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FIRST THESIS.

CONTRIBUTION TO THE STUDY

OF

DIRAC’'S THEORY OF THE ELECTRON

FOREWORD

The various studies that constitute this work arep ®péak, placed under the double
sign of relativity and quanta. However, the first ckaps the only one in which the very
arduous problem that is posed by the relationships betwesa tivm great theories is
partially begun— only once moreover, and only in the context of Dirdbsory. The
mechanism by which Dirac’s theory arrives at a red@ticin, if not a harmonization, of
the two formalisms is truly paradoxical, and seems to dadenigma.

However, having accepted that point (and some suitablgtadcconventions), the
guestions that we shall address in the following chaptelisrevain “intrinsic” to
concepts that are either relativistic or quantum irr tiegsent form. We will be dealing
with an extension of relativistic dynamics that is intted to include the notion of proper
kinetic moment — ospin (Chap. Il), and then a study of and an attempt topneééisome
guantities and relations from Dirac’s theory that afenterest to the statistical fluid
(Chap. Ill), a comparison of the classical electroneaigm of polarized media with
Dirac’s theory, and a return to several questions #raain pending (Chap. V).

When we need to refer to certain results from atasspecial relativity, we shall cite
our earlier book on that subject, for the very simpgason that we shall preserve its
notations here, and that to our way of thinking thast fbook gave us a way of
approaching the present topic. We refer to the classikk wf R. Becker for the
guestions in the electromagnetism of polarized mediawahave, unfortunately, left
aside.

Notations used— Throughout the entire worky, v, w will denote acircular
permutation of the spatial indices 1, 2, 3, and the terhpatex will then be equal to 4
explicitly. The two sets, j, k, | andp, g, r, s=1, 2, 3, 4 will be the set eforld-tensor
indicesand the set omatrix or spinor indices that belong to Dirac’s theory, resp. In
general, we shall use the summation convention over gumnaiices from tensor
calculus, except that in some of the calculationshag®er Ill, paragraph I, in which we
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shall introduce some special conventions and use thertémdicesA, y, ... without
summatiorwhen they are repeated. Finally, according to thel esuention in Dirac’s
theory, the upper-case Roman indices that are attributgavidbvary from 1 to 16, and
we shall possibly apply the convention of summing ovenrdy indices to them.

Along with several authors, we consider Dirac’'s foumponenty to be a matrix
with four rows and one column, while Gordon-Paulps = ¢* and g™ =i ¢*y* will
then be associated with matrices with one row and éolumns. In a manner that is
analogous to that of W. Fran?),(for example, we introduce, along with the usual phrti

differential operator that acts on the right, whichdesote byd', the analogous operator
@' that acts on the left, and we shall define the twoatpes:

[ai]:Qi_Qi, (ai):Qi+Qi,

which, like the Diracy matrices, act on both the right and the left. Wdl stsg@ a dot to
stopthe action of one the preceding operators to the oigléft. Finally, we preserve the
usual notationd' in order to denote then-notated operatgrwhich acts only to its
immediate right?).

Along with the five classical density tensors of Dieand Darwin,

o=y vy,
we shall also systematically introduce five tensorheftype:
ps=y [0y

that we callSchrodingerian due to the fact that they pertain to the currenedtor in
Schrodinger’s original theoryBy definition they= " ... in these tensors is a prodyct
y'... of Dirac matrices, in which thensor ind_i_ces,ij, ... are essentially assumed to all
be distinct. Indeed, one knows that thege ... behave like the components of a
completely-antisymmetrianatrix tensoy so it would be appropriate tdefine the
components with two or more equal indices to be zerdarPover ayor a completely-
antisymmetric tensor will denote the dual of that quantiAn exception to that is in
Chapter IIl, paragraph I, where we shall uspaatial double bar over two indice®
overbar third-rank, completely-antisymmetric tensors.

All of our notations are in accord with those of oapok on special relat|V|tyup toa
change in sign in the definition of the quadri-potentiaioh the field H (3); for example,
we shall often use the duatsd)' andic & of the integration elements dx’ d¥] and
[dX dx], respectively. Moreover, we set:

ad=zicdf=[dxdéd¥] and A"=ic ™= [d¥ dx]

() “Zur Methodik der Dirac-Gleichung,” See, pp. 404.

(® With t denoting time, we shall generally wrié or d; for 8 / dt.

() And up to a change in sign in the definition of #patial vector product, with no repercussions in
the four-dimensional formulas.
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in order to denote the usual volume element and the twagonents of the area
element, respectively. We shall make use of the gefwraula for the transformation
of multiple integrals:

jﬂ/s,,ﬁ_upg_“ [ dbé... d¥ d¥...] = jmaw/s},ﬂ_“pgm [dx™ dbé... A dx¢...dxY

with several reprises. The integration elements ok pa[d% dx'...] are completely-
antisymmetric tensors that are defined by the (signed) rdetents that are extracted
from the matrix withp rows andh columns:

Lt

in whichn is the number of dimensions of the space considéyed (

In the present work, as in our cited book, we shalwisat one can call theéeaviside
e. m. unitswhich are units in which the electromagnetic mass-isgpaf a point charge
will have the expressio@A (°). For the electron, one will have:

Q = - E ,
o
in such a way that its electromagnetic mass-impudsebe written e/ c A.

The interesting equations or relations in the rest sftlonograph will be numbered
in brackets; on the contrary, the ones that serve asmintermediate calculations shall be
denoted by a symbol in brackets, when necessary.

() La Relativité restreintepp. 6-7 and 31.
() Op. cit, pp. 34-35, 48, and 62.
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CHAPTER |

ON THE RELATIONSHIP OF RELATIVITY AND
QUANTA TO DIRAC’S THEORY.

1. The problem of the relationship of special relativitydawvave mechanics to
Dirac’s theory (if one is to “restrict” it with respeto the combined relativistic and
gquantum theory) is already sufficiently difficult toerit a deeper examination. The
present chapter does not actually aim to study theatestrproblem in its entirety, but
only to examine certain special aspects of it in detail.

A first remark, which is classical, is the followingeotWhereas non-relativistic wave
mechanics arises without difficulty from the work afh8ddinger to create a mechanics
of systems of interacting points, up to now, the relativistic wavechanics of a point
that is endowed with spin knows only how to treat thebj@m of a single point that is
embedded in a pre-established field (whose formal basesimerthe Dirac equation) with
no approximations. That grave situation does not propetbynpeo wave mechanics,
since it is encountered already in pre-quantum dynamidgs.tHerefore relativity that has
failed in that case, but one can remark that the yhebquanta has not contributed to a
clarification of the problem.

It seems that the constitution of a relativistic ayncs of n interacting points
encounters two principal difficulties, which are conndctmoreover. The first one
results from the replacement of the classieaiantaneous potentialsith potentials that
propagate with a finite velocity, which is equalda the case of electromagnetism. It
follows from the fact that each of tip@intswill be influenced by the states of the other
points “of the same wave as it,” which will be states tha¢ located on théght
hyperconethat has that point for its summit. Therefore, neovould like to treat the
problem of the dynamics @fpoints then one would have to consider, at the same i
hypersurfaces of that type instead of the sirggiaultaneous hyperplanef classical
dynamics. As hard as it is, the problem is physicalliereined on that basis, and
therefore, it is certainly capable of being formulatéthe difficulties in its solution,
which are perhaps currently insurmountable, are of ontalnematical nature.

One of those difficulties obviously consists of thet fdlnat the world-positions of the
n points are, in principle, independent of each other,enhithe old dynamics, they were
all taken to be in the sansamultaneity hyperplaneEach of the relativistipointsindeed
possesses its owproper time but one does not seepriori how to introduce a global
evolution parameter for the collective “cloud.” On& ceemand that one would not have
any reason to establish such a parameter, either for physasons that presently elude
us or for mathematical reasons that the effective stidje problem might cause to
appear. Perhaps one can then confirm thawtited-positionsthat then points take not
only belong to the neighborhood of the same space-ligerbyrface that displaces in the
direction of increasing time, but are also charactdrizg the increasing values of an
action function. Without wanting to prejudice the resultssath a study (which would
be interesting to undertake), it seems to us that thiegele considerations will clarify
the nature of the problem that was posed, and that theosothat we suggested wilh
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principle, respect both the relativistic symmetry and the @akgustom of having an
evolution parameteand athree-dimensional configuration hypersurfabat is valid for
the system collectively.

It is clearly that samebjective evolution parametesnd objective configuration
hypersurfacethat one must establish in wave mechanics in ordenatononize the
relativistic symmetries and quantum principles completeédow, it is remarkable that
Dirac’s theory seems to not only lend itself poorly tacls an operation, but even
provides a very clear counter-indication. Indeed, omebmatempted to “measure” an
objective evolution parameter along the Dirac straaasli which are time-like, but those
lines will not generally admit orthogonal hypersurfac&sonversely, the quadri-vector

density that we calU,, is found to be a world-gradierége much later, equations (61

B) and (62 B II)], but it is not necessarily time-likd.o our knowledge, Dirac’s theory
does not provide any quadri-vector field that enjoys bothadgd properties at once, and
both of them seem necessary if one is to be aldadoeed in the indicated way.

Another important reason seems to us to doom the psogfesny attempt of that
kind: The set of the four matricgs does not possess any relativistic symmaeinthe
sense that the foyr' can be chosen to be all Hermitian, but not threertitean ones and
one anti-Hermitian one. One can guarantee thatwanghall show that it is impossible
to modify Dirac’s theory in such a manner as to rentbdy state of affairs. The desired
condition is not compatible with the well-known Direandition:

1 Y +yy)=4",

which is indispensable for Gordon’s second-order equatidme a consequence of the
theory in the absence of a field. These remarks aporiant. If it is proved in a
definitive manner that it is impossible to introduce an cbje evolution parameter into
wave mechanics that is analogous tophgper timeof relativity (or thecosmic timeof
the theories that treat the universe collectively) thvee must conclude, for example, that
the Dirac electron, when taken by itself, will ignore tim&he passing of time is
manifested only in a macroscopic reference system ofwdigm. On the contrary, one
recalls that the only evolution parameter that is erbwith any clear significance in
non-cosmic relativity is theroper time of material points, or of systems that are
sufficiently small that they can be associated witterial points.

Not only will the asymmetry of the set ¢pf prevent Dirac’s theory from giving
relativistic symmetry to the general quantum principlad, ibis precisely a special
intervention of the matriy* that will permit one to reconcile the formalism of these
principles with the demands of relativity (in connection with thegnati®on at constant
time). After recalling the principal manifestations of the ladkelativistic symmetry in
the general principles of wave mechanics in paragraph Ishad analyze the very
paradoxical mechanism by which Dirac’s theory managesrieat that reconciliation
in paragraph Il. The question is closely connected witht we have called treecond
principle of relativity (). We shall essentially show that the condition:

S*yts=yt

() La Relativité restreintepp. 15.
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that Von Neumann imposed upon the ma®iof the change of Galilean frame, and
which is a condition that makes the special rolg’bappear, is nothing but theatrix
expression for the second principle of relati\iiy. 7). After having shown how those
considerations contribute notably to the definition etrdde’s inertia tensor, we shall
use them to specify the tensorial and physical claasihic of the sixteeny operators of
Dirac’s theory (no8).

As for thematrix expression of the first principle of relativity, we shall show that it
is provided by the set of two known conditions: The fose, which is very immediate
and was stated by Von Neumann and Pauli, is the commutati8 with the second
matrix invarianty = y*"*. The second one, which is due to Pauli, can be written:

S denotes théransposeof the matrixS, andB is a certain matrix that is introduced by
Pauli whose definition we shall recall (rt).

Can we hope that the matrix formulation of thest and second principlesof
relativity will give us the means to comprehend the prigeeiof space and time more
than is permitted by Minkowski's tensorial laws? Unfodiaty, that does not seem to be
true. One knows that the direct attachment of twoswsychanging Galilean frames to
each other in Dirac’s theory is quite laborious, whisha situation that constitutes a
serious obstacle to the deeper comprehension of what'®theory presents in that topic
that is new J). All of that study leaves the impression that desftiteeven, one might
say, due to) its great ingenuity, Dirac’s theory dodsastually constitute the last word in
what the relativistic quantum theory of the electramstrbe. In summary, one can say
that the profound conflict between relativity and quantaiger even in Dirac’s theory,
but also that Dirac’s theory realizesvedus vivendthat is so clever that the conflict,
which is already latent, never erup®s (The experimental fact that it fails to be both

*) Op. cit, pp. 10.

() To our knowledge, the reciprocal calculation of thesvaints of the matric&and oij relative to the
two ways of changing Galilean frames has never been gi@icitly in its general form. Along that train
of ideas, we cite Pauli’s calculation $fs functions of the’ of the infinitesimal transformatiorHandb.

Phys, XXIV,, pp. 222), and Mdglich’s calculation of tt&that correspond to three special Lorentz
transformations (and also a rotation of the spatiak)axe the case where one adopts a particular
representation for thg' (Zeit. Phys48, pp. 852).

The general theory of changing Galilean frames in Birtteory that was given to us by Dirac, Von
Neumann, and Pauli rests entirely upon glkistence theoreror S that was proved by Pauli; the elegant
restricting conditions that were imposed uf®ioy those authors are then proved by a very indirettiade

() Meanwhile, there is a very delicate point at whiua problem demands a deeper study than we have
undertaken. From the principles of wave mechanics, a nemasnt that is made at the instanwill
determinethe wave functioryy (x', X%, X°) at a future time when another measurement fixesftination
again. In the non-relativistic universe, there ispnablem presented by making the variowsasurement
hyperplanesparallel to each other. Things are no longer the santke relativistic universe for two
measurements that are made on shme systerm two different Galilean frames The measurement
hyperplanes will then intersect, and will determine tegions that are the “past” for one measurement and
the “future” for the other one, which will be exchangdtew one changes the region.
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guantum and relativistic proves that the two theorieskath “true,” in a sense. The
theoretical fact of the “conflict” shows that at $éaone of the two formalisms (and
probably both of them) is imperfectly adequate in theseyfephysical reality. In that
case, one must not hope to discover a means of “réicgyicrelativity and quanta,

properly speaking, but the advent of new and more powenfuteptions: The problem
will not be of a logical nature, but a physical one.

|. — ON THE LACK OF RELATIVISTIC SYMMETRY IN THE GEN ERAL
PRINCIPLES OF WAVE MECHANICS.

2. Wave mechanics, whether non-relativistic or relativjismakes any physical
quantityr that is attached to the system (viz., a systemtefagting points in the non-
relativistic case, a single point in the relativistase) correspond to a linear Hermitian
operatorR that operates on all of part of thpatial coordinatex”". The timet, which is
never a variable that is “operated” upon by an opeRtqroperly speaking, can figure
as a parameter in the definitionRf As for Hermiticity, it is defined at each instanmt a
domain of pure spadé by the condition:

[ ¢ RuBuU= [ (RYWBU with e=7+1.

In the non-relativistic case of a system of intargctpoints, du denotes the volume
element @ix", d¢, ..., dx*] of configuration space. The integrals are taken dweentire
domain of interest for the. It is that same purely-spatial domain, when considered a
well-defined “instant” that enters into the definition of the values of firoper functions
of the operatoR, as we shall recall in the following number. Onentlsees that the
evolution variable and theconfiguration domain lrerelative to the Galilean frame of
the observer. It seems that this first fundamental astny in the quantum principles is
related closely to everything that we shall encounténerrest of this chapter.

Wave mechanics makes theatial coordinates‘xcorrespond to operators:

(1) X =x'%,

which are obviously Hermitian, and the operators:

h
2 pPY=-——20",
@) 27

to the homologous components of tihgpulse (Lagrange’sconjugate momenja The
Hermiticity of the latter operators results from tessical calculation'):

The difficulties that are raised by thggiantum problem of changing Galilean frama® certainly
considerable. One sees that there is a certairfareace between the notionsrelativity and quantum
subjectivitythat is present.

() In the second expression, it is intended that there shewd summatiorover the indexi.
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h Oxu u
o)y, @OY+ 0P au
SLE [ o' (@WldxdX.. dx* dx d&™ d¥]
270 ¥ VYan

=L (pYlakd dkt k- dR]=0,
2m U3n—l
since the last integral is necessarily zero. Indéédat were not true then the integral:
L[ @R R dx dk dk o]
271 < U

v¥ould diverge, which is a case that is by the very deamibf functions in Hilbert space
).

Wave mechanics, whether relativistic or not, makes ehergy of a system
correspond to a certain Hermitian operadtiothat is a function of the preceding operators
(%), and consequently operates upon shatial coordinates. Finally, it defines the
wave equatiorf the system as being the partial differential equatio

®) - N oy =ty
270

In Schrodinger’s pre-relativistic wave mechanics, therpretation of the operatét is a
natural consequence of that of the operaXrsand P", in the sense that the operator
functionH(P", X") is the exact transposition of the Hamiltonian exgioasfor the energy

H(p", x') of the pre-relativistic analytical mechanics of #ystem. That will no longer

be true in the relativistic theory of a point thaémlowed with spin: Since it will cease to
be deduced by simple transposition of a pre-quantum meeha@ipression, the
Hamiltonianoperator must be defined especially.

As has been pointed many a time, it is natural to segk/é relativistic symmetry to
the preceding definitions by making the “temporal coordinatés”ict correspond to the
operator:

(1) Xt =x* x,

which is clearly anti-Hermitian, and the energy,He operator:

2) pr=- g1y

2 ic 27

The question of knowing whether the operatbcan or cannophysicallyrepresent time
is closely linked with the one that was raised in thec@ding number that touched upon

() J. Von NEUMANN,Mathematische Grundlagen der Quantenmechapk 49 and 50.
(®) For the notion of operators that are functionspsratorssee for example, Von Neumannop. cit,
pp. 46et seq.
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the search for aabjectiveevolution parameter in wave mechanics; we shall retuthat
problem here. On the subject of the oper&biit poses two questions that are, in fact,
characteristic of the ambiguous state of the relatiorstiyveen relativity and quanta:

1. Does the operatd?® correspond physically to the energy of a point that is
endowed with spin?

That idea does not seem to be impossible to justifydrcéise of a free point. However,
in the problems of the quantization of the atom, into tvhéc potential energy of
interaction enters, it is the operatdrthat represents the energy, and which permits the
effective calculation of its discontinuous spectrumevéltheless, although they are not
equivalent the operatoricP* andH will yield the same result when one applies them to
the wave functiony ; that will be true, by virtue of the fundamental waggiation (3).

2. s the operatd?* anti-Hermitian?

One cannot confirm that. The calculation that waemgiin the context oP" fails to

show that, since the differentid¥* does not figure iu; however, the operatQ|1LH IS,
ic

in fact, anti-Hermitian.

3. Having recalled these preliminaries, the most generaimstatt that one can make
of theprinciples of the interpretationf wave mechanics is the following one: [Et) be
the projector that yields the decomposition of the HgmmoperatoRR at the instant ().

1. The probability that a measurement that is madeeainstant will yield a value
for the quantity that is found in a given intervat is ¢):

(4) AW = [ g DEY, [Bu.

2. If the measurement shows that the quantéffectively has a value that is found
in the intervalAr then one can affirm that at the instgrthe new wave functiogh that is
“created” by the measurement will benaxture of the linearly-independent functions that
are contained in the Hilbertian subspaée(®).

Upon applying the formula (4) to the operaxdithat represents a coordinate, one can
show () that the probability of “finding” the point (in the mteanics of systems, the
figurative point of the system) in the volume eleméntt the instant is (¢ "¢) &, so it
will follow that the probable mean pointhat is provided by a large number of

[N

Von NEUMANN, op. cit, pp. 61.
Op. cit, pp. 105.

Op. cit, pp. 105.

Op. cit, pp. 117et seq.

AT
—
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measurements that are made at the instaihthe system that is described by the same
will have the coordinates)(

[5x] X = j X (YY) du .

In non-relativistic wave mechanics, and in the aafse single corpuscle of proper mass
mp, that mean point will then appear as the baryeceotea fictitious statistical fluid
whose mass density will be defined by thal quantity:

p=mo (¢ §).

A consequence of the preceding general staterme¢hat the probable mean valde
of the quantityr, which is the result of a large number of measam@sithat are made at
the instant on the system that is described by that samaill be ):

(5) T =@ RyBu.

That probable mean value thus appears as the ahtefya fictitious statistical density
W Ry over the entire domaity at the instant. More exactly, we remark that the
asymmetry in the formulas (4) and (5) has the apusiece that the Hermiticity & (or
AE) does not generally permit one to confirm theitgalf the statistical density that was
just defined. Under these conditions, it is adagabus to symmetrize those formubgs
appealing to the Hermiticity propertyf the operators that they contain; for example,
formula (5) will then become:

(5) T = [¢"RyBu= [(RY)' @B =4[ {y" Ry +(RY) "B du,

and one will see that the newly-defined statistaensity { } is indeed real upon taking
the complex conjugaté)(

We apply the principle that is expressed by foam(8) to the operatoiP" that
represents a component of the impulse; we get:

— h

= [Py -0y du= - [ ¢T3y B,
71 47

Conforming to our general conventions of the Fonelyvowe have defined the
antisymmetric partial differential operator:

() The general formula (5), which will be given in a e leads directly to that result, but without
affording it the detailed description in the text.

() Von NEUMANN, op. cit, pp. 105.

() Things will still be the same for an arbitrary Ridermitian operator; however, the last expression
(5) will no longer be equal to the first two then, anddkeeral principles of wave mechanics will cease to

apply.
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[aU] — QU_QU,

which is a formula in whichd" represents the usual operator that acts on the rigdit, a

the analogous operat@' acts on the left. The operat@] acts on both the right and

the left, and its introduction will completely symmeérithe expression for the statistical
impulse density:
(6) pv =y [0y

The classical statements and their applications (waie likewise classical) that we
just recalled raise a probleenpriori that is important from the relativistic viewpoint.
From these statements, it seems that the “probabéannwuantity and the associated
density quantity will have the same tensorial variaritbat is inadmissible in relativity,
where the elemendu is, up to the factoic, the fourth component of the quadri-vectur
that is dual to the trilinear elemembq dx* dx']. The fact that wave mechanics takes all
of its integrals “at constant time” [or even, toaka terminology that we have employed
moreover 1), that it is always subordinate to the “simultayéiypothesis”] does not raise
that objection: In particular, from the fact that tlementdl, it specializes the “probable
mean value” of the tensor integrayt it cannot change the rank of that tensdve shall
recall that problem in detail in the context of Disatheory.

In Schrédinger’s non-relativistic wave mechanics, thed densitiep"” define a
current densityvector. A question that poses itself is to know whethe fact, that
vector can be associated with the mass densily such a manner that the classical
continuity equation:

oy (o) +0; p=0

is satisfied. This condition is obviously necessarytfar validity of the notion of a
fictitious fluid that is statistically equivalent to that of “matépaint” my; . One knows
that the response is affirmativEhe preceding equation of continuity is a consequence of
the wave equatiofB) in the case where that equation is of non-relativistic, Schrodinger
type (). One can say that Schrodinger theory refers tori¢ fre the manner that is
necessarw priori.

Things are much less simple in Dirac’s relativistiedaty. As we shall discuss in
detail in Chapter Ill, paragraph Il, inductive reasoning migst an important role. First
of all, in a relativistic theory, the definition of thbarycenter demands certain
precautions. One no longer has the right to concliada formula [X] (which is always
valid as an application of general quantum principles) that quantitymy, (¢ ¢)
represents a mass density. A simple induction will bsomme help: Since mass is
equivalent to energy in relativity, we are entitledasgsociate the three operatody],[
which correspond to impulsiosensitiesaccording to Schrodinger, to the opera@f][
which we think must correspond to the enedgysity What follows will show that this
induction is indeed the one that is suitable in Diraleé&oty (nos8 and18). We remark

() La Relativité restreinteseeespecially, pp. 29.
() Seefor example, L. DE BROGLIH, Electron magnétiquepp. 81.
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here that the difficulties that relate to the atérmiticity of the operatorzi_a4 will
7

vanish in the case of the density operaﬁ%[a“]. Upon taking its conjugate, one sees
that the expression:
ic o= L1y
4r
is indeed pure imaginary)(

In Dirac’s theory, and up to a factmy;, the four density quantities that were just in
qguestion will belong to Tetrode’s asymmetric inertia tenadnich is conservative in the
absence of a field. The other twelve components oftdmsor are “suppressed” by the
quantum hypothesis “of simultaneity.” Moreover, the gimanty () remains the
temporal component of a conservative current quadri-vdbir maintains a certain
relationship with Tetrode’s inertia tensor (Chap. 19, 26).

One last well-known consequence of the general statethahis summarized in
formula (4) is the following one’l: The only values that a measurement that is made at
the instant t can yield for a certain quantity r are the proper valuessabperator R.
First of all, we see the same problem reappear thateceto the probable mean value:
How does one arrange in relativistic wave mechanies tie finite quantity and the
density quantity should have convenient variances, resps&ivhat double problem
will be treated in the following paragraph in the cohEXDirac’s theory.

Another problem that is much more serious, and tleskall only mention, is the
following one: In wave mechanics, the finite quantitgttis effectively provided by a
measurement no longer relatexplicitly to the (statistical) density quantity that
corresponds to it by the intermediary of the volumanmelat du. Indeed, that finite
guantity is a proper value of the opera®iso the corresponding density quantity will be
@ Ry [or rather3{ ¢ Ry + (RY) @3}]. The elementdu then intervenes onliynplicitly
in the definition of the proper values & This fact is completely revolutionary in

comparison to the old mechanics, and its importance nwistobsiderable, since it
touches upon the elementary properties of space (

() The fact that this property is established independefitiyy Hermitian or anti-Hermitian character
of the operatod ' emphasizes the difference between the treatmesgiaafe coordinates and time in wave
mechanics, as well as the inductive character of igumaent.

(®) One refers to the cited passages in Von NEUMANN’s book.

() See the closely-analogous remarks by L. de Broglierah.ASci. Phys. and Naftl5 Geneva 1933,
pp. 479.
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Il. - THE MECHANISM OF GALILEAN FRAME CHANGE ( 1)
AND THE RECONCILIATION OF RELATIVISTIC
AND QUANTUM DEMANDS IN DIRAC’S THEORY.

4. The first way of changing the Galilean frame. Matrix exprssions for the
“first principle” of relativity. — We saythe first principleof relativity, or principle of
the reciprocal partial transformation of space inteetwhen a Galilean frame changes, to
mean the Lorentz-Minkowski transformatici: (

4 . «
(7) vi=ov, Y od =0
i=1

with i, j, k=1, 2, 3, 4, ana* =ict. It results from these laws that the squsfef the
world-lengthof a quadri-vectoK ' will be an invariant. One can consider the formula:

ixZ_CZTZZSZ

u=l

to be another expression of tlav of the equivalence of space and tim&hen one is
dealing with only thdirst principle, the real or pure imaginary character of quantities

such a(, X', and o‘j IS not an issue; for the moment, those quantitielsbeibssumed to
be represented by arbitrary complex numbers.
In an analogous manner, if one neglects the Hernutiamon-Hermitian character of

the Dirac)’, for the moment, then one must seek the restrictveliions that must be
imposed upon the matr&in order for the transformation:

(8) y'=s'y's

to be equivalent to the Minkowskian transformation:
(9) y'=oy, 2add=d"
i=1

One knows that the equivalent transformations (8) &dclaracterize thehange of
Galilean frame in the first manneie., with invariance of the wave functiah Indeed,

it is clear that the expressioRsy will then transform like th&" component of a quadri-
vector, the postulate of invariance of the Dirac equatio

() For the theory of the change of Galilean frame ira®# theory, we refer to Dirac’s fundamental
papers [“The Quantum Theory of the Electron,” Proc. Bnc.117 (1928), § 3, pp. 615], Von Neumann
[‘Einige Bemerkungen zur Diracschen Theorie,” Zeity®248 (1928), pp. 871], and Pauli [“Contributions
Mathématiques a la Théorie de Dirac,” Ann. Inst. H. Paié6 (1936), § 5, pp. 123], as well as the classic
book by L. de BroglielElectron magnétiqugpp. 149.

(® O. COSTA de BEAUREGARD,a Relativité restreintgpp. 10et seq.
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(10) €y —imc)yw=0

demands that thg' must transform according to the law (9), in which tb'jeare the

Minkowski coefficients.
The main point is that, not only equations (10), but d@c’s fundamental
conditions:

(11) sy +yy)=4,

are invariant under the transformation (9). Therefibi@)e agrees to sdyirac’s theory
when one means the set of consequences of equations @Ltheaconditions (11) (for
the moment, we are abstracting from any hypothesis @palsible Hermiticity of the
y') then one will agree to say tHairac’s theory is invariant under a change of Galilean
frame in the first manngwiz. formulas (8) or (9)]. )

It is interesting to show rigorously how the tendatiansformation law of the' ...
results from (9) and (11). (From our general conventiorieérForewordy”... denotes
the product of the matricgg ..., with essentially i j # ...) For the second rank’,
one will have:

®) Y= dd)y =4d)y+> b= .  QED
for anyk and any for arly | 1=1

The same argument applies by recurrence to the magfitesy’ y* andy™ = %)/,
In order to conclude the law (8) from the law (9), omest appeal to the invariance of

(11) and a main theorem whose general direct proof was gw&w Pauli:

If one is given two distinct sets of four squaretrines y' of rank 4, whether
Hermitian or not, that both satisfy the conditiqdd) then there will exist one and only
one square matrix S of rark(that is defined up to a complex factor) that agdnan
inverse S" and is such that one has form8) ().

Conversely, one sees immediately that the transtiym#8) preserves the conditions
(11). The proof of the preceding theorem involves an impbteamma that is quite
useful for us, and whose proof was given already by Pahé: sixteen matriceg” of
Dirac’s theory form a complete systene., any square matrix of rank 4 can be developed
in one and only one manner in the fozgny”, where theea denote complex constant. (

The invariance of conditions (11) under a transformat#nis established by the
following well-known calculation:

Y YY) =509 (Y YY) =0 dd= 3 d =o',

() W. PAULL, op. cit, § lll, pp. 115.
() Op.cit, § Il, pp. 111.
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in which the second equality results from the Dirac ¢ants (11), and the fourth one,
from the Minkowski conditions ). Pauli’'s theorem then shows that there exists one
and only one transformation (8) that is equivalent Jo Ronverselyif, by hypothesis, a

transformation of the typé8) is such that the four transformed' are congruent to the

original four /', i.e., if one has the relations;{9then the preceding calculation will show
thatthe o are the Minkowski coefficientghich satisfy the conditions 9

Indeed, it is reasonabéepriori that in general thg’' that are transforms of the by

way of a law (8) will not be congruent to the initjd| but they can still be developed in
terms of the system of sixtegft. A simple example will convince us that this is, in fact
the case. If one introduces the fopr that are dual to thg™', which are defined as

follows ():

then one will effortlessly verify that they satigfye same conditions as tjé:

1y +yy) =o'
If one considers the transforms:

4 .
y'l=op.  Doid =t
i=1

then the preceding calculation will show that e, like the yi, satisfy the conditions
(11), and consequently, that one can again pass frop tbethe )/’ by a transformation

(8). However, by reason of theompletecharacter of the sixteep”, the present
transformation will be irreducible to the Minkowskinsdormation.

More generally, ify* denotes any of the sixtegnand y’* denotes its homologue in
the systemy” then the matrix expression for the transformatioh &nd (9) will
obviously be:

(8) y'=s'y's

However, an arbitrary transformation of that tyfgeniot a tensorial transformation of the
five matrix tensorg/”, in the sense that theof a given tensorial rank will not remain
congruent to themselves under the transformatioa;matrix | is an exceptigrsince it
obviously always transforms into itself.

Therefore, if one desires that the transformat®nshpould be an equivalence of the
Minkowskian transformation (9) then certain restuetconditions must be imposed upon
the matrixS When combined with (8) or (8 they constitute what one can call the
matrix expression of the first principle of relatyy we now seek those conditions.

A first necessary condition, which is quite cleagsvstated by Von Neumanf) énd
Pauli ¢); we give it a general statement. Conforming to amventions in the Foreword,
we set:

() This definition differs in sign from the one that sfeall adopt later on [eq. (45)].
() Op. cit, pp. 877.
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y=y",

y2=1.

and verify effortlessly that:

If, by hypothesis, we demand that the mafrixshould remain congruent to itself:

y=cy

under a transformation (8) then a simple calculatidhsiwow that the coefficient must
be+ 1:
c2y? =styssys =1, c=+1. Q.E.D.

Therefore, we find that the first necessary conditi® thatS and S* must both
commute or anti-commute wifh. Now, the sixteery” divide into two classes of eight.
On the one hand, the ¥, ¥ commute withy, and on the other, thg' and ' anti-
commute withy. One then effortlessly verifies that either case, the 8§/ S can be
developed in the system of eightand ' . One can say nothing more. Even when one
introduces the numerical relations that exist betwaencoefficients o5* and S from
the fact thatS'S = 1, one will confirm that neither the set pif nor that ofy', can be

eliminated from the result. That e necessary conditiofi2) (although it is already
clearly restrictive, since it reduces the number ofdoamitrices by halfis not, by itself, a

sufficient condition for the’' to be congruent to the'.

However, one can associate the condition (12) withtheen necessary condition (13)
that was discovered by Paul),(such that the set of (12) and (13) collectively comstit
a sufficient condition for the result that we hamemind. In order to establish that new

condition, we remark, with Pauli, that the matrigésthat are th@ranspose®f the yi
will obviously satisfy the conditions (11):

Py +rp) =0

From the fundamental theorem, there will then existatrix B that is defined up to a
complex constant and is such that:

y=B"yB.
Now consider the transformg' of the y' by (8); one will define the matri8’ that
transformsy’’ into ' similarly. Since one obviously has:
B'y'B=SpS" B'S'y SsB= SB'y BS',
(SB)*/(SB = (BS")y(BSY,

() Op. cit, pp. 126, equation (28).
() Op. cit, § IV, pp. 119 and 126.
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one will define the following relation betwedB, B’, and S (a denotes a complex
constant):

[p] BS'=aSB or B=aSBS.

More generally, if one seeks the transforms of tkiean y* underB then one will find,
with no difficulty, that for the five tensorial raslof 0, 1, 2, 3, 4:

[d] Fiz1, 4, -, K,

That being the case, develop thé, which are the transforms of thé by S in the
system of sixteer”, and transform the matrices on the two side8.byrom what was
just said, the transforms of the" on the right-hand side will be thg*, up to sign, and

the sign will be given by the tablg][ One can then write, upon distinguishing the
coefficientscy andcy that relate to the matrices of each sign:

BYY'B= /M -q .

It is clear that in this formula, the necessary anfficient condition for the coefficients
cn to be identically zero is that one must have:

[r] B'y'B=y'=By'B, inwhichB=bB

(b denotes a complex coefficient).(
Finally, approach the resultpy], [r2], and [], we see thahecessary and sufficient

condition for the matrices that are the transforpisof they' by S to be congruent in the
system,l)', ¥ is that one must have:

(13) B=cSBS

in which ¢ denotes a complex constamtd that is the Pauli condition that we stated.
Now takeboth of the conditions (12) and (13); they demand that)’' should be
congruent:

tO yl « y'i «
andtol '« “ y,

respectively, in such a way that ultimately therfgdi must be congruent to the fout,
and consequently, from a previous remark, they bandeduced by a Minkowski
transformation. Conditions (12) and (13), when taken together, therefore indeed
constitute a matrix expression for the first prplei of relativity.

() By reason of the complex character of thethat conclusion will not still be valid if one takeése
y*, which are adjoints, in place of tljé, which are transposes.
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5. The second way of changing the Galilean frame. Necessity offiding a
“buffer matrix” y°. — One knows that Dirac’s theory utilizes tassociatecequations
of the type:

(14) Z(-P'y +imc)=0, (P'y +imJw =0,
with, by definition, the quadri-operators

(15) p=-Tg-%x P =-Tg+%a
- 2m~ C - 2m~ C

For what follows, we further define the two quadri-operators
) i i j h i, €, . i i\ — h
(15) [P]1=3[P'-P] =-—=[0']+=-A, i(P)=3(P' +P) =-—(3"),
R 270 C R 47

in which [0 '] and @ ') are the “anti-symmetric” and “symmetric” different@perators,
respectively, that act on both the right and the &fd that we defined in the Foreword.
From what we said in numbé&; the operatorH] must be regarded as something that
corresponds tanertial mass-impulsdviz., total — electromagnetic) as a density; that
remark will find its application later on [n8, eq. (26)]. Along with several authors, we
consider thassociated wave functiomsth four componentg and to be two matrices,
the first of which has one row and four columns, whike ¢bcond one has four rows and
one column. Under those conditions, equations (14) with be differential matrix
equations.

In Dirac’s theory, one introduces five well-knowntstiical density tensorgp, and
also five density tensorgs, whose definitions we shall introduce systematicatly
Chapter Ill, and that have the types:

(16) oo =Yy ps=[01 Vi,

respectively. From our conventions, the 32 expressib®swill be matrices with one
row and one column; i.e., simple numbers. As farh&stensorial components are
concerned, their variance sy hypothesisthe one that is indicated by the indicgs ...,
of thesignificant matrixy™.

Under achange of Galilean frame in the first manndrey andz are transformed

invariantly, theP' and theP', according to the quadri-vectorial law (7) (which, it wbul
be appropriate to remark, leaves the symtlsand @' invariant), and finally the/*

transform according to the law (9), or — what amountfi¢oseme thing — according to
the law (8), when “restricted” by the conditions (12) and (13). Eaqunsti(14) and the
definitions (16) will then become:

¢(-P's'y +imcst)=o, (P'sy+imegu=o,
=SV y P= 101 (S 9.
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As is well-known, one immediately deduces the laws olhange of Galilean frame in
the second manndrom these; i.e.with an invariant transformation of the sixtegn.
Indeed, the preceding formulas can be written:

ZS’l(—Piyi+irrac)=O, (Eiyi+im)c)$l/=0,
P, ={SHY") sy pL= ¢ SN0 ¥*) Sy

The desired transformations laws thand ¢ are then:

(17) {'=¢s?, Y=y

The essential remark is than, principle, the transformations lawél7) forbid us to
consider the matriceg and ¢ to be adjoint There might be an exception when the
matrix of the transformatio® can be taken to be unitary, but we shall confimthe
following number that this is simply not possibl&low, according to the tradition that
originated in Schrodinger’s theory, Dirac’s thegoyoposes to write the statistical
densities- oo , for example — in the form:

wryPy or  {yRC*.

The matrix ' which is different fromy”®, no longer directly exhibits the tensorial
variance of theo. However, if we select the first of the two forasove, for example,
then it will be certain that the matricésand ¢/* can be deduced from each other by a
square matriy°; by convention), we set:

(18) ye=iy’y” and =y =iy,

It is important for what follows to establish ttavs of transformation of thieuffer
matrix y° that we just introduced. Underchange of Galilean frame in the first manner
¢, and thereforey ™ andZ= ¢ ™ will be transformed invariantly, so the same thivitj be
true for y°. In the second mannery* and ¢ will be transformed according to the
different laws:

(17’) wlx — wXS—l’ w/+ — w+S_l,
so the following transformation law for° will result:

(19) y°=6Y(sY,

() The factori is introduced arbitrarily in order to simplify the exysiess for the importanturrent-
density of presencquadri-vectory *y (. Our notations are the ones that are generally eddptthe
course of the survey article by W. Pauli [*Allgemeinein#pien der Wellenmechanik, Relativistischen
Theorien,” Handb. d. Phys. XXBM1933), pp. 220]. The principle of these notations is di#.tGordon
[“Der Strom in der Diracschen Elektronentheorie,” ZBiys.50 (1928), pp. 620, egs. (3) and (4).]
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which is completely different from the one thatrisetin the first mannefor the y* [eq.

8)1.

6. Lack of relativistic symmetry in the Dirac equations with respect to the
second principle. Special role of the matrix/*. — The essential novelty in relativity is
comprised of the law (7) for the change of Galilean &awhich is a law that expresses
an equivalencebetween space and time in the sense that was discu$kat being the
case, it is obviously paramount to formulate the priesipghat distinguish time from
space, which are principles that are remarkable forfdbe that they are ultimately
expressed by inequalities, and notably imply the emergdraeamque time direction.

The classical formulation of theecond principleof relativity is naturally performed
in two stages']. One can state thgecond principle in its broad forin the following
manner:Any objective event is represented by three real space coordixiadesl one

pure imaginary time coordinate® x It follows thatthe coefficientso‘j of a change of

objective Galilean frame will be real if they contain the indezero or two times, and
pure imaginary if they contain it onceOne consequence of the last statement and the
Minkowskian conditions (3 is the inequality:

(20) (07)? = 1.
Recall the existence of two inequalities that are edeit to the preceding one:
V< ds’ < 0;

v denotes the relative velocity of the spatial origirthe two objective Galilean frames,
and ds denotes the element of length of the temporal axisrofarbitrary objective
Galilean frame.

An important consequence of the inequality 29that thesquareS?® of the length of

a world-quadri-vector will have the same sign in all objective Gatilérames which
will give an objectivesignificance to the classification of quadri-vectors itime-like

and space-likeaccording to the sign of thef®. In itsbroad form thesecond principle

thus already succeeds in making a strong, clear distimbgtween space and time.
The inequality (20 can then be written:

(20) 0, <-1 or +1<0;.

The narrow formof thesecond principlas then obtained by postulating, along with the
conditions that were pointed out previously, thhe transformations that remain

() O. COSTA DE BEAUREGARDL a Relativité restreintepp. 15et seq. The “second principle of
relativity” is, in reality, only one part of what whil be a truesecond principldor time. Relativity does not
oblige time to elapse any more than classical physicguantum physics); it limits itself to asserting that
time elapses, and starting from that, it shows thelajtses in the same sense for all objective observers.
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permissibleunder (20) or (20) must form a continuous group that notably contains the
identity transformationlike the initial (7) It is then obvious that the inequality (20
must be discarded, and one effortlessly verifies tlatrtéquality (20) can be preserved.
Under these conditions, the properties of a time-likedgueector are found to be
specified in the following formThe sign of the fourth component of a time-like quadri-
vector will be the same in all objective Galilean framé&Sonverselyif one knows a
certain quadri-vector whose temporal component possesses a wellddgfineghen one
can assert that:

1. The second principal of relativity is satisfied in the narrow form
2. The quadri-vector considered is time-like.

Since the temporal axes of objective Galilean framesakriéme-like, by virtue of the
inequality (20), one can say that the more restrictive inequaf)(implies thatthe
sense in which time elapses will be the same in all objectiiie@alframes. One can
pass from the case that was predicted by the inequa@y to the one that is predicted
by the rejected inequality (20by means of a reversal of the time axis.

Having recalled these preliminaries, a main point for wbldws is that, despite
how they first appearthe Dirac equationg14) do not have relativistic symmetry that
corresponds to the “second principle.tn that regard, and up to certain difficulties that
were mentioned before, we saw in Bdhat thetotal mass-impulsquadri-operator:

_ L_ai
27

can be considered to have relativistic symmetry, siredirst three components are
Hermitian, and the fourth one behaves in the wave equa®iist were anti-Hermitian.
Moreover, theslectromagnetic mass-impulgaadri-vector:

~EAx
c

possesses relativistic symmetry, since the tiiteare real, and\* is pure imaginary.
Finally, except for certain difficulties, the operatd?s and P' that are defined by (15)
must be considered to possess relativistic symmetryeo$econd principle. Moreover,
the difficulties in question disappear completely fornboperators'] and @) that are
defined by (19, which are operators that will be quite useful in wisditows. Those
operators possess relativistic symmetry of the second principle.

On the contrarythe set of four matriceg' does not possess relativistic symmetry of
the second principleln order for that to be true, it is necessary thatthreey" can be
chosen to be Hermitian and, to be anti-Hermitian. Now, that is excluded by thea
conditions (11): A Hermitian matrix can indeed haveqgaare ofl, but not an anti-
Hermitian matrix.

Is it possible to modify Dirac’s theory in such a vesyto give relativistic symmetry
to the set of/' by replacing the conditions (11) with the analogous ¢am:
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Ly Yy Yy =6"2

First of all, contrary to (11), and taking into accour telativistic symmetry of the’

with respect to the second principle, these conditioils ne@t be invariant under a
Minkowski transformation. Moreover, the conditioc@nsidered will not permit one to
recover the Gordon equation as a consequence of they timletitre absence of a field.
Indeed, instead of multiplying the Dirac equation ,jldn the left by the operator

(yi Ei —-im, c) (), one must multiply it by one or the other of the ragpers:

(yi*E”—im)c) or (yi*Ei—im)c).

The first of them is not suitable to provide the squama:ter
) 3
Pi+P+|: ZF)UZ_B]_Z,
=1

instead of the®; P ' that should be found; the second one is not suitabfgavide the
term:

irnoC(MPi— yi+P+i),
which is no longer cancelled.

Finally, the relativistic symmetry of th¢r with respect to the second principle
(Hermiticity of the* and anti-Hermiticityy*) and the relativistic symmetry of the same
operators with respect to the first principle thagxpressed by the conditions (11) will be
conserved separately by a Minkowski transformation (@)t they are mutually
incompatible. If one would like to give a name to the particulgress that the conflict in
relativity and quanta is characterized by here then arst aall itthe conflict of the two i
symbolsthat are germane to each theory. Among its otherecoiences, that conflict
implies that the two operator(syilfi +imoc) and (yilfi —im)c), whose product is the
Gordon operator, are not adjoint operators. Since @&bsolutely necessary that the
Gordon equation should be a consequence of Dirac’s theaygonclude thait is
impossible to arrange in some way that the set whdmatrices ' possesses the
relativistic symmetry of second principle withoesttoying the very fundamentals of that
theory.

In order to measure the importance of the problenrésatts from that statement, we
make some further remarks. It is obvious that the negeasd sufficient condition for
the expressiong/*y®y to be real or pure imaginary is that the matrfk should be
Hermitian or anti-Hermitian, resp. Now, if the foul, and consequently the table of
sixteeny”, possesses the relativistic symmetry of the secomtipl, then by setting
simply:

() P.A. M. DIRAC, “The Quantum Theory of the EleatrdProc. Roy. Soc117(1928), pp. 613; or L.
DE BROGLIE, L’ Electron magnétiquepp. 137, eq. (15).



20 Chapter | — On the relationship of relativity and quamfairac’s theory.

the statistical densitiesr and ps will be assured to have relativistic symmetry, in the
sense that the of the same rank will be real or pure imaginary adiogy to the absence

or presence of the index 4 jit, resp. Since that property is obviously preserved under a
change of Galilean frame in the first manner, it nailst be preserved under a change of
Galilean frame in the second manner. The matrix ofrdnesformation (8) must then be
unitary, in such a way that one will always have:

stl=g" ye=y’=I1, ywr=y".

In fact, we just saw that all of this effortless rhany is only an illusion that must
then be rejected. If the foyt cannot be chosen to be three Hermitian ones andmtire
Hermitian one the Dirac has shown that all fourhefnh can be taken to be Hermitidh (
which is a very paradoxical situation from the relatigistiandpoint, and in it we will see
the first manifestation of the very asymmetric speéd that the matrix plays in Dirac’s
theory f).

It is obvious (and well-known) that when one takes atcount the symmetry of the

Oij with respect to the second principlee Hermiticity condition of the four' will not

be preserved under a change of Galilean frame of the first eqd(9)], and it will
follow from this thatthe transformation matrix S cannot be unitgeg. (8)]. On the
contrary,that same condition will be invariant under a change of Galilean frame of the
second mannersince they' (and consequently, all of thegnificant matricesy”) will

then be transformed invariantly. Moreover, if thefer matrixy® has itself been chosen

to be Hermitian then formula (19) will show thiis condition is conserved under a
change of Galilean frame in the second manneiis by appealing to these remarks that
we shall now establish the matrix expression ofsneond principleof relativity, which

is an expression that clearly exhibits the asymmepecial role of the matriy”.

7. Matrix expression for the second principle of relatiy. — Lemma. —If the
four matricesy’, as well as the buffer matrpC, are chosen to be Hermitian, as in Dirac
(which is a condition for it to be invariant under aiege of Galilean frame in the second
manner)thenthe necessary and sufficient condition for the statistical dengitiesnjoy
relativistic symmetry of the second principle is that one must have

*) Op. cit, pp. 614.

() The Hermiticity of the four/ that Dirac postulated does not seem to be an essdatizr of the
theory, moreover, and one can probably remove it atekpense of a certain complication in the
calculations and formulas. For example, one knowstligatact that the values1, orz+ i, are the proper
values of the/” does not result from any possible Hermiticity of $hat all, but only from the conditions
(11). Indeed, since the, for example, have squares equdl, b g denotes any of their proper values, and
f denotes a corresponding proper function then one mwst ha

yf=df, y2f=g yf=d*f, g° = +1, Q.E.D.

[G. PETIAU, “Sur les fonctions propres des opérateorsldmentales de la Théorie de I'Electron de
Dirac,” Acad. Roy. de Belgique, Cl. des S4.(1938), pp. 488.
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(21) yo=(@l+ib ) v,

in which a and b denote two real numbers that are not simultaneously zero.

Indeed, with the premises that were posed, the necemsdrsufficient condition for
the desired result to be true is thdtmust commute or anti-commute with the significant
y* of the same rank according to the absence or presétite index 4, resp. If one then
developsy?® in the system of sixteep’ then the matricek y*, y**, and " will be
eliminated since they commute or anti-commute Witth y* and at least one of the',
and they" and ™" will be eliminated since they anti-commute with boté gti* and ",
for example. Only the matricgg' and """ = - y* are not eliminated by criteria of that

kind, and one thus has the statement)(2Conversely, it is obvious that the statement
(21) is a sufficient condition for the desired results for the coefficientss andb, since

y° and y* are Hermitian, by hypothesis, apd anti-commutes witty = y*#** which is
Hermitian, they will necessarily be real; moreovrgy are not simultaneously zero,
because all of the densitipsvould be zero then.

The two terms in (2) are not actually distinct, becaugg” is nothing buty”, up to
sign, in such a way that theof a given rank are expressed as sums of componettits of
two tensorso™ and 0@ that are dual to each other. Under these conditibissclear
that we can assign the coefficiemtsandb arbitrarily in a well-defined Galilean frame
that one calls “initial.” We shall do that by taking:

(22) ao =1, bo = 0,

in such a manner as to recover the formula, whichderbeng classical:

(21) y=y
in that initial frame.

It is well-known that the double presence of jHein the p that are defined by (16)
and (18), which result from the equality (21), when combinigd the fundamental Dirac
conditions (10), will reconcile the Hermiticity ofeétfour ' with the symmetry of th@
with respect to the second principle, and even, more gaigcithat it will uphold the
second condition by means of the first one. One cpithsd the asymmetric role of the
matrix y* is, from the relativistic viewpoint, “compensated” by tbé&the buffer matrix
y°, and one will see quite well that the mechanism aff tompensation is closely linked
with the formulation of theecond principlen Dirac’s theory.

In order to establish theatrix expression for the second principlee remark that
the result (29 is valid in every Galilean frame that satisfies fegond principle in its
broad form, since, on the one hand, its premises asegped for any change of Galilean
frame in the second manner, and on the other handstttistical densities enjoy
symmetry of the second principle, by hypothesis. We #wak to find out what the
coefficientsa andb will become in a new frame when it is intended that theye been
defined “initially” according to (2.

If b° were chosen to be zero initially then all of the porents of the previously-
defined tensop ® would be zero, in such a way that of the transformed b would be
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zero. Moreover,no transformed a can be zemince all of the components of the tensor
o= pY would be annulled at once then. Since, as we recilreal we must consider
thetwo cases that are possible a priori:

(22) a<o, a>o0,

which are cases that are completely distinct, somee cannot pass from one to the other
by continuity, as the valug= 0 has been excluded.

| shall now say that upon disposing of the arbitramnystant that appears in the matrix
S one can arrange that it should make- 1 in the case cdd < 0, anda = + 1 in the case

of a> 0. For that to be true, it is sufficient to repl&&e with \/ES'l in (19), and
consequently, in the first case, one repla&@’(with —\/a(S?)*, and in the second

case, §%)" with +,/a(S™)*. Under these conditions, the expression for theilpless
cases will become:
(22) a= —1, a= +1’

in such a way that when one takes into accounctmention (29, the transformed
expression for thbuffer matrixcan only be:

Voziyoziy4-

From the argument that we just presented, thatnecgssary condition for the second
principle in its broad form to be respected; cose8r, that condition is obviously
sufficient. Finally, if we refer to the transfortimn law (19) ofy® then we will find that
the matrix expression for the second principle in tsdd form is:

(23) Yy’ =2Sy’S

this is a restrictive condition that is imposed mbe transformation matri® in which
the asymmetric special role of the matyik= y° appears clearly.

As for the expression of the second principlesmarrow form, in order to find it, it
suffices to remark that:

1. One obviously has= 1 for the identity transformation, and
2. ais certainly a continuous function of the MinkoWsi‘Jc

It is clear that under these conditicdhg two conditiong22) will correspond bijectively
with the two classical conditiorf20). Consequently, in the set of conditions:

(23) y°=-S)y°’s Yy =S'y’S
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the second of these will correspond to th&tions of a world-tetrad, and the first of
them to theeflections. It is Von Neumann who gets the credit for the discyg of the
important condition (23 () in an equivalent form. We think that it is inteiegtto
accentuate the fact that this condition is nothingthetmatrix expression for the second
principle in its narrow form.

Finally, the validity of the second principle in its narrow form will imghe
invariance of the definitiof21) of the buffer matrix for the changes of Galilean frame in
the second mannerThe proof of that result that we gave, which was yamadoxical on
first glance, rests upon a later analysis ofekistence theorerfor the matrixS of the
transformation. It is instructive to recover the wense of that result in the following
manner: If, by hypothesis, the definition (21) is invariander changes of Galilean
frame in the second manner then the temporal compasfetite current-density of
presence quadri-vector can be written:

(24) Y=y Vy=i(wy,

where the last expression is invariant. Now, the phesis is thgositive-definitive form
that Dirac imposed in order to recover an expressayntlie probability density of
presence. Thereforby means of the hypothegidl), the sign of the fourth component of
the Dirac current must be the same in all Galilean frames thateanbraced by the
theory. Thatis:

1. The second principle is respected in its narrow form.
2. The Dirac quadri-current is time-like.

8. On the calculation of finite quantities in Dirac’s theoy. — We now show that
is once more the asymmetric, special role of the maftithat permits Dirac’s theory to
reconcile the general principles of wave mechanics with the rislii¢ivdemands of the
statistical densities.Here, as one sees, the presence of the métmas a “buffer” serves
to compensate for the relativistic asymmetry that issed by the integration “at constant
time” of wave mechanics.

From the general principles of wave mechanics, thegtlebmean valua of the
guantity that is represented by a certain operaisr

@9 a = [, v,

in which the integral is taken over a world-hypersurfaceoastant time. In relativistic
wave mechanics, two variances of 4 are concealectinght-hand side of that formula.
The first one comes from the fact th@t = ic du* is the fourth component of the quadri-
vectoric U, and is dual to the trilinear expressiaiX [dx’ d¥{ (?) and the second one is
that, from the preceding, one will haye" =-i ¢*y*. Itis, moreover, clear théarmula
(25) contains avirtual summation over an index that takes only the vdlbere, from the

() “Einige Bemerkungen zur Diracschen Theorie,” pp. 878.
(®) These notations are the ones that we used iRelativité restreinte.
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fact that one is integrating at constant tim@s a corollary, one sees thiae symbolic
variance of the operator A that is the quantum representative of arcém#e quantity
will necessarily be the same as that of the tensor that correspomtisssical relativity.
That remark will be useful to us in what follows.

We first apply these considerations to two importamstngdes. From Schrodinger
theory, we know thabperator of presence the operator 1. The general formula (25)
will then give the expression (24above for the statistical density of presence, wkdch
an expression that will appear like the fourth compomérda quadri-vector when one
takes into account thavariant definition (21) of thebuffer matrix.

Along the same lines, we know that the quadri-vector:

h

15 Pi=-
[15] Arii

[0+ A
C

(which is an operator that is endowed with relativistimmetry of the second principle)
corresponds to thproper or kinetic energy-impulsef the electron as a density. From
the general quantum principle (25), the four statisticatiies that will appear under an
integration at constant time are:

—% w0 y+ie Ay y=
/i

ich
4T

w1 yiu+ie Ay  yiy.

One recognizes the four componefits of Tetrode’sinertia tensorin this, namely

(26) T =Nya 1y Ay,

4

whose second term involves Diraclsarge-current density:

(24) j“=-eyy'y.
The formula:

=i — 1 i4 — i4
@7 o= 2{Jjrou = [[]Tou.

which is imposed by the quantum principle (25), is the trnaata@xpression for the
relativistic formula {):

(27) p= HjT“duj

that corresponds to an integratiah constant time. It is important to remark that
guantum principles impose the summation over thergkindex of T in formula (27).
Now, it is in precisely this manner that:

() La Relativité restreintepp. 50.
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1. The significant index of the first term that is yided byT " (viz., the total mass-
impulse) is the index of the differential operatdf][(and not that of the matrix operator
¥, and

2. If A denotes the mean value of the quadri-potential on the hyfaarsuof
integration then the second term that is provided byviz., theelectromagnetianass-
impulse) will rejoin the following classical expressigh

ks _ €
(27) —mAJauk_EA.

In summary, one sees that:

1. Itis precisely the special intervention of thetnimay* that permits Dirac’s theory
to reconcile the quadri-vectorial variance of the magsils® operator(15 ) with the

variance of the second-rank tensor that is Tetrodeidia density tensor (26).

2. The expression for the inertia tensor density tlmatforms to the general
principles of wave mechanics is Tetrodas/mmetriexpression ' , and not Pauli's
symmetrized expressid® =1 (T' +T") (3).

3. In the calculation of the probable mean mass-isguhe “virtual” dummy index
that is imposed by the general principles of wave mechimite index of the matriy/,
and the significant index is then the index that ismom to the operatord [] andA'.

In the preceding two examples, the variance and physgnaificance of the operator
was knowna priori, and we deduced the definition of the corresponding detesisor
by the intermediary of the general rule (25). We shaW apply the same rule in the
opposite sense, in such a manner as to slightly sharpsnvwehsaid in general about the
classification and physical interpretation of thetes2n matriceg”” upon starting with the
known interpretation of the five density tensgrSy . First of all, a series of important
remarks must be made.

All of those remarks proceed from the following onen@ary to what happens in
pre-relativistic physicsthere are several integral tensors (i.e., finiteiders) that are
associated with the same tensor density in rekttoziphysics. Under these conditions,
the brute-force application of the quantum formula (25altoof the components of a
given tensor density will generally provide componenss belong to not just one, but in
fact several, distinct finite tensorsMoreover, each of those tensors is “realized” by
formula (25) only in a “truncated” manner,” since someitef components will be
“suppressed” by the integration at constant tide € 0 foru= 1, 2, 3). It follows from
this thatin order to apply the quantum formua5) wisely, one must be in possession of
a relativistic theory of the quantity under study.

() Op. cit, pp. 47 and 62.

() “Der Impuls-Energiesatz in der Diracschen Quantenibgdteit. Phys49 (1928), pp. 858.

() “Die allgemeinen Prinzipien der Wellenmechanik, B : Reistischen Theorie,” Handb. d. Phys.
XXIV 3, 1933, pp. 235.
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An example might make what we just said more comprefblensiThe four finite
guantities that one obtains upon applying formula (25) toctmaponents of Dirac’s
charge-current density® = — e ¢/*y* do not constitute a geometric entity. On the
contrary, the invariarfinite electric chargas provided solely by the fourth integral:

— HES — — 1 +4 —_ 4
[a] Q Hjj au, qudu (q iCj ,O0u=icou j
in which the three termis’ du, are “suppressed” by the integration at constang ftn
The other three integrals have no relationshifhéoetectric charge.

However, from pre-relativistic physics, we knovatlthese three integrals represent
the finite electric current. In relativity, we must then seek to define a dantegral
tensor whose three components will give back tlassotal pre-relativistic expressions
for an integration at constant time. The simptfinition of thefinite electric world-
currentwill obviously be:

0] 5rkI:jdeI_jldJk,

in which the threedT" represent the current, properly speaking, whit ttireed ™"
will be “suppressed” by a constant-time integration

We shall pursue that analysis for the other femsorsy *y*y. As far as the spin
density ¢ is concerned, in Chapter Il, we shall show that fimite spin must be
calculated by a formula that is analogousdo [

[c] 0B =gk al — o' ak

from which, it will result that under constant-tinmtegration, the threee B* will be
equal toﬂja“cfu (i.e., spin, properly speaking), while the thEEé will be zero. From

the relativistic viewpoint, it is therefore not pige to consider the quantity:
[d] X:jﬂa“cfu:icﬂja“cM

to be the fourth component of a finite spin, as @neccasionally tempted to do. What
one must say is thad] is the truncated expression for an invariant vehpysical
interpretation is not better known, and which ishe densityak what the electric charge
is to the density*

An interesting question is that of the finite mago momentM and electric moment
£. The simplest relativistic definitions that orenaive for those quantities af: (

() La Relativité restreintepp. 44.
() O. COSTA DE BEAUREGARD, “Sur deux questions de RelajViC. R. Acad. Sci213 (1941),
pp. 822. Another system of equivalent definitions is obWous

[€] aM' = 2 my [dX dX ¥, & =1 m, [dX df dx].
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[€Y] oM = ml &l=may,

in which m’ denotes the antisymmetric tensor of the proper magnettriel moment

density, andm' is its dual. Among these formulas, the finite motaeme defined to be
two quadri-vectors that are orthogonal to the quadrierecl. Their temporal

components will then be “suppressed” by a constant-tntegiation. As for the other
three components, they will then take on (up to a fastac) the classical truncated
form:

[€] MY =m" du, EV=mta.
To conclude, we shall study two density invariants. rEfetion (62 B I) of Chapter
Il equates (up to a factor) the invariam?) = ¢/ ¢ and the trace of Tetrode’s inertial

tensor, which permits one to interpret it as pheper mass densityf the statistical fluid
(seeChapter IlI, 8 1). The quadri-vector:

[f] By = [[[ (@) ou' = [[[ T/ au,

which is collinear with the quadri-vectdd' (and therefore has its three componepits

“suppressed” by a constant-time integration), igsptally homogeneous to the mass-
impulse quadri-vector:
=J]f o,

but is obviously distinct from it; for that reasame say that the integral:
][ (@au

represents thproper pseudo-mass the electron, up to a factor.
In an analogous manner, one defines a quadritveategral, whose physical
interpretation is still unknown, of the invariamb?):

[q] Y =[[] (@f)ou',

Contrary to what we said in the cited Note, it isreymssible to define\ and £ to be completely-

antisymmetric tensors of rank 3 whose duals will enjbpfahe properties that were indicated in the text,
by means of the formulas:

[€]] M* =3 auk Ex=y m" ak
(€Y oM™ =¥ m' [dX dX dx], M* =3 m' [dX d¥ d¥],
in which the various sign¥ are intended to meaover all circular permutations of i, j, k.The same

considerations are obviously valid for the electromégndield, which is homogenous to an
electromagnetic moment density; they will find an aggilon in L. de Broglie’'s Theory of the Photon.
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whose three componenits' are “suppressed” by a constant-time integration.

Endowed with these results, we are now in a positioredtablish the stated
interpretation table for the sixtegn. From a remark that was made in the context of the
general quantum formula (25), we know that the set ofatpes that represent the same
finite quantity can have the sansymbolic variance as the corresponding tensor of
classical relativity. We then suppose that we have leaémlithe components of a certain
classical finite tensor that is attached to a tedsosity with a known interpretatidyy a
constant-time integration.Certain components can then be zero (viz.,sUygressed
components in which case, the rule (25) will givero for the corresponding symbolic
operator component. The other components involve onlytenne in their expression
(truncated expressionand after transforming/ ™ into ¢* according tay™ =iy *y*, the
rule (25) will provide the corresponding non-zero operatenponents.

For these non-zero components, and when one is deatimghe five tensor densities
of the typey *y*, the desired operatgf® will be then given by the formula:

yB — I y4yA’
whose systematic application will lead to the follogviable:

Symbolic variance of the operat|
that is imposed by relativity

Invariant Electric charge

—
|

Quadri-vector Proper electric mome/| Proper pseudo-ma
v y? v

Antisymmetric tensor of rank 2.{. Proper kinetic moment (spi| Finite electric currer
ylz y23y31 y14 y24y34

Pseudo-quadri-vector.............|. Unknown quantityy* | Finite electric currer
y123 y14 y24y34

Pseudo-invariant Unknown quantityX
y1234

Thereforefrom the standpoint of physical interpretation, lead the five matrix tensors
Ly, ¥, ™, ™ will split into two matrix tensors of the same raakd we shall say, by
convention, that one of them tgne-like and the other one ispace-like In order to
exhibit these twanmatrix tensorccompletely, it will suffice to establish tlzerooperators
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that were previously predicted. For example, the quadtbwqx‘: of the second row will
generate the two quadri-operators:

Proper electric mome| Proper pseudo-ma .

Vo 000y

In order to facilitate the comparison with thessigal table that was constructed by L.
de Broglie t), we give the transcription of these results imeof thea matrices. If the
physical coefficients are systematically negledtenh the table will be as follows:

Electric charge
Proper electric moment : at o
Finite electric current 0 0

Proper magnetic moment......l. & &%

Proper pseudo-mass . 0

Proper kinetic moment (spin).}.a?® &' a*?
Unknown quantityy. 0 0
Unknown quantityX

Obviously, nothing will change in thehysical interpretation of the sixteea . The
difference that this yields is that here thare grouped as if they were the components of
a finite tensor of classical relativity, whereas in the lodoy L. de Broglie, they are
grouped as if they were the components of the testeasityy * a.

() L’Electron magnétiquepp. 225-226.



CHAPTER Il

SPECIAL RELATIVISTIC THEORY
OF CONTINUOUS MEDIA THAT ARE ENDOWED
WITH A PROPER KINETIC MOMENT DENSITY.

9. The present chapter contains the latest state dudy ©f the dynamics of
continuous media that are endowed with a proper kinetiment orspin (%) that we
began to develop some time adgd (Our initial project, which was quite modest, was
simply to show that the properties of spin in Dirad®dry conform to relativistic
demands, and that one can deduce them from general pasthEt®ne will encounter
in most relativistic questions. For example, thatow lwe have justifie@d posteriorithe
representation of spin density by a space-like pseudo-guectdr o' and established the
known formula:

by a purely-relativistic argument.

Since then, our theory has continued to develapiven by its internal potential, so
to speak. The new results that are obtained are flmuodnform to some consequences
of Dirac’s theory that are not explicit (or at leassufficiently explicit), and to whose
development and interpretation they can then contribut@articular, we have indicated
that the inertia tensof  of a medium that is endowed with spin is not symmetnici
gave an interpretation to the relation:

TI-T =-ic[0'c' -0 '0]]

that is satisfied by the asymmetric ten$drthat was originally defined by Tetrod® in
Dirac’s theory. That remark, combined with some otlersaerations that we shall
present in the following chapters, leads us to concludethigatrue inertia tensor in
Dirac’s theory(and in the theory of spinning particles that are obthimefusion)is not
Pauli’'s symmetrized tensor with four terms, butfact, Tetrode’s asymmetric tensor with
two terms.

In a general manner, one will see that the accoravdset our pre-quantum,
relativistic dynamics of media that are endowed witim sgnd Dirac’s theory (or, more
generally, with the theory of spinning particles) is pesfect as one can hope for.

() Although, in principle, the terrspin is reserved for thguantumrepresentation of finite proper
kinetic moment, here, we shall use it like a simpleosym in order to abbreviate the discussion of the
notion of proper kinetic moment, whether finite or dgnsi

(® O. COSTA DE BEAUREGARD, C. R. Acad. S211 (1940), pp. 228 and 499, and Jour. de Math.
21, fasc. 3 (1942), pp. 267. We now regard the “pessimistictlasions of the latter work to be
unjustified, as sub-paragraphs 8 and 9, which now follomo71@, below), will show.

() That relation was given in an equivalent form by d@#; and by several other authors since then.
However, its true significance in the absence of anyadhyos of media that are endowed with spin seems
to have escaped them.
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Unfortunately, the same thing is not true for the kinéseaiat we shall give, in turn,
which nevertheless seems to be satisfactory in itsr@i. For example, we think that,
by analogy with the classical relativistic case, tegmametric inertia tensof " must be
the general product of two non-collinear quadri-vectors, @he/hich represents the
“true” world-current, and the other of which representfatsé” current. Now, although,
as one knows, Dirac’s theory introduces two current quedtiers:

vy and  ¢[0'] w—2AcA Yy,

one can show, with the aid of some quadratic identifié®énk that we shall discuss in
Chapter IV, that the Tetrode tensor:

W [0 Yy—2AcA Yy

is not homothetic to the general product of those twoeats. It is nonetheless
remarkable that its expression “resembles” the produquéstion, and we shall see in
Chapter IV that one can appeal to that “resemblance”rderoto infer some valid
conclusions. The kinematics that we shall propdd&wegh it is insufficient to lead back
to Dirac’s theory, can then be considered to besa éipproximation of what that would
constitute.

Among the various notions that enter into the dynaramd kinematics that we shall
present, the ones that figure notably are that ofags-impulse that is oblique to the
world-trajectory of a material point that is endowed with spimd correspondingly that
of a transverse mass-impulse These notations have been encountered already by
numerous authors that have treated relativitybut it seems to us that it still remains for
them to be integrated into the bosom of a coherentyhe

|. - DYNAMICS OF MEDIA THAT ARE ENDOWED WITH SPIN.

10. The fundamental remark is théie origin of a proper kinetic moment density
will not be found in the inertial forces of traditional dynamid¢sdeed, isolate a spherical
droplet of radiug in a material medium of densigyand animate it with a velocity.

The moment of inertia of that droplet will b£8&5 mpr®, and its angular velocity will be

s rotv, so its kinetic moment will be an infinitesimalfifth order inr, which is an order

that is too high by two units in order for one to be abldefine a corresponding density.
That is, in order to establish the dynamics of melaga &re endowed with spin, we shall
be forced to proceed axiomatically by imposing the tensoukds of variance and
homogeneity, and we shall appeal to some reasonablegiesttiiat are suggested by the
classical theories of relativity.

The point of departure of all our theory will be thfs:finite kinetic moment is
represented by the three components & an antisymmetric second-rank tensdr. C
That fundamental fact will result unambiguously from tdwnsideration of a material

() Von LAUE, Relativité(trad. G. Létang). t. |, pp. 126 and 255; PROCTHKesis pp. 145.
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point with world-coordinateg’ and mass-impulsp. Indeed, from classical dynamics,
the kinetic moment at the origiof that material point is represented by the three
component< " of the antisymmetric tensor:

(31) Ci=xpl—xp.

We seek the significance of the three compon@r&f‘sof that tensor. If one replaces
x* and thep' with their valuesct andp“ = mv", p* = icm (m denotes the relativistic mass
of the point, and" is its ordinary velocity), respectively, then one gilit:

(31) C*“=icm(x" = v'1).

Therefore the thre€ “* are nothing but the components of tieneralized barycentric
momen(?); here, we denote the dual of the terGdrbyic BX

Having established our point of departure as we jUSt saicshatkk proceed to the
axiomatic establishment of the dynamics of continuoeslianthat are endowed with a
proper kinetic moment density; the successive postulates that we will be led to
formulate will, in turn, be denoted by Roman capials, ...

11.-

1. If the quantityo exists(existence postulatd) then it will be represented by a
tensor.

Indeed, by the definition itself of a density, a cerf@oduct ofo with the world-volume
element tensordX dx¥ dxX] must yield a kinetic moment, which is represented by a
tensor.

2. The fact that the finite kinetic moment has rahkmplies that the rank of the
corresponding densitgis 1 or 3.

Indeed, lenh be the unknown rank of the tensgrlet m be the number of dummy indices
in the tensor product af by [dX dX dX], and lets= n — mbe the number of significant
indices ofa. One has the two homogeneity relations:

2=(3-m)+s or m=1 +s,
n=m+s SO n=1+%.

Since the integens, m, ands must be positive or zero, one can write the inegaaliti

() When the material point is considered simultaneowily the origin of the momen€’, the three
%C”“ will represent the usual barycentric moment;tftnat is infinitely small { = dt), the additive term

will be interpreted as eorrection for non-simultaneity.
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s<msn,

and since the same integers must be equal to at most dnishadmissible hypotheses
will ultimately be:

s=0, whichgives m=1 and| n= 1,
s=1, " m=2 and| n= 3

The hypothesis = 2 is not appropriate, since it will give= 5.

Finally, as we have asserted, the ran&f o is necessarily 1 or 3. Moreover, the
preceding argument fixes the numhbar of dummy indices under each of the two
hypothesess = 0, s = 1, which are hypotheses that we denote Hy [and [H2],
respectively.

[H]

3. It remains for us to now address the antisymmetry psopgthe finite tenso€,
which is a property that must necessarily be satisfied.

Up to an unimportant factor, the “natural” way to wthe hypothesisH1] is:
[Ha] XH=gdX d¥dX] .

One sees that this notation will “automatically” insuhe antisymmetry of the finite
tensorC ¥,
On the contrary, the “brute-force” writing of the hypesis Hy]:

[H:] Bli=1gy[ddd¥dX] or  B'=10"[d¥ dX dX]

will not “automatically” insure the antisymmetry of thimite tensordB " (). That
antisymmetry will be insured only by means of a particalice of trilinear integration
element, which is inadmissible. If we desire thathipothesisn = 3 might be suitable
then it will be necessary to satisfy the postul&gf¢r an arbitrary trilinear integration
element.

Here, postulate ] will oblige us to replace the expressiofsl,] with their

antisymmetric combination:
[H2] B =1{g'y[d¥ dX dX] - g [dX dX dX]}.
The factor 1/2 was introduced for a reason that will becapparent in a moment.

4. The hypothesid] presents another remarkable property that does not dgnera
pertain to Hz). When one integrates constant time- i.e., when the threai' dx’ dx]

() In what follows, we will show that the tensd€s’ andic B’, which are defined byH;] and Hj],
respectively, are in fact duals of each other.
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are zero (which is a hypothesis that is called “siangity”) — the expressionHs] will
reduce to:

[H,] X"= g i, X =0.

A denotes the “pure volume” elemenix] dx’ dx"]. Therefore, with the notationsi]],
the three components of the proper barycentric momdght be zero under the
simultaneity hypothesis, and the three components efptbper kinetic moment will
each be linked to their densitigg by the well-known pre-relativistic formula. These are
circumstances that one constantly encounters in the ey of special relativity, and
it is very natural to seek to insure theM in a generalmarain a physical theory like the
one that we are establishing. We therefore have posii@ataamely, thatunder the
simultaneity hypothesis, the barycentric moment must be zero andnétie khnoment
must contain only one term in its expression.

It is indeed clear that if the tensar'y of hypothesis Hl;] is arbitrary then that
postulate will not be satisfied. Indeed, we first et for a well-defined paik, | of
dummy indices, each of the terms that are written deWryield two generally different
terms by permutation df andl. Our postulate@), which, by virtue of B), must be
satisfied for no particular Galilean frame, will thaineady impose antisymmetry @iy
with respect to the pair of indic&sl. By means of that, the two terms that are obtained
by permutation ok and! will be identically equal, and we can agree to group them
such a way as to neglect the factor 1/ 2.

We then write I;] under the simultaneity hypothesis. If we takev then the only
non-zero term in the first group will be providedloy w andl =u. Similarly, if we take
i = u then the only non-zero term in the second group wifirogided byk = v andl = w,
while if we takei = 4 then all of the terms in the second group will b .zeFinally,
under the hypothesis of simultaneitii,] will be specified as follows'}:

B = ("™ = o™ [dxt dxé dxC] = — (" + ™) [dx" dxC dX],
BY = M dxt dx¢ dx).

By virtue of postulate), it is necessary that one of these groups of components
(which represents the barycentric moment) shouldebe, 2nd that the other one (which
represents the kinetic moment) should involve only oeentin its expression.
Moreover, by virtue of postulat®), that result must be obtained in any Galilean frame.
Now, with g'that are not identically zero, that will be possibidy if the quantity & +
0™ is identically zero, which will imply the antisyming of the tensorg™ with
respect to the first two indices.

5. Finally, since the set of postulat® and C) is intended to provide the case
3 with two remarkable properties that are inherent toctmen = 1, we impose the
complete antisymmetry of the tensgt* upon the expressiomt}]. | then say thathe
two cases i 1and n= 3are completely coincidenindeed, they are written:

() Of course, that notation is intended to mean that there summatiorver repeated indices.
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SCH = g [dX d¥ dX,
[H]

OB =1{d' [ dX d¥ d¥ —-o'] dx dx d
If one passes to the dual quantities then thewasstatements will coincide with:
[K] B =ga-da’.

Indeed, first take the formuldf]. i differs fromj due to the antisymmetry @B', k
differs from| due to the antisymmetry af or of [dX dx' d¥], andk and! will be
different fromi andj for the same reason. If one abstracts from theyiation ofk and
| then each of the groups of terms that are writtewwn will yield only one term, and
upon introducing the dual quadri-vectars andic [ (%) of the two third-rank tensors,
one will in fact arrive at formulak]]. Now, take formulaHli]. Sincek differs froml,
andi differs fromk andl, there will be only two non-zero terms in the tigfand side. If
one introduces the duals [@B ' andic [ (*) of & ¥ and EX dx’ dX], resp., then one
will arrive at precisely the formul&]. Conforming to what we said, the two tensGrs
andic B ¥ seem to be duals of each other.

Before we go on, we summarize the conclusionswiesie obtained already: The set
of postulatesA) (existence of a density), (B) (arbitrary integration hypersurfage (C)
(vanishing of the barycentric moment and the writafgust one kinetic moment term
under the simultaneity hypothegsiead us to couple the finite momed or B to the
corresponding density that is represented by arguadtor o' by one or the other of the
following equivalent expressions:

(32) JCH =0 [dX d¥ dX, B! =0'du - au,

in which ic @U' denotes quadri-vector that is dual to the trilinetement §iX dx’ dx{,
and the componeiit [BU* = [dX' dx" dxX"] = du represents the usualire volume element
The threedC" = ic [@B"™ are the components of the proper kinetic mong&htand the

three_l X = B" are those of the proper barycentric mom@hof a fluid dropletdl'.
ic

Under the hypothesis of simultaneity, (32) will veé to:
(32) X'=0"d, B"=0,

which are formulas that are nothing but the onas @he used “spontaneously” by Dirac’s
theory.

6. The usual theories of special relativity suggeat we must formulate a new
postulate that is found to imply another known @y of the Dirac densitg. We know
that the degenerate forms of the tensorial equatioider the simultaneity hypothesis and

() These notations are the ones that we have utilizedr Relativité restreintesee especially pp. 19
and 31.
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under the hypothesis in which the Galilean frame iscthenovingor proper frame are
generally quite analogous. We then postul®@g that one must recover the density
formula (32) for the kinetic momendC in the co-moving Galilean frameBy virtue of

(32), that demands that' must be annulled in that system, or equivalently, that t
guadri-vectorg' must be orthogonal to the world-current quadri-veeterdx : ds

(33) a'v, =0,

or furthermore, iv denotes the velocity of the fluid in the usual seasd,o denotes the
spatial vector that has the thrgefor its components:

(33) ot = %(a@).

One knows that the property that is expressed by fari{88) is effectively satisfied in
Dirac’s theory }).

One sees that the last postuld® i6 introduced quite independently of the postulates
(A), (B), (C). Despite its “natural’ character, one can demandithatst be somewhat
arbitrary. The following number will show that (33) hasvhole series of interesting
simplifications in the formulas as a consequence, in aushy that we shall make it an
essential element of our theory, even though it isidened to be independent of Dirac’s
theory.

12. -

7. The ponderomotive moments that are coupled with the proper kinetic mement.
Take the integral of the expression {3®ver a closed tri-dimensional domain and
transform it into a quadruple integral; one will get:

[p] JIf 98 = [[I] ©@'c"~a'a") [d¢ cbé i i)

Choose that closed tri-dimensional domain to be thetlzatels determined by the lateral
hyper-wall of a current world-tube, and two generally curedir, everywhere-space-like
hypersurfaces, in which figure two distinct “non-simuliaue states” of the same finite
“finite drop.” On the left-hand side of formulg][ the portion of the integral that
corresponds to the two hypersurfaces represents theimaud®’ of the proper kinetic

moment-barycentric momeat the drop considered. One can then say that forfplila
provides a decomposition of the variation of fw®per kinetic moment-barycentric
momentof the fluid drop, in which one of the terms of thata@w®aposition is the portion

() The general proof of that formula in Dirac’s theorgsngive by W. Pauli; see below, formula {48
It goes without saying that in Dirac’s theory, the catrguadri-vector of the statistical fluid does not define
aco-moving Galilean frame.
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of the triple integral that corresponds to the hypeasar{with the sign changed), and the
other, to the quadruple integral that appears in the rigid-sae. In order to find the
interpretation of those two terms, we specialize thee ltypersurfaces into planes that are
orthogonal to the time axis in the Galilean framedusad infinitely-close in time; ledt
be their temporal interval.

Recall a property of the trilinear element of a hypeesgrf It is natural to define that
element with the aid of:

1. Two small space-like vectogs; and JX, that are tangent to the surface contour
of the fluid drop (which is “not simultaneous,” in gesker

2. The element of the time-like world-current .

Under these conditions, the four components of thedar element of the hyper-wall are
the determinants that are extracted from the matrix:

dx % ox X
5% 68 5% .
dF d@ de  d

The six minors that are extracted from the first mwavs are the components of the
generalized area elememhile the threedx" '] represent the area, properly speaking.
It is then obvious that the trilinear element of the Imyall is a certain exterior product
of that element with the area by the quadri-vector elemttite trajectory. In a more
precise manner, if we introduce the dualgu’ andic & of the trilinear element of the
hyper-wall and the bilinear element of the contour of dnep, resp., then we will
effortlessly verify the relatiort):
a'=056dx;

the thredc &" = &" are the components of the area element, properlkispea

Under the special hypothesis of simultaneity, which depa as was said, the three
&" will be zero. If one recalls thaf = ict, and if one always let¢' denote the three
components of the ordinary velocityof the fluid then the formula considered will be
specified as follows:

a"=-5"dt, ic du’t =& dx, = &' Oy dt = (& 0V) dt.
Finally, if one substitutes these expressions in)(8#n one will get:

BY=— (¢ & ¢ &) dt=dt(o" ®"
ic B = {(&) + o* Oc &' dt

for the triple integral element of a hyper-wall

() O. COSTA DE BEAUREGARDLa Relativité restreintepp. 31.
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Conforming to what we said, the last expression véll‘drranged” in a remarkable
manner if we take into account the consequench (B3 ostulate D): Indeed, we will
see the following double exterior product appear:

ic BY=o"&B0) - &(clv) dt={v" (cB)}"dt

We then remember that on a hypersurface, the fB€aepresent the elementary proper
barycentric momentB, and the threécdB™ represent the elementary proper kinetic
momentdC. If we setdB" equal to- dg B" andicdB™ equal to- di C*, by definition,
then the preceding formulas can be written:

[p] d9B =-dt [[oOds, dgC =~dt [[vO(aDds).

From classical dynamics, we see clearly then thatquantities - o and -v * ("
os) are interpreted as the elementary surface ponu#ive moments that correspond to
the barycentric moment and the proper kinetic mamen

After studying the triple integral over the hypeall, we then study the quadruple
integral that appears in the right-hand side mif [ Always using the particular tri-
dimensional contour that we have specified, it lmanvritten:

dy B = dt m [0d -0'0]

in which du denotes the pure volume elememt'[d¢ dx’], which is formula in which we
read, from classical dynamics, that the quantitgrackets is (up to a facter) a volume
density of world-ponderomotive moment. We then set

Hy=ic[0'd' -d'0'],
in which the threg/" represent the density of ponderomotive momerttérusual sense.
One will immediately get:

dw) BY = dt m [rot a" &

for the barycentric mome®" andC"" = ic B* for the kinetic moment. If one takes into
account the consequence {B8f postulate D) then the bracket will be “arranged” in
such a manner that it contains only the three apatinponents of' :

dy) C = dt m {0%0" -0 (o D)} Au.

Finally, we can write:

'] dyB=at[[] otoa, dyC=at[]] gad @)+ e
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in such a way that the quantities mand {grad @ [V/) +% o} are interpreted as volume

ponderomotive densities that correspond to the baryceamdgroper kinetic moments,
resp. One has the relation:
d=dg +dy

between the differentiats andd) that were defined by formulag’T and [p"] and thed
that was defined initially (p. 0. ?). Our analysis whien permit us to distinguish the
contribution of the surface forces from that of tidume forces in the global variation of
the proper kinetic moment-barycentric moment

8. The ponderomotive moments that are coupled to the orbital kinetic moment.
Expression for the total volume density of proper ponderomotive mom@mte knows
that if T " denotes the inertia tensor of a continuous material unedhenthe mass-
impulseof a finite portion of the medium will be given byetintegral:

(34) p = Hj T'ou,

which is extended over a space-like hypersurface. Comdsmgy, one shows that
ponderomotive world-force densttyat is applied to medium considered is derived from
TY by the formula of generalized elasticity: (

(35) fl=9TV.

In classical relativistic dynamics, the ten3dris symmetric by its very definition, in
such a way that the dummy index in the summation inpteeeding formulas will be
arbitrary. However, as in pre-relativistic elasticitye shall consider aasymmetric
tensorT " (%) that is intended to account for the proper ponderamatioments. Under
those conditions, the summation index in formulas (88), (@nd some formulas that are
consequences of them must be fixed by an initial defmitiwe then agree that for all of
what follows in this work, thesummation index will be the second index if, Tor
equivalently, that the significant index of the quadriteesp ' andf ' will be the first
index of T".

From the classical general definition (31), the mondentof the mass-impulse of a
droplet at the origin- or orbital kinetic momenof that droplet- is:

(36) SCI =[XT* - X 13y,

() La Relativité restreintgpp. 50. That proof utilizes the fact that the hypathintegral is identically
zero; we shall return to that point in the following gpegoh.

() In general relativity, asymmetry in the inertiager would imply asymmetry in the tenﬁé‘r—% R

g’ ; i.e., an asymmetry in the curvature tensor, simecannot image what asymmetry in the metric tensor
would correspond to. That asymmetry can be obtained djhthe use of a Weyl gauge or, more simply,
by torsion in the universe. We specify that thissitor is not intended to be interpreted as
electromagnetism, as in some unitary theories, butdltarresponds togravitational effect of spin.
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in such a way that therbital kinetic momenof a finite portion of the medium will be
given by the integral:

oCl = m [XTH - X T4y

that is extended over a space-like hypersurfadee t€nsor in brackets, which has rank
three and is antisymmetric inj, is then interpreted as thbebital kinetic moment density
of the medium with respect to the origin of thecgéime coordinates)(

Take the integral of the expression (36) overclbsed tri-dimensional domain that is
defined by two space-like hypersurfaces 1 and 2thadateral hyper-wall of a current
world-tube. Upon assuming that the hyper-wall dné is identically zero?, the
expression that will be obtained will obviously regent thevariation of the orbital
kinetic momenof the fluid drop considered between state 1 éagk 2. Moreover, when
one transforms that integral into a quadruple irakgnd takes into account the relation

(35), as well as the fact thait X =J; , one will get the expression:

%”ﬂ{[xj fl—x f]{ T - T dxdx dk dk,

from which, one reads, upon repeating the argutimattwas made before, that the action
of theorbital ponderomotive moment density:

b= [x =X ]
is added to that of proper ponderomotive moment densityelastic” type:
=T -T

Now consider theotal barycentric moment-kinetic momeptbital + proper) of the
finite fluid drop:

C'=q+C,

It evolves under the action of the set of pondetdraomoments that we studied, which
are:
1. The orbital ponderomotive momenthich is derived from the volume density

My -

() Some authors who treated the kinetic moment in Dirtig®ry seemed to assume that the [ ]
considered represented ttmgal kinetic moment densitfprbital + proper). The origin of that way of
looking at things— which, to us, is not compatible with the primitive defons (31) and (34} is the
presence of the second [ ] in the quadruple integralvtilbbe given in a moment, and the fact that the
expression for [ ] transforms by virtue of formula'§3which is a consequence of Dirac’s theory. One will
see how our theory interprets that secondlifgctly, and in a manner that is the only correct one, to our
understanding. )

(® The necessary and sufficient condition for that tesithat the tensdF ! must have the expression
(39) above.
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2. The proper ponderomotive moment of volume origimose total density’ is the
sum of two termsz and £ that are attached to thwbital kinetic momenaind the
proper kinetic momentespectively, and has the expression:

(37) W=[T'-T1+idd d -d ]

3. Finally, theproper ponderomotive moment of surface origumich is defined by
[P'], pp. 38, and obviously corresponds to a contact actidheofest of the fluid on the
bounded drop by its motion.

In the following chapter, we will see that in Diratfeory, one will have:
(37) [TI-T'1+iddd -0c]=0
identically, in whichT I denotes Tetrode’s asymmetric inertia tensor. Front wkgust

said, that relation signifies that thetal volume density of the proper ponderomotive
moment is identically zer@).

() Upon posing the last result apastulate one can consider formula (37) to be a consequence of our
theory, but that postulate is not imposed out of necessity we prefer to preserve our general formula
(37).

An equivalent expression for the postulate in questitinaisthe total kinetic moment must be conserved
in the absence of forcds (since, in fact, the action of the surface ponderoraatioment will disappear
when one stretches the wall of the world-hyper-tulbiefinitely). When Pauli applied that criterion to the
expression:

MIXT =X )oYy,
which is regarded as representingtibtal kinetic moment (orbital + proper), that author waktke set:

o'-o'=0,
instead of our formula (3)( )
For us, since the expression considered is formally dhan orbital moment, the tenso®" that it
involves will not be therue inertia tensor of a medium that is endowed with spievertheless, in Dirac’s
theory, Pauli’'s symmetrized tensor:

ol 2%(-'41 +-|—ji)

permits one to calculate the quantities of teess-impulse integralnd thetotal kinetic momenby means
of formulas that are valid for classical media withquhsas such, it can be regarded as the inertia tensor
of a fictitious fluidwithout spinthat is integrally equivalent to the Dirac statidtitaid.

Indeed, as far as the kinetic moment is concernameafassumes (as will be verifiadposterior) that
the tensord ' and® " of Dirac’s theory satisfy the criterion that’ = 0 then the integral equivalence in
guestion will be attained by means of the condition:

30i=901=9TY
which is effectively realized thanks to the continual etyuaf the two divergences of the Tetrode tensor:

oTi=o T
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9. Transverse mass-impuls&/e agree to call the two quadri-vectors:
(34) pp= [[JT o, pp= [T =TS, 0= Py * )

the false mass-impulsepél) and thetransverse mass-impulsp}z), respectively, and we

propose to study thiansverse mass-impulsgyp To commence, we remark that this
guadri-vector is orthogonal to the quadri-vectorrtdavolume elementdy; , since the
expressionT" — T¥] &y du is identically zero by virtue of the antisymmetrfy[T ! —
T'. That being the case, the relation'§3#ill permit us to write:

Py = =[] 1" ou; ~ic[[[ld'0’ -0 g1y,
=~ [[[ 1" ou; -4 ][[18,0, 8,0 ][ du X d .

One passes from the first expression to the seooldby taking the duals of the two
antisymmetric tensors in the last term. It is e@syerify that these terms are the same,
and that an equal number of them will enter intoheaf the two expressions. One then
transforms the last integral into a double integsal

%Hq[d% dX] +o[ dk ds] :jjak[dx'd%].
Under the hypothesis of simultaneithe three g X' = &" that represent the area

element, properly speaking, will only be non-zenmod if one sets” = /' ic then one will
get simply:

== L[ anf[o'os 05— [[[var(flotas . io.

In other words, and conforming to the remark thatjust made, the transverse mass will
then be zero, while the transverse impulse wiljiven by the formula:

(34") p(z)=—jjjv5u—jjaDcfs.

These two integrals were already taken under deration in 7. They can then be
interpreted as volume and surfgsenderomotive momentisat correspond to th@oper
barycentric moment. That coincidence, which is fortuitous and corré@m the

(seebelow, n023). An analogous argument will be true for the problémnass-impulse.

We insist upon the fact that the equivalenc@ bfand® " is onlyintegral, and that one must take into
account the contribution from the hyper-wall if one slomt integrate over all space. For us, titue
inertial tensor of Dirac’s theory remains Tetrodeéymmetric tensoF .

[W. PAULI, Handb. Phys. XXIY, pp. 235]
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standpoint of dimensional analysis, moreover, appeary ander constant-time
integration. More generally, one sees that the quesitdéfproper kinetic momenand
transverse mass-impulsd a finite material drop are two consequences of xstence
of the densityog', but that they are not coupled directly by any algebfaimula.
Finally, we remark that one will recover the genefatmula (37') in the Galilean frame
that moves with the fluid.

Remark.— Besides the quantit;pél) that was just defined, anothefatse mass-
impulse”that appears in certain problems is:

P = T)ou.

That quadri-vector is collinear with the world-volumenreéat i Since we just saw
that thetransverse mass-impulseorthogonal tall, a seductive idea is present in spirit:
Is it possible to choose the world-orientation of the geaglrtor A' in such a manner
that the two falsenass-impulseare everywhere equal to each other? In that manmer, th
true mass-impulse would be found to decompose into two nhutréthogonal quadri-
vectors, one of which is time-like, and the other ofalihg space-like.

Solving that problem amounts to solving the system of famdgeneous linear
equations:

Tray=T'al or {T-T/d'} oy =0.

The necessary and sufficient condition for the walitéction of the quadri-vectady; to
be determined uniquely is that the determinant of:

T -Tlo"
J

must be zero, while one of its minors of rank threaas Moreover, by reason of the
obvious symmetry, there then will exist a second woridrbation of the quadri-vector

Al that will make the infinitesimatue mass-impuls@’ dy; collinear with TJ.J'Jui . This
situation is encountered in the definition of the terBbthat we shall now give.

Il. — ON THE KINEMATICS OF MEDIA THAT ARE ENDOWED WITH  SPIN.

13.The arguments in the preceding paragraph are not indepesfdehkinematical
considerations. We had to introduce the notion of cumwenid-line, or — what amounts
to the same thing — that of the velocity of the makgénts in the ordinary sense:

1. In order to define the generalized barycentric morfeent(31)].
2. Inorder to establish the relation (33) by startiognfthe postulate).
3. Inorder to interpret the hyper-wall trilinear elem@gs. §j] and [']).
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The consequences of relations (33) agifidre found in the expressiong][and [p"] for
the surface and volume ponderomotive densities.

In classical relativistic theory, the notionswalocityv of material particles anchass
density p of continuous medium are sufficient to define the imeténsor, which is
obviously symmetric, by the formulas:

TW=pWV, T9=T"=icOov, T*=-pc.

Equivalently, if oo denotes th@roper mass densityf the medium (i.e., the value pfin
the co-moving Galilean frame), andis the unit quadri-vector that is tangent to the
world-trajectorythenone will have the condensed definitidi (

(39) Ti=-copv' v
As for the trace of that tensor, one will have twieresting expressions for it:
(40) T'=p(V-c’)=-Cp.

The well-known Lorentz contraction factor entet®ithe first one; the second one shows
that, up to the factor €, the trace of the inertia tensor is equal to the profes density
Ao - )

The classical tensofl’, which is the general product of the quadri-vector
ic\/fovi with itself, is obviously not the most general symneesecond-rank tensor; the

most general one would have ten components that arecti;m modulus, and would
thus depend upon ten arbitrary constants.

The “minimal generalization” of the classical defimn will permit us to obtain an
asymmetric tensofl’ , as the theory of the preceding paragraph would demandhwhi
obviously consists of setting’ equal tothe general product of two non-collinear quadri-
vectors. If V denotes a unitary quadri-vectaol, a quadri-vector that is not collinear with
V' such that scalar produgt vi has the value 1, and finally, ¢ is the product of the
corresponding scalar factors then one will finally have

(39) TI =—Cp, U V.

The tensofT! thus-defined will then depend upon seven arbitrary constiastsad of
16 for the most general second-rank tensor. The vali® todce will remain, as before:

(40) T =-¢p,,

and one can say thdiy definition o represents the proper mass density of the medium
that is endowed with spin.

() La Relativité restreintepp. 50.
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By hypothesis, we suppose that one of the two quadri-w@tor V' represents the
material world-current in the usual sense. From themgprinciples of relativity, that
quadri-vector of thérue currentmust be time-likej. Moreover, from a result of the
preceding paragraph, the spin density quadri-vector mustthegonal to it. As for the
other quadri-vector, we say that, by definition, it repnesafalse currentthat we shall
seek to interpret. _ _

We first have to demand to knamhich of the two quadri-vectors and v represents
the true current Conforming to the method that was followed up to novgrder to do
that, we shall analyze classical theory in detail gederalize it in the “minimal” manner
that respects the essential results. We recall biyatirtue of a fundamental convention
(35), the finite mass-impulse that corresponds to an asymmetric tefiéonust be
calculated with by summing over the second index; i.e., from the sarmul

38) o= [[[ Ty,

In classical theory, in which the tensbt is symmetric, since it is defined by (B9
the preceding integral over the hyper-wall of aremt world-tube will be identically
zero. Indeed, if one replace¥’ using (39 and the hyper-wall elemeniy using
formula [q] of no. 12 then one will make the doubly-contracted prodigtdx dx‘ of an

antisymmetric tensor and a symmetric tensor appear uthdeﬂj sign. Now,that

result is essential for the notion of ponderomofmee density that is defined (§5) to
have any meanin€f). The necessary and sufficient condition for it ¢ocbnserved with
the new definition (39) is obviously thtte quadri-vector of true current must bé v
Another interesting situation is produced in classibabty: For an infinitely-thin
current world-tube, the mass-impulse quadri-vectoill be defined intrinsically,
independently of the orientation of the hypersectig . Indeed, the scalar produt¥

auy; will appear under theﬁj sign, which will obviously be invariant under changes in

the orientation of the hyperplane section of the samfieitely-thin tube. The mass-
impulse of the material point without classical spilt then be defined intrinsically; as a
special postulate, one might demand that it must hasenatant lengtticz (). The
necessary and sufficient condition for the resutjuestion to be preserved with the new
definition (39) is that; must be the true current. That being the case, thefawwvith
respect to the classical theory is that the massisapaf thematerial point that is
endowed with spiwvill no longer be tangent to the true streamlinglmean line of the
hyper-tube), but, in factp the false streamline; the mass-impulse of theena point
that is endowed with spin will be oblique to therldutrajectory. It is obviously quite
natural to postulate thats projection i/ on the tangent to the trajectory must be
constant(®).

Finally, an examination of the situation that prevailshe Galilean frame that moves
with the true current will allow us to confirm that is the true current. i/ is the false

() La Relativité restreintepp. 18 and 19.

() Op. cit, pp. 51.

() These last results agree perfectly with the oned tertain considerations of the analytical
mechanics of a point would suggesh Relativité retreintepp. 62).
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current then the mass-impulse will be collinear totthe current, in such a way that the
three components of theroper impulsewill be zero. As for theproper mass its
expression will consist of four terms. On the comtréfrone assumes that is the true
current then not all of the foy' will be zero, in general, in the co-moving Galilean
frame, but each of them will consist of only one temmits expression, namely,

”J T*du, . Now, we know that in all classical theories datwity, the things that take
place in the co-moving Galilean frame are very closeth® ones that realize the

simultaneity hypothesisHere, the simultaneity hypothesis realizes the sestination
precisely, so we further conclude that the true cursant i

Remark.— According to the idea in the remark that concluded threxepling
paragraph, we demand to know what the direction of theermane section of the

infinitely-thin tube would have to be in order for theotfalse mass-impulsg” du, and
Tjj Ju to coincide; that direction will obviously be the werldrmal to the hypertube.




CHAPTER Il

STUDY OF THE FICTITIOUS STATISTICAL FLUID IN DIRAC’ S THEORY.

14.1tis truly a new chapter in Dirac theory that restribsn the matrix formula:
16 A
[a] zysryqs:4d)3dlr
A=1

that Pauli showed to be a consequence of the Diractmrslf):
[b] YY) =0

by definition, they” are the sixteetdermitian matrices 1,)/, iy", iy, y**** The

guadratic formulad] contains two distinct groups of terms, which are writtarthe left-

hand and right-hand sides, respectively; the formerhaadrms “inpr, qs” while the

latter are the terms “ips qr.” One sees that thi#rst indices pandq and thesecond
indices rands are the same in these two groups of terms, which araatbazed by the
differentcouplingof thefirst indiceswith thesecond indices.

Pauli perceived from the beginning that formu#, [and some other analogous
formulas that one can deduce, permit one to establisioltbeing relations between the
five Dirac-Darwin statistical tensoia the general casewhen they were known up to
now only in the case of the monochromatic plane wave

(" () == (0 (&) = ( w)®+ (@), 1(m*) (M) = ( @)® - (@)’
(" (a)=0, 1M (IMy)=2 G w) (w);

We have written the fiv®irac tensorsin parentheses in order to indicate that one is
dealing withabstract tensorghat are not provided with their physical coefficieriy
contrast, we have taken care to reinstate the facioraccording with the demands of
relativity.

W. Kofink addressed the question in a paper in 1937, and rihiée ifirst of a series
of four papers in 1940)), and completed the first seriesapfadratic identities between
the statistical densitiewith the following ones:

Mm") (9 =- (@) (@), (im) G = () (o),
(Mm") (@) == () (), (im) ()= () ),

() Pieter Zeeman Verhandelinget935, pp. 31; “Contributions mathématiques & la Théorieice,D
Ann. Inst. H. Poincaré (1936), pp. 118.

gz) Op. cit, see Ann. Inst. H. Poinca#¢ § 6, pp. 131.

() “Uber das magnetische und elektrische Moment des EtektAnn. Phys. (Leipzig30 (1937), pp.
91, “Zur Diracschen Theorie, I: Algebraische Identitdtemschen den Wahrscheinlichkeitsdichten,” Ann.
Phys. (LeipzigB8 (1940), pp. 421.
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((@)=G") (0" = (@ M) - (ia) (m).

Theseidentitiesand the preceding ones constitute the complete seflations that are
consequences of the Dirac matrix conditidnisthat exist between the tensors of type

. In order to establish them, Pauli and Kofink employedrhatrixB that we spoke of in
Chapter |, which is a matrix that canonically transfetime foury' into their transposes.
G. Petiau, in some work that has been published incomplet@reover, avoided
introducing the matriB in dealing with that question, which we will likewise dotie
following pages.

Pauli remarked from the beginning that this type ofudateon can be generalized in
such a manner as to form sordentitiesthat relate to density quantities other than those
of typeop . For example, one can make the densities thatalled Schrodingeriarones
appear, whose definition involved our operatdi], [and which will figure in some
differential relations that we shall discuss later dinat is precisely the objective of the
second of the 1940 papers by Kofirf, (in which the author established g@adratic

identities with backward differentiatiofe., ones that involve our symeI) in spatial

vector form and gave the rules for deducing ithentities with forward differentiation
9, (®); one obtains somiglentitiesby adding and subtracting that are consequences that

involve our symbols ] and @'), i.e., ones that are concerned with the five
Schrédingerian tensogs and the partial derivatives of the five Diracian tengsrs

Among these identities, one family that we shall stadyetail contains tetensorial
identitieswhose left-hand sides have the fofin (

W eyt - 101 yr e op [0y,
and in general, two different left-hand sides that anessof terms of the form:
DAYV R WYY

We establish theselentitiesby the same method of Kofink, but while being careful to
not destroy the tensorial symmetry of the universééncalculations and the results. The
spatial vector notation is not, moreover, the onlgson that Kofink’s formulas are
deprived of a general tensorial validity. For exampleappens that certain formulas are
established only for the values j of the tensorial indices, and that one must perform
certain manipulations in order to extend to the case=gf Under these conditions, we
believe that it is useful to prolong the Kofink cald¢idas in order to arrive at formulas
that will have a general tensorial validity.

The third of the 1940 Kofink paper$) (began by reestablishing some differential
relations that were consequences of the Dirac equatidnconditions that were given

() “..I: Algebraische Identitaten die Differentialquaiien enthalten,” Ann. Phys. (LeipziB, pp.
435.
() Op. cit, pp. 437 and 442.
() Op.cit, § 11, pp. 454.
() “...lll: Folgen der Realitat der Potentiale,” Ann. Phlseipzig) 38, pp. 565.
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already by W. FranZ'), and that Al. Proca had proposed in order to systeaigtitake
into consideration the case of the free elect@n From that family of relations, one
already knows Dirac’squation of continuityan uninterpreted relation of Uhlenbeck and
Laporte, and Gordon‘®ormula for the decomposition of currenFinally, a relation that
was given by Tetrode relates tlaek of symmetryn its inertia tensor to the rotation of
the spin density, which our theory in Chapter Il pesmi to interpret. As we have said
already, that circumstance seems to us to const#userious argument in favor of
believing that the true inertia tensor of Dirac’s thersrthe asymmetric tensor that was
originally defined by Tetrode.

The relations in question, when given in vectorial foappear to be sixteen in
number in the papers of Franz and Kofink; when one wtites in world-tensor form,
they will beten in number. Those are the ten relations that we ateblished in our
own right in complete ignorance of the work of Framd Kofink, by introducing the
systematic definition of a “Schrodingerian” tensortloé typey™ [0 '] y ¢, which is a

type of tensor that includes the Gordon currgrifd']¢ and Tetrode’s asymmetric

inertia tensony*[0'] y'y , as well as Proca’s magnetic currgrii{d'] y¢ ().

Having established the relations in question, neitherzFran Kofink devoted any
attention to their physical significance. On the cany; in the course of his third 1940
paper, Kofink eliminated our fiv&chrddingerian tensoysvhich were “uninterpretable
quantities” to him ), from the ten differential relations that weresiolered and the ten
identities with differentialshat he had established for that in his second paperthéh
obtained, along with Dirac’s continuity equation and thielenbeck-Laporte formula
(which does not involve Schrédingerian tensor), 6 + 2iapatctor relations that were
quadratic. After starting with that, Kofink’s attentidike that of Franz before, diverged
completely from ours.

Indeed, we pose the problem of the physical interpoetaif the ten differential
relations considered, as well as that of the Diraaiah Schrodingerian tensors that they
involve. A detailed examination will permit us to extend ahghtly sharpen the results
that were obtained. Finally, five of the ten relationgjuestion, one of the five Diracian
tensors (the invarianty), and three of the six Schrédingerian tensdysall remain
uninterpreted.

Collectively, Franz’s ten differential relationglis into two families of five that each
possesses its own Diracian and Schrddingerian tensomse all of the relations and all
of the tensors that are presently interpreted ar@ electromagnetic nature in one of the
families and of a dynamical nature in the other, enked to say thaby definitionthe
relations and tensors of the first family alectromagneticand those of the second one

1y “zur Methodik der Dirac Gleichung,” Sitz. Bay. Akadliss, Math. Abt3 (1935), pp. 404; § 10.

(
(®) “Théorie de I'Electron de Dirac dans un champ nub” 18, Ann. de Physiqui0 (1933), pp. 401.
() “Sur dix relations conséquences des équations de DEa&” Acad. Sci214(1942), pp. 818.

() That term (Gerundeutbare Grossgris somewhat surprising, due to the fact that two obéh
guantities were interpreted in 1928, one, by Tetrode, andttter by Gordon. Kofink, who referred to the
Gordon paper (but not to that of Tetrode) specified ondbeasion that theuhdeutbare Grossérwere
density quantities that were possibly capable of intexpost, but which did not present themselves as
derivatives of the Diracian tensoi3(. cit, pp.569-570).

() One of the five tensorg™ [0'] y ¢ intervenes only by two of itsontractionson the index, in such
a way that one has indeed six tensors of that type tpietehysically.

N
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aredynamic. According to thatlefinition the relations and tensors in each family, which
are still uninterpreted, will be said to belong to atlyeofelectromagnetisrand a theory
of dynamics respectively, that have been expanded with respdtietalassical theory.
Moreover, according to a well-known property that genegalione that relates to the
Gordon current and the Tetrode tensor, the presenae ekternal quadri-potential '

will add aninteraction termof the typeA' (¢ ™y () to each of the Schrddingerian tensors,
since the Diracian tensor ( ) has a physical nature ishabpposite” to that of the
Schrédingerian tensor that contains it. The presefddeo quadri-potentialA’ then
manifests aoupling whose form is perfectly symmetric with respect tareteagnetism
and dynamics In Dirac’s theory, one will then no longer see aagson to qualify the
potential A' as beingelectromagnetic rather thandynamical. In the absence of a
prevailing potential, the coupling in question will disappead the two families of five
relations will become independent of each other. ©@ae think that these various
remarks are not without some bearing on the problemhef unitary theory of
electromagnetism and inertia-gravity.

In order to conclude the present chapter, we shallabelibow one can extend the
general definition of the Diracian and Schrodingeramsors in the theory of particles
with integer spin, and we will show that Franz’s teffedential relations will remain
valid in that theory.

|. — THE PAULI-KOFINK QUADRATIC IDENTITIES.

15. Establishing the starting formulas. Pauli-Kofink idenities that relate to the
Diracian tensors.— Consider the Pauli formuld){

16

(41) 2 VoVe =430,
A=1

in which one has, as was said before:

in which the notations are the ones that were spddifithe Foreword. Recall that the
or y of a given tensor rank behave like the componentsaoigpletely antisymmetric

tensor, in such a way that:

1. In all of the calculations that follow, the tensor indices i,.J,in the samey or
y are essentially supposed to be all distinct.

We complete that convention with some others traeapecially destined to simplify the
calculation and formulas that follow:

() For the proof of that formulaseeW. Pauli, “Contributions mathématiques a la Théori®itac,”
Ann. Inst. H. Poincaré (1936), pp. 115; § 3.
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2. In all of the formulas that are derived fro@hl) that we shall establish and utilize
in formulas that will be denoted by Roman capitals betmmacketsywe shall neglect to
write the lower matrix indices, since it will be intended that left-hand side will always
be “in pr, gs” and the second one “in ps, qrdnd the sense of that terminology will be
the one that is evident in (41).

3. When tensor indices i, j, ... are repeategper indices)that will always mean
that they are summed and then divided by a suitable number in order thateeacim
the result should be provided only or{te

4. A tensor index that is denoted by a Greek lettey, ... will always be intended to
mean one that is not summed, even if it is repeated.

With these conventions, formula (41) can be tranedrds follows:
[A] W+y y -yl -y +yy=43.

Upon multiplying (for example, on the lef)l of the matrices inA] by the samamatrix
ythat is chosen to have each of the four ranks 1, 2, i, turn, one can form four new
formulas that are analogous #).[ For y= y, after reversing the sense of the notation in
the left-hand side:

[E] -y y -y +y y+yy=4yy.

Contrary to A] and [E], the three unwritten formula8], [C], [D] are not symmetric
in the upper indices. However, upon writing those forsielace and only once for each

combination C; of the upper indices in playn(denotes the tensorial rank of the

multiplying matrix) and adding them, one can form some sgtrimed formulas. For
what follows, we shall need simply the symmetrized fdenfBS, which we shall define.

Construct a table of rank five with double entries, whmsamns correspond to the
successive groups of terms in the left-hand sidépfand whose rows correspond to the
tensor rank of the matricgdn the product term that is obtained. Above each coluven,
give the sign of the first term iA]. It is clear that each group bfst termsof rankn
generally provides two groups of terms of ramk 1, which will be written in the same
column, and in the appropriate rofy.(Under these conditions, and with the conventions
that we have adopted, the table will take the followingnfavhen it has been filled:

() It goes without saying that this particulsmmmation conventiois not the usual one in tensor
calculus.

() It goes without saying thaE] will yield formula [D] by that same process. The same table will then
suffice, with the signs taken being the ones thatndieatedbelow for reference.
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+ + - - +
30
oy vy
(i # 1)
y/li yﬁi V/li V/li
8% P
(i # 1) vy
vy
+ _ + +

We now inscribe the number differentterms that each box in the table contains,
and take thalgebraic sunof the numbers in question for each row, when they teen
given the sign at the head of the column; multiply bpdd write the final result to the
right of the row; it is clearly the total number d@rins of tensorial rank that were
considered in the symmetrized formulz.

+ + - - o+
1 1 4
411 3 -8
6 3 3 0
4 3 1]-8
1 1 4

Moreover, letC; =1, 4, 6, 4, 1 be ththeoretical numbef terms contained in each

tensorial group/® y*, which is a number that we indicate to the lefthef tows. Upon
dividing the numbers on the right by the numbers on tihedee will get the coefficients
of these groups of terms iBf, which will then be written:

[BY 4@-yy)-20¢' V' +yy)=4yy.
If one now adds and subtracts corresponding sidea]amd [E] and then subtracts

corresponding sides of the second formula that is mdddafrom BY then one will get
three formulas that will be quite useful to us:
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[X] =YY +(d0+yp) =2(00+7 ),
[Y] VY -7V =2(30-y7),
[Z] YV -(00-yp) =2{yy «(O-V P}

Upon matrix-multiplying ¥) the terms of these three formulassy, ¢, , ¢, ¢ and

referring to the usual definitions and notations fa fikke Diracian tensors [for thadee
eg. (60)], one will find that the parentheses contairgdfinition, thesquaresof the five
Diracian tensors (viz., sums of squares of the compgenéaken once and only once),
respectively:

(M)? = ( @) - (@)?, ()’ =-? 0)° = @)’ + (@)

(In the present number, we introduce the fact@henever it is necessary in order for the
components of the Diracian tensors to be, accordirgy known rule of relativity, pure
imaginary or real according to whether they do or docoatain the index 4, resp.). One
will then have:

(43) (m)* = (iw)” -~ (@), ()’ =-(0) =(w)°+(@)",

which is a group of formulas that permits one to expteesquareof each Diracian
tensor as a function of tlsguaresof the other ones; (43) shows that the quadri-vegtor (
is time-likg and the quadri-vectopy is space-like.

We now give théinal formulas properly speaking, that will permit us to establigh th
aforementioned set of relations (viz., the Pauli-Kofuntitieg. If P andQ denote two
square matrices of rank 4, and on the one hgnds,, andé& , ¢*, ¢, &, on the other,
arewave function®f theassociatedype then upon matrix-multiplying all of the terms of
a formula of the type (41) by&;P),, ({;Q),, ¢, andys , the “coupling difference” of

the lower indices will be erased from the resultadose:

1. The “first two” indiceg andq are the same on both sides, and
2. The difference between the “second indiaeahds is “erased” by the common
multiplier ¢.

Finally, all of the terms obtained will have the say@e, as far as the lower indiggsg,
r, sare concerned, and one can make them pass from on# sideequation to the other
one, and add them algebraically if they have the samer upp&es. The same

conclusions are obviously valid for a multiplicationtbye matricesy, , ¢, , (P é&)r, (Q

{1)s . Applying these considerations to the preceding formaand [Y], one will get
two groups ofinal formulas:

() We always considay”™ to be a matrix with one row and four columns ani be a matrix with four
rows and one column.
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X) { ) 3 YPEW QL =-W PLW U +y FEW'Y 7)),
(@ 3EPYWIL QN =~ GRS U+ EFY T Y),

(2) @) %WVPQ W/XKQG:W PCthIXQ51_¢/X FV&W/XV X,
() 3EPYYE;QYl=ERY QU - EPYY Q7Y

(44)

In these formulas, we have reverted to the usual stiorma&onvention of tensor
calculus; (442) are the starting formulas that were utilized by Kofimkis second 1940
paper ).

For the applications that we have in mind, the matiftandQ will be chosen from
the table of the sixteep: P = ¥, Q = y°. In this and the following paragraph, we will
often have to pass to dual quantities, for which, it lalladvantageous to distinguish the
index 4 from the indices, v, w =1, 2, 3; we can then construct the following conversion
table for the sixteep” (%) in which, the conventions were explained in the Forelv

1:J7UVW4 yUWZVV\A’ y
yw - _J_/UV4, y4 - Vuvw’ yu\A -

(45)

Along the same order of ideas, and in view of thlewdations that must follow, it will be
useful to construct the following multiplicationble, in which we group the commuting
matrices on the left and the anti-commuting onetherright:

yy' =y y=-7y, =1 yy =-yy =V,
yy'" =7 v=-y, | yP =PV =y,
(46) yv =yy =7, vyt =-v'y' =-vy,
Vv =T Y =T YV =7y =7
174 J_/M :J—/ﬂi J—/ﬂ - 7] , 7(?)7(?) :_7(?)y(?):_7 )
P =7 = 7 VY =7 =)

Upon settingé = ¢ = ¢ in (44) and methodically taking and Q to be matrices with
differing tensor ranks in the table of sixtegnwe shall define what one can call the
Pauli-Kofink rectangle identities.ForP = 1,Q = y, formulas (442) and (44X) provide
two tensorialidentities respectively, that are well-known in the partaulcase of
monochromatic plane waved:(

(47) (i)(a) =0, $(m)(imy) = 2(ia)(@).

() Op.cit, II, pp. 438, eq.’}, and pp. 441, eq. |.
() N.B. )" ..is not equal to the produgt y’ -, as one can verify in some examples.

() Formula (47) is equivalent to our formula (33) of Chapter II, from e¥hihe quadri-vector of spin
density must be orthogonal to the world-current.
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Then, four interesting tensor identities that are du&dbnk are provided by starting
with formula (442), for two different systems of “values” &fandQ that we indicate on
the left:

@y 7 /) (M*)(§) =~ (@)@,
) @YYy | ) =+ Ea)e)
Gy 77| @)= @)
G777 [ (me) =+ @),

When the same values &f and Q are substituted in (4X), that will lead to some

identitiesthat are consequences of these ofes Kinally, one last interesting formula,
which is likewise due to Kofink, is provided by starting frofd ), by three different

systems of “values” foP andQ, which we indicate on the leff)(

CORNVAN N SISND [(i)(@") = (")) =(a)(m") ~(i a)(im")

the same “values,” when substituted into ¥34will lead to the identity O = 0.

16. Kofink identities that involve the Schrédingerian tensp ¢ [0 '] yy. —
Among these new identities, some of them can be caeside be direct generalizations
of the precedingsquare and rectangle identities. For example, if one replaces the

multiplication by the matrixy with multiplication by the matrix[/;Qi in the symmetric
formulas ], [Y], [Z] that allowed us to establish tequare identitie$43) then one will
obtain what Kofink called a series of relations “witackward derivation”; similarly,
replacing ¢4 with d'y, and subtracting the relations “with forward-derivaticthiis-

obtained }) from the preceding, one will easily form thrigeentities that correspond

() One should note the “resemblance” between)(d8d the formuld' = M* j, from Lorentz's theory
of electromagnetism. Here, the polarization temsOrreplaces the field tensor, and the spin density
replaces the world-force.

() With the third system ofvalues for P and Q, one must take into account the identity

m*“m,_+ ™ m =0, which is valid foii # j; the formula is then established only fefj, but its validity for

i =] is obvious, due to the antisymmetry of the three groupsrakter Upon taking the duals of these three
groups of terms and combining the result thus-obtained wiih ¢he can form the expression for the
tensor () as a function ofj() (¢') - (i) (c¥) and the dual of that exterior product. That relation ¢hi
Kofink gave explicitly) permits one to answer a physicalteresting question: In the case of
monochromatic plane waves, one knows that the three cmn (") of the tensor rt) (viz., the
electric part of the tensor) are annulled in the co-moving Galilfame. Is the same thing true in the
general case for the time-like quadri-vecty ih the “co-moving” frame at each point and eachaintst
The answer igo, since the “second invariantz) will not be zero in the general case.

() Upon adding, one would form tlerivativeof (43).
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bijectively to (43) 1), and we shall write only the third one, in view of hysical
guestion that we shall pose in the last chapter:

(43) VN YWy =y 1oly -y yy 1ol yu

One can obviously “generalize” this in a manner that nalagous to the various
rectangle identitieshat were given in the preceding numbr (

In this number, we propose to establish (in the manneKadihk) a complete
collection of temuadratic identitiesvhose left-hand sides have the forin (

Ki= @ [0 Y w0y yPu— @™ y w01 you,

in which y* and ® denote two well-defined arbitrary matrices from theealfl sixteen
¥, and whose right-hand sides have the form:

KZE ZiwxyKlﬂmi (¢I><J/L¢/):Z1 ai (wxyKlﬂ) I:k/lx yLl//

Theidentitiesare all obtained by adding or subtracting fromstaeting formulag44 2),
where one seB=y", Q=) &=y, & =wd, 4=y =@

Thus, the left-hand sides are differences of the pwaructs of a Schrédingerian
tensor with a Diracian tensor, where the Diraciarsée in each product has the same
matrix significance that the Schrédingerian tensoritaise other one, and the right-hand
sides, which are generally susceptible to being writtdwo ways, are sums of products
of a Diracian tensor with the partial derivative ddiacian tensor. In order to pass from
one notation for the right-hand side to the other, one must:

1. Change all of the signs. _
2. “Shift” the partial differential operat@' of one Diracian tensor to the other one
in all of the terms?).

The rules that relate to the right-hand sides areetpresices of the ones that relate to the
left-hand sides. Indeed, if, for example, the fornadasidered is obtained by adding (44
Z) whenP andQ both commute or anti-commute with ten a certain term of (4Z)
then the term that will be generated will obviously betYpie K, .” In the contrary case,

it will be “of type K" — viz., the product of a Schrodingerian tensor with aafan
tensor. Now, switch the roles of the matri€eandQ; i.e., setP = y® andQ = y*. The
new “K, terms” are obviously deduced from the preceding ones diple transfer of
the symbob '. As for the new K; terms,” if, by hypothesisthey define a difference of

() In Kofink’s 1940 second paper, tidentity that corresponds to (43was obtained by subtracting
either (25, 26), or (48, 49); the identity that correspoad43) is (1), and the one that corresponds t@)(43
is (9). [*...1l...,” Ann. Phys. (Leipzig38 (1940), pp. 436.]

(®) There are two possible “generalizations” for ithentity (49) that Kofink gave in (3, 4) and (10, 11).

() That family ofidentitiesis represented by 35 vectorial relations between thel&giiies that are
given in Kofink’s second paper.

() Op. cit, pp. 441 and 442.
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the indicated type then the roles pf and y® will be simply inverted [due to the
symmetry of the formulas (44 Z)], which will obviouslyveathe effect of changing the
sign of the “left-hand side of tyg€, .” Q. E.D.

We shall now introduce some special conventions, wdmiehntended to simplify the
writing of the calculations and the results of thespré number. Since the index of
partial differentiation is unique, and the same in althef terms, we shall neglect it, in
such a way that [ ] will meam']. Furthermore, we shall denote the partial diffewgitin

of a certain quantity by a simple underline; for examgptg/"¢y will be intended to mean

(WY y). We shall continue to denote the five Diracian eessccording to the usual
conventions [on thissee eq. (60)],but we shall not neglect the parenthelgswhich we
generally specify that we are dealing with an “abstraosdr” that is devoid of any
physical significance. Similarly, we neglect to raéfish the symboi that gives the
density tensors the real or pure imaginary charactersihaquired by relativity.

With these various conventions, the general symbolitingr of the ten desired
formulas will be:

Kl {1l Ve yw - ywmll v =D sy o y'y=> 3¢y v y'y.

As we have said before, these formulas are deduced fro#),(44 in Kofink, when one
sets:

$=¢, =4 P=y" Q=y~

Finally, just as in the preceding number, we shall inditte#@aluesthat are given to the
matricesP and Q on the left, as well as whether one must proceeddultian or
subtraction.

One first gets:

(50) €.7:9 Wllyww--3} =-jo, = |0

Ly Wilywywy--} =+£m"' tawo =y
wy's+) | Wlypwyy--} =-jm +ao =
.+ Wlywyy-3 =+gm +ao =
7Y | Wl wyy—) =g +ad =

(51)

which are five formulas that directly have the teia form ().
One similarly obtains:

() The correspondence between our formulas and the ia@dmmulas of Kofink’s second paper is
established as follows: (50) (2); (5L4) - (7, 8); (5%) - (5, 6); (53) - (14, 15); (51) - (12, 13).
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T 7D [l ey o} =-aT* {m o -mo] ~oT =
(52) .7 {{WI] yowy y-1}=-qj*tm o -mo] -dnf =,
7o) {{W{]"ww*y‘kw—-} =-wo* {m j-m ] - =
o on | (W Yewy y—) =+aa* 4o [ -nt § - joi =

which are formulas that will not have a generalsteial validity (), since they were
established for # |, k (j # k, by hypothesis). However, it is obvious that upoiting the
left-hand sides, when one groups these formulaspatrs, as was indicated, each of the
pairs will specify a general tensorial formula. idteasy to write those two general
formulas; indeed, upon adding and subtracting @ feom the right-hand sides, the first
pair — for example — can be written:

WL eWyy-.)= - [aT*+m o +if o + 1t 0 | +[m o' - i ]= ..
WIewyy-.)=-[~aT" +ml ¢ +m o'+t o |+[ M & -0 T |=

The first[ ] in the right-hand side are completely anti-symneettii, |, k,in such a way
that they must be considered to be zeroiferj, k. Consequently, if one givasall
possible values that are independent of the valfipandk (j # k) then there will always

be one and only one of the first [ ] that is notoze One can say that when one passes
from the case = |, k to the case # |, k, one of the first [ ] will replace the other. f&

the second [ ], just like the left-hand sidesthgy are not distinct from each other; as far
as that is concerned, one passes from one equatitwe other by taking dual quantities
inj, k. Finally, the two desired general formulas aenth

[ik]

Wlyypwyy--3=[mo-on -[ @ +Y md |
REYY.l
']

(52)

[ik]

W Yo ye--3 = [0 j-im [ qo*+3 n}
oo +3ni 1]
in which the summation are done over all circular permutations gf k, and the “bar

with indices” over the [ ] is intended to mean thel over j k.
Here is a pair oiflentitiesthat are proved essentially fo# | (3):

() For a “rough calculation” of (32 one must pass to dual quantities on the right-hand sidedén to
give { } the form [Ky]. The correspondence with the Kofink formulas isitestablished by(52 ) - (17,
20, 33, 34);(52,) - (19, 28, 37, 38)(52)) - (16, 29, 31, 32)(52,) - (18, 27, 35, 36).

() Thesedentitiescorrespond to (20, 43) and (21, 44), respectively, ofited paper by Kofink.
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Vo | Wlew ey =it -o

53
) { @7 | wllywyyy-} =j*j' -cg* o' +m“m =...

We remark that the third group of terms in the rigand sides of53,), for example, can
be transformed by means of the identity:

(53) m' m=-nf m,

which is valid fork # . Formulas(53) have no general tensorial validityndeed, from
our conventions in the Foreword, the left-hand sideust be considered to be the
components of a tensor that is anti-symmetrid,ih, so it must be annulled fde = I.
Now, the right-hand sides of (53are not annulled fok =1. However, upon taking one-
half the sum of the two right-hand sides, one gei:

o VU@ Vw—) =i [ -I] Fdo -0 d Fmim -
wlyywyy-1 =4l 1 F ] B I}

and since the three [ ] in the new right-hand satesanti-symmetric ik, |, the identities
(53) will have a general tensorial validity for all values of k andWe remark that the
right-hand sides of those twdentitiescontain the same groups of terms, while the sign
is different for just the third one.

Finally, the last of théensorial identitiesof the family considered, whose left-hand
side is:

(W1Yew V' y-wyyw 117 ¢,

must be established separately for the valgesandi =] of the indices. One first gets,
with essentially # j ():

B4) 01 ySH Wy yy- = nl -t - -t ot =

We shall transform the writing, which is not catréom the tensorial viewpoint, due
to the fact that, notably, there is amsummed index present. For example, take 4, i
=u, ] =V; upon passing to dual quantities, one will get:

{1y y-.}= P mY+ T nf' - § ™ -g'c"™
= mnt"+ T ot~ ] - gt o,

() Recall that, according to an earlier convention,indicesl, m, ... are intended toot be summed.
Our (54/) corresponds to Kofink’s (39, 40, 45, 46).
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In order to free ourselves from thb@esummed indices, v, we take one-half the sum of
the right-hand sides; it will be written:

{1 'y 7y g-. )= 3@ m"+ W nf)-3[ j 1“+0,5",

S0, upon reestablishing the arbitrary values for the @sdlivhile the notatiois valid only
fori#j:

(54) Wllypwyy-3=fm'm+of nf -4 jT%+05"%

which is a notation in which the right-hand side is shen of a symmetric tensor and an
anti-symmetric tensor in j. We remark that, by virtue of an identity that was inebke
before, the symmetric tensor can take on two othendor

(54) (M m+ T ) =-3(h - =3 e o

It remains for us to establish titentity considered for =j; one has):

(54) (") W Ye@y'y-} =-aw+mm =

or, upon taking one-half the sum of the right-hand side®efore:
(54,) Wl Ve y'y--1 = {(@w-ww,+m™*m -1 ).

Finally, upon comparing the two formulgs4,) and (54,), we see that the general
tensorial expression for the desiiddntityis:

G4 Wl Yo wyy--} = ol W -1 h{ wu-ww, & +i T +0,0" |

in which &; denotes the Kronecker symbol; the right-hand taétes the form of the sum
of a tensor that is symmetriciinj and an anti-symmetric on8.(

() Thisidentity corresponds to (24) and (47) of Kofink.

(®) The cited paper of Kofink contains some furtiemtities“with backward derivation” that do not fit
into any of the categories that were considered srthmber, and which seem to be some “specimens” of
much vaster families; tensorially, one agrees to groemttnus: 25, 48; 26, 49; 22, 23, 41, 42; 50; 51; 52.
The tensorial variance of these identities is naiags directly evident in Kofink. For example, thetlas
three Bic] cited ones then have the variance 1, 2, 3Qb. €it, “...11...,” § 1, pp. 438-441.
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Il. - ESTABLISHEMENT AND PHYSICAL STUDY OF THE FRANZ -KOFINK
DIFFERENTIAL RELATIONS .

17.While always observing our general conventions in thevikane we shall write
the symbolic Dirac equation here and its associatediddePauli equation in the form

):
(56) {r(2'-ieA )+ sy =o0, gr{(-0 -ieA )y + o} =0,
upon setting:

(57) = ZITGQ _ K, 27T 21T
cC e

v=—-—; ,uozrcm).

v denotes théine-structure constantvhich is a pure number; the operatdtsand @', as

well as the constant, have the dimension of inverse length.

The way that we shall define the ten differentiahtiehs that we have in mind is the
following: Let ya be any of the sixteepof Dirac’s theory. Multiply (5¢ on the left by
W, (56), on the right byay, and then add and subtract. Upon successively operating
on the five tensorial ranks 0, 1, 2, 3, 4 wih, we will cause 2x 5 = 10 relations to
appear that will have a tensorial character, by virtughalt was said in Chapter I.

In the general case where the ran&f the multiplying matrixya is not O or 4, the
terms iny in (56) will generate two groups of terms in which the rahkhe matrix
productyisn £ 1. In one of these groups of terms, jaeommute with thgs, while in
the other, they anti-commute. Consequently, by theeafentioned addition or
subtraction, the terms inin (56) will generate the following two typed:(

(58) { (=¢003 2ieA) Py ¢l d Py ieA Py
0'()=¢ (@) y=0WwWyy.

One sees that the tensors { } are sums of two ten3tsfirst one, which we call
Schrodingerian because its definition involves the operatd] pf the current in
Schradinger’s original theory, is independent of the plegaquadri-potential, and must
therefore be considered to belong to statistical edai fluid. Up to a factor, the second
one is a product of the prevailing quadri-potential with ohihe fiveDiracian tensors ()
= "y, and must then be considered to bénégractionterm between the field and the
electronic fluid. As for the tensors (§8they are the derivatives of the Diracian tensors
(). Finally, the term ing in (56) will give:

(58) 2 (¢ y*y) and zero,

() We shall always conside# to be a matrix with four rows and one column, an{ to be a matrix
with one row and four columns.

(®) SeeAL. PROCA, “Sur la Théorie de Dirac dans un champ néihh. de Physiqu&0 (1933), pp.
401, 404.
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resp., by addition and subtraction, resp.

In order to effectively establish the ten relatiomgjuestion, it is often advantageous
to pass to dual quantities, which the table (45) permitd@uae with no difficulty. The
results obtained are the following ones, in which thel®}r] corresponds to thealue
that one attributes to the multiplying matpix

[1] { | o'W yy) =0,
W10l vy 2ieA W'y} 2 i ¢'y) =0;

0 Oy Hylol Yy 2ieR Wy ¢ 0,
Wloly 2isA W'y +o(y' V) 2 1 y'yY =0,

(4] { W01y 2 AWy - AT YY)+~ WY D,
WY)Wy HW (017 1 VY w2 K AW Y - AT Y} Y D,

(Yo { W10l vy 2ieN Wy +o( 47" =0,
O Wyp)Hwlo) vy 2ieA Wy Y} 2 1{ ¢y Y =0;
[ Vovwal { {ma'ﬂ V. 2ieN 'y ¢ =0,
O' WV )+ 21,y Y)=0.

In order to simplify the calculation of the dualagtities, we have takeg = v and i =
Kww, SO the ultimate establishment of the generaceslcan be accomplished with less
difficulty. One sees thequation of continuity for the Dirac curreigt) in [I ¥, the
decomposition formula for the Gordon curréfitin [ 2], a relation that was given by H.

Tetrode in a somewhat different forM {n [y], a formula from classical magnetism in
[V:.], as Al. Proca recognized in the particular caserastthe prevailing potential is
zero ), and finally, the formula that was already intetpd by Uhlenbeck and Laporte
() in [V2..] . Among the Schrodingerian tensors { } that appeahese ten relations,

the following three have be taken into consideratibhe Gordon currenty [0 'y —
2ie Ay ™y, theasymmetric Tetrode tensqr™ [0 '] ' — 2e Ay ™y ¢, and finally, in the
case of the free electron, tli&roca magnetic currentwhose general expression is

Ylolyy-2eA W yy.

() “The quantum theory of the electron,” Proc. Roy. Somdam118(1928), pp. 35.Seealso J. VON
NEUMANN, “Einige Bemerkungen zur Diracschen Theoriggit. Phys48 (1928), pp. 868 and 880.

() “Der Strom der Diracschen Elektronentheorie,” Zdity$250 (1928), pp. 630.

() “Der Impulse-Energiesatz in der Diracschen Quangarid,” Zeit. Phys49 (1928), eq. (16), pp.
861. The same formula was given, but without interpretdijod. Géhéniauylécanique ondulatoire de
I'électron et du photorBrussels, 1938, egs. (54) and (58), pp. 59-60.

() “Sur la Théorie de Dirac dans un champ nul,” Ann. kigsRjue20 (1933), pp. 429.

() “New covariant relations following from the Dirac Eqeas,” Phys. Rev37 (1931), pp. 1553, eq.

).
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We now group and systematize these results. Theetations that were obtained
involve abstract density tensothat are:

1. The five classical Dirac and Darwin tensors oftiipe (™ y'¢, which we shall
denote by the symbol (), to abbreviate.

*) B
TR (W) =¢'y,
(59) (% ;iﬁf; @) =¢7Y,
’ (@) =7y

2. Five other tensors, which we denote by the symbohéinely:

® ®)
{K}=¢laly 2ieA a, T
o) | (y=pta g 2iedcq, || 17U LU e

(S} =¢19) 7'y 2 A 9), L

As was said, the latter tensors present themselvesnas of éSchrodingeriartensory™

[ 1 y&, which is independent of the prevailing quadri-potemtiaand which we denote
by the symbol { }, and a tensor -i2 A’ () that is the product of the prevailing quadri-
potential with one of the Diracian tensors, and whichdeeote by the symbol {"}(%).

All of these tensors ar@bstractdensity tensors; i.e., ones that are devoid of coerfis
that would give them physical dimensions and a conveniealt or pure imaginary
character. Finally, we remark that the third-rank eeqt) *} enters into the preceding
relations only by its two contractions:

(61 B) {U} =¢10] Yy2ieAm), {U =¢f'd Py2 ich ™

Once these definitions have been recalled or introdukeden relations in question
can be written:

(A)
| 6|(j_')=0

[ {K}+ 0, (M) == 2 (j ),

W19 -0 N -HsT { 1 =-2(m"),
v {U3 -o,(m) =0,

v {s} =0;

(61)

() The tensorial character of the quantities (59) andi6bvious for a change of Galilean frame that
is performed “in the first manner” (n4).
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(B)

I {1} =-2w (w),

[ o' () +{U} =0,
oY= (a1 -KTH £ TH =0,
WY 9" (@) —{U} =-2w(d"),

Vv 9 (') == 24 ().

18. Physical study of the ten relation§61). — A first fundamental remark is that the
tensorsjf), (M), {k'}, {1}, {S"}, on the one hand, properly belong to the sub-system of
five equations (61 A), and the tensota)( («w), (¢'), {U *}, and {T}, on the other, to
the sub-system of five equations (61 B). Now, thosén@de tensors that are physically
well-defined are, on the one hanql) (the Dirac charge-current density)k{ (the
Gordon charge-current density)r) (magneto-electric moment density), and '}
(magnetic charge-current density). On the other hand,has«(f) (spin density), T”}
(asymmetric Tetrode inertial tensor), ana)( (proper mass density). Thua] of the
tensors that were identified (61 A) have an electromagnetic significance, and all of the
tensors that were identified ({61 B) have a dynamical significanceCorrespondingly,
those of the relations (61) that have presently beerpnated are, in the one hand, (A1)
(conservation of Dirac current), (A Il) (decompositiohthe Dirac current) and (A 1V)
(expression for the magnetic current). On the othedh@B I1l1l) [our relation (37)
between the inertia tensor and the spin density] and (&pression for the proper mass
density). Therefore, among the relations (61) thafpaesently being interpreted, all of
the (A) are electromagnetic relations, and all ef (B) are dynamical relations. All of
this empowers us to say thal definition the five relationg§61 A) and the five tensors
that they belong to characterize the electromagnetic behavior of thstistdtfluid of
Dirac’s theory, and the five relatior(61 B) and the five tensors that they belong to, its
dynamical behavior.From that definition, the relations (A Ill) and (X), as well as the
tensor &'}, which does not belong to classical electromagnetiztgngs to an extended
electromagnetism; similarly, the relations (B Il (Il), and (B 1V) (Uhlenbeck and
Laporte), as well as the tensorg)and U}, belong to an extended dynamic (

In the absence of an external guadri-potertiathe five tensors { } reduce to their
Schrodingerian part{ }' = ¢/[d1yw . Since the five tensorial operatoysdefine
Diracian tensorq ) bijectively and the five operator@] ydefineSchrodingerian tensors
{}', we see thain the absence of an external quadri-potentigltAe two sub-systems
(61 A) and (61 B) are completely independenthe electromagnetic and dynamic
properties of the statistical fluid each evolve by thdwesewithout interacting with each
other.

() One can doubt whether the results that are acquired dtassical theories and also provide a
sufficient basis for formal arguments that are analogouke ones in Chapter Il permit one to justify the
five formulas (61) that remain to be interpreted. bt tase, it is Dirac’s theory that one must statth wi
order to “enlarge” electromagnetism and dynamics irnrttieated sense.
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On the contrary, a non-null external quadri-poterAlalill add an interaction term
{}"=-2ieA () to eachSchrodingeriartensor { }. It is remarkable that the Diracian
tensor ( ) that enters into {"}has theopposite physical nature to that of the
corresponding { } (electrical for mechanical, andce versa Thereforethe external
guadri-potential A will produce an electro-mechanical coupling between the two sub-
systemg61 A) and (61 B),which is a coupling that is completely symmetric with respect
to electromagnetism and dynamics.

The ponderomotive effect of the fielsl then manifested in a perfectly symmetric
manner. In Dirac’s theory, there is no reason toifyutile prevailing potential' as
being “electrical,” rather than “mechanical®.( That is an entirely new situation in
comparison to the classical theory: In the analytieathanics of the electrically-charged
point, the total mass-impulse indeed appears to be the fsarproper termp' and an
electromagnetiderm QA" (%), but that fact seems to be isolated and hasymometric
counterpart in the sense that was just discussed.

Detailed examination of the “electromagnetic” relatiof&l A). The relation (Al) is
nothing but Dirac’s fundamental continuity equationirals inductions, although they
have succeeded brilliantly, are no less audacious,@ase®s here notably: Indeed, if the
fourth componentyy*w =i "y of the Dirac world-current density is, in fact, the @xa
transposition of the Schrodinger charge dengityy (%) then the threes*y" ¢ are by no
means analogues of the Schrédinger current dengiti$d ] . One finds that the
Gordon formula (A Il) permits one to reduce the “amyolé” of the corresponding
induction: The expression for the Gordon currérifd ‘] ¢ is clearly apparent in the
Schrodinger expressiogr {0 ‘] ¢, and one will confirm later on in this number and in
Chapter 1V, paragraph I, that the situation is furtherekorated when one takes into
consideration the Tetrode inertia tenggf[d '] y'¢, whose components in, (4) are
writtenig 0" .

The relation (A 1), which has the same form as #-lw@wn relation from the theory
of electromagnetism in polarized medi§ (vas given by Gordon as providing a
decomposition of theotal charge-current densitfj') into aconvection curren{k} and a
polarization currentd; (m*). In Chapter 1V, we will confirm that this terminajy is
indeed the one that is imposed from the electromagnetigpaint, but that it raises some
difficulties from the standpoints of kinematics and dwyies. As for the expressiadk
(m"‘), it obviously represents the polarization current, and oan consider that the
relation (A I1) is justified, upon starting with thetémpretation of the quadri-vectdf)(as
a charge-current densityand that of the antisymmetric tensonj asthe magneto-
electric moment density.

() An analogous remark is true for theoper mass of the electror,m Recall that theroper mass of
the photonenters into the equations and definition of the theoryhef photon. (L. DE BROGLIE,
Mécanique ondulatoire du Photopp. 156 and 158.)

(®) O. COSTA DE BEAUREGARDIa Relativité restreintepp. 48 and 62. — In numb@of the present
work, we showed that by integrating the two terms of terode tensor over a hypersurface, one will
recover the classical expression for the propéir@tic mass-impulsé the mean

() Seeabove, Chapter I, n8.

() Seefor example, R. BECKER héorie des Electrongp. 124 and 365.
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In an analogous manner, formula (A IV), which was stddy Proca in the case of
the free electron, permits one to interpret that quastrior { '} as amagnetic charge-
current density the vanishing of the right-hand side expressesatbsence of true
magnetisnthat one expecteal priori.

Before we go on, we make the definitions of the founsoes that were just in
guestion more precise by introducing suitable physical facto®ne knows that in
Heaviside’s e.s.u., the Dirac charge-current density=s- e ¢/*y*y ; starting from that,
one proceeds step-by-step:

Dirac electric charge -current density  j* =-e j*( ),
Gordon " " K =+-S K{ },
244,
62 A ; '
(624 Magneto - electric moment density m’ :+2i m{ },
Ho
Magnetic charge - current of polarizatiorl' = —ze—c{li}.
Ho

Now, take equation (61 A Ill). One can considattit provides a decomposition of
the magneto-electric moment dengitf into two terms that (up to suitable factors) are
the rotation of the quadri-curreﬁ‘tand the “lack of symmetry” in a certain asymmetric
tensor S'}. On first glance, the first term seems to confaio what intuition would
suggest: Since the rotation of an electrified debgroduces a magnetic moment, it
would seems that a vorticial electric world-currentist manifest a magneto-electric
moment density, such that the magnetic moment woalcespond to the rotation of the
spatial tri-current, which is precisely what happém formula (A I11). In fact, that way
of seeing things falls apart on the basis of aedimn that was encountered before in the
context of kinetic moments (Chapter I, d): The magnetic moment of a uniformly-
charged sphere of radiusvith a density ofj and animated with an angular velocitywof
will be 477q r° / 15; it is a fifth-order infinitesimal in, which is an order that is too high
by two units in order for it to definedensity. We are then certam priori that the first
term in formula (A 1lI) cannot be interpreted inres ofclassicalelectromagnetism; that
is what the introduction of physical coefficientmérms for us.

Recalling the physical definitions of the quaesii* andm* that were just given, we
find thatthe first physical component m* has the value:

mkll) :(2_1'4)} (aljk—ékj').

This intervention of the square of the proper nafsthe electron in a formula that, by
definition, we have said was a formula from electagnetism, shows clearly that the
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electromagnetism that we are dealing with here is lagsical electromagnetism)( As
for thesecond componenty;, of m, it is equal (up to a factor) to theck of symmetry

of a certain tensor§"}. In Chapter 1V, no24, we calculate the two divergences of the
tensor £% whose physical interpretation has eluded us. Moreovercan no longer
give anya priori justification for the fact that the trace of tlhahsor must be zero, as the
relation (61 A V) requires.

Detailed examination of the “dynamical” relation(®1 B). The relation (B Ill) is
identical to our formula (3Y of Chapter IlI; in order to verify this, we introduce
convenient physical factors into the expressions ferspin densityg® and Tetrode’s
asymmetric inertia tensd¥, which are, as one knows:

Proper kinetic moment density........ g =—od"(, )

(62 B) ich
Tetrode's asymmetric inertia tensorT. = +4— T
T

conforming to what we said, one will get:

(63) [T -T*] =-id a*c" - '

Note thatthe coincidence of the relatiori87) and (63) is not only true in modulus, but
also in sign;indeed, in the two cases, and under the hypothesis okaneity, the finite
mass-impulse can be calculated from the formula:

P = [[[Tou = =[] T su.

in which the significant index is thiirst indexof T ". For (37), that will result from
what we said in Chapter Il, nd2, 8, and for (63), from what we said in Chapter I, $0.

Finally, our theory of pre-quantum relativistic dynamicChapter Il permits us to
interpret formula (B 1ll) (which was given initially betrode in an equivalent form) as
having the following significance:The volumetric density of fictitious proper
ponderomotive moment, when applied to the polastatistical fluid by the field, will be
identically zero. Later on, we shall recall in numhb2t that this situation differs from the
one that we encountered in the classical electromiaghebry of polarized media.

Now, take the relation (B I). In a “classical meai’ without spin, the trace of the
inertia tensofT ¥ will be nothing but the proper mass density(up to a factor of -€%).
By definition that result can be preserved in the theory of mégwinare endowed with

() Recall that the square of the proper nashie photorenters into the modified equations of the first
group of Maxwell-Lorentz equations in L. de Broglie’s theof the photon Nléc. ond. photant. I, pp.
158.)
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spin (Chap. Il, nol13); the relation considered then gives the following esgicn for the
proper mass density in Dirac’s theory:

(63 B) Proper mass density........,0, =myi w(=ym ¢ V¢ )

this well-known result is then found to be justifiedaim elegant manner.
Unfortunately, the three relations (B Il), (B IV),da(B V) (Uhlenbeck and Laporte)

remain lacking in an interpretation, just like thesiens @), {U} , and{U} ().

19. Extension of the definitions and relation$59), (60), (61}o the theories of the
photon and the graviton.— L. de Broglie’s theory of the photon and M. A. Tolatis
theory of the graviton involve two distinct categoriésemsorial density quantities. The
first of them refers to the original proper elemeritthose theories, namely, the creation
of the electromagnetic or gravitational field by thansition of the corpuscle from the
stated(x}, X4, X, X*) and an “annihilation stateh® ; these quantities are not the ones that
we shall study here. The density quantities of thermkcategory, only some of which
have ever been given any physical consideration, arehattao the propagation of the
statistical corpuscular fluid.  For example, one ialidg with the presence-current
density quadri-vectorj'}, the spin density quadri-vectaf, and “corpuscular’ inertia
tensor T ; these quantities, which are completely analogous ¢oathes that one
considers in Dirac’s theory, are the ones that weldvoow like to say a few words
about.

The photonand thegraviton are particular cases of the corpuscles that arenslotai
by the fusion oh Dirac corpuscles, corresponding to the valnes2 andn = 4. In a
general manner, the fundamental equations of the “corpngaléhich are called “ones
of type I” by L. de Broglie, are composedméystems of Aequations of Diracian type.

Each of these systems utilizes a set of four matti¢esfrank 4 (i = 1, 2, 3, 4v = 1, 2,

..., ) that satisfy Dirac’s fundamental relations (11); emver, fory # v, any matrix
A, will commute with any matrix4, (°). Under these conditions, it is clear that if one

sets:
(64) Al =-ia)a), Al =a),

() The quadri-vector|[f (a)du* = [[[(T')ou, when calculated over a space-like hypersurface, is
homogeneous in the mass-impulgr’ ou,. We call it thefalse mass-impulsand take the integral
Tf{U dxdxXdX df over the world-volume that is bounded by two infinitelyseld‘constant time”
hypersurfaces 1 and 2 and by the hyper-wall of a cutubet from (B II), that integral is equal (up to a
factor) to the integralff o,du’, when taken over the contour of the preceding volume.eSireportion of
the triple integral that corresponds to the hypersurfem@®sents theariation of the false mass-impulse
when one passes from the state 1 to the state 2,niatespret (up to a factor) the quadri-vec{br(il)} as

avolumetric density of false ponderomotive folicegan analogous manner, the portion of the triplegirale
that corresponds to the hypersurface will permit us todoice &alse surface ponderomotive force.
() L. DE BROGLIE, Théorie générale des particules a spip. 138et seq.
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so ():
(64) o =id'a'a;---a,

then one will find the same advantages of relativsgimmetry in the writing of “system
1” and the “associated system” as the Gordon-Pauli nolatire in the theory of the
electron. The generalized definition of the Diradiansors (59) and the Schrodingerian
tensors (60)4 must be the following one: One replaggs in each expression (59) or
(60) with thed* that was just defined, and eaghwith thenormalized sum:

(64) a-3) d;

the physical coefficient will remain the same ainac’s theory {). One effortlessly
verifies that this definition is, in fact, the otieat led to the particular expressions that
were given by L. de Broglie in the theory of theofim () and by M. A. Tonnelat in the
theory of the graviton®f. That being the case, it is clear that the sgstéten relations
(61) will remain valid. It suffices to recall thealculations of nol7 verbatim, upon
operating on each isolated sub-corpuscle with tlie cd “equations I’ and their
associated ones, and then adding the results.

In light of the foregoing, it is interesting toamine the problem that is posed by the
definitions of the variougnergy-impulse tensor densitidsat are considered by these
theories. First of all, it results from what wevlasaid collectively that, according to us,
it is not convenient to symmetrize the expressionthe inertia tensor that is called
“corpuscular,” which belongs to the preceding familt seems to us that the expression
for that tensor must be given in the form:

(65) T =g {%[aili_ a;}qa,

ar

in which the operator { }, which is part differeatiand part matrix, acts on both the right
and the left. An essential remark is thia¢ expression for the tensor’Ts symmetric
with respect to the index v; i.e., with respedti® constituent sub-corpuscles.

Aside from the corpuscular tensor, whose definitiovolves differential operators,
the general theory of fusion introduces other epamgpulse tensor densities, whose
number increases with that of the fusing corpusdtgs the definition, which will not

() We will always consider the componentstoaind®” to be the elements of two adjoint matrices.

() The introduction of theotential termsinto the equations for the basic corpuscle is not away
exempt from complications. Be that as it may, théestants that we shall make will be true for tre=
cor3puscle which is a case in which the Schrédingerian tensors redubeir first term.

() Except for thepresence-current density quadri-vect), it is unclear what physical significance of
the tensors (59 A) or (60 A) is case of the uncharggalsale; In Dirac’s theory, the chargés a factor in
the physical expressions for all of these tensorsg2d).

(") Mécanique ondulatoire du Photopp. 173, 185, 187, egs. (2), (46), (52).

() “Etude de la Particule de Spin 2,” pp. 197 and 200, Ann. dedriejT (1942).
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involve differential operators, but only matricas(}). For example, one defines a
“Maxwellian” tensor in the theory of the photon whasxpression is:

(65) M = moc? cb*{(,,; > aLai}qa,
s 2n pEv

which is, one sees, an expression that is symmetricresgect to the set of indiceand
M ; that double symmetry is recovered in all of the ineetiasors “of typeM” that are
defined by the general theory of fusion. It is clear thatsymmetry of those tensors in
MV, ... — i.e., their symmetry with respect to the constituamtpuscles, which is
necessarya priori — automatically implies their symmetry inj, ... It cannot be a
guestion of “de-symmetrizing” the expression for thegeténsors,” which can be one
good reason to think that their physical interpretatioriesgs direct than that of the
“corpuscular” tensot .

In the case of a superposition of monochromatic pilaaees, one knows that the
corpuscular tensor istegrally equivalento the tensors “of typ™” (%). That result will
not be altered when one replaces the symmetrized catpusensor with the asymmetric
tensor (65), since the latter tensor will once moreob® symmetric in the case
considered?).

() Mécanique ondulatoire du Photopp. 189, eq. (60); “Etude de la Particule de Spin 2,” pp. 200;
Théorie générale des particules a spp. 154.

(® Mécanique ondulatoire du Photopp. 190; “Etude de la Particule de Spin 2,” pp. ZlHéorie
générale des particules a spipp. 155.

() Seeabove, no26.



CHAPTER IV

STUDY OF THE FICTITIOUS STATISTICAL FLUID IN DIRAC’ S THEORY
(cont.)

20. In the present chapter, we shall examine some pattiaspects of the agreement
between the properties of the fictitious statistidaidf of Dirac’s theory and those of a
classical continuous medium that is endowed with edewgnetic and dynamical
polarization, in the sense of Chapter Il. The resulis will be obtained will be perfectly
ambiguous, or even contradictory; however, for certaasons that we shall point out in
no. 21, that fact should not be surprising, and one must expadgriori.

For example, some considerations of a purely electroetmgorder lead one to
clearly assign the Dirac current to ttwtal electromagnetic currentvhich conforms to
the terminology of Darwin and Gordon. One knows thathe example of thBarwin
globulg the Gordon current seems to be translation cu(ren?2); however, as we shall
see in a moment, that concept does not seem suscéptédteension in the most general
case, in such a way that the qualifief convection” that Gordon applied to its current
raises some difficulties.

Indeed, some converging kinematical and dynamical argunfgnadatter ones are
drawn from our Chapter Il), in their own right, leadeoi® associate the Dirac current
with the kinematical currenof a customary fluid (no5 and26). That seems to be a
paradox to us, which cannot be lacking in relationships hergpbaradoxes that were
pointed out by various authors in regard to the study ohetégn, even pre-quantum.

In no. 23, we shall calculate the two divergences of Tetroda&rtia tensor,
according to a method of this author, and at the same tieewo divergences of our
own asymmetric electromagnetic ten§8r One knows that the double result of Tetrode
converges to Lorentz’s electrodynamical formula, amak tis precisely how Tetrode
justified the interpretation of his tens®f asinertial. In reality, the discussion of the
guestion shows that the agreement between the clag®easlis not complete, in such a
way that the convergence in question seems very fqmaR3). This latent disaccord
of Dirac’s theory with classical electrodynamicsmeemuch clearer in the question of
the proper ponderomotive moments (24).

One knows that Pauli had profited from the fact thattwo divergences of the tensor
T¢ are equal in order to symmetrize that terssppsteriorj which is an operation that, as
we have said before, seems contestable from the viatwpbgeneral quantum principles
(no. 8), and also that of the theory of media that are wedowith spin (no12, 8). In
any case, one can say that the fact that was invokedably €an just as well be
interpreted as the lifting of the need to symmetiife At the end of no26, we shall
recapitulate the entire set of arguments that weceuntered in the course of this work,
and from which the “true” inertial tensor of Diraclsebry seems to us to be, not Pauli's
symmetrized tensor, but, in fact, Tetrode’s origingha®etric tensor.
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|. — ON THE RELATIONSHIPS BETWEEN DIRAC’'S THEORY AND THE
CLASSICAL ELECTROMAGNETISM OF POLARIZED MEDIA.

21. Summary of classical electromagnetism. Definition aflectromagnetism
according to Dirac. —One knows that all of electromagnetism and all ef ¢fassical
electrodynamics of polarized media can be derived franfablowing three groups of
basically independent equations:

[ aE*=0, [ aF*=j', [ f=HYj.

The antisymmetric€*, which is sometimes called tfimal field, H* is its dual, which
contains theelectric field EY and themagnetic induction #, while the antisymmetric
tensorF* contains thenagnetic field 4 and theelectric induction M. 1t is regrettable
that the terminology that has been consecrated byetsnakes it difficult to define the
tensorsE® (or H¥) andF* globally. Finally,j' is thetotal charge-current densityuadri-
ve_Etor, and ' is thetotal force-power densitthat is applied to the latter by tfiaal field
H™

Correspondingly, the tensé¥ and the quadri-vectdt decompose according to the
formulas:

[Vl F=H"+m VI =K+

The antisymmetric tensan® is the magneto-electric moment density the medium
consideredd m* is the polarization charge-current densjtyandK is the convection
charge-current density’). In the case of &uly continuousmedium, it seems natural to
assume the well-known notation for the latter quadciwe

K'=q WV, K'=ic q,

from which, it will betime-like (). On the contrary, the quadri-vecibhas an arbitrary
typea priori.

Equations [I], which are independent of the propertiethefmaterial medium, are
condition equations for the field. Under very broaddibons, they are equivalent to the
following equations, which translate into the existerica wector-potential:

[1] Hi=g'A-9 A

Equations [lI] are the expression ofreagneto-electric correlatiobetween the field and
the medium. Physically, one imagines that this catigl translates into the creation of
a field by a distribution of current and polarizationttisagivena priori. If one imposes
Lorentz’s supplementary conditiah A' = 0 on the field then equations [ll] can be put

into the equivalent formd!A'=j . Finally, equations [lIl] express aectrodynamical

() For all of this;see for example, R. BECKERhéorie des Electronpp. 121, 124, 359, 365.

() La Relativité restreintepp. 36. — R. Becker, like H. A. Lorentz, considered tree @f a cloud of
electrified corpuscles (viz., classical point-like corpesavithout spin). In that case, threeanconvection
current is not time-like, due to the existence of chagjabe two signs. In the present work, we shall
systematically limit ourselves to the casérafy continuousnedium(see notably, pp. 31 and pp. 67).
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correlation between the field and the medium that translatesthre action of the given
field upon the mediura priori.

Among the consequences of the basic equations thaf areerest to us, we cite the
continuity equations for the currentsajnd k:

[VI] 3j' =0, 3K =0,

as well as the expression for theper ponderomotive moment density of the uniyerse
which applies to the medium when it has been polarizetidprevailing field Y):

[VII] m =H*mi—H*m',.

That being the case, consider the set of equationsa(tiLl{14) from Dirac’s theory,
properly speaking, and denote them by [Il D], here. Teogmtions, like [ll], translate
into the existence of an electromagnetic correlabetween the ambient field and the
electron (or, for us, between the field and the sizdiselectronic fluid). However, since
one neglects the reaction of the electron on tbld fhere, one will be dealing with the
action of a field that is givea priori on the electron that it embedded in it. It is easy to
verify directly thatequations[ll] and [Il D] are incompatible which should not be
surprising if one recalls that [I] and [Il], on the onantd, and [Il D], on the other,
correspond to some distinct limiting cases of L. de Bedgylgeneral equations of
interaction for the photon-electrof).(

By themselves, the equations of Dirac’s theory dosaffice to constitute a complete
theory of electromagnetism, but rather they constitéheory of electrodynamics.
However, one knows that from the beginning that Dirtleeory appealed to the classical
formula [I'] in order to establish the existence of a proper mimneif the electron’),
and that Tetrode invoked that same formula in the caioolatf the two divergences of
his inertia tensor, which was a calculation that led tormecover the electrodynamical
formula [I11] in Dirac’s theory f). One can then say thelectromagnetism according to
Dirac and classical electromagnetism both use equatioss [# basis, and differ by the
incompatible basic equations [ll] and [Il D]. EquationB][Iwhich constitute a basic
element that is independent of classical theory, erevered asonsequences of the set
of equationgl] and[ll D], which is a truly remarkable result, and we sayassing that
it is compatible with the fact that [II D] translateo the action of the field that was given
a priori on the electron. As for the juxtaposition of [jda[ll D] to form a theory of
electromagnetism, one can even say that it seelitsaay a priori, since it is legitimate
only because it is not contradictory.

1) In spatial-vector notation, one will have, in claasnotationu=-H ~H —E ~ £ That expression,
p nu

and that of thenergy density w %(E (D + H [B), appear as consequences ofdlgmmetriexpression
for the Maxwell tensor when it is extended to the cégmlarizable media:

MY =-2 (H*Fi +F H}).
() La Mécanique ondulatoire du Photanll, pp. 132-136.

() Seefor example/'Electron magnétiquepp. 241, eq. (28).
() “Der Impuls-Energiesatz in der Diraschen Quantenthedft’ Phys49 (1928), pp. 860.
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Another fact that is remarkabke posterioriis this one: Although they are quite
different from each other, and even incompatilgiguations[ll] and[ll D] imply the
same continuity equatidivl 4] for the current | . Since the decomposition formula [V]
is recovered in Dirac’s theory as a consequence dd][lleq. 61 A IIl), moreoverthe
Gordon current Kis itself also conservatijieq. V13| (4).

By contrast, it results from what we said in Chaptiethat the expression for the
fictitious ponderomotive moment density that is appl@the statistical fluid by the field
is zero, which is a result that differs from the dhat is expressed by the classical
formula [VII].

Finally, one sees that classical electromagnetisinvéhat we calkelectromagnetism
according to Diracare two theories that are incompatialpriori. Meanwhile, they have
in common, as an independent basis element,fitee group of Maxwell-Lorentz
equations, as they are called. Some of the subsemlanbms are, as one must expect,
quite different from each other. However, one Wit that due to a very surprising fact
some of the more important subsequent relations arghercontrary, and at least
formally ), identities in both theories, so we shall contitmipursue the comparison.

22. On the total electric current in Dirac’s theory. — In anticipation of paragraph
Il, we say here that whether kinematically or dyiwaily, Dirac’s currentj', which is
time-like, must be associated with tkieematical currenor true currentof the statistical
fluid. Therefore, if Dirac’s theory must agree witlassical theory on that particular
point then it would seem that the Dirac currgnimust coincide with theelectric
convention currentand the Gordon curreid, with the total electric currentof the
statistical fluid. We shall now see that, on thetcny, several important arguments lead
one to associate tHgirac current | = ¢/*y' ¢ with thetotal electric current.

First of all, one knows that the chargee<{e.s.u., C.G.S.) of the electron must be
calculated by integrating the Dirac current, by virtuehefnormalization condition$)(

ij*w@uzl or —eﬂjw*w@uz—e

Now, it is quite clear that the measured charge is- the total charge (true charge +
polarization charge), which shows tljlatnust be considered to be the total currént In
the second place, Tetrode’s formula:

fi:akTik:akai:Hika,

which we shall establish in the following number, shovesudy thati' must be associated
with the total current when one compares it with tlesgital formula [lIl]. Finally, it is

) When the same argument is applied to the relatio\(B2), it will show that the magnetic current
quadri-vectol ' is conservative.

() Seebelow, end of na25,

() The “constant time” hyperplane of integration cuts Birac streamlines, which are time-like, once
and only once.

() Since the quantum e-is a universal constant, it is convenient to saylassical terminology, that
the possible variations of thieie chargeand thepolarization chargecompensate for each other.
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not until one addresses Darwin’s spherical globule thdwt it too will behave the same
way.

One knows that the equations of the Darwin globué arsolution of the Dirac
equation that is valid in the absence of a field and imthrerelativistic approximation.
One confirms that the Dirac current can then be deceetpinto a first term that is
orthogonal to the phase hyperplane, which is time-like,hend a second term that is
none other than the polarization current. One effatileserifies that, as the general
formula [62 (A) 1] would demand, the first term in questis the Gordon current)(
Furthermore, upon dividing the three terms of that iaealby (™, one will cause three
correspondingfictitious velocities to appear. One finds that the veloaitythat is
associated with the Dirac current is the sum of tlmgrvelocityv of the phase plane
and a velocityw” r that corresponds to a collective rotation of the gielff). Under
these conditions, it is completely natural to saghwarwin, that thetotal current J (or
u) is the sum of aranslation current k (or v) and acomplementary currenthat
corresponds to the polarization current from the edecagnetic viewpoint and to the
vorticity of the globule from the kinematical viewptinin sum, in that example, one
associates the notation ¢dtal kinematical currentto that of total electromagnetic
current However, in the general case, the Gordon cuidatnot necessarily time-like,
so it would seem difficult to associate it to a “sktion current.” On the contrary, the
“total kinematical current’j' is necessarily time-like, which permits one to always
consider it to be thBnal kinematical convection curre(@nd here, especially).

The final conclusion from the preceding seems to usetdhb following onein
Dirac’s theory, the total electromagnetic current coincides witte t(fictitious)
kinematical current of the statistical fluidhich is a situation that seems “revolutionary”
to us in comparison to the classical thealy (The Gordon current will then have no
strict equivalent in classical electromagnetic tjeoMoreover, from what was said in
the preceding number, the brutal fact of a “conflicttvieen classical electromagnetism
and “electromagnetism according to Dirac” is not sunpgisend one must expectat
priori.

25. Calculating the two divergences of the asymmetric tenso{ T} and {S*}. —
The differences between the two divergences consideesdravided in a very simple
manner by the relations [(61) B Ill] and [(61) A Ill]. Irebk taking into account the fact
that the divergences of the dual of a rotation aretidally zero, as well as the definition
of the quadri-vector I} in [(61) A IV], in the second case, the relations thegre
invoked will permit one to write:

() See for example)'Electron magnétiquepp. 170. In the non-relativistic approximation, anchwit
Dirac’s particular a', the Gordon current will have the expressie,[d"l¢, -¢ [0"y,, and

consequently, with the notations (6) and (10) of thelqiessagep v.

() Op. cit, pp. 178. The fact that one divides By = — ¢*y* in order to make the velocity
appear amounts fpostulatingthat the Dirac quadri-current can be put into the fprmou, j* = ico. As
for the velocitiess andw” r, their introduction by the indicated process seems artificial.

() This paradox cannot fail to have some relationshifnéoother paradoxes that were pointed out by
several authors. For example, we cite the absencsutial energy between currents and permanent
magnets. (P. JANETecons d’Electrotechnique génératel, pp. 84)
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(66) 0{T"} -0{ T} 9, 0{S"-0{ § 2 4}

It will then suffice to calculate the simpler of ttveo divergences of each tensor, which is
found to be the one that relates to seeond indeXmatrix index). It was precisely in
that manner that Tetrode calculated the two divergence$ iof his cited paper).

For theSchrddingerian parf } ' of the two tensors considered, one can write:

[Tl oty = {w 1V o o
=(pd Pow+woy By)-(wd Wow+yay By),
[S] {S"Y =0 {¢ 017 ¥
=(pd Fow+yd,y By)-(¢d Fow+yoy By).
The four expressionsijjz//, ... In [T] are provided by the Dirac equations (56);
similarly, the four expressionEijz//, ... In [S] are provided by the transformations:

{V'(@-ieA)+u, 7} w=0 and ¢ {-(@ +ieA)yV -1, 7} =0

of the Dirac equations, which served for us to ldstia the o] (pp. 62). In the
absence of the external quadri-potent@he also has:

__ o{T"}' =(0)-(0)=0, |
0{S" = (-2up'7ay)-(-2ug oyw) =- 20 {1},

ofT" =0, o{S" =- 2w {1}

In the presence of an external quadri-potentiglthe principle of the calculation is
the same, but one must take into account the coationtlaw for the operatord', 4',
andA'!. From a classical remark in wave mechanics, dhdawve:

JA -A9=0'AI-Al (0" -0')=0'A),
and similarly _ _ o
Al —9'AT=0'A],

in whichd' denotes then-notated operatomwhich acts only to its immediate right.
That being the case, the first parenthesig ifj fjives:

() “Der Impuls-Energiesatz in der Diracschen Quantentaedes Elektrons,” Zeit. Phyd9 (1928),
pp. 858. Tetrode’s formula (16) is equivalent to our [62 (B) |
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ey (OA -RY ) yy=iewypo'Al

The second parentheses will give the same result dulus, as well as in sign, by virtue
of a double change of sign in @7nd in (56). The calculation that relates 8] is
analogous, and one will finally have:

[67] AT ™ =2e(j) 0'AY, adS™ = -2 {I'} + Zie(q) 0 'A%
We similarly calculate the divergences of thieraction termg } " of {T} and {S"}.

If we take into account, on the one hand, the Diratticoity equation [(61) A 1], and on
the other, the Uhlenbeck-Laporte relation [(61) B V], thenwill get:

[67'] 0T " ==2icof A )} =2 i€ j) oA
ak{sik}":—z isai A( 0')} =2 /,.{)}|' "2 i€ qk <A

Finally, if one adds corresponding sides of'Jédhd [67] then one will see the
rotation ofA' appear; if one then takes into accountdégnition:

(68) H'=d A -0 A

of the prevailing field when one starts with the poten@as well as (66), which was
proved to begin with, then one can write:

0TV =0f{ T% =2 ieH{ ),
0{SY=0{ & 2 (4} =2 EH g,

(67)

In these very analogous formulas, the tens&¥$ &nd () have an electromagnetic
interpretation, while the tensor3 {} and (&) have a mechanical one. We then see that,
conforming to what was said before on the subjéth@quadri-potentiad, the fieldH *
plays a role that is perfectly symmetric with redpéo the electromagnetic and
mechanical properties, in such a way that therenasreason to qualify it with
“electromagnetic” more especially.

Remark.— We now give some indications about the mannexhich one directly

calculates the divergences of'¢ and {S*} on the first index (viz., the differential
index). For theéschrodingerian parf } ', for example, one will have:

HTY =0 @01V =9 oy dy-wd yoy+yyoy-vd Yy,
in such a way that, since the first two terms chreleat will be left is:

HTY =y Y y-ya vy and o{S}Y =y Vody-yI VY.
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The symbolsd; and 9, denote the Laplacians that act on the right and enleft,

respectively. Since the direct calculation of theedgences considered involves some
second derivatives, in order to complete them, one mesirt to the second-order
equation that is a consequence of the Dirac equationghelgeneral case where the
quadri-potentialA' is not zero, that equation will contain a factor tisatas one knows,
the fieldH* that was defined by (68), as well as the quadri-poteftid), moreover. If
one expresse®. ¢ and ¢*9; with the aid of that equation and iBordon-Pauli

transformthen one will see the right-hand sides of (67) appsanedl as the expressions

"

24. Relationships between Dirac’s theory and classicaleetrodynamics —
Formula (67%), into which the tensor§"} enters, whose significance is still unknown,
does not seem to be interpretable in the present state @&howledge. On the contrary,
formula (67) seems to be identical with Lorentz’s formula afssical electrodynamics.
In order to verify that, it will suffice to replacewith its value in (57), and to reestablish

the physical coefficien{:—h of the tensor T '} and ec of the quadri-vectoji [egs. (62)
Vs

and (623)]. One will get: _ _ _
(69) ak-l—kl — ak-l—lk - _ Hlk jk ’

which is, in fact, the Lorentz formuld)( by virtue of the dynamical formula (35). One
knows that in the cited paper Tetrode appealed to formulai6@jder to justify the

. . i . . . : . ... ich
interpretation ofT® as an inertia tensor and to fix the physical coeiﬁt:4c— of that
T

tensor. With the line of reasoning that we have adoptedthis work, the
electrodynamical formula (69_% seems, on the contrtaryhe a consequence of Dirac’s
theory, so the interpretation ®1 and the value of its physical coefficient will resiuim
the general principles of wave mechanics @). Then again, if one prefers, one can
attach it to the interpretation of the quadri-vectothanks to our theory of Chapter I
[egs. (37) and (63)].

One knows that Pauli had profited from the fact thattwo divergences of the tensor
T * were equal in order to symmetrize that tensor byrsp@):

eik — %(T ik +Tki),
which is a definition that allows the relations (69ptpreserved b@*. We pointed out

the significance of that operation in a note in Chaptemnd in the context of our theory
of media endowed with spin, and to us, it was somewHatrary. Here, we remark

() L. de Broglie|'Electron magnétiqueChap. X, egs. (6) and (30), pp. 132 and 141.

() La Relativité restreintepp. 40.

() Die allgemeinen Prinzipien der Wellenmechanik, B: Rekiische Theorien,” Handb. d. Phy&4
(1933), pp. 235.
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simply that the definition 0®* is more complicated than that ®f¢, since it contains
four terms instead of two.

Finally, from our dynamical theory of Chapter Il, aogl virtue of formula (63), the
fictitious proper ponderomotive moment density thatpigliad to the statistical fluid by
the field is identically zero, which is a result tli#ters from the one that was expressed
by the classical formula [VII]. That example of tpeoper ponderomotive moment
density seems to us to illustrate what we said about thergbwvee that would be
expected by the properties of the statistical fluid in ®&aheory and those of a
polarized medium in classical electromagnetism.

Il. — ON THE DIRAC AND GORDON CURRENT QUADRI-VECTORS AND
TETRODE'S ASYMMETRIC INERTIA TENSOR.

25. To begin with, we wish to see how the pseudo-clak$ieory of a continuous
medium that is endowed with not only a mass density arelextric charge density, but
also aproper kinetic moment density' and amagneto-electric moment density m
presents itself. The notion &ihematic velocitypr — what amounts to the same thing —
that of world-trajectories of a fluid is perfectly clear, and we know from a geaher
principle of relativity that the trajectories in questimust beime-like at each of their
points ).

From the dynamical viewpoint, and for a medium tlsaemdowed withdynamical
polarization in the sense of Chapter Il, we were led to introduceaddition to the
preceding congruence, which is called the current a second congruence that is called
thefalse current which is not necessarily time-like, and to defineakgmmetric inertia
tensorof the medium that is endowed with spin as the gepeoaluct of the two current
quadri-vectors [eq. (39)]. We then showed that in theutation of the finite mass-
impulse according to the formula:

= o,

in which the significant index must be that of thialse currentno. 15). Moreover, we
have previously shown that for reasons of a kinemaittre, thespin densityquadri-
vectoro' must be orthogonal to the true current [eg. (33)].

The classical electromagnetism of a polarized nmdiakes into consideration two
guadri-vectors of current density that are both conseejat addition to the latter ones.
One of them, which corresponds to the true charge, lisdcthe electric convection
currentand is tangent to the current of the kinematical silieas €), and thus, thérue
currentof our Chapter Il. The other one, which is not nealgstime-like and is called
the total electric current is the sum of the preceding one anéictitious polarization
currentd; nt'. It is obviously natural, but by no means necesaapyiori, to postulate
that the latter current must be tangent to our congeuehthefalse currentn Chapter II,
paragraph II.

() La Relativité restreintepp. 18.
(®) See above, n@l
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We shall now examine the extent to which these vargroperties are recovered
mutatis mutandisn Dirac theory; it is, of course, only Dirac theottyat we shall
investigate, independently of any appeal to classicalvitati

From the standpoint of electromagnetism, Dirac’®théntroduces two conservative
current quadri-vectors — viz., those of Dirac and Gordomhich are defined (up to a
factor) by:

(" =¢"y'w {K}= g [0l y-2ieA Ty~ y,

respectively. From the standpoint of dynamics, fromp&#all, paragraph II, and from
what we just said, we expect to recover these twaentiquadri-vectors in the expression
for the Tetrode asymmetric inertia tensor:

{Th=y¢ [0 Vy-2eA Ty Yy

We immediately see that the operators that entertive definition ofT ! are indeed the
ones that we hoped for, and even that the secondnéima Tetrode tensor is, in fact, the
general product of the Dirac current with the second tarthe Gordon current, in the
ratio (a) = ¢ ¢.

In order to see whether our formula (39) is satisfiedad, we must examine whether
the expression:

w1V - 0y Yy

IS or is not zero, respectively. The response, whicleggtive, is provided by the Kofink
identity (54), which gives the values of that expressionjs (

Qo' (M) + (@) a'(d)=-a"(G)M)-0'(w) (o).

Therefore, the relationship of the Tetrode tensohéotivo Dirac and Gordon currents is
apparently the one that we predicted qualitatively, but cgpa&irgly, it is less rigorous:
The Tetrode inertia tensor is not a general product of the two quackonge In Dirac’s
theory, there is a new situation that is quite “revohary” with respect to the classical

theories: It results from what was just said thatitiegral HJT” ou; will no longer be

zero when it is taken over the hyper-wall of the kinioal world-current, and that there
exists no hyper-wall that will enjoy that property, eith Now, the vanishing of the
integral in question is absolutely necessary forctassicalinterpretation of the quantity
fi (ponderomotive force densityp, (finite mass-impulse), an@l’ (mass-impulse tensor
(®). It follows that the interpretation of Tetrodetsrihula (71) is less clear than it first
seemed to be, and that one can hardly infer anythingstbatter than a formal argument.

26. However, abstracting from the latter group of diffimdf it still remains
permissible for us to demand to know to what degree the pexpef the two quadri-

() The same conclusion can be inferred from the ideii8, ), from which, the contracted produict

jx is congruent to not only the Gordon currkinbut also to thenagnetic current 'l (pp. 56).
() La Relativité restreinteno.23, pp. 50.
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vectorsj' andk' conform to the ones that the classical considerstif the preceding
number predicted. _

From the kinematical standpoint, the Dirac currehtsj time-like as the positive-
definite expression:

(Y =¢Yy=iwy

shows, or even the Pauli identity g3 As one can say nothing about the Gordon current
K, we see that the Dirac current plays the fictitisak of kinematical current or
ordinary currentof the statistical fluid.

From the dynamical standpointhe Pauli identity (4J shows that the spin density
quadri-vectorg' is orthogonal to the Dirac current without being ablesay anything
about the Gordon current. Moreover, from the germiatiples of wave mechanics, the
“virtual” dummy index in the calculation of the probableanemass-impulse is that of
the operatoy’ of the Dirac current, or — what amounts to the sdrimgt- the significant
index is that of the operatord | andA' of the Gordon current [egs. (26) and (27)]. By
virtue of what we said in Chapter Il, these two critertmverge to each other, and
converge with the preceding kinematical criteria in saciay as to associate the Dirac
current with ourtrue current or world-current in the usual sense. So far, everything
points to the agreement with pseudo-classical theoryubdiave expected.

From the standpoint of electromagnetjswe saw in no21 that it is appropriate to
associate the Dirac current with thatal electromagnetic currentwhereas from the
preceding, one would expect to associate it witheleetromagnetic convection current.
We have already remarked how paradoxical that resudtnd suggested that cannot be
lacking in some relationship to certain curious remarks dha due to several authors.
Under those conditions, we would see incorrectly whatdlassical equivalent of the
Gordon current would be in a coherent density theorydo#is not seem to us that a
general conclusion could be drawn from the fact thatahifests itself like #&ranslation
currentin the theory of the Darwin globule.

General conclusion that relates to the inertia tensoFrom the entire collection of
facts and properties that were encountered in the cotithés work, we believe that we
can conclude formally thathe true inertia tensor of Dirac’s theory is not Pauli’'s
symmetrized tens@®*, but Tetrode’s original asymmetric tensdf that was defineéh
equation (26) of Chapter I. We shall now recapitulabsé facts and properties:

1. The definition in question is the one that the gan@inciples of wave mechanics
impose when one starts with the definition (15) of thertial mass-impulse quadri-
operator (no8).

2. The probable mean value of th@al kinetic moment, when expressed as a
function of the Pauli tens®™ is of orbital typeformally; in order to decompose tteal
momentum into arrbital momentum and @roper momentum, one must utilize the
Tetrode tensof * (no.12, 8).

3. Although the relationship between the Tetrode temdoand the current quadri-
vectorsk' andj* is not as close as the one that we predicted in nuirfhéhe qualitative
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resemblance between the two definitions (39) and [(60) B tgal, and we have can use
it in an argument.

4. In the course of the calculation, it is alwaye tiensorT k and never the
symmetrized tensa®* = 1 (T + T*), that appears “spontaneously”: One sees that in the

context of the Kofink identities (3}, (51), (52) and (54), the Franz relations [(61) B 1]
and [(61) B Ill], and finally, in the calculations theative at the double result (71).

Remark.— In the absence of an external potential, the D&goations admit
monochromatic plane waves as solutions. Since trec@ind Gordon quadri-vectors are
then collinear with each other and collinear with thevevrays, they will both be time-
like. The proper mass-impulse quadri-vector of the aeactwhich is therefore well-
defined and collinear with the rays, is likewise time|{!). Finally, the Tetrode tensor
T will be symmetric in that particular case.

One can read off that double group of results from forsn[{l), A Il] and [(61) B
lll], since the density tensors will be constant in @il space-time in the case of a
monochromatic plane wavé) (

() L. DE BROGLIE,I'Electron magnétiquepp. 162 to 166.
() In the same manner, one can read off from (61),¥ample, that the invariant), as well as the

quadri-vectors K} (magnetic charge-current density) ar{dl(il)} , will be annulled in the case of a
monochromatic plane wave.
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