
sufficiently immediate that it suffices to confine aeli®s to the former as we have done, for example.
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nature of the problem, and which will be, for exampley, zor X,y',Z', and three
parameters] A1, s, A3 by means of which one expressesy’, -, y .
If one introduces, y, z,41, A2, A3, and if one continues to I8V denote the function
that depends oRo, Yo, %, the first derivatives ok, y, zwith respect toxy, Yo, % ONn
A1, A2, A3, and their first derivatives with respectig yo, 2, and is obtained by replacing

the different quantities;, 7, &, pi, G, ri in the function\(Xo, Yo, %, &, i, &, Pi, G, Ti,)
with their values as given by formulas (43) and)(#den one will have:

n

0w oW oW
AT e AT e AT e
0%, Y, 0z,

ow ow ow
B=——— B =———, B, =—1+,
a0y T a0y gy
0%, Y, 0z,
0— 0— 0—
0%, Y, 0z,
0w W 0w
e T BT
aIOi api api

55. Notion of energy of deformation. Theorem that leads tdat of Clapeyron
as a particular case— Envision the two statedVif) and (M) of the deformable medium
bounded by the surfaceS) and §), and consider an arbitrary sequence of statds tha
start with Mo) and end with1). To that end, it suffices to consider functionsy, z,

U

a,a',---,y" of Xo, Yo, 2, and one variablér that reduce tow, Yo, 2, a,,04, ", Vs,
respectively, wheh is zero, and reduce to the valuey, z,a,a’,---, y", respectively, for
non-zeroh relative to ).

If we make the paramethrvary in a continuous fashion from Ohidhen we obtain a
continuous deformation that permits us to pass filmenstate Nlo) to the stateN]). For
this continuous deformation, consider tbtal workperformed by the forces and external
moments that are applied to the different volunemelnts of the medium and by the
efforts and moments of deformation that are apptedhe surface elements of the
frontier. To obtain this total work, it suffices integrate the differential so obtained

from O to h, starting with one of the expressions #f: in the preceding section and

substituting the partial differentials that corresg to the increaseh in h for the
variations ok, y, z,a,a’,---,y"; the formula:

! For such auxiliary functiong,, A, s, one may take, for example, the components of theianttiat
makes the axe®x, Oy, Oz parallel taMix’, My', Mz' respectively.
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o7, =-HL)éWd>s dy, dz

gives the expressiorij.ﬂ%(?9—\/r\]/dx0 dy, dz for the value oB7., and we obtain:

(111, G e o e <[J], (- W ey

for the total work. The work in question is indadent of the intermediary states and
depends only on the extreme statdg) (@and M).

This leads us to introduce the notion efergy of deformationwhich must be
distinguished from that of the action of deformatthat we previously envisioned. We
say that W is the density of thenergy of deformationgeferred to the unit of volume of
the undeformed medium.

The proposition that we must encounter, which rieitees thetotal work that is
performed by the external forces and moments, dsasethe efforts and moments of
deformation that are applied to the frontier, giGsAPEYRON'’S theorem(') when we
consider an infinitely small deformation and spgtife medium. Indeed, first introduce
simply the hypothesis and we refer to se&8 for the more general formthatW is a
simple function of, &, &, A1, A2, As. We may then envision the formulas:

_ oW _ oW _ oW - _0W - _0W - _ 0w
1750 Q,=——, Q, =—, =173, ¢ =2~ 35 =373
0&, 0&, 0&, 0A, 04, 04,

as defining a change of variables that replacesldatters &, &, &, A1, A2, A3 with the
letters Q1, Qo, Q3, =1, =2, =3. By virtue of this change of variable8y becomes a
function W' of Q1, Qy, Qz, =1, =2, =3.

Having said this, we pass to infinitely small defations and put ourselves into the
situation envisioned in seB81, pp. 74-76, of ouPremier mémoire sur la théorie de

I'élasticité; WandW' become quadratic fornw, of ey, e, €3, g1, 92, s, andW, , of NV,

No, N3, Th, Tz, Ts; the latter is, up to a factor of %, what onescetleadjoint formto Wa.

When this is of issue, and in the case of infigitetnall deformations, one obtains the
following expression for the total work:

”J'W2d><0dy0dzo.

! LAME seems to have been credited with making CLAPEYROt&rem known in his Note to the
Comptes Rendud]. XXXV, pp. 459-464, 1852, then in hisecons sur la théorie mathématique de
I'élasticité des corps solide§]™ ed., 1852, % ed., 1866); indeed, it was only in th&df February, 1858,
that the following note appeared: CLAPEYROMgémoire sur le travail des forces élastiques, dans un
corps solide déformé par I'action de forces exterieures, Comamdus,T. XLVI, pp. 208, 1858. Also
consult TODHUNTER and PEARSOM History of the Theory of Elasticitgfc., secs.1041and1067-
107Q
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To be more specific, if we suppose that we haye (

A
W,(8,9,) = —[ij(el +e, +6;)° —%(95 +0, +0; —dee, —dee —4dee,),

then we have:

2 2u 2u A+ u U
or:
1 1+i L
! - ,U 2__ _ 2 _ 2 _ 2
W, (V7)) = > —3/]+2'U(N1+N2+N3) ﬂ(NzA[3+N3N1+NN2 T:-T5-T3)

One sees that one has recovered the result of LAMEisely, if one remarks that the
total work of the external forces and efforts oe fhontier obviously reduces to the
indicated expression in the case of infinitely drdaformations.

56. Natural state of the deformable medium- In the preceding we started with a
natural state of a deformable medium and then weewpven a state we called
“‘deformed.” We indicated the formulas that perustto calculate external force and the
analogous elements that are adjoined to the fum®tidor the deformable medium and
represent the action of deformation at a point.

As before, let us stop for a moment on this notibnatural state.

Up till now, the latter is a state that has noérbesubjected to any deformation.
Imagine that the functions vy, z,a,a’,---,)/ that define the deformed state depend on
one parameter, and that one recovers the natwatd fr a particular value of this
parameter. The latter then seems to us to be@aspase of a deformed state, and we
are led to attempt to apply the notions relatintheolatter to it.

Without changing the values of the elements thatdafined by the formulas of sec.
52, one may replace the functidwith this function augmented by an arbitrasfinite
function ofxo, Yo, 2, and, if one is inspired by the ideaaudtion that we associate to the
passage from the natural statdg( to the deformed statéM) then one may, if one
prefers, suppose thtte function of ¥ yo, % that is defined by the expression:

W()%, ¥, %’5(0) ,,7i(0)’<i.(0), ¢0)1 |dO)’i I(0))

is identically null; however, the values obtained the external force and the analogous
elements with regard to the natural state will metessarily be null. We say that they
define the external force and the analogous eleswefztive to the natural staf®. (

1 E. and F. COSSERAT.Rremier mémoire sur la théorie de I'élasticiff. 77.
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In our way of speaking, the natural state presentd iselthe initial state of a
sequence of deformed states, a state that we starinwatidler to study the deformation.
As aresult, one is led to demand that it is not passibmake one of the deformed states
play the role that we have the natural state plag,that this must be true in such a way
that the elements that we defined in d&Z(external force and moment, external effort
and moment of deformation), which were calculated lier dther deformed states, have
the same values if one refers the first of thesenetegs to the unit of volume of the
deformed medium and the second of these to the uniteaf @rthe deformed surface.
This question may receive a response only if one introdac@specifies the notion of
the action that corresponds to the passage from onaréaftate to another state.

The simplest hypothesis consists of assuming that dttisr laction is obtained by
subtracting the action that corresponds to the passagetti® natural statéVlp) to the
first deformed stat@M ') from the action that corresponds to the passage fremdtural

state to the second deformed stdig. ( With regard t¢M' )f we denote the quantities
that are analogoud)(to &, 77, &, pi, G, ri relative to(M) by é&\n,¢, pLg,r, then we

are led to adopt the following expression for theam of the deformation relating to the
passage from the stdtd’) to the stateN]):

(52)  [J[ AW(Xo,Yo: 20, & 017161 P10 1) =W, Yo 20,6121, P )} o Clyo i,
which one may write, if\'is the value ol for (M) :
(83)  [J[ Wo(Xo: Yo 200,011 63 Pr, G ) 1A' [ dgclyodiz,,

in which we have leS' denote the surface M’ that corresponds t& for (M), and
W, (X5, Yo Z5:€;:17,, 6, P, 0, 1) denotes the expression:
(] I ! I I r 1
{W(Xo:¥0:20:6i: 7760 B G 1) ~W(Xg, Yo 20,6777 60 P G ,fi)}m-

Furthermore, from the remark made at the beginointhis paragraph, one may, if
one prefers, substitute the following expressiang33):

(53) .”.[SDW'(XO’ Yo12Z0:$i:/7,6s B;» G 1) [ A dx,dy,dz,,

! We may then speak of the force, effort, etc., simeeegard the natural state as the limit of a sequeihce
states for which we know the force, effort, etc. tllmow, the force, effort, etc. were defined for ardy
when there was a deformation capable of manifesting @aduming them.

2 One must remark thaf'. ;7' ¢’ p'.q'.r' are not analogous 6,7 ,¢?, p@,q, 1@ because they
1 1 1 1 1 1

are not formed by means of the coordinatey,Zof (M')in the same way that?,n@, ¢,

p”,q*, rare formed by means &, yo, 2.
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in whichW'(X,, ¥y, 2,,<;,17,, 6, P, 0, I; ) denotes the expression:

W(Xos Y01 20,6477, 6 s pi’qi’ri)m'

If one remarks that one has, for example:

o W 0 Yo Zasiren) WK, Yo,Z0,6T)
& 9¢ |

then it is clear that applying formulas that aralagous to those of se82 to expressions
(53) or (53) and starting witkiM ' )as the natural statbut while supposing thatM ') is
referred to the system of coordinatgsys, z, and assuming that the formulas of $&2.
are modified as a consequenaeil give the same values for the exterior forced an
moment relative to the stat®l) referred to the unit of volume d¥), as well as the same
values for the effort and the moment of deformatwferred to the unit of area fd®)(
Therefore we may consideM] to be a deformed state for whigWt’ is)a natural
state, provided that the functitvassociated with the staté)is actually {) W, or W'
Conforming to these indications, suppose, to digas, that the external force and
moment are given by means of simple functionsopfy, 2 and elements that fix the
position of the triadMIX'y'Z .Suppose, moreover, that the natural state is\givée may
consider the equations of sé& relating to the external force and moment to bgigda
differential equations in the unknowxsy, zand the three parametersg A,, A3 by means

n

of which one may expres&,a’,---,y" .The expressions, 7, {, pi, G, i are then

ox 0y E |, A, 3,M 94, 04 (always settingn = Xo, 22 = Yo, 03 =
dp '0p 0o 9 'on ‘o

Z) that one calculates by means of formulas (43)(443

Suppose thaiX;,Y,,Z;,L,,M;,N; aor, what amounts to the same thing, Yo, 2o,
Lo, Mo, Np are given functions o, o, 2, X, Y, ZA1, A2, A3 . The expressiollV is, after
substituting for the values of, 7, &, pi, O, ri by means of formulas (43) and (44), a

definite function ofxo, Yo, 2, — Ox 9%z AL Ay As, oh = % ,which we continue to

0%, 620 ax0 ' 0z,
denote by, and the equations of the problem may be written:

functions of —

! As we said at the beginning of this section, this perusit® generalize the notion of natural state that we
first introduced. Instead of making this word correspantthé idea of a particular state, we may, in a more
general fashion, make it correspond to the idea of laitray state, starting from which we may study the
deformation. The fact that we introducedys, % at the beginning of the theory seems to makg play a
particular role; however, one must not consideko, % as anything but the coordinates that serve to define
the different mediaand not only ¥p). One has chosen these coordinates in a particulzofgasand in
relation to a particular medium, in order that one massta result, pay attention tl{) in the context of
infinitely small deformations.
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0 W . 0 oW 0 oW _
0 5 OX 0y, 5 O 0z, 5 0k
0%, Y, 0z,
0 W .0 oW 9 oW _
0%, aﬂ % aﬂ 0z, aﬂ
0%, Y, 0z,
0 W .0 oW 0 oW
0%, az 0Y, GE 0z, az
0X, oy, 0z,
0 OW 0 OW 2 oW _dw_
0%, a% Y, a% 0%, a% 04,
0%, Yo 07
09 OW 0 oW a9 W O0W_

0

:ZO,

L,

- + + - = ,
0% 3 0%y, 5%, 07,500, 01, "
0x, A 0z,
d OW 9 OW a4 W W
- Noa

= — +— =
0%, a% Y, a% 0z, a% 04,
0%, Yo 0%

in which Lo, Mo, Np are functions oko, Yo, 2, X, Y, Z,A1, A2, A3 that result from the
definitions of secb3.
It results directly from the formulas of the preiced paragraphs that a more

immediate way of definingo, Yo, Zo, Lo, Mo, No may be summarized in the relation:

3|[[wdbx dy dzg+57, =0,
l.e., In:
S[ffwaxdydzg=[[( P * @ y B 2IMAF+TA+KN) d
~[[] (XeOx+ Y& y+ 23 2 LGN+ M+ N S1) dg dy, d;

57. Notions of hidden triad and hiddenW. — In the study of deformable media, as
in the study of deformable lines and surfaces, iatural to pay particular attention to the
pointlike mediahat are described by the deformable media. dimsunts to envisioning
X, Y, zseparately and considering a’,---,)" as simply auxiliary functions. This is what
we likewise express by imagining that one ignotes éxistence of the triads that
determine the deformable medium, and that one krmwsthe vertices of those triads.
If we adopt that viewpoint in order to envision thartial differential equations that one
is led to in this case then we may introduce th@nafhidden triad,and we are led to a
resulting classification of the diverse circumsesdhat may be produced by the

n

elimination thex,a’',---, )" .
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Therefore, a primary study that presents itself & df the reductions that relate to
the elimination of the,a’',---,y". Likewise, in the corresponding particular cases in

which the attention is directed almost exclusivédy the pointlike media that are
described by the deformed mediul)(one may sometimes abstract fravy), and, as a
result, from the deformation that permits us tosfesm (Mo) to (M).

As we already said for the deformable line andesay, the triad may be employed in
another fashion. We may make particular hypothese and the medium\); all of
this amounts to envisioning particular deformatiofghe free deformable line. If the
relations that we impose are simple relations betw& 77, &, pi, G, ri, as will be the
case in the applications that we shall study, wg awcount for these relations in the
calculation ofw and deduce more particular functions frdvn The interesting question
that this poses is that of introducing these paldicforms simply, and to consider the
generalW that serves as the point of departure as beindehidn some sense. We thus
have atheory that will be specific to the particular deformations broughigit Iby the
given relations betweefy, 7, &, pi, G, T

We confirm that by means of the theory of freeod®fble media one may therefore
combine the particular cases and provide a commigindo the equations that are the
result of special theories that one encounter$iysips ).

In the particular cases, one sometimes finds dneséhe proper circumstances to
avoid the consideration of these deformations; aality, they must sometimes be
completed. This is what one may do in practicgbliaptions when one envisions
infinitely small deformations.

Take the case in which the external force and mmbmefer only to the first
derivatives of the unknowns, y, zand A, A2, A3; the second derivatives of these
unknowns will be introduced into these partial @iéntial equations only foW;
however, the derivatives af y, zfigure only iné, i, ¢, and those o1, A2, A3 show up
only inp;, g, ri. One therefore sees thaWfdepends only og;, 7, &, or only onp;, g,
ri, then there will be a reduction in the order of tlegivatives that enter into the partial
differential equations. Here, we examine the fofsthese two cases, which corresponds
to the ordinary theory of elasticity for materiabdmia and to the theory of the various
ethereal media that are envisioned in the doctrileminous waves.

58. Case in whichVV depends only onx, Yo, %, &, 7i, {, and is independent ofp;,
g, ri. How one recovers the equations that relate to the deformableotly of the
classical theory and to the media of hydrostatics- Suppose thatV depends only on
the quantitiesw, Yo, %, &, i, , and not org;, g, ri. The equations of seb6, which
reduce to the following:

L All of our considerations heretofore may be applied fjustsame to material media as to various ethereal
media. We have declared the waondtterto be invalid, and what we expose is, as we saiddimlveth, a
theory of action for extension and movemena have a more complete idea of the notion of matter
shall explain later on how one must approach the l&tben the concept oéntropy according to the
profound viewpoint that LIPPMANN introduced into electiycit
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0 AW 0 OW 9 W _
0% 5 OX 0y, 5 OX  0z) 5 0% 7

0%, Y, 0z,
0 OW _ 0 oW _ 0 oW _ ow
+ + =Y,, ——
0%, aﬂ % aﬂ 0z, aﬂ 04,

ow
¥+ :O,
on o

+M, =0,

0%, Y, 0z,
0 6W+6 6W+6 6W:0, a—W+/\/0:o,
0% 502 0y, 502 0z, 507 04
0X, oy, 0z,
. : 0x 0z :
in which W depends only oro, Yo, 2, a—,~~-,a—,)l1, A2, A3, we show that if one takes
Xo Zy

the simple case in whick, Yo, Zo, Lo, Mo, Np are given functions') of xo, Yo, 2, X, ¥, Z,
S—X:—Z)ll A2, A3 then the three equations may be solved A#gti,, A3, and one
Xo Zy

finally obtains three partial differential equatgthat, from our hypotheses, refer to only
the xo, Yo, 2, and tox, y, z,and their first and second derivatives.

First, envision the particular case in which tlreg functionsCo, My, Ny are null;
the same will be true for the corresponding valiethe functions of one of the systems
(Ly, My, Np), (Lo, Mo, No),(L, M, N). It results from this that the equations:

ow _ oW oW

— =0, — =0, —=0,
oA, 04, 0/,
amount to:
c, oy +C, oy +C, oy _B, 0z _B, 0z _B, 0z -0
0%, Yo 0z, 0%, Y, 0z,
0z 0z 0z o0X 0X o0X
+ + -C -C -C =0,
Ao oy e T oy, g,
0x 0x 0x oy oy ay
B,—+B,—+B,— - — — =0,
% dy, g, ok, oy, g,
ie.,

pyz = pzy, Pzx = Pxz, D(y = pyx,

whose interpretation is immediate.

Haing said this, observe that if one of the twsitimns (Mo) and M) is assumed to be
given,and that if one deduces the functialss Mo, Ao from this, as in se&3, then in
the case in which these three functions are n@lroay arrive at this result accidentally,

Y In order to simplify the exposition, and to indicatereneasily what we are alluding to, we suppose that
Xo, Yo, Zo, Lo, My, Ny do not refer to the derivatives &, A, As.
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I.e., for a certain set of particular deformationsybeer, one may arrive at this result for
any deformationNl) since it is a consequence of the nature of the medw), i.e., of
the form ofWw.

Consider this latter case, which is particularly iesting;W is then a simple function
() of o, oo, ps, and the six expressionrs, &, &, Ay, A, As, which are defined by the
formulas (45).

The equations deduced from sg2.and53 reduce to either:

Z(g—gmic;—riajzxg, Fy =1,A +myA +n AL,
Z(g—zﬂi/x— piCi'j=Y0', G, =I,B; +mB, +n,B.,
Z(g%+ piB;—in;jzzg, H, =1,C, +m,C, +n,C.,
in which one has:
K=&+ g‘;‘j’w,- o

ow n ow n ow
o, oy, oy,
ow + ow ow

B =7, Q,j k=12, 3).

C = +C.
T80 T kay, iy,
orto 6):

0A | 0A,  0A

+—2+ 3 =X, F,=1,A + +n,A,,
6X0 6y0 620 0 0 OAi mOAZ 0A3
681+682+053 =Y,, G, =1,B, +mB, +n,B;,
0x, 0y, 0z,
0, ,0C; 1 9C o7 H,=1,C,+mC, +nC,,
0%, 0y, 0z,

in which one has:

! The triad is completely hidden; we may also concdia¢we have a simple pointlike medium.

2 Compare E. and F. COSSERATPremier Mémoire sur la théorie de I'élasticifg. 45, 46, 65.



THE DEFORMABLE MEDIUM 167

B =0 4z ¥, =&
0Xo 1y, 07,

_ oy ady _ oy
B,==,—2+Q,—2 += -2,
2 36X0 2ay0 1620

in which we setQ; =W V= = ow

,to abbreviate notation, or we géx (
0¢, ay 17

apxx + apyx + apzx - X

F = Ipxc+mMpyx + NPz

0x oy 0z
apxy apyy apzy
+ + =Y, G = lpyy tmp,y + NP,y
x oy | oz Pry ¥MpPyy + NPy,
ap,, op,, Ip
= + +—*2=Z H = Ipx, +mpyz + NP.
0x oy 0z P & Pz

in which one has:

2 2
1 Ql(ﬁj +Q{ﬁj +Q{ axj 2— 0x_0x 2_ 6xﬁ+2§ ﬁﬁ

Pe = a ) %, 3y, 0z,) oy, 0z, ‘0z, 0%, 0% 0y,

and analogous formulas f@, ... A has the significance that we gave it in Sgt.
which we shall recall in a moment.
As one sees, we recover the continuous deformabklgium as it is treated in the
ordinary theory of elasticity.
A particularly interesting case is obtained byking for a form forW that gives the
identities:
py:= 0, pyx = 0, Pxy = 0,

for any :—X One finds thatWw must be a simple function ob, Yo, %, and the
XO
expressior\, which is defined by the formula¥(

! Compare E. and F. COSSERATPremier Mémoire sur la théorie de I'élasticifgp. 40, 44, 65.
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3(x.y.2) 1+2¢  y, 2
:6,—y,’ N = Vs 1+2¢, o
(o Yor20) T L

from which one may see, upon remarking that if one seferthe previous formula$)(
that gave ugy,, Pyx Pzs-.. as a function oy, ...then one has:

ow ow ow

g% g0x S 0x
ox, _ 0y, 0z,
oA A oA
g6 gk oox
0x, Y, 0z,

and two analogous systems; siMas assumed to be a simple functiorxgfy,, z, and

A, one has, as a result:

_ _ _ oW
Py = pyy =Py _a_A'

If we consider the particular case in whidhdepends only o, and if we assume
that we are giveiX, Y, Zexpressed as functions xafy, zthen the equations in question,
which are:

= Ip, G =mp, H = np,

upon setting)z%,become those which serve as the basis for hydicstf). The

initial medium My) appears only by way &, and one may replace the unknotviwvith
the unknowrp that is related to it by the relationg—VAV. If the functionW, which is

not given, ishiddenthen one has the preceding equations, in whigh an auxiliary
function whose significance is well known.

It will suffice for us to indicate that the casewhich the function€,, Mo, No are
non-null comprises the theory of all the ethereatlia that have been considered for the

study of luminous waves from MACCULLAGH to LORD KMIN, but here the theory
of these media is completely mechanical. We likewmnention that the most general

! Compare E. and F. COSSERATPremier Mémoire sur la théorie de I'élasticifp. 23, 24.
% These formulas are actually the ones on page 47 ¢freanier Mémoire sur la théorie de I'élasticité.

3 Compare DUHEM. -Hydrodynamique, Elasticité, Acoustique.
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case, in which the trace of the derivatives of theoad with respect to the rotatioms
g, ri remains in the expression for the external momeiuisi@athe most natural manner
to the notion omagnetic inductionhat was introduced by MAXWELL.

59. The rigid body.— We have considered the particular case in wWathoes not
depend om;, g, ri, and different special cases of this case. One maseat the other
media that were considered, at least in part, byatndors, either by the study of
particular deformations, or by the study of new metat tare defined by a theory of
constraints that profits from the results that Wweaaly acquired.

For example, start with the simple case, in whibb triad ishidden, i.e., by
definition, it is a pointlike medium in whichW is a function of xy, Yo, 2,

&, &, &, K, Vo, )5

1. We may imagine that one pays attention only tad#fermations of the medium
for which one has:

51:52:53:M:Jé:1é:0-

In the definitions of forces, etc., it suffices tdroduce these hypotheses, and, if the
forces are given, to introduce these six conditions. the latter case, thkabitual
problems, which correspond to the given of the funcirand to the general case in
which theg, ) are non-null, may be posed only for particular givens.

If we suppos®nlythat the functio, that is obtained by taking =& =& =)i = )
=) =0inW(o, o, &, ...) IS given, that one does not know the values otidreratives
of W with respect tag, &, ...,)5 for & = & =..= )5 = 0, so thatV is hidden,then we see
thatpux ..., Pzz, fOr example, become six auxiliary functions that onest adjoin taox, v,
z,in such a way that, for the case in which the fothas act on the volume elements are
given, we have nine partial differential equations in minknowns in the case, to which
one must adjoin accessory conditions.

Now we remark that one knows how to integrate theegys

a=&===p=p=0.

Since the deformation is supposed continuous, the integraksponds to a
displacement of the set of the medium; it thus remdor us to determine the six
constants of integration and the auxiliary functipgs...

If the forces and efforts that act on the mediuen@ven, and we suppose thét...
are known as functions &f y, zthen the six equations of ségl, with the simplifications
implied for the form oW, when applied to the entire body, determine the six integra
constants. To complete the process, what remafos s toultimatelydetermingys, ...

If we leave aside the problem of this ultimate detertimnathen one sees that we
recover the habitual problems of the mechanics of rigidi@s, in which one might
ordinarily suppose that the hidden functiMdepends only oA.

2. We may imagine that we seek to define a medium evbesBnition already takes
the conditions:
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a=&=&=)=p=p=0
into accountsui generis
In order to define the new medium, while thinking alorgsame lines as before, we

further defineF,,---,Nyby the identity:

Adx,dy,dz, = || (F,0x+---+K;K")dg,
% S
= [I[L (Xa8% -+ NGO )y iz,

However, this identity must no longer hold, by virtuehs fact thats; = ... =)5=0.
In other words, we envision a medium in which the theogstmresult from thea
posteriori addition of the conditiong; = ... = )4 = 0 to the knowledge of a function
W(Xo, Yo, %, &1, &,..., )5) and six auxiliary functionga,..., ts of Xo, Yo, 2, by means of the
identity:

.”,LD (W + &, + [,E, + -+ + L y.)dx dy,dz, = -”so (Fio%x+--)da,
- [JL, X%y,

which amounts to setting = ... = )4 = 0 in the general theory that preceded, in which
one has replaced/ with Wy =W+ (n& + ... + ;.

As one sees, we come down to theory of elastic media that correspond to the
function W of  yo, %, &, &,..., )4 when one restricts oneself to the study of deformations
that correspond t&; = ... = )5 = 0. Therefore, if we consider the case dficgden W
then if we suppose that we known simply the vaNéo, Yo, z) that W and W, take
simultaneously whew; = ... = )5 = 0 then we recover the habitual theory of the rigid
body.

Observe that if we account for the conditichs= ... = )4 = 0 inW a priori by a
change of auxiliary functions then we are led to rep\&twith a& + ... + 16& in the
calculations that relate to the general medium, andike®ise find formulas that come
down to the study of an elastic medium in which we eomfined to studying
deformations that correspond 8 = ... = )5 = 0. Upon supposing that,..., s are
unknown,we once more come down to theory that comprisesdb#éual theory of the
rigid body. From this latter viewpoint, we return t@ texposition that one may make
about the ideas of LAGRANGE. In particular, we mégerve that in the case in which
Xo, Yo, Zp are given as the partial derivatives with respect, tp, zof a functiong of xo,

Yo, %, X, Y, Zthe equations in whicKy, Yo, Z, figure are none other than the equations that
one is led to when one seeks to determine the extremtime a@ftegral:

[[[ #dx,dyodz,

given the conditions:
51:52:53:M:Jé:y3:0-
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3. We discuss a third proceduf® for constituting a medium for which the theory
always leads to the same equations, and which will beniang case of the original
theory. This procedure agrees with the first one, anthyt also be applied to the cases
of the deformable line and surface.

Imagine that th&V that serves to define the original medium is variastel, to fix
ideas, suppose that the valuegf.. , )5 are developable in a MACLAURIN series in a
neighborhood of zero by the formula:

W=W+Wo+ ...+ W+...,

in which W represents the set of terms of thelegree. Assume that the coefficients of
W, (which may depend o, Yo, %) increase indefinitely in their variationf we want W

to conserve a finite valughen we must suppose thaf ... , )5 tend towards zero. In
other words, we may then consider only deformationsdaasfye, = ... = )4 =0. In
other words, the body that we approach in the limit na&g only displacements of the

set. We may suppose that one makes the deriva%\éves---, which approach limits
1
whenW varies in a manner we shall describe, likewisg @&ra consequence of a studied
deformation for this medium.
To explain this in a more precise fashion, imaghm the coefficients oivi, Wb, ...
depend on one parameterin such a way that whdntends towards zero the coefficients
of W, increase indefinitely. To fix ideas, suppose tiat latter coefficients are linear

with respect to%. Likewise, imagine thak, y, z,which define the deformation in

guestion, vary withn in such a way that;, ... tend to zero. In addition, we suppose that
&, ... are infinitely small of first order with resge h; for example,&, ...might be
developed in powers ¢, and the first terms of that development are thressonh. With

these conditionsyV tends to zero, angw,---,a—wtend to certain limits (which may be

0&, ) A
functions ofxo, Yo, ). Therefore if we consider the equations of &&Xthat serve to
define external force and moment then we are finlalll to formulas that permit us to
define them, and which are none other than equabdour point of departur@ which
the notion of the function W has disappearadd in which six auxiliary functions

Ry, Gy, Hy, 15,75, K, figure.

60. Deformable media in motion— The theory of motion for the deformable line
and that of the motion of the deformable surfaces@nt themselves very naturally as
special cases of the theory of the deformable serfand that of the deformable medium.
To see this, it suffices to give one of the paramsh of the surface or medium the
significance of time. As we will not envision theatscs of media of dimension greater
than three here, we must expose the theory of mati@ deformable medium directly in

! Compare THOMSON and TAIT. Freatise,vol. I., Part. |, pp. 271, starting with the™lline down.
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what follows; however, we nevertheless give it arfdhat is entirely analogous to the
one that we indicated for the dynamics of deformab&dnd the deformable surface.

Consider a spacé/ip) that is described by a poikt; whose coordinates axg, Yo, %
with respect to the three fixed rectangular a®as Oy, Ozand adjoin a trirectangular
triad to each poini, of the spaceMo) whose axeMl x;, MY, M ,Z, have the direction
cosinest,,dy, 0y Lo, Lo LoV oV oV With respect to the axeSx, Oy, Ozrespectively,
and which are functions of the independent variakle, %.

The continuous three-dimensional set of such tNéggy,z, may be considered as

the position at a definite instanbf a deformable medium that is defined in the following
fashion:

Give the pointMg a displacemertioM, which is a function of timéand the position
of the pointMo, and is null fort = to. Letx, y, zbe the coordinates of the polt which
we consider to be functions &f, yo, %, t. In addition, endow the tridd ,x, Yy, Z,with a
rotation that makes its axes finally agree with thdsetoiadMx'y' Z that we adjoin to the
point M. We define that rotation by giving the direction cosmgs,a”;
B.B.6" v.V,y of the axedIX My MZwith respect to the fixed axé3x, Oy, Oz.

Like x, y, zthese cosines will be functionsxf yo, 2, t.
The continuous three-dimensional set of trididty'z for,a given value of time,

will be what we call thedeformed statef the deformable medium considered at the
instantt. The continuous four-dimensional set of tridlsy Z that is obtained by

makingt vary will be thetrajectory of the deformed staté the deformable medium.

For ease of writing and notation in the sequelsammetimes introduce, as we already
did, the lettersoi, o, o5, instead o, Yo, 2. We continue to denote the components of
the velocity of the originMy of the axes M x;, MY, M,Zalong these axes by

&9 n@,¢?, whenp alone varies,and the projections of the instantaneous rotation,
relative to the paramete, of the triadM x;y,Z, on these same axes p/”,q?,r,“.
We denote the analogous expressions for thekbagZ by &, i, ¢, andp;, g, ri, when
one refers them, like the triti,x; y,z, to,the fixed axe©xyz.

When timet varies, and the motion of the tristk'y'Z is referred to the fixed triad
Oxyzthen the originM has a velocity whose components along the atgsMy MZ ,

will be designated by, 7, ¢, and the instantaneous rotation of the thbady Zwill be

defined by the componenps q, r.
The elements that must introduce are calculateth aec.49; first, one has the
formulas:

0x , oy , 0Z
=a +a +a :
R PR PR “Xr5, op, =X, o0,
0x oy . 0Z oy oa
(54) =B +B—+B (55) (g = a—=-) y—,
api ap| pi z ap| apl
0x oy )
.= + + , r - —
“ Voo Y 0p; 'S 6pi zﬁap. 2.4 6p.
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to which we adjoin the following:

ox 0y 0z 08 oy

—a—+a —+a —, = = —_7

g 6t gt %t P Zya zﬁat

I n Z 1] 0'
64) in= ﬁ—+,8 y+/f , 65) {q=Ya V—— ror
6x 6y . 6,8
=y—+y—=+y —, r = —_— == —_—

Cyat yat Vat Z'Bat at

if one now introduces the distinction between tlwgations for the derivatives with
respect to time depending on whether one tages, z, torx, y, z, for the independent
variables.

Suppose that one endows each of the triads ofréljectory of the deformed state
with an infinitely small displacement that variesai continuous fashion with these triads.
With the same notations as in sB@, we have:

(56) 3 = XK' - yd)
(57) OXx=K +ZA' -y&K', Yy=d'+xXK' -Zd', dz=& +yAd' -xX&',

00% oa’

o =nXK'-¢al' +$+q|5’z—r5y p, _a—pl+q,d<’—rdl’,
58) 17 =cd &X' +‘25V+r55< .37 (59) dqi:%+rid'—pid<',
¢ :adl'—qid'+g%z+ 0,8y - 3%, & :a;;i, +pa-qd’,
23 :/7id<’—cid]’+aa;;k+qi5’z—ri5y, o] :%+qid<’—ridl’,
68) 17 =cd -EX’ +665ty+ri53(—pi5’z, (59) dqi:aa;it]'ﬂid’—piéK',
¢ =EX -nd" +%+p,5y q.8% &i:ag:’+pid]’—qid’.

61. Euclidean action of deformation and motion for a deformable medium in

motion. — Consider a functiow of two infinitely close positionsf the triadMx'y'z
a function ofx, Yo, %, t, and ofx, y, za,a’,---,y", and their first derivatives with respect

to Xo, Yo, %, t. We propose to determine the form thdtmust take in order for the
quadruple integral:

[[] ] wax,dy,dzdt,
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when taken over an arbitrary portion of spakbk)( and the time interval between two
instants; andt; to have a null variation when one subjects the sall triads along what
we are calling the trajectory of the deformable mediutaken its deformed statete-the
same arbitrary infinitesimal transformation of the group of euclidean disptants.

By definition, this amounts to determinikigin such a fashion that one has:

AMWN=0

when, on the one hand, the ori¢yhof the triadMxy Z is subjected to an infinitely small
displacement whose projectiods dy, oz on the axe®©x, Oy, Ozare:

X =(a, +w,Z- wyYy)4,
(60) d/ = (az +w3x—wlz)5t,
oz =(a; +wy-wXa,

in which a;, ap, as, @, @, az are six arbitrary constants, a@tl is an infinitely small
guantity that is independent x§, yo, 2, t, and when, on the other hand, this tridd'y Z
is subjected to an infinitely small rotation whose congrds along th©x, Oy, Ozaxes
are:

a O, w O, a3 Ot.

It suffices for us to repeat the reasoning that we maftady with several reprises, in
order to see thdhe desired function W has the remarkable form:

W00, Yo, 20,8, &, 1, & 0L G 1 €17, 4P, G 1),

which is analogous to the one we encountered for the daldeniine, surface, and
medium at rest.
We say that the integral:

[ t JIT, gy, dzct,

is theaction of deformation and motian the interior of the surfac® of the deformed
medium in motion and in the interval of time betwele instant$; andt,. On the other
hand, we say thal is thedensityof the action of deformation and motiaha pointof
the deformed medium when takana given instantand referred to the unit of volume of
the undeformed medium and the unit of time. Ifgie A the same significance as in

w . : . . i
sec.51then— is the density of that action at a point and &giinstant, when referred

to the unit of volume of the deformed medium areluhit of time.
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62. The external force and moments; the external effo and moment of
deformation; the effort, moment of deformation, quantity of motion, and the
moment of the quantity of motion of a deformable medium inmotion at a given
point and instant. — Consider amarbitrary variation of the action of deformation and

movement in the interior of a surfacg) (of the medium i), and the time interval
between the instantg andt,, namely:

o [[[ waydzgt =] m%{z("’ﬂaa W W g

0¢; or; ¢,
ow ow ow ow ow ow
+— +—0 +—o |+ + on+
o D 2 o3 or j 6555 on 7 ac&
ow ow ow
+ + + o rdx,dy,dz,dt.
o P o [ o } %dy,dz,

By virtue of formulas (58)58), (59), (59')we may write:

o] [[f, wady,dz,dt=[" [ {ZBT‘W XK' -¢a' +%%_X +0,0Z-1,0Y)

+ W car-ga +29 1 pox-pan+ Mg -na + 2221 poy-q.0%)
07, 0P, a0, ap,

+M ﬂ+qid<l_riml +M @_f_ridl_pi%' +6_W ad< +pim1_qidl
ap, | 9p, oc, | 0p, 9

+M(/75K' -¢al’ +@+q5’z—r5y)+a—w(cd]’ - &X' +@+r55<— po'2)
oé ot on ot

doz oW [dd ' j

ow
+— (A -nd'+—+pdy-qoxX)+—| —+gXK'-rA’
ac(‘( n dtpS/q)ap q

OO pac |+ 2 5y —qar ot

oq \ dt or

We apply GREEN'’s formula to the terms that exgicinvolve a derivative with
respect to any of the variablgs, p2, p3s, and perform an integration by parts over the
terms that explicitly involve a derivative with pest to time,t. If we letlp, my, N,
designate the direction cosines with respect tditeel axesOx, Oy, Ozpf the exterior
normal to the surface,Sthat bounds the medium before deformation atirktant,t,
and designate the area element of that surfacehytiten we obtain:

5]5 JIJ, wabxdy,dzdt =
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ﬁ (Ioaw ow , . ow j&“{ oW 6W+n0 awjéy
s, 08, °0&, A a1, 017,
+(|06W w, Oawja {I oW aw+noawjd,
0¢, 0¢;, op, op, op;,
+|06W W+ OGWd]+I 6W+ 6W+n06W X' dodt
0q, d, or, or, or,
t
ow ow ow ow ow
+ oy+ oz+ a'+ '+ — XK' dx,dy,d
{'“-'Lo( on y ac ap aq ar J %D Zo}t
j .”J. 0 oW | ow | ow +26W + 6W 6W 5%
0p; 0¢; do¢, 0, ) otos¢ o¢ 6/7
0 6W 0 6W 6W ow
+ _ )
_z 00, a’7i ' $i J at 6/7 P GC} y
N z 0 6W b 6 ow 6W q6W 57
| =\ op 64} Tt o¢ 6/7 0¢
+_Z o oW qaw W ow
“~\op op, "or, aqi iaq "on,
d ow ow  ow ow ow | .,
+— +q -r + - 1o
dt dp or 0q 0¢ on
0 ow ow 6W 6W
+ +r. -p G
{z(api dq ' op, P ari ' 0¢& ~¢ c,j
d ow ow ow ow ow | _,
t——r -p—+¢—-¢ a
dt aq op or 3 ¢
0 ow ow W ow ow
+ . -q +& -1,
{z(api or, ' dq q' op, “ on, d 66}
d oW ow ow ow ow
+— + - + - XK' +dx,dy,dz,dt.
ator  Pag Yo Tan ,765} }XOyOZO
As in sec52, set:
F'= a_W moa_W a_W | =] a\N+r'noa\N+n ow
°taE e, U, ° Pap,  Cop, op,’
ow ow ow ow ow ow
G = + n , J, =1 + +n ,
° =0, ™an, ™ an, ° %0q, "og, 4,
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b= aw+moaw+n ow K’ =] 6W+moaw+n ow
° %ag ¢, ~0¢, ® %o o, °or,’
and, in addition:
W g W W
o0& on’ 0¢
poW W oW
op 0q or
On the other hand, set:
. J oW ow oW) dow ow oW
Xo —Z T - t— +q -r '
0p, 0¢; a¢; on, ) dtoé ¢ on
. Jd oW ow ow) dow ow ow
Yo = Z s - b t— +r -p ,
0p, 0, 0¢; a¢; dt on ¢ ¢
7 :Z 0 6W+ D 6W_q_ ow +gaw+ IDaW_an
° dp o¢, ' an " 9& ) dtagc T ap A&’

Loy [ DWW oW, oW ow
° dp dp, or  'ag a¢ ' an,

d oW ow  ow ow ow
L Y R Y R S
dt dp or 0q 0¢ on
J0 oW ow ow ow ow
M. = +r. -p +C =&

0 Z(api o ap Prar tiaz ¢ acJ
d oW ow ow ow ow
dt aq ap or o0& 0¢

J0 oW ow ow ow ow
N’ = +p -g + & -n.
0 Z(api o Paq %ap E.am n aaj
LW oW oW oW 0w
dt or aq op oan | OF

This makes:
5£2 JIT, Wby, dzcit

= f ”SO(F0'5'><+G[)53/+ Hioz+ 1A'+ 3@+ K. XK")do,dt

+{[HSD(A'53<+ B'OY+C'oz+P' A +Q & + R’d<’)dx0dy0dzo}t2
b

-J; JIL (Xo0%+Y58Y + Zaz+ Lod" + M)’ + NyoK ) dxdyodzdt
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If we first consider the quadruple integral that figuresthe expression for
5j:2 HL)Wd)g dy dz d then we call the segments that have their origif @&nd whose

projections on the axeMx, My, MZ are X,,Y,, Z, and L,,M;,N; the external force
and external moment at the point M at the instaméferred to the unit of volume of the
position of the medium at the instagtrespectively.

If we then consider the triple integral that ikda over time and the surfaethen
we call the segments that issue from the pdihtwhose projections on the axes
Mx, My, MZ are -F;,-G;,-H, and -l,,-J;,—K; the external effort and external
moment of deformation at the point M of the surfacéhat bounds the deformed medium
at the instant t. At a definite pointM of (S) these last six quantities depend only on the
direction of the external normal to the surf&eThey remain invariant if the region we
call (Mo) varies, but the direction of the normal doesciange, and they change sign if
this direction is replaced by the opposite dirattio

Suppose that one traces a surface the interior of the deformed medium that is
bounded by the surfacg which, either alone or with a portion of the swd S
circumscribes a subsef)(of the medium, and leBf denote the rest of the medium
outside of p). LetZ, be the surface oMp) that corresponds to the surfé&ef (M), and
let (Ao) and Bo) be the regions oM) that correspond to the regios @nd 8) of (M).
Mentally separate the two subsefs and B; one may regard the two segments
(-F;,—Gy,—H,) and (—1,,-J,,-K;) that are determined for the poiM and the
direction of the normal t&, that points to the exterior ofA{) as the external effort and
moment of deformation at the poikt of the frontierZ of the region ). Similarly, one
may regard the two segments,(G,,H,) and (,,J;,K;) to be the external effort and
mOment of deformation at the poikt of the frontierZ of the region B). By reason of
this remark, we say that F;,-G,,-H, and —-1;,,-J;,-K; are the components of the
effort and moment of deformation that is exertedhenportion(A) of the mediuntM) at
M along the axedMx’,My’,Mz' and thatF,,G,,H, and |,,J,,K, are the components
of theeffort and moment of deformation that are exertedhe portion(B) of the medium
(M) at M, along the axe®x’, My', MZ'

Finally, if we consider the triple integral ovdret volume of 1) at the instant,
whose values are taken at the extreme instamsisdt, , then we call the segments that
have their origins a¥l and whose components along the akbs My ,MZ are A, B,C
and P',Q, R the quantity of motion and the moment of the quantftynotion at the
point M of the deformed mediuid) at the instant,trespectively.

63. Diverse specifications for the effort and moment of eflormation, the
guantity of motion, and the moment of the quantity of motion— As in sec53, set:

A’:_’ Bi':a_W’ Ci':a_W,
94, 0g;
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ow ow ow
===, === =
' ap, Q= aq, R ar,

in whichA, B, G andP,Q, R represent the projections dvix', My',MZ', respectively,
of the effort and moment of deformation that arerted at the pointl of a surface that

has a normal that is parallel the akix, Oy, Ozhat we describe by the indéXefore
deformation. Indeed, it suffices to recall that akeeady agreed to replace the lettets

Yo, 2 that correspond to the indices 1, 2, 3 by thisveation witho,, o, ps. Recall that
this effort and moment of deformation are refet@®the unit of area of the undeformed

surface at the instant
The new efforts and moments of deformation thatjust defined are related the
elements that the introduced in the preceding®edty the following relations:

Fo =loA+mA +noA, 1o =10R +myP; +ngPy,
Gy =1oB, +myB; +ngBy,  Jo =1,Q +MQ; +1eQ;,
Ho =1,C +myCy +neCyy Ko =1,R +mR; +ngR;,

> A +q,C -rB +ai+qC'—rB’—X{):O,
op. ot

0B/ 0B’
> | == +rA -pC/ |[+—+rA'-pC'-Y, =0,
(ap |A pl |j at p 0

oC/ oC’
> | =—-+pB -qA |[+——+pB' -gA' -Z; =0,
(ap pl i qlAj at p q 0

Z(gp' QR -rQ +7,C ¢ .j+?+QR rQ'+nC" -¢B' -1, =0,

Z(g_(jﬂiﬁ'— piR'+ciA'—acij+%“P'— pQ + A —¢&C' =M =0,

a ' 1 1 1 1 a ! r 1 1 1 1
Z(%'{' pQ ~aR +<B _UiAj'*'a_F:I'*' pQ —gP" +{B' —nA — N, =0.

One may propose to transform the relations wevuste independently of the values
of the quantities that figure in them that are elted by means o. Indeed, these
relations relate to the segments that are attathéde pointM to which we gave the
names. Instead of defining these segments by phagjiections onMx’, My',Mz' we may
just as well define them by their projections ohestaxes; the latter projections will be
coupled by relations that are transforms of theceguieng ones. Moreover, the
transformed relations are obtained immediatelyn# cemarks that the original formulas
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have simple interpretations) (by the adjunction of axes that are parallel tortiwving
axes at the poir®.

1. As in statics, we confine ourselves to the condideraf the fixed axe®©x, Oy,
Oz. Let Xo, Yo, Zp andLo, Mo, Np denote the projections of the external force and the
external moment at an arbitrary poht of the deformed medium at an instandnto
these axes, and €, Gy, Ho andly, J, Ko be the projections of the effort and the
moment of deformation on a surface whose exteriomabhas the direction cosings
Mo, N before deformation at the instantLet A, B, G andP;, Q;, R be the projections of
the effort(A, B, G) and the moment of deformatifl,Q/,R" ahd letA, B, CandP, Q,
R be the projections of the quantity of moti@y B, C) and the moment of the quantity of
motion P, Q, R). The transforms of the preceding relations arecsly:

F0:|0A1+m0A2+n0A3’ IOZIOF)].+m0P2+nOP’
GOZIOBl+rnOBZ+nOBS’ J0:|0Q1+m0Q2+n0Q3’
HOZIOCl+rnOCZ+nOCS’ K0:|0R1+m0R2+n0R3’

6A1+6A2+6A3+%_X0:
0x, 0y, 0z, dt

0B, , 0B, 0B,  dB_
ox, oy, 0z, dt °
oG, , 0C, ,9C, ,dC__ _

ox, dy, 0z, dt °

oP, +6P2 +6P3 +£+Cl oy +C, oy +C, oy +C£

0x, o0y, 0z, dt 0%, 0y, 0z, dt
_B, 0z -8, 0z ~B, 0z —Bd—Z—LOZO,

0X, aY, 0z, dt

6Q1+6Q2 +6Q3+@+A1 0z YA 0z VA 0z +Ad_z
0x, 0y, 0z, dt 0X, A 0z, dt
_e, X, X _c, X _cH_y =0
0X, 0y, 0z, dt
aR1+aR2 +6R3+d—R+Bl 0x +B, 0X +B, 0X +B%
0x, 0y, 0z, dt 0X, 9y, 0z, dt
ay oy oy _ ,dy _
- - - -A—=-N, =0.
A&axo A ay, A3az0 d °

! An interesting interpretation to note is the analogithe one given by P. SAINT-GUILHEM in the
context of the dynamics of triads.



THE DEFORMABLE MEDIUM 181

2. Now observe that we may express the nine cosmas:--,)" by means of the
three auxiliary functionds, A2, A3. Set:

S0 = -Y. Ay = @i, + @, + @d,
Zady:_zyda:XidAl'*')('szz + X3dA;,
Zﬂda = —Zadﬁ =0,d4, + 0,dA, + g,dA,.

The functionsa, X, g of A1, A2, A3 so defined satisfy relations that we have written
several times already:

0w, _6_w{+)(,a, — Yo' =0
04, 94, ) 2
ox' !
%-%+U;(D} -0, =0, (,j=1,2,3),
i i
00 9o’
— o T@X @ X =0,
04, 04, ! !
and one has:
o :mia)ll+w;a)l2+w;a)l3, p=m16jl1+cv’za)|2+w;a)|3,
0p,; 0p,; 0p. ot ot
q=x' 04, ry! 04, ‘y! 04, 4=y’ 04, iy 04, iy 04,
" Mop TPop TPop ] ot Trat TPt
_ 04,04, 04, _ 04, 04, , 04,
r.=o, +0, + 0, : r=o, +0, +0, :
0p,; 0p, 0p,; ot ot ot

in whichxo = o1, Yo = 2, 20 = p3. If we letad, x:, g denote the projections onto the fixed
axes Ox, Oy, Ozof the segment whose projections onto the akbé My MZ are

@, X.,0 then we will have:

Y ada" =-) a'da’ =w,dA, +@,dA, +@,dA;,
Y a'da =-) ada" = y,dA, + x,dA, + x,dA,,
S ada’ = -3 a'da = g,d), +0,dA, +0,dA,,
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by virtue of which t) the new functionsa, x, & of A1, Az, As satisfy the relations:

E—E—){U - X0

oA oA, T AITw

oy . .

ﬁ_%zaiwj—ajwi, (,j=1,239),
i j

do;, a0, _

ETR Rt

Once more, we make the remark, which will serve us [@ate that if one lete);,
oy, s denote the variations ofly, A2, A3 that correspond to the variations
oa,oa',---, 0y of a,a',---,y" then one will have:

d' =wdA, +w,dA, +w,dA,,

A’ = x,dA, + x,dA, + x;dA,,

XK' =0,dA, +0,dA, +0,dA,,

d=ad"+ A" +yXK'=w,d) +w,0M, +wW,,,

A =ad'+ LA+ YK = x,00, + X,00, + x:0,,
K=a"d"+'A"+y'K'=0,01, +0,01, +0.,01,,

in which d, aJ, K are the projections onto the fixed axes of themssd whose
projections ontdIX My MZ ared’,a',K'. Now set:

Iy =al g+ xJ o+t oKy=w] + xJ 0K,
To =@l o+t Y ot oKy=w ) +txJ) oK,
K =ailo+ xdoroKy=a ] +xJ 0K,

L=+ yMo+o N =w L +xM#+o N,
My =Ly Y M+ I Ni=a L+ xy Mo N,
No=am Lo+ Y Mo+o'Ny=w L +xM Fo N,

In addition, introduce the following notations:

! These formulas may serve to define the functiansy, & directly and may be substituted for:
w =aw + By +yo,

X =a'w + By +yo, (i,j,=1,2,3),

[[— "0 "1

o =a'w +p% +yo.
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M, =@F+xQ+oR =@F +xQ +0,R,
X =@+ x,Q + R =@,R + x,Q +0,R,
2, =R+ XQ + R =@, + X,Q +03R,
N=wP+xQ+0,R =w,P+ x,Q+0,R
X=w,P'+x,Q +0,R =w,P+ x,Q+0,R,
2=w,P'+ x;Q +0;R =w,P+ x,Q+0,R,

and, instead of the latter system, in which eifieq, R, P, Q, RorP, Q, R, P, Q,R
figure, we have the following:

0w, O~ 0x: , 00, ,
- . -Q| 2+ @~ po, |- R| =22 -
£0+Z|:apl '(6,0 +q0- r)(lj Q(ap*_r 1 pa—lj |[apl+p)(l i lj

+ A(xig, — o) +Bl(0y&, —@i¢) +Cl(@in, - xié)]

arl aw ] a X ] ] ] 60-, ] !
6'[ P( atl+q0-1_r)(lj Q(%-'_rwl_palj_R( l+p)(1_qw1j

ot
+A(x,¢—on) +B (0. -m¢)+C'(mn - x;£) =0,

with two analogous equations. If one remarks thatfunctions&, 7, &, pi, Gi, ri and¢,

n, ¢, p, q,r, andAs, Az, A, ﬂ 04, 94 dA, di, dA give rise to the formulas:

dp '0p 0p dp ‘dg ‘dg

0 0 0w, ,

aj + X6 —oin =0, a%:g 9,07 ~I X
J

%_*_0-'_5_ -w@'¢c =0, ﬂ:%+|ﬂm’—p_0’.’,

aA ivi i aAJ apJ I I

0 , or, _do/ . ,

aj +a@in - X6 =0, aTZJJ’iji‘quw
] i

9 0 0w, ,

aj tXi€-ain=0 a;lp =5 AT
0

21 016-aic=0 " éi’”w P,

i
6C , , 6I’ 60, ]
— ymon-vy :O’ =4 .

that result from defining relations for the functsow, x/,' and the nine identities they
verify, then one may give the preceding systermghwe form:
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B o, i_,%_ 9 _ ap or
L Z A Far o, a;l Q A,

Lon ,66_8,6/7_C,6c , 0p Qaq ,6
s 01,  0A, 0A, a)l 01, oA

:O,

with two analogous equations.

3. Finally, we shall subject the preceding twaaepns that we introduced to a
transformation that is analogous to the one tldhulg in sec53, to the generalization of
the equations of the theory of elasticity thatteeta effort.

To abbreviate the notation, let;,)), Z,,L,,M,,N ydenote- for the moment- the

left-hand sides of the transformation relation theters toXo, Yo, Zo, Lo, Mo, No,
respectively, and observe that one may summariee tivelve equations we have
established by the following:

Jo {11 G+ o+ Zip ok Lok Mgt g Yo gly gz 8

T,
+L .”so{( I:0 _IOAi - moAz - noAs)/]l + (Go _IOBl - moBz - noBa)/]z
+ (Ho _|0C1 - mocz - nocs)/]s +(I 0 _IOPl - mopz - nops),ul
+(Jo = 10Q —MQ, =Ny Q) 4, + (K, —=1,R —myR, —nyR) 15} do,dt = G,
in which A1, Ay, As, 14, tb, (5 are arbitrary functions, and the integrals aremakver, on
the one hand, the time interval between the instarsindt,, and, on the other hand, the
surfaceS, of the medium Nlp) and the domain it bounds. If we apply GREEN'S

theorem and integrate by parts then the relatiahwe just wrote becomes the following
one:

t,

_J;1 .”J.SO(XO/]l +YoA, + ZoAs + Lopty, + M1, + Ny 15 )dx,dy,dz,dt
t,

+L ”SO(FO)Il +GA, +H A, + 1, + I 1, + K p,)dodt

]
H{ITT, (A + BA, +Ch + Pat, + Q, + R )il

Y 0A, A 9A . dA _9A, _ 9A _ aA, _dA
- + + +A +B —2+B +B +B
t J.J-J‘SO(A& 0X, AZ AS dt X, 0y, 0z, dt
6/1 oA oA dA
+C,—+C,—2+C,—+C—= |dx,dy,dz,dt
Yox, | oy, Pz, dtJXOVOZO

t o, o, O, . Ou, ou, oU, du,
+P, +P +P + + +
Lm( oy Par e T Qg Ty Q3 S
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()7 )7 OH; AUy
+ +R + +R dx,dy,dz,dt

0 0

Lo gy e ve e

0z, dt
0z 0z 0z dz
-B B - B— |u,dx,dy,dz dt
lao 26y0 360 dtjﬂlXOyO ZO
ty 0z dZ
P AT n 2 en

1) 1) 1) dx
-C -C -C— |u,dx,dy,dz,dt
aXO 2 ayo 3620 dtjﬂz XO yO ZO

2 0 0 0X d
+J: J.J-.LO(Bl a): + BZ a;: + Bs 620 +Bd_1(

ay ay oy dy
- - A— |u,dx,dy,dz,dt =
A P Aa P jus %Y,z

We seek to transform this last relation when onestéke function, y, zfor other
new variables, while preserving We apply the elementary formulas for the change of
variables that we recalled in s&8 to the functionsiy, A, As, 4, o, 5. With S always
indicating the surface of the mediuM) at the instant that corresponds to the surfege
of (Mg). Moreover, letX, Y, Z, L, M, N be the projections 0@x, Oy, Oz of the external
force and external moment that are applied to thet pbiat the instant, and referred to
the unit of volume of the deformed mediuM)( and letF, G, H, I, J, L denote the
projections orDx, Oy, Ozof the effort and moment of deformation that axrerted at the
point M on S referred to the unit of area 8f Finally introduce, as in seb3, eighteen
new auxiliary functiongyy, ..., G -.. Dy the formulas:

1) )4 )4

Ap,, = A3 ,  Ag, =P +P +P ,
pxx Ai AZ q 1 6X0 2 ayo 3 azo
ay ay ay ay oy

A[:)X:A1 +A2 +A3 , AqX:P +P +P ,
’ X, yo Zy tox,  Coy, 0z
0z 0z 0z

Ap,, = A3 , D0g, =P +P +P ,
pzx A‘i AZ q 1 6X0 2 ayo 3 azo

and the analogous one that is obtained by replacing

All A21 A’gl pXXa R/Xl pZXa Pll P21 P3! qXX1 q/Xl (1ZX
by

Bla BZa BS, pxy’ p)/y’ pZy’ Qld QZ! Q3! qu’ %y’ qu,
and then by

Cll C21 C3! pXZ! R/Z! pZZ! Rll RZ! R’n qXZ! q/Z! (1221
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respectively, with the quantit& having the same expression as it did in . We
obtain the transformed relation:

_f ULO(M +YA, + ZA; + Ly, + My, + Ny )dxdydzdt

to
+L ”S()(F/ll +GA, + HA, + Ly, + Iy, + Kz, )dot

A. B, C P Q R tz

+ {J”.So (ZAl +Z/]2 +K/]3 +Z:u1 +K:u2 +Z:u3)dXdyd%tl
t oA, oA, oA, oA, A,

- + + + +.ot+p, —
\ mso(pxx ox T Prgy t Py TPy P gy
LAdY Bdi,  Cdi

Adt Adt A dt

(e 2 ol ol o, 0i,
.L '[_U.So(qxx X +qyx ay 0, oz +qu ax +---+Q,, 37

jdxdydzdt

LPdm  Qdy,  Rdy,
A dx A dx A dx

il [p _p +Cdy_Bdz +[p p +éd_2_92<jﬂ
W s |7 TP Adt Adt ST e Adt Adt)?
Bdx Ady
Adt A dt

jdxdydzdt

+ [ Py~ Py * jus}dxdydzdt 0,

in which the integrals are taken over, on the oaedh the time interval between the
instantst; andt,, and, on the other hand, the surf&w& the mediumNl) at the instant,
and the domain it bounds, witlo designating the area elementSof

Once again, we apply the GREEN formula to the $ettmat refer to the derivatives of
A1, Ao, As, L, Lb, 1 With respect te, y, z,and an integration by party of the terms that
involve the derivatives ofl1, A2, A3, L4, Lk, 15 With respectt, and letl, m, ndenote the
direction cosines of the exterior normal to theae'S at the instant with respect to the
fixed axes. Sincdi, A, As, L4, Lk, 43 are arbitrary, they become:

F = Ipxx + Mpyx + NPy, | =105 + MQx + N0,
G =lpxy + Mpy + NPy, J =10y + Mgy + NGy,
H =Ipy, + mpy + NPz K =10xz + Mg,z + NG5

apxx +apyx +apzx +£d_A‘
0x oy 0z A dt
apxy + apyy +apzy +£d_B_Y —
0x oy 0z A dt

-X=0,

! Since the field of variation actually varies wiftwe perform that integration by parts by the intermediar
of passing to the variablesg, yo, 2. We suppose thétis positive and equal t4||
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apxz_+_apyz_+_apzz +£d—C_Z:

ox oy 0z A dt
aqxx+6qyx+aqzx+pz_pz ,1dP Cdy Bdz_, _
ox dy oz Y YoAdt Adt Adt
aqu + aqyy + aqzy id_Q+éd_Z_E%— M =
X oy 0z Adt Adt Adt

+ pyx - pzx +

0
09, qyz+6qzz+px _px+1d_R+EQ<_éﬂ_N:0_
ox o9y o0z VOO A dt Adt Adt
The significance of the eighteen new auxiliary fun@iqy, ..., O ... result

immediately from the relations that we just wrotedeed, it is clear that the coefficients,
P Py Pz OF | iN the expressions &, G, H represent the projections ordx, Oy, Oz of
the effort that is exerted at the poMton a surface whose exterior normal is parallel to

Ox, and that the coefficientg., 0, O Of | in the expressions fo, J, K are the
projections ontdOx, Oy, Oz of the moment of deformation & relative to the same

surface.

64. Exterior virtual work; theorems analogous to those of Vagnon and Saint-
Guilnem. Remarks on the auxiliary functions that werantroduced in the preceding
paragraphs.— On a deformed mediurMj between the instantsandt, in an arbitrary
state of virtual deformation, we give the namexikernal virtual worko the expression:

t
57;:—{'[”%(A'5’X+ BS y+ CI 2 P51+ Q@ 0+ B K dxdy g}z
b

—J:ZHSO(F555<+G(;53/+ Hioz+1.d"+ 30"+ K XK")do,dt

+[ JIL, (Foo%+Gudy + Hodz+ 15" + 35" + Ko dK'dxydlydzgclt.

We refer to the notations of se80, and, moreover, letl, A, K be denote the
projections onto the fixed axes of the segment whwsejections ontdVx, My, MZ are

ol',0J',0K" in such a way that one has, for example:
_d :alléal +ﬂ"5ﬂl +y"5yl = _(aléa"'f‘ﬂ’éﬂ"'*‘y’")’
in which we are always supposing that the axesi@stipn have the same disposition.
This being the case, suppose, as in 88cthat one has given the arbitrary functions

A1, Ao, As, t, Lk, 145 the significance that is defined by the formulas:

/]1:5(, /]2:@, /]3:&, ,ul:d,,uzzci], /,13:d<.
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We then see that the preceding relations we obtaineckbertthhe new auxiliary functions
express only the following condition:

If a trajectory of the deformed medium is given any of the virtsplatiements of
sec.60then the external virtual wor&7. is given by either the relation:

t 00X 00X 00X 65y 00z
_57 = + + +
e '[tl '[['[So( pxx 6X pyx ay pzx 62 pxy a X pzza y

AdX Bddy Cd&
+— +— +—
Adt Adt A dt

1L (qxx +0, 6? + 0 aaj +y aaf +org, 0K

0z
Pdd Qdal RdXK
+— += +—
A dx A dx A dx

2 Cdy Bd Adz Cd
Lo S22

Adt A dt

Bdx Ady
+ - XK +dxdydzd
[pxy Py Adt Adj } yazdl

jdxdydzdt

jdxdydzdt

in which the integrals are taken over the time v between the instantsand t and
the deformed medium, or by the relation:

f:m[ e

dc5< dcz/ d&v
+B9Y 4 9% 4y dy, dz dt
Aot TP TS j %Ml

t, 0d od 0d 04
+ P, +P, +P, +.+R—
I R X

0%,
P da + Q daj +R dj!: jdxodyodzodt

2 0 6 0 d
[ ve v aziwdy

0z 0z 0z dz
-B, - B, - B, oz, - Bajddxodyodzodt

ax0 ay0
t, 0z dZ
[IIL(ASE s 2 n Zont
)4 1) 1) dx
-C C - C— |AJdx,dy,dz,dt
laxo 2 ayo 3 620 dtj )% yO ZO
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- tz'm' B, ox +B, ox +B, ox g dx
b d99S | X, oy, oz, dt

A AN p —Ad—yjd<d><odyodzodt =0,

0X, A 0z, dt

in which the integrals are taken over the time interval betweennistants;tand & and
the undeformed medium at the instaiei;ause the formula that we gave above:

t
57;:—{'[”%(A15’x+ BOy+Co z PO1+ I+ B K %qug%
b

_Ez”SO(F(;55<+G{)5y+ HioZ+ 103"+ 3. + KK )do,dt

+J':2J’J.J.SO(F0’55(+G(’)5V+ H(’)é’z.}. |(’)d'+\]émr+ K(’)d<’)d)(0dy0dzodt,
which serves to define the external virtual worlaymnalso be written:

tp

5Te:—{ﬂjso(A5x+ BOy+ @z B H @ I B K dxdy g}z
f

—'EZUSO(FOd(+God/+ H dz+1,d + 3,8 + K, &K)do,dt

*fg UL(,(X@“Y@/+ Z,0z+ Lyd +M A + N AK)dx,dy,dz,dt,

by virtue of the significance o, Yo, Zo, Lo, Mo, No, Fo, Go, Ho, lo, Jo, Ko, A, B, C, P, Q,
R, and likewise:

R "
5J+Z5 K) dxdyd}

7]

c
A

Q

o7, :—{JJJS(§5X+ZBéy+ 5Z+£5|+Z

_EZHS(F(;HG@J, Hoz+1d +JA& + KXK)dodt

t,
+ [ [[[(X3+ Yy + 2+ LAl + M + NAK)dxdydzal

by virtue of the significance o, Y, ..., N, F, G, ..., K.
Start with the formula:

5jfjjjsoc>wa>gd;6 dz d# 47, =0,

applied to an arbitrary part of the medium thabasinded by a surfac® and the time
interval between the instants andt,. Since AW must be identically null when the
variationsdx, dy, oz are given by the formulas (60) of sé&, namely:



190 THEORY OF DEFORMABLE MEDIA

X= (a1 + wz— wy)q,
oy = (a2 + X — w2q,
o= (az+ wy — wX)4q,

by virtue of the invariance d under the group of Euclidean displacements, dndJ,
XK are given by:
ad =awd, A =wA, XK = wd,

and that this is true for any values of the constants,, as, @, «», a3 we conclude from
the expressions fafZ, that just insisted ort)(that one has:

{[ L Ad)g)dyodzo}zz + f JI. Fododt =] t JIL, Xotxdypdzydt =0,
U_USD(P+Cy— Bz)dxodyodzo}zz +fjjjso(|0 +H,y -G,2)do,dt

=TI (Lo + Zoy ~Yo2)dxody,dzdt =0

and four analogous equationk these formulas, one may imagine that the fror&es
variable.

The auxiliary functions that were introduced ie fireceding paragraphs are not the
only ones that one may imagine. Upon confiningselves to their consideration, we add
the same simple remarks as in $et.

By definition, we have introduced two systems dfors and moments of
deformation relative to a poiMl of the deformed medium at the instéantThe first of
them are the ones that are exerted on surfacehldhattheir normal parallel to one of the
fixed axesOx, Oy, Oz before deformation. The second are the onesatigaéxerted on
surfaces that have their normal parallel to on¢ghefsame fixed axedx, Oy, Oz after
deformation. The formulas that we indicated gike tatter elements in terms of the
former; however, by an immediate solution, which wil not elaborate upon, one
inversely obtains the former elements in termdheflatter.

Now suppose that one introduces the functddn The first efforts and moments of
deformation have the expressions we already inelil;atnd one immediately deduces the
expressions for the second ones. However, in tbakellations, one may specify the
functions that one must introduce according tortiire of the problem, and which are,
for example,x, y, z,and three parameter$) (A1, Ao, A3, by means of which one

n

expresses,a’, -, y".

! The passage from the elements that are referred tmthef volume of the undeformed medium and the
area of the frontie®, to the elements that refer to the unit of volume ofdbd®rmed medium and the area
of the frontierSat the instant is sufficiently immediate that it suffices to confiaeeself, as we have done,

to the first, for example.

2 For such auxiliary functiond,, A,, A; one may take, for example, the components of thé@otavhich
makes the axedx, Oy, Oz parallel toMx', My', Mz’ respectively.
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If one introducey, y, z,A1, A2, A3, and if one continues to 1&Y denote the function
that depends oRry, Yo, %, the first derivatives ok, y, zwith respect ta, Yo, Z, t On
A1, A2, A3, and their first derivatives with respect xg Yo, %, t that are obtained by
replacing the various quantiti€s 7, ¢, pi, G, ti, & 77, ¢, p, q, rin the functionW(xo, Yo,
2,4 & nm G pa, i & n ¢ p, g, by the values they are given by formulas (54), (55),
(64", and(55' ) then one will have:

_ 0w _ 0w _ oW _ 0w
AT BT e BT e M
0X, oy, 0z, dt
ow ow ow ow
B =——— B =——— B.=— ="
Ty BTy BTy Py
0X, oy, 0z, dt
C= T Ci=rgr G=rol, c=2T,
00— 0— 00— 0—
0X, oy, 0z, dt
ow ow ow
M. = ) =
Y R 7
ap| ap| aIOI
ow ow ow
n. = X. = =
o T an T an)
ap| ap| aIOI
ow ow ow
MN=—— X=—_ = .
JO T T T
dt dt dt

65. Notion of energy of deformation and motion— We must remark that our
present exposition contains the statics of defofenatedia as a special case. Indeed, it
suffices to consider geversible virtual modificationin the sense of DUHEM, instead of
envisioning aealizable virtual deformatioras we have done.

This observation leads us to consider the notibthe energy of deformation and
motion. We propose to determine the work donexvgraal forces and moments, as well
as external efforts and moments, of deformatiohdepend on an arbitrary time interval
for areal modification. For this, it suffices to calculate the elementaprk relative to
timedt. The latter is:

UHSD (X +nY, +--)dx,dy,dz, —”SD (éF, +nG; +...)dg}dt_
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If one replacesX,,Y,, -+, F,,G,,:-- by their expression as a function of the action,

and if one performs an inverse calculation to the daeled us to their definition, then
one immediately obtains, by virtue of the CODAZZI equiadi

{m [E +6—Wjdx0d dzo}dt

in which we have set:

Eo W OW W oW oW W
¢ on ¢ op aq or '

In particular, if one considers the case in whigldoes not containh explicitly, in
W . . i .
such a way thataa—t is null, then the preceding value becomes theedfitial with

respect to time of the expression:
I jso Edx,dy,dz,,

which may be called thenergy of deformation and movement at the instant t

At this point in the discussion, we need to mag&eesal important general remarks
that will find further application in what followia the theory of Euclidean action.

The only notion of Euclidean action of deformatimmd motion thasufficesfor us
furnishes, in a very extended casepastructivedefinition of the quantity of motion and
the moment of the quantity of motion, the effordamoment of deformation, and the
force and external moment. One may distinguiskirachical part and a static part in the
force and the external moment by grouping, on the lead, the terms that contain only
the dynamical acceleration, and, on the other hdredterms that contain only what one
may call thekinematical accelerationthis distinction obviously expresses an extension
of d’ALEMBERT's principle. Similarly, suppose that external work is nulldahat the
energy of deformation and motion remains invariartime. We thus obtain the notion
of conservation of energyyhich simply translates into the hypothesis thatmedium is
isolated from the external world. In turn, we recover a@llthe fundamental ideas of
classical mechanics, and it is manifest that théiquéar form that they take in the latter
context must be what one envisions for the statenofion and deformatiomn an
infinitesimal neighborhood of the natural stata, which one supposes th&l and its
derivatives are null.

66. Initial state and natural states. General indicationsn the problem that led
us to the consideration of deformable media=- In the foregoing, we considered the
trajectory of the deformed state, and, after dbswgyi theinitial position (Mp) of that
deformed state at a definite instagtwe referred it to the positioM() at an arbitrary
instantt. Considerations that are analogous to the onedeweloped in se&6, and in
which the parameter that was thus introduced is replaced by timé may be repeated
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here if we make one of the deformed states playdleethat we attributed to the initial
state Mo).

However, one may also imagine that the functigng, zthat determine the trajectory
of the deformed state depend on one parameter, and thatisimguishes a particular
value of this parameter. One thus defines a sequencates shat one may calhtural
states,and their trajectory may be called tinejectory of natural states.One may use
the new parameter as we did in dote sur la dynamique du point et du corps invariable
and study, in particular, the trajectory of the defednstates that infinitely close to the
trajectory of the natural states.

Conforming to the previous indications, suppose, to fixad#daat the external force
and moment are given by means of simple functions,ob, 2, t, the elements that fix

B -

the position of the triadVix'y'z. We may consider the equations of &that relate to
the external force and moment as partial diffeedr@quations that relate tq y, zand
three parameterd, Az, A3, by means of which one expresses’’,---,)" This viewpoint
is the one that presents itself most naturallye &kpressiong, 7, &, pi, G, ri, & 17, ¢ P,
g, r will be functions ofﬁ,ﬂ,ﬂ,ix,—dy,—dz,)ll % P %
0p 0p O0p dt dt dt 00 dt

P2 = Yo, O3 = 2, as always) that we may calculate by means of dtasn(54), (55),
(64)and (55').

Suppose thak,Y;,Z;, Ly, My, N, or, what amounts to the same thixg, Yo, Zo,
Lo, Mo, No are given functions ok, Yo, 2, t, X, Y, 2,41, A2, As. After substituting the
values of§, ..., r;, & ..., r that one deduces from formulas (54), (5G4 and (55 )the
expressioiW is a definite function of:

;- (settingor = Xo,

Ox 0z dx dy dz oA 0k dA dA, di,
X°’y°’z°’t’ax0' ’6zo’dt’dt’dt/ll/l2/l3’63’ 0z dt’' dt’ d

that we continue to denote ¥, and the equations of the problem may be written:

0 W .0 oW 0 oW _daow _
0%, aﬁ 9, aﬁ 0z, aﬁ dta% ’
0X, oy, 0z, dt
0 oW . d oW _ 0 oW _ d oW _

+ + +— =Y,,
0%, aﬂ 9, aﬂ 0z, aﬂ dtaﬂ
0X, oy, 0z, dt
0 W .0 oW 0 oW _d oW _
0%, ag 0Y, aﬂ 0z, aﬂ dtaiz :
0X, oy, 0z, dt
0 W 0 W 0 oW doW ow
0% g 0% 0y, g0k 07 ,0%  dty A, o4,
0%, oy, 07, dt

L,
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0 oW 9 oW 9 oW _ doW 9dW_
0% 504 0y, 504, 07,04, diydl, a4,
0X, oy, 07, dt
0 oW 0 oW 0 oW _ doW 9dW
0% 504 0y, 504 07 504, dtyd4;, a4,

0%, Y, 07, dt

M,

No,

in which £o, Mo, Np are functions ok, Yo, 2, t, X, Y, ZA1, A2, A3 that result from the
definitions of sec63. This pertains to the formulas of the preceding paragraipbstly,
in a way that is more immediate than the definitibhe Xo, Yo, Zo, Lo, Mo, No may
be summarized in the relation:

5jfmsowmg dy dz d# 57, =0,
i.e., in:
5]5 JIT, Wby, dzcit

={[[[L (A8+ Bay+ C+ P, + Qa1 + Rk )y
+J:2 J’J’SD(F05X+ GOYy+ HOZH I N+ TP, + KM ) o d

_J»ttzm'so (X OX+ Y0 y+ Z0 z# LOA+ MPA,+ N P4) dxdy dz «

67. Notions of hidden triad and hidderWW. Case in whichW depends only o,
Yo, 20, t, &, i, Gy &, 17, {, and is independent ofpi, g, ri, p, d, r. Extension of the
classical dynamics of deformable bodies. The gyrostatic adium and kinetic
anisotropy. — The considerations that we exposed previousiggard to the hidden triad
and hiddenW are also applicable to the deformable medium iniono It suffices to
simply add that a hiddew will correspond to a hidden motion.

In particular, we shall examine the case in wiMédepends only on the quantities

Yo, 20, t, & i, &, & 1, {but not on thep;, g, ri, p, g, r. The equations of se66 then
reduce to the following:

0 OW . 0 oW , 0 oW  d oW _ ow _
+ + +— = X, —+£,=0,
0%, aﬁ % aﬁ 0z, aﬁ dt a% 0A,
0X, oy, 0z, dt
0 OW . 0 oW , 0 oW  d oW _ ow _
+ + +— =Y,, —+M,=0
0%, aﬂ 9, aﬂ 0z, aﬂ dt aﬂ 04,

0X, oy, 0z, dt
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66W+6 6W+6 ow EGW:Z MH\/:O
0%, GE % aﬂ 0z, aﬂ dtaiz : oA 0
0X, oy, 0z, dt
0x 0x dx dy dz

—_— AL A, A

217731

in which W depends only, Yo, 2, t, —,---, o A
P Yo Yo & ox, ' 0x, dt'dt'dt’?
us that if we take the simple case in whighYo, Zo, Lo, Mo, Ao are given functions)
0x ox dx dy dz . .
of xo, Yo, 20, t, —,---, — — — A A then the three equations on the right ma
Xo, Yo, 4 ox, o, dt dt’ dt L A, As q g y
be solved ford;, A2, A3. One thereby finally obtains three partial diéfetial equations
that, by our hypotheses, refer onlyxg yo, 2, t, and tox, y, z,and their first and second
derivatives.

Imagine the particular case in which the givencfioms Lo, Mo, AN are null; the

same will be true for the corresponding valueshef functions in any of the systems:
(Lg, My, Np), (Lo, Mo, No), (L, M, N). From this, it results that the equations:

and they show

a_W: a_W:O a_W:O
01, oA, 01,
amounts to:
c, oy +C, oy +C, oy _B, 0z _B, 0z _ ! 0z =Bd—Z—C$/,
0X, 9y, 0z, 0X, 0y, 0z, dt dt
0z 0z 0z 0X 0x 0x dx ,dz
+ + -C -C -C =C—-A—,
A&axo AZayo A3620 Yox, oy, 0z, dt dt
0x 0x 0x oy oy oy _ ,dy _dx
B,—+B,—+B,— - - - =A2-B—,
Yox, oy, o0z A&axo AZay0 A3620 dt — dt
i.e., to:
1(_dz dy 1( .dx dz
- = B__C_’ x P =7 C__A_’
Py~ Py A[ dt dtj Po™ P A[ dt dtj
1( dy _dx
-p==| AZ-B—|,
e

which one may interpret as saying that the motibthe deformable body in question,
which constitutes the classical theory of elasti@s a special case, gives rise to a
momentvhose three components are:

! To simplify the exposition and to indicate more easifyat we are alluding to, we suppose tKatYo, Zo,
Lo, Mo, Nodo not refer to the derivatives &f, Ay, As.
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o5ct) Aot Aut-
A dt dt A dt dt A\ dt

and thus has the effect @éstroyingthe equalities:

Pyz = Pzy, Pzx = Pxz Pxy = Pyz-

%)
dt

Having said this, we observe that if one starts wittagctory that is supposed to be
givenand deduces the functiofls, Mo, Mo, as in sec63, then, in the case in which

these three functions are null one may arrive atdheltrthat accidentally presents itself,
l.e., for a certain set of particular trajectorieeyviever, one may arrive at this for any
trajectory M) as a consequence of the nature of the medMmdnd its motions, i.e.,

from the form ofW.

Imagine the latter case, which is particularly inséirgy; W is then a simple function
(*) of Xo, Yo, 2, t, and ten expressions, &, &, U, Vo, 1, $1, $2, s, V* that is defined by

the following formulas:

2 2 2
1604 oy 0z 1 2, .2, 2
£ == + D 4| P cal= (&2 n2 -,
l {(GXOJ (aXOJ (aXOJ } 2(51 ,71 Cl )
1{( o av) (az) 1
_ X y Z _ 2 2 2
E == — | +| = | *|=—| -1} ==(& *+n, +¢; D),
’ 2{(63/()} (VOJ (GyOJ } 27
1(ax) (oy) (az) 1
_ X Yy zZ _ 2 2 2
E,==d| = | +|=L| +| = -1 ==(E2+n2+c2 -2,

_ 0OX 0x 6y 6y 0z 0z
0y, 07, aYO 0z, aYO 07,
_ 0x 0X 6y oy + 0z 0z
620 0X, 620 0x, 0z, 0X%,
:6x 6x+6y 6y+62 0z
P0X Oy, 9%, Oy, 0X, dy,
dx ox dy 6y dz 0z

= 5253 + ,72,73 + CZCS’

l

2

= g(Z*’><(l +,73,71 + CSCl’

= 5152 + ,71,72 + ClCZ ’

= + +
¢, = dt ox, it ox, ot ox, =46, i+ 6E,
dx ox dy dy dzoz
— +— = + + ,
9. = dt dy, Tt dy, dtdy, ERUCAR
dx 0x d oy  dz oz
¢; = YL =¢65 + 115 + 66,

dtoz,  dtoz,  dtoz

()7, () (e
Y _[dtj +(dtj +(dtj AL

! The triad is completely hidden; thus, we may also imagiat we have a simply pointlike medium.
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The equations deduced in sé2.and63 reduce to either:

Z(ai+qici,_riBi’J'*_%'*'qC’_rB’:X(’)’ Fé:lOAi_*_mOA;-*—noAé"
op, dt
aB: [} r dB, r [ 1 I — ! ! !
Z(a_wri/a—pio}ﬁﬂ/*—pc =Yo,  Gp=loBy +myB; +n,B,
> o<, pB —-q A L9c, pB'-gA' =2Z;,,  Hg =1, +mC, +n,C;,
0p; dt
in which one has:
LW AW W | W
=& + +¢. + )
AT e Ty Ty, g,
oW  OW AW W o
B-’:- + +n. + , |,,k:1,2,3,
e oy Ty, g )
Croc W, OW 0w oW
©Tog Moy oy o4
10w ow
A==+ 6 —,
vavg zgl 09,
10w ow
B =="—n+Y1n—
VaV,7 zl]l a¢i
, 10w ow
==+ —
V@VC ZCI 09,
or to:
0A _0A, L 0A,  dA
+ + +—=X_, F,=1,A + +n A,
o, Oy, 0z, dt ° o TRATTLA A
0B, , 0B, A 0B, dB_ g G, =1,B,+mB, +n,B,,
ox, 0y, 0z, dt
oC, ,9C, , G  dC_ H, =1,C, +m,C, +n,C;,
ox, 0y, 0z, dt
in which one has:
OX _ OX _ OX dx
Al laxo 36y0 2620 ldt
B, =Q, % +=, % +=, ay'*'q)lﬂ
6X0 ayo aZO dt
0z _ 0z _ 0z dz
C.=Q = = +®, —,
tox, oy, oz, Lt
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with analogous expressions #4, B, C,, As, B3, C; and

A=o. X ‘o, ox ‘o, ox 16de’
0X, A 0z, Vv Ov dt
B, Y 40, Y 4o, N LW
X, ay, 0z, v ov dt
c=o, 62+¢2 az+cD 0z 16Wdz’
0%, dy, -0z, v ov dt
upon setting:
W Wy W
' oe Loy 09,
or again to:
0
0P, , 0Py, 0P,  1dA_ =lp,, +mp,, +Np,,,
ox o0y 0z Adt
op,, Op, Op, 1dB
+ + +__:Y, G:|X+m +nz,
ox 9y 0z Adt Py IRy 1P
0
apxz + pyz + apzz +£d_c = = Ipxz + mpyz + anZ,
ox dy 0z A dt

in which one has:

2 2 2
1 1) o0x 1)
=—Q. | —| +Q. | —| +Q.| —
pxx A{ l(axoj Z(Gyoj S(GZOJ

Loz X ox 0X OX | o=

_l

0z, 0%,

0x 0x
7 0%, dy,

N chaxHDZaxHDaax Q(
0X, oy, 0z, ) dt
0 :1{ 0x 6y 0x 6y ox ay
AV ox, ax, 2 dy, ay0 ® 0z, 0z,
(ax 6y 0x ayJ (ax 6y 0x ayJ (ax 6y 0x ayJ
6M%%% 6M&%% 6Mw%%
+CDlay+CD 6y+cD 6y dx’
0X, oy, dt
1 0z 6y 0z 6y 0z oy
P __{Q 3
A~ T 0X, ax0 A ay0 0z, 0z,
— [0z ox 0z 0X = 0z 0x _ 0z 0x = 0z 0x 0z OX
"\ dy, 07, 02, 0, ) 202 0%, 0% 07 ) 0%, Oy, Oy, 0%,
+(CD1 0z o, 0z , azjdx}
0X, 0 dt



THE DEFORMABLE MEDIUM 19¢

with analogous expressions 0%, Py, Pzy Pz Pyz Pzz. We thus obtain the most general
equations of motion for the classical deformable body.
In order for the effort to satisfy the relations:

pyz = pzy, Pzx = Pxz pxy = pyx,

it is sufficient that one has:
¢ =0, @2=0, @3=0,

i.e., thatW is independent of the argumemts @,, ¢;. More particularly, if one must
have:

pyz = pzy: 0, Pzx = Pxz= 01 pxy = pyx = 0,
thenW must be a simple function &fandv, and one finds that:

Pxx = =p :M'
x = Pyy 2z aA,

one then finds the motion ofpeerfectfluid in this case.
When the functiongo, Mo, Ny are not null W will have the twelve translations

& n, &, & n, ¢ for its arguments. On the one hand, the medium maederded as
gyrostatic, by giving a justifiable extension to this word, whichsa@ined by LORD
KELVIN, and, on the other hand, the medium is endowed kimetic anisotropyjn the
sense envisioned by RANKINE and then by LORD RAYLEIGHor Example, one
therefore makes the theory of the double refractiofigbt, such as was exposed by
LORD RAYLEIGH and GLAZEBROOK, rest on a purely mechahicbasis.



V. - EUCLIDEAN ACTION AT A DISTANCE,
ACTION OF CONSTRAINT, AND DISSIPATIVE ACTION

68. — Euclidean action of deformation and motion in a discontirous medium.—
Consider a discrete systemrofriads in which each triad is distinguished by an index

! -

that consequently takes the values 1, 2n..L.et M, X'y z be the triad whose indexiis
with an originM; that has the coordinat&s y;, z, and axesM.x’ M.y;, M.x' that have
the direction cosines,a’,a;5.48 .4y ¥ ¥ with respect to three fixed rectangular
axesOx, Oy, Oz We suppose that the quantitiesy:, z,a,,a;,---,)/ are functions of
timet, and we introduce the six argume#gtssi, ¢, pi, G, ri that are defined by formulas
(54") and (55) of sec.60 with the index.

Envision a functionW of two infinitely close positions of the system of

triadsM,xy/z , i.e., a function ot, of x, Vi, z,a,,a/,---,y;, and their first derivatives

with respect ta (i takes the values 1, 2, .n). We propose to determine what sort of
form W must take in order for that function to remainanant under any infinitesimal
transformation of the group of Euclidean displacetmesuch as (60). Observe that the
relationg54' Jand(55) of sec. 60, with the indexi, permit us to express the first
derivatives of the nine direction cosinesy!,---, )" with respect td by means of well-

known formulas that involve these cosines pnd;, ri, and, on the other hand, to express
these nine cosines,,a;,---,) by means o, 7, {, and the first derivatives of, y;, z
with respect ta. We may therefore finally express the funcththat we seek as a
function oft, ofx;, yi, z, and their first derivatives, and finally, éf 7, &, pi, , i, which

we indicate by writing:

dx dx dx
W:W[t,xi,y,,Z, d_): d_): - aanucwpwa’ |j

Since the variationdé;, oni, o, i, 4, o are null in the present case, as a result of
the well-known theory of moving frames, we mustteithe new form foWV that one
obtains by virtue of formulas (60), when taken wtitle indexi, and for anya;, ap, as,

W, G, a3 .

z aWc5<i+aWcS/i+achzi+ ow 5% ow 5dy, ow _dz o
—| X ay. 0z, 3 dx  dt P dy, dt 392 dz * dt
dt dt dt

Replacedx, Jyi, oz with their values in (60) and— d)ﬁ o— dy o— dz with the values

one obtains by differentiating them. Equate thefft@ents ofa;, &, as, @, @, a; we
obtain the following six conditions:
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(63) >0 W_o z__o

and

ow ow dy, oW dz 0w
v aar =

0z oy, dt 4dz dt dy,

dt dt

(64)

with analogous relations.

If we suppose thathe points(x, Vi, z) describe all possible trajectoriethen we
arrive at identities that verified by the functioM of the 6 arguments ok, vy, z,
dx dyI dzI
dt ' dt ' dt
moment. We seek to discover the resulting formNor

We commence by treating the case of the systehred equations:

, and the last argumengs 7, &, pi, G, i, which we leave aside for the

< 0w ow
Z Yoo~z |=0,
i=1 0z, oy,
i=p

(65) Zia_W—Xiaﬂ :O,
iz OX 0z,
<R OW VAN

X—="Y - |=0

=AY 0%

that determine a functiow of the 31 arguments;, Vi, z. We have already encountered
this system in the context of the statics of thee,lisurface, and continuous three-
dimensional medium, in the case whpre 1,p = 2,p = 3. We leave aside the cgse

1, in which the three equations reduce to two. per 2 andp = 3, we have three
equations that form a complete system. frer2, we have three equations, six variables,
and three independent solutions:

Xt +yl+2z7 (1=1,2), XX +yiy:+2zaz;
for p = 3, we have three equations, nine variablessanthdependent solutions:
x> +y? +27° (i=1,2,3), xxX+Vy +2zz (i=1,2,23).

Forp > 3, the system is still complete. To prove th&iffices to show that they admit
3p — 3 independent solutions, in which the numbezrqpfations is 3 and the number of
variables is B. We effectively have first, the solutions:

X +y? +27° i=12..p),
then the solution:
X Xo + V1Yo + 2120,
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and finally, the 29 — 2) solutions:
XX + Yy + 2z, XX +Y2yi t+ 27 (i=3,4,5,.p),

which are independent/V is thus a function of the B¢ 1) independent arguments that
we just enumerated.

Now return to the proposed system that is formed fronditions (63) and (64). The
conditions (63) prove thatv depends orxa, ..., Xn, Y1, ..., ¥y 24, ..., Z, Only by the
intermediary of the expressions:

Xo=Xo =Xy, X3=X3—X1, ...,  Xn=Xn— X
Yo=Yo=VY1, Ya=Y3—=V1, ..., Yn=Yan—Vi
Lr=2-72, L3=2-7, .. Zn=Z—17.

On the other hand, set:

and demand that equations (64) be verified by the fungYiofhthe argumentX, Xs,...,
Xon; Y2, Ya,..., Yo, Z, Z3,..., Zon . FOr example, consider the first of equations (68y

become:
ow ow ow ow ow ow
-y, + +.o + + +.oo+—
0Z, 0Z, 0Z, oY, adY, aY,
ow ow
+(y, -Y. —(z-2,)—+---=0.
§A 2)622 (z, 2)6Y2

y1 andz; disappear, and what remains are the first of thatons:

& oW aw
Z —

y -2 2 =0
i=L 0z i oy,
=\ T ox oz ’
& 0w ow
Z ——=Yi-—|=0
=\ oy, 0X;

We thus come down to the system (65), in whicly;, z are replaced b¥+1, Yi+1,
Zi+1, andp by 2n — 1.

If we first suppose that = 2, then we see tha¥ is abstractly given in terms of the
argumentss, i, &, pi, G, Ii as a function of the independent expressions:

xz2 +Y22 +222 = (Xz _X1)2 +(y2 - y1)2 +(Zz - 21)21
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><+Y2+ZZ—( Sy (dyl) ( ) =g anied,

><2+Y42+Zf=(dx2)2+(dy2)2+(d22)2=f§+n§+c§,
d
X X5+, + 2,2, = (%, = %) - Xl (Y, - yl) +(z,-7) 2

d
XX, TV, + 2,2, = (% =) 22 X2 +(y, - yl) +(z, - zl)d—zf

dx, dx, dyl dy, . dz dzz

Koo ¥ V¥a ¥ 252, = dt dt dt dt dt dt’

Therefore, we finally have thd¥/ is a function of&, 7, &, p, G, ri, and thefour
arguments:

(X, —x1)2+(y2—y1)2+(z -z)%,
(6 =%) S+ (v = ) D+ (2, 2)

_ Xz dz,
(X, x) +(y, - yl) +(2,-27) ot

d_>9dx2+%dyz dzldzz
dt dt  dt dt dt dt’

If we suppose thah > 2 then we see thaW is abstractly given in terms of the
argumentss, 7, ¢, pi, G, I as a function of 6(— 1) independent arguments:

(xi—x1)2+(yi—y1) +(z - 21) (i=12---,n),

X{+Y?+27 = dx, ’ dyi dz,
i 35 Y L +n2 +
() o[ B) (%) —greniea

XoX3+ YoY3+ ZoZ3 = (X2 - X1) (X3 - X1) + (V2 - Y1) (Y3 - Y1) + (2 - z1)(z3 - z),
2 Xl)(x - X1) + (Y2 Y1)(Y3 - Y1) + (Zz - 21)(23 - 21)’

dx, Wiy, — 5y %%
(2x1) +(y2 )Olt (221)Olt

(X5 = X)(% = )+(y3 Yoy =) +(z - 21)(2—21),
(%5 = ><1)Xk +(Ys — yld +(z, - 21)

(x
xzxi +Y2Yi +Zzzi =
x3xi +Y3Yi +ZSZi :{

We remark that one has:

(% = %)% =X)+ (Y =YY —Y) +(z —z)(z - z;) :%(rijz +1 _rk?),
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in whichr is the distance between two points of the systErom symmetry reasons, one
may have to involve arguments W that arenot independentin which case, one may
take, independently of th&, 7, &, pi, G, ri, the following arguments:

rijz = (% _Xj)2 +(Y, _yj)2 +(z _Zj)z,

[//i_ :%dxj +%dyj +%dzj ,
) dt dt  dt dt dt dt

_ dx, dy dz .
Ay = (% _Xj)E+(yi _yj)d_tk+(zi _Zj)E’

the latter subsume the arguments with three indigeand arguments with four indices
Aik. They figure only when there are more than twmtgp and one sees that the action
on two points is influenced by all of the otherrgsiin this case. It is easy to establish
the relations that exist between these dependgotvants in a form that is sufficiently
complex; they are analogous to the relations betwle® distances; when the number of
points is> 5.

If we know the expression for the Euclidean actnn a the system of triads in
guestion, then, by a calculation that repeats ties eve made before, one may easily find
the expression for the external force and momeraroarbitrary triad. Since the action

W s a function ok, i, z, %%Z—i‘ by the intermediary ofi, ¢;, Ak, it is easy to
regardW as primarily a function of;, y;, z, %%% and of§, ni, &, p, G, ri. We
have:
t,
3wt

ta

:{Z(A(X +Bdy +Ca +Rd +Qa); + R‘KiJ

o]

_.[ttZZ(Xid(i +Y oy, +Z,0z +L;d; +M, A, +N,K; )dt,

in which we have set:

oW OW W W _OW . OW
=4a th Y ' R=a th Y '
A= ae "Pan Vag T
oW . OW W W OW ., 0W
B =a' + ' +y , . =a) +0 +y ,
Lo g on, g a¢, N op, g aq ' r
oW ., 0W W oW | _OW . ,0W
C- - a" + -II + -I , ) — alll + i" + iI ,
L ag g on, g a¢, R op, g dq, g ar,

in which A, Bi, C) and @, Q;, R) are the quantity of motion and the moment of the
guantity of motion, respectively, for the triadinélexi, and:
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i:d_A+£ al —a_W’ |_i :£+Ci%—5i%,
dt dt] jdx | ox dt dt dt

dt
i:ﬁ.}-g al _a_W, |\/|i :&4-,6\%_(;%,
dt dt| jdy | oy, dt dt dt

dt
Zi:£+i _6W —a_W’ Ni:d_R+Bi%— %’
dt dt| ;dz | 0z dt dt dt

dt

in which (X, Y;, Z) and (i, M;, N;) are the external force and external moment ofrihd
of indexi; what remains in these calculations is to exhibitatguments;;, ¢, Aix, but
this is easy.

We remark that the expression for the external foneg be decomposed into two
parts. The first, which depends on the segmeAis g, C), (P, Q, R) and their
derivatives, is the properly dynamical part. The secuwdch results from the presence
of the arguments;;, ¢, Aix in W corresponds to the force that the triad of index
subject to on the part of the other triads of the syst€onsider the expression:

dx; dy, dz
X —+Y —L+Y —L+L(ap +680q +yr
|2|: ! dt 1 dt I dt |( |p| |q| y| |)

+M,(a/p +Bg +yr)+ N, (a'p, + B +yr)ldt,

which represent the sum of the elementary works ofdhmes applied to the different
triads. If we calculate them upon replackgY;, Z, Li, Mi, N;, with the preceding values
then we find the following expression for the elementaoyk relative to the dynamical
part of the external force and the external moment:

{d( W AW AW  OW  OW awj
Dl &=t G —+p——+G——+T,

dt\""ag on, o op, 'aq o
- oW d¢; +6W dr +...+6_W% dt,
o0& dt  an dt ar. dt

and, for the elementary work due to the forcesdhatexerted between the triads of the
system, we have:
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S| o] dx ow  dy ow  dz ow
=) dt| dt jdx dt ,dy dt jdz
dt dt dt

oW d*x L oW d?y. L oW d’z LOWdx oW dy  ow dz
gdX dt*  Sdy dt® 0z dt® ox dt dy, dt oz dt
dt dt dt

If we add these two expressions, and set:

E:Z E.6W+/7.6W+c.aW+p.aW+q.aW+r.aW
=\ a& on ' oc ' op, ‘og, ' or,

+% 6(\jN +% 6(\jN +%_a(\jN -W
dt 5dx dt jdy dt jdz
dt dt dt

then we see that the sum of the elementary works is

dE+M dt,
ot

in which we suppose tha¥ is independent df and when we giv& the name oénergy
of motion and positioffor the system of triads in question, we obtapr@position that is
entirely analogous to that of sé&&.

From the foregoing, it is easy to deduce a sysignamic that is established on the
same basis as the classical theory, but withoutidighourselves to central forces, as in
the latter case. Moreover, the actual expositi@sgnts the advantage of associating the
diverse laws of force at a distance that were sty GAUSS, RIEMANN, WEBER,
and CLAUSIUS 1), who uniquely introduced the argumemfs ¢, yx to their true
origin.

69. The Euclidian action of constraint and the dissipative &clidian action. —
The considerations that we must develop in regarthe Euclidian action at a distance
lead to the notion afonstraintin a natural manner, a notion that was due to G3d&d,
as one knows, was applied by HERTZ to the studtheffoundations of mechanics by

! See R. REIFF and A. SOMMERFELEncyclopadie der Math. Wissenschaftg®, pp. 3-62.
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f(l)llowing a path already explored by BELTRAMI, R. ISBHITZ, and G. DARBOUX
).

To simplify, let there be a point that describes andefitrajectory by the three
functionsxo, Yo, 20, and timet when its movement gee. On the other hand, denote the
functions of timet that describe its trajectory when it is subject to tangs byx, vy, z.
We may envision the two point¥,(Y, 2Z), (Xo, Yo, Zo), whose coordinates are obtained,
for example, by the formulas:

dx 1 d?x

2
dx, dt+EOI %o dt?,

X =x+—dt+=—-dt?, X,=x%,+
dt 2 dt? 0 =% TG 2 dt?
dy . 1d% ., dy, .. 1d%y, >
Y=y+2dt+=—2dt?, Y, =y +22dt+= dt?,
T 2 dt? 0= Yo T 2 dt?
2 2
z=7+%g. 10 Z4t?,  Z, :zo+OIZO dr+ 19 % dt?,
d 2d dt 2 dt

which provide the TAYLOR development up to thetfilsree terms. If we assume that
the constraints arfictionlessthen we may demand that at the instaint question one

has:
dx _dx, dy_ dy, dz _ dz,
X = Xo, =Vo, 2=29 —=—+, —=—"1+, — =,
o YEYo 278 T Gt dt dt dt

Having said this, the introduction of the notidnconstraint due to GAUSS amounts
to replacingr by its value, where denotes the distance, after having considered the

Euclidean action at a distandg;(r) in such a way that one is led to the functibof the
argumentythat is defined by the formula:

)2 = d?x _d?x, 2+ d?y d?y, 2+ d’z _d?z ’
dt>  dt? dt>  dt? dt2  dt? )

If we then apply the method of variable action,hase:

d’x _d®x d’y _d’y fz _dz
oJ=X|0—-0 +V|0—5-0—7 [t Z| 00— -0 :
( dt? dtzj y( dt® dt’ dt’ d

in which we have set:

! BELTRAMI, Sulla teoria generale dei parametric differenziali, Mem. DellaABcad. Di BolognaFeb.
25, 1869.

R. LIPSCHITZ, Untersuchungen eines Problemes der Variationsrechnung, in welchem atdsr®rder
Mechanik enthalten ist, Journ. fhr die reine und angewandte Mathmenidfikpp. 116-149, 1872;
Bemerkung zu dem Princip des kleinsten Zwanges, 8idop. 311-342, 1877.

G. DARBOUX, Lecons sur la théorie générale des surfa@Part, Book V, Chap. VI, VII, VIII, Paris,
1889.
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_1du(d®x d’x _1du(d’y d?y, _1du(d*z d’z
X=— >~ ’ y=— - , Z=— T2 |-
ydy| dt® df ydyl d? df ydyl d dt

If, with GAUSS, we call the argumepthe constraintthen the forceY, ), Z may be
called theforce of constrainthat is applied to the poink,(y, 3, and may be regarded as
having the effect of impeding the free motion of the gain the contrary, the force X,

— ), — Z has the effect of changing the free motion into thestrained motion.

The essential difference between the present cdooepf force and the one that
results from NEWTON's laws of motion is the followinga the latter form, one
considers the action relative to two infinitely clgsesitions— one present, one future
on the same trajectoryn the conception of GAUSS and HERTZ, the actiorefsrred to
two future positions: one on the trajectory we cafleg, the other on the trajectory we
calledconstrained. In the two cases, one obviously has a theory thatifseus topredict
the future motion, which is the object of point dynami¢twever, in addition, and this
is the point that we would particularly like to claritiie action i€uclidean.

On the subject, it is interesting to remark that GSUSs explicitly established an
agreement between the action of constraint andatheof errors,which has the same
form in effect. One therefore sees that the fundaateharacter of the law of errors is
the Euclidean invariancef that law, and that the new branch of mechanics¢lwhias
created by MAXWELL, BOLTZMANN, and W. GIBBS in the namof statistical
mechanicsmay likewise receive the deductive form that we progdosgive ordinary
mechanics here.

We may further observe that the forces of condtitaamslate into amdeterminacy
that is the product of the definition of the force, aviiich leads to the introduction of
LAGRANGE multipliers, just as in the mechanics that aterives from NEWTON'’s
ideas as in what one deduced from the notion of GAUSSticant.

GAUSS'’s idea may also be applied to friction by envisiorriguclidean action on
the two points:

dx dx,

X = x+—dt, X, = X, +—2>dt,
at 0 =% T
dy dy,

Y = y+—>dt, Y, =y, + dt,
y at o= Yo dt
Z=z+d—zdt, ZO=20+d—Z°dt,

dt dt

in which the pointx, Yo, % refers to a free trajectory, and the pointy, zrefers to a
trajectory that is traversed with friction. As aee dealing with sliding friction here, we

dx dx, dy dy, dz dz,
must setX=Xg,Y=Vo,2=2, — = —, =2 =pu—2, —=y—=2. We are then led to
) Y=Y 2=2 dt H dt dt H dt dt H dt

2 2 2
a function of the velocity, = \/{Z—Tj +(%j +(%} for the action, affected with a
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factor 1 —u, which corresponds precisely to the notion of dliesipation of the free
action at a point Yo, 2.

The arguments;, ¢, Aix that we considered in se88, translate, by definition, into
an analogous idea with regard to a triad we take to baadalathe system af triads in
question. One may, if one prefers, distinguish betvieese arguments, and say that
is a potential argument, and thag;, Ay are dissipativearguments. The central force
hypothesis thus amounts to considering only the dynamisgstéms withoutriction at
a distancein mechanics. From the argumenis ¢;, A, one may, on the other hand,
derive the particular argument of WEBE%['—, and if one passes from the discontinuous
medium to the continuous medium, in which the cphcests on the considerationdsf
for the space, then one finds oneself led to intced the viscosity arguments
de, de, de; dy, dy, dy

dt * dt * dt ' dt’ dt dt
envisioned for the first time by NAVIER and POISSQOdthe must obviously also place
arguments such as the argumédb + 7177, + (1{, which was considered in seZ, and
arguments such ag:, ¢ @3 from sec.67. We confine ourselves to these summary
indications on viscosity, which has not been givierther study in a sufficiently
systematic manner up till now.

in the actionW. Beside such arguments, which were



VI. - THE EUCLIDEAN ACTION
FROM THE EULERIAN VIEWPOINT

70. The independent variables of Lagrange and Euler. The auiary functions
considered from the hydrodynamical viewpoint.— In the statics and dynamics of
deformable media, we took, yo, 2, andxo, Yo, %, t, respectively, to be the independent
variables. In the former case (statics), onedgtso, z denote the coordinates of the
point My of the natural stateMp) by imaging that this natural state is deformed in an
infinitely slow fashion so that its points do not acquany velocity, and passes from the
position M) to the position NI) in a continuous fashion')( In the second case
(dynamic), one let%, Yo, 2 denote the coordinates of the positMgat a definite instant
to of the point that is aM at the instant. The position Klp) of the mediunplays a
particular role.

The deformable mediunM) has been considered to be generated by a Miey'Z,
whose originM has the coordinates, y, z,and whose vectors have the direction
cosinew,a',a";B3,6.8";y,V V' with respect to the fixed ax€x, Oy, Oz In the static
casex, Yy, za,a',---,)" are considered to be functions of the independariahiesxo, Yo,

Z, and, in the dynamics case, as functions of the iftdependent variableg, Yo, %, t.
In either case, we say that the independent vasgabhagined are the LAGRANGE
variables,and if we would like to make this concept speciiie demand that:

(66) X = X(Xo, Yo, Z), y = Y(Xo, Yo, 2), Z=2Xo, Yo, 2),
or:
(66 X =X(Xo, Yo, 2, ), y = Y(Xo, Yo, 2, 1), Z= X0, Yo, 2, 1),

and, similarly, we have either:

(67) T=0(%.Y0.2), @ =0(%.Y0.2), Q" =0" (%Y. 2),
or
(67" T=a(%. Y020 t), @ =0 (%, Y0 %0, t), 0" =" (%, Y. 2Z,,1),

with analogous formulas foB, 8", 8",v.v',y"

However, we may now imagine that one performs angh of variables on the
independent variables. In particular, by analogiyh what one does in hydrodynamics,
we may imagine that one takesy, z,0r x, vy, z, tto be the independent variables. We
then say that we are imagining the EULEZRiables.

What is the fundamental question we must askthdrtheory that we just developed,
where one considered that question to be eithequlestion of defining the elements of
force, etc., or, conversely, that of determining thosition ), we encountered the

! In this conception of the infinitely slow deformatiofia medium, which is analogous to the reversible
transformations of thermodynamics, we have defined etkternal force and moment, the effort and
moment of deformation that one may qualifystetic, and then the work done in passing frdvi)(to (M),
and, consequently, we obtain the notion oféhergy of deformatiorwhich is placed beside thatadtion,
which we started with.
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4

functionsx, y, za,a’,---,y" of xo, Yo, 20, Or 0fXo, Yo, 2, t that are defined by (66), (67), or
by (66'),(67'). Imagine that one solves equations (66)66" with respect to, Yo, 2;
one has:

(68) Xo = Xo(X, ¥, 2), Yo =Yo(% ¥; 2, 20 =2(X, Y, 2,
or
(68) Xo =Xo(X, ¥, Z 1), Yo =Yo(X, ¥, Z 1), =X Y, z1),

and, substituting these in (67) 7' , Wye have:

(69) a=a(xy,z), a =a'(xy,z), a"=a"(x,y,2),
or
(69 a=a(xy,zt), a =a'(xy,zt), a"=a"(x,y,zt).

We presently know the functions, yo, 2, a,a’,---,)" of X, y, z,or ofx, y, z, tand,
conversely, by solving (68), (69) a8 (B9 )one will then pass to (66), (67) or to
(66", (67").

However, one must complete the statement that beishade by observing that in
either case it may be convenient to introduce thdiary functions.

If we imagine the case of LAGRANGE variables, #&yrhappen that the functiors
y, zdo not figure in the question explicitl§){ it may therefore be convenient to introduce
the first derivatives oKk, y, zwith respect taxo, Yo, 2, Or with respect too, Yo, 2, t as
auxiliary variables 9. In this case, by imagining, y, za,a',---,)y",one may also

introduce the translations and rotatiagfis..., ri, ¢, ..., r as auxiliary functions if onlyo,
Yo, Zo OF Xo, Yo, 2, t figure in the givens.

If we imagine the case of the EULER variables then may indicate analogous
circumstances in which the use of the auxiliaryialdes may offer advantages. First,
suppose that the hypotheses that we must consadehdé LAGRANGE variables are
realized. We may preserve the indicated auxilirgctions. The only essential
difference from the preceding case resides inuttinate determination of formulas (66),
(67) or the analogous ones, if one performs thémie suppose, furthermore, that o,

7, do not figure in the question then we may intradtlte derivatives ofo, Yo, z with
respect t, y, zor with respect ta, v, z, tas the auxiliary variables.

Following these indications, one sees that theag be some use for the equations
that served as the point of departure since thag weesented in a convenient form from
the standpoint of the auxiliary functions. Oneearlies that this goal is already attained
by the equations that we previously obtained, inctvbhe auxiliary functiong;, ..., ri, &

..., I already figure.

! This is what normally happens if one starts with redike the ones given in our exposition and if one
does not modify the expressions of force, etc., by viofude formulas (66), (67) o(66'), (67' )Jndeed,
the letters, y, zdo not figure explicitly in\.

2 These auxiliary functions are actually coupled by relatibat are easy to form; the same remark applies
in general. They are not introduced in hydrodynamics, evttez auxiliary functions are derivatives with
respect to just the variabldand where the use of these auxiliary functions isdftaited to the case of
introducing the EULER variables).
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71. Expressions foré, ..., ri (or for &, ..., ri, & ..., r) by means of the functions
X0, Yo, 20,@,a' -+, )" of X, y, z(or of x, y, z, Y and their derivatives; introduction of the
Eulerian arguments.— From the explanations that must be given, itlteshat it may be
useful to have expressions f@r ..., ri or for &, ..., ri, & ..., r, which are evaluated, no
longer in accord with formulas (66), (67) (6'),(67" which suppose that, Yo, z or
Xo, Yo, 2, t are independent variables, but in accord with tdas (68), (69) or
(68", (69'), which introduce the functions, Yo, 20, @,a',---,)" of x, y, zor ofx, y, z, t.

We think about the case in whighfigures in a general manner. The formulas
obtained give, in particular, the case in whigly, z,a,a’,---,)" are independent of By

virtue of (66'), (67'), the quantities, ... are calculated by the formula3:

5=aax R LI L B
0p, 0p, 6,0, dt dt dt
ox oy " dy "

70 o= + + , _+
(70) n, '86,0, '86,0, '86,0, n=pg /J’dt /J’
0x oy dx
= + + —+y + -
'q J/api Vapi Vap[ =Ygty dt V

-y, 9B_ 5,z
=3 a2, peyy Loy

6,0, 00,
(71) qi—Zaapl Zyapl, q=>.a S Vg
- - = d_a:— %
ri_Z'Bap, 2a ap, DN rrai) Mo

(in which o1 = X0, 22 = Yo, 3 = %), and these are calculated by meansofy, 2%
a,a',---,y" and their derivatives with respectxpy, zusing formulas(68), (69" ).

To that effect, we shall show that the quantit§gs..., ri, & ..., r, which will
henceforth be calledlagrangian argumentsare simply expressed by means of the
following auxiliary functions, which we call Eulamn arguments:

(&)=alél+a'lnl+a"l¢], (§) :%

(72) 1) = BIEL+ B+ Bl (n)=aﬁ,
©)=yE+YInl+yicl Q)= aps

! We use the habitual notations for the derivativeth wespect tat. (See e.g., APPELLTraité de
Mécanique]T. Ill, 1% ed., pp. 277).
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(p)=alp]l+alq]+alr], (p)=2y%=—2ﬁa—y
73) 1@)=Apl+Blal+ Al @=Ya ay = - ‘Z‘t’ ,

) =vpl+yial+yin, ()= zﬁ - aa'f
in which we have set:

o, . o
LI n1= 1=

-y, 98 _ 530 -y, 98 _ _§5 3% -y, 98 _ 5z
[pll—Zan Z/J’ax, [a,] Zyay Z/J’ay, [r,] Zyaz Z/J’az

with analogous formulas fop{], [cg], [r2], and for pg], [ag], [r3] that are obtained by first
changingy; Sinto a, y; and then intgs3, a, and we employ the well-known notatiort$ (
oa 6,8 ay

ot ot ot
We differentiate relation®8') successively with respect to the LAGRANGE

variables; they become four systems of three egustihat, by virtue of notations (70)
and (72), one may write:

(75)  &(&) +m(m) +4(d) =1, &(dd +m(md +G(4) =0, ( ¥K),

(&) + &) +n(m) +6(¢) =0,
(76) (m) +£&(S,) +n(n7,) +6(¢,) =0,
(€) +¢(&5) +n(n5) + ¢(63) = 0.

By virtue of the preceding relations (75) (as vadlthings that result from formulas
(78) given before), the last three relations (7&y e written:

(&) +&,(6) +&,(n) +&,(6) =0,
(76') (1) +1.($) +n,(7) +175(¢) =0,
(€) + 6. (&) + ¢, (1) +65(¢) =0.

Once we solve equations (75) and (76), we obsdrae we may replace these
systems with equivalent systems that are obtaiyedifferentiating relation§6’ )with
respect to the EULER variablesy, z, tsuccessively, and which, by virtue of notations
(72), may be written (upon multiplying laya',a" and adding, etc.).

! See APPELL]raité de Mécaniquél. IIl, 1% ed., pp. 277.
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— 0x _ ox B dx
a=XE)5, ARy, r=X@),
05) (@ =YE)er AEYm)ir FEYE) s
=@y V@) V=R

to which we adjoir{76' ).By multiplying systen{75" bya,a’,a" and adding, etc., it may
also be written:

25.(5.)=l zgi(”i)zoi zgi(Ci):Oa
(75) zfﬂ ($)=0, zfﬂ () =1, z/% (6) =0,
2.6E)=0 Y am)=1 2&()=1

Once again, observe that the following form, whioitplies (75), is intermediate
betweer(75" and (75), and ultimately results from formulas (26jnbined with (75) and

formulas (74):
a:zgi[gi]’ ,3:2/%[5], VZZCi[Q(i],
(75") 0'225[/%], ﬁ':zfﬂ[/?i], ,BHZZCi[Ui],
a":zgi[Ci]’ V':zlﬂ[ﬁ], VIZZQ[Q]-

One sees that the Lagrangian arguments are fusatioonly the Eulerian arguments and
conversely (at least as far as translations areerand).

First determine the Lagrangian arguments by meéatise Eulerian arguments. L&t
denote the determinant:

51 ,7]_ C]_ a a a' an
A= 52 7, ¢l which iS%, if ﬁ ﬁ' ﬁ" -1
s Ny G %01 Y01 %o v oy Y

Let&,n:,6,,65.75.6,.E 0756 be the coefficients of the elements of the deteamt
A, i.e., the minors given a convenient sign, whizdréfore amounts to setting:

51':/7263_/73(21 /7126253_(352’ 61252/73_53,72’

Upon solving equations (75) with respect #),((r7), (&), (8, (1), ({), and then
substituting in (76), one obtains:
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_$i __§&tnn +¢g
(a)_A” (a 1 Ar 1’
i + +
(") )=, () =- IR
_q __§& N5+ 66,
(Ci)_zl (C)_ A y

Conversely, determing, i, &, & n, { as a functiond), (1), (&), (&, (n), ({). We
observe that the determinant whose elementsAdég, A7), A(S) is the adjoint

determinant(*) of A, in such a way that we must I%tdesignate the determinant:

() 1) (&)
=(&2) (7)) (S
(63) (75) (<)

(78)

>| =

Solve formulas (75) and (76) with respectétoni, &, &, n, . Upon designating the
coefficients of the elements of the determinant (78§ (7)), (<), they become?;:

& =A(E), &=-M(EE) + (&) + ()DL
(79) n, =080), n=-M(E)m) +(73) + () (175)}
G =A(G), ¢=-M(E)¢)+n(¢3) +(6)(¢3)}-

We now propose to determine the rotations.
Differentiate relations(67') with respect t, y, z, t. While always employing the

well-known notation for derivatives with respectitoe, we have®j:

Ox 0X, Ox 0y, 0x 0z, OX

6a:6a6x0+6a6y0+6a620

! This adjoint determinant is the square\of

% The first nine formulas of (79) € 1, 2, 3) are true if one considers the known consegs@fdke theory
of adjoint determinants. It is clear that all of the pnégalculations may be attached to the theory of forms
and to that of linear substitutions.

da oa
% We distinguish d—from 6_ ..., consistent with the notation employed by APPEMlaité de
t t
dx dy dz
Mécanique,T. IIl., pp. 277. As forx, Yo, 2, We do not need to introduc%i,d—o,To,since they are
t t t

zero. One observes that the presgny,, %, t are functions ox, y, z, twhich, when equated to the olgl
Yo, Z, define functiong, y, zthat are thus implicit functions. We shall returrihis point later.
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oa _oa axO oa ayo doa 0z,

oy 0x, oy ay0 dy az0 0z’
oa _oa axO oa ayo doa 0z,

0z 0x, 0z ay0 0z az0 0z’

oa _ da 0%, N oa ayo oa az0 da

o ox ot oy, ot oz, at  dt’

with analogous formulas for the cosingsy,---, y".
The formulas (74) then give:

[p]=D plé&], [p.]=D alél, [ps]=> rl&l,
[on] = Z P[], [a.] = Zqi (7.1, [a,] = Zri [7:],
[rl]zzpi[CiL [rz]zzqi[CiL [rs]zzri[CiL

and, using formulas (72), formulas (73) give:

() =2 P (&), (P) =D a (&), (ps) =D K (&),
(a,) = z P (7:), ()= zqi (), (a3) = zri 17,
(80) (n) = z p (), ()= z P (¢), ()= z P (<),
(P) = pu($) + Po(17) + Ps(S) + p,

(@) = 0,($) +a,(7) +a;(¢) +a,

(1) =r (&) +r(7) +rs(¢) +r,

which give us the latter Eulerian argumernts, (a), (ri), (p), (@), (r) by means of the
Lagrangian arguments (it suffices to repla&g, (... with their values).

Conversely, to obtain the latter Lagrangian argusies;, ..., we may solve the
system (80), but one may also directly differeetidte relations with respect xg, Yo, 2,
t successively; we have:

da _da oXx 6a 6y oa 0z

0X, 0X 0X, 6y 0X, az ax0
da _da ox 6a oy aa 0z
oy, Ox ay0 6y ay0 0z 620
da _oda % da oy 6a 0z
0z, X 0z, 6y 620 oz 620
da _oda ax oa ay da 0oz Oda

Il St Wi A Tt Sl

dt axat dy ot 0z ot ot

After taking (70) into account, relations (71) thggwe us:
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P, = (P&, + (A, + ()¢,
(81) G = (P2)é, +(a)m, +(r,)6,,
o =(ps)é +(Qa)m +(13) 6,

which one may write in the intermediate form:

=1 ID1] [CIl] [H]

6x0 0X,

qlz[pz]%'*'[qz +[I’2]—

]y
Xo 6Xo

_[pa]_+[q3] [I’3]—

Xo 0X,

with analogous formulas fqw, gy, r2; ps, Gz, 's that one obtains upon changiég 71, &,
into &, 2, {>, and then intafs, 173, {3, or upon changingo into yo, and then int@; one
has, moreover:

P =(P)¢ + ()7 +(r)¢ +(p),
(81) q=(P,)$ + ()7 +(r2)¢ +(p),

r=(p;)¢ +(a3)7 +(r5)¢ +(p).

72. Static equations of a deformable medium relative to thEuler variables as
deduced from the equations obtained from the Lagrange variabs We have already
performed the passage from the LAGRANGE variabtethe EULER variables in the
context of the statics of deformable media. It suiffice for us to complete the results so
obtained {).

We found formulas such as the following in sec. 53

Apxx - Ai + AZ + A‘.’ Aqxx = Pl + PZ + P3
Zo 0% =~ 0y, ~ 0z
0 0 0
Apyx_ A&+ A2+ A’&.! Aqu: Y P1+ Y I:)2-*- Y P3’
Zo 0X, 0y, ° 07
Apzx - Ai + AZ + A’E.’ qux = az Pl + az PZ + az P3’
0z, 0X, 0y, ° 07
in which one has:
ow ow ow ow ow ow
=qa + + , P=a + + )
A 0¢; b on, 4 a¢; ap, b daq, 4 or,

! We then seek to obtain the definitive results directly
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Suppose thatV is expressed by means of the argumegjs ((7), (&), (), (@), (i),

and set:

W=AQ.

By virtue of the formulas (77) of the preceding paragrapé,vaiti have:

ow

R SR

a¢;
ow

R WhtunlrS

on,
ow

—=AS+Qg =N

0¢;

0Q
0¢;
0Q
on,
0Q
0¢;

rag = A{

0Q
0 +Q(S )}

LQp = A{G—Q + Q(m)},
on

0Q
{6_Q+Q(Ci)}’

and, as a result, sinéedoes not depend qm g, ri:

A =A{a

P =A{a

Upon differentiating relations (75) with respectfoone gets:

a(c )

o) |
o

0¢;

our;) |
17

$i of

from which, one deduces:

0Q

0Q
+

0Q

o8 P an

0Q 0Q
api aql

==($)),

(<))
F_ (5)

0(7,)
7— (E)
a(¢;) _

0¢;

and then, by the relations (80):

a(p))

&

m_

VaC_

0Q

0, 4.,

+Q[<‘i]},

=(7)(5),

==(4; )—‘—(C.)(f)

— - ==(P)()).

0¢;
a(q;)

—= ==(p))),

0¢;

&), 3n) , . 06
ag, ag, TCTag,
=(£)(&))

=0 (i#])
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6(rj)__
o (P)()),

with analogous formula for the derivatives with respecf;t{;. If one sets:

0Q 0Q 0Q
y=—") BI' = Ci’ =
) (<) (&) 0(17,) ) (<)

0Q 0Q 0Q
Py=—"_, I' = =
() a(p) () 9(q)) R) o(r,)

then one has:

2A =0[¢)
“HCE)A) +(7,)(B) + (€ )CHE] +H(E)P) + (7.)(Q) + (6 ) (RO ]
HIE)R) +(0)(BL) + () CMEIH(E)P) +(1)(Q) + (€ )R pa)
H(E YA+ (7)(B) + () CET+H(E)P) + (7)(Q2) + (6 )R ]l

By virtue of the formulas (72), (73), (74J5"),and upon lettingA4], [Bi], [Ci]; [Pi],
[Qi], [R] denote the components relative to the @Ay, Oz of the two vectors whose
components with respect to the aXdg My, MZ, are (A),(B'),(C! );(P),(Q).(R),one

deduces the following three formulas:
Po = Q- D [AIE]-D IRIIR]
P = —2[BI&I-2 QIR
px= —2ICI&EI-D [RIIPI,

with analogous formulas fdsi, Ci, andpxy, Py, Pzy P Pz Prz- One then has:

1 90 90 90

Zpi —a{(é)a(pl) +(’7i)a(ql) +(Ci)a(rl)}
0Q 0Q oQ

+ﬁ{(<ﬁ)m+(ﬂi)a(q2) +(Ci)a(r2)}

0Q 0Q 00 }

+(7) 5~ *(6)

+%Gnﬁm) o) “awm)

and, again takind75" )into account, we obtain the following three foramul

Oxx = afP1] + AP2] + YP4],
Oyx = afQ1] + A Q] + UQs],
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Oex = ARy + AR] + )R,

with analogous formulas f&®;, R, anddyy, Oy, Gy, Okz Okz Okz

73. Dynamical equations of the deformable medium relative tohe Euler
variables as deduced from the equations obtained for the Lagnge variables. -We
have also performed the passage from the LAGRANGE hlasato the EULER
variables in the context of the dynamics of the deftenanedium. We shall first
complete the results so obtained.

A is augmented with:

R {aa(f) NPLIG) +y6(<‘)} 0Q +{aa(p) LI +y6(p)} 0Q
o, “om Toc o | o& " om 7 og Jo(p
.\ {aa(m 200, 6(/7)} Q , {aa(q)+ 5@, ya(q)} 0Q

o0&, “on, Voc [amy |Tee T an " ac [a()

0(c) . ,0(c) . )| 9 _[ a(r) . o). o)) ea ]
+{” oc, Fan Vag }a(cf{” oc “Fan Vac Ja(r)}’

however, from (76) and (80):

99 _ 99 _

%(—? =-@@, 2= @m T2 =@,
o(p) _ _ a(p) _ _ o(p) _ _
e =0, TR TP =,

with analogous formulas, in such a way that if we s

(A') :a_Q (B') :a_Q (C') = a_Q

(&)’ o)’ 2(5)’
0Q 00 00
Py=22 (Q)=22 (R)=-2<,
*) a(p) ©) a(q) ) a(r)

then we must add

AG), A, A9

respectively, to the given valuesAf, i =1, 2, 3, that were given in the last paragraph,
where we have set:

_ZA = (A)[E]+ (B)E] + (COIE]+ (P pd + Q) P,1 + (R)[ P,
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The expressions that we add to the valueg.fp.y, P Of the preceding paragraph are
therefore:

A o0X o0X 0x
zg{(f)axo-+(0)ayb-+(c)azo}, {kf) (0) (C) }

A 0z 0z z |,
Zg{(f)axo-+(ﬂ)ayb-+(C)azo},

however, from the values (76) &)((n),(¢), one has:

0 0 0
(f)axxo +(f7)ayx +(c)aX :—52(5) —nZ(n.)——cZ(c.

0

0 0 oy
&) axy +(7) a;’ @5y 52(5) /72(/7. cZ(c.

0 0

0z 0z 0z _ _ 0z _
) o +(17) % +(¢) o E (& ) /72(/7.) cZ(c.

0

i.e., by virtue of formulagr5’):

© :X ) 2% =@+ pr+ o),
Xo 0 0z,

0

© (fy s D s @Y =+ pn+ye),
X 0 0z,

0 0

© aaz s 224 P =ae+ g+ ye),
Xo oy, 0z,

0

in such a way that the expressions that we musti@dide p,, Py, P Of the preceding
paragraph are:
_Adx _Ady _Adz
A dt’ A dt’ Adt
One will have analogous expressions pg ..., Px... by the obvious change @f
into two analogous expressioBsandC that are deduced by reducing tldg, [p] by the
corresponding quantitieg], [g] and [{], [ri].

We now introduce the notatiols B, C; we show that they are identical to the
notations introduced in the Lagrangian theory:

AzgW, pOW 0w
0 0B oy

Indeed, one has:
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A_ o(¢) | (g 9D . a(r)
A {(A) +(B') Y3 +(R) }
+,[>’{(A) 6(5) } + {(A’)—a(a +}
o¢
However, from formulas (76) and (80), one has:

0($) _ o) _ 9(¢) _

26 = ) 0 = &) Y
op) - _ 9@ _ o) - _
2 = (P 2 = (P2) oz = (Ps)

and analogous relations fgr {. By virtue of relations (72), we obtain:

_ZA = (A)[E]+ (B)E] + (C)IE]+ (P pd + Q) P,1 + (R)[ P,

Similarly, for theP, Q, R of the Lagrangian theory, namely:

ow ow oW
P=a + + e
op 'Baq yar

one has, by virtue of the relations (80):
P U U !
A =a(P)+ B(Q) +y(R),

Finally, consider the modification that must bededo the formulas of the preceding
paragraph in order to have ttyg, ... relate to the actual case of dynamics.
The quantities that we have callecare augmented for= 1, 2, 3, either by:

L on] 0(P) , ,0(P) , 3(P) ) , o, ||
A_(P){a n Poq Y arl} (Q){ . }+(R){ }
r) }

A(F,,){aa(|c>)+ﬁa(|c>) a(p)}+(Q){ 2 , }+(R){aa

| op, 0q, or,
o]
op,

A(P'){aaa(p)+ﬁa(p) a(p)} (Q){ 2@ , }+(R)
L Ps aqa al’3

or by
AE){a(P) +BQ) +¥(R)}
A(m{a(P) + B(Q) + y(R)}
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A()a(P) + B(Q) + y(R)},
by virtue of formulas (80). One sees that these inescarse:

P&, P(n). P(J.

The expressions that must be added to the valugs ofy, o of the preceding
section are thus:

P 0X o0X 0Xx
Z{(E) o, +(17) oy, +(¢) 620}’

P oy dy ay P 0z 0z 0z
Z{(‘()a_%ﬂmaﬂda}’ Z{(E) o, +(17) 3y, +(¢) 620}’

i.e.,
P P (] I P n n "
—Z(a5+,6’/7+yc), —Z(af +8n+Yy5), —Z(af +B'n+y'c),
or finally
_Pdx _Pdy _bdz
A dt’ A dt’ A dt

One will have analogous expressionsdgy ...; Oz ... by changingP into Q, and then
into R

74. Variations of the Eulerian arguments deduced from those dhe Lagrangian
arguments. —With the aim of directly formulating the Eulerian etjoas that relate to
the deformable medium, we shall calculate the variatafrthe Eulerian arguments. We
commence by deducing the variations from the Lagrangguma@ents in order to verify
them, and then we calculate them directly.

If we apply dto equations (75) then they become three systemgshédollowing
one:

&1 &) + mAm) + (A G) = — (é1) 0ér — (171) A — (1) O,
&A &) + A ) + (A1) == (é1) 02 — (171) A2 — (41) O,
&A &) + mAm) + A1) == (61) s — (171) Iz — (1) s

Hence, keeping relations (77) in mind:

- A&) = (G () O + (m)om+ (§) oG} + (E){ (&) o6 +...} + (&){ (1) A +...}
= (C(l)z ()4, +(’71)Z(§(i )an, +(Cl)2(§(i )G,

or, upon replacin@gé&, dri, ¢ with their values, and taking relatiorfg5’ ahd (80) into
account:
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00% , )aix &5 +(p2)5'z—(p3)5y}

0

0(¢1) = ()K"~ (¢,)A" - (51){(51

aJy+(52)"’53’ (%Y

0 0

)G G

—(/71){(51) +(pz)55<—(p3)5'z}

)65

_(Cl){(gl XOZ +($, +(p2)5y—(p3)d<z};

however, by virtue of equation§5") one has:

9% _ 0% x , 00X dy , 30X
Z(cﬁ)a—pi—WZ(é)api Z(c‘) e Z(c‘)—l

_ 00X ,655( " 655(
=a +a +a :
0x oy 0z

for example. We therefore obtain the followingat&n:

5(51)=(nl)%'—(cl)&'—(fl){aajk+a'm+ 109% | (p,)32- (ps)ay}
X oy 0z

—(1){ 99y, aaih aiy+(|oz)53<—(|03)5'z}
y 0

652 002,007
-(Gha +a +a +(p,)doY —(ps) Xz,
oy 0z

in order to findd771), &), it suffices to make a circular permutation &), (171), ({) to
replacea,a’,a" with g, ', 5", and then withy, ', y" and to replace thg with g and

then withr;. One has analogous systems of formulasXés), A17.), A{); A &s), A173),

A43).
By means of (76) and the values &t dr, &¢, one has, in turn:

o(¢) =<&a(¢,) +nd(n,) +69(¢,)} —{(£,)& + ()9 + (¢,) ¢}

—(&)[dik—(a&ﬁmyc)——(af+ﬁ/7+yc)—y—(a ¢+ [ /7+Vc)a—5k

] Ha=(p)¢ —(a)n7 —(r;)3oz—~{r —(p;)¢ —(as)7 - (rg)c}éy]
—(m)%’—(af +ﬁf7+yc)aaiy—(a’f +ﬁ'/7+yc)aiy—(a”f +ﬁ"/7+1/’c)aiy
L X oy 0z
+H{a = ()€ = ()7 = (r;)FIX~{ p = (P,)& = (a4, )7 — (1,)¢} 5]
[doz

a0z , , adz . 907
() —— @+ pn+y)——-(@'E+Bn+y)——(a'é+L'n+y¢)—
| dt 0x ay 0z
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+H{p=(p)E - (a)7 - ()Y —{a—(p,)& = (a,)7 — (r,)¢} I%};

however, by virtue of (76), relations (80) give:

(P)é+ ()7 + (r1)d=—{pa($) + pA77) +ps()}
(P2)$ + ()77 + (r2){=—{au($) + A7) +ax(Q)}
(Ps)é + ()77 + (r3){=—{ra($) +rar) +r3({},

from which, we finally have:

doXx dx0dx dyoddx dzaddx
(&) =- - - Rt R ()02 - () D
© (51){ dt dt ox dt gy dt oz (@oz=(r) y}

—on) ddy dxady dyady dzady
Yl dt dt ox dt 9y dt oz

doz dx00z dyoddoz dzodz
_(Cl) T T -

+(r)ox—( p)5'z}

+(p)oy - (q)ox..
dt dt ox dt oy dt oz (P)2Yy=(a) }

One will get analogous values fé§7), A¢) upon changingd), (r71), (&) into (&),

(,72)! (ZZ)! and then |nt0&3), (,73)1 (Z3)
From (80), we now have:

Ap1) = (61) 1 + (&2) P2 + (&3) Pz + Prd&1) + PA ) + Psd$3),
i.e., by virtue of formulag’5’):
5( pl) = (ql)d<’ - (rl)d]’

0% a2 00 () - (p) A’

0x ay 0z

—(pl){a—+a'a—5k+a"@+(pz)5'z—(p3)5y}

0x oy 0z

a;;y +a/'a;;y +a" 65y

_(ql){a ox dy E+(p3)55(—(p1)5'z}

007z 007z 007z
-ra—+a —+ag"—+ oy- 0z
(1){ v oy e (p)oY—(p,) }

with analogous formulas fa(qi), Ar1), and fordp.), Aqz), Ar2); ApPs), AQs), Ar3).
We have have:

Ap) =P + (P + (1) P2 + () Ips + p1d$) + p2aA177) + Pz d),

i.e., by virtue of formulaé75" }76), and (80):



226 THEORY OF DEFORMABLE MEDIA

da’' oal' dx dJl'd dl' dz , ,
o(p)=22 2 OX_0 Y _ QXK' - (1)
dt ox dt 6y dt 6 dt

~( 1){0155( 90X dx _9dxdy 9dx dz ()57~ (r)ay}

dt  ox dt oy dt oz dt
dody doydx 0oydy 0dydz .
(1){ YO0y X_ONV Y y—+(r)5k—(|o)5z}

dt  ox dt 9y dt o0z dt

ddz _09zdx _09zdy 00zdz
- 0 0X
(1){ dt  ox dt dy dt az dt +(P)oy-(a }

with analogous formulas faXq), Ar).
Now, we seek to find the formulas that must be establigiteen one introduces the

auxiliary functionsox, dy, dz, d, aJ, K, which are defined as before. For example, one
has:

aéz+6_a5 + 98 5y+a—yé'z,
ox  0x 0X 0X

00X :a65k+ﬁ65y+
ox 1) 1)

and analogous expressions %@,%ﬁ,from which, we have the system:
X OX

ox ,00y ,00z 00X .
+ + = + 0z- oy,
aax @ T T o [p,]0Z-[p;]oY
0oy ,,652 65y .
+ OX— 0z,
ﬁ a + [ ax B ax +[p,] [p,]oZ

X
V‘”’ V'MZ ajz+[p115y [p,]5%

o0X

and analogous systems for the derivatives with respegtand z. One has similar

formulas that relate @l',83',0K" andd, aJ, K. By virtue of formulas (72), and upon
supposing that the determingat'3’y” |= 1, one then has:

82) o) =-1&]a af‘ +q 9% g M‘j +(@la]-a'lm])a
X oy 0z

i @ ‘?’ i M’j +(@E]- a6 )@
X ay 0z

ooz . ,00z  ,00z ' "
“lalao o *a oy ta azj+(a[/71]—a [&D K,

with analogous formulas.
The value ofX &) that was written on page (?) may be put into ¢tinenf
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5(6) = —(51){"’—5“+(q)5z (r)éy}

—(m){iy+(r)5k—(p)5'z}

—(cl){%ﬂp)cw (q)cfk}

however, by virtue of formulas (73) that defin®, ((g), (r), one has formulas like the
following ones:
90X ox 0%  _,0a
—+(qQ)oz-(r)dy=a +a +a :
ot (@ (oY= ot ot ot

and, as result, by virtue of formulas (72), one has:

(83) 5(8) = [[51] 7] aa‘f’ ] atj

a formula in which one may revert to the derivativ(%s as we shall see in detail later

on.
By virtue of the formulas that defir, dy, oz, d, aJ, XK, one has:

ad 00 0K
5(p1)=a[a +a +a j+[y(q1) B(r)la
ox ox ox
[ od , 04 , 0K
+a|la +a +a
oy oy oy

+a"[a"’(,fI +a9% g "a“j+[y(ql) B'(r,)]K
z 0z 0

[ 0Xx 0% ,,652) [ 0x 0% 00 [ X j
-(p)aja—+a +a +tala—+a +a +a'la—+-
0x 0x 0x oy oy ay 0z

_ OK 0% 0%\ [ 0% 00 00|, . .0
(ql){a[ﬁ 0x vh ox +h 6xj+a('g ay *h ay i GY}LG['B oz ﬂ

- (rl){a( y’ @ +) 652) +a'( y’ @ y’ J +a"(y% +ﬂ
ox oy 0z

which, by virtue of formulas (73), may be written:

j+[V(q1) - B(n)]A

od ,0d ,0d ' "
(84) d(p)=ala—+a'—+a +(a'rn]-a’lg])d
0x oy 0z
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+al aad] +a, ad] +a" ad] + (a"[ pl] _a[rl])d]
0x oy 0z

ra| a9 4 g 0K 4 g 9K L ala] - ap]) K
0x oy 0z

oX 00k 0
+a +a
0x oy 0z

—[qll(a Yo% g Mj
0x oy 0z

ooz , 00z 00z
—-[rl] a +a +a :
0x oy 0z

_[ pl](a

and one has analogous resultsd@n), ...
Finally, observe that one may write:

5(p)=%—f+(q)d<'—(r)d1'

—(pl)["’a—fh(q)a'z—(r)cfy}

—(ql)["’aith(r)ék—(p)é'z}

—(rl)["’ait'z+(p)5y—(q)5ﬂ,

or:
5(p) =03 40D | 4u 0K
o oot ot
0%
—(pl)[w + (Q)5Z—(f)58/}

—(ql)["’aith(r)cfk—(p)é'z}

—(rl)["’ait'ﬂ(p)cfy—(q)&}

or finally:

0d ,04] , 0K 0X doy 0z
85 op)=a +a +a - - —[r ,
(85) (p) ot 3t p [p.] P [a] P [r,] i

. . . d
a formula in which one may also revert to the (mmesa. One has two analogous

formulas fordq), Ar).
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75. Direct determination of the variations of the Eulerianarguments. —We
suppose that one subjects the functiong, zof Xo, Yo, 2, t to the variationsx, dy, oz.
Consider the relations that one obtains by differangatelations(68") successively with
respect to the LAGRANGE variables; from this, welaee:

—5[5] ay 5+ —5[6.]+[5] +m.] @-}-[C']ap -0,

however, one has:
0OX _ 0oX 0X +aéx oy +aéx 0z

dp, 0x dp dy dp, 0z dp,’
0% _0dy dx , ddy dy , 9 dy

op, 0x dp, Oy dp, 0z dp,’
00z _ 0z 0x 00z dy , 9¢z 0z |
op, Ox 0p, Ay dp, 0z dp’

if one substitutes the values of these derivatings the preceding expression then one
has:

{5[5] [5]—+[/7]‘W [c.]—}

6(3/ (0o74
oy +[¢] ay}

op,
+6—A{5[/7i]+[6] oy +m]

+:—Z{5[ci]+[5165‘+[n.16@ c12 }:
P 0z

the parentheses in this latter equality are thils amd one has:

—_ X 0%y (o074
asgl= {[5] o Tl rlal az},

—_ X 0%y (o074
an]= {[5] oy +[7] oy +[¢] ay},

_ )9 0%y (o074
agl= {[6] 5, Tl *lal 62}'

Similarly, we have:

déy -6l déz

5(a=—3—txa[a]—‘j—{5[m]——5[c1] [51] —[/71]

upon replacingd &, dm], d 1] with the values that we must obtain they become:
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5(5)=2—f{[a]66— 7 ‘?’ [c.]—}
ady 652}

+[¢C
oy [c.]ay

Aoy 652}

+d—2{[<‘i]m+[m] Y a1

e [11

dy [ . 95
+dt{[5ﬁ] oy +[1i]

_[51] _[/71]

with analogous formulas fa7), d¢). To retrieve the formula that we obtained in sec.
74, it suffices to remark that one has:

dox _0dxdx  ddxdy 0 dz  0cK
dt  ox dt oy dt 0z dt ot
dyx 09y dx aéy dy dgy dz aay
dt  ox dt oy dt 0z dt ot

ddz _odzdx ddzdy ddzdz oce,
dt  ox dt oy dt 0z dt ot '’

but we will not use the formula on page (?) andiitalogues in what follows. Indeed, it
is convenient to observe only the domain of integneof the integrals ovex, y, z,which
we consider taependont, in the case in whick, t, z, tare theindependent variables,
and not revert to the integrations oxety, z,andt, as is the habitual custom (as wi)
Yo, Z). If one must integrate by parts with respect then one must introduce the
auxiliary variablesxo, Yo, 2, and use only derivatives with respectttthat take the

formi,which will necessitate the use of formulas suclhhasone that wrote above for

A4).
The calculations that must be done in order taiallp;), Aq), Ari), Ap), AQ), Ar),

like the ones that lead to expressionsdaf), A7), A4G), AE), An), AJ), presently rest
upon formulas that we just obtained fdi&], d 7], d&]. The transformation that the
expressiong(p), Aq), Ar), which were given in sec. 74, must be subjeabeid brder to

put the derivatives with respect tointo the form(%,is the same as the one that we
indicated ford §), A7), AJ).
76. The action of deformation and motion in terms of Euler vaables.

Invariance of the Eulerian arguments. Application to the nethod of variable action.
— The action of deformation and motion becomes:
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f JIL, wadydzdt,

in whichW is a function oko, Yo, 20, t; &, 7, &, P, &, 1i; & 17, &, P, Q, .
From formulas (79) and (8181), one may also say th¥{ is a function oo, yo, 2,

t; (&), (), (4), (), (@), (r); (&, (1), (. (M. d, (r), and, if one sets

W

A
then the preceding action may be written:

J't tlz j ”S Qdxdydzdt

The integration oveg, y, zis taken over the mediuf i.e., over a domain that varies
with time.

One may also see how one can arrived at thisr lattBon independently of the
former. Indeed, the Lagrangian arguments are,easaw beforeEuclidian invariants;
however, since the Eulerian arguments are uniqdehctions of the Lagrangian
arguments, from formulas (77) and (80), it resfitbsn this that they are aldbuclidian
invariants; furthermore, one may establish thmisa direct manneby means of formulas
(82), (83) and (84), (85), by setting:

X = (a1 + wz— ay)dt,
oy = (b1 + X — w2)dt,
& = (C1 + wy — wX)dt,
a = wdt, A = wd, XK =wd.

From this, it results that one is directly led twegthe following form to theaction of

deformation and movement in terms of HéLER variablestaken over the interior of
the surfaces, and during the time interval between instanendt,:

[ t ][, Qdxdydzay

in whichthe functionQ has the following remarkable:

Q(x0: Yo 20, t; (40), (170), (40), (Ri). (ah). (1i); (), (), (4), (@).( @), (r))-

Consider amrbitrary variation of the action of deformation and motiorhe interior
of a surface ) in the mediumN1), and the time interval between the instantandt,,
and, to that effect, give the ...the variationgk, ...

! We suppose thdt is positive and therefore equal 49 |
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For the moment, write the integral in the form:

Ji [T, Wby, izt
its variation is:
f JIl, (ax+Qan)dxdy,dzdt,
or:
J‘: ULD (330 + Q%)leodyodzodt.

However:

_ 0(xV,2)
(X1 Y01 2)
__0(y,2) 9ok O(y,2) 9o 0d(y,2) 9O
(Yo, 2,) 9% 6(20 X0) 0¥y 0(Xy, Yo) 07,
{a(y 2) ox , 0(y,d ox, 9(y.2) 6x}6d<+
(Yo, 2,) 0%, 6(zo,xo)6yo 0(Xy, ¥o) 07,

:aéxmaaymaézA’
0x oy 0z

@Zaéeraéeraéz
A ox ody 0z’

and, as a result, the variation of the integral is:

(1] o 224292, sl o

The variationdQ of Q is:

0Q
X = Z{mé_(f) ﬁé_(/?.) } ﬁé'(p) m 0(9),

in which & &), A7), ..., Ar) are determined by the formulas of sec. 74 andn/8.ch a
way that only the derivatives with respect o the form% are involved. We may apply

GREEN'’S formula to the terms that explicitly retera derivative with respect to one of
the variables, y, z. As far as the terms that explicitly refer to aiestive with respect to
time are concerned, here is how we deal with th&e qomain of integration over y, z
varies with timg let:



Euclidian action from the Eulerian viewpoint 238

jt 1 j j g—dxdydzdl

be a typical term; if we pass to the intermediaryhefvariableso, Yo, 2 then it becomes:

ty dh
L [ jso gA-_-dx,dyodz,dt,
or, on integrating by parts:

JI1, toann; cxdyodz, - [ [f[. h%dxodyodzodt

mj gAhdxodyOdzo} -[* 1L hﬂdxodyodzodt
=|||]. ghdxdyd 2— — 2y dy,dz,dt,
ghaxaya - [ [j[ 29

when we revert to the variablesy, z(*).

If we letl, m, ndenote the direction cosines of the exterior nortoahe surfaces
that bounds the medium after deformation at thtami$ with respect to the fixed axes
Ox, Oy, Oz,and letdo be the area element of that surface:

o[ [[[Qdxdydzdt

t,
= .L .”s{( IpXX + mpyx + anX)dH- (Ipxy + mpyy + npzy)d”' (Ipxz + mpyz + npzz)az
+(l9,, + maq,, +nq,)d ++(lq,, + mq,, +nq, )A +(lq,, + mq,, + nq,,)K}dodt

{jﬂ[ 5+ @+ Cw+P d+9&]+ aKjdxdydz}

1 apxx yx apzx 1 dA
-1 I { % *m}"‘
0x ay 0z A dt

+ apxz +apy2+apzz +1£ a-z
ox dy 0z A dt

ta

o]

dA . .
! Here one may replac%? by the value it derives from:

1 _0(dx), o (dy) ofd
Adt ox\dt) ayldt) ozldt)
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aq,, . 0d,, aqzx 1dP,

0x oy 0z A dt
0, , 9, , 09,  1dQ
0x oy 0z A dt
0q,, N aq,, N aqZZ 1 dR+ o —p.
ox oy 0z A dt o

+ + + pyz - pzy +

+ pZX - pXZ +

Cdy_Bdz
A dt

A dt

in which we have set, following the notations of.S£3:

2= (R[] - (BYE] - C©)E] - (PR - @)LP] - (RI[p.)
2 = ~(A)[] - (B)n.] - (©)1a] - ()] - @)l - (RO
= = ~(A)] - (B)l6:] - ©)le:] - (Pl - (Q)Ir.] - (RII.),
Z=[P1=a(P) + SQ) + MR
2=[Q=a(P)+ F@)+/(R),
g =[Fl=a"(P)+ 5'(Q) +//'(R).

= Q- YIAIE]-XIRI R4
Pe= - XIBIEI-YIQIPI-2
P = ~XICHEI-YIRIPI-2F,
Py = - XIANRI-SIRIa] -4
P, =Q-X[BII]-YIQNa] -
Py = - XICInI-XIRIG]- L&
Pe= - XIAllGI-XIRINI-S 5
Pe= -XIBlGI-YIQIrI-S L,

Cadz

pzz = Q_Z[C|][C|] _Z[R][r|] _Za’
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and, in addition:

Oy = a[P]+ BIP,] +/IP,] —%j—j
A, =alQ]+ AIQ,] + NQs] —%‘;—{
a, =a[R1]+ﬁ[Rz]+y[R3]—%3—tZ,

with analogous formulas fagy, Ay, Gy, Gz Oz ke

77. Remarks on the variations introduced in the preceding s&ons. Application
of the method of variable action as in the usual calculus efriations. —We used the
calculus of variations in the preceding section; igeful to elaborate on the significance
of those formulas according to the approach of JORDAN (

For the sake of completeness, recall the expositicJORDAN. JORDAN sought
the variation of

Spdxdydz

when one supposes, on the one hand, xhgt zare subject to variations, and, on the
other hand, that the functions that figuregare also subject to variation. From this fact,
@is subject tawo variations whose effects are added together. JORDAMessively
considered the variation due to the variation of thetfans that figure ing and then the
variation due to the variation &f y, zthat is juxtaposed with the preceding.

One may just as well search for the complete etiéqixtaposing the two variations
on the lettersy, ..., wg, ... that figure in@ If we call these complete variatiods, ...
then one will have:

_99 54
5¢_6udj+

for thecompletevariationdg of ¢.

Having said this, one remarks that the previously cakdlatriations are what we
must call thecompletevariations and that the calculations in the precedaugicen were
carried out from this latter viewpoint.

If one prefers to present things in a form thatdentical to that of JORDAN then
here is what one must do. In what follows, we intr@dube functionsxy, VYo,
2,a,a',---, )", 0f X, y, zwhich figure explicitly and by their derivativeat least in part.
The functions«, Yo, 2 0Of X, vy, z, tare the ones that must be used in the left-hated cHi
(68") in order to derive, y, zas functions ok, Yo, 2, t. From this, and the fact thaty,

z are subjected to variatiorX, Jdy, oz, it results thathese functionso, yo, % of X, vy, z, t

! JORDAN, Cours d’ Analyse de I'Ecole polytechniqug,ed., T. Ill, no. 339, pp. 533-535"2d., T. Ill,
no. 396, pp. 528-530.
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are also subjected to variations, which we desigriatey( (o), ..., and one has the
formulas:

0X, 0X 0X
0= +t2 Xt —y+—
(9%) 0x oy % 0z
ayO JZ,
0z

_ 0z, . 07, . 0z,
0=(&,)+—2 K+ +— 0,
(%) 0x ay ¥ 0z

(86) 0=(59,) + Zo g+ Do g+
0x oy

which express that theompletevariations of these function are null. The vaoias
(0%), (o), (dzo) that figure in the last three formulas ampied fromthe variations that
figure in the exposition of JORDAN, as we shall.s€Ehis remark seems to seems to
have been discussed in the considerations that dex@loped by C. NEUMANN in his
research? on the MAXWELL and HERTZ equations; it confornms) the one hand, to
the rules of calculus that were adopted by H. PARE, in his memoion the dynamics
of the electror®), which we shall discuss later on.

As far asr,a’,---,y" are concerned, we have the variatiods){ ..., in the sense of
JORDAN; however, the variations that were introdlge the preceding sections, and
which we continue to denote @z, ..., will be the complete variations, in such a way
that one will have:

oq = (5a)+a—ad<+a—ad/+a—a52
0x oy 0z
This amounts to saying that when we introducevéli@tions @a), ..., in the sense of

JORDAN, we introduce, in addition, the auxiliaryn@ionsd ',a3', K" which wedefine
in terms of @a), &, ... by way of:

! In general, in order to avoid confusion we denote thiatens that areobtained by leavirgy, zfixed by

(9.

2 C. NEUMANN. —Die elektrischen KrafteT. I, Leipzig, 1898;Uber die Maxwell-Hertz'sche Theorie
(Abhandl. der k. Séachs Gesells. der Wiss. zu Leipzig; Math.4dagses,T. XXVII, nos. 2 and 8, 1901-
1902).

® H. POINCARE,Rend. di PalermoTome XXI, pp. 129 et seq. (1905), 1906. H. POINCARE uses
different notations from ours, in particular, as far desivatives with respect tb are concerned; our
notation,d,d, which is that of APPELLTraité de MecaniqueTome II, ' ed., pp. 277), is the opposite of

POINCARE. He distinguishes the ordinary variatidg)(of a functiong in the sense of JORDAN, which
¢ 09

d
he denotes byd— de, from its variationdg (which we callcompletg, which he denotes b}(;df [in
£

particular, see the formula (11 bis), page 140].
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d'=% B =3 y(dB)+[plox+[a,]dy +[r.]d,
(87) &' =) ady =) a(dy) +[plok+[a,1dy +[r,]é,
K'=) foa =7 B(da)+[p;]o+[0,]dy +[r;].

The fundamental convention is expressed by theioata (86), as one sees. It will be
found, in an eventual work on the theoryteinperaturefor the functions that figure by
way of their differential parametersfor example, in the case that amounts to a pketli
medium- if one abstracts from the formulas in which thenptete variations of these
functions are presented.

One will observe thgtresentlythe simplest way to perform these calculationsois
the one that was followed in the aforementionedositmn of JORDAN, but consists of
determining, as we did before, tremplete variation of the function under the
integration sign. Nevertheless, in view of the panisons that are to be performed when
one develops the two viewpoints that are suggdstetie notion ofemperaturdater on,
it will be useful to likewise follow the path of RIDAN.

We have:

(88) 5j mgdxdydzdt—j m{—(&o) _(@0)+ ( )

+Z{a(5)((5)) - a(’(Q)(é(r))} S5 (a@) - f(Q)(é(r))

+ d (QX) + d (Qoy) + —(QJz) dxdydzdt
dx dy dz

in which the @) sign corresponds to the variation that is obthipg leavingx, y, zfixed,
in such a way that one has, in a general fashion:

(89) (OF)=0F - ix OX— oy- 0z

We substitute the auxiliary functiorX®, dy, dz, ol1',0J',0K"that are defined by the

formulas (86), (87) for the variationgxp), ... In regard to the integration over tye
must also recall that the domain of integrationroyey, zvaries witht, and that one may
not switch the order of integrating oveand the system of integrations ower, z in the
habitual fashion that is employed for the variabtgsy, z.

If we replace &), (o), (), (A &)), ... by their values from (89), which subsumes
(86), we obtain:

(90) 5]5 ”Ldedydzdt:J:Z jjq—%d(—?j—i@—z—faz
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oQ 0Q
: ) ) : )

+Z{a(5)((5)) a()((r))} a(a((a) *30y 60
+ 94 asy+9 @a) +—(Q§z)}dxdydzdt
dx dy dz
If we consider first

& da o _da o do
o [P Sa

+— (Q X) + d (Qoy) + i(QJZ) dxdydzdt
dx dy dz

and then:

@) jﬂ {6(5) 5(E))+ } 2 (s(g) - ;’(fj)(a(r))}dxdydzm

just as, in the preceding section, we divided tira 81to:

(91) L m (6(5( 0% , aaészxdydzdI

and (92), one sees that the calculation is iddrtcthe one that we did earlier.

78. — The Lagrangian and Eulerian conceptions of action. The itied of
variable action applied to the Eulerian conception of action asxpressed by the
Euler variables. — In his worksur la dynamique de I'électronyhich was presented at
the July 23, 1905 session of the Cercle de PaletthePOINCARE presented a
conception of the actiofor an infinite domainthat was different from the one that we
envisioned up till now. If one clarifies the ide&tH. POINCARE when considering a
finite domainthen one is led to distinguish the following twanceptions of action, the
one being_agrangian,and the otherkulerian.

We may integrate the general functdhor Q over the independent variablé$ Xo,

Yo, Z, OF the independent variablé$ X, y, zin a fixed domainand then integrate over

1. Start with the spacélg), and imagine that an observer attached to tleraete
axes directs his attention to a porti&) (of that space and to the different positions that
it ultimately takes, namely:§ at an arbitrary instartf (S;) and &) at the times$; andt,.

We imagine the integral:

! In this case, we denote the functionVidy

2 In this case, we denote the functionby
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f [[ [ Qdxdydza

in which the domain of integratiorg)( with respect tax, y, zvaries with t,and which
takes the form:

[ t JIT, wabxdy,dzdt,

upon effecting the change of variables that is defined(@®y) or (68'), in which W
denotes the expression that is obtained by remaitia lettersx, y, zin QA by their
expressions in66' ,)and the domain of integration over yo, %, (S) isindependent of t.
We then have theagrangianconception of the action.

2. While always envisioning an observer thatixed with respect to the reference
axes,imagine that he constantly directs his attentmiixed and definitgortion of space
(M); let xo, Yo, % denote the coordinates that are calculated by sneaformulag68’ at
the pointMy of (Mp), and becomes the poilt of (M), with coordinatesy, y, zat the
instantt, and let &) be the region contained M, that becomesS] at the instant; we
may then let $3), (S2) denote the regions theiy), which varies witht, becomes for the
valuest; andt; of t.

If Q refers to botlx, y, z,and the functions expressed by the form(8és then we

envision:
[ § [] [ 2clxdydzd

in which the domain of integration over y, z— namely, § - is independent of this
time, and which takes the form:

[ t JIT, wabxdy,dzdt,

upon effecting the change of variables that isrdefiby (66" or (68), in which the

domain of integration ovex, y, z— namely, § - varies with t. We then have the
eulerianconception of action.

We have considered the first case in the earleagraphs; we shall now occupy
ourselves with the second one. Formula (88) is thplaced with the following');

@) " [[[.eaxdydzdr=]" [] —(Jx) (@0)+ ( )

! Upon referring to the exposition of JORDAN, one wilbbserve that the terms

%((de) +(;jy(£25y) +%Z(de) come from the fact that the domain is moving, andespond to the

variation of the letterg, y, z,as well as the independent variables.
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99 (5&))++ 22

+Z{a(5)( I+ 3@ MG

99 (5 ))}

a( ) J(r))}dxdydzdt

and, by virtue of (89), formula (90) is replaced by the foillg one:

(90" [5j:f ”Lgdxdydzdyzf HL{—‘Z? ——@—Eéz

0Q 0
+Z{a(5)5(5) } @5(5)+---+m5(r)}dxdydzd.t

This sequence of calculations resembles the anesgd.77. At the same time, a
difference was introduced as far as the derivatwviéls respect to time are concerned. At
the moment, one may exchange the integration toared the integration over the domain
of the variablex, y, z,and, that exchange having been performed, thgratien over
time must be done by imagining thaty, zare constant. The integration by parts over

time must be done by making them depend on the/aiemas%, and not on%, as we

did in sec.76 and77, and conforming to the remark made in S&cand76.

The integration by parts now gives:

[5jt “ L dedydzd}

tz I I U I I I I I U I I I I I U I I I
= .L .”s{(l Proc M Pyx +n pzx)d( +(l Py +m Pyy +n pzy)@ +(I P, TM Py, +n pzz)az
+ (1" + Ml + ')A +(1'g), + Mg, + ')A + (1'g), + Mg, +n'q,,)K jdodt

ta

{j”[ d<+_@+_5z+_51 +25J +—5’Kjdxdydz}

. opy, , P, 0P, O A dQ
[ (L[ e 2 2 0

t

+ apxy + apyy + apzy a B 2 42 dQ @
0x ay 0z at A dy
N op,, N op,, N 6pZZ o0C dQ
0x oy 0z at A dz
0
+ aqxx qyx aqzx +— 9 P pyz p’zy a
0x ay 0z ot A
o B Oy Ty 0Q |
0x oy 0z ot A
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I a I ] !
+ aqxz + qyz + anZ +25 + p;y - p;/x XK dXddedI
ox 9y 0z oOtA

in which we have set, with the notations of s&and73:

Ploplob>lob|lob|lwmb>>

—(A)&] — (B)E,] - (CI&:] - (PP — (@) p.] — (R)[P:],

=(A)7] = (B)17.] - (C)5] - (PH[a,] - (Q)[a,] - (R)[as),

~(A)6] = (B¢ = (CH¢s] = (P)Ir] = (Q)r.] = (R)[rs],

[P1=a(P)+B(Q) +¥(R),

[Ql=a'(P) +5(Q) +V(R),

[RI=a"(P")+8"(Q) +/'(R),
P =-> A& +PIIp T}
P =-> {BI&I+IQIp 1}
P, ==Y {[CIET+IRIIp I}

>T>Q>|[T>|Q>|E>|>

with analogous formulas fop, , p,,, P, B,, B,, P, that are obtained by changing]|
[pi] into [77], [g], and then into §], [ri], respectively, and, in addition:

O =alR]+ BIR]+ /PR,
qy = alQ] + AlQ,] + MQs],
0 = a[R]+ AR ]+ AR,

with analogous formulas faf,, q,,, d,, d,, d,, dthat are obtained by changimg g, y;
intoa’, B',y',and then intar”, 8", )" respectively.

Observe that:
OA_dA _dxo A _dyd A_dzo A

ot A dtA dtoxA dtoyA dtozA

may, by virtue of the relation:

1dA_0dx o0dy o0 dz
+——2+ ——

Adt oxdt dydt odzdt
be written:
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DK LI _D(NB) (NI DN
A A

ot t ox{Adt) oy\A dt) oz\ A dt
similarly:

iﬂ_ld_p_i[ﬂﬁj_i[ﬂﬂj_i[ﬂd_zj

otA Adt ox\Adt) aylad) azladt)

On the other handA’' = A, P’ = P; from this it results that one has:

0P , Py , 0Py, O AT dQ_ O, Py 0P, , 1 dA

ox dy 0z OtA dt ox o9y 9z Adt

and:
1] a ! ] ]
0 , D, 0 , O P, Py~ P
ox dy 0z ot Y !
0
zaqxx+ qyx+anX +1£+ — +Cdy—Ed_Z

ox ody 9z Adt P ™ P ™ Aot A dt

with analogous relations.

The force and exterior moment thus have the same definition as IBXe3.
However,the same is not the case for the effort and the moment of defornfadion;
sec.72, 76, we have:

A dx

-p.=m, =Q-——,

Pux = Pxx XX Aéjt

v _ . _ _Ady

(93) pyx - pyx - ]Tyx - _Z dt y
p — p’ =7 = _éd_Z

zx zx zx A dt’

with analogous expressions fowy, 73y, 78y, 7%, 7%, 7%, that are obtained by cyclic
permutation ofA, B, C, andx, y, z;in addition:

G~ o = Xy = o

XX XX XX Agt,

. yo_, __Pdy
(93) qyx_qyx_ny__Zaa
Oy ~Un =X :_Ed_Z

zZX zZX zZX Adt’

with analogous expressions fQfy, Yoy, Xzyi Xxo Xyz X2z that are obtained by cyclic
permutation of, B, C, andx, y, z.
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79. The method of variable action applied to the Eulerian comeption of action
as expressed by the Lagrange variables: We shall once more develop the Eulerian
concept of action with the Lagrange variables. Werbegfh the integral:

[ t JIT, wabxdy,dzdt,

in which the domain of integration ovey; yo, Z now varies with time, and corresponds
to the fixed integration domain that is describgdHe point , y, z).
Following the exposition of JORDAN, we have:

5]5 JIT, Wby, dzcit

t, ow ow ow
[ |35 G GG

d
+E(W(%))+T(W(d/o))+—zo(w(52 ))}d&)dyodzodt

in which (%), (dyo), (o) are defined by formulas (86) by means of the lauyi
variableso, oy, oz.

The sequence of calculations resembles thosevthanhcountered in the dynamics of
deformable media; at the same time, a differences wadroduced, insofar as
differentiation with respect to time is concernedhis time, one may not change the
order of integrating over time and integration otrexr domain of variables, yo, 2. One
will therefore apply reasoning analogous to thasexf.76. One first introduces only the

derivatives with respect to time in the fopgtq by using the formula:

0F _dF  0F 0%, , 0F 0y, , 0F 0%
ot dt ox ot dy, 9t 8z ot

66)10 66}20 Z" denote the derivatives with respect twf the functionsc, yo, 2

of X, y, z, tthat one infers from formuld86'). Upon using the notations we introduced
before, the preceding formulas may be written:

in which

0F _ d}"

(94) 3 (5) - (/7) - (C)

If one has a term of the form:
jtz msog—dx)dy) dz d
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then one writes:
125 axaydzar

and, upon integrating by parts:

”L{g } dxdydz—j [Ikh= [ jdxdydzd;
{m gholxdyd% j msha[ jdxdydzdx

I.e., reverting to the variables, yo, 2:

=L, ovoxavon] [ 1L 3{2oxannar

Having said this, from the previous formulas foe thynamics of deformable media and
from (94), we obtain, upon integrating by parts:

5£2 [ ”SDWd%dyodzodt

= f JI, (Fod%+ Gy ++H 0z + "+ 35" + KoK )dodt
+{[HSO (ASX+BIY+C'oz+P' A" +Q ' + R’éK’)dedyOdzo}E

=[7 T (X0 + Ya0Y + Zg0z+ Lyl + My’ + N oK ) dyoz, i,

upon setting:

o JW ey e W W _ e w=mn WLy JW e -0
Fo =1 {551 (§)W (5) }”%{agz ($2)W (/7)6} {653 ($5)W (C)af

oW _ _ W AL (oW
G =1 {a” (7)W (f)an} {5/72 (7,)W (/7)6/7}”10{6/7 (7)W (C)an},

<

o IV w - oW _ _ IV _ _
HO_IO{GQ (4() ac {afz (¢, )W = () af} { ( ) },
.. | OW ow B ow B
Iy —b{—apl (&) 6p}+mo{_6p2 (/7) } { o, ( )—}
, W oW oW
%7 {aql ©° }+m°{6qz } {aqs © }
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oy oW ow], fow | aw] fow | ow
Ko_lo{a_rl (f)ar}+mo{ar2 (O)Gr}+ {ar () }

xa=1(aﬂ—(a%wj+ ¥ ("W—(n)aw} ’ (aw—(c)aﬂ}

0%, \ 04, 0y, \ 94, 0§ ) 0z,| 04, o0&

oW aW 010w oW oW

+> ld—— +A— +q—-r—,

0¢; 6/7, otl A 0¢ ¢ on

0 W 0 ( oW ow 0 ( oW ow

Y! = - - + (9
’ 6&(601 G J 6y0(6f72 ) 6/7J 620(603 ”MJ

ow ow 0 1 ow ow ow
o3 [ O IV O[LOW, QW OW,
0¢; 0¢; atl o on oé 0¢

,_ 0 (oW o (oW _, oW\ 3 (oW oW
ol O% ravloe %) aloe %)

+Z( oW _ aw}ma(law}paw_ oW

on Yae "%t aac ) Pay T Yas

o (W . _aw) a(aw . aw) a (aW . oW
o Mg\ (o0 o) o 0w o)
o ox (6& op ) 9y, 9p, op ) 0z, | 9p; op

by (g QW AW, W _ W) 0(10W) oW _ W oW _ oW
' - on, ar aq ac on’

0%, \ 00, oq ) 0y, \ 0d, oq ) 0z, 6q3
£y rIaw_piaw+ iaw_glaw pd(1aw aw_ oW aw_gaw
op, or, 0¢, 0¢; ot\ A dq op or oé 0¢
a (oW oW\ a (oW oW ). 9 (ow oW
N, = - + - + -(¢)—
; 6x0(6r1 ©) arJ ayo(ar2 ) arJ azo(ars @ arJ
+3 [ p W _ W oW oW, g[iawj+paw_qaw+gaw_naw
'aq " op, | an, 0¢, ot\ A or g dp " an 9’

We may observe that by virtue of (94) for example, may be written:

Xp=3 (L2 OW oW _ ow) dow  ow _ ow
Je) 65 'aci 'on, ) dt 9¢ lile on

10A  0(5) , 9(7) 6(4‘) oW
Aot 0X, ay0 G

however, one has:
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108 _ (@), ) , 30
A ot ox, 0y, 0z, )

and, as a resultX, has the same value:

. 0 oW ow ow)| dow ow W
0o~ Z T - t— +q -r '
0p; 04 0¢ or7; ) dt 0¢ o¢ on

as in sec62 the same remarks apply t4,Z;,L,,M;,N,. However,the same is not

true for the effort and moment of deformatidy;simple transformations, one once more
recovers relations (93) an@3') of sec.78.

80. The notion of radiation of the energy of deformation and madn. — We have
seen that the density of energy of deformationraation, when expressed as a function
of the Lagrangian arguments and referred to theespbo, Yo, %), IS:

ow . ow , oW ow oW oW
+n +¢ +p + +r

95 E=
(95) ¢ oé on 0¢ ap 0q or

this same densityyhen referred to the space @f y, 2 and expressed by means of the

functionQ of the Eulerian argumentg), (/7). (&), (9), @), (r1); (&), (1), (&, (), (@), ()
is:

(96) ow ow +

oW oW W W
= +(N——-Q.
() % +(17) ) (©) 30 +(p) 3(p) +(0) () +(r) 0

>|m

This result is obtained either by transforming reggion (95) by means of the
relations that we indicated before that exist betwthe Lagrangian arguments and the
Eulerian arguments, or by directly repeating theesoming of sed5 on the elementary
work:

dtUJLO (EXg +1Yy +¢Zy + ply + M + NG )dx,dy,dz,
—”SD (Fy+nGy +¢Hy +ply+ad, + rK(’))dao},

that the forces and external moments and the sffaridd external moments of
deformation exert on the portioM] of the medium that the portioMg) of the natural
state occupies at the instantBy this latter path, we recover the expression:

dt{ﬂk%dx}d% dg}

for the elementary work, in whid is assumed to be independent.of
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If we observe that we has the following identity:

EE_E[ }i[E%}i[Eﬂ}i[Eiﬂ
Adt ot ox\Adt) oy\Adt) az\Adt)

which was employed by POINCARE in the memoir thaswited in secZ7, and which
we apply to an arbitrary function, then we arrivéhe following new expression:

dt{i j ”SE dxdydz
RSl et

(97) { m dxdydz+ ” [ —+n2—3d0},

for the elementary work.
The second integral in (97) expres$les flux of energy of deformation and motion

acrossa fixed surface&sin the deformed body.

Now consider the Eulerian conception of actiom the preceding sections we
confirmed that the values of the forces and extem@mments remain the same, but that
the following terms disappear from the expressionshe effortspy, Py, Pxz

Adx

]TXX =
A dt
B dx
m,= ———,
Y A dt
_ _Cudx

]sz -
A dt

and the following terms disappear from the expoessior the moments of deformation
Oxx» Okys Oixz-

T
O Adt]
_ de
Koy A dt’
= R
“ A dt’

with analogous expressions for the quantities, 7y, 75, 7&x 78y, 7%, and
Xz Xoys Xyz Xox Xoy X2z - From this, it results that the elementary wibrdt is obtained in
the preceding must be added to a new surface altéwt has the expression:
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dt{”;[' dx + mﬂ + nd—ZJ{Q —E[A% + Bﬂ + Cd—zj
dt dt dt A dt dt dt
—{p(P") +q(Q) +r(R)|do}.

One may call this new integrile flux of radiant energy crossing the bound&rgf the
deformed body.

The reasoning made in séel, which was based on tliguclidean invariancef the
action density, no longer leads to the same coinrlasfor the forces and external
moments as it does for timewefforts and external moments of deformation. Thasy
be interpreted by saying that the new efforts amdmemts of deformation no longer
satisfy what POINCARE called thgrinciple of reaction. This latter conclusion is
likewise recovered, as one knows, in the electrenty of LORENTZ. However, the
existence of radiation that we just showed permgsto approach the efforts and
moments of deformationzy, 75y, ..., Yo Xyx ... &S being what MAXWELL, from
considerations deduced from the electromagnetioryhef light, and BARTOLI, from
those of thermodynamics, called gheessure of radiant energgnd one may therefore
retrieve theprinciple of reaction.



