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PART TWO 
 

VIII. 
 

 The proposition relating to the invariance properties of the system (10), which was 
useful to us in the first part of this work, is susceptible to a generalization that we shall 
now present. 
 Along with the form: 
 

Θd = X1 dx1 + … + Xn dxn , 
 
consider some other forms 1dΘ , 2

dΘ , …, 2p
dΘ that are defined by the equations: 

 
k
dΘ  = 1 1

kX dx + … + k
n nX dx . 

 
Require that the variables xi and the variables ti must satisfy the differential equations: 
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⋯ ⋯

 

 

(1)    

1 1
1 1

2 1 2 1
1

0,
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 + + =

⋯

⋯

⋯

 

 
which are n + p – 1 in number, and which, consequently, form a determinate system.  
One can write these equations in the abbreviated form: 
 

(2)    
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,
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+ −

 Θ − Θ = Θ + + Θ
 Θ = Θ =

⋯

⋯
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upon assuming that the first one is true for all of the values that are attributed to the 
auxiliary differentials δ. 
 When the system (1) is written in the form (2), one immediately recognizes that it 
expresses some properties that are independent of any choice of variables, and 
consequently, it will have invariance properties of system (10) in our Part One. 
 If one replaces the variables xi with n variables yi and the form h

dΘ  becomes: 

 
h
dΘ  = 1 1

hY dy + … + h
n nY dy  

 
then the system (1) takes on the form: 
 

(3)    

1
11 1 1 1 1 1

1
1 1 1

1 1
1

2 1 2 1
1

,

..............................,

,

0,

.....,

0,

p
n n p

p
n nn n n n p

p p
n n n

p p
n n n

b dy b dy Y dt Y dt

b dy b dy Y dt Y dt

Y dy Y dy

Y dy Y dy

+ +

− −

 + + = + +


 + + = + +


 + + =


 + + =

⋯ ⋯

⋯ ⋯

⋯

⋯

 

 
in which the quantities bik have the significance that was given before. 
 If one now considers a new form 2p

dΘ  then the quotient: 

 

(4)     
2p
d

qdt

Θ
= 2 21

1
p p n

n
q q

dxdx
X X

dt dt
+ +⋯ , 

 
in which q indexes any of the variables t1, …, tn, will transform into the expression: 
 

2 21
1

p p n
n

q q

dydy
Y Y

dt dt
+ +⋯ , 

 
and it will be defined in the same manner, either by means of the old variables and 
system (1) or by means of the new ones and system (3).  In other words, this quotient will 
be an absolute invariant for any change of variables.  Moreover, there is no difficulty in 
calculating it.  It suffices to eliminate the differentials dxi, dtα from equations (3) and (4), 
and one obtains the following result: 
 To abbreviate, set: 
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(5)    
1 2
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p
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d d d
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⋯

⋯

 = 

1
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1
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1
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⋯ ⋯
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⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯

. 

One finds, for example, that: 

(6)     
2p
d

pdt

Θ
= − 

1

1 2

1 1

1 2 1

p
d d

p p
d d

p
d d

p p
d d

+

−

+ −

 Θ Θ
 Θ Θ 
 Θ Θ
 Θ Θ 

⋯

⋯

⋯

⋯

. 

 
 We remark that if one has p = 1 then the denominator will be replaced with: 
 

∆ = ∑ ± a11 … ann . 
 

 From this, if one considers 2n forms and, for the moment, one denotes the 
determinant: 

1

1

k
d d

n n k
d d

+ +

 Θ Θ
 Θ Θ 

⋯

⋯

 

by Ak then the quotients: 

1

n

n

A

A −

, 1

2

n

n

A

A
−

−

, …, 1A

∆
 

 
will be absolute invariants.  However, one has: 
 

(−1)n An = 

1
1 1

1

n

n
n n

X X

X X

⋯

⋯ ⋯ ⋯

⋯

 × 

1 1
1

2 2
1

n n
n

n n
n

X X

X X

+ +
⋯

⋯ ⋯ ⋯

⋯

, 

 
and it is easy to see that if one replaces the variables xi with other variables yi then each of 
the determinants that appear in the right-hand side of that equation are reproduced, but 
multiplied by the functional determinant: 
 

1

1

( , , )

( , , )
n

n

x x

y y

∂
∂
⋯

⋯

, 

 
which is the determinant of the substitution.  Therefore, An, and consequently An−1, …, 
A1, ∆ is reproduced, but multiplied by the square of that determinant. 
 As a result, all of the functions: 
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1 2

1 2

q
d d d

p p p q
d d d

+ + +

 Θ Θ Θ
 Θ Θ Θ 

⋯

⋯

 

 
are relative invariants that one transforms into absolute invariants by dividing by one of 
the others – for example, ∆. 
 I will not stop to show how one can express all of the functions by simpler means in 

terms of the 
i
d

k
d

 Θ
 Θ 

, and to that end, I will content myself by referring to my paper “Sur la 

théorie algébrique des formes quadratiques, où se trouve résolue une question analogue.”  
However, there is a property that I will establish at the conclusion of this article: 
Whenever these invariants contain the form Θd itself on both sides, they will be expressed 
by: 

A = 
1

1 2

h
d d d

h h
d d d

+

 Θ Θ Θ
 Θ Θ Θ 

⋯

⋯

, 

 
so they will enjoy the property of being reproduced, but multiplied by a power of ρ when 
one replaces the form Θd with ρ Θd , where ρ is, moreover, an arbitrary function of the 
independent variables. 
 
 Indeed, consider the expression for A in the form of the determinant: 
 

A = 

1
11 1 1 1 1

1
1

1
1 1

1

2 2
1

0 0 0

0 0 0

0 0 0

h
n

h
n nn n n n

n

h h
n

h h
n

a a X X X

a a X X X

X X

X X

X X

+ +

⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯

⋯ ⋯

⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯

. 

 
 If one multiplies Θd by ρ then one must replace Xi with ρXi and aik with ρ aik + 

i
k

X
x

ρ∂
∂

 − k
i

X
x

ρ∂
∂

 in the preceding determinant.  After performing this substitution, add 

the (n + 1)th row, multiplied by − 
1

kx

ρ
ρ

∂
∂

, to the kth one, and the (n + 1)th column, 

multiplied by 
1

ix

ρ
ρ

∂
∂

, to the i th one.  We then obtain the old expression for A, where any 

element that is included in the square that is formed from the first n + 1 rows and 
columns will have been multiplied by ρ.  The determinant A will thus be multiplied by 
ρn+1−h. 
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IX. 
 

 We shall apply the preceding propositions, but while considering only the most 
general forms.  In article VII, we saw, moreover, that all of the cases can be converted 
almost immediately into the ones that intend to study. 
 First, suppose that n is even and equal to 2m.  The reduced form can then be written: 
 

Θd = p1 dx1 + … + pm dxm ; 
 

I will consider only the following two invariants. 
 The first one is obtained from the fundamental form and the differential of an 
arbitrary function ϕ; its general expression is: 
 

(7)     d

dϕ
Θ 
 
 

 = 

11 21 1 1

12 2 2

1 2

1 2

0

n

n

n n nn n

n

a a a X

a a X

a a a X

x x x

ϕ ϕ ϕ∂ ∂ ∂
∂ ∂ ∂

⋯

⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯

⋯

⋯

. 

 
 With Clebsch, we employ the symbol (ϕ) in order to denote the quotient: 
 

(8)      ϕ  =
1 d

dϕ
Θ 
 ∆  

, 

which will be an absolute invariant. 
 The second invariant that we consider will be the following one: 
 

d

d

ϕ
ψ

 
 
 

 = 

11 1
1

1

1

0

n

n nn
n

n

a a
x

a a
x

x x

ϕ

ϕ

ψ ψ

∂
∂

∂
∂

∂ ∂
∂ ∂

⋯

⋯ ⋯ ⋯ ⋯

⋯

⋯

, 

and we set: 

(9)      (ϕ ψ) = 
1 d

d

ϕ
ψ

 −
 ∆  

, 

 
in such a way that (ϕ ψ) will again be an absolute invariant. 
 If one calculates the two symbols (ϕ), (ϕ ψ) with the variables of the reduced form 
then one effortlessly obtains, by some combinations of rows and columns: 
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(10)  
1

1

1 1 1 1

( ) ,

( ) .

m
m

m m m m

p p
p p

p x x p p x x p

ϕ ϕϕ

ϕ ψ ϕ ψ ϕ ψ ϕ ψϕψ

∂ ∂ = + + ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ = − + + −
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

⋯

⋯

 

 
 The two symbols that we just defined are particular cases of the following one, which 
plays a fundamental role in the theory of partial differential equations when it is applied 
to functions of 2m +1 variables z, xi, pk, and which is defined by the equation: 
 

(11)  [ϕ ψ] = 1 1
1 1 1 1

p p
p x z p x z

ϕ ϕ ψ ψ ϕ ϕ   ∂ ∂ ∂ ∂ ∂ ∂+ − +   ∂ ∂ ∂ ∂ ∂ ∂   
+ … 

 
 Here, our functions do not depend upon z.  One thus has: 
 

(ϕ ψ) = [ϕ ψ]. 
However, it is clear that one also has: 
 
(12)     (ϕ) = [ϕ ψ]. 
 
 By virtue of this remark, the relations that were established by Clebsch between the 
symbols (ϕ), (ϕ ψ) can all be deduced from one general equation that was given by 
Mayer (Mathematische Annalen, t. IX, pp. 370).  Mayer has shown that if one considers 
three functions ϕ, ψ, χ of 2m + 1 variables z, xi, pk then one has: 
 

(13)  [ϕ [ψ χ]] + [ψ [χ ϕ]] + [χ [ϕ ψ]] = [ ] [ ] [ ]
z z z

ϕ ψ χψ χ χ ϕ ϕψ∂ ∂ ∂+ +
∂ ∂ ∂

. 

 
If one applies this relation to three functions that do not contain z then one deduces the 
Jacobi relation: 
(14)    (ϕ (ψ χ)) + (ψ (χ ϕ)) + (χ (ϕ ψ)) = 0 
between the symbols (ϕ ψ). 
 If one sets χ = z, and if one supposes that the functions ϕ, ψ are independent of z then 
one likewise finds that: 
(15)    (ϕ(ψ)) – (ψ(ϕ)) = (ϕ ψ) + ((ϕ ψ)). 
 
 These are the two relations that serve as the basis for the Clebsch method of 
integration. 
 

X. 
 

 I will make an application of the preceding results to the study of relations between 
two different reductions of the same form. 
 Consider a differential expression Θd , and let: 
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p1 dx1 + … + pm dxm  
 

be an initial reduced form; I first state that whenever one can find m functions X1, …, Xm 
that give rise to an identity of the form: 
 
(16)   p1 dx1 + … + pm dxm = P1 dX1 + … + Pm dXm , 
 
the right-hand side of that equality will be a new reduced form.  In order for this to be 
true, it will suffice to prove that the functions Xi, Pk are independent, and this is almost 
obvious.  Because there are one or more relations between the variables Xi, Pk , once can 
express some of these functions in terms of the other ones by means of these relations, 
and consequently convert: 

Θd = P1 dX1 + … + Pm dXm 
 
into a normal form that contains less than 2m functions.  One knows that this is 
impossible, and one can conclude that if m functions Xi satisfy equation (16) then the 
right-hand side of that equation will certainly be a new reduced form of Θd .  In other 
words, the functions Xi, Pk will be independent. 
 Having said this, the two symbols (ϕ), (ϕ ψ), being absolute invariants, preserve the 
same value when one forms them by considering ϕ, ψ to be either functions of Xi, Pk or 
functions of xi, pk . 
 One will thus have: 
 

(17)  

,

.

i i
i i

i i i i i i i i

p P
p P

p x p x P X X P

ϕ ϕ

ϕ ψ ψ ϕ ϕ ψ ϕ ψ

∂ ∂ = ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ − = −
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∑ ∑

∑ ∑
 

 
Applying these general equations to the functions Xi, Pk itself, we effortlessly obtain the 
following equations: 
 

(18)  
( ) , ( ) 0,

( ) 1, ( ) 0, ( ) 0, ( ) 0.
i i i

i i i k i k i k

P P X

P X PX X X PP

= =
 = = = =

 

 
We can thus state the following proposition: 
 
 If m functions Xi of the 2m variables xi , pk satisfy a differential identity of the form: 
 

P1 dX1 + … + Pm dXm = p1 dx1 + … + pm dxm 
 
then the 2m functions Xi, Pk are independent and satisfy the relations: 
 

(Pi) = Pi , (Xi) = 0, 
(Pi Xi) = 1, (Pi Xk) = 0, (Xi Xk) = 0, (Pi Pk) = 0. 
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 The first two equations express the idea that Pi is a homogeneous function of degree 
one and Xi is a homogeneous function of degree 0 in the variables pk .  This is exhibited 
by the finite equations that were given by Clebsch, which allow one to pass from one 
normal form to another.  I shall not elaborate upon this point, as it is well-known. 
 I will now establish a fundamental proposition that Lie made the most felicitous use 
of in his theory of groups: If one has k independent functions X1, X2, …, Xk that satisfy the 
equations: 

(Xi) = 0, (Xi Xk) = 0 
 

then it will be possible to find a normal form that include the k functions: 
 

P1 dX1 + … + Pk dXk + Pk+1 dXk+1 + Pm dXm  = p1 dx1 + … + pm dxm . 
 

 I will commence by proving this proposition in the case where one has just one 
function X1 .  Then, I will determine a function P1 by the two equations: 
 
(19)    (P1) = P1, (P1 X1) = 1. 
 
It is easy to see that these equations are not incompatible. 
 The first one shows us that one will have: 
 

P1 = p1
2

1
1 1

, , , , , m
m

pp
x x

p p
ϕ
 
 
 
⋯ ⋯ , 

 
and if we recall that by virtue of the equation: 
 

(X1) = 0 
 

that X1 satisfies, that function is homogeneous of degree zero with respect to the variables 
pi then we recognize with no difficulty that the equation: 
 

(P1 X1) = 1 
 
reduces to a relation between the derivatives of ϕ and the variables xi, pi / p1 that they 
depend upon.  Therefore, it is always possible, and in an infinitude of ways, to determine 
a function P1 that satisfies the two equations (19).  It will suffice to take an integral of 
one linear equation in 2m – 1 independent variables. 
 Therefore, suppose that P1 is determinate.  Consider the form: 
 

Ud = p1 dx1 + … + pm dxm − P1 dX1 . 
 
We shall see that it belongs to the type: 
 
(20)    P1 dX1 + … + Pm dXm , 
 
which proves the proposition that we have in mind. 
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 In order to do this, I write the system of Pfaff differential equations that relate to the 
form Θd .  One has: 
 

δUd – dUδ = δp1 dx1 − dp1 δx1 + … + dP1 δX1 − dX1 δP1, 
 

which allows us to construct the desired differential equations in the following form: 
 

(21)   

1 1 1
1 1 1

1 1 1
1 1 1

,

.

i
i i i

i i
i i i

P X X
dx dX dP P dt

p p p

P X X
dp dX dP dt p P

x x p

λ

λ

∂ ∂ ∂ − + = − ∂ ∂ ∂


 ∂ ∂ ∂ − + = −  ∂ ∂ ∂ 

 

 
 I will prove that these 2m equations can be verified without setting λ = 0 and that two 
of them are consequences of the other ones.  Introduce the unknown variables dX1, dP1 
that the differentials dxi, dpi will be determined as functions of, and attempt to determine 
dX1, dP1 by substituting the values of dxi, dpk into the developed expressions for dX1, dP1: 
 

dX1 = 1 1
i i

i i

X X
dx dp

x p

∂ ∂+
∂ ∂∑ ∑ , 

 

dP1 = 1 1
i i

i i

P P
dx dp

x p

∂ ∂+
∂ ∂∑ ∑ , 

 
we thus obtain the two equations: 
 

[(P1 X1) – 1] (dP1 + λ P1 dt) = λ dt[(P1) − P1], 
[(P1 X1) – 1] dX1 = λ dt (X1), 

 
which are verified identically.  Therefore, equations (21) can be verified without one 
having to set λ = 0.  They admit a second-order indeterminacy, and consequently the 
form Ud belongs to the type (20), as we will establish. 
 It remains for us to prove in a general manner that if one has k independent function 
X1, …, Xk that satisfy the equations: 
 

(Xh) = 0, (Xh Xh′) = 0 
 

then it will be possible to find a normal form that they belong to.  Since we have proved 
the theorem for a function, it will suffice to prove that if it is true for k – 1 functions X1, 
…, Xk−1 then it will be true for another function V under the condition that this function V 
must satisfy the equations: 
(22)    (V) = 0, (V Xi) = 0, 
 
and that it is not coupled to the latter functions by any relation and is independent of the 
variables. 
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 Let: 
P1 dX1 + … + Pk−1 dXk−1 + Pk dXk + … + Pn dXn   

 
be one of the normal forms that the k − 1 functions X1, …, Xk−1 enter into.  If one 
expresses V by means of variables Xi, Pk then by virtue of the invariance properties of the 
symbols (ϕ), (ϕ ψ) equations (22) become: 
 

(23)  Pk 
k

V

P

∂
∂

+ … + Pn 
n

V

P

∂
∂

 = 0, 
1

V

P

∂
∂

= 0, …, 
1k

V

P −

∂
∂

= 0. 

 
 The function V is therefore independent of P1, …, Pk−1, but it is not necessarily 
independent of X1, …, Xk−1.  For the moment, make these latter variables constants.  
Since, by hypothesis, the function V does not depend solely upon them, it remains 
variable, and since it satisfies the first of equations (23), one sees, from the proposition 
that was proved to begin with, that one can convert: 
 

Pk dXk + … + Pm dXm 
into the normal form: 

1 1k k kP dV P dX+ +′ ′ ′+ + … + m mP dX′ ′ , 

 
which will contain V.  However, one has regarded X1, …, Xk−1 as constants; if one lets 
them be variables then the preceding expression will be augmented with terms in dX1, …, 
dXk−1 and one will have, consequently: 
 
   Pk dXk + … + Pm dXm = 1 1k k kP dV P dX+ +′ ′ ′+ + …+ m mP dX′ ′  

       + A1 dX1 + A2 dX2 + … + Ak−1 dXk−1 . 
 Therefore, the original normal form: 
 

P1 dX1 + … + Pk−1 dXk−1 + Pk dXk + … + Pn dXn  
 
will be changed into the following one: 
 

(P1 + A1) dX1 + … + (Pk−1 + Ak−1) dXk−1 + 1 1k k kP dV P dX+ +′ ′ ′+  + … + m mP dX′ ′ , 

 
which indeed contains the k functions: 
 

X1, …, Xk−1, V; 
the theorem is thus proved in general. 
 In summation, we can state the following proposition: 
 
 Whenever one has independent functions X1, …, Xk  of the variables xi , pk that are 
homogeneous of degree zero in the variables pi and satisfy, in addition, the equations: 
 

(Xα Xβ) = 0, 
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it will be possible to append 2m – r other functions to them that give rise to the 
differential identity: 

p1 dx1 + … + xm dxm = P1 dX1 + … + Pm dXm . 
 
 The case where r = m is not excluded.  The functions Xi , Pi will all be homogeneous 
in the variables pi , where the former are of degree 0 and the latter are of degree 1.  They 
will have They will have an arbitrary form with respect to the variables Xi . 
 
 By a simple change of notation, this important theorem gives rise to another 
fundamental proposition that we shall present. 
 One can give a new form to the identity: 
 
(24)   p1 dx1 + … + xm dxm = P1 dX1 + … + Pm dXm . 
 Set: 

, ,

, ,
i m i m

i m i m

p p q x z

P P Q X Z

= = − 
= = − 

 pm = ρ Pm . 

 It will become: 
 

dZ – Q1 dX1 − … − Qm−1 dX m−1 = ρ(dz – q1 dx1 −… − qm−1 dx m−1). 
 

 Consider a function ϕ of the variables xi, pi that is homogeneous and of degree µ in 
the variables pi .  It takes the form: 
 

ϕ  = mpµ  f(q1, …, qm−1, x1, …, xm−1, z), 

and one will have: 
 

 
1p

ϕ∂
∂

 = 1

1
m

f
p

q
µ− ∂

∂
, 

1x

ϕ∂
∂

 = 
1

m

f
p

x
µ ∂

∂
, 

z

ϕ∂
∂

 = m

f
p

z
µ ∂

∂
, 

 ………………., …………………., 
 

 
1mp

ϕ
−

∂
∂

 = 1
1 1

1 1
m m

m

f f
p f q q

q q
µ µ−

−
−

 ∂ ∂− − − ∂ ∂ 
⋯ . 

 
 If we likewise calculate the derivatives of another function ϕi that is of degree µ with 
respect to the variables pi and one substitutes all of these derivatives in the symbol (ϕ ϕ1) 
then one will have: 

(ϕ ϕ1) = 1 11 1
1 1 1[ ]m m

f f
p f f p f f

z z
µ µ µ µ µ µ+ − + − ∂ ∂ − − ∂ ∂ 

, 

 
in which [f f1] denotes the expression: 
 

1 1
1 1

1 1 1 1

f ff f f f
q q

q x z q x z

   ∂ ∂∂ ∂ ∂ ∂+ − +   ∂ ∂ ∂ ∂ ∂ ∂   
 + … 
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 For example, suppose that one is dealing with homogeneous functions of degree zero.  
One will have µ = µ1 = 0, so: 

(25)     (ϕ ϕ1) = 1[ ]

m

f f

p
. 

 
 If one now likewise operates with the variables Z, Qi, Xk, and one applies the second 
equation in (17) then one will have: 

      1[ ] z

m

f f

p
 = 1[ ]Z

m

f f

P
, 

 
in which the letters z, Z that are used as indices indicate the system of variables in which 
one forms the bracket.  We can therefore write: 
 
(26)     [f f1]z = ρ [f f1]Z . 
 
 If we apply this equation to all of the functions Z, Xi, Qk then we can conclude: 
 

[Xi Z] = 0, [Xi Xk] = 0, [Qi Qk] = 0, 
[Z Qk] + ρQk = 0, [Qi Xi] = ρ. 

 
Upon changing the notations, one thus has the following proposition: 
 
 Consider 2m + 1 functions Z, Xi, Pk that satisfy the differential identity: 
 
(27)  dZ – P1 dX1 − … − Pm dXm = p (dz – p1 dx1 − … − pm dxm); 
 
these functions are necessarily independent.  In addition, they satisfy the relations: 
 

(28)   

[ ] 0, [ ] 0,

[ ] , [ ] 0, [ ] 0,

[ ] 0.

i i k

i i i k i k

i k

Z X X X

PX PX PP

Z X P

ρ
ρ

= =
 = = =
 + =

 

 
Conversely, whenever one has k independent functions Z, X1, …, Xk−1 whose brackets are 
all zero one can append to them some other functions such that the identity (27) is 
satisfied. 
 
 It is essential to append the following relations to equations (28), which one gets by 
applying Mayer’s formula to three of the functions Z, Xi, Pk: 
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(29)    

2[ ] ,

[ ] ,

[ ] .

i
i

i
i

Z
Z

z
X

X
z

P
P

z

ρ ρ ρ

ρ ρ

ρ ρ

∂ = − ∂


∂ = − ∂
∂ = − ∂

 

 
These formulas, which one can prove directly, must be combined with equations (28) if 
one would like to have the equivalent of relations (18) that relates to the functions that 
satisfy identity (16). 
 We again point out a particular case of the preceding proposition: One can satisfy 
equation (27) by taking Z arbitrarily, and then p must satisfy just the first of equations 
(29). 
 

XI. 
 

 Now, suppose that n is odd and equal to 2m + 1.  The determinant ∆ = ∑ a11 … ann 
will be zero; however, if we confine ourselves to the general case then none of the first-
order minors will be zero.  As for the invariant R, which is defined by: 
 

(30)   R2 = d

d

Θ 
 −Θ 

 = 

11 1 1

12 2 2

1

1 0

n

n

n nn n

n

a a X

a a X

a a X

X X− −

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯

⋯

, 

 
it will not be zero, so Θd belongs to the indeterminate type, and its reduced form can be 
written: 

dz – p1 dx1 − … − pm dxm . 
 
We consider the following two invariants: 
 The symbol (ϕ) will defined by the formula: 
 

(31)   R2(ϕ)2 = 
d

d

ϕ
ϕ

 
 − 

 = 

11 1
1

1

1

0

n

n nn
n

n

a a
x

a a
x

x x

ϕ

ϕ

ϕ ϕ

∂
∂

∂
∂

∂ ∂− −
∂ ∂

⋯

⋯⋯ ⋯ ⋯

⋯

⋯

, 

and the symbol [ϕ ψ], by the relation: 
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(32)    R2 [ϕ ψ] = d

d

d

d

ϕ
ψ

Θ 
 Θ − 

. 

 
From the properties of skew-symmetric determinants, all of these invariants are rational. 
 If one calculates with the reduced form then one will find: 
 

(33)  

2

2
2

1 1
1 1 1 1

1,

( ) ,

[ ]

R

z

p p
p x z p x z

ϕϕ

ϕ ψ ψ ψ ϕ ϕϕψ


 =
 ∂  =  ∂ 
    ∂ ∂ ∂ ∂ ∂ ∂
 = + − + +   ∂ ∂ ∂ ∂ ∂ ∂    

⋯

 

 
 We take: 

(ϕ) = 
z

ϕ∂
∂

. 

 
 When one takes squares roots in formula (31), it will suffice to choose the sign on the 
right-hand side in such a manner that the absolute invariant (ϕ) reduces to ∂ϕ / ∂z when 
one calculates with the reduced form. 
 The invariant R belongs to the class that we considered at the end of article VIII, and 
it is easy to recognize that it will be reproduced, but multiplied by ρn+1, when one 
multiples the form Θd by an arbitrary function ρ.  Therefore, ρ Θd belongs to the most 
general type for any ρ.  In particular, consider a normal form for Θd .  We have the 
following theorem: 
 
 No matter what function ρ of the variables z, xi , pk  one chooses, it is possible to find 
functions Z, Xi , Pk that satisfy the identity: 
 

dZ – P1 dX1 − … − Pm dXm = ρ(dz – p1 dx1 − … − pm dxm) 
 
that we already considered. 
 
 The expressions (33) allow us to develop a method of integration that is similar to the 
one that Clebsch employed in the case of an even number of variables.  Here, I will 
utilize only their invariance properties in order to study further the relations between the 
various reduced forms. 
 

XII. 
 

 I first say that whenever one has: 
 

Θd = dZ – P1 dX1 − … − Pm dXm , 
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the variables Z, Xi, Pk being independent.  This proposition is proved as in the preceding 
case. 
 Now, consider two different reduced forms that give rise to the identity: 
 
(34)  dz – p1 dx1 − … − pm dxm = dZ – P1 dX1 − … − Pm dXm , 
 
and remark that upon applying the invariance properties of the symbols (ϕ), [ϕ ψ] one 
will have: 

(35)    
,

[ ] [ ] .z Z

z Z

ϕ ϕ

ϕψ ϕψ

∂ ∂ =
∂ ∂

 =

 

 
 When the first equation is applied to Z, that will give us: 
 

Z

z

∂
∂

 = 1, 

and consequently: 
Z = z + Π, 

 
where Π depends upon only the variables xi , pk .  The same equation, when applied to the 
functions Xi , Pk , shows us that they are independent of z.  If one then replaces Z with its 
value in the identity (34) then it becomes: 
 
(36)   dΠ = P1 dX1 + … + Pm dXm − p1 dx1 − …. − pm dxm , 
 
and z is eliminated completely. 
 Conversely, for any equality of the form (36), one can return to the equality (34) by 
replacing Π with Z – z.  These two equalities must therefore be considered as absolutely 
equivalent. 
 Apply the second of formulas (35) to the functions Z, Xi , Pk ; we will have: 
 

(37)  1
1

1
1

( ) 0, ( ) 0, ( ) 0, ( ) 1,

( ) ,

( ) .

i k i k i k i i

i i
i m

m

i i
i m i

m

X X P P X P P X

X X
X p p

p p

P P
P p p P

p p


 = = = =
 ∂ ∂Π = + + ∂ ∂
 ∂ ∂Π = + + −

∂ ∂

⋯

⋯

 

 
We are thus led to the following proposition: 
 
 If 2m + 1 functions Xi , Pk , Π of the variables xi , pk satisfy an equations of the form: 
 
(38)   dΠ = P1 dX1 + … + Pm dXm – p1 dx1 − … − pm dxm 



Darboux – On the Pfaff problem (cont.).                                             16 

then the functions Xi , Pk are independent, and when they are combined with the function 
Π they satisfy relations (37). 
 
 I will now conclude by proving that if r independent functions X1, …, Xr of the 
variables xi , pk satisfy the equations: 
 

(Xα Xβ) = 0 
 
then one can append functions to them that allow one to satisfy equation (38), or − what 
amounts to the same thing, as we have proved − equation (34). 
 The proof is similar to the one that we developed in article X, so I will content myself 
by pointing that out. 
 First, consider the case of just one function Xi and determine a function P1 of the 
variables xi , pk by the equation: 

(P1 X1) = 1; 
 

it is easy to see that if one considers the form: 
 

Ud = dz – p1 dx1 − … − pm dxm + P1 dX1 
 

then the Pfaff equations that relate to this form and are summarized in the single 
equation: 

δUd – dUδ = 0 
 

are indeterminate.  Moreover, as a result of the presence of the differential dz, Ud can 
only belong to the indeterminate type.  One will thus necessarily have: 
 

Ud = dZ – P2 dX2 − … − Pm dXm , 
and consequently: 
 

dz – p1 dx1 − … − pm dxm = dZ – P1 dX1 − … − Pm dXm , 
or furthermore: 

dΠ = P1 dX1 + … + Pm dXm − p1 dx1 − … − pm dxm . 
 
The theorem is therefore proved in the case of just one function. 
 When there are several of them, it will suffice to repeat, almost word-for-word, the 
proof of article X.  We shall dispense with that reproduction. 
 We have now made known the three propositions of Lie that relate to the identities: 
 
  p1 dx1 − … − pm dxm  = P1 dX1 − … − Pm dXm , 
  ρ(dz – p1 dx1 − … − pm dxm)  = dZ – P1 dX1 − … − Pm dXm , 
 p1 dx1 − … − pm dxm  = P1 dX1 − … − Pm dXm  + dΠ. 

 
 Since they have numerous applications, we would like to prove then by the most 
elementary process.  The only proposition that we have borrowed from the theory of 
partial differential equations is the following one: Any first-order equation admits at least 
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one solution.  Moreover, this proposition is likewise proved by arguments that are given 
in article VII. 
 We remark that the proposition in article X − namely, that one can satisfy the 
equation: 

ρ(dz – p1 dx1 − … − pm dxm)  = dZ – P1 dX1 − … − Pm dXm 
 
by taking Z to be an arbitrary function – provides a means of attaching the theory of 
partial differential equations to the solution of the Pfaff problem that is different from the 
one in article VII. 
 That is because if: 

Z = 0 
 
is the equation to be integrated then one can propose to convert the differential expression 
in an odd number of variables: 

dz – p1 dx1 − … − pm dxm , 
to the form: 

1

ρ
(dZ – P1 dX1 − … − Pm dXm), 

 
and once that problem is solved, the equations: 
 

X1 = C1 , …, Xm = Cm 
 

will give a complete integral to the proposed one.  In truth, this method seems less direct 
than the one in article VII, and it seems that it augments the difficulty in the problem, 
since it leads to the solution, not only of the equation: 
 

Z = 0, 
but also of: 

Z = C. 
 

However, as one knows, it is easy to introduce a constant into a partial differential 
equation.  For example, one replaces xi with xi + C, z with z + C or z + Ck xk , and upon 
solving with respect to that constant one can make the objection that we just pointed out 
disappear. 
 

_________ 
 


