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 This brief work was brought to light for the first time, accompanied by a memoir of 
my friend FELICA CASORATI, on the solemn occasion that was a family celebration for 
the friends of the director of the Milanese Polytechnic Institute (1 June, p. p.).  It has now 
been reprinted without additions, except for some minor corrections, in a more modest 
edition for the convenience of younger students at the institute that must pursue a course 
of graphical statics. 
 The purpose of these few pages − namely, the use of geometric methods to determine 
the tensions and pressures in trusses that are subjected to external systems of forces − will 
have merit in a more substantial study.  In fact, it was my intention to follow it with a 
second part that would be printed on the occasion of some later date.  But even now the 
implementation of that proposal is impeded by other obstacles, so I am forced to 
postpone that to another occasion. 
  
 Milan, 12 August 1872. 
 
  L. C. 



 

1. 
 

 The theory of reciprocal figures in space that are deduced from the consideration of a 
system of forces that are applied to a free, rigid body is well-known.  An infinite axis 
passes through an arbitrary point M in space, with respect to which the moment of the 

system is zero, and the geometric locus of those axes will be a plane µ that MÖBIUS (*) 
called the null plane of the point M.  Conversely, an arbitrary plane µ will contain an 

infinitude of axes of zero moment, all of which will intersect at the same point M, which 

MÖBIUS called the null point of the plane µ.  The null point and null plane can also be 
called the pole and polar plane. 
 In that way, any point M in space corresponds to a plane µ that passes through M, 

and conversely, any plane µ will correspond to a point M that is situated in µ.  If the pole 

M moves in a given plane α then the polar plane µ will constantly pass through a fixed 

point A that is the pole of α; conversely, the locus of the poles of all planes that pass 

through a point A will be a plane α that is the polar to A. 

 If the pole traverses a line then the polar plane will rotate around another line.  Two 
lines can then be called conjugate or reciprocal when they are, at the same time, the loci 
of the poles of the planes that pass through the other one and the envelope of the polar 
planes of the points of the other one.  One knows that the given system can be reduced to 
two forces in an infinitude of ways.  If one chooses the line of action of one of them 
arbitrarily then the line of action of the other one will determined uniquely, since the two 
lines of action must be conjugate lines. 
 
 

2. 
 

 The poles that correspond to a pencil of parallel planes are the points of a line with a 
well-defined direction.  That is, a line at infinity is conjugate to a line whose point at 
infinity I is the pole of the plane at infinity.  In that way, all pencils of parallel planes 

will correspond to all (mutually-parallel) lines that pass through I.  Among these lines, 

there is one that is perpendicular to the corresponding pencil of parallel planes, and which 
is called the central axis of the system. 
 In other words: Any line that is parallel to the central axis will have its conjugates at 
infinity.  Any plane that is parallel to the central axis will have its pole at infinity. 
 
 
 
 
 

                                                
 (*) “Ueber eine besondere Art dualer Verhältnisse zwischen Figure im Raume,” in Crelle’s Journal 10 
(1833), 371, Berlin; also Lehrbuch der Statik (Leipzig, 1837), v. I, pp. 144.  Cf., STAUDT, Geometrie der 
Lage (Nürnberg, 1847), pp. 191. – BRIOSCHI, Statica dei sistemi di forma invariabile (Milan, 1859), pp. 
38. – See the note at the end of this work. 



Cremona – Reciprocal figure in graphical statics. 2 
 

3. 
 

 Two arbitrary conjugate lines enjoy the following property: Their minimal distance is 
a line that cuts the central axis orthogonally.  As a result: 
 
 If one projects the two reciprocal lines parallel to the central axis and over a plane 
that is perpendicular to that axis then the two projections will be parallel lines. 
 
 

4. 
 

 One easily recognizes that: 
 
 1. Several lines r in space whose projections coincide in just one line correspond to 

the line r′ whose projections are coincident or parallel, according to whether the r (which 

are necessarily contained in a plane that is parallel to the central axis) are or are not 
parallel, respectively. 
 
 2. Several lines r in space whose projections are parallel correspond to lines r′ 
whose projections are coincident or parallel, according to whether the r (which are 

necessarily parallel to the plane of the central axis) are or are not parallel, respectively. 
 
 

5. 
 

 Suppose that the central axis is horizontal, and call a plane of projection orthographic 
when it encounters the central axis at its pole.  If one puts the origin of the axes of the 
rectangular coordinate system x, y, z at that point, the last of which will coincide with the 
central axis then the foregoing law of reciprocal correspondence will be expressed in the 
following formulas: The point x1, y1, z1 is the pole of the plane: 
 

xy1 – yx1 + k (z – z1) = 0, 
 
where k is a constant.  Conversely, the plane: 
 

ax + by + cz + d = 0 
will correspond to the pole: 

x = − 
kb

c
,   y = 

ka

c
,   z = − 

d

c
, 

and the line: 
 ax + by + c  = 0, 
 px + qy + rz  = 0 
will be conjugate to the other line: 
 ax + by + c′  = 0, 
 px + qy + r′z  = 0, 
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where 
rc′ = r′c = k (aq – bp). 

 
___________ 

 
 

6. 
 

 Call two polyhedra reciprocal when the vertices of the first one are the poles of the 
faces of the second one, just as the faces of the first one will be portions of the polar 
planes of the vertices of the second one, and the edges of one will be the conjugates of 
the edges of the other. 
 Since any pole must lie in its respective polar plane, each of the two polyhedra will be 
simultaneously inscribed and circumscribed by the other one.  For example, let A, B, C, 

D be the vertices of a tetrahedron and let α, β, γ, δ be the faces of the reciprocal 

tetrahedron.  The planes α, β, γ, δ  pass through the poles A, B, C, D, respectively, and 

the vertices βγδ, γαδ, αβδ, αβγ lie in the polar planes BCD, CAD, ABD, ABC, 

respectively. 
 Now, project the two polyhedra onto the orthographic plane; the projections will be 
two figures that are endowed with the reciprocal property.  Any side of the first figure 
will correspond to a parallel side of the second one, since two corresponding sides will be 
the projections of the conjugate edges of the two polyhedra.  If a polyhedron has a solid 
angle in which m edges are concurrent at its vertex then the other one will have a 
polygonal face with m sides.  Meanwhile, consider the two orthographic figures such that 
there are m edges on one of them that diverge from a point or node, so the m 
corresponding edges of the other one will be the edges of a closed polygon. 
 Any edge of a polyhedron is common to two faces and links two vertices.  Any face 
has at least three edges.  Therefore, in each of the two orthographic figures, any edge will 
be common to two polygons and conjugate to two nodes, while at least three edges will 
be concurrent at any node, just as any polygon will have three or more edges. 
 Suppose that one of the polyhedra, and therefore, the other one, as well, is simply-
connected, so the sum of the numbers of vertices and faces is greater by 2 than the 
number of edges, according to the EULER’s celebrated theorem.  Therefore, if the first 
orthogonal figure has p nodes, p′ polygons, and s edges then one will have: 
 

p + p′ = s + 2. 
 

The second one will have p′ nodes, p polygons, and s lines. 
 
 

7. 
 

 If the one polyhedron has a vertex at infinity then the other one will have a face that is 
perpendicular to the orthographic plane, and conversely.  Namely, if one of the two 
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orthographic figures has a vertex at infinity then the other one will contain a polygon 
whose edges all fall along the same line, and conversely. 
 If the point I at infinity on the central axes is the common vertex of n faces of the 

first polyhedron then the other polyhedron will have a polygonal face with n edges in the 
plane at infinity.  In that case, the first orthographic figure will have p – 1 nodes, p′ − n 
polygons, and s – n lines, and the second one (if one ignores the line at infinity) will have 
p – 1 polygons, p′ − n nodes, and s – n lines, where the numbers p, p′, s are again 
intended to obey the relation p + p′ = s + 2. 
 
 

8. 
 

 These reciprocal diagrams that are obtained as the orthographic projections of two 
reciprocal polyhedra are encountered by a direct path in graphical statics.  The 
mechanical property of reciprocal diagrams is expressed in the following theorem, which 
is due to the illustrious prof. CLERK MAXWELL (*): 
 
 “If forces represented in magnitude by the lines of a figure be made to act 

between the extremities of the corresponding lines of the reciprocal figure, then 
the points of the reciprocal figure will all be in equilibrium under the action of 
these forces.” 

 
 The truth of the theorem is made immediately obvious when one observes that the 
applied force at an arbitrary node of the second diagram is parallel and proportional to the 
edges of a closed polygon in the first diagram.  The theorem is primarily useful when one 
applies it to the graphic determination of the internal forces in reticulated trusses. 
 
 

9. 
 

 The first germs of this theory can be found in the property of the force polygon, in 
which edges represent a system of forces in magnitudes and directions that are applied to 
a point and equilibrated, and that well-known geometric construction that given the 
tensions in the edges of a planar funicular polygon.  However, the one who fist applied it 
to the reticulated truss was prof. MACQUORN RANKINE, who, in article 150 of his 
excellent Manual of applied Mechanics (1857), proved the theorem that: 
 
 “If lines radiating from a point be drawn parallel to the lines of resistance of the 

bars of a polygonal frame then the sides of any polygon whose angles lie in those 
radiating lines will represent a system of forces, which, being applied to the joints 
of the frame, will balance each other; each such force being applied to the joint 
between the bars whose lines of resistance are parallel to the pair of radiating lines 
that enclose the side of the polygon of forces, representing the force in question.  

                                                
 (*) Philosophical Magazine, April 1864, pp. 258.  
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Also, the lengths of the radiating lines will represent the stresses along the bars to 
whose lines of resistance they are respectively parallel (*).” 

 
 Much later (** ), the very same RANKINE published an analogous theorem for 
polyhedral frames. 
 

10. 
 

 However, the geometric theory of reciprocal diagrams is properly due to prof. 
CLERK MAXWELL, who first gave their general definition and deduced the projection 
of two reciprocal polyhedra from them in 1864 (*** ) and then once more on 1870 (**** ).  
However, the polyhedra of that author are reciprocal in the sense of PONCELET’s theory 
of reciprocal polar figures, relative to a certain paraboloid of rotation, in such a way that 
the projections (orthogonal and parallel to the axis) of the corresponding edges are not 
parallel, but perpendicular to each other.  Therefore, one of the diagrams must be rotated 
through 90o in its plane in order to assume the position it is required in the static problem.  
By contrast, with the method that I propose, the orthographic projections of two 
reciprocal polyhedra are given without any other diagrams that are obtained from 
graphical statics. 
 
 

11. 
 

 The practical application of the method of reciprocal figures is the subject of a 
memoir that prof. FLEEMING JENKIN communicated in March 1869 to the Royal 
Society of Edinburgh (†), in which that author, after having cited the definition of 
reciprocal figures and the static property that MAXWELL announced in his paper of 
1864, added that: 
 
 “Few engineers would, however, suspect that the two paragraphs quoted put at 

their disposal a remarkably simple and accurate method of calculating the stresses 
in frameworks, and the author’s intention was drawn to the method chiefly by the 
circumstance that it was independently discovered by a practical draughtsman, 
Mr. TAYLOR, working in the office of the well-known contractor, Mr. J. B. 
COCHRANE.” 

 
 The author presented a good number of examples that were illustrated with figures, 
and concluded with the observation that: 

                                                
 (*) Page 160 of the sixth edition (1872).  Of course, one must understand that the truss or frame that 
the author speaks of is a simple polygon.  
 (** ) Philosophical Magazine, February 1864, pp. 92. 
 (*** ) “On reciprocal figures and diagrams of forces” (Phil. Magazine, April 1864, pp. 250).  
 (**** ) “On reciprocal figures, frames, and diagrams of forces” (Transaction of the Royal Society of 
Edinburgh, vol. XXVI).  See also a letter of M. RANKINE in the journal The Engineer, 16 February 1872.  
 (†) “On the practical application of reciprocal figures to the calculation of strains on frameworks” 
(Transaction of the Royal Society of Edinburgh, v. XXV).  For the same author, see also “On braced arches 
and suspension bridges,” read before the Royal  Scottish Society of Arts (Edinburgh, 1870). 
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 “When compared with the algebraic methods, the simplicity and rapidity of 
execution of the graphic method is very striking, and algebraic methods applied to 
frames, such the Warren girders, in which there are numerous similar pieces, are 
found to result in frequent clerical errors, owing to the cumbrous notation which 
is necessary, and especially owing to the necessary distinction between odd and 
even diagonals.” 

 
12. 

 
 However, when one speaks of geometric solutions to the problems of the science of 
construction, one can certainly not fail to mention prof. CULMANN, the ingenious and 
distinguished creator of graphical statics (*), to whom is due the expeditious and elegant 
methods of that science, which come out of the Zurich school, and are now taught in 
several German polytechnic schools [and for the last five years at the Superior Technical 
Institute in Milan (** )].  All of the questions of theoretical statics that would pertain to the 
individual branches of practical applications are answered by prof. CULMANN with 
uniform and simple procedures that, in substance, reduce to the construction of two 
figures that he called the Kräftepolygon and the Seilpolygon.  Although he did not 
consider reciprocal figures, in the sense of MAXWELL’s theory, those polygons were 
essentially such things.  In particular, almost all of the geometric constructions that 
CULMANN gave in the fifth section of his book, which was dedicated to reticulated 
systems (das Fachwerk), coincide with what one would deduce by MAXWELL’s 
methods.  As a matter of fact, CULMANN’s constructions also subsume the cases (which 
have not escaped the English geometers) in which reciprocal diagrams are not possible. 
 
 

____________ 
 
 

13. 
 

 First of all, we would like to show that CULMANN’s Kräftepolygon and the 
Seilpolygon (i.e., the force polygon and the funicular polygon) can be reduced to 
reciprocal diagrams. 
 If one is given n forces P1, P2, …, Pn in a plane (which is always assumed to be the 
orthographic plane) that are in equilibrium then the term force polygon is intended to 

                                                
 (*) Die graphische Statik, Zürich, 1866.  Since this distinguished work is not exempt from grave 
difficulties, especially for those who are not familiar with projective geometry, it would be wise for one to 
assist the propagation of this precious doctrine by means of more elementary treatises.  See: K. VON OTT: 
Die Grundzüge des graphischen Rechnens und der graphischen Statik, Prague, 1871; − J. 
BAUSCHINGER, Elemente der graphischen Statik, Munich, 1871; − and the second section of the book by 
F. REULAUX, Der Constructur (3rd ed.), Braunschweig, 1869; there are several other less extensive 
memoirs that consider special topics by MOHR, HARLACHER, W. RITTER, E. WINKLER, etc.  In 
England, in addition to the authors that were cited above, some other mathematicians have directed their 
attention to graphical statics, which emerged in the Proceedings of the London Mathematical Society, vol. 
III, pp. 233, 320-322.  See also: C. UNWIN: Wrought iron bridges and roofs, London, 1869. 
 (** ) As well as in the engineering schools at Palermo and Padua.  
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mean a polygon whose edges 1, 2, …, n are equipollent (*) to the lines that represent the 
forces, taken in a given or fixed, arbitrary order of succession (** ).  Take a point O (in the 
same plane), which one calls the pole of the polygon that is being drawn, project from it 
to the vertices of that polygon, and let (r s) be the ray that projects to the common vertex 
to the edges r, s.  As for the funicular polygon, which corresponds to the pole O, that term 
is intended to mean another polygon whose vertices fall along the lines of action (which 
are enumerated by 1, 2, …, n) of the forces P1, P2, …, Pn , and whose edges are parallel 
to the rays through O (*** ), respectively, such that the edge that is included between the 
lines of action of Pr, Ps will be parallel to the ray O(r s), and that will be indicated by the 
symbol (r s). 
 The resulting funicular polygon is closed, as is the force polygon. 
 
 

14. 
 

 If the lines of action of the given forces are concurrent at the same point (Fig. 1) then 
one would already have two reciprocal diagrams that will obviously be the orthographic 
projections of two pyramidal n-hedra. 
 

 
6 

1 

2 3 

4 

5 7 

Figure 1.a. 

1 

2 

3 

4 
5 

6 

7 

O 

Figure 1.b.  
 
 If the forces are parallel then the force polygon will reduce to a line; that is, the base 
of the first pyramid will be perpendicular to the orthographic plane, and the vertex of the 
second one will fall at infinity.  That is to say, the second polyhedron will be a prism that 
has just one base at a finite distance.  This case is illustrated in Fig. 2, where the edges of 
the force polygon are indicated, not by just numbers 1, 2, 3, …, but by two numbers 
placed at the ends of each segment; therefore, the segments 01, 12, 23, 34, … will 
correspond to the lines 1, 2, 3, 4, …, resp. in the second diagram. 

                                                
 (*) Equal in magnitude, direction, and sense; this terminology was used by prof. BELLAVITUS.  
 (**  ) The position of the first vertex is arbitrary in the construction of this polygon. 
 (*** ) Only the direction of the first edge is given in the construction of this polygon.  
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Figure 2.a. Figure 2.b 
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 Here, and in what follows, we shall adopt two series of numbers 1, 2, 3, …, r, …, s, 
…, 1, 2, 3, …, r, …, s, … in the text in order to distinguish the lines of one diagram from 
the corresponding lines of the other one. 
 
 

15. 
 
 Now, consider the general case, in which the forces are not concurrent at the same 
point.  Assume that O′ is a second pole that is joined to the vertices of the force polygon 
by means of lines, and construct a second funicular polygon that corresponds to the pole 
O′, namely, a polygon whose vertices fall along the lines of action of the forces, and 
whose edges are parallel to the rays that diverge from O′, resp.  See Figs. 3 and 5, in 
which the rays that emanate from the second pole are drawn with dashed lines, as well as 
in the corresponding funicular polygon. 
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Figure 3.a 
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Figure 4.a 
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Figure 5.a 
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 In that way, the diagram that is comprised of the force polygon and the rays that 
project from O and O′, and the diagram that is comprised of the two funicular polygons 
and the lines of action of the forces are obviously reciprocal.  The first one is the 
projection of a polyhedron (*) that is formed from two solid n-hedral angles whose 
corresponding faces intersect along the contour of a non-convex (gobbo) polygon with n 
sides; the second one is the projection of a polyhedron that is comprised of two planar 
polygons with n sides, such that the sides of one meet the corresponding sides of the 
other one in sequence. 
 The line in space that joins the vertices of the two n-hedral angles of the first 
polyhedron is the conjugate of the one that is common to the planes of the two bases of 
the second polyhedron.  Anticipating the property that two conjugate lines have to project 
orthographically into two parallel lines, it then follows that two arbitrary corresponding 
edges (r s), (r s)′ of two funicular polygons will intersect above a fixed line that is 
parallel to the line that joins to the two poles O, O′.  This theorem is fundamental to 
CULMANN’s methods. 
 

16. 
 

 If the poles O, O′ coincide then the corresponding edges of the two funicular 
polygons will be parallel (Fig. 4).  In that case, the line that joins the vertices of the n-
hedral angles in the first polyhedron is perpendicular to the orthographic plane; that 
shows that the bases of the second polyhedron are parallel. 
 
 

17. 
 

 The diagonal between the vertices of the two tetrahedral angles of the first 
polyhedron (no. 15) – namely, the diagonal between two vertices of the convex polygon – 
is conjugate to the intersection of the corresponding quadrilateral faces of the second 
polyhedron, which joins the points that are common to two edges of a base with common 
point to the corresponding edges of the other base.  In the orthographic projection of the 
first line, one is given a diagonal between two vertices (r ⋅⋅⋅⋅ r + 1), (s ⋅⋅⋅⋅ s + 1) of the force 
polygon, namely, a line that is equipollent to the resultant of the forces Pr+1, Pr+2, …, Ps ; 
the second line will give the line of action of that resultant.  Therefore, the line of action 
of the resultant of an arbitrary number of consecutive forces Pr+1, Pr+2, …, Ps will pass 
through the point that is common to the edges (r ⋅⋅⋅⋅ r + 1), (s ⋅⋅⋅⋅ s + 1) of the funicular 
polygon; this is another fundamental theorem of graphical statics.  See, for example, the 
resultant of the forces 6, 1, 2 in Fig. 3. 
 
 
 
 
 
                                                
 (*) This polyhedron has 3n edges, 2n triangular faces, two n-hedral angles, and n tetrahedral angles.  
The other polyhedron has 3n edges, 2n trihedral angles, 2 bases that are polygons with n sides, and n 
quadrilateral faces. 
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18. 
 

 If the aforementioned diagonal of the first polyhedron is perpendicular to the 
orthographic plane then its conjugate line will be at infinity.  Therefore, the two vertices 
(r ⋅ r + 1), (s ⋅ s + 1) of the force polygon will coincide in just one point A (see Fig. 5, in 
which r = 1, s = 4), and the edges (r ⋅⋅⋅⋅ r + 1), (s ⋅⋅⋅⋅ s + 1) in the funicular polygon will be 
parallel.  The resultant of the forces Pr+1, Pr+2, …, Ps will then have a vanishing 
magnitude, and its line of action will fall along the line at infinity of the orthographic 
plane.  This resultant will be a force that is infinitely small and far away that is equivalent 
to a couple of forces that act along the predicted parallel edges of the funicular polygon 
amd is represented in magnitude by the line that joins the corresponding pole O to the 
point A.  Since these two forces are equivalent to the system of Pr+1, Pr+2, …, Ps , the 
sense of the one that acts along the edge (r ⋅⋅⋅⋅ r + 1) is from A to O, and the sense of the 
other one that acts along the edge (s ⋅⋅⋅⋅ s + 1) is from O to A. 
 
 

19. 
 

 Given the forces P1, P2, P3, …, Pn−1 (no. 13), the two polygons (viz., force and 
funicular) serve to determine Pn, which is equal and opposite to the resultant of the given 
ones (see Fig. 3, in which n = 5).  In fact, if one constructs the broken line 1 ⋅⋅⋅⋅ 2 ⋅⋅⋅⋅ 3…n – 
1, whose edges are equipollent to the given forces then the line n that joins its extremities 
(directed from the end to the origin of the break) will be equipollent to Pn .  Then, 
assuming a pole O, construct a (funicular) polygon whose first n – 1 vertices 1, 2, 3, …, n 
– 1 fall along the lines of action of the give forces P1, P2, P3, …, Pn−1, resp., and whose 
edges (n ⋅⋅⋅⋅ 1), (1 ⋅⋅⋅⋅ 2), (2 ⋅⋅⋅⋅ 3), …, (n − 1 ⋅⋅⋅⋅ n) are parallel to the rays that project from O to 
the vertices of the first polygon that have similar names.  The line that passes through the 
last vertex n of the funicular polygon – that is to say, through the point of concurrence of 
the first edge (n ⋅⋅⋅⋅ 1) with the last one (n − 1 ⋅⋅⋅⋅ n) and is parallel to the last edge n of the 
force polygon – will the be the line of action of Pn . 
 Suppose that the first edge of the funicular polygon must pass through a fixed point, 
and that one moves the pole along a straight line, and that the other edges rotate around 
just as many fixed points that are aligned with the first one in a line that is parallel to the 
locus of the pole (no. 15).  This recalls the celebrated aphorism (porisma) of PAPPO (*): 
 
 “Si quoteumque rectæ lineæ sese mutuo secent, non plures quàm duæ per idem 

punctum, omnia qutem in una ipsarum data sint, et reliquorum mulitudenem 
habentium triangulum numerum, hujus latus singular habet puncta tangential 
rectam lineam positione datam, quorum trium non ad angulum existens trianguli 
spacii unumquodque reliquum punctum rectam lineam positione datum tanget.” 

 
 

                                                
 (*) Mathematicæ Collectiones, preface to book VII, pp. 162 in the COMMANDINO edition (Venice, 
1589).  See the translation or paraphrase of the aphorism that PONCELET made in no. 498 of his Traité 
des propriétés projectives (Paris, 1822). 
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20. 
 

 If one considers the point O as being capable of taking any position in the plane then 
the property of the polygons (viz., force and funicular) can be summarized in the 
following geometric statement: 
 
  Let a planar polygon be given that has n edges 1, 2, 3, …, n – 1, n, and in 

addition, let n – 1 lines 1, 2, 3, …, n – 1 be given in that plane that are parallel to 
the first n – 1 edges of the polygon, resp.  We wish to project the vertices of the 
given polygon from a point or pole that moves in the plane (with no restrictions).  
Now, imagine a variable polygon with n edges, the first n – 1 of which, namely, 1, 
2, 3, …, n – 1, must lie in succession along the given lines with the similar names, 
while the n edges (n ⋅⋅⋅⋅ 1), (1 ⋅⋅⋅⋅ 2), (2 ⋅⋅⋅⋅ 3), …, (n − 1 ⋅⋅⋅⋅ n) must be parallel to the rays 
that project from the vertices of the given polygon that have similar names.  The 
point of concurrence of two arbitrary edges (r ⋅⋅⋅⋅ r + 1), (s ⋅⋅⋅⋅ s + 1) of the variable 
polygon will fall along a well-defined line that is parallel to the diagonal between 
the vertices (r ⋅ r + 1), (s ⋅ s + 1) of the given polygon. 

 
 This theorem, which is proved by means of just plane geometry and does not seem to 
be obvious, will nonetheless result from a straightforward line of reasoning if one 
considers the plane figures to be the orthographic projections of reciprocal polyhedra. 
 
 

21. 
 

 The force polygon is the projection of a planar polygon or a skew polygon according 
to whether the force P is or is not concurrent at a point, resp.  As we saw in no. 14, in the 
former case the two reciprocal diagrams are composed simply, in the one case, of the 
force polygon and the pole O, and in the other case, of the lines of action of the forces 
and the funicular polygon that corresponds to O.  By contrast, in the latter case (no. 15) it 
is necessary to add another pole O′ to the first diagram and another funicular polygon that 
corresponds to O′ to the second one.  As we have seen (no. 16), the two poles can be 
assumed to coincide, and then the first diagram will become as simple as possible.  
However, if one desires to simplify the second one then one must put the pole O′ at 
infinity in an arbitrary direction.  The polyhedron whose orthographic projection is the 
first diagram will have the vertex of one of its n-hedral angles at infinity, and since the 
polar plane to a point at infinity is parallel to the central axis, the new funicular polygon 
that corresponds to O′ will have all of its extended edges along the same straight line 
(whose point at infinity will be O′).  The absolute position of this line in the orthographic 
plane will be, once more, arbitrary, although one must place it at infinity. 
 One gets an even simpler result in the following way: Suppose that the first 
polyhedron has the vertex of the aforementioned n-hedral angle at the point at infinity 
along the central axis.  In the first diagram, the pole O′ will then disappear absolutely, 
since the edges of the n-hedral angle will project orthographically onto the vertices of the 
forces polygon.  The polar plane of the vertex will then be the plane at infinity; therefore 
the second funicular polygon will lie at infinity entirely (no. 7). 
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22. 
 

 We conclude the even simpler fact from that, by which, one can regard the force 
polygon and the funicular polygon of a system of n equilibrating forces as reciprocal 
diagrams when the forces are situated in a plane (viz., the orthographic plane), but not 
concurrent at one of its points.  The one diagram is comprised of the force polygon and 
the rays the project from a pole O to the vertices.  The other is comprised of the lines of 
action of the forces, the funicular polygon, and the line at infinity.  The first diagram is 
the projection of a polyhedron whose faces are obtained by projecting the n sides of a 
non-convex polygon that is perpendicular to the orthographic plane from a finite point in 
space (?).  The reciprocal polyhedron whose projection is the second diagram is the 
(infinite) portion of the space that is contained in a planar polygon and n planes that 
successively pass through the sides of it and are extended to infinity. 
  
 

__________ 
 

 
23. 

 
 We now go on to more complicated diagrams, as they might present themselves in the 
theory of reticulated trusses.  Let S, S′ be two reciprocal polyhedral surfaces that are 

simply-connected and endowed with a boundary (*).  Let P be the polyhedron that is 

composed of S and the pyramidal surface whose vertex is a point O that is fixed, but 

arbitrary, in space, and whose directrix is the polygonal contour of S.  Let P′ be the 

reciprocal polyhedron to P, namely, the polyhedron that contains the faces of S′, the 

planes of the angles of the boundary of S′, and the plane ω that is polar to O.  If one 

projects the two polyhedra orthographically then one will get two reciprocal diagrams 
that one would like to take into consideration. 
 Let the boundary of S have n sides, and let that surface have m other edges (** ) and p 

faces.  The polyhedron P will have n + p faces and 2n + m edges, and therefore m + n – p 

+ 2 vertices.  Therefore S will have m – p + 1 vertices outside of the boundary (*** ). 

 Reciprocally, P′ will have m + n – p + 2 faces, n + p vertices, and 2n + m edges. 

 
24. 

 
 Now, suppose that the projection of S′ is the drawing of a given reticulated truss with 

p nodes and m members – or rectilinear pieces – for which the external forces have lines 

                                                
 (*) If the boundary of S is a planar polygon with n sides then that of S′ will be point that is the vertex 
of an n-hedral angle.  
 (** ) Obviously, m ≥ n. 
 (*** ) So m cannot be less than p – 1.  
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of action that are the projections of the edges of S′, and are represented in magnitude by 

the n sides of the polygon that is the projection of the boundary of S (*).  The projection 

of the face of S′ that is in the plane ω will then be the funicular polygon of external 

forces that corresponds to the pole O that is the projection of O, and the projections of the 

m edges of S that do not belong to the boundary will give the measure of the internal 

stresses that the corresponding members of the truss are subjected to as a consequence of 
the given system of external forces. 
 
 

25. 
 

 If the point O is moved to infinity in the direction that is perpendicular to the 

orthographic plane then the plane ω will coincide with the plane at infinity.  The first 
diagram will then reduce to the projection of S, namely, to the totality of lines that 

measure the external forces and the internal stresses.  When the funicular polygon 
disappears completely, the second diagram will contain only the drawing of the truss 
(namely, the lines of action of the internal forces) and the lines of action of the external 
forces.  In the figures that are at the basis of this paper, the former diagram will indicated 
by the letter b and the latter one, by the letter a. 
 
 

26. 
 

 If the external forces are all mutually parallel, as often happens in practical 
applications, then the boundary of S will be a polygon that is contained completely in a 

plane that is perpendicular to the orthographic plane.  Thus, the sides of the external force 
polygon will all fall along one and the same line. 
 
 

27. 
 

 Other degenerate polygonal forms can offer diagrams that produce analogous 
degenerations in the spatial figure. 
 Suppose, e.g., that one has a solid tetrahedral angle in space that corresponds to the 
reciprocal figure to a quadrilateral face, and that two (non-opposite) edges of the solid 
angle approach each other indefinitely closely in their plane until the one overlaps the 
other.  The final solid angle will then be reduced to a system that is composed of a 
trihedron and a plane that passes through one of its edges.  Therefore, any of the 
quadrilateral faces of the reciprocal figure will have two edges that, will be found to have 
the same or opposite directions without ceasing to have a common vertex. 

                                                
 (*) Therefore, S must not have any vertex at infinity; i.e., S′ must not have any face that is 
perpendicular to the orthographic plane.  
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 If we now pass on to the orthographic projection then we will have a point in one 
diagram from which four lines emanate, two of which have overlapping directions, and in 
the other diagram we will have a quadrilateral with three vertices that lie along a straight 
line (*). 
 
 

28. 
 
 Suppose that the drawing of a reticulated truss is given, and suppose that the system 
of external forces (** ) is known, so one must, above all, construct the external force 
polygon, i.e., a polygon whose sides are equipollent to the external forces.  In the 
accompanying figures, the external forces and the sides of the polygon are indicated by 1, 
2, 3, …, in such a way that as one traverses the contour of the polygon in order of 
increasing numbers, the sides will be traversed in the sense of the forces that they 
represent.  This way of traversing the contour of the polygon is called the cyclic ordering 
of that contour. 
 When one treats the construction of the reciprocal diagram and the one that is 
composed of the drawing of the truss and its system of external forces, the order in which 
the forces follow each other in the construction of the relevant polygon is not arbitrary.  
The order in which they are treated is determined from the following argument: In the 
external force polygon, which is part of diagram b, the successive sides must be 
equipollent to two forces, since their lines of action belong to the contour of the same 
polygon in diagram a.  That polygon will then correspond to the vertex that is common to 
those two sides. 
 One is therefore given the index 1 and any of the external forces; the line of action of 
the chosen force is the common side to two polygons of the diagram a.  Each of them has 
the line of action of another external force in its contour.  It will therefore have two 
external forces that can be regarded as contiguous to force 1, and will be indifferent to the 
attributes of one or the other index 2.  Naturally, the other will then have the index n, if n 
is the number of external forces.  After doing that, nothing will be arbitrary or uncertain 
in the order by which one has to arrange the sides of the external force polygon. 
 Suppose that the nodes to which the external forces are applied are all found on the 
contour of the drawing of the truss (*** ), so those forces can be taken in the order in 
which they are encountered as one traverses that contour.  When one does not follow 
these rules, but the other ones that were exhibited before, one can still solve the problem 
of the graphic determination of the internal stresses, but one will not have reciprocal 

                                                
 (*) Examples of these degenerate forms can be found on page 444 and in the first of two tables in the 
cited memoir of prof. FLEEMING JENKIN (1869), and also in our own Figure 9. 
 (** ) The external forces are: 
  1.  The proper weight of the truss, the accidental, or transitory, weight, the action of wind, etc., and 
everything that one can regard as effectively given and distributed over the nodes of the truss. 
  2.  The supports reactions. 
 For the determination of these, forces one can confer the method that was taught by CLERK MAXWELL 
in his memoir “On the calculation of the equilibrium and stiffness of frames” (Phil. Magazine, April 1864). 
 (*** ) The contour of the truss is composed of the two things in that table (Gurten, Streckbäume), the 
upper table and the lower table.  The pieces that join the nodes of one to those of these other one are called 
shafts and arrows.  
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diagrams, but rather, figures that are more complicated or disconnected, in which the 
same segment that is not found at it proper place must repeated or brought back in order 
to give rise to the final constructions (*), as was the case in the old method of separately 
constructing a force polygon for each node of the truss. 
 
 

29. 
 

 If one formats the external force polygon in this way then one will complete diagram 
b by constructing successively the polygons that correspond to the nodes of the truss.  
The problem of constructing a polygon whose sides must have given directions is 
determined whenever just two sides are unknown.  Therefore, one must start from a node 
at which just three lines are concurrent: viz., the line of resistance of two members of the 
truss and the line of action of one external force.  The equipollent segment to that force 
will be a side of the triangle that corresponds to that node; the triangle can then be 
constructed.  No ambiguity will persist in this construction if one understands that a 
member of the truss at which intersect the lines of action of two external forces that 
belong to the contour of a polygon in diagram a will correspond to a lines in b that passes 
through the common vertex to the sides that are equipollent to two forces. 
 One then passes on to the other nodes successively in such a way that just two 
unknown sides will remain to be constructed for any new polygon. 
 In the accompanying figures, all of the lines in each diagram are denoted by numbers 
in order to indicate the order of operations. 
 

“The figure can be drawn in five minutes, whereas the algebraic computation of 
the stresses, though offering not mathematical difficulty, is singularly apt, from 
mere complexity of notation, to result in error (** ).” 

 
 

30. 
 

 A superficial consideration might suggest that the solution of the problem is possible 
and determinate, even in the case in which none of the nodes is a point of concurrence of 
just three lines.  Suppose that, e.g., the drawing of the truss is comprised of the sides 5, 6, 
7, 8 of a quadrilateral and the lines 9, 10, 11, 12 that join the vertices to a fifth point, and 
the external forces are 1, 2, 3, 4, which are applied to the vertices (8 ⋅⋅⋅⋅ 5 ⋅⋅⋅⋅ 9), (5 ⋅⋅⋅⋅ 6 ⋅⋅⋅⋅ 10), (6 
⋅⋅⋅⋅ 7 ⋅⋅⋅⋅ 11), (7 ⋅⋅⋅⋅ 8 ⋅⋅⋅⋅ 12) of the quadrilateral (*** ).  Formatting the external force polygon 1 ⋅⋅⋅⋅ 2 ⋅⋅⋅⋅ 
3 ⋅⋅⋅⋅ 4, then the points (1 ⋅⋅⋅⋅ 2), (2 ⋅⋅⋅⋅ 3), (3 ⋅⋅⋅⋅ 4), (4 ⋅⋅⋅⋅ 1), will leave the order of 5, 6, 7, 8 
indefinite.  One then poses the problem of constructing a quadrilateral whose sides 9, 10, 
                                                
 (*) For that reason, Fig. 1 and 3 in Table 16 of the atlas of CULMANN’s Graphische Statik are not 
reciprocal diagrams, nor are Fig. 7 and 71 of Table 19, etc.  By contrast, diagrams 168 and 169 on page 422 
of the text, etc., are perfectly reciprocal.  
 (** ) Prof. FLEEMING JENKIN on page 443 of the cited volume of the Transactions of the Royal 
Society of Edinburgh.  
 (*** ) These considerations persist without alteration when the truss is, by contrast, comprised of an 
arbitrary polygon and the lines that join its vertices to a fixed point.  The figures that relate to this 
paragraph are not given, but the reader can supply them with no difficulty.  
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11, 12 are parallel to the respective lines in the given diagram that have similar names, 
and whose vertices (9 ⋅⋅⋅⋅ 10), (10 ⋅⋅⋅⋅ 11), (11 ⋅⋅⋅⋅ 12), (12 ⋅⋅⋅⋅ 11) fall upon 5, 6, 7, 8, resp.  The 
problem of constructing a quadrilateral whose sides have given directions (or pass 
through given points along the same line) and whose vertices fall upon just as many fixed 
lines, will then admit one and only one solution, in general, so one can believe the first 
notion that the force diagram becomes perfectly determinate. 
 However, the illusion will evaporate when one considers that the geometric problem 
has some impossible and indeterminate cases.  In fact, when one omits one of the 
proposed conditions – i.e., one requires only that the quadrilateral have all of its sides in 
given directions and its first three vertices on the given lines 5, 6, 7 – the fourth vertex 
will describe a line r (*), and the common point to it and the given line 8 must give the 
desired solution when it is taken to be the fourth vertex.  Now, if the givens in question 
are such that r becomes parallel to 8 then one will be dealing with one of the impossible 
cases.  However, if the line r coincides with 8 precisely under an even more specialized 
hypothesis then the problem will become indeterminate − namely, an infinitude of 
quadrilaterals will satisfy the proposed conditions. 
 In order to persuade oneself that in the construction of the reciprocal diagram to a 
given one, one will come to precisely its impossibility or its indeterminacy, it is enough 
to reflect upon the face that if you consider the given diagram to be a force polygon 
whose magnitudes are expressed by the segments 5, 6, 7, 8, and whose pole is the point 
(9 ⋅⋅⋅⋅ 10 ⋅⋅⋅⋅ 11 ⋅⋅⋅⋅ 12), then the figure that one seeks, 9 ⋅⋅⋅⋅ 10 ⋅⋅⋅⋅ 11 ⋅⋅⋅⋅ 12, will be the corresponding 
funicular polygon.  Now, in order for the construction of the funicular polygon to be 
possible, it is necessary that the forces be in equilibrium.  For that purpose, if one 
supposes that the their magnitudes 5, 6, 7, 8 are given, along with the lines of action of 
three of them 5, 6, 7, then the line of action of the fourth one will be determined uniquely, 
and it will be precisely the line r that was mentioned above.  Therefore, if r and 8 do not 
coincide then the fictitious forces 5, 6, 7, 8 will not be in equilibrium, but will be 
equivalent to an infinitely small force at infinity, and the solution of the problem will be 
impossible.  If r then coincides with 8 – namely, the fictitious forces are in equilibrium – 
then the problem will be indeterminate, since one can construct an infinitude of funicular 
polygons for a given system of forces and for a given pole (no. 16). 
 In the first of these two cases, if equilibrium is attained then one must add an equal 
and opposite force to the (infinitely small and distant) resultant of the forces 5, 6, 7, 8; 
that is, one considers the polygon 5 ⋅⋅⋅⋅ 6 ⋅⋅⋅⋅ 7 ⋅⋅⋅⋅ 8 to be the projection, not of a quadrangle, but 
a pentagon, two consecutive vertices of which will project onto the same point (7 ⋅⋅⋅⋅ 8 ⋅⋅⋅⋅ 
12).  The line 12 is then the projection of two distinct lines in space, so in the diagram 
that is reciprocal to the point (9 ⋅⋅⋅⋅ 10 ⋅⋅⋅⋅ 11 ⋅⋅⋅⋅ 12), will correspond an (open) pentagon 9 ⋅⋅⋅⋅ 10  
11 ⋅⋅⋅⋅ 12 ⋅⋅⋅⋅ 12′ that has the vertices (9 ⋅⋅⋅⋅ 10), (10 ⋅⋅⋅⋅ 11), (11 ⋅⋅⋅⋅ 12), (12′ ⋅⋅⋅⋅ 9), which are situated 
along 5, 6, 7, 8, resp., and the vertex (12 ⋅⋅⋅⋅ 12′) at infinity. 
 
 
 
 
 

                                                
 (*) PONCELET, Traité des propriétés projectives (Paris, 1822), no. 500.  
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31. 
 

 Any member or rectilinear piece of the truss is the line of action of two equal and 
opposite forces that are applied to the two nodes that are adjoined to that piece.  The 
common magnitude of these two forces – namely, the measure of the stress that the piece 
considered is subject to – is given by the corresponding line of the diagram b.  Those two 
forces can be considered to be actions or reactions.  In order to pass from one case to the 
other, it is enough to invert the senses.  When considered to be actions, if they act on the 
respective points of application towards the inside of the piece then one will call them 
pressures or compressions; by contrast, if they act towards the outside then they will be 
called tensions or stretchings.  Often the compressed pieces are given the name of struts, 
while the pieces in a state of tensions are called ties (*). 
 
 

32. 
 

 Each node of a truss is the point of application of a system of equilibrated forces that 
are at least three in number.  One of them can be an external force, while all of the other 
ones will be reactions in the pieces that are concurrent at that node.  It will be enough to 
know the sense of one of the forces of the system in order to deduce the sense of all the 
other ones.  It will not be necessary for one to traverse the contour of the polygon that 
corresponds to that node.  If an external force is applied to the node, and one traverses the 
equipollent side of the polygon in the same sense, then each of the other sides of the 
contour will be traversed in the sense that belongs to the corresponding internal force, 
when regarded as a reaction that is applied to the node that is considered.  By contrast, if 
the internal forces tend to act in the sense that competes with them as actions then when 
one traverses the contour of the polygon, one must reverse the sense of the external force. 
 If no external force is applied to a node, but only internal forces, then it will also 
suffice to know the sense of one of them in order to get the sense each of the remaining 
ones by the process that we now discuss. 
 One refers to the cyclic ordering of the contour of a polygon in diagram b when it 
corresponds to the internal forces considered as actions. 
 In that way, if one starts from a node at which an external force is applied then one 
will successively determine the magnitudes and the sense of all internal forces.  If one 
considers an internal force to be an action that is applied to one of the two nodes between 
which it acts then one will soon recognize whether the piece that is limited by those 
nodes is compressed or tensed. 
 Any line in diagram b is the common side of two polygons.  If one traverse their 
contours in their respective cyclic orders then that side will be described, once in one 
sense, and the other time in the opposite sense (** ).  That line will then correspond to the 

                                                
 (*) In the figures that are the basis for this article, the ties are indicated by lines that are fainter than the 
ones that represent the struts.  In the figures of CULMANN and REULAUX, the struts are denoted by 
double lines, and the ties, by simple lines. 
 (** ) This property is in accord with that of the law of edges (Kantengesetz) for polyhedra that are 
endowed with an internal surface and an external surface.  See MÖBIUS, “Ueber die Bestimmung des 
Inhalts eines Polyeders” [in the Berichte über die Verhandlungen der Königl, Sächs. Gesellschaft d. 
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existence of a measuring line for two equal and opposite forces that act along the 
corresponding member of the truss. 
 
 

33. 
 

 Note that the algebraic sum of the projection of the faces of a polyhedron is equal to 
zero.  If one applies that theorem to the polyhedron P (no. 23) and observes that the 

projection of the surface S is composed of polygons of the diagram b that correspond to 

the nodes of the truss, while the projection of the remaining surfaces of P is nothing but 

the external force polygon, then one will get the following result: 
 
 If one regards the area of a polygon as positive or negative according to whether it 
lies to the left or the right when one traverses the contour in its cyclic order then the sum 
of the areas of the polygons of the diagram b that correspond to the nodes of the truss 
will be equal and opposite to the area of the external force polygon. 
 
 MAXWELL arrived at this theorem by a different path by proving it for an arbitrary 
planar frame, regardless whether it is or is not possible to construct a force diagram (*). 
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Wissenschaft, math.-phys. Klasse 17 (1865), pp. 33, et seq.] and BALTZER, Stereometria (pp. 143 of the 
Italian translation, Genoa, 1867).  
 (*) Cited paper of 1870, pp. 30.  
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34. 
 

 The method of sections that is generally adopted in the treatment of variable systems 
offers the designer a valuable means of verification. 
 If one considers one of the two parts into which the truss is divided to be an ideal 
section then the external force that is applied to that part will equilibrate the reactions of 
the pieces that meet at the section. 
 If just three of these reactions are unknown then it can be deduced from the 
equilibrium condition that the problem is determinate and admits just one solution, like 
the problem of decomposing a force P into three components whose lines of action 1, 2, 3 
are given and form a complete quadrilateral with 0, the line of action of P.  In fact (Fig. 
6), it suffices to choose one of the diagonals of the quadrilateral – e.g., the line 4, which 
joins the points 01, 23 – decompose the given force 0 into two components along the 
lines 1, 4 (and then construct the force triangle 0 4 1, the side 0 of which is given in 
magnitude and direction), and to finally decompose the force 4 along the lines 2, 3 
(analogously construct the force triangle 4 3 2). 
 This method, which can be called static, suffices by itself for the graphic 
determination of the internal forces, just like the geometric method that was discussed 
previously, which derived from the theory of reciprocal figures and consisted in the 
successive construction of the polygons that correspond to the various nodes of the truss.  
The static method then seems to be less simple to me, and one might benefit from 
combining it with the other one, above all, for the verification of the validity of the 
graphic operations that were performed already.  The external force that is applied to a 
portion of the truss that is separated by an arbitrary section and the reactions of the pieces 
that were cut must have the property that the corresponding lines in diagram b are the 
sides of a closed polygon.  That polygon must be the projection of a non-convex polygon, 
which is likewise closed, and which is not yet broken, and whose extremities lie along a 
line that is perpendicular to the orthographic plane: That condition is equivalent to the 
reciprocal non-convex polygon also being closed – namely, to being able to connect the 
corresponding lines in diagram a with a closed funicular polygon. 
 The method of sections can also be presented in another form.  Once more, let 0 
denote the resultant of all forces (that are applied to the portion of the truss) that are 
known, and let 1, 2, 3 denote the three unknown reactions, so the sum of the moments of 
the four forces will be zero.  It then follows that if one places the center of the moments 
at the point of intersection of two lines of resistance – e.g., at the point 23 – then the 
moment of the third reaction 1 will be equal and opposite to the moment of the force 0.  
One will then have a proportion of four magnitudes (the two forces and their lever arms), 
between which, the only unknown is the magnitude of the force 1.  In this, one finds the 
method of static moments, which is adopted when one desires to numerically calculate 
(not construct graphically) the internal stresses in the reticulated truss (*). 
  
 
 
 

                                                
 (*) See A. RITTER, Elementare Theorie und Berechnung eisener Dach- and Brücken-
Constructionen, 2nd ed. (Hannover, 1870).   
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35. 
 

 We now go on to give some examples that are designed to exhibit the simplicity and 
elegance of the graphical method.  In these examples, I do not always adhere to regularity 
or symmetry in form, although in practice one does not give them up.  However, the 
symmetric form in practice is not that of a special case of the irregular forms of abstract 
geometry. Therefore, the treatment of it will include all of the possible practical cases in 
it.  Here, the term reticulated truss is taken in the general, theoretical sense that 
MAXWELL gave to the term frame (*). 
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Figure 7.b 
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 (*) Page 294 of the Philosophical Magazine, April 1864.  
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“A frame is a system of lines connecting a number of points.  A stiff frame is one 
in which the distance between any two points cannot be altered without altering 
the length of one or more of the connecting lines of the frame…A frame of s 
points in a plane requires in general 2s – 3 connecting lines to render it stiff.” 
 

 I intend to limit myself to the consideration of only planar figures (*). 
 
 

36. 
 

 As a first (theoretical, general) example, let 1, 2, …, 10 (Fig. 7.a) be a system of ten 
(external) forces in equilibrium, so that when one constructs the polygon of these forces 
and projects the vertices from a pole O (Fig. 7.b), in which the force polygon is denoted 
by double lines), one can trace a funicular polygon whose vertices are along the lines of 
action 1, 2, …, and whose sides (which are denoted by broken lines in Fig. a) are, in turn, 
parallel to the rays (which are denoted by broken lines in Fig. b) that emanate from O.  
The given forces are applied to the nodes of a reticulated truss whose rectilinear members 
are indicated by 11, 12, 13, …, 27 (Fig. a). 
 Start by constructing the triangle that corresponds to the node (10 ⋅⋅⋅⋅ 11 ⋅⋅⋅⋅ 12), draw two 
lines 11, 12 that are parallel to 11, 12, resp., from it to the ends of 10.  If necessary, 
observe that 11 must pass through the point (1 ⋅⋅⋅⋅ 10), which is why in diagram a the lines 
1, 10, 11 belong to the contour of the same polygon (** ); for the same reason, 12 must 
pass through the point (9 ⋅⋅⋅⋅ 10).  If one traverses the contour of the triangle that is thus 
obtained in the sense that is contrary to that of the force 10 (no. 32) then one will get the 
senses of the actions that are exerted on the nodes in question along the lines 11, 12, and 
one will see that the piece 11 is compressed, while 12 is tensed. 
 If one constructs the quadrilateral that corresponds to the node to which the force 9 is 
applied, drawing 13 through the point (11 ⋅⋅⋅⋅ 12) and 14 through the point (8 ⋅⋅⋅⋅ 9), then the 
piece 13 will be compressed and 14 will be tensed. 
 If one constructs the pentagon that corresponds to the node to which the force 1 is 
applied, drawing 15 through the point (13 ⋅⋅⋅⋅ 14) and 16 through the point 1 ⋅⋅⋅⋅ 2, then the 
pentagon thus-obtained will have an intertwined contour.  The piece 15 will be tensed 
and 16 will be compressed. 
 One constructs the pentagon that corresponds to the node to which the external force 
8 is applied; if necessary, draw 17 through the point (15 ⋅⋅⋅⋅ 16) and 18 through the point (7 
⋅⋅⋅⋅ 8).  The piece 17 will be compressed, while 18 will be tensed. 

                                                
 (*) On the practical importance of the reticulated truss, one can read: No. 106 (first of Abschnitt 5, das 
Fachwerk) in CULMANN’s Graphische Statik.  The first pages of the brochure by O, HENRICI, Skeleton 
structures (London, 1866).  The Vorbermerkungen with which prof. A. RITTER began his previously-cited 
book.  The Teoria elemetare delle travature reticolari (Milan, in the journal il Politechnico of 1866) of my 
esteemed colleague prof. CLERICETTI.  The introduction to Abschnitt 3 (Gitterträger) of the Vorträge 
über Brückenbau (Vienna, 1870) of prof. E. WINKLER. etc., etc.   
 (** ) Which is a quadrangle whose fourth side is the side of the funicular polygon that is found between 
the forces 1, 10.  As was already said elsewhere (nos. 21, 25), the funicular polygon can also lie completely 
at infinity.  
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 Continuing in that way, one will find all of the other internal stresses.  The final 
construction will give the triangle that corresponds to the point of application of the force 
5. 
 20, 21, 24, 25, 27 will be compressed, while 19, 22, 23, 26 will be tensed. 
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37. 
 

 Fig. 8.a represents a bridge, to whose nodes are applied the forces 1, 2, …, 16, which 
are all vertical.  1 and 9 are directed from the bottom up and express the support 
reactions.  The forces 2, 3, …, 8 are weights that are applied to the nodes of the lower 
slab.  These forces are taken in the order in which they are encountered when one 
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traverses the contour of the truss, and the sides of the external force polygon are arranged 
in that order in diagram b.  That polygon has all of its sides extended in the same vertical 
direction.  In that line, the sum of the segments 1, 9 will be equal and opposite to the sum 
of the segments 2, 3, …, 8, 10, 11, …, 16, since the system of external forces must be in 
equilibrium. 
 Diagram b is now completed by precisely the same rule that was already stated.  Start 
with the node (1 ⋅⋅⋅⋅ 17 ⋅⋅⋅⋅ 18), draw 17 through the point (1 ⋅⋅⋅⋅ 2), then through the point where 
the end of segment 1, which is directed from down to up, and where segment 2 starts, 
which is directed from the up to down, and 18 through the point (16 ⋅⋅⋅⋅ 1), namely, through 
the point where the segment 16 ends, which is directed from up to down, and where the 
segment 1 begins. 
 Passing on to the node (2 ⋅⋅⋅⋅ 17 ⋅⋅⋅⋅ 19 ⋅⋅⋅⋅ 20), draw 19 through the point (17 ⋅⋅⋅⋅ 18) and 20 
through the point (2 ⋅⋅⋅⋅ 3), namely, the point where 2 ends and 3 begins, which are 
segments that are directed from up to down.  One then gets the polygon 2 ⋅⋅⋅⋅ 17 ⋅⋅⋅⋅ 19 ⋅⋅⋅⋅ 20, 
which is a rectangle. 
 Now, go on to the node (16 ⋅⋅⋅⋅ 18 ⋅⋅⋅⋅ 19 ⋅⋅⋅⋅ 21 ⋅⋅⋅⋅ 22), and draw 21 through the point (19 ⋅⋅⋅⋅ 
20) and 22 through the point (15 ⋅⋅⋅⋅ 16).  One then gets a pentagon with an interwined 
contour.  Continuing in the same way, one operates successively with the nodes or points 
of application of the forces 3, 15, 4, 13, 5, 12, 6, 11, 7, 10, 9.  Since the drawing of the 
truss and the complex of external forces in diagram a have a common symmetry axis 
(viz., the middle vertical), diagram b will also be symmetric (around the middle 
horizontal).  Thus, e.g., the triangle 9 ⋅⋅⋅⋅ 45 ⋅⋅⋅⋅ 44 will be symmetric to the triangle 1 ⋅⋅⋅⋅ 17 ⋅⋅⋅⋅ 
18, the rectangle 8 ⋅⋅⋅⋅ 45 ⋅⋅⋅⋅ 43 ⋅⋅⋅⋅ 42 will be symmetric to the rectangle 2 ⋅⋅⋅⋅ 17 ⋅⋅⋅⋅ 19 ⋅⋅⋅⋅ 20, etc. 
 All of the truncations of the upper part of structure are compressed, while all of those 
in the lower part of the structure are tensed.  The oblique arrows are all compressed.  Of 
the vertical axes, two of them – namely, 23, 39 – are tensed, while the other ones are 
compressed. 
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38. 
 

 In Fig. 9.a, one contemplates the one-half of a locomotive shed (*).  The external 
forces are the weights 1, 2, 3, 4, 5, which are applied to the upper nodes of the canopy, 
and the reactions 6, 7 of the wall and column.  The external forces are also all parallel 
here, so their polygon in diagram b will reduce to a straight line.  The force 6 is (when 
taken in the opposite sense) equal to part of the weight 5; if one adds the difference of the 
other weights to that then one will get the magnitude of the force 7. 
 In diagram b, the lines 8, 13 will coincide in direction; the first one is part of the 
second one.  Here, one then presents the polygon that corresponds to the node (8 ⋅⋅⋅⋅ 10 ⋅⋅⋅⋅ 12 
⋅⋅⋅⋅ 13) as one of degenerate form, as was discussed in no. 27.  Namely, one has a 
quadrilateral 8 ⋅⋅⋅⋅ 10 ⋅⋅⋅⋅ 12 ⋅⋅⋅⋅ 13, three vertices (13 ⋅⋅⋅⋅ 8), (8 ⋅⋅⋅⋅ 10), (12 ⋅⋅⋅⋅ 13) of which are in a 
line with each other. 
 An analogous degenerate form is also exhibited by the quadrilateral 5 ⋅⋅⋅⋅ 17 ⋅⋅⋅⋅ 18 ⋅⋅⋅⋅ 6 that 
corresponds to the point where the wall supports the roof.  Indeed, the vertex (6 ⋅⋅⋅⋅ 5), the 
point below the segment 6, and the vertices (5 ⋅⋅⋅⋅ 17), (18 ⋅⋅⋅⋅ 6) are along the same straight 
line. 
 The lower pieces 8, 13, 18, the arrows 10, 14, 16, the column 7, and the wall 6 are 
compressed, while the upper parts 9, 11, 15, 17, and the arrow 12 are tensed. 

                                                
 (*) This example is taken from tab. 19 in the atlas of CULMANN’s Graphische Statik.  However, as 
was noted before, the two diagrams in it are not rigorously reciprocal. 
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39. 
 

 Diagram a in Fig. 10 represents a truss to whose upper nodes are applied the oblique 
forces 1, 2, …, 7, which can be considered to be the resultants of the combined actions of 
gravity and wind.  The forces 8, 9 represent the support reactions. 
 The external force polygon is drawn with double lines in diagram b.  One 
successively constructs the triangle 1 ⋅⋅⋅⋅ 10 ⋅⋅⋅⋅ 11, the quadrilateral 9 ⋅⋅⋅⋅ 10 ⋅⋅⋅⋅ 12 ⋅⋅⋅⋅ 13, the 
pentagon 2 ⋅⋅⋅⋅ 11 ⋅⋅⋅⋅ 12 ⋅⋅⋅⋅ 14 ⋅⋅⋅⋅ 15, the quadrilateral 13 ⋅⋅⋅⋅ 14 ⋅⋅⋅⋅ 16 ⋅⋅⋅⋅ 17, the pentagon with an 
intertwined contour 3 ⋅⋅⋅⋅ 15 ⋅⋅⋅⋅ 16 ⋅⋅⋅⋅ 18 ⋅⋅⋅⋅ 19, the quadrilateral 4 ⋅⋅⋅⋅ 19 ⋅⋅⋅⋅ 20 ⋅⋅⋅⋅ 21, which is also 
intertwined, and the pentagon 17 ⋅⋅⋅⋅ 18 ⋅⋅⋅⋅ 20 ⋅⋅⋅⋅ 22 ⋅⋅⋅⋅ 23, etc. 
 One finds that the upper pieces 15, 19, 21, 25 are compressed, while the lower pieces 
10, 13, 30 and the arrows 12, 16, 24, 28 are tensed; all of the other members are tensed. 
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40. 
 

 Diagram a in Fig. 11 represents a suspension bridge that is loaded by the weights 1, 2, 
…, 8 at the upper nodes and the weights 10, 11, …, 16 at the lower nodes.  The weights 
are equilibrated by the oblique reactions 9, 17 at the extreme points of the truss (*). 
 The external force polygon has its first eight sides pointing along one vertical line and 
the sides 10, 11, …, up to 16 point likewise along a vertical line.  The oblique sides 9 and 
17 intersect, so the resulting polygonal contour will intertwine. 
 One successively constructs the polygons: 
 

1 ⋅⋅⋅⋅ 17 ⋅⋅⋅⋅ 19 ⋅⋅⋅⋅ 18,      16 ⋅⋅⋅⋅ 19 ⋅⋅⋅⋅ 20 ⋅⋅⋅⋅ 21,      2 ⋅⋅⋅⋅ 18 ⋅⋅⋅⋅ 20 ⋅⋅⋅⋅ 22 ⋅⋅⋅⋅ 23, 
15 ⋅⋅⋅⋅ 21 ⋅⋅⋅⋅ 22 ⋅⋅⋅⋅ 24 ⋅⋅⋅⋅ 25,      3 ⋅⋅⋅⋅ 23 ⋅⋅⋅⋅ 24 ⋅⋅⋅⋅ 26 ⋅⋅⋅⋅ 27, …, 

 
which have intertwined contours, for the most part. 
 The two diagrams are symmetric in this example. 

                                                
 (*) This example is analogous to the one that MAXWELL gave in his 1870 paper.  
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 Diagram b shows that the members of the upper part are all tensed, and that the 
tension decreases as one goes from the extremities towards the middle.  All of the 
members in the lower part of the structure are also tensed, but there the tension 
diminishes as one goes from the middle towards the extremities.  The arrows are 
alternately tensed and compressed, except for the central one, where two consecutive 
arrows are both tensed.  Considering only the tensed arrows, or just the compressed ones, 
one sees that the internal stress decreases from the extremities towards the middle of the 
truss. 
 

41. 
 

 The diagram in Fig. 12 (cf. infra) represents a reticulated crane.  The proper weight of 
the crane is distributed over various forces 1, 2, 3, 4, …, 9 that are applied to the nodes; 5 
also includes the accidental weight that the crane might sustain.  All of these weights are 
equilibrated by the support reactions, the magnitude of which is obtained by 
decomposing the resultant weight into three forces that are directed along the lines 10, 11, 
12.  When they are taken in their opposite senses, that will already given the pressures on 
the point 10, the column 11, and the tension in the tie 12. 
 The determination of the external forces is also expressed in the figure.  One 
successively takes the segments of the same vertical that represent the weights 1, 2, …, 9 
and fixes a pole, and then projects from it to the points (0 ⋅⋅⋅⋅ 1), (1 ⋅⋅⋅⋅ 2), (2 ⋅⋅⋅⋅ 3), …, (8 ⋅⋅⋅⋅ 9), 
(9 ⋅⋅⋅⋅ 0) (*), and thus constructs the corresponding funicular polygon.  The vertical that 
passes through the common point of the extreme sides (0 ⋅⋅⋅⋅ 1), (9 ⋅⋅⋅⋅ 0) will be the line of 
action of the resultant weight, whose magnitude is, moreover, indicated by the segment 
that has a common origin with the segment 1 and a common end with segment 9.  If one 
now decomposes that resultant weight, which is a known force into all of its elements – 
namely, three components whose lines of action are 10, 11, 12 – and thus employs the 
construction that was already mentioned in no. 34 and Fig. 6 then one will get the three 
forces 10, 11, 12.  When taken in the opposite sense, these forces, along with the given 
weights, will constitute of complete system of external forces. 
 In order to obtain diagram b, start with the construction of the external force polygon, 
which is taken in the order in which one encounters the forces as one traverses the 
contour of the truss.  Then, successively construct the polygons that correspond to the 
nodes (5 ⋅⋅⋅⋅ 13 ⋅⋅⋅⋅ 14), (4 ⋅⋅⋅⋅ 13 ⋅⋅⋅⋅ 15 ⋅⋅⋅⋅ 16), (6 ⋅⋅⋅⋅ 14 ⋅⋅⋅⋅ 15 ⋅⋅⋅⋅ 17 ⋅⋅⋅⋅ 18), …, by the method that was 
explained above. 
 The diagrams that result inform us that pieces in the upper part are tensed and the 
lower members are compressed; as for the arrows, they are alternately compressed and 
tensed (** ). 
 

____________________ 
 

                                                
 (*) Here, (0 ⋅⋅⋅⋅ 1) indicates the origin of the segment 1, and (9 ⋅⋅⋅⋅ 0) indicates the end of the segment 9.  The 
rays in the figure that emanate from the pole in diagram B and the funicular polygon of diagram A are 
indicated by dashed lines.  
 (** ) I must thank the engineer C. SAVIOTTI, who has done me the courtesy of conceiving and drawing 
the figures that accompany this paper.  
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Note. 
 

 We Italians too often diminish the merits of our compatriots.  After my most learned 
friend CHELINI had seen the first edition of this pamphlet, he reminded me that the 
theory of reciprocal figures, which came from the reduction of forces in statics, was first 
presented by MÖBIUS, and then by GAETANO GIORGINI (now a senator of the realm) 
in a memoir that had the title “Sopra alcune proprietà dei piani de’momenti principali e 
delle coppie di forze equivalenti,” and which he presented to the Italian scientific society 
in 1828 and published in t. 20 (Modena, 1828) of the Memorie of the society.  On pp. 247 
of that journal one reads the theorem on the correspondence between points and planes.  
On pp. 249, one finds the one on reciprocal lines, and assuming that the central axis was 
the z-axis, the author obtained formulas that were no different, in substance, from the 
ones in no. 5. 
 The same prof. CHELINI had the goodness to inform me that: 
 
 “GIORGINI is the author of a book Elementi di statica (Florence, 1835), where he 
proves several propositions that were contained in the 1828 paper,” 
 
and that  
 
 “in the Correspondence mathématique et physique of A. QUETELET, t. 11 (Brussels, 
1830), pp. 112, CHASLES, speaking of GIORGINI, who had already been his fellow 
student at the French polytechnic school, alluded to the aforementioned memoir, and said 
that the two old fellow students also both arrived at the same views as a result of that 
research.” 
 
 The illustrious CHASLES also presented the theory of reciprocal figures that we 
discussed here in his paper “Sur deux principes généraux de la science: la dualité et 
l’homographie,” which he present to the Belgian academy of science in 1830 and inserted 
into t. II of the Mémoires couronnés (Brussels, 1837); see pp. 679. 
 
 

___________ 
 


