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I. 
 

 In volume IX of the Quarterly Journal of Mathematics, Niven gave the following 
remarkable proposition that relates to the wave surface: 
 
 The three spheres that pass through the three principal circles and an arbitrary point 
M of the surface must cut at a second point P that is the foot of the perpendicular that is 
dropped from the center of the surface onto the tangent plane at M. 
 
 Niven remarked that this theorem permits one to construct either the tangent plane at 
a given point or the point of contact of a given tangent plane.  I would like to establish 
that it leads to a new and simple definition of the wave surface, and the essential 
character of that definition is that it does not employ an ellipsoid. 
 Indeed, upon employing the fact that from one part of the preceding proposition, one 
sees that the spheres that pass through the three principal circles and a point M on the 
wave surface must cut at a point P such that MPO is a right angle, where O denotes the 
center of the surface. 
 The wave surface then appears to us to be a particular case of the following surface:  
One considers three arbitrary circles in space (A), (B), (C), and an arbitrary point O.  One 
seeks the locus (Σ) of the points M that enjoy the following property: The spheres that 
pass through the three fixed circles (A), (B), (C), and through an arbitrary point M of the 
locus must cut at a second point P, such that MPO is a right angle.  That locus is 
obviously a surface.  I shall first show that one can construct it from points by employing 
only the ruler and compass. 
 Indeed, consider two arbitrary spheres that pass through the circles (A) and (B); they 
cut along a circle (Γ).  I shall seek the points of the locus that are situated on (Γ).  In order 
for that to be true, I remark that any sphere that passes through the circle (C) will cut the 
                                                
 (1) Extract of volumes 92 and 97 of the Comptes rendus de l’Académie des Sciences. [Translator: More 
precisely, sections I, II, and III are direct transcriptions of: 
 “Sur une nouvelle definition de la surface des ondes,” Comptes rendus 92 (1881), 446-448. 
 “Sur les lignes asymptotiques de la surface des ondes,” Comptes rendus 97 (1883), 1039-1042. 
 “Sur les lignes de courbure de la surface des ondes,” Comptes rendus 97 (1883), 1133-1135. 
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circle (Γ) at two points M and P, such that the line MP will meet it at a fixed point H.  If 
M is a point of the locus then the angle MPO, or – what amounts to the same thing – the 
angle HPO, will be a right angle.  The point P will then be found on the sphere that is 
described with OH as a diameter.  There will then be two positions for the point P, and 
consequently there will also be two positions for the point M.  Since that construction is 
general, it will not require any modification in the case of the wave surface. 
 There exists a circle (K) that meets each of the circles (A), (B), (C) at two points.  We 
call the radical center of all spheres that pass through those two circles the radical center 
of the two circles.  The plane of the circle (K) is the plane of the radical centers of three 
circles (A), (B), (C), taken two at a time. 
 The surface (Σ) contains the circle (K). 
 Each of the spheres that pass through the circle (K) and one of the circles (A), (B), (C) 
cuts the surface along a new circle.  One then obtains three circles (A′), (B′), (C′). 
 The surface (Σ) generally has order five.  It admits the circle at infinity as a double 
line, and, in addition, it cuts the plane at infinity along a line that is in the plane that is 
perpendicular to the line OH, where H denotes the point at which the planes of the circles 
(A), (B), (C) meet. 
 The surface (Σ) reduces to order four when: 
 1. The planes of the circles (A), (B), (C) intersect along a line. 
 2. The point O and the point H coincide. 
 
I will examine the latter case especially. 
 The surface will then admit eight planes that each cut it along a circle and a conic.  
They are the plane at infinity, which cuts it along a conic and the circle at infinity, the 
planes of the circles (K), (A), (A′), (B), (B′), (C), (C′).  It will then contain sixteen conics, 
which is all the more remarkable for the fact that it does not generally have any singular 
points. 
 In a first study on fourth-order surfaces that admit isolated conics, it seemed to me 
that there exists a fourth-surface surface that admits eighteen quadruple tangent planes, 
and consequently thirty-six conics, without having a singular point. 
 One sees that it results from the preceding study that the wave surface is a simple 
variety of a fourth-order surface that has no singular point and contains sixteen isolated 
conics. 
 I shall conclude by adding a small complement to two of my previous 
communications.  One knows that if three points of an invariable line describe 
rectangular planes then any point of the line will describe an ellipsoid.  I add to this the 
theorem of Dupin that the line, in all of its positions, will remain normal to a fixed 
surface whose lines of curvature are algebraic.  That surface is a variety of surfaces of 
class four that was considered in my communication on 3 January, and the developable 
surfaces that are defined by the normals at all points of a line of curvature are tangents to 
a second-degree surface, since that is true, moreover, for the most general surfaces of that 
kind. 
 One sees that one determines the surface on the normals for which the coordinate 
planes intersect segments of given length.  In a general manner, one can always obtain, 
by simple quadratures, the equation of the surface that is defined by an arbitrary relation 
between the three lengths of the segments that are included between the foot of the 
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normal and the three coordinate planes, at least, when those three planes are rectangular.  
Upon studying that equation, one will be led to an interesting theorem: 
 
 If there exist two relations between the lengths of three segments of the normal that is 
included between the foot of that normal and the three coordinate planes then one of 
those relations will necessarily be the following one: The segments of the normal that are 
included between the three coordinate planes have invariables ratios. 
 
 This theorem is verified, in particular, for the surface that we just considered, and 
which is normal to all positions of an invariable line, three points of which describe 
coordinate planes. 
 
 

II. 
 

 Let x, y, z be the rectangular coordinates of an arbitrary point of a surface.  Let p, q, r 
denote quantities that are proportional to the direction cosines of the normal and are 
required to satisfy the condition: 
(1)      px + qy + rz = 1, 
in addition. 
 Finally, let p′, q′, r′ denote the three quantities: 
 
(2)    p′ = qz – ry, q′ = rx – pz, r′ = py – qx, 
 
in such a manner that the six coordinates of the normal will be p, q, r, p′, q′, r′. 
 With these notations, the differential equation of the asymptotic lines of the surface 
will be: 
(3)     dp dx + dq dy + dr dz = 0 
 
and that of the lines of curvature will be: 
 
(4)     dp dp′ + dq dq′ + dr dr′ = 0. 
 
 I propose to apply those very simple results to the study of the asymptotic lines and 
lines of curvature of the wave surface. 
 I shall first examine the matters that concern the asymptotic lines.  Since the wave 
surface is a particular case of the surface with sixteen singular points, one can deduce the 
determination of those lines from the one that was given by Klein and Lie for the 
Kummer surface.  However, there is some interest to determining them directly, and we 
shall see, moreover, that the method that is followed in this study will give the asymptotic 
lines of an infinitude of new surfaces. 
 The detailed and complete study of the wave surface rests upon the simultaneous use 
of four variables, which are the following ones: Consider a point M of the surface.  The 
ray that joins the point M to the center O of the surface cuts it at a second point M′.  We 
set: 

2
OM = β, 

2
OM ′ = α′. 
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 Similarly, let α and β′ denote the squares of the distances from the center to the 
tangent plane at M and to the parallel tangent plane, resp.  Those four variables will be 
coupled by two relations that are contained in the identity: 
 

(5)   x (x – β) (x – β′ ) – (x – a) (x – b) (x – c) = 
abc

αα ′
(x – α) (x – α′ ), 

 
which must be true for all values of x. 
 Having said that, for an arbitrary point of the wave surface, one will have the values 
of x, y, z, p, q, r that one deduces from the following formulas: 
 

(6)   

1 2

1 2

1 2

1 2

1 2

1 2

( ) ( ) ,

( ) ( ) ,

( ) ( ) ,

m m
n n

m m
n n

m m
n n

a a
x C a a

b b
y C b b

c c
z C c c

α α β β
α α

α α β β
α α

α α β β
α α

 ′− −    ′= − −    ′   
 ′− −    ′ ′= − −    ′   
 ′− −    ′′ ′= − −   ′    

 

when one sets: 
m1 = n2 = 0, m2 = n1 = 1

2  

 
and conveniently assigns the constants C, C′, C″. 
 I shall consider the surfaces that are defined by formulas (6) in a general manner.  For 
them, one has: 

(7)   

1 2

1 2

1 2

1 2

1 2

1 2

1 1

1 1

1 1

1
( ) ( ) ,

( )( )

1
( ) ( ) ,

( )( )

1
( ) ( ) .

( )( )

m m
n n

m m
n n

m m
n n

a a
p a a

C a b a c

b b
q b b

C b a b c

c c
z c c

C c a c a

α α β β
α α

α α β β
α α

α α β β
α α

− −
− −

− −
− −

− −
− −

 ′− −    ′= − −    ′− −    
 ′− −     ′= − −    ′ ′− −    
 ′− −    ′= − −   ′′ ′− −    

 

 
 Here, one can apply formula (3) and write down the differential equation of the 
asymptotic lines.  One will then be led to this very simple result: 
 
 Whenever the exponents are linked by the relation: 
 
(8)     m1 + n1 + m2 + n2 = 1, 
 
the differential equation of the asymptotic lines will be: 
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(9)    
2

( )( )( )

d

a b c

β
β β β− − −

 = 
2

( )( )( )

d

a b c

β
β β β

′
′ ′ ′− − −

, 

 
and consequently those lines will be defined by an algebraic relation between β and β′ 
whose form is well-known. 
 
 Since the exponents in the case of the wave surface satisfy the relation (8), the 
preceding result includes the one that one knows relative to that surface. 
 The integration of equation (9) leads to the following theorem, which replaces all of 
the calculations: 
 
 Consider each of the Chasles complexes, which are defined by the lines that cut three 
coordinate planes and the plane at infinity at four points whose anharmonic ratio is 
constant.  The locus of the points of the surface where the cone of the complex is tangent 
to that surface is an asymptotic line. 
 
 When one varies the value of the constant anharmonic ratio, one will get an infinitude 
of complexes that gives all asymptotic lines. 
 It seems interesting to me to seek all surfaces that enjoy the property that is expressed 
by the preceding theorem.  One first finds Lamé’s tetrahedral surfaces, which are defined 
by the equation: 

m m m
x y z

a b c
     + +     
     

 = 1. 

 
Their asymptotic lines have been determined already by Lie, and they enjoy the special 
property that the tangents to each of them all belong to the same Chasles complex (which 
varies when one passes from one line to the other). 
 The other surfaces satisfy the partial differential equation: 
 
(10)   xyz (rt – s2) + pq (s − px – qy) = 0, 
 
which one can interpret as follows: 
 Let Nx, Ny, Nz denote the portions of the normal to the surface that are included 
between the foot M of that normal and the coordinate planes.  Let R, R′ be the radii of 
principal curvature, and let P be the distance from the origin O to the tangent plane at M.  
Equation (10) is equivalent to the relation: 
 

RR′ = x y zN N N

P
, 

 
which gives the total curvature, and applies, in particular, to the wave surface. 
 The following formula, which is just as simple, gives the sum of the radii of 
curvature.  One has: 
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R + R′ = Nx + Ny + Nz − 
2

OM

P
. 

 
 

III. 
 

 The lines of curvature of the wave surface were the subject of various studies as a 
result of a note by Bertrand that was included in Comptes rendus 47 (1858), pp. 817.  A 
geometer had stated that the curve of contact of the developable that circumscribes the 
surface and a concentric sphere is a line of curvature.  Bertrand proved two elegant 
theorems that showed the incorrectness of that proposition.  After that, a very skilled 
geometer – viz., Combescure – returned to the subject in the Annali di Tortolini 2 (1859), 
pp. 278.  A brief note by Brioschi that was placed after the preceding paper contained an 
interesting transformation of that equation. 
 I was led to address the lines of curvature of the wave surface upon studying the form 
that the lines of curvature of an arbitrary surface take in the neighborhood of an umbilic.  
That interesting question has already been the subject of research by Cayley 
[Philosophical Magazine 26 (4), pps. 373, 441]. 
 The lines of curvature in the neighborhood of an umbilic never resemble a circle, and 
their form is quite variable.  If one lets A, B, C, α, β, γ denote six parameters that depend 
upon the form of the surface in the neighborhood of the umbilic then the lines of 
curvature will be defined by the following formulas: 
 

(1)  
2

2

( ) ( ) ( ) [ 1 ( ) ],

( ) ( ) ( ) [ (1 ) (1 ) ],

A B C

A B C

x K p p p p p

y K p p p p p

α β γ αβγ α β γ
α β γ αβγ αβ αβ βγ

 = − − − − − + + +


= − − − − − + + +
 

 
in which x, y denote the rectangular coordinates of the projection of the point onto the 
tangent plane, p is a variable parameter, and K is the arbitrary constant that varies when 
one passes from one line of curvature to the other one. 
 The preceding result, to which I will undoubtedly have the opportunity to return and 
complete, provides a means of recognizing whether the lines of curvature of a surface can 
be algebraic.  A necessary condition for that is that the numbers A, B, C that relate to each 
umbilic must be commensurable.  If that condition is not fulfilled for even one umbilic 
then one can confirm that the lines of curvature will not be algebraic. 
 Upon applying that criterion to the wave surface that was always indicated for that 
type of research, I recognized that A, B, C would be commensurable in that case, and for 
all umbilics.  In the neighborhood of each umbilic, the lines of curvature are similar to 
algebraic curves of order ten.  I was then led to new studies that were communicated to 
the Congrès de l’Association française in 1878. 
 Preserve the variables α, β, α′, β′ that were defined already and set: 
 

f(α) = (α – a) (α – b) (α – c), 
 
to abbreviate.  The differential equation of the lines of curvature that was given already 
by Combescure will be: 
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(2)   f(α) dβ 2 + f(β) dα 2 – dα dβ 
( )

2 ( ) ( ) ( )
f

f f
αα β α α

α
  ′+ − −    

= 0. 

 
 That equation will keep absolutely the same form when one employs α′, β′, instead of 
writing down the variables α, β.  I would like to show that one can integrate it whenever 
the third-degree function f(x) reduces to a second-degree polynomial. 
 In order to do that, I remark that if one sets: 
 

ϕ (x) = x f (x), 
 
to abbreviate, and if one replaces β with the variable v = α (β – α) then equation (2) will 
become: 

(3)   
2 2 3 IV ( )

( ) ( ) ( ) ( )
2 6

dv dv v v
v v

d d

ϕ αϕ α ϕ α ϕ α ϕ α
α α

  ′ ′′− + + + 
 

 = 0. 

 

If f(x) has degree two, and consequently ϕ(x) has degree three, then the last term in the 
preceding equation will disappear.  I suppose that the coefficient of the third power in 
ϕ(x) has been reduced to unity and set: 

w = 
( )

v

ϕ α
. 

 The equation in w will be: 
 

(4)   
2 2

2( ) ( ) ( )
2

dw dw w
w w

d d
ϕ α ϕ α ϕ α

α α
  ′ ′′− + + 
 

 = 0. 

 
One can then write: 

2
2 1

d d d
w w

dw dw dw

α α αϕ α     − + +     
     

 = 0, 

 
and if one performs the well-known change of variables that is defined by the formulas: 
 

(5)    

, ,

,

d dy
w y w

dw dp

d dy
p y p

dw dp

αα

α α

 − = − =


 = = −


 

 
then the equation will become: 

ϕ (y) – p2 (p + 1) 
3

dy

dp

 
 
 

 = 0. 

 
 One only has to separate the variables and integrate, which will give: 
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2/3 1/3(1 )

dp

p p+∫  = 1/3[ ( )]

dy

yϕ∫
. 

 
 That first result, which relates to the case in which f(x) has degree two, already proves 
that the lines of curvature of the wave surface cannot be algebraic curves of a well-
defined degree.  If that fact does not keep us from hoping that the most general integral of 
equation (2) can be obtained, it will at least show that the integral can only be expressed 
in a very complicated manner.  Finally, there are some geometric applications that I 
would like to point out in conclusion. 
 The wave surface is the apsidal of a certain ellipsoid (E).  Suppose that the ellipsoid 
become a cylinder, so one of its axes grows indefinitely.  The wave surface will be 
transformed into a surface whose lines of curvature will be determined by the equation 
that we just integrated. 
 When two of the axes of the ellipsoid tend to become equal, one of the sheets of the 
wave surface will approach a sphere.  If the three axes a, b, c tend to a common value r 
by formulas such as the following ones: 
 

a = r + ε a′, b = r + ε b′, c = r + ε c′, 
 

in which a′, b′, c′ are fixed quantities, then the two sheets of the surface will approach the 
sphere of radius r.  In one case and the other, the lines of curvature will tend to limiting 
positions, and the differential equation will reduce to the one that we have integrated. 
 One can then consider the lines of curvature to be known for all wave surfaces that 
present themselves in physics, and which are, as one knows, little different from the 
sphere. 


