
“Sur la théorie des moments cinétiques propres en Relativité Restreinte,” J. math. pures appl.  21 (1942), 
267-275. 

 
On the theory of proper kinetic moments in special relativity (1) 

 
By OLIVIER COSTA DE BEAUREGARD 

 
Translated by D. H. Delphenich 

 
_________ 

 
 

 1. One knows that one of the elements of the success of Dirac’s theory is the 
attribution of a proper kinetic moment to the electron, which is a moment whose three 
components are represented in the quantum manner by the matrices: 
 

Su = −
4

h

iπ
αv αw . 

 
(u, v, w denote a circular permutation of the spatial indices 1, 2, 3.)  The Su are found to 
be the spatial components of a matrix world-vector whose temporal component is: 
 

S4 = −
4

h

iπ
i α1 α2 α3 . 

 
 That fact is paradoxical, since a kinetic world-moment must have the variance of a 
second-order antisymmetric tensor.  Like Louis de Broglie (2), it is easy for one to find 
the origin of the difficulty: The kinetic moment of an extended body is defined in the 
classical manner for simultaneous states.  It then follows that the kinetic moments of the 
same body, as defined in two different Galilean systems do not belong to the same tensor.  
In a general manner, if one considers a continuous medium and a certain finite quantity 
that is attached to that medium and represented by the integral of a complete differential 
form that refers to the corresponding density then the definition of the quantity considered 
will be a function of the individual instants at which the various “molecules” (3) are 
taken (4). 
 Always following the principles of quantum mechanics, Dirac’s theory attributed a 
proper kinetic moment density to the probability fluid that was represented by a space-
like quadri-vector σi , which was a result that Louis de Broglie likewise justified in the 

                                                
 (1) We have extended and improved our theory since the time when the present article was edited.  We 
intend to present it in its definitive form in a later work. 
 (2) “La variance relativiste du moment cinétique d’un corps en rotation,” J. de math. 15 (1936), 89.  
 (3) In a continuous medium, we use the word “molecule” in the sense of geometric point of the fluid that 
follows its motion.  
 (4) There is an exception in the case of electric charge: Electric charge is a conservative invariant.  
However, that situation is due solely to the existence of a continuity equation. 
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case of a rotating solid.  In Dirac theory, one can show, in a general fashion, that the 
quadri-vector σi is orthogonal to the world-current. 
 The essential objective of this paper is to discuss and justify those various results 
from the classical viewpoint; we no longer take a rotating solid, like Louis de Broglie, but 
a continuous medium that we assume, by hypothesis, is endowed with a proper kinetic 
moment density.  We shall then show that the quadri-vectorial character (5) of the density 
σ is a consequence of some very general postulates, and one new postulate that is 
extremely natural in the relativistic kinematics of continuous media and implies that the 
latter quadri-vector has the property of being orthogonal to the world-current. 
 One knows, and we shall recall this fact, that classical dynamics denies the existence 
of a proper kinetic moment density.  Since the proper kinetic moments (or else the 
corresponding densities) have been imposed by experiments, it seems that there would be 
some interest to enlarging the concepts of dynamics on that particular point.  Now, the 
purely formal relativistic argument that we shall give will show that this involves some 
real difficulties.  Indeed, it seems that the negative result to the question has very deep 
roots, and that its true cause is of kinematic order.  In other words, although one cannot 
assert with full rigor that the problem is insoluble, one can at least conclude that in the 
study of proper kinetic moments, classical continuum physics is very close to its limits of 
possibility. 
 In our study, u, v, w will denote a circular permutation of the spatial indices 1, 2, 3, 
and i, j, k, l is an arbitrary permutation of the world indices 1, 2, 3, 4. 
 
 
 2. Review of some results from elasticity and pre-relativistic dynamics. – In a 
stressed elastic medium, let Tuv be the nine coefficients that express the vector of 
elementary surface tension δTu as a function of the corresponding elementary area 
(elastic tensor): 

δTu = Tuv dsν. 
 

Now, integrate this over a closed area and transform it into a triple integral.  What will 
appear is the volumetric density of elastic force fu : 
 

(1)     Tu = v
uvT uδ∂∫∫∫  .u uvf Tν= ∂  

 
 Similarly, take the surface force moment with respect to the origin, integrate it, and 
transform it.  What will appear is a proper ponderomotive moment density of elastic 
origin µuv : 
 

 ( ) w
uw v vw uT x T x sδ−∫∫  

 = ( ) ( )w u w w
v uw u vw uw v vw ux T x T u T x T x uδ δ∂ − ∂ + ∂ − ∂∫∫∫ ∫∫∫  

                                                
 (5) In orthogonal Cartesian axes of equal measure (up to an arbitrary sign), there is no difference 
between a quadri-vector and a third-order completely-antisymmetric tensor.  In reality, the Dirac spin 
density is a third-order antisymmetric tensor. 
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 = ( ) ( )u v v u uw vwf x f x u T T uδ δ− + −∫∫∫ ∫∫∫ , 

 

.uv uv vuT Tµ = −  

 Therefore: 
 
 (A)  Elasticity establishes the possibility of the existence of a proper ponderomotive 
moment density, which is represented by a second-order antisymmetric tensor and which 
will be annulled when the elastic tensor is symmetric. 
 
 Now take the equations of the dynamics of continuous media; fu denotes the total 
inertial force density, vu is the fluid velocity, and ρ is its density.  One can write: 
 
(3)      fu = ∂v (ρ vu vv) + ∂ 4 (ρ vu). 
 
Hence, the inertial force density is the sum of a term of elastic form that derives from a 
symmetric tensor ρ vu vv , and a term ∂ 4 (ρ vu) that is reducible to that – i.e., it is properly 
volumetric.  Consequently, dynamics asserts that the proper inertial force moment 
density is identically zero, and by virtue of d’Alembert’s principle, when it is applied to 
moments: 
 
 (B) The same thing is true for the proper ponderomotor moment density. 
 
 Moreover, it is easy to confirm that result in the following manner: Take a spherical 
droplet of radius r in a continuous medium and follow its motion; its moment of inertia is 

8
15 πρ r3, and its angular velocity is 1

2 rot v⋅
������

.  Its kinetic moment is then a fifth-order 
infinitesimal, which does not allow us to define proper kinetic moment density.  In other 
words: 
 
 (C) Dynamics denies the existence of proper kinetic moment density. 
 
 Now, the existence of proper kinetic moments at the atomic scale is manifested by 
gyromagnetic experiments, for example.  It would seem interesting to enlarge the 
classical concepts of continuum physics in such a manner as to attribute a density of 
proper kinetic moment to matter.  Similarly, the existence of a proper kinetic moment for 
the electron is manifested by spectroscopy, while quantum mechanics utilizes a proper 
kinetic moment density as an intermediary in space-time calculations, and it would be 
interesting from the purely relativistic viewpoint to justify its properties. 
 Indeed, we shall be able to show that the properties of Dirac’s density σ are imposed 
by the relativistic formalism as necessary consequences of very general postulates that 
almost impose themselves (no. 5).  Moreover, one sees that the negative results (B) and 
(C) of pre-relativistic theory have a very deep origin, and that expanding upon that point 
will not be simple in the old dynamics (no. 4). 
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 5.  Relativistic determination of the properties of the proper kinetic moment 
density. – In finite form, the relativistic variance of a kinetic moment C will result 
unambiguously from the considerations of a material point whose coordinates are xi and 
whose mass-impulse is pi ; indeed, from the old dynamics, one can only be dealing with 
the antisymmetric tensor: 
(4)     C ij = p i x j – p j xi (i, j = 1, 2, 3, 4), 
 
whose three components Cuv represent the kinetic moment, properly speaking, with 
respect to the spatial origin (u, v = 1, 2, 3). 
 As for the three C4u, their interpretation is simple if one replaces x4 and the p i by their 
values ict and p u = mv u, p4 = imc, resp. ; indeed, one will have: 
 
(4′)     C 4u = icm (x u – v u t), 
 
and one will see that this amounts to the barycentric moment with respect to the origin, 
generalized by the hypothesis of non-simultaneity, up to a factor.  In particular, for 
infinitely-small t, one recovers the usual barycentric moment at time zero (− vu dt then 
represents a “correction from non-simultaneity”). 
 That being the case, we know that we must obtain a second-order antisymmetric 
tensor δCij by suitably multiplying the unknown components of the density σ by the 
generalized volume element [dxi dxj dxk]; the component [dxu dxv dxw] represents the usual 
pure volume, while the other three can be considered to be generated by a change of 
Galilean frame.  Conversely, one can then give an arbitrary non-simultaneous state of a 
set of fluid molecules by taking an arbitrary hypercap to a current world-tube that is 
restricted only by the demand that it must be everywhere space-like.  Indeed, it is 
obviously necessary that local simultaneity can be insured in a suitable Galilean frame, 
which is, in fact, true thanks to the preceding condition: The local simultaneity system is 
then one whose temporal axis is orthogonal to the hypercap at the world-point 
considered. 
 One then sees that the unknown quantity σ is necessarily a tensor, whose order n must 
be determined, along with any possible symmetries.  Let m be the number of its dummy 
indices, which much saturate certain indices of [dxi dxj dxk], and let s be the number of its 
significant indices.  The three integers n, m, and s are essentially positive and equal to at 
most 4, and one can write down the homogeneity relations: 
 
 2 = (3 – m) + s or m = 1 + s, 
 m + s = n or n = 1 + 2s, 
 
For s = 0, one will have m = 1, n = 1, 
  “ s = 1, “ m = 2, n = 3; 
 
One discards the hypothesis s = 2, since it will give n = 5. 
 Therefore, the density σ – if it exists (Postulate I) – is necessarily a tensor of order 1 
or 3. 
 We first study the first hypothesis.  It is written: 
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(5)     δCij = σk [dxi dxj dxk], 
 
and thanks to that formula, the antisymmetry of the tensor product δC is guaranteed for 
any choice of trilinear integration element, which is obviously necessary a priori.  
Moreover, one sees that under the hypothesis of simultaneity, by which, only the 
component [dx1 dx2 dx3] is non-zero, one will recover the usual definition of a vector 
density for the density σ, in the sense that: 
 
 1. The three components δCuv of the kinetic moment, properly speaking, involve 
only one term in their expression, namely, σ w. 
 
 2. The three components of the barycentric moment δC 4v are zero. 
 
 If one introduces the complements ic δBij and ic δui of the two antisymmetric tensors 
that enter into (5) then one will have the new notation: 
 

(5′)     .kl k l l kB u uδ σ δ σ δ= −  

 
 Now, take the hypothesis n = 3 and postulate that: 
 
 (II)  The antisymmetry of the tensor product must remain insured for any choice of 
trilinear integration element. 
 
 We are then obliged to adopt, not just the simple contracted product over two indices, 
but the classical combination: 
 
(5″)   j

iBδ = 1
2 { σjkl [dxi dxk dxl] − σikl [dxj dxk dxl]}. 

 
 We then postulate that: 
 
 (III)  Under the hypothesis of simultaneity, the character of being a spatial vector 
must be recovered for the density σ. 
 
 We remark, in turn, that for a given pair of dummy indices, each of the non-zero 
terms in the preceding expression is, in reality, the sum of two terms that are generally 
different and correspond to the permutation of those indices in σ.  Consequently, our 
postulates already impose the antisymmetry of the tensor σ in the two dummy indices, 
which is a necessary and sufficient condition for the two terms under consideration to 
always be equal.  One can then group them together and neglect the coefficient 1/2 .  
Always under the simultaneity hypothesis, that will permit us to write (the summation 
convention is not used, and u, v, w denotes a circular permutation of the spatial indices 1, 
2, 3): 

δBuv = 1
2 (σvvw + σuuw) [dx1 dx2 dx3],  δBw4 = σ4uv [dx1 dx2 dx3]. 
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 We then once more bring postulate (III) into play.  By virtue of an intrinsic property 
of the tensor σ, it is necessary that one of the two groups of components that must be 
written should be zero, and that the other one should include only one term in its 
expression.  The second group cannot be zero, since the components σuuw and σvvw would 
always have to be equal to each other then, which is possible only if they are zero: The 
tensor σ will then be identically zero, which is an unacceptable hypothesis.  One must 
then have that the σ4uv are non-zero, but the σvvw are always zero: That will be possible 
only if the tensor σ is antisymmetric with respect to the first two indices.  Finally, the 
tensor σ must be completely antisymmetric, in such a way that the notation (5″) must 
agree with the notation (5′), with the corollary that the barycentric moment is zero under 
the hypothesis of simultaneity. 
 Now, add to the preceding postulates: 
 
 (IV)  The necessity of recovering the character of the quantity σ being a spatial 
vector in the comoving Galilean frame. 
 
 We see that the component σ4 must be annulled in that system; i.e., the quadri-vector 
σ must be orthogonal to the world-current: 

(6)     σi dxi = 0 or 4 ( ).
i

c
σ = ⋅ vσσσσ  

 
(σσσσ denotes the spatial vector that has the three σu for its components, and v denotes the 
fluid velocity in its usual sense.) 
 One knows that in Dirac’s theory, the density σ is a third-order antisymmetric tensor, 
and that the relation (6) is effectively verified.  Finally, we have indeed recovered the 
entire set of properties of the Dirac density σ by means of the four general postulates: 
Existence (I).  The arbitrariness of the trilinear integration element (II).  The vector 
density recovered in the simultaneity system (III), and in the comoving system (IV). 
 
 
 4.  Study of the hypercap integral.  The proper ponderomotive moment density. 
– It is necessary that we complete our study in the following manner: We take the triple 
integral of the expression (5′) over the particular domain that is composed of two 
different hypercaps that relate to the same molecules and the hypercap of the 
corresponding current world-tube.  Indeed, in order to assert that the set of two hypercap 
integrals indeed represents the variation of the kinetic moment-barycentric moment of the 
same fluid drop, it is necessary that we know how to interpret the triple integral over the 
hypercap, and also the quadruple integral that is obtained in the right-hand side by 
transformation. 
 By hypothesis, the trilinear element of the hypercap contains the quadri-vector 
element of the trajectory dxi ; it is therefore everywhere time-like.  In order to arrive at the 
definition, one takes two elementary space-like quadri-vectors 1

iuδ  and 2
iuδ , in such a 

way that its various components will be the determinants that one extracts from the table: 
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1 2 3 4
1 1 1 1
1 2 3 4
2 2 2 2
1 2 3 4

x x x x

x x x x

dx dx dx dx

δ δ δ δ
δ δ δ δ . 

 
It is even clear that the exterior product of the quadri-vectors 1

ixδ  and 2
ixδ  represents the 

generalized area element of the fluid drop along its motion, where the three components 
in (u, v) correspond to the area, properly speaking, and the three components in (w, 4) can 
be considered to be generated when one makes a change of Galilean frame (6). 
 If one introduces the tensor ic δsij that is complementary to the preceding exterior 
product then one can confirm that the trilinear element of the hypercap will take the 
contracted form: 

δu j = δs ij dxi , 
 

in which ic δsu4 represents the usual area.  On the hypercap, one then has: 
 
(7)     δBkl = (σk δsil – σl δsik) dxl , 
 
by virtue of (5′), and thanks to that formula, the antisymmetry of δBkl will remain insured 
automatically. 
 The most essential fact upon which we must insist is that the vanishing of the 
hypercap integral is not insured automatically when one takes into account the relation 
between the density σ and the element of the world-trajectory [viz., formula (6)] (7).  
Under those conditions, we shall successively envision several hypotheses. 
 
 Hypothesis 1: The hypercap integral is zero for any hypercap. 
 
 That amounts to saying that things must take place in our present problem as they do 
in the classical problems of electric charge and mass-impulse. 
 Take two planar hypercaps that are perpendicular to the time axis and infinitely close 
in time, integrate over them, and transform the integral into a triple integral.  On the left-
hand side, one has the variation of the kinetic moment-barycentric moment, and one can 
write: 

(8)     dBkl = ( )l k k ldt uσ σ δ∂ − ∂∫∫∫  

 
after introducing the product δu ⋅⋅⋅⋅ dt of a pure volume with a pure time on the right-hand 
side, so the three components µ uv of the complement µ ij to the world-rotation of the 
density σ represents the proper ponderomotor moment density, which is clearly 
consistent with the result in elasticity (A) [formula (2)]: 
                                                
 (6) By a formula that is identical to the one that is known by the name of the Frenkel formula in 
relativistic electromagnetism. 
 (7) Indeed, one knows that in the problem of electric charge, the vanishing of the hypercap integral will 
result from the collinearity of the charge-current quadri-vector density with the element of the world-
trajectory dxi, and that the same thing will be true in the problem of mass-impulse by virtue of the 
proportionality of the material tensor with the symmetric tensor dxi dx j. 
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(9)     µ uv = 
1

ic
(∂4σw − ∂wσ 4). 

 
Formula (9) is completely analogous to the classical formula (1): In both cases, the 
ponderomotor density is a derivative of the inertial density. 
 Unfortunately, not all of these satisfying results can be realized in fact.  Indeed, to say 
that the integral (7) must be identically zero is to say that the density σ must be 
identically zero.  We then get back to the negative results (B) and (C) of dynamics, but 
special relativity has the advantage of showing us that these results have a basically 
kinematical origin: The hypothesis of the vanishing of the hypercap integral has only 
reduced us to the classical case, since it is sufficient to imply the positive result (A) and 
the negative results (B) and (C). 
 
 Hypothesis 2: The hypercap integral is non-zero, but the quadruple integral is 
identically zero. 
 
 This makes the hypothesis that is expressed by: 
 
(9′)      ∂ jσ i − ∂ iσ j  = 0 
 
seductive a priori, since it is the one that permits us, in principle, to replace the defective 
notion of volumetric density of ponderomotor moment with that of surface density.  
Indeed, if we introduce the fluid velocity into (7) then we can include the time interval dt 
as a factor, in such a way that the coefficients of the δsij ⋅⋅⋅⋅ dt will be the components of the 
surface density of the proper ponderomotor moment. 
 Unfortunately, one again bumps into a difficulty that is entirely analogous to the 
preceding one.  Indeed, if one specifies the expressions for our density under the 
hypothesis of simultaneity (viz., δsuv ≡ 0) then one will have 
 

(10)  4 4
4

( ) [ ] ,

,

{ ( ) ( ) } [ ( )]

uv u v u

u u u

u u

B s s dt dt

ic B s dx s dx

s dt dt

ν

ν
ν

ν

δ σ δ σ δ δ
δ σ δ σ δ

σ δ δ δ

 = − = − ∧
 = +
 = ⋅ − ⋅ = ∧ ∧

s

s v v v s

σσσσ

σ σσ σσ σσ σ
 

 
for the hypercap integral, and since the δBuv of a hypercap are identically zero (always 
under the hypothesis of simultaneity), one can conclude that: 
 
(10′)     σσσσ ^ δs = 0, 
 
and as a result, that the σ i must be zero.  The present hypothesis, just like the preceding 
one, thus serves to deny the existence of proper moments. 
 
 Hypothesis 3: The hypercap integral and the quadruple integral are non-zero. 
 
 It results from the preceding that this hypothesis is necessary in order to preserve the 
existence of proper moments.  Moreover, it agrees with Dirac’s theory, in which the 
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quadri-vector σ is not irrotational.  However, one cannot interpret it from the classical 
standpoint.  Indeed, the disappearance of one or the other of the preceding restrictions 
will convert the transformation of the triple integral into a quadruple integral into a pure 
tautology, which will not permit us to define a proper ponderomotor density.  Having 
done that, the notion of proper kinetic moment density would make no sense from the 
classical viewpoint: In order to justify it, we must appeal to a hypothesis that is foreign to 
both pure kinematics and traditional dynamics; i.e., a hypothesis that is completely 
artificial in our present state of understanding. 
 Since progress in that understanding takes place very neatly in the quantum sense, the 
wisest thing to do is probably to conclude that the preceding study makes one feel that the 
possibility of explaining things by means of the old continuum mechanics is indeed 
limited, at least for one particular point. 
 
 

____________ 
 

 
 


