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PREFACE

This brief work was brought to light for the first #gnaccompanied by a memoir of
my friend FELICA CASORATI, on the solemn occasiontthas a family celebration for
the friends of the director of the Milanese Polytechnstitute (1 June, p. p.). It has now
been reprinted without additions, except for some minorections, in a more modest
edition for the convenience of younger students at th#utesthat must pursue a course
of graphical statics.

The purpose of these few pagesamely, the use of geometric methods to determine
the tensions and pressures in trusses that are subjeetadraal systems of forceswill
have merit in a more substantial study. In fact, it wey intention to follow it with a
second part that would be printed on the occasion of saeredate. But even now the
implementation of that proposal is impeded by other ckefa so | am forced to
postpone that to another occasion.

Milan, 12 August 1872.

L. C.



1.

The theory of reciprocal figures in space that are dedncedthe consideration of a
system of forces that are applied to a free, rigid bedyell-known. An infinite axis
passes through an arbitrary pot in space, with respect to which the moment of the

system is zero, and the geometric locus of thoseaikelse a planeu that MOBIUS ()
called thenull plane of the pointdt. Conversely, an arbitrary plapewill contain an

infinitude of axes of zero moment, all of which wiltérsect at the same point, which
MOBIUS called thenull point of the plangs. Thenull point andnull planecan also be
called thepole and polar plane.

In that way, any poinf)t in space corresponds to a plan¢hat passes throught,

and conversely, any plapewill correspond to a poiridt that is situated ip. If the pole
2 moves in a given plane then the polar plang will constantly pass through a fixed
point 2 that is the pole ofr; conversely, the locus of the poles of all plane$ pass
through a poin2( will be a planex that is the polar tel.

If the pole traverses a line then the polar planémaihte around another line. Two
lines can then be callembnjugateor reciprocal when they are, at the same time, the loci
of the poles of the planes that pass through the otfeerand the envelope of the polar
planes of the points of the other one. One knowsthigagiven system can be reduced to
two forces in an infinitude of ways. If one chooses line of action of one of them
arbitrarily then the line of action of the other am#l determined uniquely, since the two
lines of action must be conjugate lines.

2.

The poles that correspond to a pencil of parallel planeshe points of a line with a
well-defined direction. That is, a line at infinity isrgugate to a line whose point at
infinity J is the pole of the plane at infinity. In that wall, @encils of parallel planes

will correspond to all (mutually-parallel) lines that p#ssoughJ. Among these lines,

there is one that is perpendicular to the correspondingldparallel planes, and which
is called thecentral axisof the system.

In other words: Any line that is parallel to the cengak will have its conjugates at
infinity. Any plane that is parallel to the centralsawiill have its pole at infinity.

() “Ueber eine besondere Art dualer Verhéltnisse zwisdrigure im Raume,” in Crelle’s Jourril
(1833), 371, Berlin; alsbehrbuch der StatikLeipzig, 1837), v. I, pp. 144. Cf., STAUDGeometrie der
Lage (Ndrnberg, 1847), pp. 191. — BRIOSCHitatica dei sistemi di forma invariabi{ilan, 1859), pp.
38. — See the note at the end of this work.
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3.

Two arbitrary conjugate lines enjoy the following propertlyeif minimal distance is
a line that cuts the central axis orthogonally. Asslt:

If one projects the two reciprocal lines parallel to the centras and over a plane
that is perpendicular to that axis then the two projections will be padaikes.

One easily recognizes that:

1. Several lines in space whose projections coincide in just one limeespond to
the linet’ whose projections are coincident or parallel, accgrthnwhether the (which

are necessarily contained in a plane that is parlehe central axis) are or are not
parallel, respectively.

2. Several lines in space whose projections are parallel correspond te tine
whose projections are coincident or parallel, accordmgvhether ther (which are
necessarily parallel to the plane of the central aatg)or are not parallel, respectively.

5.

Suppose that the central axis is horizontal, and galfiree of projectiomrthographic
when it encounters the central axis at its pole. # puts the origin of the axes of the
rectangular coordinate systeqy, z at that point, the last of which will coincide witthet
central axis then the foregoing law of reciprocal cgposdence will be expressed in the
following formulas: The poink, y1, z; is the pole of the plane:

Xy1 —yx +k(z—-32) =0,
wherek is a constant. Conversely, the plane:

ax+by+cz+d=0
will correspond to the pole:

kb _ka __
X=——, y=—, z2=—- —,
o
and the line:
ax+by+c =0,
px+qy+rz =0
will be conjugate to the other line:
ax+by+c =0,

px+qy+r'z =0,
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where
rc' =r'c=k (aq — bp.

6.

Call two polyhedraeciprocal when the vertices of the first one are the polethef
faces of the second one, just as the faces of thiedne will be portions of the polar
planes of the vertices of the second one, and the edge®e will be the conjugates of
the edges of the other.

Since any pole must lie in its respective polar plaaeh ®f the two polyhedra will be
simultaneously inscribed and circumscribed by the other &oe.example, e, B, ¢,

© be the vertices of a tetrahedron and dets, y; o be the faces of the reciprocal
tetrahedron. The planes £, ), 0 pass through the pol&g B, ¢, ©, respectively, and

the verticesfyd, yad, apfo, apfy lie in the polar planeB¢®D, CAD, ABD, ABC,

respectively.

Now, project the two polyhedra onto the orthographiogslahe projections will be
two figures that are endowed with the reciprocal propeAwny side of the first figure
will correspond to a parallel side of the second onegdiwo corresponding sides will be
the projections of the conjugate edges of the two polyhddii@polyhedron has a solid
angle in whichm edges are concurrent at its vertex then the other dlhéhave a
polygonal face withm sides. Meanwhile, consider the two orthographic figurels gt
there arem edges on one of them that diverge from a pointhode so them
corresponding edges of the other one will be the edgeslosed polygon.

Any edge of a polyhedron is common to two faces and timksvertices. Any face
has at least three edges. Therefore, in each ddvtherthographic figures, any edge will
be common to two polygons and conjugate to two nodese wahileast three edges will
be concurrent at any node, just as any polygon will biane® or more edges.

Suppose that one of the polyhedra, and therefore, the atlee as well, isimply-
connected so the sum of the numbers of vertices and faceseistgr by 2 than the
number of edges, according to the EULER’s celebrateatéhe Therefore, if the first
orthogonal figure hag nodesp' polygons, and edges then one will have:

p+p =s+2.

The second one will hay® nodesp polygons, and lines.

7.

If the one polyhedron has a vertex at infinity thendtieer one will have a face that is
perpendicular to the orthographic plane, and convers®amely, if one of the two
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orthographic figures has a vertex at infinity then the rothvee will contain a polygon
whose edges all fall along the same line, and conversely.
If the pointJ at infinity on the central axes is the common vedéx faces of the

first polyhedron then the other polyhedron will have yganal face withnh edges in the
plane at infinity. In that case, the first orthograpigure will havep — 1 nodesp’ — n
polygons, and — nlines, and the second one (if one ignores the limefiatty) will have
p — 1 polygonsp’ — n nodes, and — nlines, where the numbers p', s are again
intended to obey the relatignt p' =s+ 2.

8.

Thesereciprocal diagramsthat are obtained as the orthographic projections of two
reciprocal polyhedra are encountered by a direct patlgraphical statics. The
mechanical property of reciprocal diagrams is expresséukifollowing theorem, which
is due to the illustrious prof. CLERK MAXWELL X

“If forces represented in magnitude by the lines of a éigbe made to act
between the extremities of the corresponding linethefreciprocal figure, then
the points of the reciprocal figure will all be in equiibn under the action of
these forces.”

The truth of the theorem is made immediately obviohemwone observes that the
applied force at an arbitrary node of the second diagggnarallel and proportional to the
edges of a closed polygon in the first diagram. The theda¢rimarily useful when one
applies it to the graphic determination of thiernal forces in reticulated trusses.

0.

The first germs of this theory can be found in the ptypaithe force polygonin
which edges represent a system of forces in magnitudediractions that are applied to
a point and equilibrated, and that well-known geometriostoction that given the
tensions in the edges of a planar funicular polygon. Heweéklie one who fist applied it
to the reticulated truss was prof. MACQUORN RANKINE, ayhn article 150 of his
excellentManual of applied Mechanid4857), proved the theorem that:

“If lines radiating from a point be drawn parallel teetlines of resistance of the
bars of a polygonal frame then the sides of any polygurse angles lie in those
radiating lines will represent a system of forces, Whieing applied to the joints
of the frame, will balance each other; each suchefdm@ing applied to the joint
between the bars whose lines of resistance are gddmthe pair of radiating lines
that enclose the side of the polygon of forces, aprng the force in question.

() Philosophical Magazine, April 1864, pp. 258.
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Also, the lengths of the radiating lines will represmg stresses along the bars to
whose lines of resistance they are respectively paglie

Much later (), the very same RANKINE published an analogous theor@m f
polyhedral frames.

10.

However, the geometric theory of reciprocal diagramgroperly due to prof.
CLERK MAXWELL, who first gave their general definitioand deduced the projection
of two reciprocal polyhedra from them in 1864 Y and then once more on 1870°().
However, the polyhedra of that author are reciprocdiensense of PONCELETtheory
of reciprocal polar figures, relative to a certain paraboloid of rotationsuch a way that
the projections (orthogonal and parallel to the aafsjhe corresponding edges are not
parallel, but perpendicular to each other. Therefane,af the diagrams must be rotated
through 9@ in its plane in order to assume the position it gaiired in the static problem.
By contrast, with the method that | propose, the agtaphic projections of two
reciprocal polyhedra are given without any other diagranas &are obtained from
graphical statics.

11.

The practical application of the method of reciprobgilires is the subject of a
memoir that prof. FLEEMING JENKIN communicated in Mar&869 to the Royal
Society of Edinburgh, in which that author, after having cited the definitiof
reciprocal figures and the static property that MAXWELhnaunced in his paper of
1864, added that:

“Few engineers would, however, suspect that the twagpaphs quoted put at
their disposal a remarkably simple and accurate methodlaidlating the stresses
in frameworks, and the author’s intention was drawréomethod chiefly by the
circumstance that it was independently discovered by digabdraughtsman,
Mr. TAYLOR, working in the office of the well-knownoatractor, Mr. J. B.
COCHRANE.”

The author presented a good number of examples thatilesteated with figures,
and concluded with the observation that:

0) Page 160 of the sixth edition (1872). Of course, one muststadd that thérussor framethat
the author speaks of is a simple polygon.

(")  Philosophical Magazine, February 1864, pp. 92.

(") “On reciprocal figures and diagrams of forces” (PMiagazine, April 1864, pp. 250).

(™) “On reciprocal figures, frames, and diagrams of defc(Transaction of the Royal Society of
Edinburgh, vol. XXVI). See also a letter of M. RANXE in the journal The Engineer, 16 February 1872.

(" “On the practical application of reciprocal figuresthe calculation of strains on frameworks”
(Transaction of the Royal Society of Edinburgh, v. XX\For the same author, see also “On braced arches
and suspension bridges,” read before the Royal Scottisbtof Arts (Edinburgh, 1870).
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“When compared with the algebraic methods, the sinipliahd rapidity of
execution of the graphic method is very striking, and algelmethods applied to
frames, such the Warren girders, in which there aneenous similar pieces, are
found to result in frequent clerical errors, owingtlte cumbrous notation which
is necessary, and especially owing to the necessstipalion between odd and
even diagonals.”

12.

However, when one speaks of geometric solutions t@rblelems of the science of
construction, one can certainly not fail to mentioafp€CULMANN, the ingenious and
distinguished creator of graphical statics {o whom is due the expeditious and elegant
methods of that science, which come out of the Zurattosl, and are now taught in
several German polytechnic schools [and for the lastyfears at the Superior Technical
Institute in Milan ()]. All of the questions of theoretical statics thatuld pertain to the
individual branches of practical applications are ansgivdre prof. CULMANN with
uniform and simple procedures that, in substance, redutiket@onstruction of two
figures that he called th&raftepolygonand theSeilpolygon. Although he did not
consider reciprocal figures, in the sense of MAXWELL’sdty, those polygons were
essentially such things. In particular, almost all & tteometric constructions that
CULMANN gave in the fifth section of his book, which wesdicated to reticulated
systems das Fachwerk coincide with what one would deduce by MAXWELL’s
methods. As a matter of fact, CULMANN's constructiatso subsume the cases (which
have not escaped the English geometers) in which realbdagrams are not possible.

13.

First of all, we would like to show that CULMANN'&ré&ftepolygonand the
Seilpolygon (i.e., the force polygon and the funicular polygon) canrbduced to
reciprocal diagrams.

If one is givem forcesPs, Py, ..., Py in a plane (which is always assumed to be the
orthographic plane) that are in equilibrium then thentéyrce polygonis intended to

() Die graphische StatjkZiirich, 1866. Since this distinguished work is not exemmi fgrave
difficulties, especially for those who are not familgith projective geometry, it would be wise for one to
assist the propagation of this precious doctrine by meam®re elementary treatises. See: K. VON OTT:
Die Grundziige des graphischen Rechnens und der graphischen, SPasigue, 1871;- J.
BAUSCHINGER,Elemente der graphischen Statikunich, 1871~ and the second section of the book by
F. REULAUX, Der Constructur(3° ed.), Braunschweig, 1869; there are several otheresmnsive
memoirs that consider special topics by MOHR, HARLACHBER, RITTER, E. WINKLER, etc. In
England, in addition to the authors that were cited abemme other mathematicians have directed their
attention to graphical statics, which emerged in tteededings of the London Mathematical Society, vol.
I, pp. 233, 320-322. See also: C. UNWNNrought iron bridges and rogfsondon, 1869.

(") As well as in the engineering schools at PalermdRamtiia.
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mean a polygon whose edges 1, 2,n.areequipollent() to the lines that represent the
forces, taken in a given or fixed, arbitrary order of sssioa (). Take a poin© (in the
same plane), which one calls thele of the polygon that is being drawn, project from it
to the vertices of that polygon, and les) be the ray that projects to the common vertex
to the edges, s. As for thefunicular polygon which corresponds to the pdle that term
is intended to mean another polygon whose verticeslfatig the lines of action (which
are enumerated W, 2, ..., n) of the forceds, Py, ..., P, , and whose edges are parallel
to the rays throug (" ), respectively, such that the edge that is included teetwhee
lines of action of;, Ps will be parallel to the ra@(r s), and that will be indicated by the
symbol £ 9).

The resulting funicular polygon is closed, as is tmed@olygon.

14.
If the lines of action of the given forces are canent at the same point (Fig. 1) then

one would already have two reciprocal diagrams thdtobiwiously be the orthographic
projections of two pyramidadl-hedra.

Figure 1.a. Figure 1.b.

If the forces are parallel then the force polygon wadluce to a line; that is, the base
of the first pyramid will be perpendicular to the agjnaphic plane, and the vertex of the
second one will fall at infinity. That is to sayetBecond polyhedron will be a prism that
has just one base at a finite distance. This calestrated in Fig. 2, where the edges of
the force polygon are indicated, not by just numbers B, 2,., but by two numbers
placed at the ends of each segment; therefore, dtpments 01, 12, 23, 34, ... will
correspond to the lineks 2, 3, 4, ..., resp. in the second diagram.

*

() Equal in magnitude, direction, and sense; this terrogyoWas used by prof. BELLAVITUS.
(" ) The position of the first vertex is arbitrary imetconstruction of this polygon.
(") Onlythe direction of the first edge is given in tamstruction of this polygon.
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Figure 2.a. Figure 2.b

Here, and in what follows, we shall adopt two egiof numbers 1, 2, 3, .r.,, ..., S,
., 1,23 ...,1, ..., ...in the textin order to distinguish the lines of one diagraomt
the corresponding lines of the other one.

15.

Now, consider the general case, in which the ®i® not concurrent at the same
point. Assume thaD' is a second pole that is joined to the verticethefforce polygon
by means of lines, and construct a second funiqadérgon that corresponds to the pole
O, namely, a polygon whose vertices fall along thed of action of the forces, and
whose edges are parallel to the rays that diveiga ©', resp. See Figs. 3 and 5, in
which the rays that emanate from the second pelel@wn with dashed lines, as well as
in the corresponding funicular polygon.
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Figure 3.a

Figure 3.b
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Figure 5.

Figure 5.b
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In that way, the diagram that is comprised of thedopolygon and the rays that
project fromO andQO’, and the diagram that is comprised of the two funicpiddygons
and the lines of action of the forces are obviously recgro The first one is the
projection of a polyhedron’) that is formed from two solid-hedral angles whose
corresponding faces intersect along the contour @naconvex gobbqg polygon withn
sides; the second one is the projection of a polyhettrainis comprised of two planar
polygons withn sides, such that the sides of one meet the corresgpsdies of the
other one in sequence.

The line in space that joins the vertices of the twbhedral angles of the first
polyhedron is the conjugate of the one that is commohea@lanes of the two bases of
the second polyhedron. Anticipating the property thatdargugate lines have to project
orthographically into two parallel lines, it then folle that two arbitrary corresponding
edges I( 9), (r 9 of two funicular polygons will intersect above a fixkde that is
parallel to the line that joins to the two pol@s O'. This theorem is fundamental to
CULMANN'’s methods.

16.

If the polesO, O’ coincide then the corresponding edges of the two funicular
polygons will be parallel (Fig. 4). In that case, time Ithat joins the vertices of time
hedral angles in the first polyhedron is perpendiculath® orthographic plane; that
shows that the bases of the second polyhedron aregharall

17.

The diagonal between the vertices of the two tetrahedngles of the first
polyhedron (no15) — namely, the diagonal between two vertices of tim¥ew polygon —
is conjugate to the intersection of the correspondinglrijateral faces of the second
polyhedron, which joins the points that are common togdges of a base with common
point to the corresponding edges of the other basehel orthographic projection of the
first line, one is given a diagonal between two vedi€ [ + 1), 6 s+ 1) of the force
polygon, namely, a line that is equipollent to the tesulof the force®;.1, Pr+2, ..., Ps;
the second line will give the line of action of thasuktant. Therefore, the line of action
of the resultant of an arbitrary number of consecutiveesP;.1, Pr+2, ..., Ps will pass
through the point that is common to the edge&ir(+ 1), (s Os + 1) of the funicular
polygon; this is another fundamental theorem of graphtedics. See, for example, the
resultant of the forces 6, 1, 2 in Fig. 3.

() This polyhedron hasrBedges, @ triangular faces, twa-hedral angles, and tetrahedral angles.
The other polyhedron hasy&dges, & trihedral angles, 2 bases that are polygons wilides, anch
guadrilateral faces.
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18.

If the aforementioned diagonal of the first polyhedrenperpendicular to the
orthographic plane then its conjugate line will be anitfi Therefore, the two vertices
(r Or + 1), 6 5+ 1) of the force polygon will coincide in just one pain{see Fig. 5, in
whichr = 1,s= 4), and the edges O + 1), (s + 1) in the funicular polygon will be
parallel. The resultant of the forc€%.1, Pri2, ..., Ps will then have a vanishing
magnitude, and its line of action will fall along the liakinfinity of the orthographic
plane. This resultant will be a force that is ity small and far away that is equivalent
to a couple of forces that act along the predicted phmdiges of the funicular polygon
amd is represented in magnitude by the line that join€daheesponding pol® to the
point A. Since these two forces are equivalent to the sysfeln.1, Pri2, ..., Ps, the
sense of the one that acts along the eddé& ¢ 1) is fromA to O, and the sense of the
other one that acts along the edgél+ 1) is fromO to A.

19.

Given the forceds, P,, Ps, ..., Pr-1 (no. 13), the two polygons (viz., force and
funicular) serve to determiri&, which is equal and opposite to the resultant of thergiv
ones (see Fig. 3, in whiah= 5). In fact, if one constructs the broken linERI[B...n —

1, whose edges are equipollent to the given forcesthigelnen that joins its extremities
(directed from the end to the origin of the break) w# equipollent toP, . Then,
assuming a pol®, construct a (funicular) polygon whose first 1 verticed, 2, 3, ..., n

— 1 fall along the lines of action of the give fordes P, Ps, ..., Py, resp., and whose
edgesi1t 1), (1 [2), (2 B), ..., (h — 1 [h) are parallel to the rays that project fr@ro

the vertices of the first polygon that have similar aamThe line that passes through the
last vertexn of the funicular polygon — that is to say, through thmtpof concurrence of
the first edger{ (1) with the last onen(— 1 [h) and is parallel to the last edgeof the
force polygon — will the be the line of actionRy.

Suppose that the first edge of the funicular polygon mpass through a fixed point,
and that one moves the pole along a straight line, laaicthe other edges rotate around
just as many fixed points that are aligned with the ére in a line that is parallel to the
locus of the pole (ndl5). This recalls the celebrated aphorigrar{sma of PAPPO ):

“Si guoteumque rectee linese sese mutuo secent, non pluresdgearmer idem
punctum, omnia qutem in una ipsarum data sint, et reliquanuitudenem
habentium triangulum numerum, hujus latus singular hgloeicta tangential
rectam lineam positione datam, quorum trium non ad angekistens trianguli
spacii unumqguodque reliquum punctum rectam lineam positidoendanget.”

() MathematicagCollectiones preface to book VII, pp. 162 in the COMMANDINO edition (Ve
1589). See the translation or paraphrase of the apht¢iest PONCELET made in no. 498 of fAimité
des propriétés projective®aris, 1822).



Cremona — Reciprocal figure in graphical statics. 14

20.

If one considers the poiQ as being capable of taking any position in the plane then
the property of the polygons (viz., force and funiculaan doe summarized in the
following geometric statement:

Let a planar polygon be given that hmaedges 1, 2, 3, ..n—1,n, and in
addition, leth — 1 linesl, 2, 3, ..., n —1 be given in that plane that are parallel to
the firstn — 1 edges of the polygon, resp. We wish to project the&es of the
given polygon from a point or pole that moves in thenpl(with no restrictions).
Now, imagine a variable polygon withedges, the first — 1 of which, namelyl,
2,3, ...,n=1 must lie in succession along the given lines withdimilar names,
while then edgesii (1), (1 [R), (2 [B), ..., (h — 1 [h) must be parallel to the rays
that project from the vertices of the given polygort thave similar names. The
point of concurrence of two arbitrary edgedX + 1), (s s + 1) of the variable
polygon will fall along a well-defined line that is par&lie the diagonal between
the verticesr([f + 1), 65+ 1) of the given polygon.

This theorem, which is proved by means of plahe geometnand does not seem to
be obvious, will nonetheless result from a straightébovline of reasoning if one
considers the plane figures to be the orthographic profectibreciprocal polyhedra.

21.

The force polygon is the projection of a planar polygoma skew polygon according
to whether the forc® is or is not concurrent at a point, resp. As we samo. 14, in the
former case the two reciprocal diagrams are composeplysiin the one case, of the
force polygon and the pol®, and in the other case, of the lines of action offtihhees
and the funicular polygon that correspond©toBy contrast, in the latter case (118) it
IS necessary to add another pOlgo the first diagram and another funicular polygon that
corresponds t®' to the second one. As we have seen 8. the two poles can be
assumed to coincide, and then the first diagram beltome as simple as possible.
However, if one desires to simplify the second onen thiee must put the pol®' at
infinity in an arbitrary direction. The polyhedron whasghographic projection is the
first diagram will have the vertex of one of iishedral angles at infinity, and since the
polar plane to a point at infinity is parallel to thentral axis, the new funicular polygon
that corresponds t®' will have all of its extended edges along the samagktrdine
(whose point at infinity will béD"). The absolute position of this line in the orthographic
plane will be, once more, arbitrary, although one migte it at infinity.

One gets an even simpler result in the following w8uppose that the first
polyhedron has the vertex of the aforementiondtedral angle at the point at infinity
along the central axis. In the first diagram, the @levill then disappear absolutely,
since the edges of timehedral angle will project orthographically onto the &3 of the
forces polygon. The polar plane of the vertex willnthe the plane at infinity; therefore
the second funicular polygon will lie at infinity entiy€no. 7).
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22.

We conclude the even simpler fact from that, by whaie can regard the force
polygon and the funicular polygon of a systemnoéquilibrating forces as reciprocal
diagrams when the forces are situated in a plane {hz.prthographic plane), but not
concurrent at one of its points. The one diagranomprised of the force polygon and
the rays the project from a pdeto the vertices. The other is comprised of the lofes
action of the forces, the funicular polygon, and the #ihenfinity. The first diagram is
the projection of a polyhedron whose faces are obtaingordjgcting then sides of a
non-convex polygon that is perpendicular to the orthogrgphitce from a finite point in
space (?). The reciprocal polyhedron whose projectiaimassecond diagram is the
(infinite) portion of the space that is contained iplanar polygon anah planes that
successively pass through the sides of it and are extemdgaity.

23.

We now go on to more complicated diagrams, as theytrpigisent themselves in the
theory of reticulated trusses. L&t &' be two reciprocal polyhedral surfaces that are

simply-connected and endowed with a boundayy (et be the polyhedron that is
composed ofS and the pyramidal surface whose vertex is a pOirthat is fixed, but
arbitrary, in space, and whose directrix is the polyg@oatour of&. Let ‘B’ be the
reciprocal polyhedron t§3, namely, the polyhedron that contains the face&'ofthe
planes of the angles of the boundary&f and the planevthat is polar taD. If one

projects the two polyhedra orthographically then one gell two reciprocal diagrams
that one would like to take into consideration.
Let the boundary of haven sides, and let that surface hamether edges () andp

faces. The polyhedrdl will haven + p faces and 2+ m edges, and therefore+n —p
+ 2 vertices. Therefor& will havem—p + 1 vertices outside of the boundary
Reciprocally 33" will havem + n—p + 2 facesn + p vertices, andr2+ m edges.

24,

Now, suppose that the projection®f is the drawing of a given reticulated truss with
p nodesandm members- or rectilinear pieces — for which the external ferbave lines

0) If the boundary o6 is a planar polygon with sides then that @&’ will be point that is the vertex
of ann-hedral angle.

(")  Obviouslym=n.

() Somcannot be less than— 1.
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of action that are the projections of the edge&ofand are represented in magnitude by
then sides of the polygon that is the projection of the boundd& (). The projection

of the face of&’ that is in the planev will then be the funicular polygon of external
forces that corresponds to the pOi¢hat is the projection ad, and the projections of the
m edges ofS that do not belong to the boundary will give the measfitthe internal

stresses that the corresponding members of the trissibjected to as a consequence of
the given system of external forces.

25.

If the point O is moved to infinity in the direction that is perpenddcuto the

orthographic plane then the planewill coincide with the plane at infinity. The first
diagram will then reduce to the projection & namely, to the totality of lines that

measure the external forces and the internal stres$®ben the funicular polygon
disappears completely, the second diagram will cordaly the drawing of the truss
(namely, the lines of action of the internal forcasyl the lines of action of the external
forces. In the figures that are at the basis ofghper, the former diagram will indicated
by the letter b and the latter one, by the letter a.

26.

If the external forces are all mutually parallel, afen happens in practical
applications, then the boundary &fwill be a polygon that is contained completely in a

plane that is perpendicular to the orthographic plarteus;Tthe sides of the external force
polygon will all fall along one and the same line.

27.

Other degenerate polygonal forms can offer diagrams phatluce analogous
degenerations in the spatial figure.

Suppose, e.g., that one has a solid tetrahedral angfeae that corresponds to the
reciprocal figure to a quadrilateral face, and that two{oposite) edges of the solid
angle approach each other indefinitely closely in th&ne until the one overlaps the
other. The final solid angle will then be reduced to stesy that is composed of a
trihedron and a plane that passes through one of its edgbsrefore, any of the
guadrilateral faces of the reciprocal figure will have edges that, will be found to have
the same or opposite directions without ceasing te Basommon vertex.

() Therefore, & must not have any vertex at infinity; i.65' must not have any face that is
perpendicular to the orthographic plane.
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If we now pass on to the orthographic projection thenmilehave a point in one
diagram from which four lines emanate, two of which hawverlapping directions, and in
the other diagram we will have a quadrilateral withehvertices that lie along a straight

line ().

28.

Suppose that the drawing of a reticulated truss is gasmth,suppose that the system
of external forces'() is known, so one must, above all, construct thereal force
polygon, i.e., a polygon whose sides are equipollent ¢oetkternal forces. In the
accompanying figures, the external forces and the sidibe giolygon are indicated by 1,
2, 3, ..., in such a way that as one traverses the confotire polygon in order of
increasing numbers, the sides will be traversed insdese of the forces that they
represent. This way of traversing the contour of tHggom is called theyclic ordering
of that contour.

When one treats the construction of the reciprocajrdm and the one that is
composed of the drawing of the truss and its system efredtforces, the order in which
the forces follow each other in the constructionhef televant polygon is not arbitrary.
The order in which they are treated is determined fromfdh@wing argument: In the
external force polygon, which is part of diagram b, theecessive sides must be
equipollent to two forces, since their lines of actimiong to the contour of the same
polygon in diagram a. That polygon will then correspond ¢éovdrtex that is common to
those two sides.

One is therefore given the index 1 and any of the mxtdorces; the line of action of
the chosen force is the common side to two polygotkeofliagram a. Each of them has
the line of action of another external force in itmtour. It will therefore have two
external forces that can be regardedagiguoudo force 1, and will be indifferent to the
attributes of one or the other index 2. Naturally,dtieer will then have the index if n
is the number of external forces. After doing thathmg will be arbitrary or uncertain
in the order by which one has to arrange the sides @tieenal force polygon.

Suppose that the nodes to which the external forceapgieed are all found on the
contour of the drawing of the truss |, so those forces can be taken in the order in
which they are encountered as one traverses thatwonWhen one does not follow
these rules, but the other ones that were exhibiteztdgedne can still solve the problem
of the graphic determination of the internal stressas,obe will not havereciprocal

0) Examples of these degenerate forms can be found on pagedi#ithe first of two tables in the
cited memoir of prof. FLEEMING JENKIN (1869), and alsmimr own Figure 9.
(")  The external forces are:
1. The proper weight of the truss, the accidentataasitory, weight, the action of wind, etc., and
everything that one can regard as effectively given andiditgd over the nodes of the truss.
2. The supports reactions.

For the determination of these, forces one can cdméemethod that was taught by CLERK MAXWELL
in his memoir “On the calculation of the equilibriumdsstifiness of frames” (Phil. Magazine, April 1864).
(") The contour of the truss is composed of the two thinghattable (Gurten, Streckbaumgethe
upper table and the lower table. The pieces that jeimtues of one to those of these other one are called

shaftsandarrows.
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diagrams but rather, figures that are more complicated or disaade in which the
same segment that is not found girbper place must repeated or brought back in order
to give rise to the final constructiony,(as was the case in the old method of separately
constructing a force polygon for each node of the truss.

29.

If one formats the external force polygon in this wlagn one will complete diagram
b by constructing successively the polygons that correspmmlet nodes of the truss.
The problem of constructing a polygon whose sides must baxen directions is
determined whenever just two sides are unknown. Theredoe must start from a node
at which just three lines are concurrent: viz., the ¢iheesistance of two members of the
truss and the line of action of one external forcée &quipollent segment to that force
will be a side of the triangle that corresponds to thade; the triangle can then be
constructed. No ambiguity will persist in this constructib one understands that a
member of the truss at which intersect the lines abaadf two external forces that
belong to the contour of a polygon in diagram a will espond to a lines in b that passes
through the common vertex to the sides that are edeipdd two forces.

One then passes on to the other nodes successiveliclinasway that just two
unknown sides will remain to be constructed for any newgaaly

In the accompanying figures, all of the lines in each dragree denoted by numbers
in order to indicate the order of operations.

“The figure can be drawn in five minutes, whereas theba#ge computation of
the stresses, though offering not mathematical ditfjcu$ singularly apt, from
mere complexity of notation, to result in erro)).(

30.

A superficial consideration might suggest that the gwlubf the problem is possible
and determinate, even in the case in which none of ttiesns a point of concurrence of
just three lines. Suppose that, e.g., the drawing dfaiss is comprised of the sid&s5,

7, 8 of a quadrilateral and the lin8s10, 11, 12 that join the vertices to a fifth point, and
the external forces afe 2, 3, 4, which are applied to the vertices[(b [P), (5 [b [L0), (6
[ 1), (7 (B [12) of the quadrilateral’( ). Formatting the external force polygom.O
3 [4, then the points (I12), (2 03), (3[M), (401), will leave the order of 5, 6, 7, 8
indefinite. One then poses the problem of constructing a dptadal whose sides 9, 10,

0) For that reason, Fig. 1 and 3 in Table 16 of the afi@&JLMANN’s Graphische Statilre not
reciprocal diagrams, nor are Fig. 7 anaf/Table 19, etc. By contrast, diagrams 168 and 1Gshge 422
of the text, etc., are perfectly reciprocal.

(") Prof. FLEEMING JENKIN on page 443 of the cited volunfettee Transactions of the Royal
Society of Edinburgh.

(") These considerations persist without alteration wihentruss is, by contrast, comprised of an
arbitrary polygon and the lines that join its vertidesa fixed point. The figures that relate to this

paragraph are not given, but the reader can supply thitnmevdifficulty.
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11, 12 are parallel to the respective lines in the givegralma that have similar names,
and whose vertices ([@L0), (10(011), (11M12), (1211) fall upon 5, 6, 7, 8, resp. The
problem of constructing a quadrilateral whose sides hawengdirections (or pass
through given points along the same line) and whose veffatleupon just as many fixed
lines, will then admit one and only one solutiomgenera) so one can believe the first
notion that the force diagram becomes perfectly detextei

However, the illusion will evaporate when one cdass that the geometric problem
has some impossible and indeterminate cases. In féen wne omits one of the
proposed conditions — i.e., one requires only that the datetel have all of its sides in
given directions and its first three vertices on gineen lines 5, 6, 7 — the fourth vertex
will describe a liner (), and the common point to it and the given line 8 miwa the
desired solution when it is taken to be the fourth wert&ow, if the givens in question
are such that becomes parallel to 8 then one will be dealing with @inhe impossible
cases. However, if the limecoincides with 8 precisely under an even more speedliz
hypothesis then the problem will become indeterminateaamely, an infinitude of
guadrilaterals will satisfy the proposed conditions.

In order to persuade oneself that in the constructiothefeciprocal diagram to a
given one, one will come to precisely its impossipidt its indeterminacy, it is enough
to reflect upon the face that if you consider the giveagm@im to be a force polygon
whose magnitudes are expressed by the segrbe6is, 8, and whose pole is the point
(9 10 11 (M2), then the figure that one seekd, 1 111 (112, will be the corresponding
funicular polygon. Now, in order for the constructiohtlee funicular polygon to be
possible, it is necessary that the forces be in equiibr For that purpose, if one
supposes that the their magnitu&es, 7, 8 are given, along with the lines of action of
three of them 5, 6, 7, then the line of action of thath one will be determined uniquely,
and it will be precisely the linethat was mentioned above. Therefore,ahd 8 do not
coincide then the fictitious forces, 6, 7, 8 will not be in equilibrium, but will be
equivalent to an infinitely small force at infinityné the solution of the problem will be
impossible. Ifr then coincides with 8 — namely, the fictitious forcess iarequilibrium —
then the problem will be indeterminate, since one castcoct an infinitude of funicular
polygons for a given system of forces and for a given @el6).

In the first of these two cases, if equilibrium tsa@med then one must add an equal
and opposite force to the (infinitely small and distaegultant of the forces, 6, 7, 8;
that is, one considers the polygenb [I7 [B to be the projection, not of a quadrangle, but
a pentagon, two consecutive vertices of which will pronto the same poin? (308 O
12). The linel2 is then the projection of two distinct lines in spag®,n the diagram
that is reciprocal to the poin® (010 1.1 112), will correspond an (open) pentagofl®)
11 M2 M2 that has the vertices (@0), (100011), (11[12), (12 (®), which are situated
along 5, 6, 7, 8, resp., and the vertex[lL2) at infinity.

() PONCELET,Traité des propriétés projectiv¢Baris, 1822), no. 500.
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31

Any member or rectilinear piece of the truss is the bof action of two equal and
opposite forces that are applied to the two nodesdtetadjoined to that piece. The
common magnitude of these two forces — namely, theuread the stress that the piece
considered is subject to — is given by the corresponding fitteeaiagram b. Those two
forces can be considered todmionsor reactions In order to pass from one case to the
other, it is enough to invert the senses. When coresiderbeactions if they act on the
respective points of application towards the inside ofpleee then one will call them
pressures or compressiongy contrast, if they act towards the outside they thd be
calledtensions or stretchingsOften the compressed pieces are given the nasteutd
while the pieces in a state of tensions are caie).

32.

Each node of a truss is the point of application systiem of equilibrated forces that
are at least three in number. One of them can lext@nnal force, while all of the other
ones will bereactionsin the pieces that are concurrent at that nodeilllbe enough to
know the sense of one of the forces of the systeondar to deduce the sense of all the
other ones. It will not be necessary for one toeirse the contour of the polygon that
corresponds to that node. If an external force idieghpo the node, and one traverses the
equipollent side of the polygon in the same sense, ¢aeh of the other sides of the
contour will be traversed in the sense that belongs t@dhesponding internal force,
when regarded as a reaction that is applied to the natlestbonsidered. By contrast, if
the internal forces tend to act in the sense that caspéath them asctionsthen when
one traverses the contour of the polygon, one mustse\the sense of the external force.

If no external force is applied to a node, but onkerinal forces, then it will also
suffice to know the sense of one of them in order talgesense each of the remaining
ones by the process that we now discuss.

One refers to theyclic ordering of the contouof a polygon in diagram b when it
corresponds to the internal forces considereatasns

In that way, if one starts from a node at which atemal force is applied then one
will successively determine the magnitudes and the sdnsk iaternal forces. If one
considers an internal force to beationthat is applied to one of the two nodes between
which it acts then one will soon recognize whether pleze that is limited by those
nodes is compressed or tensed.

Any line in diagram b is the common side of two polygottone traverse their
contours in their respective cyclic orders then tha¢ svill be described, once in one
sense, and the other time in the opposite senjseThat line will then correspond to the

() In the figures that are the basis for this arfitte ties are indicated by lines that are fainter then t
ones that represent the struts. In the figures of MANN and REULAUX, the struts are denoted by
double lines, and the ties, by simple lines.

(") This property is in accord with that of thew of edgegKantengesejzfor polyhedra that are
endowed with an internal surface and an external surfaee. M®BIUS, “Ueber die Bestimmung des
Inhalts eines Polyeders” [in the Berichte liber die Vedhargen der Konigl, Sachs. Gesellschaft d.
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existence of a measuring line for two equal and oppositeedothat act along the
corresponding member of the truss.

33.

Note that the algebraic sum of the projection of #we$ of a polyhedron is equal to
zero. If one applies that theorem to the polyhedfono. 23) and observes that the

projection of the surfac& is composed of polygons of the diagram b that correspmn
the nodes of the truss, while the projection of theaiaimg surfaces o3 is nothing but
the external force polygon, then one will get theof@ihg result:

If one regards the area of a polygon as positive or negative accordinpdthev it
lies to the left or the right when one traverses the contour cydsc order then the sum
of the areas of the polygons of the diagrarthat correspond to the nodes of the truss
will be equal and opposite to the area of the external force polygon.

MAXWELL arrived at this theorem by a different path fapving it for an arbitrary
planarframe regardless whether it is or is not possible to caosh force diagram),

™~

33—

Figure 6.a Figure 6.b

Wissenschaft, math.-phys. Klaske (1865), pp. 33et seq. and BALTZER, Stereometrigpp. 143 of the
Italian translation, Genoa, 1867).
() Cited paper of 1870, pp. 30.
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34

The method of sectionkat is generally adopted in the treatment of variapgtems
offers the designer a valuable means of verification.

If one considers one of the two parts into which thedris divided to be aideal
sectionthen the external force that is applied to that paltequilibrate the reactions of
the pieces that meet at the section.

If just three of these reactions are unknown theran be deduced from the
equilibrium condition that the problem is determinatd admits just one solution, like
the problem of decomposing a foreento three components whose lines of acfip®, 3
are given and form a complete quadrilateral \itithe line of action oP. In fact (Fig.
6), it suffices to choose one of the diagonals of theglageral — e.g., the ling, which
joins the point1, 23 — decompose the given forfeinto two components along the
lines 1, 4 (and then construct the force triangle 0 4 1, the sidé¢ \Which is given in
magnitude and direction), and to finally decompose theefdralong the line2, 3
(analogously construct the force triangle 4 3 2).

This method, which can be callestatic suffices by itself for the graphic
determination of the internal forces, just like gometricmethod that was discussed
previously, which derived from the theory of reciprobglres and consisted in the
successive construction of the polygons that correspone teatious nodes of the truss.
The static method then seems to be less simple toang,one might benefit from
combining it with the other one, above all, for theifieation of the validity of the
graphic operations that were performed already. Therettéorce that is applied to a
portion of the truss that is separated by an arbitraryoseand the reactions of the pieces
that were cut must have the property that the correpgriines in diagram b are the
sides of a closed polygon. That polygon must be thegtiiop of a non-convex polygon,
which is likewise closed, and which is not yet brokem whose extremities lie along a
line that is perpendicular to the orthographic plane: Toadition is equivalent to the
reciprocal non-convex polygon also being closed — namelgeing able to connect the
corresponding lines in diagram a with a closed funiqoddygon.

The method of sections can also be presented in anfottme. Once more, le®
denote the resultant of all forces (that are applethé portion of the truss) that are
known, and letl, 2, 3 denote the three unknown reactions, so the sum ohtiments of
the four forces will be zero. It then follows thabne places the center of the moments
at the point of intersection of two lines of resist@n- e.g., at the poir#3 — then the
moment of the third reactioh will be equal and opposite to the moment of the féce
One will then have a proportion of four magnitudes (the fiovces and their lever arms),
between which, the only unknown is the magnitude ofdheefl. In this, one finds the
method of static moment&hich is adopted when one desiremtonerically calculate
(not construct graphically) the internal stressesénreticulated truss)(

() See A. RITTER, Elementare Theorie und Berechnung eisener Dach- and Briicken-
Constructionen2™ ed. (Hannover, 1870).



Cremona — Reciprocal figure in graphical statics. 23

35.

We now go on to give some examples that are designedhtbit the simplicity and
elegance of the graphical method. In these examptiesnot always adhere to regularity
or symmetry in form, although in practice one does not gmeen up. However, the
symmetric form in practice is not that of a special case of thgutar forms of abstract
geometry Therefore, the treatment of it will include all dietpossible practical cases in
it. Here, the ternreticulated trussis taken in the general, theoretical sense that
MAXWELL gave to the ternframe().

Figure 7.b

0) Page 294 of the Philosophical Magazine, April 1864.
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“A frame is a system of lines connecting a number ofigsoi A stiff frame is one
in which the distance between any two points cannottbeed without altering
the length of one or more of the connecting lineshef rame...A frame of
points in a plane requires in general23 connecting lines to render it stiff.”

| intend to limit myself to the consideration of oplgnar figures ().

36.

As a first (theoretical, general) example,1e®, ..., 10 (Fig. 7.a) be a system of ten
(external) forces in equilibrium, so that when onestarcts the polygon of these forces
and projects the vertices from a p@gFig. 7.b), in which the force polygon is denoted
by double lines), one can trace a funicular polygon wheskces are along the lines of
actionl, 2, ..., and whose sides (which are denoted by broken lineig.im)}Fare, in turn,
parallel to the rays (which are denoted by broken linesgn [#ji that emanate froQ.
The given forces are applied to the nodes of a retedilruss whose rectilinear members
are indicated by1, 12, 13, ..., 27 (Fig. a).

Start by constructing the triangle that correspondbed¢mode 10 111 [112), draw two
lines 11, 12 that are parallel id, 12, resp., from it to the ends of 10. If necessary,
observe that 11 must pass through the poiniLl(), which is why in diagram a the lines
1, 10, 11 belong to the contour of the same polygoix for the same reason, 12 must
pass through the point (@10). If one traverses the contour of the triangk is thus
obtained in the sense that is contrary to that ofdhee 10 (no. 32) then one will get the
senses of the actions that are exerted on the nodggstion along the lindd, 12, and
one will see that the piedd is compressed, whil&2 is tensed.

If one constructs the quadrilateral that correspondsetmdde to which the for&is
applied, drawing 13 through the point (l12) and 14 through the point [®), then the
piecel3 will be compressed arid! will be tensed.

If one constructs the pentagon that corresponds to tihe taowhich the forcd is
applied, drawing 15 through the point (I184) and 16 through the point[R, then the
pentagon thus-obtained will have an intertwined contoline piecel5 will be tensed
and16 will be compressed.

One constructs the pentagon that corresponds to thetmadsch the external force
8 is applied; if necessary, draw 17 through the pointC{ll§ and 18 through the point (7
[B). The piecd7 will be compressed, whil&8 will be tensed.

() On the practical importance of the reticulated trosg, can read: No. 106 (first of Abschnittdgs
Fachwerl in CULMANN'’s Graphische Statik The first pages of the brochure by O, HENRIEkgeleton
structures(London, 1866). Th&orbermerkungemith which prof. A. RITTER began his previously-cited
book. TheTeoria elemetare delle travature reticolgdMlilan, in the journal il Politechnico of 1866) of my
esteemed colleague prof. CLERICETTI. The introductiobschnitt 3 Gittertrager of the Vortrage
Uber BriickenbaVienna, 1870) of prof. E. WINKLER. etc., etc.

(") Which is a quadrangle whose fourth side is the sidefunicular polygon that is found between
the forcedl, 10. As was already said elsewhere (r&15.25), the funicular polygon can also lie completely
at infinity.
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Continuing in that way, one will find all of the otherternal stresses. The final
construction will give the triangle that correspond& point of application of the force
5.

20, 21, 24, 25, 27 will be compressed, whil#9, 22, 23, 26 will be tensed.
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Figure 8.b

37.

Fig. 8.a represents a bridge, to whose nodes are apmdiddrtedl, 2, ..., 16, which
are all vertical. 1 and 9 are directed from the bottom up and express the support
reactions. The force® 3, ..., 8 are weights that are applied to the nodes of therlowe
slab. These forces are taken in the order in whicl #ve encountered when one
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traverses the contour of the truss, and the sideeahtternal force polygon are arranged
in that order in diagram b. That polygon has all ositles extended in the same vertical
direction. In that line, the sum of the segmentsjli%e equal and opposite to the sum
of the segments 2, 3, ..., 8, 10, 11, ..., 16, since the systenterhal forces must be in
equilibrium.

Diagram b is now completed by precisely the same halewas already stated. Start
with the node 1 (L7 (118), draw 17 through the point (®), then through the point where
the end of segment 1, which is directed from down toamg, where segment 2 starts,
which is directed from the up to down, and 18 through thetg@6[11), namely, through
the point where the segment 16 ends, which is directed @ip to down, and where the
segment 1 begins.

Passing on to the nod2 (017 119 [120), draw 19 through the point (I118) and 20
through the point (213), namely, the point where 2 ends and 3 begins, whieh ar
segments that are directed from up to down. One thentlgetpolygon Z117 [119 20,
which is a rectangle.

Now, go on to the noddl§ 118 119 1 [2), and draw 21 through the point (IP
20) and 22 through the point (IHL6). One then gets a pentagon with an interwined
contour. Continuing in the same way, one operates ssigety with the nodes or points
of application of the forceS, 15, 4, 13, 5, 12, 6, 11, 7, 10, 9. Since the drawing of the
truss and the complex of external forces in diagrahase a common symmetry axis
(viz., the middle vertical), diagram twill also be symmetric (around the middle
horizontal). Thus, e.g., the triangleC85 44 will be symmetric to the triangle17 O
18, the rectangle BA5 %32 will be symmetric to the rectangld27 (119 R0, etc.

All of the truncations of the upper part of structure@mpressed, while all of those
in the lower part of the structure are tensed. Thegoblarrows are all compressed. Of
the vertical axes, two of them — name®g, 39 — are tensed, while the other ones are
compressed.

14

18
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Figure 9.a
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6 18
Figure 9.b

38.

In Fig. 9.a, one contemplates the one-half of arumive shed ). The external
forces are the weights 2, 3, 4, 5, which are applied to the upper nodes of the canopy,
and the reaction§, 7 of the wall and column. The external forces asw alll parallel
here, so their polygon in diagram b will reduce to aight line. The force 6 is (when
taken in the opposite sense) equal to part of the weighbBe adds the difference of the
other weights to that then one will get the magnitufdae force 7.

In diagram b, the lines 8, 13 will coincide in directidhe first one is part of the
second one. Here, one then presents the polygon tinasgonds to the nod8 {10 112
013) as one of degenerate form, as was discussed ir2Mho.Namely, one has a
quadrilateral 8110 112 113, three vertices (188), (8 [10), (12[13) of which are in a
line with each other.

An analogous degenerate form is also exhibited by the quadail&t17 (118 [B that
corresponds to the point where the wall supports the rbafeed, the vertex (&), the
point below the segment 6, and the vertice§l(3), (186) are along the same straight
line.

The lower pieces$, 13, 18, the arrowslO, 14, 16, the column?, and the walb are
compressed, while the upper pd@t41, 15, 17, and the arrowt2 are tensed.

() This example is taken from tab. 19 in the atlas of CBWINW's Graphische Statik However, as
was noted before, the two diagrams in it are not oigsly reciprocal.
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Figure 10.a

Figure 10.b

39.

Diagram a in Fig. 10 represents a truss to whose upper asglapplied the oblique
forcesl, 2, ..., 7, which can be considered to be the resultants ofdhwined actions of
gravity and wind. The forced 9 represent the support reactions.

The external force polygon is drawn with double lines iagchm b. One
successively constructs the triangld]10 011, the quadrilateral €110 012 013, the
pentagon 2111 112 (014 (015, the quadrilateral 1314 016 (017, the pentagon with an
intertwined contour 3115 116 118 119, the quadrilateral #19 [0 [21, which is also
intertwined, and the pentagon I8 [R0[R2[R3, etc.

One finds that the upper piecEs 19, 21, 25 are compressed, while the lower pieces
10, 13, 30 and the arrow42, 16, 24, 28 are tensed; all of the other members are tensed.
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Figure 11.b

40.

Diagram a in Fig. 11 represents a suspension bridgetladed by the weights 2,

..., 8 at the upper nodes and the weiglds11, ..., 16 at the lower nodes. The weights
are equilibrated by the oblique reacti®47 at the extreme points of the trusp (

The external force polygon has its first eight sidemting along one vertical line and
the sides 10, 11, ..., up to 16 point likewise along a vetiimal The oblique sides 9 and
17 intersect, so the resulting polygonal contour wititwine.

One successively constructs the polygons:

17019018, 1619[R0[R1, 2AN8[ROR2[P3,
15[R1[RP2[R4[P5,  3IR3I[R4[P6[RY, ...,

which have intertwined contours, for the most part.
The two diagrams are symmetric in this example.

() This example is analogous to the one that MAXWELL gaves 1870 paper.
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Diagram b shows that the members of the upper partllatenaed, and that the
tension decreases as one goes from the extremitiemrdsvthe middle. All of the
members in the lower part of the structure are alssetenbut there the tension
diminishes as one goes from the middle towards theeraties. The arrows are
alternately tensed and compressed, except for the cemga where two consecutive
arrows are both tensed. Considering only the tensedisroy just the compressed ones,
one sees that the internal stress decreases froexitteenities towards the middle of the
truss.

41.

The diagram in Fig. 12 (ciinfra) represents a reticulated crane. The proper weight of
the crane is distributed over various forteg, 3, 4, ..., 9 that are applied to the nodés;
also includes the accidental weight that the crandinsigstain. All of these weights are
equilibrated by the support reactions, the magnitude of wihgchobtained by
decomposing the resultant weight into three forcesatteatlirected along the linés, 11,

12. When they are taken in their opposite senses, thaalvakhdy given the pressures on
the point10, the columrill, and the tension in the ti2.

The determination of the external forces is also esga@ in the figure. One
successively takes the segments of the same vehataldgpresent the weights 1, 2, ..., 9
and fixes a pole, and then projects from it to the pdhsl), (1), (2[1B), ..., (8[0),

(9 00) (), and thus constructs the corresponding funicular polyg®he vertical that
passes through the common point of the extreme didEs)( (9 [0) will be the line of
action of the resultant weight, whose magnitude is,emwer, indicated by the segment
that has a common origin with the segment 1 and a conemdnvith segment 9. If one
now decomposes that resultant weight, which is a knfowge into all of its elements —
namely, three components whose lines of actionl@ydl, 12 — and thus employs the
construction that was already mentioned in 3%and Fig. 6 then one will get the three
forces 10, 11, 12. When taken in the opposite sense, thess,fafong with the given
weights, will constitute of complete system of ertdiforces.

In order to obtain diagram b, start with the constoncof the external force polygon,
which is taken in the order in which one encounters tiee§ as one traverses the
contour of the truss. Then, successively construcptigyons that correspond to the
nodes $ 113 [114), (4 (113 15 116), (6 (114 M5 117 (18), ..., by the method that was
explained above.

The diagrams that result inform us that pieces inughger part are tensed and the
lower n%embers are compressed; as for the arrows,ateeglternately compressed and
tensed ().

() Here, (001) indicates the origin of the segment 1, anfl(Pindicates the end of the segment 9. The
rays in the figure that emanate from the pole in diagéaand the funicular polygon of diagram A are
indicated by dashed lines.

(") 1 must thank the engineer C. SAVIOTTI, who has donetmecourtesy of conceiving and drawing
the figures that accompany this paper.
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Figure 12.a
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Figure 12.b



Note.

We ltalians too often diminish the merits of our cotnpés. After my most learned
friend CHELINI had seen the first edition of this pangihlhe reminded me that the
theory of reciprocal figures, which came from the redunctf forces in statics, was first
presented by MOBIUS, and then by GAETANO GIORGINI (nogeaator of the realm)
in a memoir that had the title “Sopra alcune propraégpiani de’'momenti principali e
delle coppie di forze equivalenti,” and which he prestihbethe Italian scientific society
in 1828 and published in t. 20 (Modena, 1828) of the Memorie cfdbiety. On pp. 247
of that journal one reads the theorem on the correspoaedmtween points and planes.
On pp. 249, one finds the one on reciprocal lines, and asguhat the central axis was
the z-axis, the author obtained formulas that were no rdiffe in substance, from the
ones in nob.

The same prof. CHELINI had the goodness to inform me tha

“GIORGINI is the author of a booklementi di staticgFlorence, 1835), where he
proves several propositions that were contained I1828 paper,”

and that

“in the Correspondence mathématique et physiojud. QUETELET, t. 11 (Brussels,
1830), pp. 112, CHASLES, speaking of GIORGINI, who had alrdsebn his fellow
student at the French polytechnic school, alluded toftreraentioned memoir, and said
that the two old fellow students also both arrivedhat same views as a result of that
research.”

The illustrious CHASLES also presented the theoryeaiprocal figures that we
discussed here in his paper “Sur deux principes généraua geidnce: la dualité et
’homographie,” which he present to the Belgian acadensgiehce in 1830 and inserted
into t. Il of theMémoires couronné®russels, 1837); see pp. 679.




