
IV. – STATICS AND DYNAMICS OF DEFORMABLE MEDIA. 
 
 

 48.  Deformable medium.  Natural state and deformed state. – The theories of the 
deformable line and the deformable surface that we discussed lead, in a very natural 
manner, to envisioning a more general deformable medium than the one that is habitually 
considered in the theory of elasticity, and seems, to us, to achieve the goal that was 
pursued by LORD KELVIN and HELMHOLTZ in the theories of light and magnetism. 
 Consider a space (M0) that is described by a point M0, whose coordinates x0, y0, z0 
with respect to three fixed rectangular axes Ox, Oy, Oz.  We may regard these coordinates 
as functions of the three parameters ρ1, ρ2, ρ3, which are chosen in an arbitrary manner; 
however, to simplify, we suppose that these coordinates are taken to be independent 
variables.  Affix a tri-rectangular triad to each point M0 of the space (M0), whose axes 

0 0 0 0 0 0, ,M x M y M z′ ′ ′  have direction cosines ;,,;,, 000000 βββααα ′′′′′′ 0 0 0, ,γ γ γ′ ′′  with respect to 

the axes Ox, Oy, Oz, and which are functions of the independent variables x0, y0, z0 . 
 The continuous three-dimensional set of all such triads 0 0 0 0M x y z′ ′ ′  will be what we call 

a deformable medium. 
 Give a displacement M0M to a point M0; let x, y, z be the coordinates of the point M 
with respect to the fixed triad Oxyz.  In addition, endow the triad 0 0 0 0M x y z′ ′ ′  with a 

rotation that will ultimately bring its axes into agreement with those of a triad Mx y z′ ′ ′  
that we affix to the point M.  We define that rotation by giving the direction cosines 

;,,;,, βββααα ′′′′′′ , ,γ γ γ′ ′′  of the axes , ,Mx My Mz′ ′ ′  with respect to the fixed axes. 
 The continuous three-dimensional set of all such triads Mx y z′ ′ ′  will be what we call 
the deformed state of the deformable medium under consideration, which will be called 
the natural state in its original state. 
 
 
 49.  Kinematical elements that relate to the states of the deformable medium. – 
For ease of notation, we sometimes introduce the letters ρ1, ρ2, ρ3, instead of x0, y0, z0 in 
the sequel, as expressed by the formulas: 
 

x0 = ρ1,  y0 = ρ2,  z0 = ρ2, 
 
so it will suffice to keep them in mind. 
 Denote the components of the velocity of the origin M0 of the axes 0 0 0 0 0 0, ,M x M y M z′ ′ ′  

with respect to these axes by (0) (0) (0), ,i i iξ η ς  when ρi alone varies and plays the role of 

time.  Likewise, let (0) (0) (0), ,i i ip q r  be the projections on these axes of the instantaneous 

rotation of the triad 0 0 0 0M x y z′ ′ ′  relative to the parameter ρi .  We denote the analogous 

quantities for the triad Mx y z′ ′ ′  by ξi, ηi, ζi, and pi, qi, r i when they, like the triad 

,0000 zyxM ′′′  are referred to the fixed triad Oxyz. 
 The elements that we introduced before are calculated in the usual fashion; in 
particular, one has: 
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The linear element of the deformed medium (M), when referred to the independent 
variables x0, y0, z0, is defined by the formula: 
 

2
03

2
02

2
01

2 )21()21()21( dzdydxds εεε +++++=  

,222 003002001 dydxdxdzdzdy γγγ +++++  

 
in which ε1, ε2, ε3, γ1, γ2, γ3 are calculated by the following double formulas: 
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 Denote the projections of the segment OM onto the axes , ,Mx My Mz′ ′ ′  by ,,, zyx ′′′  in 
such a way that the coordinates of the fixed point O with respect to these axes become 

.,, zyx ′−′−′−   We have the following well-known formulas: 
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which gives new expressions for ξi, ηi, ζi . 
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 50.  Expressions for the variations of the velocities of translation and rotation of 
the triad relative to the deformed state. – Suppose that one endows each of the triads 
of the deformed state with an infinitely small displacement that may vary in a continuous 
fashion with these triads.  Denote the variations of x, y, z; ;,, zyx ′′′ , , ,α α γ′ ′′⋯ by δx, δy, 

δz; ;,, zyx ′′′ δδδ ,,,, γδαδδα ′′′⋯  respectively.  The variations , , ,δα δα δγ′ ′′⋯  are 
expressed by formulas such as the following: 
  
(47)     ,JK ′−′= γδβδδα  
 
by means of the three auxiliary functions ,,, KJI ′′′ δδδ  which are the components of well-
known instantaneous rotation that is attached to the infinitely small displacement in 
question with respect to .,, zMyMxM ′′′   The variations δx, δy, δz are the projections of the 
infinitely small displacement  felt by the point M onto Ox, Oy, Oz.  The 
projections , ,x y zδ δ δ′ ′ ′ of this displacement onto , ,Mx My Mz′ ′ ′  are deduced immediately 
and have the values: 
 
(48) ,KyJzxx ′′−′′+′=′ δδδδ   ,IzKxyy ′′−′′+′=′ δδδδ   .JxIyzz ′′−′′+′=′ δδδδ  
 
 We propose to determine the variations δξi, δηi, δζi, δpi, δqi, δr i felt by 
ξi, ηi, ζi, pi, qi, r i, respectively.  From the formulas (44), we have: 
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 Replace δα by its value ,JK ′−′ γδβδ  and , ,δα δγ′ ′′⋯  with their analogous values; we 
obtain: 
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 Similarly, formulas (46) give us three formulas, the first of which is: 
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 Replace δpi, δqi, δr i with their values as given by formulas (49);  we obtain: 
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in which we have introduced the three symbols , ,x y zδ δ δ′ ′ ′  defined by formulas (48). 
 
 
 51.  Euclidian action of deformation on a deformable medium. – We preserve the 
notations of sec. 49 and introduce the known quantity, ∆, which is defined by the 
formula: 

,
),,(

),,(

000

000

000

000

z

z

y

z

x

z
z

y

y

y

x

y
z

x

y

x

x

x

zyxD

zyxD

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

==∆  

 
and whose square, which is formed by the rule for multiplication of determinants, is 
expressed as a function of ε1, ε2, ε3, γ1, γ2, γ3 by the formula: 
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 Consider a function W of two infinitely close positions of the triad ,zyxM ′′′  i.e., a 

function from x0, y0, z0 to x, y, z, α, β, γ, ,,,,,, γβαγβα ′′′′′′′′′  and their first derivatives 
with respect to x0, y0, z0.  We propose to determine the form that W must take in order for 
the integral: 

∫∫∫ ,000 dzdyWdx  

 
when taken over an arbitrary portion of the space (M0) to have null variation when one 
subjects the set of all triads of the deformable medium, taken in its deformed state, to the 
same arbitrary infinitesimal transformation of the group of Euclidian displacements. 
 By definition, this amounts to determining W in such a way that one has: 
 

δW = 0, 
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when, on the one hand, the origin M of the triadMx y z′ ′ ′  is subjected to an infinitely small 

displacement whose projections δx, δy, δz on the axes Ox, Oy, Oz are: 
 

(51)     
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where a1, a2, a3, ω1, ω2, ω3 are six arbitrary constants and δt is an infinitely small quantity 
that is independent of x0, y0, z0, and when, on the other hand, the triad Mx y z′ ′ ′  is 
subjected to an infinitely small rotation whose components along the axes Ox, Oy, Oz are: 
 

ω1δt,  ω2δt, ω3δt. 
 
 Observe that in the present case the variations δξi, δηi, δζi; δpi, δqi, δr i of the eighteen 
expressions ξi, ηi, ζi; pi, qi, r i are null, since this results from the well-known theory of 
moving frames, and as we may, moreover, verify immediately by means of formulas (49) 
and (50) by replacing , , ; , ,x y z I J Kδ δ δ δ δ δ′ ′ ′ ′ ′ ′  by their actual values.  It results from 
this that we obtain a solution to the question by taking W to be an arbitrary function of x0, 
y0, z0, and the eighteen expressions ξi, ηi, ζi; pi, qi, r i.  We shall now show that we thus 
obtain the general solution (1) of a problem that we now pose. 
 To that effect, we remark that the relations (44) permit us to express the first 
derivatives of the nine cosines , , ,α α γ′ ′′⋯  with respect to x0, y0, z0 by means of these 
cosines and pi, qi, r i using well-known formulas.  On the other hand, formulas (43) permit 
us to think of expressing the nine cosines , , ,α α γ′ ′′⋯  by means of ξ1, η1, ζ1, and the first 
derivatives of x, y, z with respect to x0, or by means of ξ2, η2, ζ2, and the first derivatives 
of x, y, z with respect to y0, or, finally, by means of ξ3, η3, ζ3, and the first derivatives of 
x, y, z with respect to z0.  Furthermore, it is useless in this case for us to make any 
hypothesis on the mode of solution because it is clear that we will not obtain a more 
general form than the one that we started with by supposing that the function W that we 
seek is an arbitrary function of x0, y0, z0 and x, y, z, and their first derivatives with respect 
to x0, y0, z0, and of ξi, ηi, ζi; pi, qi, r i, which we indicate by using the notations ρ1 = x0, ρ2 
= y0, ρ3 = z0, by writing: 
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Since the variations δξi, δηi, δζi; δpi, δqi, δr i are non-null in the actual case one remarks 
that there is an instant, which we shall ultimately describe, for which we have, by virtue 
of formulas (51), the new form for W for any a1, a2, a3, ω1, ω2, ω3 : 

                                                
1 In all of what follows we suppose that the medium is susceptible to all possible deformations, so that, as a 
result the deformed state may be taken absolutely arbitrarily.  
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 We replace δx, δy, δz  with their values (51) and , ,
i i i
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 with the values 

that one deduces by differentiation.  We set the coefficients of a1, a2, a3, ω1, ω2, ω3; we 
obtain the following six conditions: 
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which are identities, if we assume that the expressions that figure in W have been reduced 
to the smallest number. 
 The first three show us, as one may easily foresee, that W is independent of x, y, z.  
The last three express that W depends on the first derivatives of x, y, z with respect to x0, 
y0, z0 only by the intermediary of the quantities ε1, ε2, ε3, γ1, γ2, γ3 that were defined by 
the formulas (45).  Finally, we see that the desired function W has the remarkable form: 
 

W(x0, y0, z0, ξi, ηi, ζi; pi, qi, r i), 
 
which is analogous to the one that we encountered before for the deformable line and the 
deformable surface. 
 If we multiply W by the volume element dx0dy0dz0 of the space (M0) then the product 
Wdx0dy0dz0 so obtained is an invariant in the group of Euclidian displacements that is 
analogous to the volume element of the medium (M). 
 Just as the common value of the integrals: 
 

∫∫∫ ∆
0

,|| 000S
dzdydx   ∫∫∫Sdxdydz,  

 
taken over the interior of a surface S0 of the medium (M0) and the interior of the 
corresponding surface S of the medium (M), respectively, determines the volume of the 
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domain bounded by the surface S.  Likewise, if we associate, in the same spirit, the notion 
of the action for the passage from the natural state (M0) to the deformed state (M) then we 
add the function W to the elements in the definition of a deformable medium, and we say 
that the integral: 

∫∫∫
0

,000S
dzdyWdx  

 
is the action of deformation for the interior of the surface S in the deformed medium. 
 On the other hand, we say that W is the density of the action of deformation at a point 
of the deformed medium when referred to the unit of volume of the undeformed medium, 

and that 
|| ∆

W
is the density of that action at a point when referred to the unit of volume of 

the deformed medium. 
 
 
 52.  The external force and moment.  The external moment and effort.  The 
effort and moment of deformation at a point of the deformed medium. – Consider an 
arbitrary variation of the action of deformation of the interior of a surface S in the 
medium (M), namely: 
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 By virtue of formulas (49) and (50) of sec. 50, we may write: 
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 We apply the GREEN formula to the terms that explicitly refer to the derivative with 
respect to one of the variables ρ1, ρ2, ρ3.  If we let l0, m0, n0 denote the direction cosines 
with respect to Ox, Oy, Oz of the exterior normal to the surface S0 that bounds the 
medium before deformation and the area element of that surface by dσ0 then this gives: 
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we have: 
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σδδδδδδδ dKKJJIIzHyGxFdzdyWdx
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∫∫∫ ′′+′′+′′+′′+′′+′′−
0

.)( 000000000S
dzdydxKNJMILzZyYxX δδδδδδ  

 
 If we first direct our attention to the triple integral that figures in the expression 

for
0

0 0 0S
Wdx dy dzδ ∫∫∫ then we call the segments that have their origin at M and whose 

projections onto the axes , ,Mx My Mz′ ′ ′  are 0 0 0, ,X Y Z′ ′ ′  and ,,, 000 NML ′′′  respectively, the 
external force and external moment at the point M referred to the unit of volume of the 
undeformed medium. 
 Next, directing our attention to the surface integral that figures in: 
 

,
0

000∫∫∫S dzdyWdxδ  

 
we call the segments that issue from the point M and have projections 0 0 0, ,F G H′ ′ ′− − −  

and 0 0 0, ,I J K′ ′ ′− − − on the axes ,,, zMyMxM ′′′ respectively, the external effort and external 

moment of deformation at the point M of the surface S0 that bounds the medium referred 
to the unit of area of the surface S0.  At a definite point M of (S) these last six quantities 
depend only on the direction of the exterior normal to the surface (S).  They remain 
invariant if the region in question is varied and the direction of the exterior normal does 
not change, but they change sign if this direction is replaced by the opposite direction.   
 Suppose that one traces a surface (Σ) in the interior of the deformed medium that is 
bounded by the surface (S) in such a way that (Σ), together with a portion of surface (S), 
uniquely circumscribes a subset (A) of the medium, and let (B) denote the rest of the 
medium outside of the subset (A).  Let (Σ0) be the surface of (M0) that corresponds to the 
surface (S) of (M), and let (A0) and (B0) be the regions of (M0) that correspond to the 
regions (A) and (B) of (M).  Mentally separate the two subsets (A) and (B).  One may 
regard the two segments ),,( 000 HGF ′−′−′− and 0 0 0( , , )I J K′ ′ ′− − −  that are determined by the 

point M and the direction of the normal to (Σ0) that points towards the exterior of (A0) as 
the external effort and moment of deformation at the point M of the frontier (Σ) of the 
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region (A).  Similarly, one may regard the two segments ),,( 000 HGF ′′′ and 0 0 0( , , )I J K′ ′ ′  as 

the external effort and moment of deformation at the point M of the frontier (Σ) of the 
region (B).  By reason of that remark, we say that 0 0 0, ,F G H′ ′ ′− − −  and 0 0 0, ,I J K′ ′ ′− − −  are 

the components with respect to the axes , ,Mx My Mz′ ′ ′  of the effort and moment of 
deformation that are exerted at M on the portion (A) of the medium (M), and that 

0 0 0, ,F G H′ ′ ′  and 0 0 0, ,I J K′ ′ ′  are the components with respect to the axes , ,Mx My Mz′ ′ ′of the 
effort and moment of deformation that are exerted at M on the portion (B) of the medium 
(M). 
 The observation made at the end of secs. 9 and 34 on the subject of replacing the triad 
Mx y z′ ′ ′  by a triad that is invariantly related to it may be repeated here without 
modification. 
 
 
 53.  Various ways of specifying the effort and moment of deformation. – Set: 
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, ,i i iA B C′ ′ ′  and , ,i i iP Q R′ ′ ′  represent the projections onto , ,Mx My Mz′ ′ ′  of the effort and 

moment of deformation, respectively, that are exerted at the point M on a surface that has 
an interior normal at the point M0 that is parallel to the coordinate axis Ox, Oy, Oz that 
corresponds to the index i before deformation.  Indeed, it suffices to recall that one has 
already agreed to replace the letters x0, y0, z0, which correspond, by this notation, to the 
indices 1, 2, 3, respectively, with ρ1, ρ2, ρ3.  If you recall, that effort and moment of 
deformation are referred to the unit of area of the undeformed surface. 
 The new efforts and moments of deformation that we define are related to the 
elements introduced in the preceding section by the following relations: 
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 We propose to transform these relations into ones that are independent of the values 
of the quantities that we calculated by means of W that figure in them.  Indeed, these 
relations pertain to the segments that are attached to the point M to which we gave the 
names.  Instead of defining these segments by their projections on ,,, zMyMxM ′′′ we may 
define them by their projections on the other axes; the latter projections will be coupled 
by relations that are transforms of the preceding ones. 
 Moreover, the transformed relations are obtained immediately if one remarks that the 
original formulas have simple and immediate interpretations (1) by the adjunction to these 
moving axes of axes that are parallel to them at the point O. 
 
 1.  We confine ourselves to the consideration of fixed axes Ox, Oy, Oz.  Denote the 
projections of the external force and external moment at an arbitrary point M of the 
deformed medium onto these axes by X0, Y0, Z0, and L0, M0, N0, respectively, and the 
projections of effort and moment of deformation on a surface whose interior normal has 
the direction cosines l0, m0, n0 before deformation by F0, G0, H0 and I0, J0, K0, 
respectively.  The projections of the effort ( , , )i i iA B C′ ′ ′  and the moment of deformation 

( , , )i i iP Q R′ ′ ′  are denoted by Ai, Bi, Ci and Pi, Qi, Ri, respectively.  The transforms of the 
preceding relations are obviously: 
 

,3020100 AnAmAlF ++=  ,3020100 PnPmPlI ++=  

,3020100 BnBmBlG ++=  ,3020100 QnQmQlJ ++=  

,3020100 CnCmClH ++=  ,3020100 RnRmRlK ++=  
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1 An interesting interpretation to note is the analogy with the one given by P. SAINT-GUILHEM in the 
context of the dynamics of triads. 
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relations that are the three-dimensional generalizations of the two-dimensional equations 
of LORD KELVIN and TAIT. 
 
 2.  Now observe that we may express the nine cosines , , ,α α γ′ ′′⋯  by means of three 

auxiliary functions; let λ1, λ2, λ3 be three such auxiliary functions.  Set: 
 

∑ ∑ ′+′+′=−= ,332211 λϖλϖλϖγββγ ddddd  

∑ ∑ ′+′+′=−= ,332211 λχλχλχαγγα ddddd  

∑ ∑ ′+′+′=−= .332211 λσλσλσβααβ ddddd  

 
The functions , ,i i iϖ χ σ′ ′ ′  of λ1, λ2, λ3 so defined satisfy the relations: 
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 Let ϖi, χi, σi denote the projections onto the fixed axes Ox, Oy, Oz of the segment 
whose projections onto the axes , ,Mx My Mz′ ′ ′  are ;,, iii σχϖ ′′′  we have: 
 

∑ ∑ ++=′′′−=′′′ ,332211 λϖλϖλϖαααα ddddd  

∑ ∑ ++=′′−=′′ ,332211 λχλχλχαααα ddddd  

∑ ∑ ++=′−=′ ,332211 λσλσλσαααα ddddd  
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by virtue of which (1), the new functions ϖi, χi, σi of λ1, λ2, λ3 satisfy the relations: 
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 Again, we make the remark, which will be of use later on, that if one lets 
δλ1, δλ2, δλ3 denote the variations of λ1, λ2, λ3 that correspond to the variations 

, , ,δα δα δγ′ ′′⋯  of , , ,α α γ′ ′′⋯  then one will have: 
 
  ,332211 δλϖδλϖδλϖδ ′+′+′=′I  

  ,332211 δλχδλχδλχδ ′+′+′=′J  

  ,332211 δλσδλσδλσδ ′+′+′=′K  

  ,332211 δλϖδλϖδλϖγδβδαδδ ++=′+′+′= KJII  

  ,332211 δλχδλχδλχδγδβδαδ ++=′′+′′+′′= KJIJ  

,332211 δλσδλσδλσδγδβδαδ ++=′′′+′′′+′′′= KJIK  
 
in which δI, δJ, δK are the projections onto the fixed axes of the segment whose 
projections onto , ,Mx My Mz′ ′ ′are .,, KJI ′′′ δδδ  
 Now set: 
  0 1 0 1 0 1 0 1 0 1 0 1 0I J K I J Kϖ χ σ ϖ χ σ′ ′ ′ ′ ′ ′= + + = + +I , 

  0 2 0 2 0 2 0 2 0 2 0 2 0I J K I J Kϖ χ σ ϖ χ σ′ ′ ′ ′ ′ ′= + + = + +J , 

  0 3 0 3 0 3 0 3 0 3 0 3 0I J K I J Kϖ χ σ ϖ χ σ′ ′ ′ ′ ′ ′= + + = + +K , 

  0 1 0 1 0 1 0 1 0 1 0 1 0L M N L M Nϖ χ σ ϖ χ σ′ ′ ′ ′ ′ ′= + + = + +L , 

  0 1 0 1 0 1 0 1 0 1 0 1 0L M N L M Nϖ χ σ ϖ χ σ′ ′ ′ ′ ′ ′= + + = + +M , 

  0 1 0 1 0 1 0 1 0 1 0 1 0L M N L M Nϖ χ σ ϖ χ σ′ ′ ′ ′ ′ ′= + + = + +N . 
 
In addition, we introduce the following notations: 
 
  ,111111 iiiiiii RQPRQP σχϖσχϖ ++=′′+′′+′′=Π  

                                                
1 These formulas may serve to define the functions ϖi, χi, σi, directly, and the substitution is defined by: 
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THE DEFORMABLE MEDIUM 151 

  ,222222 iiiiiii RQPRQP σχϖσχϖ ++=′′+′′+′′=Χ  

  ,333333 iiiiiii RQPRQP σχϖσχϖ ++=′′+′′+′′=Σ  

 
then, instead of the latter system in which either , ,i i iP Q R′ ′ ′or Pi, Qi, Ri figure, we have the 

following: 
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with two analogous equations.  If one remarks that the functions ξi, ηi, ζi, pi, qi, ri of 
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that result from the defining relations of the functions ,,, iii σχϖ ′′′  and the nine identities 

that they verify, then one may give the preceding system the new form: 
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with two analogous equations. 
 
 3.  The preceding equations that we introduced also constitute the generalization of 
the ones we developed in an earlier work (1).  We may transform them in such a way as to 
obtain the generalization of the well-known equations of the theory of elasticity that 
relate to effort.  To that effect, it will suffice to reproduce the method we already 
employed in the work that we mentioned. 
 To abbreviate the writing, let 0 0 0, ,′ ′ ′X Y Z  and 0 0 0, ,′ ′ ′L M N  denote − for the moment – 

the left-hand sides of the transformation relations, which refer to X0, Y0, Z0, L0, M0, N0, 
respectively, and observe that one may summarize the twelve relations that we 
established by the following: 

                                                
1 E. and F. COSSERAT. – Premier mémoire sur la théorie de l’élasticité; Annales de la Faculté des 
sciences de Toulouse (1), 10, pp. I1 – I116, 1896. 
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in which λ1, λ2, λ3, µ1, µ2, µ3 are arbitrary functions and the integrals are taken over the 
surface S0 of the medium (M0) and the domain bounded by it.  If we apply GREEN’S 
formula then the relation that we wrote becomes the following one: 
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 We seek the transform of this latter relation when one takes the functions x, y, z of x0, 
y0, z0 for the new variables.  If one lets ϕ denote an arbitrary function of x0, y0, z0 that 
becomes a function of x, y, z then the elementary formulas for the change of variables are: 
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 Apply these formulas to the functions λ1, λ2, λ3, µ1, µ2, µ3.  With S always denoting 
the surface of the medium (M) that corresponds to the surface S0 of (M0), we further 
denote the projections onto Ox, Oy, Oz of the external force and external moment applied 
to the point M by X, Y, Z, L, M, N, which are referred to the unit of volume of the 
deformed medium (M), and the projection onto Ox, Oy, Oz of the effort and the moment 
of deformation that are exerted at the point M of S by F, G, H, I, J, K referred to the unit 
of area on S.  Finally, introduce the eighteen new auxiliary functions pxx, pyx, pzx, pxy, pyy, 
pzy, pxz, pyz, pzz, qxx, qyx, qzx, qxy, qyy, qzy, qxz, qyz, qzz by the formulas: 
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and the analogous ones that are obtained by replacing: 
 
   A1, A2, A3, pxx, pyx, pzx, P1, P2, P3, qxx, qyx, qzx 
with: 
   B1, B2, B3, pxy, pyy, pzz, Q1, Q2, Q3, qxy, qyy, qzy, 
and then by: 
   C1, C2, C3, pxz, pyz, pzz, R1, R2, R3, qxz, qyz, qzz, 
respectively. 
 We obtain the transformed relation: 
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in which the integrals are taken over the surface S of the medium (M), and the domain 
bounded by it, with dσ designating the area element of S. 
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 Once more, apply GREEN’S formula to the terms that refer to the derivatives of 
λ1, λ2, λ3, µ1, µ2, µ3 with respect to x, y, z, and let l, m, n denote the direction cosines of 
the exterior normal to the surface S with respect to the fixed axes.  Since λ1, λ2, λ3, 
µ1, µ2, µ3 are arbitrary, they become: 
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 The significance of the eighteen new auxiliary functions pxx, …, qxx, … results 
immediately from the relations that we just found.  Indeed, it is clear that the coefficients 
pxx, pxy, pxz of l in the expressions for F, G, H represent the projections onto Ox, Oy, Oz of 
the effort that is exerted at the point M on the surface whose exterior normal is parallel to 
Ox, and that the coefficients qxx, qxy, qxz of l in the expressions for I, J, K are the 
projections onto Ox, Oy, Oz of the moment of deformation at M relative to the same 
surface.  The coefficients of m and of n give rise to an analogous interpretation in regard 
to surfaces whose interior normals are parallel to Oy and Oz. 
 The auxiliary functions that we just introduced and the equations that relate them do 
not appear to have been envisioned in a form that was that general up till now;  to our 
knowledge, they have been considered only in the particular case in which the nine 
quantities qxx, …, qzz are null, and the first work to treat that question seems to be that of 
VOIGT (1).  

                                                
1 WALDEMAR VOIGT. – Theoretische Studien über die Elasticitätsverhältnisse der Krystalle, I, II, 
Abhandlungen der königlichen Gesellschaft der Wissenschaften zu Göttingen, Bd. 34, 1887.  The first 
section, entitled: Ableitung der Grundgleichungen aus der Annahme mit Polarität  begabter Moleküle, has 
49 pages (3-52), the second one, entitled: Untersuchung des elastische Verhaltens eines Cylinders aus 
krystallinscher Substanz, auf dessen Mantelfläche keine Kräfte wirken, wenn in seinem Innern wirkenden 
Spannungen längs der Cylinderaxe constant sind, is 48 pages (53-100).  One may likewise consult the 
work of VOIGT: L’État actuel de nos connaissances sur l’élasticité des cristaux (Report presented at the 
International Congress of Physics convened in Paris in 1900, T. I, pp. 277-347), in which he alludes to 
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 In conclusion, we observe that if one performs a change of variables in the six 
equations that involve X, Y, Z, F, G, H in such a fashion as to introduce the original 
variables x0, y0, z0 then one immediately finds equations whose first three constitute the 
generalization of the equations that were established by BOUSSINESQ. 
 
 
 54.  External virtual work.  Theorem analogous to those of Varignon and Saint-
Guilhem.  Remarks on the auxiliary functions that were introduced in the preceding 
section. –We give the name of external virtual work on the deformed medium (M) for an 
arbitrary virtual deformation, to the expression: 
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 We refer to the notations of sec. 50, and let δI, δJ, δK denote the projections onto the 
fixed axes of the segment whose projections onto , ,Mx My Mz′ ′ ′  are ,,, KJI ′′′ δδδ  in such 
a way that one has, for example: 
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upon always supposing that the axes in question have the same orientation. 
 This being the case, suppose as in sec. 53 that one gives the arbitrary functions λ1, 
λ2, λ3, µ1, µ2, µ3 the significance defined from the formulas: 
 

λ1 = δx,  λ2 = δy,  λ3 = δz, µ1 = δI,  µ2 = δJ,  µ3 = δK. 
 
We then see that the previously-obtained relations between the auxiliary functions that 
we introduced serves only to express the following condition: 
 When any of the virtual displacements in sec. 50 are given to the deformed medium 
the external virtual work δTe is given, either by the relation: 
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POISSON, Mém. de l’Acad., T. XVIII, pp. 3, 1842 (see pp. 289).  Also consult LARMOR, On the 
propagation of a disturbance in a gyrostatically loaded medium (Proc. Lond. Math. Soc., Nov., 1891); 
LOVE, Treatise on the Mathematical Theory of Elasticity (Camb. University Press, 1st ed., 1892, 2nd ed., 
1906); COMBEBIAC, Sur les équations générales de l’élasticité, Bull. De la Soc. Math. De France, T. 
XXX, pp. 108-110, and pp. 242-247, 1902. 
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where the integrals are taken over the deformed medium, or by the relation: 
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in which the integrals are taken over the undeformed medium, because the formula we 
gave above: 
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to serve as the definition of external virtual work may also be written: 
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by virtue of the significance of X0, Y0, …, N0, F0, G0, …, K0, and likewise: 
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by virtue of the significance of X, Y, …, N, F, G, …, K. 
 Start with the formula: 
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which is applied to an arbitrary portion of a medium that is bounded by a surface S0. 
 Since δW must be identically null, by virtue of the invariance of W under the group of 
Euclidean displacements with the variations given by formulas (51), namely: 
 

δx = (a1 + ω2z – ω3y)dt, 
δy = (a2 + ω3z – ω1y)dt, 
δz = (a3 + ω1z – ω2y)dt, 

and δI, δJ, δK by: 
δI = ω1δt,  δJ = ω2δt, δK= ω3δt, 

 
and from this, and the expressions for δTe on which we must insist (1), we conclude that 

one has: 
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and four analogous equations.  These six formulas are easily deduced from the ones that 
one ordinarily writes by means of the principle of solidification. 
 One may imagine that the frontier S is variable in these formulas. 
 The auxiliary functions that were introduced in the preceding paragraphs are not the 
only ones that may be envisioned; if we confine ourselves to their consideration then we 
simply add a few obvious remarks. 
 By definition, we have introduced two systems of efforts and moments of 
deformation relative to a point M of the deformed medium.  The first are the ones that are 
exerted on surfaces that have their normal parallel to one of the fixed axes Ox, Oy, Oz 
before deformation.  The second are the ones that are exerted on surfaces that have their 
normal parallel to one of the same fixed axes Ox, Oy, Oz. 
 The formulas that we have indicated give the latter elements by means of the former; 
however, by an immediate solution, which we shall not stop to perform, one obtains, 
conversely, the former elements in terms of the latter. 
 Now suppose that we have introduced the function W.  The former efforts and 
moments of deformation have the expressions we already gave, and one immediately 
deduces their expressions in terms of the latter from this.  Nevertheless, in these 
calculations one may specify the functions that one must introduce according to the 

                                                
1 The passage from elements referred to the unit of volume of the undeformed medium and area of the 
frontier S0 to the elements referred to unit of volume for the deformed medium and the area of the frontier S 
sufficiently immediate that it suffices to confine ourselves to the former as we have done, for example. 
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nature of the problem, and which will be, for example, x, y, z or ,,, zyx ′′′  and three 

parameters (1) λ1, λ2, λ3 by means of which one expresses .,,, γαα ′′′⋯   
 If one introduces x, y, z, λ1, λ2, λ3, and if one continues to let W denote the function 
that depends on x0, y0, z0, the first derivatives of x, y, z with respect to x0, y0, z0 on 
λ1, λ2, λ3, and their first derivatives with respect to x0, y0, z0, and is obtained by replacing 
the different quantities ξi, ηi, ζi, pi, qi, ri in the function W(x0, y0, z0, ξi, ηi, ζi, pi, qi, ri,) 
with their values as given by formulas (43) and (44), then one will have: 
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 55.  Notion of energy of deformation.  Theorem that leads to that of Clapeyron 
as a particular case. −  Envision the two states, (M0) and (M) of the deformable medium 
bounded by the surfaces (S0) and (S), and consider an arbitrary sequence of states that 
start with (M0) and end with (M).  To that end, it suffices to consider functions x, y, z, 

, , ,α α γ′ ′′⋯  of x0, y0, z0, and one variable h that reduce to x0, y0, z0, ,,,, 000 γαα ′′′ ⋯  

respectively, when h is zero, and reduce to the values x, y, z, ,,,, γαα ′′′⋯ respectively, for 
non-zero h relative to (M). 
 If we make the parameter h vary in a continuous fashion from 0 to h then we obtain a 
continuous deformation that permits us to pass from the state (M0) to the state (M).  For 
this continuous deformation, consider the total work performed by the forces and external 
moments that are applied to the different volume elements of the medium and by the 
efforts and moments of deformation that are applied to the surface elements of the 
frontier.  To obtain this total work, it suffices to integrate the differential so obtained 
from 0 to h, starting with one of the expressions for δTe in the preceding section and 
substituting the partial differentials that correspond to the increase dh in h for the 
variations of x, y, z, ;,,, γαα ′′′⋯  the formula: 
 

                                                
1 For such auxiliary functions λ1, λ2, λ3, one may take, for example, the components of the rotation that 
makes the axes Ox, Oy, Oz parallel to ,,, zMyMxM ′′′ respectively. 
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0
0 0 0e S

Wdx dy dzδ δ= −∫∫∫T  

 

gives the expression 
0

0 0 0S

W
dx dy dz

h

∂−
∂∫∫∫  for the value of δTe, and we obtain: 
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∂ − = − − ∂ 
∫ ∫∫∫ ∫∫∫  

 
for the total work.  The work in question is independent of the intermediary states and 
depends only on the extreme states (M0) and (M). 
 This leads us to introduce the notion of energy of deformation, which must be 
distinguished from that of the action of deformation that we previously envisioned.  We 
say that – W is the density of the energy of deformation, referred to the unit of volume of 
the undeformed medium. 
 The proposition that we must encounter, which determines the total work that is 
performed by the external forces and moments, as well as the efforts and moments of 
deformation that are applied to the frontier, gives CLAPEYRON’S theorem (1) when we 
consider an infinitely small deformation and specify the medium.  Indeed, first introduce 
simply the hypothesis − and we refer to sec. 58 for the more general form − that W is a 
simple function of ε1, ε2, ε3, λ1, λ2, λ3.  We may then envision the formulas: 
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1 λ∂
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3 λ∂
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as defining a change of variables that replaces the letters ε1, ε2, ε3, λ1, λ2, λ3 with the 
letters Ω1, Ω2, Ω3, Ξ1, Ξ2, Ξ3.  By virtue of this change of variables, W becomes a 
function W′ of Ω1, Ω2, Ω3, Ξ1, Ξ2, Ξ3. 
 Having said this, we pass to infinitely small deformations and put ourselves into the 
situation envisioned in sec. 31, pp. 74-76, of our Premier mémoire sur la théorie de 

l’élasticité; W and W′  become quadratic forms W2 of e1, e2, e3, g1, g2, g3, and ,2W′  of N1, 

N2, N3, T1, T2, T3; the latter is, up to a factor of ¼, what one calls the adjoint form to W2.  

When this is of issue, and in the case of infinitely small deformations, one obtains the 
following expression for the total work: 
 

∫∫∫ .0002 dzdydxW  

 

                                                
1 LAMÉ seems to have been credited with making CLAPEYRON’S theorem known in his Note to the 
Comptes Rendus, T. XXXV, pp. 459-464, 1852, then in his Leçons sur la théorie mathématique de 
l’élasticité des corps solides, (1st ed., 1852, 2nd ed., 1866); indeed, it was only in the 1st of February, 1858, 
that the following note appeared: CLAPEYRON, Mémoire sur le travail des forces élastiques, dans un 
corps solide déformé par l’action de forces exterieures, Comtes rendus, T. XLVI, pp. 208, 1858.  Also 
consult TODHUNTER and PEARSON, A History of the Theory of Elasticity, etc., secs., 1041 and 1067-
1070. 
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To be more specific, if we suppose that we have (1): 
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 One sees that one has recovered the result of LAMÉ precisely, if one remarks that the 
total work of the external forces and efforts on the frontier obviously reduces to the 
indicated expression in the case of infinitely small deformations. 
 
 
 56.  Natural state of the deformable medium. – In the preceding we started with a 
natural state of a deformable medium and then we were given a state we called 
“deformed.”  We indicated the formulas that permit us to calculate external force and the 
analogous elements that are adjoined to the function W for the deformable medium and 
represent the action of deformation at a point. 
 As before, let us stop for a moment on this notion of natural state. 
 Up till now, the latter is a state that has not been subjected to any deformation.  
Imagine that the functions x, y, z, , , ,α α γ′ ′′⋯  that define the deformed state depend on 
one parameter, and that one recovers the natural state for a particular value of this 
parameter.  The latter then seems to us to be a special case of a deformed state, and we 
are led to attempt to apply the notions relating to the latter to it.  
 Without changing the values of the elements that are defined by the formulas of sec. 
52, one may replace the function W with this function augmented by an arbitrary definite 
function of x0, y0, z0, and, if one is inspired by the idea of action that we associate to the 
passage from the natural state (M0) to the deformed state (M) then one may, if one 
prefers, suppose that the function of x0, y0, z0 that is defined by the expression: 
 

(0) (0) (0) (0) (0) (0)
0 0 0( , , , , , , , , )i i i i i iW x y z p q rξ η ς  

 
is identically null; however, the values obtained for the external force and the analogous 
elements with regard to the natural state will not necessarily be null.  We say that they 
define the external force and the analogous elements relative to the natural state (1). 

                                                
1 E. and F. COSSERAT. – Premier mémoire sur la théorie de l’élasticité, pp. 77. 
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 In our way of speaking, the natural state presents itself as the initial state of a 
sequence of deformed states, a state that we start with in order to study the deformation.  
As a result, one is led to demand that it is not possible to make one of the deformed states 
play the role that we have the natural state play, and that this must be true in such a way 
that the elements that we defined in sec. 52 (external force and moment, external effort 
and moment of deformation), which were calculated for the other deformed states, have 
the same values if one refers the first of these elements to the unit of volume of the 
deformed medium and the second of these to the unit of area of the deformed surface.  
This question may receive a response only if one introduces and specifies the notion of 
the action that corresponds to the passage from one deformed state to another state. 
 The simplest hypothesis consists of assuming that this latter action is obtained by 
subtracting the action that corresponds to the passage from the natural state (M0) to the 
first deformed state( )M ′ from the action that corresponds to the passage from the natural 
state to the second deformed state (M).  With regard to ),(M ′ if we denote the quantities 

that are analogous (2) to ξi, ηi, ζi, pi, qi, r i relative to (M) by ,,, iii ςηξ ′′′  ,,, iii rqp ′′′  then we 
are led to adopt the following expression for the action of the deformation relating to the 
passage from the state( )M ′  to the state (M): 
 

(52)  ∫∫∫ ′′′′′′−
0

,)},,,,,,,,(),,,,,,,,({ 000000000S iiiiiiiiiiii dzdydxrqpzyxWrqpzyxW ςηξςηξ  

 
which one may write, if ∆′ is the value of ∆ for :)(M ′  
 

(53) ∫∫∫ ∆′′
0

,||),,,,,,,,( 0000000S iiiiii dzdydxrqpzyxW ςηξ  

 
in which we have let S′ denote the surface of )(M ′ that corresponds to S0 for (M0), and  

),,,,,,,,( 0000 iiiiii rqpzyxW ςηξ′  denotes the expression: 

.
||

1
)},,,,,,,,(),,,,,,,,({ 000000 ∆′
′′′′′′− iiiiiiiiiiii rqpzyxWrqpzyxW ςηξςηξ  

 
 Furthermore, from the remark made at the beginning of this paragraph, one may, if 
one prefers, substitute the following expressions for (33): 
 

)35( ′  ∫∫∫ ∆′′
0

,||),,,,,,,,( 000000S iiiiii dzdydxrqpzyxW ςηξ  

                                                                                                                                            
1 We may then speak of the force, effort, etc., since we regard the natural state as the limit of a sequence of 
states for which we know the force, effort, etc.  Up till now, the force, effort, etc. were defined for us only 
when there was a deformation capable of manifesting and measuring them. 
 
2 One must remark that ,,,,,,

iiiiii
rqp ′′′′′′ ςηξ are not analogous to ,,,,,, )0()0()0()0()0()0(

iiiiii rqpςηξ because they 

are not formed by means of the coordinates, ,x y z′ ′ ′ of )(M ′ in the same way that ,,, )0()0()0(

iii ςηξ  
(0) (0) (0), ,i i ip q r are formed by means of x0, y0, z0. 
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in which ),,,,,,,,( 000 iiiiii rqpzyxW ςηξ′  denotes the expression: 

 

.
||

1
),,,,,,,,( 000 ∆′iiiiii rqpzyxW ςηξ  

 
 If one remarks that one has, for example: 
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then it is clear that applying formulas that are analogous to those of sec. 52 to expressions 
(53) or )35( ′  and starting with )(M ′  as the natural state, but while supposing that )(M ′ is 
referred to the system of coordinates x0, y0, z0, and assuming that the formulas of sec. 52 
are modified as a consequence, will give the same values for the exterior force and 
moment relative to the state (M) referred to the unit of volume of (M), as well as the same 
values for the effort and the moment of deformation referred to the unit of area for (S). 
 Therefore we may consider (M) to be a deformed state for which )(M ′ is a natural 

state, provided that the function W associated with the state (M) is actually (1) 0W′  or .W′  
 Conforming to these indications, suppose, to fix ideas, that the external force and 
moment are given by means of simple functions of x0, y0, z0 and elements that fix the 
position of the triad .zyxM ′′′   Suppose, moreover, that the natural state is given.  We may 
consider the equations of sec. 52 relating to the external force and moment to be partial 
differential equations in the unknowns x, y, z and the three parameters λ1, λ2, λ3 by means 
of which one may express .,,, γαα ′′′⋯   The expressions ξi, ηi, ζi, pi, qi, r i are then 

functions of 31 2
1 2 3, , , , , , , ,

i i i i i i

x y z λλ λλ λ λ
ρ ρ ρ ρ ρ ρ

∂∂ ∂∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

 (always setting ρ1 = x0, ρ2 = y0, ρ3 = 

z0) that one calculates by means of formulas (43) and (44). 
 Suppose that ,,,,,, 000000 NMLZYX ′′′′′′ or, what amounts to the same thing, X0, Y0, Z0, 

L0, M0, N0 are given functions of x0, y0, z0, x, y, z, λ1, λ2, λ3 .  The expression W is, after 
substituting for the values of ξi, ηi, ζi, pi, qi, r i by means of formulas (43) and (44), a 

definite function of x0, y0, z0, ,,,,,,,,,
0
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0

1
321

00 zxz

z

x

x

∂
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∂
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∂
∂ λλλλλ ⋯⋯ which we continue to 

denote by W, and the equations of the problem may be written: 
 
 

                                                
1 As we said at the beginning of this section, this permits us to generalize the notion of natural state that we 
first introduced.  Instead of making this word correspond to the idea of a particular state, we may, in a more 
general fashion, make it correspond to the idea of an arbitrary state, starting from which we may study the 
deformation.  The fact that we introduced x0, y0, z0 at the beginning of the theory seems to make (M0) play a 
particular role; however, one must not consider x0, y0, z0 as anything but the coordinates that serve to define 
the different media, and not only (M0).  One has chosen these coordinates in a particular fashion, and in 
relation to a particular medium, in order that one must, as a result, pay attention to (M0) in the context of 
infinitely small deformations. 
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in which L0, M0, N0 are functions of x0, y0, z0, x, y, z, λ1, λ2, λ3 that result from the 

definitions of sec. 53. 
 It results directly from the formulas of the preceding paragraphs that a more 
immediate way of defining X0, Y0, Z0, L0, M0, N0 may be summarized in the relation: 

 

0 0 0 0eWdx dy dzδ δ+ =∫∫∫ T , 

i.e., in: 

0 0 0 0 0 0 0 1 0 2 0 3( )Wdx dy dz F x G y H z dδ δ δ δ δλ δλ δλ σ= + + + + +∫∫∫ ∫∫ I J K  

0 0 0 0 1 0 2 0 3 0 0 0( )X x Y y Z z dx dy dzδ δ δ δλ δλ δλ− + + + + +∫∫∫ L M N  

 
 
 57.  Notions of hidden triad and hidden W. – In the study of deformable media, as 
in the study of deformable lines and surfaces, it is natural to pay particular attention to the 
pointlike media that are described by the deformable media.  This amounts to envisioning 
x, y, z separately and considering , , ,α α γ′ ′′⋯ as simply auxiliary functions. This is what 
we likewise express by imagining that one ignores the existence of the triads that 
determine the deformable medium, and that one knows only the vertices of those triads.  
If we adopt that viewpoint in order to envision the partial differential equations that one 
is led to in this case then we may introduce the notion of hidden triad, and we are led to a 
resulting classification of the diverse circumstances that may be produced by the 
elimination the .,,, γαα ′′′⋯  
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 Therefore, a primary study that presents itself is that of the reductions that relate to 
the elimination of the .,,, γαα ′′′⋯  Likewise, in the corresponding particular cases in 
which the attention is directed almost exclusively to the pointlike media that are 
described by the deformed medium (M) one may sometimes abstract from (M0), and, as a 
result, from the deformation that permits us to pass from (M0) to (M). 
 As we already said for the deformable line and surface, the triad may be employed in 
another fashion.  We may make particular hypotheses on it and the medium (M); all of 
this amounts to envisioning particular deformations of the free deformable line.  If the 
relations that we impose are simple relations between ξi, ηi, ζi, pi, qi, ri, as will be the 
case in the applications that we shall study, we may account for these relations in the 
calculation of W and deduce more particular functions from W.  The interesting question 
that this poses is that of introducing these particular forms simply, and to consider the 
general W that serves as the point of departure as being hidden, in some sense.  We thus 
have a theory that will be specific to the particular deformations brought to light by the 
given relations between ξi, ηi, ζi, pi, qi, ri. 
 We confirm that by means of the theory of free deformable media one may therefore 
combine the particular cases and provide a common origin to the equations that are the 
result of special theories that one encounters in physics (1). 
 In the particular cases, one sometimes finds oneself in the proper circumstances to 
avoid the consideration of these deformations; in reality, they must sometimes be 
completed.  This is what one may do in practical applications when one envisions 
infinitely small deformations. 
 Take the case in which the external force and moment refer only to the first 
derivatives of the unknowns x, y, z and λ1, λ2, λ3; the second derivatives of these 
unknowns will be introduced into these partial differential equations only for W; 
however, the derivatives of x, y, z figure only in ξi, ηi, ζi, and those of λ1, λ2, λ3 show up 
only in pi, qi, ri.  One therefore sees that if W depends only on ξi, ηi, ζi, or only on pi, qi, 
r i, then there will be a reduction in the order of the derivatives that enter into the partial 
differential equations.  Here, we examine the first of these two cases, which corresponds 
to the ordinary theory of elasticity for material media and to the theory of the various 
ethereal media that are envisioned in the doctrine of luminous waves. 
 
 
 58.  Case in which W depends only on x0, y0, z0, ξi, ηi, ζi, and is independent of pi, 
qi, ri.  How one recovers the equations that relate to the deformable body of the 
classical theory and to the media of hydrostatics. – Suppose that W depends only on 
the quantities x0, y0, z0, ξi, ηi, ζi, and not on pi, qi, ri.  The equations of sec. 56, which 
reduce to the following: 

                                                
1 All of our considerations heretofore may be applied just the same to material media as to various ethereal 
media.  We have declared the word matter to be invalid, and what we expose is, as we said to begin with, a 
theory of action for extension and movement.  To have a more complete idea of the notion of matter, we 
shall explain later on how one must approach the latter from the concept of entropy according to the 
profound viewpoint that LIPPMANN introduced into electricity.  
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in which W depends only on x0, y0, z0, ,,,
00 z
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⋯ λ1, λ2, λ3, we show that if one takes 

the simple case in which X0, Y0, Z0, L0, M0, N0 are given functions (1) of x0, y0, z0, x, y, z, 
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⋯ λ1, λ2, λ3 then the three equations may be solved for λ1, λ2, λ3, and one 

finally obtains three partial differential equations that, from our hypotheses, refer to only 
the x0, y0, z0, and to x, y, z, and their first and second derivatives. 
 First, envision the particular case in which the given functions L0, M0, N0 are null; 

the same will be true for the corresponding values of the functions of one of the systems 
),,,( 000 NML ′′′ (L0, M0, N0),(L, M, N).  It results from this that the equations: 
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i.e., 
pyz = pzy , pzx = pxz , pxy = pyx , 

 
whose interpretation is immediate. 
 Haing said this, observe that if one of the two positions (M0) and (M) is assumed to be 
given, and that if one deduces the functions L0, M0, N0 from this, as in sec. 53, then in 

the case in which these three functions are null one may arrive at this result accidentally, 

                                                
1 In order to simplify the exposition, and to indicate more easily what we are alluding to, we suppose that 
X0, Y0, Z0, L0, M0, N0 do not refer to the derivatives of λ1, λ2, λ3. 
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i.e., for a certain set of particular deformations; however, one may arrive at this result for 
any deformation (M) since it is a consequence of the nature of the medium (M), i.e., of 
the form of W. 
 Consider this latter case, which is particularly interesting; W is then a simple function 
(1) of ρ1, ρ2, ρ3, and the six expressions ε1, ε2, ε3, λ1, λ2, λ3, which are defined by the 
formulas (45). 
 The equations deduced from sec. 52 and 53 reduce to either: 
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1 The triad is completely hidden; we may also conceive that we have a simple pointlike medium. 
 
2 Compare E. and F. COSSERAT. – Premier Mémoire sur la théorie de l’élasticité, pp. 45, 46, 65. 
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and analogous formulas for pyz, …  ∆ has the significance that we gave it in sec. 51, 
which we shall recall in a moment. 
 As one sees, we recover the continuous deformable medium as it is treated in the 
ordinary theory of elasticity. 
 A particularly interesting case is obtained by looking for a form for W that gives the 
identities: 

pyz = 0,  pyx = 0,  pxy = 0, 
 

for any ⋯,
0x

x

∂
∂

  One finds that W must be a simple function of x0, y0, z0, and the 

expression ∆, which is defined by the formulas (1): 

                                                
1 Compare E. and F. COSSERAT. – Premier Mémoire sur la théorie de l’élasticité, pp. 40, 44, 65. 
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from which one may see, upon remarking that if one refers to the previous formulas (2) 
that gave us pyz, pyx, pzx,… as a function of A1, … then one has: 
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and two analogous systems; since W is assumed to be a simple function of x0, y0, z0, and 
∆, one has, as a result: 
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ppp zzyyxx  

 
 If we consider the particular case in which W depends only on ∆, and if we assume 
that we are given X, Y, Z expressed as functions of x, y, z then the equations in question, 
which are: 
 

,X
x

p =
∂
∂

 ,Y
y

p =
∂
∂

 ,Z
z

p =
∂
∂

 F = lp,  G = mp, H = np, 

 

upon setting ,
∆∂

∂= W
p become those which serve as the basis for hydrostatics (3).  The 

initial medium (M0) appears only by way of ∆, and one may replace the unknown ∆ with 

the unknown p that is related to it by the relation .
∆∂

∂= W
p   If the function W, which is 

not given, is hidden then one has the preceding equations, in which p is an auxiliary 
function whose significance is well known. 
 It will suffice for us to indicate that the case in which the functions L0, M0, N0 are 

non-null comprises the theory of all the ethereal media that have been considered for the 
study of luminous waves from MACCULLAGH to LORD KELVIN, but here the theory 
of these media is completely mechanical.  We likewise mention that the most general 

                                                                                                                                            
1 Compare E. and F. COSSERAT. – Premier Mémoire sur la théorie de l’élasticité, pp. 23, 24. 
 
2 These formulas are actually the ones on page 47 of our Premier Mémoire sur la théorie de l’élasticité. 
 
3 Compare DUHEM. – Hydrodynamique, Elasticité, Acoustique. 
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case, in which the trace of the derivatives of the action W with respect to the rotations pi, 
qi, ri remains in the expression for the external moment leads in the most natural manner 
to the notion of magnetic induction that was introduced by MAXWELL. 
 
 
 59.  The rigid body. – We have considered the particular case in which W does not 
depend on pi, qi, ri, and different special cases of this case.  One may arrive at the other 
media that were considered, at least in part, by the authors, either by the study of 
particular deformations, or by the study of new media that are defined by a theory of 
constraints that profits from the results that we already acquired. 
 For example, start with the simple case, in which the triad is hidden, i.e., by 
definition, it is a pointlike medium in which W is a function of x0, y0, z0, 
ε1, ε2, ε3, γ1, γ2, γ3. 
 
 1.  We may imagine that one pays attention only to the deformations of the medium 
for which one has: 

ε1 = ε2 = ε3 = γ1 = γ2 = γ3 = 0. 
 

 In the definitions of forces, etc., it suffices to introduce these hypotheses, and, if the 
forces are given, to introduce these six conditions.  In the latter case, the habitual 
problems, which correspond to the given of the function W, and to the general case in 
which the εi, γi are non-null, may be posed only for particular givens. 
 If we suppose only that the function W0 that is obtained by taking ε1 = ε2 = ε3 = γ1 = γ2 
= γ3 = 0 in W(ρ1, ρ2, ε1, …) is given, that one does not know the values of the derivatives 
of W with respect to ε1, ε2, ...,γ3 for ε1 = ε2 = ...= γ3 = 0, so that W is hidden, then we see 
that pxx, …, pzz , for example, become six auxiliary functions that one must adjoin to x, y, 
z, in such a way that, for the case in which the forces that act on the volume elements are 
given,  we have nine partial differential equations in nine unknowns in the case, to which 
one must adjoin accessory conditions. 
 Now we remark that one knows how to integrate the system: 
 

ε1 = ε2 = ε3 = γ1 = γ2 = γ3 = 0. 
 
 Since the deformation is supposed continuous, the integral corresponds to a 
displacement of the set of the medium; it thus remains for us to determine the six 
constants of integration and the auxiliary functions pxx, …   
 If the forces and efforts that act on the medium are given, and we suppose that X, … 
are known as functions of x, y, z then the six equations of sec. 54, with the simplifications 
implied for the form of W, when applied to the entire body, determine the six integration 
constants.  To complete the process, what remains is for us to ultimately determine pxx, …   
 If we leave aside the problem of this ultimate determination, then one sees that we 
recover the habitual problems of the mechanics of rigid bodies, in which one might 
ordinarily suppose that the hidden function W depends only on ∆. 
 
 2.  We may imagine that we seek to define a medium whose definition already takes 
the conditions: 
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ε1 = ε2 = ε3 = γ1 = γ2 = γ3 = 0 
into account, sui generis. 
 In order to define the new medium, while thinking along the same lines as before, we 
further define 0 0, ,F N′ ′⋯ by the identity: 
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 However, this identity must no longer hold, by virtue of the fact that ε1 =  … = γ3 = 0. 
In other words, we envision a medium in which the theory must result from the a 
posteriori addition of the conditions ε1 =  … = γ3 = 0 to the knowledge of a function 
W(x0, y0, z0, ε1, ε2,…, γ3) and six auxiliary functions µ1,…, µ6 of x0, y0, z0, by means of the 
identity: 
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which amounts to setting ε1 =  … = γ3 = 0 in the general theory that preceded, in which 
one has replaced W with W1 = W + µ1ε1 + … + µ6ε3 . 
 As one sees, we come down to the theory of elastic media that correspond to the 
function W of x0, y0, z0, ε1, ε2,…, γ3 when one restricts oneself to the study of deformations 
that correspond to ε1 =  … = γ3 = 0.  Therefore, if we consider the case of a hidden W 
then if we suppose that we known simply the value W(x0, y0, z0) that W and W1 take 
simultaneously when ε1 =  … = γ3 = 0 then we recover the habitual theory of the rigid 
body. 
 Observe that if we account for the conditions ε1 =  … = γ3 = 0 in W a priori by a 
change of auxiliary functions then we are led to replace W with µ1ε1 + … + µ6ε3 in the 
calculations that relate to the general medium, and we likewise find formulas that come 
down to the study of an elastic medium in which we are confined to studying 
deformations that correspond to ε1 =  … = γ3 = 0.  Upon supposing that µ1,…, µ6 are 
unknown, we once more come down to theory that comprises the habitual theory of the 
rigid body.  From this latter viewpoint, we return to the exposition that one may make 
about the ideas of LAGRANGE.  In particular, we may observe that in the case in which 
X0, Y0, Z0 are given as the partial derivatives with respect to x, y, z of a function ϕ of x0, 
y0, z0, x, y, z the equations in which X0, Y0, Z0 figure are none other than the equations that 
one is led to when one seeks to determine the extremum of the integral: 
 

∫∫∫ ,000 dzdydxϕ  

given the conditions: 
ε1 = ε2 = ε3 = γ1 = γ2 = γ3 = 0. 
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 3.  We discuss a third procedure (1) for constituting a medium for which the theory 
always leads to the same equations, and which will be a limiting case of the original 
theory.  This procedure agrees with the first one, and it may also be applied to the cases 
of the deformable line and surface. 
 Imagine that the W that serves to define the original medium is variable, and, to fix 
ideas, suppose that the values of ε1, … , γ3 are developable in a MACLAURIN series in a 
neighborhood of zero by the formula: 
 

W = W1 + W2 + …+ Wi +…, 
 
in which Wi represents the set of terms of the i th degree.  Assume that the coefficients of 
W2 (which may depend on x0, y0, z0) increase indefinitely in their variation.  If we want W 
to conserve a finite value then we must suppose that ε1, … , γ3 tend towards zero.  In 
other words, we may then consider only deformations that satisfy ε1 =  … = γ3 = 0.  In 
other words, the body that we approach in the limit may take only displacements of the 

set.  We may suppose that one makes the derivatives ⋯,
1ε∂

∂W
, which approach limits 

when W varies in a manner we shall describe, likewise vary as a consequence of a studied 
deformation for this medium. 
 To explain this in a more precise fashion, imagine that the coefficients of W1, W2, … 
depend on one parameter h, in such a way that when h tends towards zero the coefficients 
of W2 increase indefinitely.  To fix ideas, suppose that the latter coefficients are linear 

with respect to .
1

h
  Likewise, imagine that x, y, z, which define the deformation in 

question, vary with h in such a way that ε1, … tend to zero.  In addition, we suppose that 
ε1, … are infinitely small of first order with respect to h; for example, ε1, …might be 
developed in powers of h, and the first terms of that development are the ones in h.  With 

these conditions, W tends to zero, and 
1 3

, ,
W W

ε γ
∂ ∂
∂ ∂
⋯ tend to certain limits (which may be 

functions of x0, y0, z0).  Therefore if we consider the equations of sec. 52 that serve to 
define external force and moment then we are finally led to formulas that permit us to 
define them, and which are none other than equations of our point of departure, in which 
the notion of the function W has disappeared, and in which six auxiliary functions 

0 0 0 0 0 0, , , , ,F G H I J K′ ′ ′ ′ ′ ′  figure. 

 
 
 60.  Deformable media in motion. – The theory of motion for the deformable line 
and that of the motion of the deformable surface present themselves very naturally as 
special cases of the theory of the deformable surface and that of the deformable medium.  
To see this, it suffices to give one of the parameters ρi of the surface or medium the 
significance of time. As we will not envision the statics of media of dimension greater 
than three here, we must expose the theory of motion of a deformable medium directly in 

                                                
1 Compare THOMSON and TAIT. – Treatise, vol. I., Part. I, pp. 271, starting with the 11th line down. 
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what follows; however, we nevertheless give it a form that is entirely analogous to the 
one that we indicated for the dynamics of deformable line and the deformable surface. 
 Consider a space (M0) that is described by a point M0 whose coordinates are x0, y0, z0 
with respect to the three fixed rectangular axes Ox, Oy, Oz, and adjoin a trirectangular 
triad to each point M0 of the space (M0) whose axes 0 0 0 0 0 0, ,M x M y M z′ ′ ′  have the direction 

cosines 0 0 0 0 0 0 0 0 0, , ; , , ; , ,α α α β β β γ γ γ′ ′′ ′ ′′ ′ ′′ with respect to the axes Ox, Oy, Oz, respectively, 

and which are functions of the independent variables x0, y0, z0. 
 The continuous three-dimensional set of such triads0 0 0 0M x y z′ ′ ′  may be considered as 

the position at a definite instant t of a deformable medium that is defined in the following 
fashion: 
 Give the point M0 a displacement M0M, which is a function of time t and the position 
of the point M0, and is null for t = t0.  Let x, y, z be the coordinates of the point M, which 
we consider to be functions of x0, y0, z0, t.  In addition, endow the triad 0 0 0 0M x y z′ ′ ′ with a 

rotation that makes its axes finally agree with those of a triadMx y z′ ′ ′  that we adjoin to the 
point M.  We define that rotation by giving the direction cosines ;,, ααα ′′′  

;,, βββ ′′′ , ,γ γ γ′ ′′  of the axes , ,Mx My Mz′ ′ ′with respect to the fixed axes Ox, Oy, Oz.  
Like x, y, z, these cosines will be functions of x0, y0, z0, t.   
 The continuous three-dimensional set of triads ,zyxM ′′′  for a given value of time t, 
will be what we call the deformed state of the deformable medium considered at the 
instant t.  The continuous four-dimensional set of triadsMx y z′ ′ ′  that is obtained by 
making t vary will be the trajectory of the deformed state of the deformable medium. 
 For ease of writing and notation in the sequel, we sometimes introduce, as we already 
did, the letters ρ1, ρ2, ρ3, instead of x0, y0, z0.  We continue to denote the components of 
the velocity of the origin M0 of the axes 0 0 0 0 0 0, ,M x M y M z′ ′ ′ along these axes by 

,,, )0()0()0(
iii ςηξ  when ρi alone varies, and the projections of the instantaneous rotation, 

relative to the parameter ρi, of the triad 0 0 0 0M x y z′ ′ ′  on these same axes by .,, )0()0()0(
iii rqp  

We denote the analogous expressions for the triadMx y z′ ′ ′  by ξi, ηi, ζi, and pi, qi, ri, when 

one refers them, like the triad ,0000 zyxM ′′′ to the fixed axes Oxyz. 

 When time t varies, and the motion of the triadMx y z′ ′ ′  is referred to the fixed triad 
Oxyz then the origin M has a velocity whose components along the axes , ,Mx My Mz′ ′ ′  
will be designated by ξ, η, ζ, and the instantaneous rotation of the triadMx y z′ ′ ′will be 
defined by the components p, q, r. 
 The elements that must introduce are calculated as in sec. 49; first, one has the 
formulas: 
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to which we adjoin the following: 
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if one now introduces the distinction between the notations for the derivatives with 
respect to time depending on whether one takes x0, y0, z0, t or x, y, z, t for the independent 
variables. 
 Suppose that one endows each of the triads of the trajectory of the deformed state 
with an infinitely small displacement that varies in a continuous fashion with these triads.  
With the same notations as in sec. 50, we have: 
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 61.  Euclidean action of deformation and motion for a deformable medium in 
motion. – Consider a function W of two infinitely close positions of the triad ,zyxM ′′′  i.e., 
a function of x0, y0, z0, t, and of x, y, z, ,,,, γαα ′′′⋯ and their first derivatives with respect 
to x0, y0, z0, t.  We propose to determine the form that W must take in order for the 
quadruple integral: 

∫∫∫∫ ,000 dtdzdyWdx  
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when taken over an arbitrary portion of space (M0), and the time interval between two 
instants t1 and t2 to have a null variation when one subjects the set of all triads along what 
we are calling the trajectory of the deformable medium − taken its deformed state – to the 
same arbitrary infinitesimal transformation of the group of euclidean displacements. 
 By definition, this amounts to determining W in such a fashion that one has: 
 

δW = 0 
 

when, on the one hand, the origin M of the triad Mx y z′ ′ ′  is subjected to an infinitely small 

displacement whose projections δx, δy, δz on the axes Ox, Oy, Oz are: 
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in which a1, a2, a3, ω1, ω2, ω3 are six arbitrary constants, and δt is an infinitely small 
quantity that is independent of x0, y0, z0, t, and when, on the other hand, this triad Mx y z′ ′ ′  
is subjected to an infinitely small rotation whose components along the Ox, Oy, Oz axes 
are: 

ω1 δt,   ω2 δt,   ω3 δt. 
 

 It suffices for us to repeat the reasoning that we made before, with several reprises, in 
order to see that the desired function W has the remarkable form: 
 

W(x0, y0, z0, t, ξi, ηi, ζi, pi, qi, ri, ξ, η, ζ, p, q, r), 
 

which is analogous to the one we encountered for the deformable line, surface, and 
medium at rest. 
 We say that the integral: 

∫ ∫∫∫
2

1 0

,000

t

t S
dtdzdyWdx  

 
is the action of deformation and motion in the interior of the surface S of the deformed 
medium in motion and in the interval of time between the instants t1 and t2.  On the other 
hand, we say that W is the density of the action of deformation and motion at a point of 
the deformed medium when taken at a given instant, and referred to the unit of volume of 
the undeformed medium and the unit of time.  If we give ∆ the same significance as in 

sec. 51 then 
|| ∆

W
 is the density of that action at a point and a given instant, when referred 

to the unit of volume of the deformed medium and the unit of time. 
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 62.  The external force and moments; the external effort and moment of 
deformation; the effort, moment of deformation, quantity of motion, and the 
moment of the quantity of motion of a deformable medium in motion at a given 
point and instant. – Consider an arbitrary variation of the action of deformation and 
movement in the interior of a surface (S) of the medium (M), and the time interval 
between the instants t1 and t2, namely: 
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 By virtue of formulas (58), ),85( ′ (59), ),95( ′ we may write: 
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 We apply GREEN’s formula to the terms that explicitly involve a derivative with 
respect to any of the variables, ρ1, ρ2, ρ3, and perform an integration by parts over the 
terms that explicitly involve a derivative with respect to time, t.  If we let l0, m0, n0, 
designate the direction cosines with respect to the fixed axes, Ox, Oy, Oz, of the exterior 
normal to the surface, S0, that bounds the medium before deformation at the instant, t, 
and designate the area element of that surface by dσ0, then we obtain: 
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As in sec. 52, set: 
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 If we first consider the quadruple integral that figures in the expression for 
2

1 0
0 0 0

t

t S
Wdx dy dz dtδ ∫ ∫∫∫  then we call the segments that have their origin at M and whose 

projections on the axes , ,Mx My Mz′ ′ ′  are 0 0 0, ,X Y Z′ ′ ′  and 0 0 0, ,L M N′ ′ ′  the external force 

and external moment at the point M at the instant t, referred to the unit of volume of the 
position of the medium at the instant t0, respectively. 
 If we then consider the triple integral that is taken over time and the surface S0 then 
we call the segments that issue from the point M whose projections on the axes 

, ,Mx My Mz′ ′ ′  are 0 0 0, ,F G H′ ′ ′− − −  and 0 0 0, ,I J K′ ′ ′− − −  the external effort and external 

moment of deformation at the point M of the surface S  that bounds the deformed medium 
at the instant t.  At a definite point M of (S) these last six quantities depend only on the 
direction of the external normal to the surface S.  They remain invariant if the region we 
call (M0) varies, but the direction of the normal does not change, and they change sign if 
this direction is replaced by the opposite direction. 
 Suppose that one traces a surface Σ in the interior of the deformed medium that is 
bounded by the surface S, which, either alone or with a portion of the surface S 
circumscribes a subset (A) of the medium, and let (B) denote the rest of the medium 
outside of (A).  Let Σ0 be the surface of (M0) that corresponds to the surface S of (M), and 
let (A0) and (B0) be the regions of (M0) that correspond to the regions (A) and (B) of (M).  
Mentally separate the two subsets A and B; one may regard the two segments 
( 000 ,, HGF ′−′−′− ) and ( 000 ,, KJI ′−′−′− ) that are determined for the point M and the 

direction of the normal to Σ0 that points to the exterior of (A0) as the external effort and 
moment of deformation at the point M of the frontier Σ of the region (A).  Similarly, one 
may regard the two segments ( 000 ,, HGF ′′′ ) and ( 000 ,, KJI ′′′ ) to be the external effort and 

m0ment of deformation at the point M of the frontier Σ of the region (B).  By reason of 
this remark, we say that 000 ,, HGF ′−′−′−  and 000 ,, KJI ′−′−′−  are the components of the 
effort and moment of deformation that is exerted on the portion (A) of the medium (M) at 
M along the axes ,,, zMyMxM ′′′  and that 000 ,, HGF ′′′  and 000 ,, KJI ′′′  are the components 
of the effort and moment of deformation that are exerted on the portion (B) of the medium 
(M) at M, along the axes .,, zMyMxM ′′′  
 Finally, if we consider the triple integral over the volume of (M) at the instant t, 
whose values are taken at the extreme instants t1 and t2 , then we call the segments that 
have their origins at M and whose components along the axes , ,Mx My Mz′ ′ ′are , ,A B C′ ′ ′  
and , ,P Q R′ ′ ′  the quantity of motion and the moment of the quantity of motion at the 
point M of the deformed medium (M) at the instant t, respectively. 
 
 
 63.  Diverse specifications for the effort and moment of deformation, the 
quantity of motion, and the moment of the quantity of motion. – As in sec. 53, set: 
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in which , ,i i iA B C′ ′ ′  and , ,i i iP Q R′ ′ ′  represent the projections on ,,, zMyMxM ′′′  respectively, 
of the effort and moment of deformation that are exerted at the point M of a surface that 
has a normal that is parallel the axis Ox, Oy, Oz that we describe by the index i before 
deformation.  Indeed, it suffices to recall that we already agreed to replace the letters x0, 
y0, z0 that correspond to the indices 1, 2, 3 by this convention with ρ1, ρ2, ρ3.  Recall that 
this effort and moment of deformation are referred to the unit of area of the undeformed 
surface at the instant t. 
 The new efforts and moments of deformation that we just defined are related the 
elements that the introduced in the preceding section by the following relations: 
 
  ,3020100 AnAmAlF ′+′+′=′  ,3020100 PnPmPlI ′+′+′=′  
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 One may propose to transform the relations we just wrote independently of the values 
of the quantities that figure in them that are calculated by means of W.  Indeed, these 
relations relate to the segments that are attached to the point M to which we gave the 
names.  Instead of defining these segments by their projections on ,,, zMyMxM ′′′  we may 
just as well define them by their projections on other axes; the latter projections will be 
coupled by relations that are transforms of the preceding ones.  Moreover, the 
transformed relations are obtained immediately if one remarks that the original formulas 
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have simple interpretations (1) by the adjunction of axes that are parallel to the moving 
axes at the point O. 
 
 1.  As in statics, we confine ourselves to the consideration of the fixed axes Ox, Oy, 
Oz.  Let X0, Y0, Z0 and L0, M0, N0 denote the projections of the external force and the 
external moment at an arbitrary point M of the deformed medium at an instant t onto 
these axes, and let F0, G0, H0 and I0, J0, K0 be the projections of the effort and the 
moment of deformation on a surface whose exterior normal has the direction cosines l0, 
m0, n0 before deformation at the instant t.  Let Ai, Bi, Ci and Pi, Qi, Ri be the projections of 
the effort( , , )i i iA B C′ ′ ′  and the moment of deformation ),,,( iii RQP ′′′ and let A, B, C and P, Q, 

R be the projections of the quantity of motion (A, B, C) and the moment of the quantity of 
motion (P, Q, R).  The transforms of the preceding relations are obviously: 
 

,3020100 AnAmAlF ++=  ,3020100 PnPmPlI ++=  

,3020100 BnBmBlG ++=  ,3020100 QnQmQlJ ++=  

,3020100 CnCmClH ++=  ,3020100 RnRmRlK ++=  
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1 An interesting interpretation to note is the analogue of the one given by P. SAINT-GUILHEM in the 
context of the dynamics of triads. 
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 2.  Now observe that we may express the nine cosines , , ,α α γ′ ′′⋯ by means of the 

three auxiliary functions λ1, λ2, λ3.  Set: 
 

∑ ∑ ′+′+′=−= ,332211 λϖλϖλϖγββγ ddddd  

∑ ∑ ′+′+′=−= ,332211 λχλχλχαγγα ddddd  

∑ ∑ ′+′+′=−= .332211 λσλσλσβααβ ddddd  

 
The functions ϖi, χi, σi of λ1, λ2, λ3 so defined satisfy relations that we have written 
several times already: 
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in which x0 = ρ1, y0 = ρ2, z0 = ρ3.  If we let ϖi, χi, σi denote the projections onto the fixed 
axes Ox, Oy, Oz of the segment whose projections onto the axes , ,Mx My Mz′ ′ ′  are 

, ,i i iϖ χ σ′ ′ ′  then we will have: 

 

∑ ∑ ++=′′′−=′′′ ,332211 λϖλϖλϖαααα ddddd  

∑ ∑ ++=′′−=′′ ,332211 λχλχλχαααα ddddd  

∑ ∑ ++=′−=′ ,332211 λσλσλσαααα ddddd  
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by virtue of which (1) the new functions ϖi, χi, σi of λ1, λ2, λ3 satisfy the relations: 
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 Once more, we make the remark, which will serve us later on, that if one lets δλ1, 
δλ2, δλ3 denote the variations of λ1, λ2, λ3 that correspond to the variations 

, , ,δα δα δγ′ ′′⋯  of , , ,α α γ′ ′′⋯  then one will have: 
 

,332211 λϖλϖλϖδ dddI ′+′+′=′  

,332211 λχλχλχδ dddJ ′+′+′=′  

  ,332211 λσλσλσδ dddK ′+′+′=′  

  ,332211 δλϖδλϖδλϖγδβδαδδ ++=′+′+′= KJII  

  ,332211 δλχδλχδλχδγδβδαδ ++=′′′+′′+′′= KJIJ  

  ,332211 δλσδλσδλσδγδβδαδ ++=′′′+′′′+′′′= KJIK  
 
in which δI, δJ, δK are the projections onto the fixed axes of the segment whose 
projections onto , ,Mx My Mz′ ′ ′  are .,, KJI ′′′ δδδ   Now set: 
 
  0 1 0 1 0 1 0 1 0 1 0 1 0I J K I J Kϖ χ σ ϖ χ σ′ ′ ′ ′ ′ ′= + + = + +I , 

0 2 0 2 0 2 0 2 0 2 0 2 0I J K I J Kϖ χ σ ϖ χ σ′ ′ ′ ′ ′ ′= + + = + +J , 

0 3 0 3 0 3 0 3 0 3 0 3 0I J K I J Kϖ χ σ ϖ χ σ′ ′ ′ ′ ′ ′= + + = + +K , 
 
  0 1 0 1 0 1 0 1 0 1 0 1 0L M N L M Nϖ χ σ ϖ χ σ′ ′ ′ ′ ′ ′= + + = + +L , 

  0 2 0 2 0 2 0 2 0 2 0 2 0L M N L M Nϖ χ σ ϖ χ σ′ ′ ′ ′ ′ ′= + + = + +M , 

  0 3 0 3 0 3 0 3 0 3 0 3 0L M N L M Nϖ χ σ ϖ χ σ′ ′ ′ ′ ′ ′= + + = + +N . 
 
 In addition, introduce the following notations: 
 

                                                
1 These formulas may serve to define the functions ϖi,  χi, σi directly and may be substituted for: 
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  ,111111 iiiiiii RQPRQP σχϖσχϖ ++=′′+′′+′′=Π  

  ,222222 iiiiiii RQPRQP σχϖσχϖ ++=′′+′′+′′=Χ  

  ,333333 iiiiiii RQPRQP σχϖσχϖ ++=′′+′′+′′=Σ  

,111111 RQPRQP σχϖσχϖ ++=′′+′′+′′=Π  

,222222 RQPRQP σχϖσχϖ ++=′′+′′+′′=Χ  

,333333 RQPRQP σχϖσχϖ ++=′′+′′+′′=Σ  

 
and, instead of the latter system, in which either, , , , ,i i iP Q R P Q R′ ′ ′ ′ ′ ′  or Pi, Qi, Ri, P, Q, R 

figure, we have the following: 
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that result from defining relations for the functions , ,i i iϖ χ σ′ ′ ′  and the nine identities they 

verify, then one may give the preceding system the new form: 



184 THEORY OF DEFORMABLE MEDIA 

0
1 1 1 1 1 1

i i i i i i i
i i i i i i

i i

p q r
A B C P Q R

ξ η ς
ρ λ λ λ λ λ λ

 ∂Π ∂ ∂ ∂ ∂ ∂ ∂′ ′ ′ ′ ′ ′− + − − − − − − ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
∑L  

,0
111111

=
∂
∂′−

∂
∂′−

∂
∂′−

∂
∂′−

∂
∂′−

∂
∂′−

∂
Π∂+

λλλλ
ς

λ
η

λ
ξ r

R
q

Q
p

PCBA
t

 

 
with two analogous equations. 
 
 3.  Finally, we shall subject the preceding two equations that we introduced to a 
transformation that is analogous to the one that led us, in sec. 53, to the generalization of 
the equations of the theory of elasticity that relate to effort. 
 To abbreviate the notation, let 0 0 0 0 0 0, , , , ,′ ′ ′ ′ ′ ′X Y Z L M N denote − for the moment − the 

left-hand sides of the transformation relation that refers to X0, Y0, Z0, L0, M0, N0, 
respectively, and observe that one may summarize the twelve equations we have 
established by the following: 
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in which λ1, λ2, λ3, µ1, µ2, µ3 are arbitrary functions, and the integrals are taken over, on 
the one hand, the time interval between the instants t1 and t2, and, on the other hand, the 
surface S0, of the medium (M0) and the domain it bounds.  If we apply GREEN’S 
theorem and integrate by parts then the relation that we just wrote becomes the following 
one: 
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 We seek to transform this last relation when one takes the functions x, y, z for other 
new variables, while preserving t.  We apply the elementary formulas for the change of 
variables that we recalled in sec. 53 to the functions λ1, λ2, λ3, µ1, µ2, µ3 .  With S always 
indicating the surface of the medium (M) at the instant t that corresponds to the surface S0 
of (M0).  Moreover, let X, Y, Z, L, M, N be the projections on Ox, Oy, Oz of the external 
force and external moment that are applied to the point M at the instant t, and referred to 
the unit of volume of the deformed medium (M), and let F, G, H, I, J, L denote the 
projections on Ox, Oy, Oz of the effort and moment of deformation that are exerted at the 
point M on S, referred to the unit of area of S.  Finally introduce, as in sec. 53, eighteen 
new auxiliary functions pxx, …, qxx, … by the formulas: 
 

,
0

3
0

2
0

1 z

x
A

y

x
A

x

x
Apxx ∂

∂+
∂
∂+

∂
∂=∆  ,

0
3

0
2

0
1 z

x
P

y

x
P

x

x
Pqxx ∂

∂+
∂
∂+

∂
∂=∆  

,
0

3
0

2
0

1 z

y
A

y

y
A

x

y
Apyx ∂

∂+
∂
∂+

∂
∂=∆  ,

0
3

0
2

0
1 z

y
P

y

y
P

x

y
Pqyx ∂

∂+
∂
∂+

∂
∂=∆  

,
0

3
0

2
0

1 z

z
A

y

z
A

x

z
Apzx ∂

∂+
∂
∂+

∂
∂=∆  ,

0
3

0
2

0
1 z

z
P

y

z
P

x

z
Pqzx ∂

∂+
∂
∂+

∂
∂=∆  

 
and the analogous one that is obtained by replacing: 
 

A1, A2, A3, pxx, pyx, pzx, P1, P2, P3, qxx, qyx, qzx 
by 

B1, B2, B3, pxy, pyy, pzy, Q1, Q2, Q3, qxy, qyy, qzy, 
and then by 

C1, C2, C3, pxz, pyz, pzz, R1, R2, R3, qxz, qyz, qzz , 



186 THEORY OF DEFORMABLE MEDIA 

respectively, with the quantity ∆ having the same expression as it did in sec. 53.  We 
obtain the transformed relation: 
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in which the integrals are taken over, on the one hand, the time interval between the 
instants t1 and t2, and, on the other hand, the surface S of the medium (M) at the instant t, 
and the domain it bounds, with dσ designating the area element of S. 
 Once again, we apply the GREEN formula to the terms that refer to the derivatives of 
λ1, λ2, λ3, µ1, µ2, µ3 with respect to x, y, z, and an integration by parts (1) of the terms that 
involve the derivatives of λ1, λ2, λ3, µ1, µ2, µ3 with respect t, and let l, m, n denote the 
direction cosines of the exterior normal to the surface S at the instant t with respect to the 
fixed axes.  Since λ1, λ2, λ3, µ1, µ2, µ3 are arbitrary, they become: 
 

F = lpxx + mpyx + npzx,  I = lqxx + mqyx + nqzx, 
G = lpxy + mpyy + npzy,  J = lqxy + mqyy + nqzy, 
H = lpxz + mpyy + npzz,  K = lqxz + mqyz + nqzz, 
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1 Since the field of variation actually varies with t, we perform that integration by parts by the intermediary 
of passing to the variables x0, y0, z0.  We suppose that ∆ is positive and equal to |∆|. 
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The significance of the eighteen new auxiliary functions pxx, …, qxx, … result 
immediately from the relations that we just wrote.  Indeed, it is clear that the coefficients, 
pxx, pxy, pxz of l in the expressions of F, G, H represent the projections onto Ox, Oy, Oz of 
the effort that is exerted at the point M on a surface whose exterior normal is parallel to 
Ox, and that the coefficients qxx, qxy, qxz of l in the expressions for I, J, K are the 
projections onto Ox, Oy, Oz of the moment of deformation at M relative to the same 
surface. 
 
 
 64.  Exterior virtual work; theorems analogous to those of Varignon and Saint-
Guilhem.  Remarks on the auxiliary functions that were introduced in the preceding 
paragraphs. –  On a deformed medium (M) between the instants t1 and t2 in an arbitrary 
state of virtual deformation, we give the name of external virtual work to the expression: 
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 We refer to the notations of sec. 60, and, moreover, let δI, δJ, δK be denote the 
projections onto the fixed axes of the segment whose projections onto , ,Mx My Mz′ ′ ′  are 

, ,I J Kδ δ δ′ ′ ′  in such a way that one has, for example: 
 

),( γβδβαδαγδγβδβαδαδ ′′′+′′′+′′′−=′′′+′′′+′′′=− I  
 

in which we are always supposing that the axes in question have the same disposition. 
 This being the case, suppose, as in sec. 63, that one has given the arbitrary functions 
λ1, λ2, λ3, µ1, µ2, µ3 the significance that is defined by the formulas: 
 

λ1 = δx,   λ2 = δy,  λ3 = δz, µ1 = δI,  µ2 = δJ,  µ3 = δK. 
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We then see that the preceding relations we obtained between the new auxiliary functions 
express only the following condition: 
 If a trajectory of the deformed medium is given any of the virtual displacements of 
sec. 60 then the external virtual work δTe is given by either the relation: 
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in which the integrals are taken over the time interval between the instants t1 and t2 and 
the deformed medium, or by the relation: 
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in which the integrals are taken over the time interval between the instants t1 and t2 and 
the undeformed medium at the instant t, because the formula that we gave above: 
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which serves to define the external virtual work, may also be written: 
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by virtue of the significance of X0, Y0, Z0, L0, M0, N0, F0, G0, H0, I0, J0, K0, A, B, C, P, Q, 
R, and likewise: 
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by virtue of the significance of X, Y, …, N, F, G, …, K. 
 Start with the formula: 
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applied to an arbitrary part of the medium that is bounded by a surface S0 and the time 
interval between the instants t1 and t2.  Since δW must be identically null when the 
variations δx, δy, δz are given by the formulas (60) of sec. 61, namely: 
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    δx = (a1 + ω2z – ω3y)δt, 
    δy = (a2 + ω3x – ω1z)δt, 
    δz = (a3 + ω1y – ω2x)δt, 
 
by virtue of the invariance of W under the group of Euclidean displacements, and δI, δJ, 
δK are given by: 

δI = ω1δt, δJ = ω2δt, δK = ω3δt, 
 
and that this is true for any values of the constants a1, a2, a3, ω1, ω2, ω3 we conclude from 
the expressions for δTe that just insisted on (1) that one has: 
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and four analogous equations.  In these formulas, one may imagine that the frontier S0 is 
variable. 
 The auxiliary functions that were introduced in the preceding paragraphs are not the 
only ones that one may imagine.  Upon confining ourselves to their consideration, we add 
the same simple remarks as in sec. 54. 
 By definition, we have introduced two systems of efforts and moments of 
deformation relative to a point M of the deformed medium at the instant t.  The first of 
them are the ones that are exerted on surfaces that have their normal parallel to one of the 
fixed axes Ox, Oy, Oz before deformation.  The second are the ones that are exerted on 
surfaces that have their normal parallel to one of the same fixed axes Ox, Oy, Oz after 
deformation.  The formulas that we indicated give the latter elements in terms of the 
former; however, by an immediate solution, which we will not elaborate upon, one 
inversely obtains the former elements in terms of the latter. 
 Now suppose that one introduces the function W.  The first efforts and moments of 
deformation have the expressions we already indicated, and one immediately deduces the 
expressions for the second ones.  However, in these calculations, one may specify the 
functions that one must introduce according to the nature of the problem, and which are, 
for example, x, y, z, and three parameters (2) λ1, λ2, λ3, by means of which one 
expresses .,,, γαα ′′′⋯  
 

                                                
1 The passage from the elements that are referred to the unit of volume of the undeformed medium and the 
area of the frontier S0 to the elements that refer to the unit of volume of the deformed medium and the area 
of the frontier S at the instant t is sufficiently immediate that it suffices to confine oneself, as we have done, 
to the first, for example. 
 
2 For such auxiliary functions λ1, λ2, λ3 one may take, for example, the components of the rotation, which 
makes the axes Ox, Oy, Oz parallel to ,,, zMyMxM ′′′ respectively. 
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 If one introduces x, y, z, λ1, λ2, λ3, and if one continues to let W denote the function 
that depends on x0, y0, z0, the first derivatives of x, y, z with respect to x0, y0, z0, t on 
λ1, λ2, λ3, and their first derivatives with respect to x0, y0, z0, t that are obtained by 
replacing the various quantities ξi, ηi, ζi, pi, qi, ri, ξ, η, ζ, p, q, r in the function W(x0, y0, 
z0, t, ξi, ηi, ζi, pi, qi, ri, ξ, η, ζ, p, q, r) by the values they are given by formulas (54), (55), 

),45( ′  and ),55( ′ then one will have: 
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 65.  Notion of energy of deformation and motion. – We must remark that our 
present exposition contains the statics of deformable media as a special case.  Indeed, it 
suffices to consider a reversible virtual modification, in the sense of DUHEM, instead of 
envisioning a realizable virtual deformation, as we have done. 
 This observation leads us to consider the notion of the energy of deformation and 
motion.  We propose to determine the work done by external forces and moments, as well 
as external efforts and moments, of deformation that depend on an arbitrary time interval 
for a real modification.  For this, it suffices to calculate the elementary work relative to 
time dt.  The latter is: 
 { } .)()(
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 If one replaces ,,,,,, 0000 ⋯⋯ GFYX ′′′′ by their expression as a function of the action, 

and if one performs an inverse calculation to the one that led us to their definition, then 
one immediately obtains, by virtue of the CODAZZI equations: 
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 In particular, if one considers the case in which W does not contain t explicitly, in 

such a way that 
t

W

∂
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 is null, then the preceding value becomes the differential with 

respect to time of the expression: 

∫∫∫
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which may be called the energy of deformation and movement at the instant t. 
 At this point in the discussion, we need to make several important general remarks 
that will find further application in what follows in the theory of Euclidean action. 
 The only notion of Euclidean action of deformation and motion that suffices for us 
furnishes, in a very extended case, a constructive definition of the quantity of motion and 
the moment of the quantity of motion, the effort and moment of deformation, and the 
force and external moment.  One may distinguish a dynamical part and a static part in the 
force and the external moment by grouping, on the one had, the terms that contain only 
the dynamical acceleration, and, on the other hand, the terms that contain only what one 
may call the kinematical acceleration; this distinction obviously expresses an extension 
of d’ALEMBERT’s principle.  Similarly, suppose that external work is null, and that the 
energy of deformation and motion remains invariant in time.  We thus obtain the notion 
of conservation of energy, which simply translates into the hypothesis that the medium is 
isolated from the external world.  In turn, we recover all of the fundamental ideas of 
classical mechanics, and it is manifest that the particular form that they take in the latter 
context must be what one envisions for the state of motion and deformation in an 
infinitesimal neighborhood of the natural state, in which one supposes that W and its 
derivatives are null. 
 
 
 66.  Initial state and natural states.  General indications on the problem that led 
us to the consideration of deformable media. – In the foregoing, we considered the 
trajectory of the deformed state, and, after describing the initial position (M0) of that 
deformed state at a definite instant t0 we referred it to the position (M) at an arbitrary 
instant t.  Considerations that are analogous to the ones we developed in sec. 56, and in 
which the parameter that was thus introduced is now replaced by time t may be repeated 
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here if we make one of the deformed states play the role that we attributed to the initial 
state (M0). 
 However, one may also imagine that the functions x, y, z that determine the trajectory 
of the deformed state depend on one parameter, and that one distinguishes a particular 
value of this parameter.  One thus defines a sequence of states that one may call natural 
states, and their trajectory may be called the trajectory of natural states.  One may use 
the new parameter as we did in our Note sur la dynamique du point et du corps invariable 
and study, in particular, the trajectory of the deformed states that infinitely close to the 
trajectory of the natural states. 
 Conforming to the previous indications, suppose, to fix ideas, that the external force 
and moment are given by means of simple functions of x0, y0, z0, t, the elements that fix 
the position of the triad .zyxM ′′′  We may consider the equations of sec. 62 that relate to 
the external force and moment as partial differential equations that relate to x, y, z and 
three parameters λ1, λ2, λ3, by means of which one expresses .,,, γαα ′′′⋯  This viewpoint 

is the one that presents itself most naturally.  The expressions ξi, ηi, ζi, pi, qi, ri, ξ, η, ζ, p, 

q, r will be functions of 1 1
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⋯ ⋯ ⋯  (setting ρ1 = x0, 

ρ2 = y0, ρ3 = z0, as always) that we may calculate by means of formulas (54), (55), 
)45( ′ and ).55( ′  

 Suppose that ,,,,,, 000000 NMLZYX ′′′′′′  or, what amounts to the same thing, X0, Y0, Z0, 

L0, M0, N0 are given functions of x0, y0, z0, t, x, y, z, λ1, λ2, λ3.  After substituting the 
values of ξi, …, r i, ξ, …, r that one deduces from formulas (54), (55), )45( ′ and ),55( ′ the 
expression W is a definite function of: 
 

3 31 1 2
0 0 0 1 2 3

0 0 0 0

, , , , , , , , , , , , , , , , , ,
dd dx z dx dy dz

x y z t
x z dt dt dt z z dt dt dt

λ λλ λ λλ λ λ ∂∂∂ ∂
∂ ∂ ∂ ∂
⋯ ⋯  

 
that we continue to denote by W, and the equations of the problem may be written: 
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in which L0, M0, N0 are functions of x0, y0, z0, t, x, y, z, λ1, λ2, λ3 that result from the 

definitions of sec. 63.  This pertains to the formulas of the preceding paragraphs directly, 
in a way that is more immediate than the definition of the X0, Y0, Z0, L0, M0, N0 may 

be summarized in the relation: 
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 67.  Notions of hidden triad and hidden W.  Case in which W depends only on x0, 
y0, z0, t, ξi, ηi, ζi, ξ, η, ζ, and is independent of pi, qi, ri, p, q, r.  Extension of the 
classical dynamics of deformable bodies.  The gyrostatic medium and kinetic 
anisotropy. – The considerations that we exposed previously in regard to the hidden triad 
and hidden W are also applicable to the deformable medium in motion.  It suffices to 
simply add that a hidden W will correspond to a hidden motion. 
 In particular, we shall examine the case in which W depends only on the quantities x0, 
y0, z0, t, ξi, ηi, ζi, ξ, η, ζ but not on the pi, qi, ri, p, q, r.  The equations of sec. 66 then 
reduce to the following: 
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in which W depends only x0, y0, z0, t, ,,,,,,,,, 321
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us that if we take the simple case in which X0, Y0, Z0, L0, M0, N0 are given functions (1) 

of x0, y0, z0, t, 1 2 3
0 0
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x x dx dy dz
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⋯  then the three equations on the right may 

be solved for λ1, λ2, λ3.  One thereby finally obtains three partial differential equations 
that, by our hypotheses, refer only to x0, y0, z0, t, and to x, y, z, and their first and second 
derivatives. 
 Imagine the particular case in which the given functions L0, M0, N0 are null; the 

same will be true for the corresponding values of the functions in any of the systems: 
),,,( 000 NML ′′′ (L0, M0, N0), (L, M, N).  From this, it results that the equations: 
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i.e., to: 
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which one may interpret as saying that the motion of the deformable body in question, 
which constitutes the classical theory of elasticity as a special case, gives rise to a 
moment whose three components are: 
 

                                                
1 To simplify the exposition and to indicate more easily what we are alluding to, we suppose that X0, Y0, Z0, 
L0, M0, N0 do not refer to the derivatives of λ1, λ2, λ3.  
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and thus has the effect of destroying the equalities: 
 

pyz = pzy, pzx = pxz, pxy = pyz . 
 
 Having said this, we observe that if one starts with a trajectory that is supposed to be 
given and deduces the functions L0, M0, N0, as in sec. 63, then, in the case in which 

these three functions are null one may arrive at the result that accidentally presents itself, 
i.e., for a certain set of particular trajectories; however, one may arrive at this for any 
trajectory (M) as a consequence of the nature of the medium (M), and its motions, i.e., 
from the form of W. 
 Imagine the latter case, which is particularly interesting; W is then a simple function 
(1) of x0, y0, z0, t, and ten expressions ε1, ε2, ε3, γ1, γ2, γ3, ϕ1, ϕ2, ϕ3, v

2 that is defined by 
the following formulas: 
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1 The triad is completely hidden; thus, we may also imagine that we have a simply pointlike medium. 
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The equations deduced in sec. 62 and 63 reduce to either: 
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in which one has: 
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in which one has: 
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with analogous expressions for A2, B2, C2, A3, B3, C3 and 
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with analogous expressions for pxy, pyy, pzy, pxz, pyz, pzz .  We thus obtain the most general  
equations of motion for the classical deformable body. 
 In order for the effort to satisfy the relations: 
 

pyz = pzy, pzx = pxz, pxy = pyx, 
 
it is sufficient that one has: 

ϕ1 = 0,  ϕ2 = 0,  ϕ3 = 0, 
 
i.e., that W is independent of the arguments ϕ1, ϕ2, ϕ3.  More particularly, if one must 
have: 

pyz = pzy = 0,  pzx = pxz = 0,  pxy = pyx = 0, 
 
then W must be a simple function of ∆ and v, and one finds that: 
 

pxx = pyy = pzz = ;
∆∂

∂W
 

 
one then finds the motion of a perfect fluid in this case. 
 When the functions L0, M0, N0 are not null, W will have the twelve translations 

ξi, ηi, ζi, ξ, η, ζ for its arguments.  On the one hand, the medium may be regarded as 
gyrostatic, by giving a justifiable extension to this word, which was coined by LORD 
KELVIN, and, on the other hand, the medium is endowed with kinetic anisotropy, in the 
sense envisioned by RANKINE and then by LORD RAYLEIGH.  For example, one 
therefore makes the theory of the double refraction of light, such as was exposed by 
LORD RAYLEIGH and GLAZEBROOK, rest on a purely mechanical basis.



V. – EUCLIDEAN ACTION AT A DISTANCE, 
ACTION OF CONSTRAINT, AND DISSIPATIVE ACTION 

 
 68. – Euclidean action of deformation and motion in a discontinuous medium. – 
Consider a discrete system of n triads in which each triad is distinguished by an index i 
that consequently takes the values 1, 2, …, n.  Let iiii zyxM ′′′  be the triad whose index is i, 

with an origin Mi that has the coordinates xi, yi, zi, and axes ,ii xM ′ ,ii yM ′
i iM x′  that have 

the direction cosines , , ; , , ; , ,i i i i i i i i iα α α β β β γ γ γ′ ′′ ′ ′′ ′ ′′ with respect to three fixed rectangular 

axes Ox, Oy, Oz.  We suppose that the quantities xi, yi, zi, , , ,i i iα α γ′ ′′⋯  are functions of 

time t, and we introduce the six arguments ξi, ηi, ζi, pi, qi, ri that are defined by formulas 
)45( ′ and (55 )′  of sec. 60 with the index i. 

 Envision a function W of two infinitely close positions of the system of 
triads ,iiii zyxM ′′′  i.e., a function of t, of xi, yi, zi, ,,,, iii γαα ′′′ ⋯  and their first derivatives 
with respect to t (i takes the values 1, 2, …, n).  We propose to determine what sort of 
form W must take in order for that function to remain invariant under any infinitesimal 
transformation of the group of Euclidean displacements such as (60).  Observe that the 
relations )45( ′ and(55 )′  of sec. 60, with the index i, permit us to express the first 

derivatives of the nine direction cosines, , ,i i iα α γ′ ′′⋯  with respect to t by means of well-
known formulas that involve these cosines and pi, qi, ri, and, on the other hand, to express 
these nine cosines , , ,i i iα α γ′ ′′⋯  by means of ξi, ηi, ζi, and the first derivatives of xi, yi, zi 
with respect to t.  We may therefore finally express the function W that we seek as a 
function of t, of xi, yi, zi, and their first derivatives, and finally, of ξi, ηi, ζi, pi, qi, ri, which 
we indicate by writing: 
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 Since the variations δξi, δηi, δζi, δpi, δqi, δr i are null in the present case, as a result of 
the well-known theory of moving frames, we must write the new form for W that one 
obtains by virtue of formulas (60), when taken with the index i, and for any a1, a2, a3, 
ω1, ω2, ω3 : 
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 Replace δxi, δyi, δzi with their values in (60) and , ,i i idx dy dz

dt dt dt
δ δ δ  with the values 

one obtains by differentiating them.  Equate the coefficients of a1, a2, a3, ω1, ω2, ω3; we 
obtain the following six conditions: 
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with analogous relations. 
 If we suppose that the points (xi, yi, zi) describe all possible trajectories then we 
arrive at identities that verified by the function W of the 6n arguments of xi, yi, zi, 

,,,
dt
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dt

dy

dt

dx iii  and the last arguments ξi, ηi, ζi, pi, qi, ri, which we leave aside for the 

moment.  We seek to discover the resulting form for W. 
 We commence by treating the case of the system of three equations: 
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that determine a function W of the 3n arguments xi, yi, zi.  We have already encountered 
this system in the context of the statics of the line, surface, and continuous three-
dimensional medium, in the case where p = 1, p = 2, p = 3.  We leave aside the case p = 
1, in which the three equations reduce to two.  For p = 2 and p = 3, we have three 
equations that form a complete system.  For p = 2, we have three equations, six variables, 
and three independent solutions: 
 

222
iii zyx ++   (i = 1, 2), x1x2 + y1y2 + z1z2; 

 
for p = 3, we have three equations, nine variables, and six independent solutions: 
 

222
iii zyx ++   (i = 1, 2, 3), xixi + yiyi + zizi  (i = 1, 2, 3). 

 
For p > 3, the system is still complete.  To prove this it suffices to show that they admit 
3p – 3 independent solutions, in which the number of equations is 3 and the number of 
variables is 3p.  We effectively have first, the p solutions: 
 

222
iii zyx ++   (i = 1, 2, …, p), 

then the solution: 
x1x2 + y1y2 + z1z2, 
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and finally, the 2(p – 2) solutions: 
 

x1xi + y1yi + z1zi,  x2xi + y2yi + z2zi (i = 3, 4, 5, .., p), 
 

which are independent.  W is thus a function of the 3(p − 1) independent arguments that 
we just enumerated. 
 Now return to the proposed system that is formed from conditions (63) and (64).  The 
conditions (63) prove that W depends on x1, …, xn, y1, …, yn, z1, …, zn only by the 
intermediary of the expressions: 
 

X2 = x2 − x1,  X3 = x3 − x1,  …,  Xn = xn − x1, 
Y2 = y2 − y1,  Y3 = y3 − y1,  …,  Yn = yn − y1, 
Z2 = z2 − z1,  Z3 = z3 − z1,  …,  Zn = zn − z1. 

 
On the other hand, set: 
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and demand that equations (64) be verified by the function W of the arguments X2, X3,…, 
X2n; Y2, Y3,…, Y2n; Z2, Z3,…, Z2n .  For example, consider the first of equations (64); they 
become: 
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y1 and z1 disappear, and what remains are the first of the equations: 
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 We thus come down to the system (65), in which xi, yi, zi are replaced by Xi+1, Yi+1, 
Zi+1, and p by 2n – 1. 
 If we first suppose that n = 2, then we see that W is abstractly given in terms of the 
arguments ξi, ηi, ζi, pi, qi, ri as a function of the independent expressions: 
 

,)()()( 2
12

2
12

2
12

2
2

2
2

2
2 zzyyxxZYX −+−+−=++  



Euclidian action at a distance                                                 203 

,)()()( 2
1

2
1

2
1

2121212
3

2
3

2
3 ςηξ ++=++=++

dt

dz

dt

dy

dt

dx
ZYX  

 

,)()()( 2
2

2
2

2
2

2222222
4

2
4

2
4 ςηξ ++=++=++

dt

dz

dt

dy

dt

dx
ZYX  

,)()()( 1
12

1
12

1
12323232 dt

dz
zz

dt

dy
yy

dt

dx
xxZZYYXX −+−+−=++  

,)()()( 2
12

2
12

2
12424242 dt

dz
zz

dt

dy
yy

dt

dx
xxZZYYXX −+−+−=++  

 .212121
434343 dt

dz

dt

dz

dt

dy

dt

dy

dt

dx

dt

dx
ZZYYXX ++=++  

 
 Therefore, we finally have that W is a function of ξi, ηi, ζi, pi, qi, ri, and the four 
arguments: 
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 If we suppose that n > 2 then we see that W is abstractly given in terms of the 
arguments ξi, ηi, ζi, pi, qi, ri as a function of 6(n – 1) independent arguments: 
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 We remark that one has: 
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in which r is the distance between two points of the system.  From symmetry reasons, one 
may have to involve arguments in W that are not independent, in which case, one may 
take, independently of the ξi, ηi, ζi, pi, qi, ri, the following arguments: 
 
  ,)()()( 2222

jijijiij zzyyxxr −+−+−=  

  ,
dt

dz

dt

dz

dt

dy

dt

dy

dt

dx

dt

dx jijiji
ij ++=ψ  

  ;)()()(
dt

dz
zz

dt

dy
yy

dt

dx
xx k

ji
k

ji
k

jiijk −+−+−=λ  

 
the latter subsume the arguments with three indices λiji  and arguments with four indices 
λijk.  They figure only when there are more than two points, and one sees that the action 
on two points is influenced by all of the other points in this case.  It is easy to establish 
the relations that exist between these dependent arguments in a form that is sufficiently 
complex; they are analogous to the relations between the distances r ij when the number of 
points is ≥ 5. 
 If we know the expression for the Euclidean action W in a the system of triads in 
question, then, by a calculation that repeats the ones we made before, one may easily find 
the expression for the external force and moment on an arbitrary triad.  Since the action 
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in which we have set: 
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in which (Ai, Bi, Ci) and (Pi, Qi, Ri) are the quantity of motion and the moment of the 
quantity of motion, respectively, for the triad of index i, and: 
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in which (Xi, Yi, Zi) and (Li, Mi, Ni) are the external force and external moment of the triad 
of index i; what remains in these calculations is to exhibit the arguments r ij, ψij, λijk, but 
this is easy. 
 We remark that the expression for the external force may be decomposed into two 
parts. The first, which depends on the segments (Ai, Bi, Ci), (Pi, Qi, Ri) and their 
derivatives, is the properly dynamical part.  The second, which results from the presence 
of the arguments r ij, ψij, λijk in W corresponds to the force that the triad of index i is 
subject to on the part of the other triads of the system.  Consider the expression: 
 

)( iiii
i

iii
i

i
i

i
i

i rqpL
dt

dz
Y

dt

dy
Y

dt

dx
X γβα +


 ++++∑  

  ] ,)()( dtrqpNrqpM iiiiiiiiiiiiii γβαγβα ′′+′′+′′+′+′+′+  

 
which represent the sum of the elementary works of the forces applied to the different 
triads.  If we calculate them upon replacing Xi, Yi, Zi, Li, Mi, Ni, with the preceding values 
then we find the following expression for the elementary work relative to the dynamical 
part of the external force and the external moment: 
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and, for the elementary work due to the forces that are exerted between the triads of the 
system, we have: 
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If we add these two expressions, and set: 
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then we see that the sum of the elementary works is: 
 

W
dE dt

t

∂+
∂

, 

 
in which we suppose that W is independent of t, and when we give E the name of energy 
of motion and position for the system of triads in question, we obtain a proposition that is 
entirely analogous to that of sec. 65. 
 From the foregoing, it is easy to deduce a system dynamic that is established on the 
same basis as the classical theory, but without limiting ourselves to central forces, as in 
the latter case.  Moreover, the actual exposition presents the advantage of associating the 
diverse laws of force at a distance that were studied by GAUSS, RIEMANN, WEBER, 
and CLAUSIUS (1), who uniquely introduced the arguments r ij, ψij, γijk to their true 
origin. 
 
 
 69.  The Euclidian action of constraint and the dissipative Euclidian action. – 
The considerations that we must develop in regard to the Euclidian action at a distance 
lead to the notion of constraint in a natural manner, a notion that was due to GAUSS and, 
as one knows, was applied by HERTZ to the study of the foundations of mechanics by 

                                                
1 See R. REIFF and A. SOMMERFELD, Encyclopädie der Math. Wissenschaften, 52, pp. 3-62. 
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following a path already explored by BELTRAMI, R. LIPSCHITZ, and G. DARBOUX 
(1). 
 To simplify, let there be a point that describes a definite trajectory by the three 
functions x0, y0, z0, and time t when its movement is free.  On the other hand, denote the 
functions of time t that describe its trajectory when it is subject to constraints by x, y, z.  
We may envision the two points (X, Y, Z), (X0, Y0, Z0), whose coordinates are obtained, 
for example, by the formulas: 
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which provide the TAYLOR development up to the first three terms.  If we assume that 
the constraints are frictionless then we may demand that at the instant t in question one 
has: 

x = x0,      y = y0,   z = z0,   ,0

dt

dx

dt

dx =   ,0

dt
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dt

dy =  .0

dt

dz

dt

dz =  

 
 Having said this, the introduction of the notion of constraint due to GAUSS amounts 
to replacing r by its value, where r denotes the distance, after having considered the 
Euclidean action at a distance U1(r) in such a way that one is led to the function U of the 
argument γ that is defined by the formula: 
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 If we then apply the method of variable action, we have: 
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in which we have set: 
                                                
1 BELTRAMI, Sulla teoria generale dei parametric differenziali, Mem. Della R. Accad. Di Bologna, Feb. 
25, 1869. 
 
R. LIPSCHITZ, Untersuchungen eines Problemes der Variationsrechnung, in welchem das Problem der 
Mechanik enthalten ist, Journ. fhr die reine und angewandte Mathmematik, 74, pp. 116-149, 1872; 
Bemerkung zu dem Princip des kleinsten Zwanges, ibid., 82, pp. 311-342, 1877. 
 
G. DARBOUX, Leçons sur la théorie générale des surfaces, 2nd Part, Book V, Chap. VI, VII, VIII, Paris, 
1889. 
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22
0

2 2

1 d xdU d x

d dt dtγ γ
 

= − 
 

X , 
22

0
2 2

1 d ydU d y

d dt dtγ γ
 

= − 
 

Y , 
22

0
2 2

1 d zdU d z

d dt dtγ γ
 

= − 
 

Z . 

 
 If, with GAUSS, we call the argument γ the constraint then the force X, Y, Z may be 

called the force of constraint that is applied to the point (x, y, z), and may be regarded as 
having the effect of impeding the free motion of the point; on the contrary, the force − X, 

− Y, − Z has the effect of changing the free motion into the constrained motion. 

 The essential difference between the present conception of force and the one that 
results from NEWTON’s laws of motion is the following: in the latter form, one 
considers the action relative to two infinitely close positions − one present, one future − 
on the same trajectory; in the conception of GAUSS and HERTZ, the action is referred to 
two future positions: one on the trajectory we called free, the other on the trajectory we 
called constrained.  In the two cases, one obviously has a theory that permits us to predict 
the future motion, which is the object of point dynamics.  However, in addition, and this 
is the point that we would particularly like to clarify, the action is Euclidean. 
 On the subject, it is interesting to remark that GAUSS has explicitly established an 
agreement between the action of constraint and the law of errors, which has the same 
form in effect.  One therefore sees that the fundamental character of the law of errors is 
the Euclidean invariance of that law, and that the new branch of mechanics, which was 
created by MAXWELL, BOLTZMANN, and W. GIBBS in the name of statistical 
mechanics, may likewise receive the deductive form that we propose to give ordinary 
mechanics here. 
 We may further observe that the forces of constraint translate into an indeterminacy 
that is the product of the definition of the force, and which leads to the introduction of 
LAGRANGE multipliers, just as in the mechanics that one derives from NEWTON’s 
ideas as in what one deduced from the notion of GAUSS constraint. 
 GAUSS’s idea may also be applied to friction by envisioning a Euclidean action on 
the two points: 
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in which the point x0, y0, z0 refers to a free trajectory, and the point x, y, z refers to a 
trajectory that is traversed with friction.  As we are dealing with sliding friction here, we 

must set :x = x0, y = y0, z = z0, ,0

dt
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for the action, affected with a 
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factor 1 – µ, which corresponds precisely to the notion of the dissipation of the free 
action at a point x0, y0, z0. 
 The arguments r ij, ψij, λijk that we considered in sec. 68, translate, by definition, into 
an analogous idea with regard to a triad we take to be isolated in the system of n triads in 
question.  One may, if one prefers, distinguish between these arguments, and say that r ij 
is a potential argument, and that ψij, λijk are dissipative arguments.  The central force 
hypothesis thus amounts to considering only the dynamics of systems without friction at 
a distance in mechanics.  From the arguments r ij, ψij, λijk, one may, on the other hand, 

derive the particular argument of WEBER ,
dt

drij and if one passes from the discontinuous 

medium to the continuous medium, in which the concept rests on the consideration of ds2 
for the space, then one finds oneself led to introduce the viscosity arguments 

,1

dt
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dt
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dt

dγ
,2

dt

dγ 3d

dt

γ
in the action W.  Beside such arguments, which were 

envisioned for the first time by NAVIER and POISSON, one must obviously also place 
arguments such as the argument ξ1ξ2 + η1η2 + ζ1ζ2, which was considered in sec. 47, and 
arguments such as ϕ1, ϕ2, ϕ3 from sec. 67.  We confine ourselves to these summary 
indications on viscosity, which has not been given further study in a sufficiently 
systematic manner up till now. 



VI. – THE EUCLIDEAN ACTION 
FROM THE EULERIAN VIEWPOINT 

 
 70.  The independent variables of Lagrange and Euler.  The auxiliary functions 
considered from the hydrodynamical viewpoint. – In the statics and dynamics of 
deformable media, we took x0, y0, z0, and x0, y0, z0, t, respectively, to be the independent 
variables.  In the former case (statics), one lets x0, y0, z0 denote the coordinates of the 
point M0 of the natural state (M0) by imaging that this natural state is deformed in an 
infinitely slow fashion so that its points do not acquire any velocity, and passes from the 
position (M0) to the position (M) in a continuous fashion (1).  In the second case 
(dynamic), one lets x0, y0, z0 denote the coordinates of the position M0 at a definite instant 
t0 of the point that is at M at the instant t.  The position (M0) of the medium plays a 
particular role. 
 The deformable medium (M) has been considered to be generated by a triad ,zyxM ′′′  
whose origin M has the coordinates x, y, z, and whose vectors have the direction 
cosines , , ; , , ; , ,α α α β β β γ γ γ′ ′′ ′ ′′ ′ ′′  with respect to the fixed axes Ox, Oy, Oz.  In the static 
case x, y, z, , , ,α α γ′ ′′⋯ are considered to be functions of the independent variables x0, y0, 
z0, and, in the dynamics case, as functions of the four independent variables x0, y0, z0, t.  
In either case, we say that the independent variables imagined are the LAGRANGE 
variables, and if we would like to make this concept specific we demand that: 
 
(66)  x = x(x0, y0, z0),  y = y(x0, y0, z0), z = z(x0, y0, z0), 
or: 

)66( ′   x = x(x0, y0, z0, t),  y = y(x0, y0, z0, t), z = z(x0, y0, z0, t), 
 
and, similarly, we have either: 
 
(67)  ),,,( 000 zyxαα =  ),,,( 000 zyxαα ′=′  ),,,( 000 zyxαα ′′=′′  
or 

)76( ′   ),,,,( 000 tzyxαα =  ),,,,( 000 tzyxαα ′=′  ),,,,( 000 tzyxαα ′′=′′  
 
with analogous formulas for .,,,,, γγγβββ ′′′′′′  
 However, we may now imagine that one performs a change of variables on the 
independent variables.  In particular, by analogy with what one does in hydrodynamics, 
we may imagine that one takes x, y, z, or x, y, z, t to be the independent variables.  We 
then say that we are imagining the EULER variables. 
 What is the fundamental question we must ask?  In the theory that we just developed, 
where one considered that question to be either the question of defining the elements of 
force, etc., or, conversely, that of determining the position (M), we encountered the 

                                                
1 In this conception of the infinitely slow deformation of a medium, which is analogous to the reversible 
transformations of thermodynamics, we have defined the external force and moment, the effort and 
moment of deformation that one may qualify as static, and then the work done in passing from (M0) to (M), 
and, consequently, we obtain the notion of the energy of deformation, which is placed beside that of action, 
which we started with. 
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functions x, y, z, , , ,α α γ′ ′′⋯  of x0, y0, z0, or of x0, y0, z0, t that are defined by (66), (67), or 
by ).76(),66( ′′   Imagine that one solves equations (66) or )66( ′  with respect to x0, y0, z0; 
one has: 
(68)  x0 = x0(x, y, z),  y0 = y0(x, y, z),  z0 = z0(x, y, z), 
or 

)86( ′   x0 = x0(x, y, z, t),  y0 = y0(x, y, z, t), z0 = z0(x, y, z, t), 
 
and, substituting these in (67) or )76( ′ , we have: 
 
(69)  ),,,( zyxαα =   ),,,( zyxαα ′=′  ),,,( zyxαα ′′=′′  
or 

)96( ′   ),,,,( tzyxαα =  ),,,,( tzyxαα ′=′  ).,,,( tzyxαα ′′=′′  
 
 We presently know the functions x0, y0, z0, , , ,α α γ′ ′′⋯ of x, y, z, or of x, y, z, t, and, 
conversely, by solving (68), (69) or ),86( ′ (69 )′ one will then pass to (66), (67) or to 

).76(),66( ′′  
 However, one must complete the statement that must be made by observing that in 
either case it may be convenient to introduce the auxiliary functions. 
 If we imagine the case of LAGRANGE variables, it may happen that the functions x, 
y, z do not figure in the question explicitly (1); it may therefore be convenient to introduce 
the first derivatives of x, y, z with respect to x0, y0, z0, or with respect to x0, y0, z0, t as 
auxiliary variables (2).  In this case, by imagining x, y, z, ,,,, γαα ′′′⋯ one may also 
introduce the translations and rotations ξi, …, r i, ξ, …, r as auxiliary functions if only x0, 
y0, z0 or x0, y0, z0, t figure in the givens. 
 If we imagine the case of the EULER variables then we may indicate analogous 
circumstances in which the use of the auxiliary variables may offer advantages.  First, 
suppose that the hypotheses that we must consider for the LAGRANGE variables are 
realized.  We may preserve the indicated auxiliary functions.  The only essential 
difference from the preceding case resides in the ultimate determination of formulas (66), 
(67) or the analogous ones, if one performs them.  If we suppose, furthermore, that x0, y0, 
z0 do not figure in the question then we may introduce the derivatives of x0, y0, z0 with 
respect to x, y, z or with respect to x, y, z, t as the auxiliary variables. 
 Following these indications, one sees that there may be some use for the equations 
that served as the point of departure since they were presented in a convenient form from 
the standpoint of the auxiliary functions.  One observes that this goal is already attained 
by the equations that we previously obtained, in which the auxiliary functions ξi, …, r i, ξ, 
…, r already figure. 
                                                
1 This is what normally happens if one starts with results like the ones given in our exposition and if one 
does not modify the expressions of force, etc., by virtue of the formulas (66), (67) or );76(),66( ′′  indeed, 
the letters x, y, z do not figure explicitly in W. 
 
2 These auxiliary functions are actually coupled by relations that are easy to form; the same remark applies 
in general.  They are not introduced in hydrodynamics, where the auxiliary functions are derivatives with 
respect to just the variable t (and where the use of these auxiliary functions is often limited to the case of 
introducing the EULER variables). 
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 71.  Expressions for ξi, …, r i (or for ξi, …, r i, ξ, …, r) by means of the functions 
x0, y0, z0, , , ,α α γ′ ′′⋯ of x, y, z (or of x, y, z, t) and their derivatives; introduction of the 
Eulerian arguments. – From the explanations that must be given, it results that it may be 
useful to have expressions for ξi, …, r i or for ξi, …, r i, ξ, …, r, which are evaluated, no 
longer in accord with formulas (66), (67) or ),76(),66( ′′ which suppose that x0, y0, z0 or 
x0, y0, z0, t are independent variables, but in accord with formulas (68), (69) or 

),96(),86( ′′ which introduce the functions x0, y0, z0, , , ,α α γ′ ′′⋯ of x, y, z or of x, y, z, t. 
 We think about the case in which t figures in a general manner.  The formulas 
obtained give, in particular, the case in which x, y, z, , , ,α α γ′ ′′⋯ are independent of t.  By 

virtue of ),76(),66( ′′  the quantities ξi, … are calculated by the formulas (1): 
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(in which ρ1 = x0, ρ2 = y0, ρ3 = z0), and these are calculated by means of x0, y0, z0, 

, , ,α α γ′ ′′⋯ and their derivatives with respect to x, y, z using formulas ).96(),86( ′′  

 To that effect, we shall show that the quantities ξi, …, r i, ξ, …, r, which will 
henceforth be called Lagrangian arguments, are simply expressed by means of the 
following auxiliary functions, which we call Eulerian arguments: 
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1 We use the habitual notations for the derivatives with respect to t.  (See e.g., APPELL, Traité de 
Mécanique, T. III, 1st ed., pp. 277). 
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in which we have set: 
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with analogous formulas for [p2], [q2], [r2], and for [p3], [q3], [r3] that are obtained by first 
changing γ, β into α, γ, and then into β, α, and we employ the well-known notations (1) 
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 We differentiate relations )86( ′ successively with respect to the LAGRANGE 
variables; they become four systems of three equations that, by virtue of notations (70) 
and (72), one may write: 
 
(75) ξi(ξi) + ηi(ηi) + ζi(ζi) = 1,  ξj(ξk) + ηj(ηk) + ζj(ζk) = 0, (j γ k), 
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 By virtue of the preceding relations (75) (as well as things that result from formulas 
(78) given before), the last three relations (76) may be written: 
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 Once we solve equations (75) and (76), we observe that we may replace these 
systems with equivalent systems that are obtained by differentiating relations )66( ′  with 
respect to the EULER variables x, y, z, t successively, and which, by virtue of notations 
(72), may be written (upon multiplying by, ,α α α′ ′′  and adding, etc.). 

                                                
1 See APPELL, Traité de Mécanique, T. III, 1st  ed., pp. 277. 
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to which we adjoin ).67( ′   By multiplying system )57( ′′ by , ,α α α′ ′′and adding, etc., it may 
also be written: 
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 Once again, observe that the following form, which implies (75), is intermediate 
between )57( ′′ and (75), and ultimately results from formulas (70) combined with (75) and 
formulas (74): 
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One sees that the Lagrangian arguments are functions of only the Eulerian arguments and 
conversely (at least as far as translations are concerned). 
 First determine the Lagrangian arguments by means of the Eulerian arguments.  Let ∆ 
denote the determinant: 
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 Let 1 1 1 2 2 2 3 3 3, , , , , , , ,ξ η ς ξ η ς ξ η ς′ ′ ′ ′ ′ ′ ′ ′ ′  be the coefficients of the elements of the determinant 

∆, i.e., the minors given a convenient sign, which therefore amounts to setting: 
 

,23321 ςηςηξ −=′  ,23321 ξςξςη −=′  ,23321 ηξηξς −=′  … 

 
 Upon solving equations (75) with respect to (ξi), (ηi), (ζi), (ξ), (η), (ζ), and then 
substituting in (76), one obtains: 
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 Conversely, determine ξi, ηi, ζi, ξ, η, ζ as a function (ξi), (ηi), (ζi), (ξ), (η), (ζ).  We 
observe that the determinant whose elements are ∆(ξi), ∆(ηi), ∆(ζi) is the adjoint 

determinant (1) of ∆, in such a way that we must let 
∆
1

designate the determinant: 
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 Solve formulas (75) and (76) with respect to ξi, ηi, ζi, ξ, η, ζ.  Upon designating the 
coefficients of the elements of the determinant (78) by ),(),(),( iii ςηξ ′′′ they become (2): 
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We now propose to determine the rotations. 
 Differentiate relations )76( ′ with respect to x, y, z, t.  While always employing the 
well-known notation for derivatives with respect to time, we have (3): 
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1 This adjoint determinant is the square of ∆. 
 
2 The first nine formulas of (79) (I = 1, 2, 3) are true if one considers the known consequences of the theory 
of adjoint determinants.  It is clear that all of the present calculations may be attached to the theory of forms 
and to that of linear substitutions. 
 

3 We distinguish 
dt

dα
from ,

t∂

∂α
…, consistent with the notation employed by APPELL, Traité de 

Mécanique, T. III., pp. 277.  As for x0, y0, z0, we do not need to introduce ,,, 000

dt

dz

dt

dy

dt

dx
since they are 

zero.  One observes that the present x0, y0, z0, t are functions of x, y, z, t, which, when equated to the old x0, 
y0, z0, define functions x, y, z that are thus implicit functions.  We shall return to this point later. 
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with analogous formulas for the cosines .,,, γγβ ′′⋯  
 The formulas (74) then give: 
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and, using formulas (72), formulas (73) give: 
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which give us the latter Eulerian arguments (pi), (qi), (r i), (p), (q), (r) by means of the 
Lagrangian arguments (it suffices to replace (ξ1), … with their values). 
 Conversely, to obtain the latter Lagrangian arguments p1, …, we may solve the 
system (80), but one may also directly differentiate the relations with respect to x0, y0, z0, 
t successively; we have: 
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After taking (70) into account, relations (71) then give us: 
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which one may write in the intermediate form: 
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with analogous formulas for p2, q2, r2; p3, q3, r3 that one obtains upon changing ξ1, η1, ζ1,  
into ξ2, η2, ζ2, and then into ξ3, η3, ζ3, or upon changing x0 into y0, and then into z0; one 
has, moreover: 
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 72.  Static equations of a deformable medium relative to the Euler variables as 
deduced from the equations obtained from the Lagrange variables.  We have already 
performed the passage from the LAGRANGE variables to the EULER variables in the 
context of the statics of deformable media.  It will suffice for us to complete the results so 
obtained (1). 
 We found formulas such as the following in sec. 53: 
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in which one has: 
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1 We then seek to obtain the definitive results directly. 
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 Suppose that W is expressed by means of the arguments (ξi), (ηi), (ζi), (pi), (qi), (r i), 
and set: 

W = ∆Ω. 
 
By virtue of the formulas (77) of the preceding paragraph, one will have: 
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and, as a result, since ∆ does not depend on pi, qi, ri: 
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 Upon differentiating relations (75) with respect to ξi, one gets: 
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from which, one deduces: 
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and then, by the relations (80): 
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with analogous formula for the derivatives with respect to ηi, ζi.  If one sets: 
 

,
)(

)(
i

iA
ξ∂
Ω∂=′   ,

)(
)(

i
iB

η∂
Ω∂=′   ,

)(
)(

i
iC

ς∂
Ω∂=′  

,
)(

)(
i

i p
P

∂
Ω∂=′   ,

)(
)(

i
i q

Q
∂

Ω∂=′   ,
)(

)(
i

i r
R

∂
Ω∂=′  

then one has: 
 

][
1

iiA ξΩ=
∆

 

 ])}[)(())(())({(])}[)(())(())([{( 11111111 pRQPCBA iiiiii ′+′+′+′+′+′− ςηξξςηξ
 ])}[)(())(())({(])}[)(())(())({( 22222222 pRQPCBA iiiiii ′+′+′+′+′+′+ ςηξξςηξ  

 ]].)}[)(())(())({(])}[)(())(())({( 33333333 pRQPCBA iiiiii ′+′+′+′+′+′+ ςηξξςηξ  
 
 By virtue of the formulas (72), (73), (74), ),57( ′′ and upon letting [Ai], [Bi], [Ci]; [Pi], 
[Qi], [Ri] denote the components relative to the axes Ox, Oy, Oz of the two vectors whose 
components with respect to the axes , ,Mx My Mz′ ′ ′  are );(),(),( iii CBA ′′′ ),(),(),( iii RQP ′′′ one 
deduces the following three formulas: 
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with analogous formulas for Bi, Ci, and pxy, pyy, pzy, pxz, pxz, pxz .  One then has: 
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and, again taking ),57( ′′  into account, we obtain the following three formulas: 
 
   qxx = α[P1] + β[P2] + γ[P3], 
   qyx = α[Q1] + β[Q2] + γ[Q3], 
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   qzx = α[R1] + β[R2] + γ[R3], 
 
with analogous formulas for Qi, Ri, and qxy, qyy, qzy, qxz, qxz, qxz. 
 
 
 73.  Dynamical equations of the deformable medium relative to the Euler 
variables as deduced from the equations obtained for the Lagrange variables. – We 
have also performed the passage from the LAGRANGE variables to the EULER 
variables in the context of the dynamics of the deformable medium.  We shall first 
complete the results so obtained. 
 Ai is augmented with: 
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however, from (76) and (80): 
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with analogous formulas, in such a way that if we set: 
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then we must add 

A(ξ), A(η), A(ζ), 
 
respectively, to the given values of Ai , i = 1, 2, 3, that were given in the last paragraph, 
where we have set: 
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The expressions that we add to the values of pxx, pxy, pxz, of the preceding paragraph are 
therefore: 
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however, from the values (76) of (ξ),(η),(ζ), one has: 
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i.e., by virtue of formulas(75 )′′ : 
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in such a way that the expressions that we must add to the pxx, pxy, pxz of the preceding 
paragraph are: 
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 One will have analogous expressions for pyx, …, pzx,… by the obvious change of A 
into two analogous expressions B and C that are deduced by reducing the [ξi], [pi] by the 
corresponding quantities [ηi], [qi] and [ζi], [r i]. 
 We now introduce the notations A, B, C; we show that they are identical to the 
notations introduced in the Lagrangian theory: 
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However, from formulas (76) and (80), one has: 
 

 ),(
)(

1ξ
ξ
ξ −=

∂
∂

  ),(
)(

2ξ
ξ
η −=

∂
∂

  ),(
)(

3ξ
ξ
ς −=

∂
∂

 

 ),(
)(

1p
p −=

∂
∂

ξ
  ),(

)(
2p

q −=
∂

∂
ξ

  ),(
)(

3p
r −=

∂
∂

ξ
 

 
and analogous relations for η, ζ.  By virtue of relations (72), we obtain: 
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 Similarly, for the P, Q, R of the Lagrangian theory, namely: 
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one has, by virtue of the relations (80): 
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 Finally, consider the modification that must be made to the formulas of the preceding 
paragraph in order to have the qxx, … relate to the actual case of dynamics. 
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by virtue of formulas (80).  One sees that these increases are: 
 

P(ξ), P(η), P(ζ). 
 
 The expressions that must be added to the values of qxx, qxy, qxz of the preceding 
section are thus: 
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or finally 
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One will have analogous expressions for qyz, …; qzx, … by changing P into Q, and then 
into R. 
 
 
 74.  Variations of the Eulerian arguments deduced from those of the Lagrangian 
arguments. – With the aim of directly formulating the Eulerian equations that relate to 
the deformable medium, we shall calculate the variations of the Eulerian arguments.  We 
commence by deducing the variations from the Lagrangian arguments in order to verify 
them, and then we calculate them directly. 
 If we apply δ to equations (75) then they become three systems like the following 
one: 

ξ1δ(ξ1) + η1δ(η1) + ζ1δ(ζ1) = − (ξ1)δξ1 − (η1)δη1 − (ζ1)δζ1, 
ξ2δ(ξ1) + η2δ(η1) + ζ2δ(ζ1) = − (ξ1)δξ2 − (η1)δη2 − (ζ1)δζ2, 
ξ3δ(ξ1) + η3δ(η1) + ζ3δ(ζ1) = − (ξ1)δξ3 − (η1)δη3 − (ζ1)δζ3 . 

 
Hence, keeping relations (77) in mind: 
 

− δ(ξ1) = (ξ1){(ξ1)δξ1 + (η1)δη1 + (ζ1)δζ1} + (ξ2){(ξ1)δξ1 +…} + (ξ3){(ξ1)δξ1 +…} 
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or, upon replacing δξi, δηi, δζi with their values, and taking relations )57( ′  and (80) into 
account: 
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however, by virtue of equations )57( ′′ one has: 
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for example.  We therefore obtain the following relation: 
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in order to find δ(η1), δ(ζ1), it suffices to make a circular permutation of (ξ1), (η1), (ζ1) to 
replace , ,α α α′ ′′  with ,,, βββ ′′′  and then with ,,, γγγ ′′′  and to replace the pi with qi and 
then with r i.  One has analogous systems of formulas for δ(ξ2), δ(η2), δ(ζ2); δ(ξ3), δ(η3), 
δ(ζ3). 
 By means of (76) and the values for δξ, δη, δζ, one has, in turn: 
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however, by virtue of (76), relations (80) give: 
 

(p1)ξ + (q1)η + (r1)ζ = − {p1(ξ) + p2(η) +p3(ζ)}, 
(p2)ξ + (q2)η + (r2)ζ = − {q1(ξ) + q2(η) +q3(ζ)}, 
(p3)ξ + (q3)η + (r3)ζ = − { r1(ξ) + r2(η) +r3(ζ)}, 

 
from which, we finally have: 
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 One will get analogous values for δ(η), δ(ζ) upon changing (ξ1), (η1), (ζ1) into (ξ2), 
(η2), (ζ2), and then into (ξ3), (η3), (ζ3). 
 From (80), we now have: 
 

δ(p1) = (ξ1)δp1 + (ξ2)δp2 + (ξ3)δp3 + p1δ(ξ1) + p2δ(ξ2) + p3δ(ξ3), 
 
i.e., by virtue of formulas(75 )′′ : 
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with analogous formulas for δ(q1), δ(r1), and for δ(p2), δ(q2), δ(r2); δ(p3), δ(q3), δ(r3). 
 We have have: 
 

δ(p) = δp + (ξ)δp1 + (η)δp2 + (ζ)δp3 + p1δ(ξ) + p2δ(η) + p3δ(ζ), 
 

i.e., by virtue of formulas ),57( ′′ (76), and (80): 
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with analogous formulas for δ(q), δ(r). 
 Now, we seek to find the formulas that must be established when one introduces the 
auxiliary functions δx, δy, δz, δI, δJ, δK, which are defined as before.  For example, one 
has: 
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and analogous systems for the derivatives with respect to y and z.  One has similar 
formulas that relate to , ,I J Kδ δ δ′ ′ ′  and δI, δJ, δK.  By virtue of formulas (72), and upon 
supposing that the determinant | |α β γ′ ′ ′′ = 1, one then has: 
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with analogous formulas. 
 The value of δ(ξ) that was written on page (?) may be put into the form: 
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however, by virtue of formulas (73) that define (p), (q), (r), one has formulas like the 
following ones: 
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and, as result, by virtue of formulas (72), one has: 
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a formula in which one may revert to the derivatives ,
dt

d
 as we shall see in detail later 

on. 
 By virtue of the formulas that define δx, δy, δz, δI, δJ, δK, one has: 
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which, by virtue of formulas (73), may be written: 
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and one has analogous results for δ(q1), … 
 Finally, observe that one may write: 
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or finally: 

(85)  ,][][][)( 111 t

z
r

t

y
q

t

x
p

t

K

t

J

t

I
p

∂
∂−

∂
∂−

∂
∂−

∂
∂′′+

∂
∂′+

∂
∂= δδδδαδαδαδ  

 

a formula in which one may also revert to the derivatives .
dt

d
  One has two analogous 

formulas for δ(q), δ(r). 
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 75.  Direct determination of the variations of the Eulerian arguments. – We 
suppose that one subjects the functions x, y, z of x0, y0, z0, t to the variations δx, δy, δz.  
Consider the relations that one obtains by differentiating relations )86( ′ successively with 
respect to the LAGRANGE variables; from this, we deduce: 
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if one substitutes the values of these derivatives into the preceding expression then one 
has: 
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the parentheses in this latter equality are thus null, and one has: 
 

,][][][][








∂
∂+

∂
∂+

∂
∂−=

z

z

y

y

x

x
iiii

δςδηδξξδ  

,][][][][








∂
∂+

∂
∂+

∂
∂−=

y

z

y

y

y

x
iiii

δςδηδξηδ  

.][][][][








∂
∂+

∂
∂+

∂
∂−=

z

z

z

y

z

x
iiii

δςδηδξςδ  

Similarly, we have: 
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upon replacing δ[ξ1], δ[η1], δ[ζ1] with the values that we must obtain they become: 
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with analogous formulas for δ(η), δ(ζ).  To retrieve the formula that we obtained in sec. 
74, it suffices to remark that one has: 
 

,
t

x

dt

dz

z

x

dt

dy

y

x

dt

dx

x

x

dt

xd

∂
∂+

∂
∂+

∂
∂+

∂
∂= δδδδδ

 

,
t

y

dt

dz

z

y

dt

dy

y

y

dt

dx

x

y

dt

dyx

∂
∂+

∂
∂+

∂
∂+

∂
∂= δδδδ

 

;
t

z

dt

dz

z

z

dt

dy

y

z

dt

dx

x

z

dt

zd

∂
∂+

∂
∂+

∂
∂+

∂
∂= δδδδδ

 

 
but we will not use the formula on page (?) and its analogues in what follows.  Indeed, it 
is convenient to observe only the domain of integration of the integrals over x, y, z, which 
we consider to depend on t, in the case in which x, t, z, t are the independent variables, 
and not revert to the integrations over x, y, z, and t, as is the habitual custom (as with x0, 
y0, z0).  If one must integrate by parts with respect to t then one must introduce the 
auxiliary variables x0, y0, z0, and use only derivatives with respect to t that take the 

form ,
dt

d
which will necessitate the use of formulas such as the one that wrote above for 

δ(ξ).  
 The calculations that must be done in order to obtain δ(pi), δ(qi), δ(r i), δ(p), δ(q), δ(r), 
like the ones that lead to expressions for δ(ξi), δ(ηi), δ(ζi), δ(ξ), δ(η), δ(ζ), presently rest 
upon formulas that we just obtained for δ[ξi], δ[ηi], δ[ζi].  The transformation that the 
expressions δ(p), δ(q), δ(r), which were given in sec. 74, must be subjected to in order to 

put the derivatives with respect to t into the form ,
dt

d
is the same as the one that we 

indicated for δ(ξ), δ(η), δ(ζ). 
 
 
 76.  The action of deformation and motion in terms of Euler variables.  
Invariance of the Eulerian arguments.  Application to the method of variable action. 
– The action of deformation and motion becomes: 
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∫ ∫∫∫
2

1 0

,000

t

t S
dtdzdyWdx  

 
in which W is a function of x0, y0, z0, t; ξi, ηi, ζi, pi, qi, ri; ξ, η, ζ, p, q, r. 
 From formulas (79) and (81), ),18( ′  one may also say that W is a function of x0, y0, z0, 

t; (ξi), (ηi), (ζi), (pi), (qi), (r i); (ξ), (η), (ζ), (p),( q), (r), and, if one sets (1): 
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then the preceding action may be written: 
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The integration over x, y, z is taken over the medium S, i.e., over a domain that varies 
with time. 
 One may also see how one can arrived at this latter action independently of the 
former.  Indeed, the Lagrangian arguments are, as we saw before, Euclidian invariants; 
however, since the Eulerian arguments are uniquely functions of the Lagrangian 
arguments, from formulas (77) and (80), it results from this that they are also Euclidian 
invariants; furthermore, one may establish this in a direct manner by means of formulas 
(82), (83) and (84), (85), by setting: 
 

δx = (a1 + ω2z – ω3y)dt, 
δy = (b1 + ω3x – ω1z)dt, 
δz = (c1 + ω1y – ω2x)dt, 

δI = ω1δt, δJ = ω2δt, δK = ω3δt. 
 
From this, it results that one is directly led to give the following form to the action of 
deformation and movement in terms of the EULER variables taken over the interior of 
the surface S, and during the time interval between instants t1 and t2: 
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in which the function Ω has the following remarkable: 
 

Ω(x0, y0, z0, t; (ξi), (ηi), (ζi), (pi), (qi), (r i); (ξ), (η), (ζ), (p),( q), (r)). 
 
 Consider an arbitrary variation of the action of deformation and motion in the interior 
of a surface (S) in the medium (M), and the time interval between the instants t1 and t2, 
and, to that effect, give the x, … the variations δx, … 
 

                                                
1 We suppose that ∆ is positive and therefore equal to |∆|. 
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For the moment, write the integral in the form: 
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and, as a result, the variation of the integral is: 
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The variation δΩ of Ω is: 
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in which δ(ξi), δ(ηi), …, δ(r) are determined by the formulas of sec. 74 and 75, in such a 

way that only the derivatives with respect to t in the form
d

dt
are involved.  We may apply 

GREEN’S formula to the terms that explicitly refer to a derivative with respect to one of 
the variables x, y, z.  As far as the terms that explicitly refer to a derivative with respect to 
time are concerned, here is how we deal with them (the domain of integration over x, y, z 
varies with time):  let: 
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be a typical term; if we pass to the intermediary of the variables x0, y0, z0 then it becomes: 
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when we revert to the variables x, y, z (1). 
 If we let l, m, n denote the direction cosines of the exterior normal to the surface S 
that bounds the medium after deformation at the instant t with respect to the fixed axes 
Ox, Oy, Oz, and let dσ be the area element of that surface: 
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in which we have set, following the notations of sec. 73: 
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and, in addition: 

,][][][ 321 dt

dxP
PPPqxx ∆

−++= γβα  

,][][][ 321 dt

dyP
QQQqyx ∆

−++= γβα  

,][][][ 321 dt

dzP
RRRqzx ∆

−++= γβα  

 
with analogous formulas for qxy, qyy, qzy, qxz, qyz, qzz . 
 
 
 77.  Remarks on the variations introduced in the preceding sections.  Application 
of the method of variable action as in the usual calculus of variations. – We used the 
calculus of variations in the preceding section; it is useful to elaborate on the significance 
of those formulas according to the approach of JORDAN (1). 
 For the sake of completeness, recall the exposition of JORDAN.  JORDAN sought 
the variation of 

Sφ dxdydz 
 
when one supposes, on the one hand, that x, y, z are subject to variations, and, on the 
other hand, that the functions that figure in φ are also subject to variation.  From this fact, 
φ is subject to two variations whose effects are added together.  JORDAN successively 
considered the variation due to the variation of the functions that figure in φ, and then the 
variation due to the variation of x, y, z that is juxtaposed with the preceding. 
 One may just as well search for the complete effect of juxtaposing the two variations 
on the letters u, …, uαβγ, … that figure in φ.  If we call these complete variations δu, … 
then one will have: 

⋯+
∂
∂= u

u
δϕδϕ  

for the complete variation δϕ of ϕ. 
 Having said this, one remarks that the previously calculated variations are what we 
must call the complete variations and that the calculations in the preceding section were 
carried out from this latter viewpoint. 
 If one prefers to present things in a form that is identical to that of JORDAN then 
here is what one must do.  In what follows, we introduce the functions x0, y0, 
z0, ,,,, γαα ′′′⋯ of x, y, z, which figure explicitly and by their derivatives, at least in part.  
The functions x0, y0, z0 of x, y, z, t are the ones that must be used in the left-hand side of 

)86( ′ in order to derive x, y, z as functions of x0, y0, z0, t.  From this, and the fact that x, y, 

z are subjected to variations δx, δy, δz, it results that these functions x0, y0, z0 of x, y, z, t 

                                                
1 JORDAN, Cours d’ Analyse de l’Ecole polytechnique, 1st ed., T. III, no. 339, pp. 533-535; 2nd ed., T. III, 
no. 396, pp. 528-530. 
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are also subjected to variations, which we designate (1) by (δx0), …, and one has the 
formulas: 

(86)   
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∂
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∂
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y
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x

x

y
y

z
z

x
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y

x
x

x

x
x

δδδδ

δδδδ

δδδδ

 

 
which express that the complete variations of these function are null.  The variations 
(δx0), (δy0), (δz0) that figure in the last three formulas are copied from the variations that 
figure in the exposition of JORDAN, as we shall see.  This remark seems to seems to 
have been discussed in the considerations that were developed by C. NEUMANN in his 
research (2) on the MAXWELL and HERTZ equations; it conforms, on the one hand, to 
the rules of calculus that were adopted by H. POINCARÉ, in his memoir on the dynamics 
of the electron (3), which we shall discuss later on. 
 As far as , , ,α α γ′ ′′⋯ are concerned, we have the variations (δα), …, in the sense of 
JORDAN; however, the variations that were introduced in the preceding sections, and 
which we continue to denote by δα, …, will be the complete variations, in such a way 
that one will have: 

.)( z
z

y
y

x
x

δαδαδαδαδα
∂
∂+

∂
∂+

∂
∂+=  

 
 This amounts to saying that when we introduce the variations (δα), …, in the sense of 
JORDAN, we introduce, in addition, the auxiliary functions ,,, KJI ′′′ δδδ which we define 
in terms of (δα), δx, … by way of: 
 

                                                
1 In general, in order to avoid confusion we denote the variations that areobtained by leaving x, y, z fixed by 
(δ). 
 
2 C. NEUMANN. – Die elektrischen Kräfte, T. II, Leipzig, 1898; Über die Maxwell-Hertz’sche Theorie 
(Abhandl. der k. Sächs Gesells. der Wiss. zu Leipzig; Math.-phys. Klasses, T. XXVII, nos. 2 and 8, 1901-
1902). 
 
3 H. POINCARÉ, Rend. di Palermo, Tome XXI, pp. 129 et seq. (1905), 1906.  H. POINCARÉ uses 
different notations from ours, in particular, as far as derivatives with respect to t are concerned; our 
notation, d, ,∂ which is that of APPELL (Traité de Mecanique, Tome II, 1st ed., pp. 277), is the opposite of 

POINCARÉ.  He distinguishes the ordinary variation (δϕ) of a function ϕ in the sense of JORDAN, which 

he denotes by ,ε
ε
ϕ

d
d

d
from its variation δϕ (which we call complete), which he denotes by 

ϕ δε
ε

∂
∂

 [in 

particular, see the formula (11 bis), page 140]. 
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(87)  





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∑ ∑
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333

222

111

zryqxpK

zryqxpJ

zryqxpI

δδδδαββδαδ
δδδδγααδγδ

δδδδβγγδβδ
 

 
The fundamental convention is expressed by the relations (86), as one sees.  It will be 
found, in an eventual work on the theory of temperature, for the functions that figure by 
way of their differential parameters − for example, in the case that amounts to a pointlike 
medium − if one abstracts from the formulas in which the complete variations of these 
functions are presented. 
 One will observe that presently the simplest way to perform these calculations is not 
the one that was followed in the aforementioned exposition of JORDAN, but consists of 
determining, as we did before, the complete variation of the function under the 
integration sign.  Nevertheless, in view of the comparisons that are to be performed when 
one develops the two viewpoints that are suggested by the notion of temperature later on, 
it will be useful to likewise follow the path of JORDAN. 
 We have: 
 

(88) ∫∫∫∫∫∫∫∫ 




∂
Ω∂+

∂
Ω∂+

∂
Ω∂=Ω

S

t

tS

t

t
z

z
y

y
x

x
dxdydzdt )()()( 0

0
0

0
0

0

2

1

2

1

δδδδ  

( ) ( ) ( ) ( ))(
)(

)(
)(

)(
)(

)(
)(

r
r

r
r i
i

i
i

δξδ
ξ

δξδ
ξ ∂

Ω∂++
∂

Ω∂+








∂
Ω∂++

∂
Ω∂+∑ ⋯⋯  

,)()()( dxdydzdtz
dz

d
y

dy

d
x

dx

d




Ω+Ω+Ω+ δδδ  

 
in which the (δ) sign corresponds to the variation that is obtained by leaving x, y, z fixed, 
in such a way that one has, in a general fashion: 
 

(89)   ( )
d d d

x y z
dx dy dz

δ δ δ δ δ= − − −F F F
F F . 

 
 We substitute the auxiliary functions δx, δy, δz, , ,I J Kδ δ δ′ ′ ′ that are defined by the 
formulas (86), (87) for the variations (δx0), …  In regard to the integration over t, we 
must also recall that the domain of integration over x, y, z varies with t, and that one may 
not switch the order of integrating over t and the system of integrations over x, y, z in the 
habitual fashion that is employed for the variables x0, y0, z0.  
 If we replace (δx0), (δy0), (δz0), (δ(ξi)), … by their values from (89), which subsumes 
(86), we obtain: 
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If we consider first 
 

(91)  ∫∫∫∫ 
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and then: 
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just as, in the preceding section, we divided the sum into: 
 

)19( ′  ,
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1

dxdydzdt
z
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y

x

x
S
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t ∫∫∫∫ 



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



∂
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∂
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∂
∂Ω δδδ

 

 
and (92), one sees that the calculation is identical to the one that we did earlier. 
 
 
 78. – The Lagrangian and Eulerian conceptions of action.  The method of 
variable action applied to the Eulerian conception of action as expressed by the 
Euler variables. – In his work sur la dynamique de l’électron, which was presented at 
the July 23, 1905 session of the Cercle de Palerme, H. POINCARÉ presented a 
conception of the action for an infinite domain that was different from the one that we 
envisioned up till now.  If one clarifies the idea of H. POINCARÉ when considering a 
finite domain then one is led to distinguish the following two conceptions of action, the 
one being Lagrangian, and the other, Eulerian. 
 We may integrate the general function W or Ω over the independent variables (1) x0, 
y0, z0, or the independent variables (2) x, y, z in a fixed domain, and then integrate over t. 
 
 1.  Start with the space (M0), and imagine that an observer attached to the reference 
axes directs his attention to a portion (S0) of that space and to the different positions that 
it ultimately takes, namely:  (S) at an arbitrary instant t, (S1) and (S2) at the times t1 and t2.  
 We imagine the integral: 

                                                
1 In this case, we denote the function by W. 
 
2 In this case, we denote the function by Ω. 
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∫∫∫∫ Ω
S
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dxdydzdt,
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1

 

 
in which the domain of integration (S) with respect to x, y, z varies with t, and which 
takes the form: 

∫∫∫∫
0

2

1

,000S

t

t
dtdzdyWdx  

 
upon effecting the change of variables that is defined by )66( ′ or )86( ′ , in which W 

denotes the expression that is obtained by replacing the letters x, y, z in Ω∆ by their 
expressions in )66( ′ , and the domain of integration over x0, y0, z0, (S0) is independent of t.  
We then have the Lagrangian conception of the action. 
 
 2.  While always envisioning an observer that is fixed with respect to the reference 
axes, imagine that he constantly directs his attention to fixed and definite portion of space 
(M); let x0, y0, z0 denote the coordinates that are calculated by means of formulas )86( ′ at 
the point M0 of (M0), and becomes the point M of (M), with coordinates, x, y, z at the 
instant t, and let (S0) be the region contained in M0 that becomes (S) at the instant, t; we 
may then let (S01), (S02) denote the regions that (S0), which varies with t, becomes for the 
values t1 and t2 of t. 
 If Ω refers to both x, y, z, and the functions expressed by the formulas )66( ′  then we 
envision: 

∫∫∫∫ Ω
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t

t
dxdydzdt,
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1

 

 
in which the domain of integration over x, y, z − namely, (S) − is independent of t this 
time, and which takes the form: 

∫∫∫∫
0
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,000S

t

t
dtdzdyWdx  

 
upon effecting the change of variables that is defined by )66( ′ or )86( ′ , in which the 
domain of integration over x, y, z − namely, (S) − varies with t.  We then have the 
eulerian conception of action. 
 We have considered the first case in the earlier paragraphs; we shall now occupy 
ourselves with the second one.  Formula (88) is then replaced with the following (1): 
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1 Upon referring to the exposition of JORDAN, one will observe that the terms 

( ) ( ) ( )
d d d

x y z
dx dy dz

δ δ δΩ + Ω + Ω  come from the fact that the domain is moving, and correspond to the 

variation of the letters x, y, z, as well as the independent variables. 



240 THEORY OF DEFORMABLE MEDIA 

( ) ( ) ( ) ( ) ;)(
)(

)(
)(

)(
)(

)(
)(

dxdydzdtr
r

r
r i

i
i

i





∂
Ω∂++

∂
Ω∂+









∂
Ω∂++

∂
Ω∂+∑ δξδ

ξ
δξδ

ξ
⋯⋯  

 
and, by virtue of (89), formula (90) is replaced by the following one: 
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 This sequence of calculations resembles the ones in sec. 77.  At the same time, a 
difference was introduced as far as the derivatives with respect to time are concerned.  At 
the moment, one may exchange the integration over t and the integration over the domain 
of the variables x, y, z, and, that exchange having been performed, the integration over 
time must be done by imagining that x, y, z are constant.  The integration by parts over 

time must be done by making them depend on the derivatives ,
t∂

∂
 and not on ,

dt

d
 as we 

did in sec. 76 and 77, and conforming to the remark made in sec. 75 and 76. 
 
 The integration by parts now gives: 
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in which we have set, with the notations of sec. 72 and 73: 
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with analogous formulas for , , ; , ,xy yy zy xz yz zzp p p p p p′ ′ ′ ′ ′ ′  that are obtained by changing [ξi], 

[pi] into [ηi], [qi], and then into [ζi], [r i], respectively, and, in addition: 
 
   ],[][][ 321 PPPqxx γβα ++=′  
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with analogous formulas for , , ; , ,xy yy zy xz yz zzq q q q q q′ ′ ′ ′ ′ ′ that are obtained by changing α, β, γ, 
into ,,, γβα ′′′ and then into ,,, γβα ′′′′′′ respectively. 
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may, by virtue of the relation: 
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be written: 
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On the other hand, ;, PPAA =′=′  from this it results that one has: 
 

,
1

dt

dA

z

p

y

p

x

p

dt

dA

tz

p

y

p

x

p zxyxxxzxyxxx

∆
+

∂
∂

+
∂

∂
+

∂
∂

=Ω+
∆

′
∂
∂+

∂
′∂

+
∂

′∂
+

∂
′∂

 

and: 

zyyz
zxyxxx pp

P

tz

q

y

q

x

q ′−′+
∆

′
∂
∂+

∂
′∂

+
∂

′∂
+

∂
′∂

 

,
1

dt

dzB

dt

dyC
pp

dt

dP

z

q

y

q

x

q
zyyz

zxyxxx

∆
−

∆
+−+

∆
+

∂
∂

+
∂

∂
+

∂
∂

=  

 
with analogous relations. 
 The force and exterior moment thus have the same definition as in sec. 62, 63. 
However, the same is not the case for the effort and the moment of deformation; from 
sec. 72, 76, we have: 
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with analogous expressions for πxy, πyy, πzy; πxz, πyz, πzz that are obtained by cyclic 
permutation of A, B, C, and x, y, z; in addition: 
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with analogous expressions for χxy, χyy, χzy; χxz, χyz, χzz that are obtained by cyclic 
permutation of A, B, C, and x, y, z. 
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 79.  The method of variable action applied to the Eulerian conception of action 
as expressed by the Lagrange variables. – We shall once more develop the Eulerian 
concept of action with the Lagrange variables.  We begin with the integral: 
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in which the domain of integration over x0, y0, z0 now varies with time t, and corresponds 
to the fixed integration domain that is described by the point (x, y, z). 
 Following the exposition of JORDAN, we have: 
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in which (δx0), (δy0), (δz0) are defined by formulas (86) by means of the auxiliary 
variables δx, δy, δz. 
 The sequence of calculations resembles those that we encountered in the dynamics of 
deformable media; at the same time, a difference was introduced, insofar as 
differentiation with respect to time is concerned.  This time, one may not change the 
order of integrating over time and integration over the domain of variables x0, y0, z0.  One 
will therefore apply reasoning analogous to that of sec. 76.  One first introduces only the 
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then one writes: 
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and, upon integrating by parts: 
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i.e., reverting to the variables x0, y0, z0: 
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Having said this, from the previous formulas for the dynamics of deformable media and 
from (94), we obtain, upon integrating by parts: 
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upon setting: 
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We may observe that by virtue of (94) ,0X ′ for example, may be written: 
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however, one has: 
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and, as a result, 0X ′  has the same value: 
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as in sec. 62; the same remarks apply to .,,,, 00000 NMLZY ′′′′′   However, the same is not 

true for the effort and moment of deformation; by simple transformations, one once more 
recovers relations (93) and )39( ′  of sec. 78. 
 
 
 80.  The notion of radiation of the energy of deformation and motion. – We have 
seen that the density of energy of deformation and motion, when expressed as a function 
of the Lagrangian arguments and referred to the space of (x0, y0, z0), is: 
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this same density, when referred to the space of (x, y, z) and expressed by means of the 
function Ω of the Eulerian arguments (ξi), (ηi), (ζi), (pi), (qi), (r i); (ξ), (η), (ζ), (p), (q), (r) 
is: 
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 This result is obtained either by transforming expression (95) by means of the 
relations that we indicated before that exist between the Lagrangian arguments and the 
Eulerian arguments, or by directly repeating the reasoning of sec. 65 on the elementary 
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that the forces and external moments and the efforts and external moments of 
deformation exert on the portion (M) of the medium that the portion (M0) of the natural 
state occupies at the instant t.  By this latter path, we recover the expression: 
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for the elementary work, in which Ω is assumed to be independent of t. 
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If we observe that we has the following identity: 
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which was employed by POINCARÉ in the memoir that was cited in sec. 77, and which 
we apply to an arbitrary function, then we arrive at the following new expression: 
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or: 

(97)   ,















 ++
∆

+
∆∂

∂
∫∫∫ ∫∫S S

d
dt

dz
n

dt

dy
m

dt

dx
l

E
dxdydz

E

t
dt σ  

 
for the elementary work. 
 The second integral in (97) expresses the flux of energy of deformation and motion 
across a fixed surface S in the deformed body. 
 Now consider the Eulerian conception of action.  In the preceding sections we 
confirmed that the values of the forces and external moments remain the same, but that 
the following terms disappear from the expressions for the efforts pxx, pxy, pxz: 
 

,
dt

dxA
xx ∆

−Ω=π  

,
dt

dxB
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,
dt

dxC
xz ∆

−=π  

 
and the following terms disappear from the expressions for the moments of deformation 
qxx, qxy, qxz: 

,
dt

dxP
xx ∆

−=χ  

,
dt

dxQ
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,
dt

dxR
xz ∆

−=χ  

 
with analogous expressions for the quantities πyz, πyy, πyz, πzx, πzy, πzz, and 
χyz, χyy, χyz, χzx, χzy, χzz .  From this, it results that the elementary work that is obtained in 
the preceding must be added to a new surface integral that has the expression: 
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One may call this new integral the flux of radiant energy crossing the boundary S of the 
deformed body. 
 The reasoning made in sec. 64, which was based on the Euclidean invariance of the 
action density, no longer leads to the same conclusions for the forces and external 
moments as it does for the new efforts and external moments of deformation.  This may 
be interpreted by saying that the new efforts and moments of deformation no longer 
satisfy what POINCARÉ called the principle of reaction.  This latter conclusion is 
likewise recovered, as one knows, in the electric theory of LORENTZ.  However, the 
existence of radiation that we just showed permits us to approach the efforts and 
moments of deformation πxx, πyx, …, χxx, χyx, … as being what MAXWELL, from 
considerations deduced from the electromagnetic theory of light, and BARTOLI, from 
those of thermodynamics, called the pressure of radiant energy, and one may therefore 
retrieve the principle of reaction. 
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