“Sur la surface des ondes,” Ann. sci. de I'E.N.S6(8)889), 379-388.

On
On the wave surface

By G. DARBOUX ().

Translated by D. H. Delphenich

In volume IX of theQuarterly Journal of MathematicNiven gave the following
remarkable proposition that relates to the wave surface:

The three spheres that pass through the three principal circles and aragripbint
M of the surface must cut at a second point P that is the foot of thenglcular that is
dropped from the center of the surface onto the tangent plane at M

Niven remarked that this theorem permits one to coctstither the tangent plane at
a given point or the point of contact of a given tangdane. | would like to establish
that it leads to a new and simple definition of the evaurface, and the essential
character of that definition is that it does not em@a ellipsoid.

Indeed, upon employing the fact that from one part optkeeding proposition, one
sees that the spheres that pass through the threéparioccles and a poin¥l on the
wave surface must cut at a poksuch thatMPO is a right angle, wher® denotes the
center of the surface.

The wave surface then appears to us to be a parti@adaraf the following surface:
One considers three arbitrary circles in sp#@ge(B), (C), and an arbitrary poir®. One
seeks the locusxf of the pointsM that enjoy the following property: The spheres that
pass through the three fixed circldg,((B), (C), and through an arbitrary poikt of the
locus must cut at a second polt such thatMPO is a right angle. That locus is
obviously a surface. | shall first show that one canstruct it from points by employing
only the ruler and compass.

Indeed, consider two arbitrary spheres that pass thrdwgbircles A) and 8); they
cut along a circlel{). | shall seek the points of the locus that argas#td on[(). In order
for that to be true, | remark that any sphere that gasseugh the circleQ) will cut the

() Extract of volume®2 and97 of theComptes rendus de I'’Académie des Scierjteanslator: More
precisely, sections |, I, and Ill are direct trangtians of:

“Sur une nouvelle definition de la surface des ondesti@es rendu82 (1881), 446-448.

“Sur les lignes asymptotiques de la surface des ondemptés rendu87 (1883), 1039-1042.

“Sur les lignes de courbure de la surface des ondes,ptésmendu87 (1883), 1133-1135.



Darboux — On the wave surface. 2

circle (M) at two pointdvl andP, such that the lin&P will meet it at a fixed poinH. If

M is a point of the locus then the anti®O, or — what amounts to the same thing — the
angleHPO, will be a right angle. The poif will then be found on the sphere that is
described wittOH as a diameter. There will then be two positianstie pointP, and
consequently there will also be two positions for pbét M. Since that construction is
general, it will not require any modification in theseaof the wave surface.

There exists a circlK{ that meets each of the circle§,((B), (C) at two points. We
call the radical center of all spheres that passutyin those two circles thadical center
of the two circles.The plane of the circleK] is the plane of the radical centers of three
circles @), (B), (C), taken two at a time.

The surfaceX) contains the circleK).

Each of the spheres that pass through the cikglarid one of the circleg\], (B), (C)
cuts the surface along a new circle. One then obtiaias circles4’), (B'), (C).

The surfaceX) generally has order five. It admits the circle ainity as a double
line, and, in addition, it cuts the plane at infinitprad a line that is in the plane that is
perpendicular to the lin@H, whereH denotes the point at which the planes of the circles
(A), (B), (C) meet.

The surfaceX) reduces to order four when:

1. The planes of the circle8)( (B), (C) intersect along a line.

2. The pointO and the poinH coincide.

| will examine the latter case especially.

The surface will then admit eight planes that eadhit along a circle and a conic.
They are the plane at infinity, which cuts it along a cand the circle at infinity, the
planes of the circleX], (A), (A'), B), (B'), (C), (C'). It will then contain sixteen conics,
which is all the more remarkable for the fact thataes not generally have any singular
points.

In a first study on fourth-order surfaces that adswtated conics, it seemed to me
that there exists a fourth-surface surface that adngtdesn quadruple tangent planes,
and consequently thirty-six conics, without having a singudant.

One sees that it results from the preceding studythigatvave surface is a simple
variety of a fourth-order surface that has no singpdnt and contains sixteen isolated
conics.

| shall conclude by adding a small complement to two noy previous
communications. One knows that if three points of iavariable line describe
rectangular planes then any point of the line will déscen ellipsoid. | add to this the
theorem of Dupin thathe line, in all of its positions, will remain normal to a fixed
surface whose lines of curvature are algebraithat surface is a variety of surfaces of
class four that was considered in my communication dariary, and the developable
surfaces that are defined by the normals at all pointdiog¢ af curvature are tangents to
a second-degree surface, since that is true, moreoveéngfonost general surfaces of that
kind.

One sees that one determines the surface on the sofwnalhich the coordinate
planes intersect segments of given length. In a gengnner, one can always obtain,
by simple quadratures, the equation of the surface tlkgfised by an arbitrary relation
between the three lengths of the segments that aheded between the foot of the
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normal and the three coordinate planes, at least, trose three planes are rectangular.
Upon studying that equation, one will be led to an intergdtieorem:

If there exist two relations between the lengths of three se#grokthe normal that is
included between the foot of that normal and the three coordinate planes thesf on
those relations will necessarily be the following one: The segno¢ithe normal that are
included between the three coordinate planes have invariables ratios.

This theorem is verified, in particular, for the suefabat we just considered, and
which is normal to all positions of an invariable litbree points of which describe
coordinate planes.

Letx, y, z be the rectangular coordinates of an arbitrary poiat @ifrface. Lep, g, r
denote quantities that are proportional to the diractiosines of the normal and are
required to satisfy the condition:

(1) px+qy+rz=1,
in addition.

Finally, letp', d, r' denote the three quantities:

(2) PP=gz-ry q=rx—pz r =py-qgx

in such a manner that the six coordinates of the nomilidbe p, g, r, p', d', r'.

With these notations, the differential equation a&f #symptotic lines of the surface
will be:
3) dp dx+dq dy+drdz=0

and that of the lines of curvature will be:
(4) dp dp + dqg dd +dr dr = 0.

| propose to apply those very simple results tostnely of the asymptotic lines and
lines of curvature of the wave surface.

| shall first examine the matters that concern thanasotic lines. Since the wave
surface is a particular case of the surface with sixtngular points, one can deduce the
determination of those lines from the one that wasmgibg Klein and Lie for the
Kummer surface. However, there is some interesletermining them directly, and we
shall see, moreover, that the method that is followedis study will give the asymptotic
lines of an infinitude of new surfaces.

The detailed and complete study of the wave surface upsin the simultaneous use
of four variables, which are the following ones: Consi@@ointM of the surface. The
ray that joins the poin¥l to the centeO of the surface cuts it at a second pdiit We
set:

oOM°’=B OM'=da’
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Similarly, let @ and 8’ denote the squares of the distances from the centidreto
tangent plane a¥l and to the parallel tangent plane, resp. Those fouablas will be
coupled by two relations that are contained in the identity

abc

(5) XX =A x=F) - K-8 x-hKx=-9=——7-a) x-a’),

which must be true for all values xf
Having said that, for an arbitrary point of the wave atef one will have the values
ofx,y, z p, q, r that one deduces from the following formulas:

x:c(a_ajm(a;fy'jw(a—/J’)”l(a—/J")”z,

a

_ m A\
®) y=c(b ”j (b ,"j (b= B)" (b= )",

a

2= C’[C;"jm[“,"'f(c—ﬁ)”l(c—/f)“z,

a

when one sets:
m=mn=0, Mm=m=3

and conveniently assigns the const&)tg’, C”.
| shall consider the surfaces that are defined by fos(6lain a general manner. For

them, one has:
_ 1 a-a) " (a-a' N, in. anin,
p‘C(a—b)(a—c)( a j ( a j (@=py (@),

_ 1 b-a\"™(b=a' Y™ o i
(7) q_C’(b—a)(b—c)( pe j (Tj (b-B) " (b-8)"",

B 1 c—a) " (c-a' Y™, st
Z_C"(c—a)(c—a)( a j ( a j (e=p) o=y

Here, one can apply formula (3) and write down tliiéerential equation of the
asymptotic lines. One will then be led to thisywsimple result:

Whenever the exponents are linked by the relation:
(8) m+n+m+m=1,

the differential equation of the asymptotic linels be:
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dﬁz _ dﬁlz
(B-a)(B-B)(B-9 (B-a)B-b(B-O

(9)

and consequently those lines will be defined by an algebraic relation lbefiveed 5
whose form is well-known.

Since the exponents in the case of the wave suatisfy the relation (8), the
preceding result includes the one that one knolasive to that surface.

The integration of equation (9) leads to the fellog theorem, which replaces all of
the calculations:

Consider each of the Chasles complexes, which are defined by théhdinest three
coordinate planes and the plane at infinity at four points whose anharmonic ratio is
constant. The locus of the points of the surface where the conecohtpéex is tangent
to that surface is an asymptotic line.

When one varies the value of the constant anhaomato, one will get an infinitude
of complexes that gives all asymptotic lines.

It seems interesting to me to seek all surfacatsahjoy the property that is expressed
by the preceding theorem. One first finds Lamétsahedral surfaces, which are defined

by the equation:
HRGRCE
a b c

Their asymptotic lines have been determined alrdgdisie, and they enjoy the special
property that the tangents to each of them allrigpto the same Chasles complex (which
varies when one passes from one line to the other).

The other surfaces satisfy the partial differdmguation:

(10) xyz(rt — &) +pq(s —px —qy = 0,

which one can interpret as follows:

Let Ny, Ny, N, denote the portions of the normal to the surfdwd &are included
between the fooM of that normal and the coordinate planes. ReR’ be the radii of
principal curvature, and |8 be the distance from the originto the tangent plane &t.
Equation (10) is equivalent to the relation:

N N, N,
RR= =Y =2
P

which gives the total curvature, and applies, itipalar, to the wave surface.
The following formula, which is just as simple,vgs the sum of the radii of
curvature. One has:
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2

The lines of curvature of the wave surface were theestilf various studies as a
result of a note by Bertrand that was include€amptes rendud7 (1858), pp. 817. A
geometer had stated that the curve of contact of thelajeble that circumscribes the
surface and a concentric sphere is a line of curvatiBertrand proved two elegant
theorems that showed the incorrectness of that prtapuos After that, a very skilled
geometer — viz., Combescure — returned to the subject mnth&li di Tortolini2 (1859),
pp. 278. A brief note by Brioschi that was placed aftergreceding paper contained an
interesting transformation of that equation.

| was led to address the lines of curvature of the wavice upon studying the form
that the lines of curvature of an arbitrary surface takée neighborhood of an umbilic.
That interesting question has already been the subjéctesearch by Cayley
[Philosophical Magazin6 (4), pps. 373, 441].

The lines of curvature in the neighborhood of an umbgicer resemble a circle, and
their form is quite variable. If one lefs B, C, a, £, ydenote six parameters that depend
upon the form of the surface in the neighborhood of theilionihen the lines of
curvature will be defined by the following formulas:

Q) { x=K(p=@)*(p-B)*(p-N[ B -1-(aBy+a+[+y) B,
y=K(p=a)"(p=B)°(p-y)lapni- p)-(1+aB+aB+By) A,

in which x, y denote the rectangular coordinates of the projecticthefpoint onto the
tangent planep is a variable parameter, aKdis the arbitrary constant that varies when
one passes from one line of curvature to the other one.

The preceding result, to which | will undoubtedly havedpgortunity to return and
complete, provides a means of recognizing whether thedinegvature of a surface can
be algebraic. A necessary condition for that is th@tumber#, B, C that relate to each
umbilic must be commensurable. If that condition is ftftlled for even one umbilic
then one can confirm that the lines of curvature vatlloe algebraic.

Upon applying that criterion to the wave surface that alasys indicated for that
type of research, | recognized ti#gtB, C would be commensurable in that case, and for
all umbilics. In the neighborhood of each umbilic, times of curvature are similar to
algebraic curves of order ten. | was then led to rtewies that were communicated to
the Congres de I'Association francgaise in 1878.

Preserve the variables S, a’, f’that were defined already and set:

f(@)=(a-2a (a-b (a-0,

to abbreviate. The differential equation of the linégurvature that was given already
by Combescure will be:
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2) f(a) dB? +f(H) da*—da dB {2 f(a)+ (,[a’—a)[ f '(a)—%}} =0.

That equation will keep absolutely the same form whenemploysr’, 5, instead of
writing down the variableg, £. | would like to show that one can integrate/itenever
the third-degree functiorfX) reduces to a second-degree polynomial.

In order to do that, | remark that if one sets:

9 () =xTf(x),

to abbreviate, and if one replag8with the variabler = a (8- a) then equation (2) will
become:

dv V VoV (@)

©) W{%} ~§(@)v +vpla)+— g @)+ =0,

If f(x) has degree two, and consequemily) has degree three, then the last term in the
preceding equation will disappear. | suppose that theicieeff of the third power in
@#(X) has been reduced to unity and set:

we P
%
The equation inv will be:
aw)® dw W
(4) ¢(a)(d—j —g'(@)w—+wW +—¢"(a) = 0.
a da 2

One can then write:
2
¢(0'—Wd—aj+ \/\,2(%) (%+1} =0,
dw dw dw

and if one performs the well-known change of variablas ithdefined by the formulas:

da _ _dy

a-W—-=y, —w=—,

5) dw dp
da _ _ dy
dw dp

then the equation will become:

¢(y)—p2(p+1)[%j =0,
p

One only has to separate the variables and irteegsdich will give:
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dp _ dy
J p**(L+ p)*° J [p(WN]"°

That first result, which relates to the case in wh{ghhas degree two, already proves
that the lines of curvature of the wave surface cannot be algebraic curvasnell-
defined degreelf that fact does not keep us from hoping that the meseral integral of
equation (2) can be obtained, it will at least show timatintegral can only be expressed
in a very complicated manner. Finally, there are sonmanggric applications that |
would like to point out in conclusion.

The wave surface is the apsidal of a certain ellppf6). Suppose that the ellipsoid
become a cylinder, so one of its axes grows indefinitelhhe wave surface will be
transformed into a surface whose lines of curvature heildetermined by the equation
that we just integrated.

When two of the axes of the ellipsoid tend to becemeal, one of the sheets of the
wave surface will approach a sphere. If the three axsc tend to a common value
by formulas such as the following ones:

a=r+ea, b=r+eb, c=r+ec

in whicha’, b’, c’are fixed quantities, then the two sheets of the surfdtapproach the
sphere of radius. In one case and the other, the lines of curvatulgemt! to limiting
positions, and the differential equation will reduce todhe that we have integrated.

One can then consider the lines of curvature to be krowall wave surfaces that
present themselves in physics, and which are, as one kiithlgsdifferent from the
sphere.



