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PREFACE

This work is, in its essentials, the editing of the last cotnael taught at I'Institut
Henri-Poincaré during the winter of 1961-1962 before going on retreat.

For about twelve years, | have reprised an attempt to interpagewnechanics that |
proposed without success in 1926-1927 some time after my doctoral thesisthender
names of the theory of the pilot wave and then the theory of the doublersol8ome
prolonged reflections on the subject have now led me to affirm that thentur
interpretation that is assumed by quantum mechanics does not truly affoadanadble
explanation for certain essential and incontestable experimental (facend that, as a
result, it must be revised by reestablishing the constant localizatitime corpuscle in
space in the course of time by endowing the wave that accompanidsthevtharacter
of physical reality and postulating the existence of an appropriate connectivedret
the wave and the corpuscle.

| first reprise my old attempt at reinterpretation in the folhmattl gave it on another
occasion, while meanwhile introducing a certain number of important compkment
However, in all of these latter years, | have increasinglynblegl to think that the
hydrodynamical form of that reinterpretation, while being a necessary Hasis
departure, must be completed by some considerations of a statistical dxdav, in
1946-1948, before having reprised my researches on the reinterpretation of wave
mechanics, | studied the old theories of Helmholtz and Boltzmann, wimdhtde
establish a correspondence between mechanical quantities and thermodynamic
guantities, and | believe that | see in it the start of the thermodgsamh an isolated
particle. Quite recently, following the publication of a paper bylelgky, | had the idea
of trying to utilize the Bohm-Vigier hypothesis of a sub-quantum mediuoconbgiving
of it as a sort of hidden thermostat, in order to construct the thermodgsashian
isolated particle. The object of the present book is to presenaitieatpt.

The first five chapters of the work recall some resultsdaratvell-known, but | have
insisted on certain points, either because they have been occasionatiferpisted or
because they are very important in what follows. The essentialechae the last four
(chap. VI, VI, VI, and IX), in which the concepts of random pbdtions and
statistical thermodynamics are progressively introduced in the contéxtthe
hydrodynamical picture, which presents the theory of the double solutianginal
form, and which leads to the thermodynamics of the isolated particle anthaory of
fluctuations of the motion of the particle in its wave.

| believe that one thus arrives at a quite remarkable and promising flornthe
reinterpretation of wave mechanics that | believe is necesshtlgen emphasize quite
strongly that a larger number of young researchers should indeed take antimtetest
attempt, because it seems to me that it is along that path that daehigve the greatest
future progress in quantum physics.

() Seefor example, the bibliographg]} [3], and K.
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CHAPTER |

REVIEW OF THE PRINCIPLES
OF CLASSICAL MECHANICS

1. Hamilton’s principle of stationary action. — One knows that all of classical
mechanics — at least, when the forces are derived d&@otential (we leave aside the
case in which there is a vector potential, which wdl sbturn to) — can be explained by a
general principle of stationary action. In order tatestthat principle, one introduces a
function of the coordinates &f material points, the components of their velocitas]

possibly time, namely, theagrange functionC(xa, ..., zy; X, ..., Xy, t), where the dot
indicates a derivative with respect to time. Therehtn@ might not be constraints, on

the condition that they be holonomic, so one canesgthe coordinates with the aidnof
parametersy ; if there is no constraint then= 3N, and if there are constraints ther

3N. However, in any event, the Lagrange function ishefform£(qs, ..., On; ¢, ...,

A, ©).
In non-relativistic classical mechanics, one gives ecipe form to the Lagrange
function by setting:

(1) L=T-U,

whereT is the global kinetic energy andl is the global potential energy of the system,
both of which are expressed with the aid of the varsadple..., 0h; ¢, ..., ¢,, t.

One can then reduce all of dynamics to the followinggmle: If the system starts
with a certain configuration that is defined by the valug®, ..., g of g at the instant

to in order to arrive at another configurationg®, ..., g at the instanttthen the
4 . . . e
equations of motion are such that the integﬁaﬁ dt is stationary for an infinitely small

variation of the motion between the initial andafistate. This is Hamilton’s principle of
stationary action.

One can make this statement more precise by introdumngadtion of configuration
space. Each configuration of the system is defined bys#teof values of then
coordinatesy, ..., gn, and can be, in turn, represented by a point in-dimensional
space in which each point is framedrbgoordinatesy, ..., ¢,. The instantaneous state
of the system is thus found to be represented by a bthe configuration space, so that
a figurative point starts at a poiAtat the instant, in order to arrive at a poird at the
instant t; , after having described a certain trajectory in configmmaspace. The
trajectory of the figurative point is therefore definedndynctions of timeg(t), (1), ...,

gn(t) that define the motion of the system completelye Tunctionl(qu, ..., 0n; G, -
g, t) has a well-defined value at each point on the cGnand the curvilinear integral

= j:lcdt has a well-defined sense. That integral, which haghysical dimensions
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ML?T of energy multiplied by time (or quantity of motion kiplied by length), is
called theaction integra) or more preciselythe Hamiltonian action integral

If the form of the curve& varies infinitely little while fixing its extremitiesas well as
the instant$, andt; , then one will have:

oL
) A= 5j Ldt = toéﬁdt _j Z( o —qaqj
and since:
dg _d
G = 0—=—0dq,
4 dt dt a

by an integration by parts, one gets:

) oL _d(ac
(3) 5tocdt_jtoz{aq dt[aqﬂaq dt,

7] . .
since thedg are zero at the two extremities of the cuBee If the L Ldt is stationary

then the right-hand side of equation (3) must be zeronaiber what thex are. One
then has:

d(oc) _ocL _
(4) a[aj e (i=1,2 ..n).

These are the celebrated “Lagrange equations,” in time fbat is valid when the
forces are derived from a potential and the constraisth@onomic. One then sees that
these equations are consequences of Hamilton's pringipdéationary action, and that
they thus appear to us as the key to the treasures atalassalytical dynamics.

2. Lagrange momenta. Conservation theoremsThe configuration variablesg are
often called the Lagrange “coordinates.” The are the corresponding “generalized
velocities” that define the motion of the systemthlé material points of this system are
not subject to any constraints, and if one utilizes regtkar, Cartesian coordinates then
theq and theg, are the coordinates and components of velocity in thd senae of the
words.

Instead of employing the}, one can employ some quantitipsthat are called
“Lagrange momenta,” and which are defined by the relations:

(5) pi = a_; (=12, ..n).
s}
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Equations (5) permit one to express thewith the aid of thgy . The variablgy; is

called “canonically conjugate” to the varialide. |If there are constraints, and if one
employs rectangular coordinates then one can set:

(6) L= Mm%+ ¥+ Z) ~U, ..., 2n, D)
SO.

oL _  _aT _
(7) E—p&—a—mﬁ&-

The quantity p, that is canonically conjugate i@ is then equal to the-component of

the quantity of motion of the" material point.
In the general case, the Lagrange equations camitben:

dn _ 9L

k=1, 2,...n).
dt  dq, ( )

(8)

Therefore, ifL is independent ofk thenpx will remain constant in the course of
motion. In particular, in the case of the absesfoeonstraints and the use of rectangular
coordinates, iJ(x, ..., 2y , t) does not depend upon one of the variables —xgaythen
one hasdL / 0% = O, and in turn,p, = const. One concludes from this that if the
component along one of the rectangular axes ofditwe is zero then the component of
the quantity of motion of the material point alotigat axis is constant. This is the

theorem of the conservation of the quantity of muoti
Now, consider the quantify that is defined by:

9) E:zkaK -L

in the general case. We call it thieergyof the system. Since we assume thatoes not
depend upon velocity, and one easily seesThata homogeneous, quadratic function of
the velocities ¢ if the constraints do not depend upon time, Esldéheorem on

homogeneous functions permits us to write:

N, oT oL 4
(10) = q,— = q,— = qi )
2095 ~ 205 - &4°
SO:
(11) E:Zplq -L=2T-T-U)=T+U;

i=1

E is then, in fact, the total energy, which is tlensof the kinetic and potential energy.
One finds, moreover, that:
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dE oL .\ oc
(12) i Zl ho+RY)- Z[aq ﬁqj_ﬁ'

From the Lagrange equation, the first term in thetfigind side compensates for the
third one, and from the definition of tipe, the second term compensates for the fourth
one. What remains is:

(13) E = - a_[' = a_U .
dt ot ot

If the external forces are constant or zero (viz.pmservative or isolated system) thgn
does not depend upo@ndE = const. This is the theorem of the conservaticenergy.

3. Maupertuis’s principle of least action.— The definition (9) oE permits us to
write:

(14) dA=Ldt=) pdg-Edt
i=1

Now, imagine a configuration space-time by adjoining aetimmension to that
configuration space. LeP be the point of that space that represents the initial
configuration at the initial instarty , and letQ be the point that represents the final
configuration at the instatf . The Hamiltonian action integral is written:

(15) A= jfcdt = jf[z pdg - Edtj.

This is a curvilinear integral that is taken in configuratgpace-time along the line
that represents the motion of the system betwgandt; . Hamilton’s principle is then
written:

(16) A= 5j cdt_aj[ pdq - Edtj 0,

where theP andQ are now fixed under the variation.

From the preceding statement of the principle of statip action, one can deduce
another analogous principie the particular case of a field that is constamthe course
of time:viz., Maupertuis’s principle of least action.

In the case of constant fields, the energy of thetesy is a constant; i.e., a first
integral. If A and B are the endpoints of the trajectory in configuration sptat
correspond tdp andt; then it is easy to see that one cannot make thattoay vary
while keepingA, B, to, andt; fixed if the total energy is to remain constant duting
variation. One easily sees this in the simple cdsefee material point: The trajectory
is then a straight line, and if one varies the forfrthe trajectory while keeping its
extremitiesA andB fixed then one forcibly lengthens it, from the definitiself of the
straight line and velocity, and in turn, the energy camemain constant if, andt;
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remain fixed. This is the reason why one cannot deduce Maig¥eiprinciple directly,
where one performs a variation with constant eneirgyn Hamilton’s principle, where
one performs a variation with constdaptandt; . In order to make that deduction, one
must pass through the intermediary of a formula thatftsn called “the principle of
varied action.”

In order to find the formula in question, start with thepression (15) for the
Hamiltonian action, but suppose that one varies the endgdandQ, which amounts to
varying not only the endpoin&s andB in configuration space, but also the end tifges
andt; . One then obtains the desired formula:

17 A=s[ Lt = [Fords] S noq - 51
= = + - .
a7) Jioan= [ ocas| 3 po - e2q
The integral in the last expression represents thatiar of the Hamiltonian action
integral that is due to the variation of motion wh&nB, t, andt; remain fixed; from
Hamilton’s principle, it is zero. The bracket repmdsethe variation of action that
corresponds to the variation of the poiRteandQ in configuration space-time, and one

has:
1

(18) OA = {Zn: p.oq, — Edt} :

0

Now, return to configuration space, properly speaking. canadefine the integral

(19) A=["> pdq

in it. This is Maupertuis’s action integral. It iském in configuration space from the
point A, which represents the initial configuration, up to theapBj which represents the
final configuration.

In the case of conservative or isolated systeras @onstant or zero external actions,
resp.), the total enerdy of the system is constant, and the integral (19) isgaddent of
time. We have:

4 ol _ 4
(20) jto Ldt = jp [kz; PG, — Eétj =A- jto E dt,
SO:
(21) ) jfcdt = 34 - jf OE dt-| ESY; .

Hence, upon replacing the left-hand side with the valueigtigaven by (18), one will get:

1
(22) OA = +[SEt.
0 0

Z PO
k=1
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Now, suppose that one keeps the poiendB in configuration space fixed during
the variation, as well as the valdef energy. One then gets:

(23) JA = 0.

This is Maupertuis’s least-action principle, where theatmmn must be performed while
keeping the extreme configurations fixed, along with theievalf energy, but not the
extreme time point andt; .

In the particular case where theare the Bl Cartesian coordinates &f material
points of a system that is not subject to any conss,aamte has:

BSN BSN
(24) A=Y pdg =] > m(y dx+y dy+ y dJ,
k=1 k=1
and for just one material point:
B B
(25) A:IAm(vxdx+\§dy+ yd)z:jArmEds,

in which the integral is then taken frofnto B along the trajectory in three-dimensional
physical space.

4. Hamilton’s equations.— We can take the variables that define the modiba
system oh Lagrange variableg and corresponding momerga= 0L/09¢,, which form
a system of “canonical”’ variables. We can therresp the generalized velocitigs as
functions of they; , thep; , and possibly time, by relations of the form:

(26) G =fi(q, p 1) (=12 ...n).

The energ)E will be expressed as a function of the same viasaby means of the
“Hamiltonian function”H(q, p, t), in such a way that:

(27) E=Y pa-£(q 41 =H( p. 9,

i=1

in which the @ are expressed in the right-hand side as funcdribe g, the p, andt.
One will then have:
Z”:M 09 _
= 6 =04q0
(28) 1 pk =10 R
OH _ 04 oL _za_w_q:_ac

aq & 'dp, dq Sdgaq g

_pk’
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from the definition ofp; and the Lagrange equations. One has thus obtained the
celebrated system of Hamilton’s equations:

_oH . __OH

29 3 = —, -_97
(9) qk op, & aq,

k=1,2,..)n),
and one easily infers that:

(30) d_H: a_H+a_Hn +6_H:a_H,
dt =7\ 00, op, ot ot

so if U, and in turnH, do not depend upon time explicitly thein= const, which is the
theorem of the conservation of energy.

5. Classical mechanics and relativistic mechanics: We just recalled several
points of classical analytical mechanics. The intradaabdf the principle of relativity by
Einstein in 1905 led to a modification of the formulaslaisical mechanics. We shall
not recall the well-known principles of the speciagdly of relativity here. In the
following chapter, we shall restrict ourselves to summirey the principles of the
relativistic dynamics of a material point, while esplgiansisting upon the principle of
the energy of inertia, which will play a very impartaole in all of what follows.




CHAPTER I

RELATIVISTIC DYNAMICS

1. General formulas. — Newtonian mechanics admits the group of Galilean
transformations with absolute time — i.e., its equatl@®p their form when one makes a
Galilean transformation — but it does not admit the groupooentz transformations,
which preserve the equations of electromagnetism, angaiticular, those of the
propagation of light in vacuo. However, since the gfamation formulas of the two
groups differ only by terms of orde® = V? / ¢, the divergence is very weak for the
motions considered in classical rational mechanics, wbarsists of stellar motions.
The Lorentz transformation is found to be confirmedtby identity of interference
phenomena in all Galilean reference systems, sincentbderence phenomena can be
observed with infinitely more precision than mechanpm@enomena, so it is natural to
suppose that the principle of relativity applies to allurel phenomena and that the
equations of classical mechanics are not rigorously esacthey must be modified in
such a fashion as to become invariant under the Loremtzformation.

The essential condition that the relativistic dynesmof a material point must then
satisfy, a priori, is obviously that of agreeing with classical dynamidemevers’ is
negligible compared to unity, because one must neclgssarover the old dynamics as a
first approximation in the case of weak velocities wéhpect to the velocityof light in
vacuo (an approximation that is called “Newtonian”). eGsthen led to define the basis
for relativistic dynamics as a principle of stationagtion that reduces to the usual
Hamilton principle when one can neglg&€tcompared to unity. In order to do this, one

must adopt a functiof of the coordinates and velocities of the material psuah that
the equations of relativistic dynamics are all derifrech the equation:

(1) A= Ldt =0,

in which the variation is performed while keeping the ahiand final positions of the
material point and its values at the instaptandt; fixed, and in the classical Hamilton
principle. The usual calculation that permits one ®sgeom Hamilton’s principle to the
Lagrange equations is applied here, and gives:

d(oL oL
@ CIERE
dt\ ax 0x
or, upon setting:
oL
3 =—, ...,
(3) ==
dp, _ oC

@ E: ox
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Now, in classical mechanics, one sets:
(5) L=T-U=im(¥+ ¥+ 7Z) -U(XY,1z1),

however, here we must choose the functiodifferently.

Ordinarily, in the theory of relativity, one represeetaich “event,” which is defined
by the set of its four coordinatgsy, z t, by a point in four-dimensional space-time. The
motion of a material point is then represented by aimontis sequence of event-points
that form what one calls the “world line” of the maépoint in space-time. When one
passes from one Galilean reference system to andhbigecoordinates of each point of
that world line vary, since one must perform a Lorenmgformation on these
coordinates. Meanwhile, there exists an invariant quathidy is attached to each
element of the world-line. Indeed, g% dy, dz dt be variations of the coordinates in a
Galilean system that correspond to a small elemenhefworld-line. Consider the
quantity:

(6) ds= \/c2dt?— ¥ - dy’ - dZ = /cdt? - dI?,

dl being the element of the trajectory that is descriiyethe material point in the ting.
One of the essential properties of the Lorentz toansdtion is that the quantity (6) is an
invariant of that transformation.

Sincev = fc = dl / dtis the velocity of the material point, one can write

(7) ds=cdt1-5° =cdr

where dr= dt /1-3* is the element of proper time of the material pdinat

corresponds to the elemedd of its world-line, sadr is the time interval that is indicated
by a clock that is carried along by the motionlef tnaterial point while it displaces gy
during the timedt. Formula (7) expresses the “slowing-down of cfotk

In relativistic dynamics, one considers the presenf a material point at the instants
to andt; and at the points , Yo, Zo andxy, Y1, z1 in space as defining two event-points in
space-timeP(Xo , Yo, 20, to) andQ(x1, Y1, z, t1), and one seeks a principle of stationary
action of the form (1), where the integral is talkdong the world-line fron® to Q, and
the variation does not affect the poiRtandQ.

One obtains a satisfactory form of the Lagrangetion £ by setting:

(8) L=-myc1-5

for a free material point, whems is a constant that is called the “proper massd an
which characterizes the material point envision€bat formula permits one to write:

(9) A=['Ldt=-mc [ 1-2dt=- [ mycds
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and the invariance of the action integralbecomes obvious, which is satisfactory.
Moreover, if5 is small compared to unity then one will have:

(10) L=-mc+1m VA,

and since the constant term has no importance, sincentributes nothing to the
variation, we come down to the classical expresdlon T :%m\f for the Lagrange

function for a free material point, as we must.
If a material point is subject to a field that is gtalle from a potentidll then, for the

moment, we content ourselves with adding the telnir-£ to the “kinetic” term- mo ¢

J1- 5%, by analogy with classical mechanics, and we wttite principle of stationary
action in the form:

(11) A=3[ (-m|1-F -U)dt=0,
which gives the Lagrange equations:
dt\ ox 0x 0x

by the classical argument.
It is easy to calculate the Lagrange mom@qtay, p,; one finds:

13

If one then defines the “impulse” — or quantitynedtion— vector by:

myv
1- 3

(14)

Tﬁ

then one will have:

(15) d—i) = - gradu.

m
J1-p5°
motion” of the material point; it increases witletielocity of the point. For an observer
that is coupled to the material poigt= 0 andm = my ; the massn reduces to the proper
massm, — or “rest mass.” Whewtends toc, mtends to infinity; i.e., the mass of motion
increases indefinitely when the velocity approacbesThe velocityc is the limiting
velocity of all corpuscular motion.

One can, moreover, wrife = mv by settingm = ; mis called the “mass of
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2. World energy and impulse.— The general equations that were obtained above
permit us to prove, as in classical mechanics, thajubetity:

(16) W= xp, + g +zp - L
has the total derivative with respect to time:

(17) d_W: - a_[' = a_U ,
dt ot ot

and that it therefore remains constant if the extdiakl is constant in the course of the
motion, and this further leads us to consM&to be the energy of the material point.

In classical mechanics, whefe= T — U, we have found thd& =T + U. Here, since
m,v

J1- B2

we have sef. =—m, ¢ y/1- 5% - U, andwe havep = , we find that:

(18) w=_m Ly

J1- 3
The total energy of the material point is then shen of the potential enerdy and
_mc
J1- 3
coupled to the motion — this term reducesni@?, and represents the proper internal
energy of the moving point. For an observer thadésps the moving point with the

m,&
1- 3

the term that we must now interpret. Fgr= 0 — i.e., for an observer that is

velocity /&, the kinetic part of the energy will be - myc®, which represents the
internal proper energy of the moving point.

Generalizing that result, Einstein arrived at thkowing statementAny mass m is
always associated with an amount of energy thaglsqgtne product of that mass by the
square € of the velocity of light in vacuoLater on, we shall study this principle of the
energy of inertia more deeply.

One can call the increase in energy that is dudganotion when the moving point
passes from a state of rest to a veloftyts “kinetic energy.” One then sets:

(19) T=_mC
1- B2

Jllfﬁq

If B < cthen one sees thaitreduces tg moV?, as it must. Finally, one must set:

_ rTbCZ — rTbCZ L

(20) W=mec® + T+ U =myc® +E,
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upon lettingE denote the energVy + U that is the sum of the kinetic energy and the
potential energy. Therefore, the total enevgyf relativistic mechanics is obtained by
adding the internal energyc?, which is characteristic of the theory of relativity, E.
While E can be positive or negatiw/ is always positive.

One can define a “world-velocity” quadri-vector at eacmpof the world-line of a
material point, which has the components:

_%_BE: Vx u :iy: Yy
ds dtds c1-p2° ° ds of1-82°
(21) B B
_dz__ v, y=ded_ 1
> ds 1—,[;’2’ ‘' ds 1- B2

Upon multiplying this quadri-vector by the invariangc?, one deduces the “world-
impulse” quadri-vectol = myc? u with the components:

| = rnOVX , |. = rrbe ,
(22) 1 [1_182 2 [1_ ﬁZ
|, = MY, | = mc :\ﬂ

One sees that the three spatial components of thd-wgpulse are the components
of the quantity of motion, while the temporal componergqual to the energy, divided
by c (i.e., an abstraction from the potential energy). dhadri-vectod thus combines
the quantity of motion and energy into a single geomettity.

The kinetic part of the Hamiltonian action:

-m,¢yJ1- B2 dt=— | mycds,
J J

which is an invariant, is therefore the circulationtlué quadri-vectol along the world-
line. Itis easy to verify that by virtue of equation (I&)e can write it in the form:

—J(Wdt—pxdx—gdy—gdz).

This permits one to consider the integral as being (ugt) the scalar product in space-
time of the world-impulse quadri-vector with the quadri-ved®whose components are
dx, dy, dz dt, and therefore to write:

(23) A= cdt == [ (@)

for the free particle.
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3. Relativistic dynamics of the electron in an electromagnietfield. — We have
taken the relativistic Lagrange function to be:

L=-myc®1-3* - U,

but the termU is not satisfactory, since the action must beraariant, andJ is not
invariant. We shall examine the question moreeatioby putting ourselves into the case
of a point-like charge that displaces in an eleofignetic field (relativistic dynamics of
the electron).

We obtain a satisfactory relativistic form 6rby starting with the following remark:

The relativistic study of electromagnetic quansitghows that the scalar potenNaand
the vector potentialA transform like the variablex, y, z t under a Lorentz
transformation; i.e., they form the components o$pace-time quadri-vector whose
spatial components ag, Ay, A;, and whose temporal componeniMis It then results

that one obtains an action integhe¥ f L dtthat is invariant if one sets:

(24) E:—m)CZ«/l—,Bz—sv+%(A ),

wherec¢ is the electric charge of the particle. Indeédne letsP denote the space-time

quadrivector of “world-potential,” whose componeat®g A, Ay, A;, V then one easily
verifies that the expression for the action is t&ntin the obviously invariant way as:

(25) A:—fmoc ds- %J(P Cds),
whereP [Ms is the space-time scalar product of the two guaelrtorsP andds, which
is formed according to the rule:

(A EB) = A484 —A]_Bl —Asz —A383 .

As always, the Lagrange equations are written:

(26) i(a_?j _oL
dt\ ox ox

and upon setting, = 0£/0x, ..., they further take the form:

dp, _ 0L

27 an, ,
27) dt 0x

One easily finds:
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(28) Px=— =

or vectorially:

(29) s .

The vectomp, whose components are the Lagrange momenta, iddretée sum of

. . v . . .
the quantity of motlonL and a sort of “potential quantity of motioa’7 c A.

J1- 3
If one writes the Lagrange equations (27) explicitly, evhaking into account the
expressions for the electric fiekdand the magnetic field as functions of the potential
V andA, then one obtains three vectorial equations of tha:for

(30) i{ MV } -1,

dt{ J1- B2
with:
(31) f= £[h+EvDH]
C

and one recognizes that the vedtas the Lorentz force that acts upon the chargden
it is animated with the velocity. Therefore, the derivative with respect to tinfehe
quantity of motion is equal to the Lorentz forcdvieh permits one to recover the well-
known dynamics of the electron. One remarks, mareothat equation (30) is not
equivalent to the Newton relationy = f, which is due to the variation of the mams-

m

If one calculates the eneryy by the formula (16) then one finds:

with velocity.

__m¢
(32) W= ——"o+¢V,
J1-3
which is satisfactory.

We finally remark that since the quantitips py, p, and W / ¢ form the four
components of a space-time quadri-vector of warlgtilsel, which is defined by:

(33) I :mocu+%7>,
one will always have:
Q __ (@
jp Ldt= jp (I k) .
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4. Hamilton’s equations.— SinceV depend upor, y, z t, in general, the enerdyy/
is a function ofx, y, z, x, y, z, andt. However, sincex, y, z can be expressed as

functions ofx, y, z, p, py, Pz t, One can write:

(34) W=H(X ¥, Z po Py, P ).

Upon eliminatingv, \y, V, between the equations (29) and (32), one finds, after some
calculations:

(35) H(X, ¥,z po Py, P t) =C \/m§02+2( R—% Aj + &V.

Xyz

The same reasoning that led us from the Lagrange equadibfamilton’s equations
in classical mechanics again gives us:

(36) d_oH - dp, __OH
dt  adp,

dt  ox '

here. The last three equations are the equations obmmakie first three are easy to
verify.

5. Summary of the principle of the energy of inertia.— While studying the
relativistic dynamics of the material point, we enceuet the principle of the energy of
inertia, according to which there exists the generatioelaV = m& between energy and
mass. However, that relation was proved only for tena point. In his first papers on
relativity, Einstein was led to generalize that statente a set of material points, and
then to an arbitrary body.

First, consider a set of material points with nceiattions, and refer that set to a
Galilean reference system (which we denote by 0), sath th

(37) > =y,

where the sum is taken over all the material poiMi&g say that in the system where the
total impulse is zero, the set of material poirgsglobally at rest. This system of

reference is analogous to the one that linked ¢octimter of gravity of the particles in

classical mechanics; we shall call it the “propesference system of the set. In this
proper system, we have the expression:

(38) Wo=> m)czz
1V
CZ
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for the energy, since the particles are non-intergcti

Now, pass to another reference system (denoted bytli thaimated with respect to
the system O with the velocity= c. The global energy of the particles in this system
will be:

(39) VESY m)czz .
v
CZ

Now, upon taking the-axis to be the direction of relative motion of the reference
systems 0 and 1, one will have the usual formwdashie addition of velocities:

Vorll=B2 1B 1=
) y - - b Z - —l
1+ 10 14+ oy 1+ oz
C C Cc

(40) Vix =

from which, one infers that:

1+ 1+£2v0
1) 1 _ 1 _ 1 c

2
v V2 Ve v \/1—,[:’2 '
— 1 — 0 - —_0
1 c? 1 c 1 c? c?

From this, one deduces:

vV,
Cc

N

_~ M W, Bc M\,
(42) W, = = + .
2 g Ny i

c? c?

The last term is zero, by virtue of the definitiBY) of the proper system, and what
remains is:

(43) Wl = WO

N

If the set of particles reduces to just one plrtaf proper mas$ly, then one will
have:

M,c?

i-5

One can thus say that the system in collectiveianawith the velocitysc behaves
like a unit with a proper mass:

(44) Wi =



Relativistic dynamics 17

(45) Mo =

W
CZ

a formula that expresses the energy of inertia,. here
Moreover, in the reference system 1, the global tayaof motiong of the particles
has thex-component:

(46) gn= Y P =y b =,
I
c? c?

and similarly,g.y = 0. Forg:,, one will have:

S

—_ m) VOx 1

(47) gu= Y F F Jl— B

Since the first term is zero, from the definitiofithe proper system, one has:

m, v W MV

(48) —= :
Jlﬁ \/5 J1-p2 ¢ 1-p

2

and that formula again shows the energy of inertia.

One can remark that the principle of the energineitia determines the value of the
constant of energy completely, which is left adorin classical mechanics; indeed, one
cannot introduce an additive constant into the esgion for energy without disrupting its
variance completely.

6. Various extensions of the principle of the energy ohertia. — The argument
that we just developed shows us that the prinaptbe energy of inertia is valid for a set
of non-interacting particles (i.e., the absencepotential energy). In particular, they
prove that if one contributes to the heat of a thas$ is assumed to be perfect then its
mass must increase. We shall now show that thati@d of an energyV must also
possess a mass that is equaWté ¢, and that, in turn, a body that radiates losessmas
while a body that absorbs radiation acquires alsapgntary mass.

We give a proof that is due to Einstein himse&line knows that in electromagnetic
theory, one proves that radiation of enevyjypossesses a quantity of motion that equals
W/ c. Therefore, when a body emits radiation of glodagrgy\W, it takes on a recoll
motion with the quantity of motiokV / c. With Einstein, consider a hollow cylinder,
such as the one in Figure 1.
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Figure 1.

As a result of that emission, the cylinder must decavards the left with a quantity
of motionW/ c. If M is the mass of the cylinder then since its recoilaigtos is small
compared ta , its quantity of motion will béMv, and one will havéMv =W /c. When
the wave train has arrived at the right-hand wallhef ¢ylinder, which we assume to be
absorbent, it will be absorbed, and the cylinder wilhteequire the quantity of motiof
/ c to the right, so its motion will stop. Howeverfween the emission and absorption of
the wave train, the center of gravity theorem wouldb®verified if the radiation had no
mass. Lek be the global displacement of the cylinder towarddéft during the time =
x/ v =Mcx/ W. During this time, the small wave train will be desped towards the right
by X = ct=Mc*/W. In order for the center of gravity theorem to his§ied, one must
have that the small wave train has a masach that:

2
(49) MX — X = Mx — Mc X=O,
SO
w

This is indeed the expression for the principle of thergy of inertia, and one can,
moreover, easily repeat its proof by appealing to the matigphoton.

Another generalization of the principle studied consi$textending to a body that
has both kinetic energy and potential energy, and istaptiat one further haa/= M, c2.
We shall examine how things happen by studying two partlgidanple cases.

First, consider a macroscopic body of misthat collides with another body of
massM that is originally at rest with a velocitgc. Suppose that as a result of the
collision the two bodies remain coupled and are finallymated with the common
velocity S,c in the same direction agc. If we now write the conservation of the
guantity of motion and energy in the form:

M1C2 M1+M2)C2 Mlﬁlc — (M1+M2)ﬁ20

2 _(
+M,c° = , =
V15 ’ 1-85; V1-B V1-5

which appears natural, then we encounter an imipiisgisince the two equations in just
one unknowrp3, are incompatible.

(51)
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However, since the collision is inelastic, it givekludat, since the single body that is
formed from the juxtaposition of the original two beslis the site of heating, its mags
is greater thaivl; + My, in such a way that one must write in place of equat{51):

., _ M¢ M.Gc _ M'Be
-5 -5 1-8 \1-8

(52)

and these two equations in two unknowhsandM' are soluble. The first one can be
written:

2
(53) ME M, = e +M’c{ ! 1},

2 W‘

1
and this show us that the initial total energyhaf two bodies is finally recovered in the

form of the energWM'c” of the two bodies once they collide and their extive kinetic
energy. One can further write:

(54) M1c2£ ! —1}:[M’—(M1+Mz)]CZ+M’02£ ! —1},

VI-5 V1=

which shows that the initial kinetic energy of thedy 1 has served, on the one hand, to
communicate to the ensemble the quantity of heat:

(55) Q=[M - (M +Mp)] &,

which has taken the internal energy of the enserinbta the value 1, + M,)c? to the
value M'c?, and on the other hand, to provide the kinetiognef the final composite
body. All of this is very clear.

As another simple example, consider a body thabriis radiation. This can be a
macroscopic body that absorbs a train of wavessystem of atomic levels that absorbs
a photon. LetM, be the initial proper mass of the body, whichsswaned to be at rest
initially, let W be the energy of the absorbed radiation (or photmg letSc be the recoil
velocity that the body has after absorption.

w
c
Figure 2.

Once more, if one writes:
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M,c? M.fc _ W
-8 J1I-82 ¢

here then one will encounter an impossibility. @mest then write:

(56) Moc? + W =

M,c? Mgfc _ W
N NI

while assuming that the absorption of radiatiomeases the proper mass of the body.
The first equation (57) can be written:

=

(57) Moc? + W =

(58) W= (M(')—MO)CZ+ME,C{ ! —1}.

J1- 2

This then shows that the energy contributed tdtdy by the radiation serves:
1. To augment the internal energy of the bodhieyquantity(M; —M_)c® (which is

heat, in the case of a macroscopic body and intemexgy in the case of microphysical
entity).

2. To give the body its final energy, so its maas therefore increased.

The inverse problem of the emission of radiationd photon) by a macroscopic or
microscopic body is treated similarly, and onevasiat analogous conclusions.

Therefore, the principle of the energy of ined@ems to indeed have a completely
general significance. One knows that the exaaitodl that principle is confirmed
completely by the essential role that it plays urctlear physics in order to establish the
balance of energy in nuclear reactions.

7. Important remark. — One of the fundamental ideas that results frown t
considerations that we just presented is the fatigwone:If a body receives energy that
does not transform into kinetic energy then its snasl increase, and if it loses energy
that does not come from its kinetic energy themiss will diminish.In other words —
and this is the essential point — a variation ef pnoper mass of a body corresponds to
the energy that is received or lost inside of theybin the form of hidden energy, and
which, because it is not externally manifested, lmamonsidered to be internal heat. We
shall recover this idea, but developed in a morecipe fashion, when we study
relativistic thermodynamics, and it is upon appdyinto particles that we will then arrive
at an outline for the thermodynamics of an isolagadicle.




CHAPTER 1l

NOTIONS FROM STATISTICAL THERMODYNAMICS

1. Introduction. — We have seen the importance of the quantity ofraaticlassical
and relativistic mechanics. That importance has bedaracored by the development of
the theory of quanta, which, since the beginning, was ledite that the Maupertuisian
action integraf p [l over an entire period of motion must be equal to &ger multiple
of Planck’s constant in order to quantize the perioditiane of a corpuscle at the atomic
level.

The theory of relativity attaches importance to Haeniltonian action due to the fact
that that quantity is invariant. It is the fundamentadariant of mechanics, just as
entropy is, as we know, the fundamental invariant ofntoelynamics. That remark
prepares us to discover some curious analogies betweaeam actl entropy.

However, before making that analysis precise, we must after having recalled the
principles of mechanics, also study certain aspectseofmodynamics. In what follows, |
will suppose that classical thermodynamics is knowrpfinciple,” and | will attempt to
underscore only the broad ideas of the statisticalpregation of thermodynamics.

2. Basis for the statistical interpretation of thermodynamics — Statistical
mechanics, which was first developed by Clausius and Méxwed then more
completely by Boltzmann and Gibbs, permits one to studtidigstical means of very
complex systems that are defined by an extremely largg@uof parameters. Its great
success has been to arrive at an interpretatiorhéotatvs of thermodynamics in such a
fashion that these laws seem to be derived from thetliattthermodynamics always
envisions global mean properties of very complex systeimase detailed description can
be effected only with the aid of an enormous number odmaters. For example,
thermodynamics treats global properties of gases, a@ iayes of atomic physics, a gas
is composed of an immense number of molecules or atwhexre the state of each of
these elements would be described with the aid of sevenampgers. The
thermodynamic laws of gases are then considered bigtis&t mechanics to be the
global observable result of uncoordinated motions of nudesc

We shall make some of the concepts that are diabis for the theory of Boltzmann
and Gibbs more precise. In classical statistical mechaone assumes that the immense
number of elements is composed of material bodies thay ¢the laws of classical
mechanics, in such a way that if one knows the posignisvelocities of all of these
elements precisely at a given moment then one caprimnciple, calculate all of their
ultimate history rigorously. However, in practice, @aanot observe the evolution of all
of the molecules, and one observes only mean statigtifects, so statistical mechanics
proposes to determine the laws that govern these ®ffeEherefore, in that classical
theory, one assumes — at least, in principle — theegxistof a subordinate determinism,
so the “probabilistic” character of the effects thustaoted proves uniquely the
impossibility of observing anything but those global effect¥he introduction of
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relativistic dynamics in place of that of Newton changedhing essential in the
foregoing, since that dynamics preserves the fundamsomaépts of classical dynamics.

3. Extension-in-phase and Liouville’s theorem— In order to develop classical
statistical mechanics, we envision a very complex systbose configuration is defined
by coordinates);, 4z, ..., On , Where the number of them will generally be regaraed
very large.

We suppose that our system obeys the laws of classgzdanics, when expressed in
the form of Hamilton’s equations. If the energy of gystem is given by the function
H(da, ...,On; P1, ---, P, ) then one can write the canonical equations as:

(1) o] :a—H, p -_H (i=1,2,..N),

op aq

whereN is the number of coordinates(i.e., the number of degrees of freedom). In the
case where the system is isolated or subject to ektactians that are independent of
time, H is constant.

Since the state of the system is defined entirely éktlowledge of theg; andp;, one
can represent that state by a point iladdnensional space that is formed with the aid
of theq; andp; ; Gibbs gave that space the name of “extension-ingphds the course
of time, the figurative point of the system describé&sgctory in the extension-in-phase.

Now, imagine very small variatiom&y, ..., dgy ; dpi, ..., dpy Of the coordinates and
momenta that start with given values. A small voluegnentdr corresponds to these
variations in the extension-in-phase. That volunegneht possesses two properties that
confer great importance upon it. The first of these pt@seis the following ondf one
performs a change of canonical variables that mdkesvariables g ..., On ; P1, ---, PN
for which Hamilton’s equationgl) are verified pass over to the new variables Q.,

Qn; Py, ..., Py for which Hamilton’s equations again verified (j.a.change of canonical
variables) then the value of the element@mains the same.will not give the proof of
that theorem here, which results from the manner by wbieh defines the conjugate
variablesp; and g . It shows that the volume elemedfr possesses an intrinsic
significance that is independent of the choice of naab variables that serve to define
the system.

The second property of the elemelatis more important for what follows, and it is
expressed by “Liouville’s theorem.” In order to statatttheorem, we shall no longer
consider just one exemplar of our system, but a gneabar of different exemplars of
that same system. At the instanteach of these exemplars will be represented by a
certain point in the extension-in-phase, and therd Wd a certain number of
representative points inside of the eleménthat is of interest to us. We now fix our
attention on the representative points that are tbusdf inside the elememntr at the
instantt. In the course of time, these points will displaaxed at the final instarit one
will recover these same representative points by oityi inside of another elemedt’
in the extension-in-phase, an element that will amnall of the representative points, and
only them. Liouville’s theorem then tells us that is equal todz. Naturally,d7 can
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have a very different form frordr — for example, it can be a long strip that is folded
upon itself, whiled7 is a small cube — but t®lumesof the two elements are the same.

One can prove Liouville’s theorem by comparing theiomobf representative points
in the extension-in-phase to the motion of the mdéscof a fluid in a R-dimensional
space. In effect, from that viewpoint, the theorem esges the idea that a given number
of fluid molecules always occupy the same voluméne2N-dimensional space; i.e., the
fluid behaves like an incompressible fluid. Now, theompressibility condition for a
fluid is that the divergence of its velocity must beozat every point. Here, the velocity
of the fluid in the Al-dimensional space had\Zomponents that ar,, ..., 4y; P, ...,

P, » and the incompressibility condition is written:

@ Z[aiqqﬁ%n}o

i=1

Now, this equation is obviously satisfied by virtue of Hamilko equations (1).
Liouville’s theorem then results.

Liouville’s theorem shows us that a uniform distributminrepresentative points of
exemplars of the system considered in the extensiphase is maintained indefinitely.
It is easy to comprehend that this will inspire usaketthe elemerndr of the extension-
in-phase as a measure of the probability that the syistéound to be represented by a
representative point that is situateddinat the instant. Nevertheless, that hypothesis
provokes several remarks.

A first remark is that it often happens that the ewofutof a mechanical system
admits some first integrals; i.e., that certain fiord of theq andp remain constant in
the course of that evolution. Therefore, in the usaesle of an isolated system, the
energyH(q, p) remains constant. When there are first integrhés répresentative point
is required to move on certain multiplicities in theéesmsion-in-phase that are less than
2N-dimensional (for example, on &2- 1-dimensional multiplicity, if there is just one
first integral). Therefore, for an isolated systeme, tepresentative point must displace in
the hypersurfacél = E = const., or more precisely, since the energy is yEwaown
only with an uncertaintgE, it is always contained in a very thin layer that kesween
the surfaces#l = E andH =E + dE. It is only the volume elements of that layer thae
could naturally consider to be probability measures.

Another essential remark is that Liouville’s theordoes not permit one to only
prove rigorously that one can take the elem@ntof the extension-in-phase to be a
measure for the probability of the presence of the reptasve point in that element,
although certainly that hypothesis is suggested by the tieor®& order to obtain a
satisfactory justification, one must add a postulate ghanown by the name of the
“ergodic hypothesis.” We state it here st a system that admits energy as its only first
integral be uniform and have an initial energy state that is found betweed E + dE.
The representative point of the system displaces in the extengbase while
remaining in the layer between the hypersurfaces H = E and H = E .+ e then
“assume” that at the end of a sufficiently long time the repregemet point has
“uniformly swept out” all of the layer in questionOne can state this postulate in a form
that is somewhat less strict that is called the “gaagodic hypothesis,” by which one is
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content to affirm that in the course of its displacettbe representative point passes as
close as one desires to any point of the layer in quresti one or the other of these two
hypotheses is exact then the probability for the presénche representative point in an
element of the extension-in-phase is proportional tdrdetion of the very long timé&
during which the system moves in that element. Ondlusequate the means that are
taken over the extension-phase with the means thaaken in time.

Unfortunately, the ergodic or quasi-ergodic hypotheseseataiily not exact. There
exist simple cases, such as that of periodic motianwhich they break down.
Meanwhile, one can assume that these exceptional basesa vanishing probability.
Nevertheless, the ergodic or quasi-ergodic hypotheses ese difficult to justify
rigorously in the classical theory, and it indeed sedsaisanalogous difficulties persist in
quantum theories. Boltzmann introduced a hypothesis of tulale chaos,” which
invokes the random character of perturbations that tii@mof the molecules is subject
to as a result of their continual collisions. Thgpothesis, to which we shall return,
plays a role that is analogous to that of the ergodiothesis. We shall have to return to
that question.

Without stopping at the difficulties that we just podhi@ut, we assume that one can
adopt a measure of the relative probability of theestaf a system that is by represented
by the elementl7 of its extension-in-phase to be the magnitude ofdleahent itself.

4. Entropy and probability. Boltzmann’s relation. — The quantity that was
introduced by the development of classical thermodyrathat is the most characteristic
and the most mysterious in regard to its physical sigmifieas certainly that of entropy,
which is a quantity that always tends to increase umagr spontaneous physical
transformation. The great success of statisticahbdynamics has been to arrive at the
interpretation of entropy as a quantity that measureslélgree of probability of the state
of the body considered. It is, moreover, easy tordete the nature of that functional
relationship between the entropy of a body and the prittlyaddfi its state. Indeed, if one
considers two systems with no mutual interactions wlardeopies ares; and S, then
thermodynamics tells us that the entropy of the @l@ystem that is composed of both
the systems i§ + S . On the other hand, ®; is the probability of a state of the first
system andP, is that of the state of the second system then thigapility of the global
state of the system 1 + 2 is equaP«, , from the theorem of composite probabilities.
Therefore, if the relation between entropy and probghd of the formS = f(P) then one
must have:

(3) f(Py) +f(P2) =f(P1P).

Upon differentiating (3) with respect By , one will have:
f7(P1) =P2 " (P1P),
and then upon differentiating with respecto, one will have:

f'(P]_Pz) + P]_sz”(P]_Pz) =0,
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a relation that takes the form:
f'(x) +xf”(x) =0,

from which one infers, by a double integration, ttfa} = C log x + D. The functional
relationship between entropy and probability is therefore

(4) S=klogP + const.,

which one can write, by conveniently normalizing the pbaliig:

5) S=klog P.

This is the famous Boltzmann formula, and as wefyein order to establish the
agreement with classical thermodynamics, one nmidmptahe numerical value:

k=1.37x 10 erg /°K = 1.37x 1022 J /°K

for the constark, which is called “Boltzmann’s constant.”

How must one evaluate the probabiRyin Boltzmann’s formula? The most natural
definition consists of saying th&tis equal to the number of elementary complexibas t
realize the state of the body that is being comeledivided by the total number of all
possible complexions. However, the latter numisedifficult to evaluate, and its
introduction will add only a constant in the exmies for entropy. One thus agrees to
takeP to be the number of complexions that realize theesconsidered without dividing
by the total number of possible complexions, whahounts to fixing the arbitrary
constant in the entropy in a certain manner, whichown to be adequate.

In accord with Liouville’'s theorem, one thus takhe value oP to be a value that is
proportional to the volume in the extension-in-gh#sat corresponds to the state of the
system. Here again, one can recognize variousholagss.

Consider a system in an energy stateThe hypersurfac& = const. is closed and
limited to a certain volume(E) in the extension-in-phase. One can tdKE) to be the
probability of the statee. A second definition that seems more natural istgof
regarding the energy as being defined only updi and remarking that the
representative point of the system then displaces ilayer that lies between the
hypersurfaceg andE + dE, whose volume is obviousB® / 0E dE, which leads one to
setP =0® / 0E. Finally, a third possible definition starts witte fact that for a given
total energy the distribution of the individual egies over the various constituents of the
system can vary, and that one of these distribsitisnthe most probable one, which
corresponds to a larger domain in the extensigphase that the other one does. One
can then defind® by taking into account the complexions of the lt@aergyE that
correspond to that most probable distribution.

The three definitions d? (and, in turn, of that we just recalled are not equivalent,
and in the case of systems with a small numberegfeks of freedonf)(they can give
very different results. Now, one findsand this is a remarkable circumstarcthat for

() However, in that case, it is doubtful that one can trpéak of the entropy of the bodly.
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the systems with a very large number of degrees ofidmaethat are usually envisioned
by thermodynamics the three definitions are practicadlyivalent for the application of
Boltzmann’s formula, which obviates the need to justif @hoice or the other in that
case. We shall not insist upon the proof of that “isgeity of Boltzmann’'s formula,”
which one can find in a good number of classical works.

5. Temperature and thermal equilibrium. — In classical thermodynamics, one
defines the variation of entropy by the formula:

(6) ds= 99 - dE*dT
T T

whereT is the absolute temperatud? is the quantity of heat received by the bodly,
is the variation of its internal energy, adidis the work that it does on the environment.
If the body does no work then one W= dE/ T. The preceding formulas are valid
only if the transformation is “reversible.”

Since the entropy generally depends upon not just thgyeBebut also some other
parameters (such as the voluméhat is occupied by the body), one concludes from the
preceding relation that one can define the absolute rampe of a body by the formula:

1_
(7) T =

%5

If two bodies 1 and 2 are in contact and can exchange(betnot macroscopic
mechanical work) then the temperatures of the two bodird to equalize, and when
thermal equilibrium is attained, one has:

(2)-(2).
oE ), \OE ),

Consider this question of thermal equilibrium from thewpoint of statistical
mechanics. Since the global system 1 + 2 is assumbd tsolated, its total energy is
constant, but it can be distributed in various ways eetwthe two systems 1 and 2. The
probability of the global state 1 + 2, where the body4 &énerg\e; and the body 2 has
the energye,, is:

(9) P= Pl(El) EPz(Ez) = Pl(El) EPz(E - El) .

The most probable state of the global system 1 +i2gponds to the maximum Bf
which is defined by the relation:

dlogP -0 or (3Iogl31+(3logl32 _0
6] = OE, 0E
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SincedE; = - dE; , one thus has:

dlogh _ dlogF,

(10) dE, JE,

Upon multiplying this byk and introducing Boltzmann’s relation, this becomes

(12) B -5
0E,  OF,

and this equation translates into the equalityheftemperatures of the two bodies at the
moment of equilibrium. One can thus say that grmeperature of body is related to the
probability P, of its most probable state by the relation:

(12) 1 _ along,
KT oE

which corresponds to the third definition of entydyy the Boltzmann formula that was
discussed above.

One can remark that statistical mechanics, whicesgfurther than classical
thermodynamics, can define the entropy of an amntyitstate by the relatio= k log P,
even if that state is not an equilibrium state cdximmal probability. This general
definition of entropy coincides with that of therdymamic entropy for states of maximal
probability. It then provides the value of entrapyclassical thermodynamics, which can
be expressed with the aid of any one of the thedmitions of P that were previously
pointed out for the systems with an enormous nurob@arameters that are envisioned
by classical thermodynamics.

However, Boltzmann’s formula also permits onettalg the fluctuations of the state
of a body around its most probable state. We sitt@thately have to return to the theory
of fluctuations thus obtained.

6. The Boltzmann-Gibbs canonical distribution.— Once more, consider a system
that is composed of the union of two bodies 1 andV2e suppose that they are very
weakly coupled and that they can exchange heatdeetthem. The body 1 can have an
arbitrary (i.e., small or large) number of degreéfreedom, but we essentially suppose
that the body 2 is a “thermostat’i.e., an enormous heat reservoir (i.e., uncootdaa
molecular energy) — in such a fashion that the bbdhas only a completely negligible
chance of taking an appreciable fraction of itsrgme In other words, ifE{™ is the
energy of the thermostat when it is in the equiibr state of maximal probability with
the body 1 then one can assume that for all peiticealizable states the differenEg—
E{™ is always extremely small when compared2. If the probability of the state of

the body 2 id?, then one can always write:
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dlog P\™

(13) logP, = log P{™ + (E-EP) + ...

The hypotheses that were made on the nature ofh#grenostat then permit us to
neglect the unwritten terms, which are of highetteorthanE, —E{™, and upon calling
the absolute temperature of the thermoEtane will have:

() ogP: = 0gPL" +, - (E,~ E")
SO
(15) P2 = F)z(m)e(Ez_Eém))/kT.

However, if EM™ denotes the energy of the body 1 when it is inritsst probable
equilibrium state with the thermostat then one tallre:

E,-EM™=E™-F,

by the conservation of energy. Since we have asguhat the interaction of the body 1
with the thermostat is weak, the probability of 8tate in which the thermostat has the
energyE, and the body 1 has the enekyis:

(16) P = Py(E1) CPA(E>) = Py(Er) OR™eS" 9/,
The preceding formula can be further written ia tbrm:
a7 P = P(E;) &F &)/,

whereP(E,) is the total number of configurations of the bddghat have enerdy; when
one imposes no constraint on it regarding the tbetat (e.g., aa priori probability).

We have thus obtained the Gibbs “canonical distidn law,” which seems to be
valid for a system in thermal contact with a thestabthat fixes the temperature.

The constanF that appears in this canonical distribution lawatculated by writing
that:

(18) 2 P(E) e =1,

in which the sum is taken over all possible stabésthe body, which forms a
discontinuous sequence, by hypothesis (if the semués continuous then one replaces

the summationz with an integral oveE). From the preceding equation, one infers

that:
(19) e—F/kT — z P(E) e—E/kT — Z,

SO
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(20) F=-kTlog Z

The sum (or integralf that is defined by the right-hand side of (19) was calted t
“state sum” by Planck. It plays an essential role ie talculations of statistical
thermodynamics.

We remark that the body 1 can be composed of just otecute. It results from this
that the notion of temperature is meaningful for just enolecule when that molecule is
found to be in energetic contact with a thermostateofperatureT that imposesits
temperature upon the molecule.

7. Important remarks on the subject of the canonical disibution law. — In
chapter IV of his famous worklementary Principles of statistical Mechani®illard
Gibbs wrote the canonical distribution law in the form

(21) pP=e¥ ™,

which amounts to settingT = & and P(Ey) €/ ¢ = €*/ ? in formula (17). He then
introduced what he called “the probability exponemtiy setting:

(22) n=logP, P=¢€

and then he showed that has — up to an additive constant — the property of
thermodynamic entropy for the bodwith the sign changef). One can then write:

(23) n=- %+ const., P=¢€7=const.e¥*

Now, the- sign in the exponent of the last formula can be ssingibecause it seems
to be in opposition with the Boltzmann formula (beeose will have a tendency to
write P = const. €"%'%), This can give rise to some confusion that has siceally
appeared in very serious works. It is this sign change dkplains some apparent
anomalies that | will discuss later on.

Meanwhile, the sign change that we just pointed oeasy to explain, because the
formula P(E) = P(E;) OP(E>) that we started with giveB = const. €%'*, from the
Boltzmann formula when it is applied to the thermastdowever, if the body 1 and the
thermostat form, by hypothesis, a system that isiedlfrom all external action where
the exchanges of energy between the two constitaeatprocesses that are assumed to
be reversible then there must be conservation af ¢éoitropy, which gives:

S +S=85"+ 3" =const.,

() One must suppose that the body 1 has a number of degrfeesdaim that is very large in order for
one to be able to attribute entropy to it.
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and, in turnP = const.e*'¥, which is indeed in accord with the Gibbs formula (23).
The preceding remark will play an important role in tbasiderations that we will
ultimately develop on the analogy between action anadpytrWe shall add some other
remarks there.
For the system that is composed of the body 1 anchdrenbstat in weak energetic
contact, we have found thBt= P; x P, , with:

(24) Py~ PME" I

in which P, is equal toe®'*, from Boltzmann’s formula. Formula (24) gives us only an
approximate value, because in order to obtain it we hagécied the terms of higher

order inE; - E{™. We can set:

(25) P, = gF /KT P= P, gf BV

and we recover the canonical distribution law.
If the body 1 is complex and possesses a large nurhdegees of freedom then one
has, by the definition of the state sdm

(26) Z= ZR(E') gE/K = g FIKT

so, since the probability of the most probableest#t1 isin this caseinfinitely larger
than that of all the other possible states:

(27) P(m)eE{m)/kT ~ g F/T
1 .

Since one can then introduce the notion of entfopyhe body 1 with no difficulty,
one infers the relatio®™ = e¥"/*" from this and Boltzmann’s formula, in such a way

that formula (25) gives us:
(28) F=E™-TS".

Therefore, for a body that has a very large nunolbelegrees of freedom and is kept
at the temperatur€, F is the free energy of classical thermodynamiceweler, if one
substitutes the valué = E; — TS into the second formula (25) then one finds that
e *'¥Twhich seems to be in contradiction with Boltzmanformula. This is the
difficulty that we have already encountered abarel which we resolved by remarking
thatS, + S, = const., in such a way that one recovers BoltzrisaformulaP ~ €*'*" for
P2, which is satisfactory.

The proportionality of the exponent in the expdigrn the canonical law fo® and
— S is valid for any sort of body 1. However, in ttese where the body 1 possesses a
large number of degrees of freedom, we have:
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(m) m)
(29) P= P, e k= @S9 k= 8T8k = gSalk

sinceP; is then equal te@*'¥, from Boltzmann’s formula, in whicB, is the entropy of
the state of maximal probability for the system 1 +e2ehso we have:

(30) P=p™m,

This can say that for the system 1 + 2 the state ofmabprobability is the only one that
is realized in practice, which is satisfactory, when @ngiven the hypothesis that the
body 1 is very complex.

8. Applications of the canonical distribution law.— First, consider the case in
which the body 1 is a very complex body that is definedabyery large number of
parameters (for example, the set of molecules in a gd& have shown above that in
this caseF is equal toE — TS and coincides with the thermodynamic potential oe fre
energy of the body. We then envision the opposite edere the body 1 is defined by a
small number of parameters. The canonical distribu@nis always valid, buE no
longer represents free energy.

For example, consider a gas molecule. It is defined $iyall number of parameters,
but, since one can consider it as being in energetic domith a thermostat that
composed of the set of all other molecules of the wh&h is assumed to be in thermal
equilibrium, one can apply the canonical distributiam Ito it. Now, thea priori
probability for the coordinates and momenta of that mudée to have values that are
found in the intervak — x+dx ..., px - pPx + dpcis, from Liouville’s theorem, equal to
the element:

dr = dx dy dz dpdp, dp,

of the extension-in-phase for the molecule.

From the canonical distribution law, the probabilir fthe molecule, which is
considered to be in contact with the rest of the gas fivans a thermostat at the
temperaturd, to have its representative point in the elentamif its extension-in-phase
is C e¥¥dr. It then results that the number of gas moleculeese coordinates lie
betweernx andx + dx, ..., and whose Lagrange momenta lie betwgen px + dpx, ...
is:

(31) dn=Ce ™" dx dy dz dpdp, dp, = C nf € ¥*" dx dy dz dvdy, dw,
E= - (pl+ pl+ ).
2m Y ‘

The constan€ is determined by writing tha{tdn =N, whereN is the total number of
gas molecules. Formula (31) constitutes the celebfatedor the velocity distribution
between the molecules of a gas, and is due to Maxwell.

Since one can unite the elemedps dp, dp. in the extension-in-momenta that form a
spherical shell between the spheres:
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2
=E and M =E+ dE,
2m 2m

a shell whose volume is equal to:

amrp? dp = 2r(2m)*? JE dE,

one finds that the number of gas molecules per unimwelwhose energy lies betwen
andE + dEis:

(32) dre =C €T JE dE.

If the gas is found to be placed in a force field tles @n the molecules then one
must take the potential energy into account in the egnedorE. For example, if the
gas is placed in a gravitational field then one will have

2
E:i +mgz
2m

(z being the altitude of the molecule), and if one intexgdlhe expression fain overdp
dp, dp. then one will find that the gas density varies witlitade likee ™% *T. This is
Laplace’s famous “barometric law,” which is applicatdenot only the molecules of gas,
but also to the grains of an emulsion in suspensianliquid. It was by applying that

law in the latter case that Jean Perrin determinedah® of Avogadro’s number\( =
6.06x 107 in his celebrated experiments a half-century ago.

To once more show the importance of a remark that made in the preceding
paragraph, consider tff& molecule of a gas. If it is in contact with the emble of a gas
that forms a thermostat at the temperafiutieen it will have a probabilitf = C e ®*"dr
of having its representative point in the eleménbf the extension-in-phase. If it is
permissible to attribute an entrofiyto it then that will be given by formula (23) §s= -
klog P. Even if the introduction of the entrof8y/for a molecule seems debatable, one
will undoubtedly admit more easily that the entropythef ensemble of gas molecules is
given from thermodynamics by the mean valu§ofi.e., that:

(33) S=S :—kZPIogP.

SinceP is a continuous function of the canonical variablges.., p, here, one can
write:

(34) s:—kjﬂogfdr.

This is a classical formula of Boltzmann in the kiodtieory of gases. However, if we

set§ =klog P, in line with Boltzmann’s relation, then we would fiftht S= k,[f log f
dr, with a difference of sign.



Notion from statistical thermodynamics 33

With the aid of the preceding formulas, we can edsily expressions for all of the
guantities that characterize perfect gases. We coatestlves by noting that one can
thus recover the law of Mariotte-Gay-Lussac in threnfo

(35) pV = NKT,

whereN is the number of gas molecules that occupy the veMiat the temperaturE at
the pressurgp. Upon applying that formulas to a gram-molecule of a perdas for

which the numbeN of molecules is equal to Avogadro’s numbBérone can write:
(36) pV=RT,

upon settingR = kA, whereR is the “gas constant” that relates to a gram-molearid

whose well-known experimental valueRs= 8.3x 10’ ergs /°K. One infers from this
that:

R _ 8310 o0y gt

(37) K=V " 5.06< 15

and this is indeed the value of Boltzmann’s condfaat we have previously stated.

9. The equipartition of energy theorem.— In classical mechanics, the Lagrange
momenta appear in the expression for the energypaofint-like molecule by way of their
squares. If a material point is referred to atpmsiof equilibrium that is taken to be the
origin of the coordinates for a force that is prdjpmal to the elongation then the
coordinates and momenta both appear by way of geiares in the expression for
energy:

E= (Pl P+ P+ (% ¥ 2).
m 2

In a general fashion, one says that a canonic&bia is a “momentoid” if it enters
into the expression for energy by way of its squar€he simplest example of a
momentoid is a Lagrange momentum for a free partiahd the name “momentoid”
comes from that fact.

The equipartition of energy theorem can then laedt by sayingif one of the
canonical variables of a system is a momentoid when the systethesnral equilibrium
at the temperature T then the corresponding term in its energy siprdsas the mean
value $kT. Thus, the energy divides into means that are the same for albthentoids,
and if all of the variables are momentoids then it divides equally ieemmover all the
degrees of freedomtHence, one has the name of the theorem.

We suppose, for example, that the variahles a momentoid, and prove the theorem
for that variable. The energy of the system ithefform:

E= aqi +f(Q1, ---,Qk—l,Qk+1, "'1pll "'!pN)'
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The mean value of the terong’ in thermal equilibrium at the temperatdravill be:

— ¢ - [aqg e e dg... dp
(38) ag; = J;ZJN J Fa%l /KT S Tk 4 d '
LNn-je e g... dp

Upon dividing the top and bottom by the factor:

—f /KT
CLN_lmje dq... dg_, dg... dp,
and upon setting = ‘/%qk, one finds that:

— “u2e du
(39) agql =kT —'[ ¢ =
IO e du

KT.

N

Q. E.D.

Naturally, the same proof applies to a momentdiyme px .

In classical statistical mechanics, it often haygpthat all of the canonical variables
are momentoids, and there is then equipartitioarergy between all of the degrees of
freedom. The equipartition of energy theorem hiaergstatistical mechanics a large
number of exact results, but it has also led toy \ggnificant failures that made the
introduction of quanta into physics necessary. ah&ll not elaborate upon these well-
known points here.

10. Relativistic statistical mechanics- As we have seen, relativistic mechanics can
be developed by starting with a stationary actioimgiple, and one concludes with
canonical Hamilton equations of the usual type:

= a_H p = —a_H
op, ‘ g,

(40) e

This then permits the introduction of the extensimphase and the proof of
Liouville’s theorem, which is a consequence of Hamis equations. One can also
introduce Boltzmann’s relation between entropy prabability, and choose one or the
other of the three definitions that were envision@éviously for the numbeP of
complexions that correspond to a given energy .state

Nothing will change in the definition of temperaguor in the canonical distribution
that gives the probability of the states of a syste contact with a thermostat, or in the
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identification of the quantity with free energy when that system has a large nuoiber
degrees of freedom.
All of the preceding conclusions that were obtained tbusain valid as long as one

does not introduce an explicit expression for the Laggamnction, the momentgok

that are deduced from it, and the Hamiltonian functiam ¢fives the energy as a function
of the g« andpx . However, things are different in the applicationserehone does
introduce expressions for the momepiar the Hamiltonian function. We shall give an
example by recalling the case of Maxwell's law.

Upon considering a gas molecule to be in contact avittlermostat that is composed
of the rest of the gas, the canonical distribution keads us to following expression for
the number of molecules in the elemdntf the extension-in-phase where the figurative
point is:

dn=Ce®'¥dr.

That formula remains valid, but since we no longeeha

2
m# =2
2m

E=

N

here, we can no longer infer formula (32) for the epeligtribution.
Indeed, here we have the following relations for theggnand quantity of motion:

(41) W= m,¢ , p= m,ch , WP =p® & + mic’.
V1-p5° N
We can then replade with W in the expression fadn, sinceW = E + my ¢, and that
replacement oE with W only amounts to modifying the consta@t Moreover, a
variationdW of W corresponds to a variati@p of p such that:

W dW= pc dp.

Therefore, a spherical shell in the extensionhage has the volume:

2
4;7‘(’:—‘2’ %—nﬁcz dw.

As a result, the number of molecules per unit F@uwhose total energW lies
betweenW andW + dW will be:

2
(42) dny = Ce"'*T W, /\%— g é dw.
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If all of the molecules (except for a very small raar) have a velocity that is much
less thanc (which is usually the case for all gaseous materialsh thne can recover
formula (32) in the following fashion: If we set:

W=E +m ¢ and _E . n
m,¢
then we will havaV = my ¢ (1 +7), and we can write:
(43) dnw= conste ¥ (1 +n)/(2+n)y dn,

a form for (42) that shows that one indeed recovers utarn{@32) in the Newtonian
approximation, where one hgs< 1.

11. Application to a photon gas— Consider the opposite case to the Newtonian
approximation, in which almost all of the gas moleculeslavelocity that is very close
to c. That is what happens at any temperature when the pneges of the molecules
tends to zero. This case can be compared to that & béaty radiation, because black-
body radiation can be considered to be a photon gasewl®tons have a proper mass
of zero or possibly just extraordinarily small. Sinene will then havaV > my ¢ for
almost all of the molecules, one will find, from (4&)at:

(44) dny=C e"'*T W dw,
For photons, one séi§ = hv, and one will find:
(45) o, dv=hv dn = conste ™' ¥T\? dv

for the energy density of a photon gas that correspntlte frequency interval — v +

dv. Now, this form for the spectral density is the dmat Wien had proposed long ago,

and which is, in fact, valid only for large values of theotientv/ T. The Wien spectral

law is therefore the form that Maxwell's law takew fa gas whose molecules have

vanishing proper mass, as | have pointed out in an amidleurnal de Physiqua 1922.
However, in fact, the true spectral density of blackyboadiation is given by

Planck’s law:

(45, big) o) dv= MV

2 éw/kT_ldV
It was the introduction of quanta and the transfations that they are subject to into
statistical mechanics that explained the differebeéwveen the real Planck law and
Wien’s law. We shall not dwell upon this well-knowuestion.
It is curious to note what happens for the distidn of velocitiesin the case of

molecules of vanishing proper mass. Siie= myc® / /1~ 5%, in order for such a
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molecule to have an appreciable energy, it is necesbat its velocity be extremely
close toc. ThereforeW remains essentially zero when the velocity incre&sas O toc

— & Wincreases from an extremely small value to infimtyenv increases froms — £ to

c. Therefore, the law of distribution of energies (f4@serves a bell shape that is
analogous to the classical Maxwell law, while the lalndstribution of velocities is
represented by a curve with a spike in the immediatghberhood o =c. That is what

is illustrated in Figure 3.

Figure 3.

Whenmy tends to zero, the entire curve of the velocity digtion tends to squeeze
up against the vertical line= ¢, in a sense.

12. Mean value ofpx ¢, in relativistic statistical mechanics.— In relativistic

statistical mechanics, one can no longer prove the atjtiggaof kinetic energy over the
degrees of freedom, because then the kinetic enerypg ohaterial point:

1
Eo:m)CZL —1}: pPP+nfcd —m
Ve A

is no longer a quadratic form in thpg . However, we shall show that in relativistic
statistical mechanics, one has:

(46) PG =KT.
Indeed, one can write:

ow W/ KT
o S WIKT ol P € dq... dp,
47 Ba = J'ZN jpkq_kwe/kT dq... dp _ LN I ka?\'jWkT
J'ZNn-je dq... dg, J.ZN~--J'e dq... dp,

from Hamilton’s equations, and singéalways tends to infinity at the same timepas
an integration by parts easily provides formula (46).
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That formula, which is valid in relativistic statisti mechanics in a general fashion,
gives the formula’j:

(48) E, = 4NKT,

in the Newtonian approximation, wher&2= Z P, , and this formula reduces to the
k

classical expression for the equipartition of enebgy,in relativistic dynamics:
2B % Y PG, -
k

One must remark that formula (48) is valid only in the pragyestem of the body
considered, in such a way that it is preferable toewtriin the form:

(49) Pt =KTo,

in which the index 0 says that the quantities are evaluatie proper system.
For a molecule, one can always (even in relatoristeory) write:

1< .
(50) EZ Pok %ok = %kTO J
k=1
and since:
¢ 3
Poi = with =Y,
V k=1
o
one gets:
(51) 1my 3KT, .
2 [ 2
e

In relativistic dynamics, the quantity under theelof the mean in (51), which we
shall call the “pseudo-kinetic energy,” is not daiwathe kinetic energy. It only agrees
with it in the Newtonian approximation, and formulal) gives back the classical
expression for the equipartition of energy. Wellsbanfirm that the pseudo-kinetic
energy plays an important role in relativistic thedynamics.

*) In order to avoid any confusion with temperature, hexeshall denote the kinetic energyhy.
y p



CHAPTER IV

NOTIONS FROM RELATIVISTIC THERMODYNAMICS

1. Relativistic invariance of entropy.— The Hamiltonian action is the fundamental
invariant of mechanics. We shall now see that thabpy is the fundamental invariant
of thermodynamics. In order to understand the invacharacter of entropy, it suffices
to recall that, according to Boltzmann, the entropy ofeeroscopic state is proportional
to the logarithm of the number of complexions that reatihat state. Entropy is therefore
expressed by aumberwhose invariance seems obvious. In order to confirm that
intuition, we remark that, on the one hand, the d&fimiof entropy by Boltzmann’s
formula involves annteger number of complexions and that, on the other hand, the
transformation of entropy under a change of Galilederence system must be expressed
by a continuousfunction of the relative velocity of the referencgstems. It then
necessarily results that this continuous function rsstant and equal to unity (since it is
equal to 1 when the reference systems coincide), amernt follows that entropy is an
invariant.

One can also reason in a different way: Considesdy Ihat passes from a state of
rest in a reference system 1 to a state of motidh avivelocityv by being accelerated
adiabatically and with constant pressure by a body ihdmmobile in the system
considered. The set of two bodies evolves adiabBtidts entropy is constant, and since
the body that produces the acceleration keeps constmopgnthe same is true for the
accelerated body. Therefol®, = S , where the indices 1 and 2 refer to the initial and
final state of the accelerated body, respectively.wNlet a system that is originally
coupled to the accelerated body be put into a state farommotion. The state 2 that
refers to that system is identical with the statéat tefers to the original system. One
thus hasS, = S, and as a resul§, = S, a formula that expresses the invariance of

entropy.

2. Relativistic variance of temperature.— Deducing the relativistic variance of
temperature demands some very delicate reasoning. Wegslalthe argument that
seems the most instructive.

Consider a body that is found in a state of thermodynamic equilibriutthvan
absolute temperatuii® , and which possesses an invariant volMynehen envisioned in
a Galilean reference systdRg that is linked to it. This can be, for example, athas is
enclosed in a rigid container of volurivg at the temperaturé, . Let Mg be the total
proper mass of the body

We now place ourselves in a Galilean reference systegne the bod{C possesses a
velocity v = S of uniform translation, and suppose that in this referesyséem a heat
source provides the quantity of h&atto C. We shall show the essential point that in
order for the bod{ to conserve its velocitygc, a certain amount of work must be done
on it at the same time as the quantity of ligat
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Indeed, since the body keeps the velogty by hypothesis, its energy, which is
M,c?

J1-3
A only if its proper mass varies and passes frormitigl valueMy to a final valueMg +
AMp . In other words, the heat and work that is disdrby the bod¥ in motion will
have increased its internal energy, which must nikproper mass increase, from the
principle of inertia for energy.

The principle of conservation of energy permitgaisrite:

, can increase as a result of receiving a quaotiheatQ and a quantity of work

AM ¢

& Ny

If F denotes the force that has been exerted on the ®anl order to communicate
the workA in the reference systeRithen the derivative of the quantity of motion with
respect time must be equalRat each instant, which gives:

=Q+A.

(Mg +AM v My
J1-82 1-p°

=[Fdt=1[Fvat=2,
V V

(2)

sincev is constant, by hypothesis, aAd:f F v dt One thus has:

(3) ﬂvz =A

and one sees that the work done on the body ipitheess envisioned is equal to the
2

increase in the pseudo-vis vi AMov (viz., twice the pseudo-kinetic energy). Finally,

1- 3
upon comparing (3) and (1), we obtain:
__F
(4) A= 1550,
o)
(5) Q=AMo? J1- B =-AL,

AL being the variation of the Lagrange function of tiody in the process envisioned

that is due to the variation of the proper maskeré&fore, as we have stated, in order for
the body to preserve the constant veloeity [c in the reference systeR when it
receives the quantity of he@ it is necessary that this input of heat be cotepldy an
input of workA that is given by (4). In that relation, we eagilfer, moreover, that:
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©) ao=F =2

c* \1-5%

One sees that all of these considerations finallyrdest¢he principle of the energy of
inertia, which permits one to envision variations of th@ppr mass of a body that result
from the variation of its internal energy.

Now, return to the reference systétyn. Since the body keeps an invariant form
there, no work is done in this system during the processiened. Seen in that system,
the operation that is performed must therefore coasisjuely in the input of a quantity
of heatQo to the bodyC, such that:

Q. 1 Q

> AMO =
c ,ll_ﬁz c

During the passage froRy to R, the quantity of heat transforms according to the law
(8) Q=Quy1-4,

and since the entrogy= j ? IS invariant, it then results that the absolutegerature

(7)

of the body must transform according to the law:

(9) T=To1-5.

This is the fundamental formula that gives the sfarmation of temperature when one
passes fronk, to R.
We further remark that the important formula (8 de obtained in the following

3

fashion: We start with the definition of enengy:z pq - £, when applied to the body
i=1

C in its translational motion. Since tlig are constant, we have:

3
(10) dw= > gdp - d..
i=1
Now:
3 3
(11) Y Ggdp= > pdg =dA
i=1 i=1

becausep =fi, sodW = dA —dZ, and upon integrating this over the entire process
imagined, one gets:
(12) AW=A-AL.
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SinceAW = A + Q, from the conservation of energy, one has:

(13) Q=-AL.
One then infers that:
(14) AS:Q:—A_£ or lz—El
T T T oL

3. Extension to the case where the volume of the bo@ywaries.— We shall repeat
the preceding reasoning while supposing that the volumeeobddyC varies. We
appeal to the fact that in the relativistic theoryetdsticity the pressure in an isotropic
body is an invariant, in such a way that we carpsepy .

We place ourselves in the reference syskemWhile the velocity of the bod¢
remains constant, one provides it with a quantity of Reahd workA while its volume
varies byAV. The bodyC is assumed to be isotropic, and its internal pressugqual to
p. The conservation of energy permits us to write:

_ MM

J1- 32

and since one always has the relation (3), whigtased as before, one easily finds that:

(15) AW =Q+A-pAV,

_ Q- pAVv
(16) A_l_—ﬁzﬁ?.

One deduces from (15) and (16) that:

(17) AM, = Q- EAV !

N

On the other hand, in the reference syskgsmwhereA = 0, one has:

(18) AC‘ZV =AM = 2~ PAY _CE’OAV(’ ,

and comparing this with (17) gives:
(19) Q-pAV=(Q—-poAV)y1-5°.

Moreover, upon substituting (16) into (15), onésge
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(20) AW = Q-pAV_ TAS- mV’

1-5° 1- 52

whereas, in the systeRy , one gets:

(21) Mp =ToAS —po AV .
We then find that:
(22) (GWJ _ T _ (awoj T,
os ), 1-p5 0S vy

and sincedS = dS§ and dW = v , one comes back to formula (9) for the

1-5°

transformation of temperature.

4. The *“inverse of temperature” quadri-vector. — Various authors — notably,
Tolman and Eckart, van Dantzig and Bergmann — haeposed giving a tensorial
variance to temperature by considering the invefdbe temperature to be the temporal
component of a quadri-vector whose spatial comptsnagill be zero in the proper system
of the body. One will indeed then have:

1 1
T T1-5°
in accord with formula (9).

For example, one can define a quadri-veBton spacetime by:

(23)

(24) 6'=—,

whereU ' is the “world velocity” of the proper system ofthodyC, because then one
will indeed haved* = 1 /T.

In my opinion, despite the elegance of that regmmegion, its exactitude remains
doubtful, since one can hardly see what the physease would be of the spatial
components of the quadri-vect@r One can make the same representation for the
volume of a body that transforms according to:

V=V, |1- B

from the Lorentz contraction, like temperature.e@asts:
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;U 1
== o) 4=
g V, d V

However, the physical sense of the componéntst 2, and& > does not appear to be
obvious, and it is doubtful whether such a representatiotheo Lorentz contraction
means anything. This can lead to distrust of the repremeni{@4), and one contents
oneself with the transformation law (9).

5. Refinement and extension of the formul® = - AL. — We proved formula (13)

by supposing that the velocity of the badyemains constant. We shall free ourselves of
that hypothesis and show that one can always writexpeession for the quantity of heat
that is provided to a body whose proper mass varies as:

(25) xN=-3, L,

where 9,, £ represents the variation that the Lagrange functidhebody is subject to

when its proper mass variashile all of the other variables tha depends upon remain

constant. That extension of formula (13) will play an impottaale in the rest of our
presentation.
First, take the case of the motion of a body in tbeeace of an external field, for

which we can set. = - Moc®+/1- 5%, and recall the proof in paragraph 2, but without
assuming that the velocity is constant. One has:

Mo _ M MBI

26 WN=0 =

(26) W W (1_'32)3/2
and

27) FVd =aa=o—_

_ OMyV° L Moy M, V'3 B
J-5 1-p @-pB)"*

One infers from this that:

oM, (c® - V°) B Movév+ M,BIB( ¢ - V)
JI-8 J1-p2 @-p2)
= d\/loCZ\ll—ﬁz .
One thus has:

(29) R =IN-A=Mc*1-5 ==, L,

(28) N — A =
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even when the velocity varies.

We now pass on to the more general case of a bogar{mle, for example) that
possesses an electric chaggnd displaces in an electromagnetic field that imdefiby
the potentialy/ andA. We then have:

(30) W=

Introduce the quantity:

(31) F=

MoV YN :L MoV +£A}EV=|OD/.

J1-p2 ¢ J1-p> ¢

This quantity, which reduces to the pseudo-visavier A = 0, is the natural
generalization foA # 0. Finally, we have:

(32) L = Mo?\[1- 3 —£V+%A o/
here.

We then see that:
(33) W=F-L,

and we deduce from this, while compensating fotéhms inA, that:

2
(34) SN = aF — o = 5 € —+ MoC?Iy1- B2 + £ N + MoCP1- 32 .
1-B

One easily verifies that it is equivalent to write

2
(35) =M+ e+ MYy e -5

The first two terms in the right-hand side of (8&present the work that is done on
the body whose proper mass remains constant, wWele¢hird term represents the work
done on it that corresponds to the increase ipribper mass. In summation, the first
three terms in question thus represent the totak wmat is done on the body during a
time interval&. Since we must always have:

N=A+XQ,

we must have that the last term in the right-hadd ef (35) is equal t@Q, which indeed
gives us formula (25) again.



CHAPTER V

ANALOGIES BETWEEN MECHANICAL QUANTITIES
AND THERMODYNAMIC QUANTITIES

(Helmholtz's theory and Boltzmann’s formula for periodic sysems)

1. Generalities. — In the foregoing, we have summarized the well-known
interpretation of thermodynamic quantities with the aidstatistical mechanics, an
interpretation in which both the laws of mechanics amddbncepts of the calculus of
probabilities intervene simultaneously. The successhaff interpretation, which is,
above all, due to the magnificent work of Boltzmann &ildbs, has made some forget
some other attempts that were made in the same era loyhélz and Boltzmann
himself, attempts in which one tries to recover certaoncepts and laws of
thermodynamics with the aid of only mechanical constaera without introducing any
probabilistic ideas. Since the first law of thermodyies, in which one assumes that
heat is an energy of molecular agitation, immedyjatemes down to the mechanical
theorem of the conservation of energy, it is esabiytihe interpretation of the second
law of thermodynamics and the notion of entropy thad related to it that forms the
object of the theories of Helmholtz and Boltzmann andibject.

These attempts at mechanical, but not statisticalaeapons of the second law of
thermodynamics remain incomplete, and lead one to slye very fragmentary results
that apply to only some specialized models. The suafede statistical interpretation
of thermodynamics has had the result of making peopledalbethem, and, due in part to
the work of Ehrenfest on adiabatic invariance, they dosaem to have been the object
of any new research for some sixty years. Theyaretheless interesting, and it might
be that there is something very profound that is hidden behadnalogies that they
reveal.

2. Helmholtz's theory. Helmholtz started with some very general consideration
regarding a mechanical system that is defined by Lagranggblesqg . He supposed
that this system is subject to internal forces that derived from a potentidl and

external forces whose work done on the coordigaie denoted by4; dg . One will

always denote the absolute temperatur@ hgre and the kinetic energy By, .
The Lagrange equations for the system are written:

(1) i[a—.‘j—a—ﬁ A
dtl aq ) dq

and Helmholtz, who wrote long before the birth of theary of relativity, utilized the
classical definition of the Lagrange function:
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(2) L =Eyin—U,

Exin being a function of thg; and ¢ that is homogeneously quadratic in tpe

Helmholtz then introduced the fundamental hypothesisttieaparameterg divide
into two categories: The one consistgygthat vary quite slowly, and the other consists
of qp that vary quite rapidly. This hypothesis is certaisiiyggested by the molecular
conception of matter, in which tleg would be, for example, the coordinates of the gas
molecules and thg, would be the infinitely slower variables that deterntine external
configuration of the system.

Moreover, Helmholtz further assumed that the poterti@rgylU depends only upon
the g, and that the coordinateg enter in only by way of their derivative§ in the

expression foEy, and therefore. This permits one to write:

oL d(aL
3 — =0, —|—|=p, =Ap.
() 3G, dt[aq)j B =4
for anyqp .
By definition, the elementary work done on the coorndigawill be:

(@) dQu = Ay dgy = P, 0t = 6,dn.

As for the parameters, , since they are, by hypothesis, slowly-varying, their
contributions to the terms oh/ dt can be neglected, and one will have:

) dfoc) o L9,
dt| g, 0d,

To commence, Helmholtz then considered systems thaalledl “monocyclic,” for
which there is only one parametgy that varies rapidly, and he proved the following
curious resultFor a monocyclic system, for which one can set@, the quotient dQ
Exin is an exact differential.

Indeed, ley be the unique parameter of the system that variedyapie havedQ =
gdp, and as a result:

— = 2d (log p).
2 P9

Now, in classical mechanics one has:

0E,,
7 2 in: ﬁ.'a
(7) = Zaq 9

becausdin is a homogeneously-quadratic functioncpf Now, only the coordinatg is
rapidly-varying, in such a way that:
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aEkin N — -
4= pdq,

8 2Ein =
(8) Ex 2

and as a result:
9)

This is Helmholtz’s theorem.

However,dQ, which is the work done by the rapidly-varying paramaseanalogous
to the energy that is provided to a gas molecule andtluas be assimilated into a
guantity of elementary heat. Upon defining the absolutepéeatureT as being
proportional to the kinetic energy, one can set:

aQ = 2d (log p) = exact diff.

kin

dQ _
(10) T =dS

and that relation reverts to the definition of eptrdn thermodynamics. Moreover,
Helmholtz's theory remains valid in relativistic thepsynce then it is} pg that one must

consider to be proportional to the temperature, in sualay that the relation (6) again
leads to the formula (10).

However, the case of monocyclic systems is too apeed, and there is good reason
to consider the case of polycyclic systems that irev@lveral rapidly-varying variables
0o - Whether the system is monocyclic or polycyclisle must, moreover, with
Helmholtz, distinguish the “complete systems” frdma tincomplete systems,” the latter

being the ones for which the work, dag, that corresponds to the variation of at least one

of the slowly-varying parametecs is zero. Lei. be the slowly-varying parameters that
enjoy that property. One has:

oL _

(11) %

for qc.

Since, by hypothesig; does not depend upon thgeand theq, are negligible, the
relations (11) couple thgy, the ¢,, and theg. . Since there are just as many relations as
there arey. , they provide an expression for the latter as funstafrtheg. and ¢,. One
can thus eliminate thg and define the state of the system as a functioreaftiind ¢, .

Now, let £’ be the expression fa when one expresses it with the aid of onlydhe
and ¢,. From (11), one has:

oL _ oL +Z 0L dq, _ oL
0q, 0q, 4£0q.0q, dq
a'C’:a_)c-}- a_ﬁai:a_ﬁ

3G, 04, <0q.00 00,

(12)
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One must then have

(13) - ai = .Aa
0q,

for the slowly-varying parametegs and:
d({ol d(aL .
” a3 8(5).

for theqy, and one recovers, after eliminating the
(15) dQ, = g,dp, -

All of the equations keep the same form for the inglete systems as they have for
complete systems. In particular, one always hasd@Qd Eyi, is an exact differential for
monocyclic systems, even incomplete ones.

Nevertheless, Helmholtz insisted upon the fact thatiticomplete systems differ
from the complete systems on one important point: Kimetic energy is, in the
Newtonian approximation, a homogeneous, quadratic functionthef ¢ whose

coefficients can depend upon the, but when one replaces theas functions of the,
and theg,, the kinetic energy can cease to be quadratic irgthend can even be of odd

degree in theqg,, and therefore of odd degree with respect time, a cstame that is

important because the reversibility with respect itoetthen disappears. This case
presents itself, for example, for a rotator that is &etbwith a governor: The energy of
the rotator is not proportional to the square of the amngudlocity, because its moment of
inertia varies with the velocity. Helmholtz soughirtter an interpretation of irreversible
thermodynamics from this fact, but Henri Poincaré, wizal presented Helmholtz's
theory on another occasion in the last chapter ofrb&ise on thermodynamics, gave an
argument to prove that one does not really arrivenagxglanation for the existence of
irreversibility.

For Helmholtz, they, correspond to visible molecular motions. As theary, the
energy of the system varies by:

dE=) Adq +> Adg,.
a b

Now, the first term is the work that is done on #Hystem that corresponds to the
visible motions, while:

gAbdq) =>.dQ, =dQ

is the total energy that is provided by the motion ofrtizdecules, and thus, the heat that
is received by the system. One thus has:
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(16) dQ=dE+d7,

wheredT7 is the workdone bythe systenon the environment, and this is an expression of

the first law of thermodynamics, translated into #guivalence of heat and work.
Moreover, since we have found tha@ / Exn is an exact differential for monocyclic
systems, we have — at least, in this case — recoveeetivb fundamental principles of
thermodynamics that are valid for reversible transagions.

It is obvious that the results of Helmholtz, thougheriasting, are quite restrictive,
since they apply only to monocyclic systems. Morepwath Helmholtz, we have
assumed that the potential energy does not depend upoapitiyvarying parameters
0o : This hypothesis is exact for perfect gases, whoseaut@s all have no mutual
interactions, but it is no longer true for real gased, a fortiori, for liquids and solids.
We shall verify later on that Boltzmann, inspired byrHlebltz's theory, generalized it to
the polycyclic systems whose potential energy depends gpome rapidly-varying
parameters), , but he was obliged to assume that that these systesperiodic and to
introduce means taken with respect to time over a ¢gherianotion. In conclusion, we
note that the notion of probability is not introducet ithe Helmholtz theory anywhere.

3. The canonical schema for thermodynamics, after Helmholtz Independently
of the interesting, but insufficient, considerationstthwe just recalled, Helmholtz
proposed a curious “canonical schema” for thermodynamics

Start with the classical relation:

(17) dE=dQ-pdV=TdS-pdvV=TdS+ > Adq,

and, with Helmholtz, introduce a varialdsuch that, by definition, the temperature is the
“velocity” £ that corresponds to that variable. We then set:

(18) £ = d—f =T.

If £denotes the generalized force that correspondsien one will have:
(19) dE=E ds—pdV=¢€ £ dt—p dV,

s0, by indentifying this witis= 35+ PdV.

(20) £é&dt=Tds

and taking (18) into account, we get:



Mechanical and thermodynamics quantities 51

(21) £=S.

We suppose that is a variable of the type called “cyclic;” i.e., suttfat £ does not
depend upom (sodL / de=0).

Now, envision an extremely slow reversible processwibich V. = 0; we have
dL/0V = 0, and the Lagrange equations for the variablsdV are:

oL d(oL

22 -—=-p, —|—| =
@ o %)
which gives us:

oL oL :
23 =—, — =p: =) Edt=|Sdt=
(23) p=- - =p =] edt=[Sat=5
hence:
(24) p: =S

From its general definition, the energy will tHes given by:

(25) E:££+V£—£:TS—£,
0& ov

and one infers from this:

(26) L=TS-E=-F,

in whichF = E — TSis the free energy.

The correspondence (26) between the Lagrangeidmnehd the free energy (with the
sign changed) is very interesting: It plays a gigant role in Planck’s old work on
black-body radiation and in various works on elestiatics and electromagnetism.

ForT = const., one will have:

(27) d7=p dv=-d(E-T9 =- dF.

Helmholtz's canonical schema for thermodynamicseesally starts with the
introduction of a variable such that the temperature is its derivative watspect to time,
but the significance of the variabferemains mysterious. In the thermodynamics of the
isolated particle, we will recover the relation 1&hile giving a precise sense to the
variable&.

4. Boltzmann’s theory for periodic systems. Preliminary drmula. — More
precise than the preceding theory is Boltzmanréom which establishes an analogy
between mechanical quantities and thermodynamiatdies in the case of periodic
systems. In order to develop that theory, it igessary to first examine what the
principle of stationary action becomes when ondiepji to certain periodic systems.
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We first suppose that the system envisioned is definédl llggrange coordinates .
Like Helmholtz did in the theory that we previously lgmad, we assume that tlgeare
divided into two categories: The one consists of Helmi®ljg', which are rapidly-
varying and correspond to molecular motions;dgt..., g- be these coordinates. The
other onesqg are of Helmholtz’'s typega and vary slowly; they correspond to the
constraints to which the system is subject; we demet® byg.+1, ..., On -

We let U denote the potential energy that corresponds to thetragms. The
Lagrange function will be:

(28) L=L1-U-U,

whereU is the potential energy that corresponds to the ratdeenotions, and’; is the

kinetic term, which is equal to the kinetic energytiod molecules in the Newtonian
approximation, since the kinetic energy that correspoma®ordinates of the typs is
negligible, at least in very slow processes.

Let A be Maupertuisian action integral that corresponds ® rtiotion of the
molecules; i.e., to the parameters of tgype One has:

(29) A:jzr_: p.dq, .

The total Maupertuisian action, taking into account@ations of the constraints —
i.e., the variation of thg, — is:

(30) A =A+[Y pda,.

k=r+1

The theory of Maupertuisian action that was presemtelde first chapter then gives

the formula:
1

N
z P00

k=1

(31) aA =] & di+

0

whereE" is the total energy of the system, which is the sidnthe energyE of the
molecular motions and the potential enetlly (One thus haE = kinetic energy of the
molecules #U +U" =E + U").

Now, the formula for varied action, when one vatheslimits ofq, gives us:

1

N
> pdq

k=r+1

(32) 034*:034+5ij: pkdaK:a;4+j5i p.dg, +

k=r+1 k=r+1

0
Substitute this value fodd" into the preceding equation, while taking into accouat th
relation:

E=F+,
and one gets:
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1

0

(33) dA:j{dE+5UD—5i gq} dt+

k=r+1

> ndgq
k=1

Now, there exist some important cases in which thestanpx &« disappear. That is
what happens, for example, when the values of the cotedimpa, , ..., gy Of the typega
remain constant in the varied motion and when, moredkercurrent motion and the
varied motion are both periodic. The first hypothesitils that thej, are zero in both

the natural motion and the varied motion, in such ativaty

N
52 PG = 0.

k=r+1

r
The second hypothesis entails thgt: p.dgq has the same value at the two
k=1
extremities of the unvaried trajectory, since thes® textremities coincide, as is
illustrated in Figure 4.

(211 F)l

"2 Varied trajectory of
periodr+ or
Natural trajectory of
periodr

Figure 4.
What then remains is:
(34) aA = IOT(JE+5UD) dt,
with:
(35) A=Y pdn.,
k=1

7 being the period of the natural motion. This is thenfda that we need.

5. Boltzmann’s formula for periodic systems— In 1897, Boltzmann recalled the
earlier work of Clausius and Szily (1872) by using form@i) (in order to obtain a very
interesting formula that was employed later on byeBfest in his theory of adiabatic
invariants.

In order to prove Boltzmann’s formula (which should notdomfused with the
relationS= k log P), we shall recall some hypotheses that were madeecalioa system
that is defined by rapidly-varying “molecular” coordinates of Helmhotipe g, andN —
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r slowly-varying constraint coordinates of Helmholtz typge then the variation is
performed with constant values of tipg and periodicity of the natural motion, as well as
the varied motion.

In a general manner, consider a trajectdBythat corresponds to a state of the system
and a trajectorZD that corresponds to a neighboring state (Fig. 5).

0 @+ &)

Figure 5.

In order to pass frorR to Q, one must act upon all of the molecules by giving them
energy; i.e., by providing heat. That heat serves to aoigthe internal energy and to

accomplish an external wodk = &J". Therefore:

(36) N=E+".

Now, suppose that one passes very slowly fPito Q by means of a reversible
transformation, and remark that the coordinagtes..., gy have values on the trajectories
AB andCD that are different, but constant and close to eauwérpin such a way that the
first hypothesis that was assumed in the preceding paragrépind to be verified. Let
AD be the curve that represents the slow passage frentrajectory to the other in a
timet; —to .

P'(t +df) \‘ PQ=dq
P(t o1 —
A(to) ® K PM=Aq
D
C Q @
Figure 6.
One has approximately:
t—t
Ag = % X ,
Sl 1

and in a timedt, Agk varies by:
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dt

1 0

quk: d:]k.

During the same timdt, the heat that is provided to the system is:

dt
da = Q,
tl_tO
and the work that is done is:
dau =9
tl_tO

Therefore, for the total transformatiséMD, one has:
(37) AQ-j‘ldaQ—ij“ant —ijtl(aEmuD)dt
o t,—t, 7% t,—t, 7% .

Now, introduce the hypothesis that the systemeisodic with periodr and choose
the time interval to be equal to Upon conferring formula (34) that was obtained\ze,
one gets:

(38) 0= O0A _ 1

r r

5952r:pkdq =V 0A, with v:%.
k=1

This formula is general — i.e., it is as valid fetativistic mechanics as it is for classical
mechanics. If we limit ourselves to the Newtorggaproximation then we havdg, =

z p.g. and as a result:
k=1

1 I« 2 _ _
(39) XQ=~0[)> pda, = Z5(E1),

whereE, is the mean value of the kinetic energy for aeyiflmotion D).

We have thus obtained the curious formula of Bodétan, which has a good number
of applications in the context of the old theorygofanta from around 1920-1925. It was
upon starting with that formula that Ehrenfest deped his beautiful theory of adiabatic
invariants, which has, in turn, been transposeal wdve mechanics. Léon Brilluoin has
formerly devoted some beautiful presentations efttieory of adiabatic invariants and
gave numerous examples of some diverse applicatibBoltzmann’s formula (39) to
phenomena. Notably, he deduced a very simple wagaucing the formula that Wien
proved by a thermodynamic argument for the spedfisiribution of black-body
radiation ©).

() Francis Fer recently communicated a new proof ofZBuhnn’s formula (39) to me that seems more
rigorous than the one that was given abdSeebibliography [L2].
() Seein particular, bibliographyl], chapter VII, and note attachment 2.



CHAPTER VI

THE ORIGIN OF WAVE MECHANICS
AND ITS INTERPRETATION BY
THE THEORY OF THE DOUBLE SOLUTION

1. Cyclic frequency and wave frequency= The author formerly arrived at the first
principles of wave mechanics by reflecting upon the diffee between the relativistic
transformations of the frequency of a clock and the frecqpef a wave. This question
was of great interest to us, and since it was genesidigtly passed over in the treatises
on quantum mechanics, we shall stop to discuss it Yariefl

We know that the transformation formulas for egyeesnd temperature when one
passes from the proper system of a body to anothde&abkystem that is animated with
the velocityc with the respect to the first one are:

(1) w= T=To1- 3.

We see that, whereas the energy is smaller iprityger system than it is in the other
one, the opposite situation is true for temperaturbe difference between the two types
of transformation is the same as the one thatsfastthe frequency of a wave and the
frequency of a clock (i.e., the wave frequency eyalic frequency, resp.).

In a reference systeRy, consider a periodic process that varies sinuigidathe
course of time. It will be represented by a tragkvariable that has the expression:

(2) Qo = a0 Sin & to ,

with a convenient choice of time origis. The process in question can be, for example,
the motion of a clock fixed iRy, and then the variablgy can be the projection of the
extremity of a hand of the clock onto its face.

The theory of relativity tells us that that for &alilean observer who sees the clock
displace with the velocityc , the cyclic motion of that clock seems slowed ddw the

ratio /1—- 3, in such a way that the tracking variable will baan expression of the

form:
(3) g =ap Sin Z7&/ t,

whereV, is the “cyclic frequency” of the clock for that sdrver. From the relativistic
formula for the slowing-down of clocks, one has:

(4) Ve =Vo 4/1- 5% .
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Now imagine that an immobile clock of frequengyis placed at every point of the
reference systemRy . Thus, a periodic phenomenon of frequengwill be found to be
defined at each point d® , and thetotality of corresponding variables , which are
assumed to all be in phase, will define a stationamewaR, whose expression will be:

(5) WYy =ag sin 27N0 to
at any point oRy .

We pass to another Galilean reference sy$Retimat is animated with respect R
with the velocity/ic and take the-axis inR to be the direction of the relative velocity of
R with respect tdy, . The Lorentz transformation shows that in therence syster®
the stationary wave that is defined by the totalitylot takes the form of a progressive
wave with the expression:

B

t——z
(6) W = ay sin 27a0 C_ =g sin ZIT(V'[—E),
1- 5 A
with
(7) V= Yo , V:E’ A:! :—Vl_ﬁz
J1-3 B v Vo8B

The expression fa¥# gives the distribution of phases of the clocktas observed by the
observeR: That distribution is then a wave that propagaleagOz with the frequency
v and phase velocity.

The formula:

(8) v=_20

J1- B2

shows how the “wave frequency” transforms when pagses from the Galilean system
Ro , where the wave is stationary, to the systemwhere it is progressive. That
fundamental formula is well-known and plays a greé in many important problems of
the theory of relativity; for example, the theoffytloe Doppler effect.

Now, the comparison with formula (1), (4), and (&kes it clear that the energy and
the wave frequency, on the one hand, and the texityyerand cyclic frequency, on the
other, transform in the same way. The first osthewo facts permits us to suppose that
the relationW = hv between the energy of the corpuscle and the frequef the wave
that wave mechanics associates with it is validlinof the Galilean systems if it is
always realized in the proper syst&nin the form:

9) W = hvp = my &

that makes the proper mass correspond to the proper frequengy. This is the point
of departure for wave mechanics.

In the first place, one can be surprised to se¢ tihe quantity of heat and the
temperature, which transform like a cyclic frequeaccording to the formulas:
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Q:Qoxll—ﬁz and T:To«ll—ﬁz ,

do not transform like the energy does. Indeed, km®mvs that the heat is a form of
energy (viz., the energy of uncoordinated molecutentions) and that, furthermore,
statistical thermodynamics has accustomed us tsidenng the temperature of a body as
being proportional to the mean kinetic energy sfitolecules. However, if one refers to
the argument in chapter IV that permitted us taldsh the relativistic variance of
temperature then one sees that the global eneagystiprovided by a body divides into
heat and work, and that this division is imposedhsyfact— which was unknown in the
theories before relativity that an input of energy is capable of varying pheper mass
of the body. The connection thus established, @mnaequence of the principle of inertia
and energy, between the internal energy of a badytlze quantity of heat that it receives
permits us to explain why the formula for the tfansation is not the same for the
energy and the quantity of heat. Furthermoreaas$ the proportionality between the
temperature and the mean kinetic energy of the culds is concerned, one must remark
that it is true only in the proper system of thelygoand that even in that case it is valid
only in the Newtonian approximation; this resultenmh formulas that were given in
paragraph 12 of chapter Ill. Therefore, nothingndeds that the temperature should
have the same relativistic transformation formwdaaergy.

2. Wave mechanics in the geometrical optics approximation- The point of
departure has been to associate the uniform, ineetil motion of a free corpuscle with
the propagation of a monochromatic plane wave dhat can represent by the complex
formula:

(10) Y=a ezm(m_ﬁ) :

where thez-axis is taken in the direction of propagation, ethis the direction of motion
of the corpuscle. If one defines the frequencyf the stationary wave that is associated
with the corpuscle in the proper system by forn{@gthen the transformation formulas
that were given in the preceding paragraph pernetto write:

(11) w: a e277i(\Nt—pZ)/h’
with:
W= M, and p= MV :

J1- B 1- B2

whereW andp are related te andA by the formulas:

(12) W = hy, p

N e

One sees that if one sets:
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(13) Y=aé’" with n= L,
2ir

wherea and ¢ are real, then the phagecoincides with the Hamiltonian actigh (with
the sign changed), which is equaMith— pz

If the corpuscle is subject to a force field thenriggectory is, in general, a curve, but
one can always write its associated wave in the:form

(14) Ux Y,z 1) =a(xy, z t) gy,

In the particular case where the field is permanadtvehere the propagation of the
wave can be described by the geometrical optics approximatie has:

—i(Wt—jpms)/h

(15) y=a(xy,2) e = =a(xy,2) e ,

ds being the trajectory element of the corpuscle, and omleefuhasp = — A. One again
finds thatp = h / A, but herep and A are functions ofx, y, z One then sees that
Maupertuis’s principle of least action, which is expressed

JIABmes =0,

coincides with Fermat’s principle, when it is applied goray of a wave, which is
expressed by:
s[> %=,
A A

It then results that the rays of the wave then cdengvith the possible trajectories of a
corpuscle, and that one can preserve the fundamentaloifi¢éhe localization of the
corpuscle in space by assuming that is displaces al@gay of the wave. The energy
and the quantity of motion of the corpuscle are then défayehe formulas:

_0¢ _
(16) W==" p=-gradg,

which shows the identity of the phageand the Jacobi functio® Moreover, one then
easily proves that if one supposes that all of theilplessitial positions of the corpuscle
before entering into the force field are equally prob#isde the probability of finding the
corpuscle in the elemedt = dx dy dzof physical space is equal to:

al(x,y, 2 dt=| x y, z t) Fdr.
Unfortunately, the clear picture of the associatiérthe wave and corpuscle no

longer persists after the geometrical optics approximasicapplied. Indeed, one can
always find an expression of the form (14) for the wént ¢/ is no longer simply related
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to the Hamiltonian action that is defined by point meats (classical or relativistic).
One can no longer define rays in the sense of geonledptias, and the notion of ray
seems to be lost. These circumstances have led thexsteticians to assume that the
corpuscle does not have a well-defined position at eathnindut is spread over the
“‘potential state” in all the extent of the wave, whthe wave itself is no longer an
abstract representation of probabilities. One preséheepicture that is obtained in the
geometrical optics approximation only by the following ptdti The probability for the
corpuscle to manifest its presence at the instant t in the vollememst d is given by|
Wx, y, z t) F dr, but this postulate becomes completely arbitrary.

3. The concept of a pilot wave- In the era around 1927-1928 in which this very
abstract interpretation was developed, | sought to findhenaine that was more in
accord with very concrete concepts that had guided mmgy i@arly work.

| started with the three following postulates:

1. The corpuscle must be localized in space at eatdninand describe a continuous
trajectory in the course of time.

2. The wave of wave mechanics must have physicaly@ald propagate in space in
the course of time.

3. In order to interpret the phenomena in the opticdight and the optics of
electrons, it is necessary to suppose that the cdepissintimately related to its wave, in
such a way that the motion of the corpuscle is, inesaay, guided by the propagation of
the wave {).

Guided in part by a hydrodynamical representation ofptipagation of a wave
that had just been developed by Madelung, and which | have tgkagain, | suppose
that the corpuscle, which is always localized in its eydullows one of the streamlines
of the hydrodynamical picture in question. This immexjated me to suppose that if
the corpuscle occupies the positigry, z at the instant then it possesses an enelyy
and a quantity of motiop there that are given by formulas (16):

¢
W=-"=1, =-gradg,
ot p gradg

even apart from the geometrical optics approximation
Since relativistic dynamics establishes the relation

() In aremarkable article that appeared in 1953, M. Rennsfg®vs that in the case of photons there
exist absolutely convincing experimental reasons to asshese three postulates (bibliograpBl.[ See
also @], third reference.
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for the free corpuscle, one can infer that:

__ 2 Qradg
a7 v=-C Ex)
ot
in this case.

This fundamental formula, which | have called “thdgdance formula,” in some way
imposes a well-defined motion of the corpuscle t& wave. In the Newtonian
approximation, wher®/= m, ¢, it takes the simple form:

(18) V= 1 grade,
m
and it seems to be an extrapolation of the Jacwdla:
V= 1 gradS
m

which is valid in the geometrical optics approximatthat brings one back to classical
mechanics.

In these formulas, | have become aware of a qoiggesting interpretation. | was
previously led to assimilate the totality of locadlues of a propagating wave to the
totality of small clocks that are carried alongtbg motion of the wave. If the corpuscle
is constantly localized inside the wave then thatil lead us to represent it as a much
larger clock that displaces in the medium of snaddlcks. The idea then makes us
assume that this large clock must displace in sufashion that the time that it indicates
remains constantly equal to that of the small cdaittat immediately surround it. In other
words, the corpuscle must displace in such a fasthat its internal oscillation remains
constantlyin phasewith the progressive wave into which it is incorgied.

It is easy to verify that one thus recovers thédgoce formula. Indeed, if the
corpuscle displaces bys in physical space during the tintk then the persistence of
phase agreement between the internal vibrationthedsurrounding wave obviously
demands that:

1(0¢ ﬁ
19 —| —~—+grad dt= v, dt
(19) h(at gradg dtj

Since one has:

(20) %%—f=v, V= 1V°ﬁ2 , Ve = Vo AJ1- 3%,
one gets:

gradglv _ v, _ .
(21) 1+—a¢ _V_1 5,
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and this equation is verified precisely if one attributes value (17) tov; i.e., if one
assumes the guidance formula.

The preceding formulas have been written down by suppdisaighe corpuscle is
not subject to any external field. In the more gensaaé of a corpuscle that is subject to
a field, one will obtain a relativistic theory by suppasithat one is dealing with a
corpuscle of electric chargethat is subject to an electromagnetic field thatlasived
from a scalar potential and a vector potenti#l, and upon adopting the Klein-Gordon
wave equation, so one deduces that:

2

L(96 ) - £a) =
(23) ?(E gvj (grad¢+CAj mgc.

For the guidance formula, one finds:

(23) ve_& gradg LV + £V,
9% _pv

ot

which naturally brings us back to formula (17) fo=V = 0.
It is easy to show that this formula still expeesghe idea that the internal vibration of
the corpuscle remains constantly in phase witlstineounding wave. It suffices to set:

:% =
at,

hy, = hy/1- 8% = m é1- p* +£( V—%}.

hy, m ¢ +e\,

(24)

This phase agreement demands that the relatigm{@St always be verified, which
gives:

(25) (%—f—e‘\/j+(grad¢+%Ajv = m&/1- 2
here. Upon replacing/1-3* in the right-hand side Witha;]'i, one easily verifies
E—é‘v

that formula (25) is verified if one adopts thedance law (23), while taking equation
(22) into account.

4. The quantum potential. — The interpretation of wave mechanics that we jus
sketched out was first presented in the form ofttie®ry of the pilot wave. In it, one
considers, in short, a homogeneous wave of wavéhamgrs as having a real physical
existence, and one (arbitrarily) imposes that trpuscle considered, which always has a
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well-defined position inside the wave, is obliged to follome @f the streamlines of the
propagation of the wave, in accord with the guidance famu

One can then see that this obliges one to assumehéhedrpuscle is subject to, along
with the action of a potential of classical type thanslates into the presence of an
external field, the action of a new type of potentithe quantum potential.” The
“‘quantum force” that is derived from this potential trats$ into the existence of an
action that the surrounding wave exerts upon the corpusiclee that would seem
necessary for the interpretation of interference difichction phenomena in a theory that
assumes the localization of a particle in space.

In the case of the non-relativistic Schrodinger equatihe quantum potential has the
expression:

2
(26) Q=- h” Aa .

2m a

In the case of a corpuscle without spin that olbegKlein-Gordon equation, one can
develop all of the dynamics of the corpuscle inraagian and Hamiltonian form, as |
did in some other presentatiorse€[3], chap. X). One is then led to attribute a proper
mass to the corpuscle that varies with its positiiorthe wave and is given by the
formula:

/ h? Oa
(27) Mg = n'ﬁ +?z ,

andin the proper systerin is the quantityM, ¢ whose gradient, with its sign changed, is
the quantum force. One can then define the quaptiential by setting:

(27 bis) Q=MoC®-mo®, Q=Qoy1-5.
In the Newtonian approximation, whefg<« 1 and Oa = —Aa, this quantum

potential indeed reduces to the expression (26pnaseasily verifies, and one can then
define the quantum potential by:
Q=Moc®-myc?

I will no longer insist upon this concept of “gaite dynamics” here, even in the
more complex form that it takes in the contexthef Dirac equations for the electron with
spin.

5. The theory of the double solution— When | studied this interpretation of wave
mechanics in 1926-1927, it seemed to me that thettreory, which would exceed the
provisional viewpoint of the pilot wave, must edistiba more intimate link between the
corpuscle and the wave. Developing this idea unkdername of the “theory of the
double solution,” | affirmed that the homogeneows/@ty, which is already the usual
one from the wave mechanics of that era, providely @ representation of the
probabilities, and that the true physical wave ltd torpuscle must be a wauethat
involves a very high concentration of amplitudet thdll be the corpuscle in the strict
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sense of the word. Outside of that region, the waweél reduce to a homogeneous wave
that coincides roughly (up to a normalization constant) thie homogeneous waké of
the usual wave mechanics. The corpuscle will be incotgarato the wavel, which
constitutes a bunched field of the type that Einsteegined for the representation of the
corpuscle as a local singularity of the field.

After having abandoned this difficult attempt for quite edime, | then resurrected it
some dozen years later with the aid of a very smathlver of collaborators and great
progress was made along this path. The usual Wawdthough a subjective and natural
representation of the probabilities, is meanwhile eeldb the wavel in such a fashion
that the corpuscle seems to describe one of the limdsighdefined by the guidance
formula by starting with the propagation of the wal¥esince this motion can perhaps be
interpreted by supposing that the true equation of propagdtitie evaveu is nonlinear,
while that nonlinearity usually manifests itself only etvery small singular region of
very ?igh field concentration, as | have, moreovescused, and which | shall review
here ().

The first of these points relates to the proof ofgh&lance formula. | could give two
proofs by starting with the usual linear equations, but wédding a very arbitrary
hypothesis of phase matching. One can replace that getlvith that of the
agreement between the streamlines of the external wifkiethe streamlines that are
internal to the very small region of high field vadueThey — i.e., the corpuscieare thus
found to be imprisoned in a very slender tube of strewslof the external field, and the
guidance formula results immediately. The proof ttakes on a form that is very close
to the one that Georges Darmois gave on another ooccasiorder to show that the
motion of a particle in a gravitational field is repnet®el by a geodesic in spacetime. As
Einstein showed in the case of general relativity, sihhecess of that proof is certainly
linked to the nonlinear character of the field equatiorsg(ithe equations of propagation
of the waveu).

A second point upon which | would like to insist is thelowing: In the usual
guantum theory, there exist phenomena, such as Bohrigugunaransitions, that one
declares must completely elude any description in tesfnspace and time, and this
seems to be true in the context of the linear equatiatsone utilizes. However, if one
assumes that they can be introduced from the nonlinearihe wave equations then the
guestion changes in character. Indeed, one can demarndhot® whether these
phenomena, which were declared to be impossible to desadenot, in realiy,
correspond to some very rapid transitory states ohéinear character. Andrade e Silva,
Fer, Leruste, and Lochak have carried out some vemestteg research in this direction
by appealing to some properties of nonlinear equations, gratticular to the theory of
limit cycles €).

6. Remarks on the subject of the hydrodynamical aspect ohé¢ preceding
concepts.— We have arrived at a sort of hydrodynamical pictarettie propagation of

the wavea€?”” in wave mechanics. One obtains it by considering id fhat has the

() Seebibliography B].
() Bibliography F].
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given densityp at each point and each instant that is given in the ebthe Schrodinger
equation by:
(28) p=a(xy,z)=|¥xy.zt) L,

and whose local velocity will be defined at each instant by the guidance formiudd t
we studied previously. It then results from the equatfgrapagation that this fictitious
fluid is conserved in such a way that the hydrodynaneigaition of continuity:

(29) g—‘t’+ div v =0

is constantly satisfied.

Without being able to take such a picture literally, oae nonetheless represent the
corpuscle as a sort of granule that is carried alonddyluid flow and describes one of
the streamlines, just like the grains of lycopodium that ydraulic engineers disperse
on the surface of a flowing liquid so that the trajegtof each of these grains will
materialize the form of a streamline.

It is useful to make a small remark here on the sulpédhe expression “the
corpuscle follows a streamline of the hydrodynamicalflthat corresponds to the
propagation of its wave.” The guidance formula impobkasthe corpuscle must have its
velocity tangent to the streamline on which it is foadhe instant in question. If the
flow is permanent — i.e., it does not vary in the seurf time — then the streamlines do
not deform, and the trajectory coincides with one efdtreamlines. If, on the contrary,
the flow does not have a permanent character thersttkamlines do deform in the
course of time, and the trajectory of the corpusclapatyh tangent to a streamline at any
instant, no longer coincides with a one of the stremsl This situation is sufficiently
well-known in hydrodynamics that it is pointless to elatbe upon it any further.

If one studies the motion of the corpuscle that imdefby the guidance formula then
one perceives that as a result of the quantum fore® eden the external forces are
zero, the energy and quantity of motion of the corpudal@ot remain constant. In the
hydrodynamical picture, the quantum force can thus be dedams a pressure that the
fluid exerts on the corpusclé®.

Meanwhile, one can prove that the energy and quaritinnotion are conserved in the
mean — i.e., for an infinitude of corpuscles that argibdiged in space with the denspy
We limit ourselves to giving a simple proof here thatcewns energy in the context of
the non-relativistic theory.

One can express the global conservation of enatgy w p dr, either by writing:

) ap ow
30 I (pwdr = [| Lw+pZ" |dr =0,
(30 s owar = [ Zws oS

(*% This analogy was made precise by Jean-Louis Destoutlies ivork that he has pursued in recent
years. See notably, bibliographyd].
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or by remarking that the mean energy of a particleesdny%vdt in the timedt, and

writing that the mean value of the variations of ggeduring that time is zero, which
leads one to write:

Dw ow
31 —dr= —+vgradw |[dr = 0.
(31) P T jp(at @ j

Upon supposing that is zero at infinity, which is always physicallyatzed because
the wave trains are always limited, one can prdwa formulas (30) and (31) are
equivalent. Indeed, upon taking the continuitya@un into account, equation (30) can
be written:

ow )
32 ——wdiv pv |dr =0,
(32) j(pat pj r

and sincep is zero at infinity, an integration by parts shothat (32) is equivalent to
(31).

If one then utilizes formula (31) then we shalplpthe non-relativistic form of the
theory of guidance by setting:

(33) p=a, w= %, v:—% gradg,

and we take into account the equation (viz., theegdized Jacobi equation) that is
deduced from the Schrodinger equation:

g 1
(34) 5 "o grad ¢ +Q,

n* Na : .
whereQ = _%_a . Equation (31) then gives us:

(09 1 ¢ _
(35) ja (? mgrad¢ Egraaaa—tj dr =0,

but, upon differentiating (34) with respect to tim@ne sees that the parenthesis in
equation (35) is equal @&Q / dt, in such a way that it becomes:

(36) j azi(%jdr = j (aA@—Aa@j dr = 0.
ot\ a ot ot

Since the functiona andda / dt are zero at infinity, a double integration by pashows
that equation (36) is indeed verified, and consetijyehat the mean energy indeed
remains constant.
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| have, moreover, given a more general prodfdf the conservation in the mean of
energy and the quantity of motion of a corpuscle in thaext of the relativistic theory
of Klein-Gordon.

We shall return to the significance of the conservatiotihe mean of the energy and
guantity of motion in the following chapter after we @awmtroduced the Bohm-Vigier
hypothesis of the sub-quantum medium.

() Seebibliography B], pp. 270-273.



CHAPTER VII

THE INTRODUCTION OF THERMODYNAMICAL
CONCEPTS INTO WAVE MECHANICS

1. The Bohm-Vigier sub-quantum medium. In the preceding chapter, we obtained
a hydrodynamical picture for the interpretation of waxechanics from the theory of the
double solution. That picture corresponded precisely taddws that | developed in
1926-1929 and have reprised since 1951. However, in these &dtsrlyhave gradually
recognized that it constitutes only a first approximatiod @nat it must be completed by
the introduction of new hypotheses that involve statisthermodynamics.

The first step along that path was taken in 1954 by Bohm agidr\(*%), when they
introduced the hypothesis of the existence of a “sub-qoamedium,” which is a hidden
medium that is, in some way, deeper than the micpsdevel, such that all particles at
the microscopic level will be in permanent contact witland with which they can
constantly exchange energy and quantity of motion.

What led Bohm and Vigier to adopt this hypothesis? @etsif some general
considerations, it was the desire to give a satisfagtestfication to the role of the
probability of the presence of a corpuscle at a poind given instant, which wave
mechanics attributes to the quantity |-

We have seen that the guidance formula, by establisthiegnecessity for the
corpuscle to follow one of the streamlines of hydrodyisazanvection that correspond to
the propagation of the wave, has led us to assumeftattoif the probabilities of the
initial positions of the corpuscle in the wave are @ered to be proportional tdH{(x, vy,

z, 1) f then the probability for the corpuscle to be found atitistant in an elementr of
space is equal toW(x, vy, z t) [, at least in the non-relativistic approximation. This
conclusion is deduced from the continuity equation, eftias the velocity that is defined
by the guidance formula. However, if one examines gha®f more closely then one
perceives that it raises a difficulty that is conbple analogous to the one that is
presented, as we have seen, in statistical mechanies, vafter proving Liouville’s
theorem, one seeks to deduce that the probability qirsence of a representative point
of a system in the elemedr of the extension-in-phase is proportional to that ef¢mde
(**). We have seen that in order to arrive at a justiioafor this conclusion, one must
add either an ergodic hypothesis to Liouville’s theoremaohypothesis of a more
physical character in the form of molecular chaos.

We take the latter viewpoint. If the mechanical evolutof a system proceeds
regularly with no perturbation then it will generallg justified for us to assume that the
same tube of unperturbed trajectories in the extensiqmase fills up all of that extent.
However, one can suppose that the motion of the systesubject to some constant,

(*3) Bibliography [7].

(**) The difficulty that presents itself here is illusé@ very clearly by the fact that from the guidance
formula an electron in a hydrogen atom in the statest remain immobile at a point of the atom in such a
way that, without the Bohm-Vigier hypothesis, one wounlot at all see how one could realize the

probability of presence by} F.
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random perturbations, which one can regard as, for exardpke to the continual
interaction of the system with an external systérhthe system considered reduces to a
molecule in a gas then this will amount to the contimi&raction of that molecule with
the other molecules of the gas.) The representative pbithe system will then pass
constantly from one tube of unperturbed trajectoriesanhother one, and after a
sufficiently long time has passed (which can be extherslort at our level) one can
consider the representative point (and, in turn, theexkedr that contains it) as having
successively traversed all of the segments of the unped trajectory and having thus
swept out the entirety of the extension-in-phaseckhiill then justify the principle that
serves as the basis for all of statistical mechanics

Bohm and Vigier introduced an analogous hypothesis in theimerpretation of
wave mechanics in order to justify the role that is @dalgy |¥ F of the probability of the
presence. Here, it is the prodyedr that is conserved in physical space along a
streamline, by virtue of the continuity equation; i.eqgne assumes the guidance formula
then it is along a tube of unperturbed trajectories efgérticle. In order for one to be
able to deduce thatdr gives the probability of presence for the corpuscléénelement
dz, one must have that the same tube of trajectoriesisvabout indefinitely in the
portion of physical space that is accessible to thpusmte in such a manner as to fill it
up completely. Now, there is no reason for this torbe, in generaf'().

In the paper cited above, Bohm and Vigier have presentbdoaetical justification
for the statistical interpretation oty |2 by assuming the hypothesis of continual random
perturbations to the motion of the corpuscle in a marthat is analogous to the
hypothesis that Boltzmann introduced in the context afistical mechanics. If one
assumes that these perturbations are representable @a® mentary appearance of small
random perturbing potentials into the wave equation theregjuation of continuity will
remain valid during the periods of perturbation and the qyaatir will be conserved
along a tube of trajectories, even in the perturbed porodrice tube. One can thus
consider an elemendr of the fluid in the hydrodynamical representation of wave
mechanics as successively traversing (and in an extresnety time at our level) all of
the segments in the unperturbed current tube in such arashito sweep out uniformly,
and with conservation g dz, all of the region in physical space that is accéssdthe
corpuscle, and this will permit one consider the quantity | ¥ [ to be measuring the
probability of the local presence of the corpuscle.

Such is the general train of reasoning that was develmp8dhm and Vigier in their
paper, and this reasoning can be reprised with the aid dhé¢oey of Markov chains.
The authors have considered the continual, random peiiturb@o which the corpuscle
is subjected as being the result of random reactionsatbatxerted upon them by a deep
and hidden medium that they have called the “sub-quanteaium.”

2. Comparison with the motion of a granule convected by a hdtuid. — The
concept of a sub-quantum medium, which seems to expliange number of facts that
are asserted in microphysics, and which is introduced disguised form in certain
results of the quantum theory of fields (for exampldiew one attributes physical

(%) Seethe note on the preceding page.
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properties to the vacuum, such as “vacuum polarizatiospf great importance in the
problem of establishing a relationship between mechanicalitjga@nd thermodynamic
guantities. Indeed, it is inconceivable that one couldduce quantities that have a
thermodynamic significance into the dynamics of amatsal particle — i.e., one that is
separate from any other microphysical system — sincthoantities would seem to be
linked essentially to the random variations of a systégreat complexity, which cannot
be the case for an isolated corpuscle. However, th&tiqnearises in a different context
if one assumes that a corpuscle at the microphysical tbat appears to be isolated is
nonetheless always in energetic contact with a deefiddén medium that possesses a
complex and random structure. Now, the introductiothefhypothesis of the existence
of a sub-quantum medium leads to the idea that any Ipaatidhe microphysical level
can be considered as being constantly in contact witltaosbidden thermostat, and it
then becomes possible to attribute a temperatureas well as an entropy that is related
to its motion. An entirely new horizon then opens afoke our eyes.

This leads us to revisit the hydrodynamical picture efrtiotion of a corpuscle that
we previously envisioned, while modifying it in a very profoundywaWe have
compared the motion of a corpuscle that is defined bguligance formula to the motion
of a granule (e.g., a grain of lycopodium) that is earralong a streamline by the
convection of a fluid. However, if the fluid is hetl would like to say that it is not at
absolute zero — then the granule will regularly folltke streamline only if it is
sufficiently massive as to resist the random coltisiof the fluid molecules. If it is very
light then it will be as if all the fluid moleculese animated with a Brownian agitation
that is superimposed on the regular motion that is inthbbgethe general convection of
the fluid.

Up to a difference in scale, the corpuscle will thuscbmparable to a granule in
suspension in a hot fluid, which is animated with a Browniation that is due to is due
to its interactions with the invisible fluid moleculeend to which, for that reason, one
can apply the concepts of thermodynamics. If the faicbllectively immobile then the
Brownian motion of the granule will make it jump frdrmare to there without continuous
motion. On the contrary, if the fluid is animated w# collective motion then the
granule, which would be carried along a streamline relgulaithout the Brownian
motion, will continually pass from one streamline twther as a result of the Brownian
motion. This is, moreover, what must happen for lind fnolecules themselves: Indeed,
each streamline represents the trajectory of a maeuwdien abstracted from the
Brownian motion, and the set of streamlines gives ordtatstical picture of the global
motion of the molecules. One now perceives in whatneathe introduction of a sub-
guantum medium can lead us to modify the hydrodynamictalre that we constructed
for the motion of a microphysical particle.

3. First attempt at establishing a correspondence betweasntropy and action,
and between temperature and frequency- The ideas that we just developed lead us
naturally to envision the establishment of relationsvben the dynamical quantities that
characterize the motion of a corpuscle (conceived innthener of the theory of the
double solution) and thermodynamic quantities such aspnéned temperature. Several
authors have suggested analogous ideas on other occasmdisgton, in his celebrated
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book Space, Time, Gravitatiofpp. 219 of the French translation), sketched out — in very
vague terms, moreover — a reconciliation of the twawl&mental invariants of relativity,
namely, entropy and action.

For fifteen years, the study of the old theoriesHefmholtz and Boltzmann has led
me to search for a way to establish a corresponderneedr® entropy and action and
between cyclic frequency and temperature. | attemptadinha note to th€omptes
rendus de I'’Académie des Scien¢e233, 1946, pp. 248) and in my course during the
school year 1948-1949. | likewise spoke about it in an articl@ahiers de Physique
(nos. 31-32, January, 1948, pp. 1). In that era, | imagineddifferent ways of
establishing that correspondence, but here | will recdyl the second of them, because it
seems to be the most interesting to me, and it isibelmt agrees the most with what |
will present in Chapter VIII.

The Boltzmann formula for periodic systems that wetesidown in Chapter V in the
form:

(1) dQ:%a'A:va‘A

is valid only in the proper system of a body that is she of a periodic process of
frequencyv and periodrz. The quantityA then represents the cyclic integral of the

Maupertuisian action, when taken over an entire periadaifon. We must then write,
in a more precise fashion:

(2 Qo =Vo 2Ao ,
with
(3) Ao = [ plddf dt,

where the index 0 indicates that the quantities artu&e in the proper system of the
body.
We pass to a Galilean reference system in which tly I® animated with the

velocity fc . Upon multiplying the preceding formula Q/ﬁ—ﬁz , we obtain:

(4) @O = Vc 5/40 .
SincedQ =T dS one is led to set:

S
Ve =CT and Ao:E’

whereC is a constant that, for obvious reasons, can heally set equal t& / h. One
thus obtains the relations:

_ A _S
5 hve = KT, ==
(5) e S
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between the cyclic frequency and the temperature, ormnkehand, and between the
cyclic integral of the Maupertuisian action and the gntr@n the other. Sinog andT
transform in the same way when one passes from therpggtem to the other Galilean
system, the first relation in (5) is satisfactory frtmt standpoint. However, the same is

not true for the second relation in (5), becaagean invariant, whiled is not.

One can fix the second relation in (5) by consideringpi@uscle to be a periodic
system that conceived in the manner of wave mechanitgaste of a periodic process
of frequencyo = Wy / h and proper period, = h / Wy , with Wy = mpc®. One will then
set, by definition:

(6) Ao= [ Ly,
and, by reason of the relativistic invariance of the Htaman action, one will have:
©) A= [°Ldt = Ao

in any Galilean system, which naturally leads one pdace the second relation in (5)
with:

(8)

and that is more satisfactory.

| did not take this step fifteen years ago. Nevertheldsad glimpsed the possibility
of the thermodynamics of an isolated particle whemrdte in 1948, in my article in
Cahiers de PhysiquéHere is the beginning of the thermodynamics of demal point
that one might seek to develop in the context of wagehanics. It is very difficult to
say where this path will lead, and we must be contertitatee indicated the point of
departure.” What stopped me from going further in thatvasthe fact that | had not yet
returned to my research on the theory of the doublgisaland the fact that | was not
thinking about a sub-quantum medium.

It was only in 1961, while reflecting on a recent work arl&tsky, that I first
perceived the possibility of introducing relations betwieequency and temperature, and
entropy and action into the theory of the double solutidiose existence | had hinted at
fifteen years before.

A
h

~|lwm

4. On a paper by Terletsky.— In the course of a visit to Paris at I'Institut Henr
Poincaré, professor Terletsky published two very integsrticles in theJournal de
Physiquein 1961 {°). In the first of the papers and in the second pattie@second one,
he envisioned the hypothesis that there can exist partidlemaginary mass that are
animated with velocities greater than light in vacuatigas that constitute a sort of
hidden thermostat that is analogous to the Bohm-Vigibrgaiantum medium. Despite
the interest independent interest in the argumentTidétsky developed on the subject,

(*®) Bibliography, Bl.
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| prefer to not introduce the hypothesis of the existerigeadicles of imaginary mass
here, and | will be content to say some words otiitsepart of his second paper.

Terletsky envisioned a set of fields(x, y, z 1), ..., Wn(X, Y, z t) that were analogous
to the wave of wave mechanics, and he defined the tdtahaaf that field by the space-
time integral of a certain Lagrange function. MoreoWwersupposed that this first system
of fields is in a state of weak energetic interactiotih\& second system of fields that he
considered as defining a thermostat, and by some catmdainto which functionals
entered, he deduced a formula that he considered to ban#ilegue of the Gibbs
canonical distribution law, but to me it rather seessf it must be assimilated into the
Boltzmannian definition of entropy=k log P.

In all of that attempt, Terletsky defined the globation of theseN fields by the
space-time integral, but then he showed, in a veryestmg manner, how the hypothesis
that the fields obey some nonlinear equations permeés@meduce that definition to the
usual definition of the Hamiltonian action of a corpaday an integral that is taken along
its world-line. For this, he first recalled that a &n¢heory of fields always leads to what
he called “the ultraviolet catastrophe;” i.e., to thet that the integral that gives the total
energy of the field is divergent in the limit of vemgh frequencies. One knows that this
inadmissible consequence appears in physics in the tbébtgck-body radiation, and it
was in order to avoid it that Planck introduced the natioithe quantum of action for the
first time in 1900. Today, one often eliminates that cliffy by introducing an arbitrary
cut into the integral at a high frequency (i.e., a cltibfét eliminates the waves of very
high frequency that are responsible for the divergencthefintegral: however, this
process is not satisfactory, because it is entimddigrary.

Now, Terletsky remarks that things are completelfecent for nonlinear fields
because then if there naturally exist solutions in #se ©f weak amplitudes that have the
character of the classical solutions in linear thaamy approximately, then, as the work
of Terletsky and his students has shown, there canealsb solutions that present very
small regions of high concentration for the field tlaaé stable and which have the
character of Einstein’s “bunched fields.” There #ren extremely slender world-tubes
where the field takes on very high values. In turnatt@®n integral that was originally
considered by Terletsky reducesry approximatelyo a sum of integrals that are taken
along the world-tubes in question, and one thus recoverscldssical notion of a
Hamiltonian action that is linked to the motion of tleepriscles.

It is almost pointless to emphasize here how the idéd®rletsky are in agreement
with the concepts of the theory of the double solutidioreover, the author adds the
following remark, which can be useful in the study oftai@ difficult problems that
present themselves in the new interpretation of wavehamecs: “Outside of solutions
with regions of high concentration of the field, theestbolutions have the form of quasi-
linear wave packets that rapidly spread out into all @icep and whose amplitude
consequently tends to zero.”

Having thus returned to the usual notion of Hamiltoniaimacif a particle, Terletsky
then sought to deduce the canonical distribution law. d¥ew as he had not introduced
the notion of a thermostat that would impose a welireeftemperature on the fields, his
conclusions do not seem very clear to me, and | thak they must receive a very
different interpretation from the one that the autpoyposes, an interpretation that we
have reduced to the formulag. = kT andA / h =S/ k that were envisioned above.
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Taken as a whole, this very curious paper of Terletskygbaked my interest, and it
has drawn my attention to the possibility of introduding thermodynamic quantities of
temperature and entropy into the reinterpretation ofewmechanics by the double
solution, which are linked to the characteristics of ¢bepuscle that take the form of
cyclic frequency and Hamiltonian action. That is whatl Ime to develop the
“thermodynamics of the isolated particle” that | vaiw present.




CHAPTER VI

THE THERMODYNAMICS
OF THE ISOLATED PARTICLE

(or the hidden thermodynamics of particles)

1. Fundamental formulas.— The reflections that inspired me while reading the
work of Terletsky, and which brought me back to old idéed | had on that subject
around 1946-1948 have led me to try to establish a “thermodgsamfithe isolated
particle” in some recent note¥)( which can also be called the “hidden thermodynamics
of particles,” since it results from the continualeir@ction of particles with a hidden
thermostat, which can naturally be identified with $bhé-quantum medium of Bohm and
Vigier. | began by introducing the entropy of an isalgparticle, but then | preferred to
reason by introducing the entropy of the hidden thermod&thae reason for this is that it
is scabrous to define an entropy for the particle, imeza is a very simple system that
involves only a small number of degrees of freedom: Onciarary, the hidden
thermostat is certainly a very complex system, 3$e legitimate to speak of its entropy
and the use of entropy will permit us to follow a patht tivas traced out by Einstein on
another occasion in his theory of fluctuations.

In order to develop a new thermodynamics, we firstraesthat we can apply the
formula from relativistic thermodynamics:

(1) @ :_5M0£

to an isolated particle at the microphysical scale \gupposing that the proper mads
of the particle is variable.

Moreover, in accord with my old ideas from 1946-1948, vg® a@ssume that the
particle that is in permanent energetic contact with bidden thermostat can be
considered as having a temperaflitbat is defined by the formula:

2) KT =hv. = hw 41- 82 =myc?

which has the desired relativistic covariance, ame@rem, is the usual constant proper
mass that is attributed to the particle.

We shall define the entrody of the hidden thermostat that is in energetic acint
with the particle. We take our inspiration frone tmethod that was formerly employed
by Einstein in his celebrated work on fluctuatioss,we write that entropy in the form:

3) S=S + Y Mo),

(*°) Bibliography P
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where S is the part of that entropy that is independent offlingtuating value of the
proper massdVlp of the particle, whileS(Mo) is the very small part of that entropy that
depends upon the valuelf . We will then have:

(4) 5., = &BMo) =~ == =

The — sign that appears befa¥@ is due to the fact thal) is the heat that igiven upby
the hidden thermostat to the particle. Now, we catewthe Lagrange function of the
particle in the form:

(5) L==-Mo®1-5% + ...,

where the unwritten terms do not depend ulglgn By using (2) and (5), we thus obtain:

oM
(6) BMo) =-k —=,
m,
which finally gives us:
7) s=g-kMo
m,

a fundamental formula in which the invariance & tight-hand side is quite evident.
We have thus obtained the two fundamental formafatie thermodynamics of the
isolated particle, which are valid in all Galileagference systems, namely:

M
) KT = hy, S=§- k-2,
m,

We can remark that formula (4) leads us to thatirm?:L = % in place of the

relation?:L = —% that was found in Chapter IV. However, we shawdd be surprised

at this, sinces is referred to the thermostat here ahdo the particle. If it is legitimate
to introduce the entropy, for the particle, as | did in my note on Augus619then one
will have:

1 _ 0§
==& and = =-—.
& T oL

2.  Analogies between the thermodynamics of an isolated pargcland
Helmholtz’'s canonical schema— We would like to compare our new thermodynamics
with the canonical schema of Helmholtz that we @mnésd in paragraph 3 of Chapter V.
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We know that the phaggof the wave that is associated with the particlexjisal to
— A, so one can write:

(9) p :—A:hI;vcdt,
SO:
(10) ¢ =— A =hy,

in which the dot denotes the derivative with respecite.ti Therefore, if we set:

1 1
11 E=—¢@¢ =——A;
(11) k¢ k
then the first formula in (8) gives us:
(12) =% _9_,
k k

We thus recover the fundamental relation that v8asrmed by Helmholtz as the basis
for his canonical schema, according to which the temperas the derivative with
respect to time of a certain quantsy

On the other hand, when the hidden thermostat gives epergydU to the particle
by communicating a worklA to it (using the notations employed in Chapter V), we
write, with Helmholtz:

(13) - d, U =-Ede+dA

and relativistic thermodynamics will then give us:

(14) - dMOU =dQ+dA
with:
(15) dQ=-T dMOS, dA= dMO}“ ,

where F = \/I\LVZZ is the pseudo-vis viva of the particle. We spethifat in formulas
1-B
(13) and (14),- d, U represents the reduction in the internal energyhef hidden

thermostat wheMy increases. From (13) and (14), taking (12) irtcoant, one deduces
the second formula of Helmholtz’s canonical schema:

(16) £=S.

Since ¢ in the schema is, by hypothesis, a cyclic variablso 9L / 0 = 0 — the
Lagrange equation that relates to the varialatso gives the third Helmholtz formula:
oL

17 = =p, =
(17) agp S
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which can be verified directly from formula (4), beaaitsgives, up to a constant:
L=TS=£S.
On the other hand, since one no longer has theaelati

U= éa—ﬁ_ -L=TS-L
0&

here, whose relativistic variance would not be caymee can no longer attribute the free
energy to the Lagrange function. However, sifige constant, one can write (14) in the
form:

(18) dy, (U-T9 =-d, F,

which leads us to attribute that part of the free enerigthe hidden thermostat that
depends upoMj to the pseudo-vis viva of the particle, with the sign gedn

3. The second law of thermodynamics and Hamilton’s princig of least action—
In the usual applications of Hamilton’s least action@pile in analytical mechanics, one
starts with a “natural” motion — i.e., a motion tlzanforms to the laws of mechanics.
One supposes that in the course of that motion the lpattat starts at a poidtin space
at the timetp arrives at a poinB at the timet;, and then onenaginesa “varied” motion
that is fictitious and infinitely close to the natumabtion, while imposing upon that
varied motion the constraint that the pofnndB and the instantg andt; remain the
same as in the natural motion. In other words, one sriddeeform of the world-line that
represents the natural motion in space-time vary $figlthile keeping the extremities of
that world-line fixed.

Figure 7.

Hamilton’s principle then tells us that the natural wotis characterized by the
equation:

(19) [‘1oc],,dt =0,
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where [0L],, is the variation off when one keeps the proper maés constant and

equal to its normal value, . Moreover, since Hamilton’s principle is a principldeast
action, we can also writé'}:

(20) [*1oc,,,dt >0.

We shall now introduce a new idea that seemsastiig. If one assumes, as we did,
that the proper mass of the particle can be sutgeftiictuations then it becomes possible
to consider varied motions that are no longer tike purely fictitious motions that we
imagined, but like motions that can have real mmgninder the action of certain
instantaneous fluctuations of the proper mass duha interval of timey — t; .

Having assumed this hypothesis, we must be abietermine the fluctuated motion
ACB by means of the equation:

(21) [Foc+orydt = [*(5C+8°c)dt = 0

when one applies Hamilton’s principle to it. Howevthe proper mass is no longer
assumed to be constant here, so we must write:

(22) O = [0L]y, + 0y L, O°L = [°L]y, +0u L

upon letting 55,05 denote the set of terms &£ that depend upon the variation of the

proper mass. We assume (and we shall justifyldbes on) that the term izfj,oﬁ in (21)
is negligible with respect to the other ones, ahdtwemains is:

4
(23) jto {164, +0, L4034 ,} dt=0.
Since the first integral is zero, by virtue of {1&e obtain:

(24) - jfaMoc dt == (t.—to) 3, L = j:l[azg]Mo dt >0,

in which J,, £ is the temporal mean betwegrandt; . Then, sincé: —to is positive and
- 0y, L is the quantity of heat that is given to the jdetby the hidden thermostat, one

sees that in the temporal mean that quantity of, hehich is constantly zero on the
natural trajectory, is positive on the fluctuategjectory. It then results that the entrcdpy
is reduced in mean when one passes from the méi@®B to the motionACB. The
entropy is therefore maximal on the natural tr@pctwith respect to the fluctuations,
subject to the conditions of the Hamiltonian vaoiat and one can say that the natural

(*) On the condition that one does not have any kineti fogint relative to the poirk betweerA and
B. See C. R. Acad. S@57(1963), pp. 1430.
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motion is more probable than the varied motion. A/vemarkable relation between the
principle of least action and the second law of thetlynamics can thus apped?)(

It remains for us to show that we have good reasaregiect the term in§§,0£ in
(23). Now, one sees th&, L is of the same order aﬁj,oﬁ in equations (24); i.e., it is

of second order with respect to the Hamiltonian vamiei in such a way thaf; L is of

third order, and can be neglected.

In its beginnings, wave mechanics had to establishatiaeship between the action
of a corpuscle and the phase of its associated wavevthdd permit one to identify the
principle of Maupertuis with Fermat’s principle.  Purguirthe same type of
identification, the preceding theory attaches the pplaof least action to the second law
of thermodynamics and the increase in entropy.

4. Remarks on the relationhv, = KT. — We would now like to make some remarks
on the first of the fundamental formulas (8) in oewrthermodynamics.

First, note that it raises the following difficultySince the frequency. is
characteristic of the particle, the temperatliraust also depend upon it. Now, it seems
natural to attribute a unique temperatlir® the sub-quantum medium, independently of
the nature of the various kinds of particles that arengrgetic contact with it. One can
seek to eliminate this difficulty by imagining that thelden thermostat is formed from
sets of particles (i.e., probably the bunched field), reheach set contains “hidden”
particles of the same nature and has its proper temperatwWhen the particle is
considered at the microphysical scale, it will be — perlaagps result of a phenomenon of
resonance type — in interaction with the hidden partidié¢seosame nature as it, and this
is why one can have:

in the proper system of the particle. Admittedly, thypothesis can seem very artificial,
but it is curious to confirm that | was already led sswane it when, in the course of
research of a completely different nature, | soughtieduce the wave equation with a
mass term from a universal wave equation without a nexss of the type that was
envisioned by Heisenber§).

We must once more emphasize another very delicatd: gbione considers the
temperaturesT and T, as being referred to the particle itself then the ticzla

T=To J1- 3

that results automatically from formula (8) is siéid because it corresponds to the
relativistic transformation of temperature. Howevé one would like to refer the
temperature to the hidden thermostat then theioalat

(*® In figurative terms, one can say that the natuabttory follows a curve along the bottom of a
valley of negentropy.
(*°) See bibliography 0], pp. 99-103.
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mo ¢2 = kT,

shows that the hidden thermostat must possess the samperaturel in the proper
system of every particle of masg . It results from this that one must attribute tame
temperaturel to the hidden thermostat in any Galilean system — adt,leas far as
particles of proper massy are concerned. This strange property shows that the sub
guantum medium cannot be associated with an ordinacyas@opic thermostat, whose
proper system would define a privileged reference systentchwhould be contrary to
the principle of relativity, moreover. Rather, itesgs that one can associate it with a
“Dirac ether,” whose properties appear identical forGalilean observers™), or to a
“Terletsky ether.” §].

The preceding remarks show that one must arrive atcispgon of the structure —
which is certainly very specialized — of the sub-quantuedioom of Bohm and Vigier in
such a fashion that the existence of that mediumtignnmontradiction with the principle
of relativity. Terletsky’s idea, according to whicheonan assume that this medium is
formed from particles of imaginary mass that displagé a velocity that is greater than
velocity of light, can perhaps be useful in solving thiebtgm, but | think that it is
premature to restrict the study of that difficult queshenre §ee[18]).

It seems interesting to us to note that the formmwla® = kT, leads one to attribute a
very high value to the temperature of material particlefpon employing C.G.S. units
and degrees Kelvin, it gives, in effe@t,~ 10’ my . For the electron, one finds tHatis
of the order of ten billion degrees absolute, and for nmeavier particles one will find
temperatures that are even more elevated. Theredgegy material particle will be
found in constant energetic contact with a “hidden hé#tat will be a site of extremely
elevated temperatures, and which will be present everywinenghat we call the
“vacuum.” Other considerations have already led gedathors (e.g., Lanczos, Bohm)
to an analogous conclusion.

5. The relations M,= mg and S(M,)= - k. — We shall now infer some very

interesting conclusions from the second formula in (8)ckvdefines the entroy

First, consider a particle that is not subject to attgreal field. From Boltzmann’s
formula S = k log P, the probability of the state of a particle whosetflating proper
mass has the valudy is proportional toe™", so, from the second formula in (8), it is

proportional toe™’™ . One concludes from this that:

Ime‘MO’”’OM dm
(25) M, = 22 ° 0=
IO e™™ dM,

Mo .

Therefore, the constant proper magshat is usually attributed to the particle appears to
us as being the mean value of its true instantaneous pragsr which fluctuates.

(*% On the Dirac etheseemy article inJournal de Physiqui], pp. 975.
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We can make this idea more precise in the followingpiées When one abstracts
from the interactions between the particle and the subtgoamedium, the theory of
guidance leads one to define the variable proper mase @frticle in its proper system
by the formula:

h* Oa
Moc? = [mic +—— =myc? + Qo,
c° a

whereQo = Mo ¢ — my ¢ is the previously-defined quantum potential, and one eerifi

2
that in the Newtonian approximation it has the known valla%A—:. The potentiaQQ
translates into the interaction between the corpuseld its wave; it is therefore a
guantity at the microphysical level that does not expjicitivolve the sub-quantum
medium. If one would like to take the interactiongha particle with the sub-quantum
medium into account then it would be natural to adfiuetuating” quantum potenti&)x
to the right-hand side of the preceding equation in oodeggiresent that interaction. One
would then write:

MoC® =mp ¢® + Qo + Q.

As Terletsky has suggested by some interesting argunmehis important papers,
there is good reason to think that the energetic exchabgeveen the sub-quantum
medium and the particles must reduce to fluctuationis zato mean, which leads one to

setQ, = 0. The last equation then gives:
(25 bis) M,c? =mpc® + Q,,

and if the quantum potential is zero then one reccﬂm=;rsselationM_0 =my . The usual

proper massy will then result in continual energetic exchangesvieen the particle and
the hidden thermostat.
If we introduce formula (25) into the evaluation of thean value of entropy which

is, from (8),S=S —kM,/m, , then we would find:

(26) S=s-k or  S(M) =-k

Moreover, formulas (26) can be recovered by the fallgweasoning: We place
ourselves in the proper system of the particle and assutiagdly that it has a proper
massMy that is zero, in such a way thél and §M,) are also zero. If the hidden
thermostat provides the quantity of hed, to the particle then its proper mass will
increase bylMy = dQ, / ¢ If the thermostat has furnished the quantity of ld&atsuch
that the proper madd, has attained its mean valog then one will have:

(27) X =my c®=kTp.

The entropy will have diminished by:
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(28) B=-2 -y

CZ

The termSMy) in the expression fd8 will then pass from the initial value O to its value —
k, and we recover the result (26).

We add that the proper madg can vary from O to +o during the fluctuations; i.e.,
My = My — mp can vary from —-my to + oo, although very large values f@M, are
naturally quite improbable.

6. Comparison with the Einstein’s method for the study ofluctuations. — Recall
the general principle of the method that was employedibst&n on another occasion
for the study of fluctuations.

Consider a complex system whose state depends upotasn garametek, along
with a very large number of other parameters. In ordefind the probability of a
fluctuation in the state of the complex system thauis to a variation of the parameggr
one can, following Einstein, proceed in the followingnmer:

Let S be the maximal entropy of the system in its most igbstate, and ¥ &) be
its entropy for a certain value of the parameteiOne can write the Boltzmann relation
in the form:

(29) ) =k log L&)

0

+S,

wherePy andS, are two constants. If we s8t Sy then we must sé?y = Py becausé
= Su must correspond to the state of maximal probgi#it. We will then have:

_Su-8e)
(30) P(e=Pue "

Naturally, the more th&#¢) is small and distant froi8y , the smaller that the probability
P(¢) of the fluctuating state will be. It results ing(30) that the mean value &j — &)
is:

(31) S, - 99 =k

We can apply the preceding formalism to the plartin contact with the hidden
thermostat, which is a very complex system, byngkhe parametesto be the variable
proper masd/, of the particle, and upon setting:

(32) K9 =%=k Mo,
my

Swill be maximal forMy = 0, soSy = &, and we recover the proportionality BfVip)
with ™™ and the formulaS(M,) = - k.
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In view of a comparison that will be made in the faliog paragraph, we recall that
in the era (around 1910) when Jean Perrin carried out tebragtd measurements of
Avogadro’s constant by studying the distribution in hemfigranules in suspension in an
emulsion under the action of a gravitational field, Srobbvsky devised his theory of
the phenomenon by using Einstein’'s method. The probatolitg firanule of mags to
have an altitude, which is measured from the base of the receptaclectirdtins the
emulsion, is given by Laplace’s barometric law ia tbrm:

_mgz

(33) P(2) = const.e T .
Upon settingS0) = 0, the corresponding entropy is:

(34) S2) =klogP(2) =- m?gz.

One easily finds:

. zP02 dz_ T

(35) Z="g—=—,
jo P(dz ™9
so:
(36) §=_Makl __,
T mg

The entropy of the granule, when normalized as we tlidiulates from its maximal
value that is equal to 0, when the granule is at the bbthe receptacle at the altitude

0, up to (theoretically¥ = — o for z = o0, with the mean valu& = -k

7. Overview of the results obtained up to now= We would now like to summarize
in a few words the picture to which the theory of thelde solution has finally led us,
now that is has been completed with the hypothesiseotiistence of a sub-quantum
medium that plays the role of the hidden thermostat.

The corpuscle is conceived of as being a very localizedmobeneity (a small
region of very high values of the wave field) inside twave, whose equation of
propagation contains the proper mass of the particlehdrabsence of perturbations (if
the proper mass has the constant vafye the corpuscle will regularly describe one of
the streamlines of the propagation of the wave, whicifiocms to the guidance principle.
However, the wave and its corpuscle propagate, one rs&ght“on the surface” of the
sub-quantum medium that plays the role of a hidden th&athcand as a result of the
energetic exchanges that take place between the hiddenostat and the particle its
proper mass is subjected to continual fluctuations that mafeverse a whole series of
segments of the streamlines in the hydrodynamical pictitiee propagating wave. The
corpuscle is then animated inside the wave, which coregtitat very small singular
region, with a sort of Brownian agitation, and tlewhat introduces the probability into
the predictions of wave mechanics and quantum physics.
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The image of a particle that follows, quite wiselysteeamline that conforms to the
guidance formula has exactly the same value as theéhahaes used in hydrodynamics
when one considers a fluid molecule as following aettajy in its motion that is
constantly tangent to one of the streamlines of hydraahyc convection. However, in
one case as in another, one must, in reality, superempabsordered thermal agitation
over this theoretical motion that makes the unit — idretorpuscle or fluid molecule —
constantly jump from one streamline to another. Kinal is only the totality of the
streamlines that gives a statistical picture of tlmiom of an infinitude of exemplars of
the unit, but this does not at all imply that each unésdoot have well-defined position
and motion at each instant.

If we now return to the experiments of Jean Petrantwe can say that a granule in
an emulsion that is subject to the force of gravity &a®rtical trajectory that starts on
the base of the receptacle and remains immobiledowaitural trajectory, but the thermal
agitation of the hidden molecules of the fluid in whicls suspended constantly shifts it
to the right, to the left, up, and down, in such a wagt th always has a non-zero
probability of being found at a heightabove the base of the receptacle that is given
Laplace’s law. Likewise, in our present conception a¥&mechanics, the particle has a
natural trajectory that is the one that is assodiath it by the guidance formula, but it
is constantly found to be projected here or there byathtion that comes from its
contact with the sub-quantum medium and that is whatlhfingives a non-zero
probability of being found at no particular point of thevei¢hat is equal togy [~

If these ideas are shown to be indeed correct thesrmarkable premonition of
Einstein will then have been realized. In 1905, which Wwasame year in which he laid
down the basis for the theory of relativity and dismed the corpuscular aspect to light,
he also studied the theory of Brownian motion in great degmid he seems to have
always sensed that the intervention of probabilitiés imave mechanics indicated the
existence of a sort of continual Brownian motion aénophysical particles. Now, what
one calls Brownian motion is what one also callstflations in thermodynamic§').

(*Y | point out that in my note to th@omptes rendus de I'’Académie des Science80 July 1962, |
defined the entrop® of the hidden thermostat with the aid of the Hamiltonrdegral of the particle, when

. . h . .
taken over an internal periad= ————— of it, by setting:
mC*y1-5

_k

@) &=

3, loc Lt .

In the case of material particles (but not in thaplobtons, even if one considers their proper mass to be
slightly non-zero), the proper periaggl= h/m)c2 is extremely small, in such a way that it seemsilagie

to consider the masdd, as being constant during that very short duration. Harifayis then practically
equivalent to the definition (8):

M
b S= _k 0
) >,

that was adopted above. For material particles, farfmy which is simpler thanaj, thus seems to be
equivalent to §. However, the case of photons, which raises somcydar difficulties, must be the
object of a special examination.



CHAPTER IX

STABILITY OF STATES, ENTROPY, AND FREE ENERGY

1. Quantum transitions and the monochromatic state “prerogativé. — Since the
appearance in 1913 of Bohr’s theory of the atom, one tiabuéed a character to
guantum transitions, which make a quantum system passdnenstationary state to
another, that one might qualify as mystical. Indeatk oenounces the thought of
forming any sort of picture of them, and Bohr did not lasitto assert that any
description of them in space and time would be “transceatfenThis is what led
Schrédinger to say, ironically, that in the present quartheory one minutely describes
the stationary states, in which nothing happens, but efitselescribe the transitions,
where something does happen.

The idea that was introduced by the theory of the doubletien that wave
mechanics must, in the final analysis, rest upon nonliegaations permits one to think
that if the quantum transitions escape any descriptioheimptesent theory then that is
because they constitute essentially nonlinear proce3$ey. will be transitory processes
of extremely short duration that are analogous to dhes that one has already
encountered in several nonlinear theories in mechanicstaysicp when there is a brief
passage from one limit cycle to another. This veryetitre idea was already envisioned
some years ago byap and Destouches, and has been recently reprised biyoEbak,
Andrade e Silva, and Leruste, who have published some papénat subject that are of
great interest)).

Now, when Lochak and Andrade e Silva were informed pffirst note on August
1961 on the thermodynamics of the isolated particle; affehaving justifiably remarked
that my formulas that are deduced from the relati8s dQ / T apply only to reversible
processes, they suggested to me that the very briefittyey states that they envisioned
could have an irreversible character and could be accoetphayia very brief change in
entropy (or free energy), and that the passage framnstationary state to another could
involve the crossing of a valley of entropy (or mountzifree energy).

| was then led to reflect upon these interesting questmore deeply. In order to
comprehend the orientation of my thoughts on the subjegt] start with the remark
that in the usual theory one accords a sort of “prenogjatd the states that one can
qualify as “monochromatic.” | must specify that | intethe phrase “monochromatic
states” to mean, on the one hand, the stationarysstétthe quantum system that are
represented by a proper Hamiltonian function and areces$ed with a stationary wave
of well-defined frequency, but also, on the other handth& case of particles in
progressive motion, to the states that are assdaomth groups of waves that behave like
a monochromatic plane wave in all of their extensié the beginning of Bohr’s theory
of the atom, one considered the atom as necessarily bévays found in a stationary
state, and when, later on, one translated Bohr'sryh@do the language of wave
mechanics, one assumed that the states that wersee{me by a superposition of proper
functions had only a very fleeting existence, and thatatom was always grasped by

(**) Seebibliography p] and [L1].
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observations that were made in a stationary statewhatrepresented by one of the
proper functions. In the quantum theory of fields, ghme preoccupation is manifested
by the fact that the “occupation numbers” are, in géneeferred to monochromatic
plane waves.

In some very penetrating articles that were dedicated tritique of the present
guantum concepts, Schrédinger was, with good reason, sa@ighis prerogative that
was accorded to monochromatic states. He thoughtittiagis unjustified, because,
priori, a superposition state has a more general charaeterattmonochromatic state

(viz., the function¥ = ZC}H iIs more general than the functigh= W¥,). Meanwhile,

the success of the hypothesis that the monochronatesseffectively have a prerogative
hardly permits one to doubt, contrary to Schrdodingepsion, that this prerogative is
unjustified. How can we explain that?

The idea that seems to me to be capable of afforimglésired explanation is that
the superposition states will have a probability thatmsich weaker than the
monochromatic states, which will then be, in some wagtable, and that the quantum
transitions, which are very rapid nonlinear processesya tend to bring particles or
systems back to a more stable, monochromatic, std#tels obvious that from the
thermodynamic viewpoint the stability of a state must dtached to an entropy
maximum or to a free energy minimum. In order totbeestate of affairs more clearly,
we shall study a certain number of special casescoimamence, we shall first examine
two cases in which one deals with an isolated syshaidoes not exchange energy with
the external medium, and we shall verify by thesemgtas that, in such a case, and
conforming to the Boltzmann relatiod = k log P, it is the maximum entropy that
corresponds to the most probable state.

2. The case of a free patrticle in the Newtonian approximiain. — | shall first recall
the definition of the quantum potential. In generaltieiktic case, it is the quantityloc?
that is given by:

(1) MoC? = \/m(fc“+hzcz%,

which plays the role in the proper system of the partdleguantum potential whose
gradient, with the opposite sign, gives the quantum fo&iace the quantum potent@l
must transform like a quantity of heat under a changeatile@n reference system, and it
is defined only up to a constant, we can set:

(2) Qo =MoC® —mp Q=Qy1-4.
In the Newtonian approximation, we easily recaerexpression:

_#oa
2m a

3) Q=
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Now, consider a particle that displaces freely withmeihg subject to any force. Its
associated wave can be a group of waves that are $sanio a monochromatic plane
wave, and its motion is then uniform and rectilinearelese formed from a more general
superposition of monochromatic plane waves, as inrference or diffraction
phenomena, and then the guidance formula would assigmplicated motion to it. |
will show that under these conditions a superpositice $tas a mean entropy that is less
than that of a monochromatic state.

Indeed, for a monochromatic state, since the ampléumfethe wave is constant, the
potentialQ that is given by (3) is zero, while in a superpositi@aestthe mean value &f
over all positions of the particle in the wave wilt be

@ Q=- 1 jaf2

2
T :—h—jaAadr.
2m a 2m

Sincea is always zero at infinity, an integration by [gagives:
_ #2
(5 Q= —j(grada)2 dr > 0;
2m

i.e., from (2),M, >my . Therefore, in a superposition state, the medunevof the proper

massMp is greater than its normal mean vatage. It then suffices to recall that we have
defined the entrop§ by the relation:

(6) S=So—k%

m

in order to see that the entrofiy of a monochromatic state and the mean v8uef a
superposition state will have the values:

@) Sh=S—k §S:S()—k%<sm,

which indeed shows that the monochromatic statéchwhas an entropy that is greater
than the superposition state, must have a higtedsapility and greater stability.

3. The case of the collision of two particles: The case that we just studied was
very simple because we considered an isolateccfgartiVe shall now envision the more
complicated case of the collision of two particles, which we always take the
Newtonian approximation. The problem was treateidguwave mechanics in 1927 by
Max Born, and it was at that moment that he intoedluthe probabilistic interpretation of
the new mechanics for the first time.

(* For the extension of this argument to the cagh@Dirac electron, see the Appendix.
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We assume that at the initial instant the two padidre sufficiently distant from
each other for there to be practically no interactand that each of them is carried by a
train of waves that is assimilated into a monochramatane wave. The wave function
in configuration space then has a fofnthat is equal to the product of the individual
wave functions of the two particles. The interactiiegins when the particles approach,
and the calculation that one does in the usual thearyio our view, be interpreted in the
following fashion: There is first a linear and causallation of the Schrodinger wav#
in configuration space. The functio becomes a superposition of the Fourier

components of the fort = Z| ¢, , which corresponds to the totality of the correlated

individual wave propagationg andv; in physical space. In the classical calculation that
was developed by Born, one then assumes that everything kegpénat the end of the
collision, a process is briefly produced that has destrdlge phase relations between the
Fourier componentd, , and which has the ultimate result that each optrécles is, at
the end of the interaction, attached to a train ofesathat are assimilated into a
monochromatic plane wave, while the global energlygrantity of motion of the system
are found to be conserved. The final fdH#nof the wave function in configuration space
therefore becomes equal to one of the functiéns which is the product of the final
wave functions of the two particles. In summationyehis a passage from the initial
stateW; to one of the final staté#, = Wy, a passage that haspriori, a probability of
occurrence [ [, from the laws of probabilities in wave mechanics. e Thassage
therefore comes about in two stages: The first omelaively slow, linear, and causal,
and is described quite well by the usual equations of wavean@as with the aid of the
evolution of the functiot!, while the second one is a very brief one thataspeding to
our conception of things, undoubtedly nonlinear, and involvdsief, but important,
exchange of energy and quantity of motion between the twiclpa. The description of
the second stage is completely absent from the usudlr liteory, and is simply
postulated with no attempt at interpretation.

We shall now attempt to prove that the initial s&atd the final state, which are both
representable by trains of waves that are assimilatedbt@chromatic plane waves, have
an entropy that is greater than that of the interatedsuperposition state. Up to the
present, the difficulty in proving this is that we have depetl the hidden
thermodynamics only for a unique, isolated particle, &atlwe must now generalize the
formulas that were obtained to the case of a sysfgrarticles. While reserving a deeper
study of the question for later, it seems natural to defime the Newtonian
approximation, the temperatufeof a system of two particles of massasandm, and
the total proper mass of the system by the formulas:

(8) KT = (my + mp) ¢
and
9) Mo &% = (my +my) ¢ + Q,

where Q is the quantum potential of the system that is definedsthyting with the
amplitudea of the wave¥ in configuration space, namely:
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e lda
(10) Q= hzl:m ~

Now, we have the following formulas for the enelfyand the Lagrange functiof

of the system, while taking into account the masss:
(11) {W: (m+m) é+ E+ W Q
L==(m+m)C+E-V-Q

where Ei is the total kinetic energy of two particles, avids the potential energy of
interaction. We eliminat&x , which depends upon the motion of the two pasi¢hat is

defined by the guidance formula, by subtractiifrom £, which gives:
(12) L=-2(m +m)c?— 20 +W-=2V.

SinceW — viz., the total energy of the system — is a tamtsandV does not depend
uponMo , we can write:

(13) L==-2MoC+ ...,

where the unwritten terms do not depend ulgign
Now, we know thats= J,, L/T, and upon taking formulas (8) and (9) into accpunt

we easily find:

(14) S=5 - 2kM0:SO & 2k

m+m Tmrm el

For the initial “monochromatic” state and for tfieal “monochromatic” state, we
haveQ = 0, sincea is constant, so:

(15) Sh=S-%

The term — R is appropriate, since the two patrticles are tinelependent and each give a
contribution to the total entropy that is equaktk. For the superposition state, we find,
from (14):

(16) §-g-x-—2X 5

(mi+mz)6Q’

where Q is the mean value @, calculated in configuration space where the pdiba

of the presence of the representative point ofsystem at each point is given B
Taking into account the expression (10) @ra calculation that is entirely analogous to

the one that we made in physical space in ordebtain formula (5) shows us th@ >
0. The comparison of formulas (15) and (16) tHemws us immediately that:
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(17) S <Sn.

We thus recover our preceding conclusions on the ihisyat superposition states, and

we see that the brief, transitory process that spmeds to the passage from the state

ZC,HJ, to the final statédy is accompanied by a brief augmentation of the entropy,
|

conforming to the ideas of Lochak and Andrade e Silvae ihial and final states are
monochromatic ones that correspond to the v&ue Z of the entropy, so we can
represent the situation by the diagram in Figure 8.

In this diagram, the solid curv&B schematically represents the first stage of the
collision, which corresponds to the causal, linear ewwiubf the functionW that is
usually calculated, while the dotted lif&C represents the brief and undoubtedly
nonlinear— transition, which, after crossing a valley of entropsings the system from
the superposition statto the monochromatic final stawith a brief augmentation of
entropy.

S
S - X A C
B
t
Figure 8.

4. Introduction of free energy into the hidden thermodynants of particles.—
We just studied two cases in which a particle or systasolated and does not exchange
any energy with the external medium, while being in acintonly with the hidden
thermostat. We then found that the stability of tiaes corresponded to a maximum of
entropy, and that, without a doubt, the same thing shautdule for all other cases of this
type. However, the case of systems that can exchamggyewith the external medium
must be different. In his very interesting note onilAp®63, Lochak insisted upon the
fact that in order for a quantum system to be capablexciianging energy with the
external medium the stability of the quantum statest mmsespond to a minimum of a
“free energy” function of the forrk = U — TS The quantum states of the system that,
except for the state of least energy, are only matkestwill correspond to a series of
small bowls of free energy on the slope of a mountdifree energy. This conception
seems exact to us, but there is good reason to makefithaateof that free energy more
precise, since it is not precisely the same agrttise usual thermodynamics.

Let Q denote the quantity of heat that is given to a particlhbyhidden thermostat,

and let Q denote the quantum potential of that particle. Themddas for our
thermodynamics give us:
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(18) S:S)—k%:so_k—k_Q :S)_k—g
m m,& T

in the proper system of the particle, so:
(19) 0Q=-TdS=N.

It is essential to note that, despite their equatlitg, quantitie)Q and &Q have very
different physical senses: Indee®) is the quantity of heat that is exchanged between

the hidden thermostat and the particle, wiieis the variation in the proper mass of the
particle that results from it. The hedtcan circulate only between the hidden thermostat

and the particle, and cannot intervene directly in digpamics of the particle or its
exchanges of energy with the environment, or else grentbstat would not be hidden.
The energy of the particle can be written:

(20) W=myc?+Ec+V+Q,

. . : . N M, c?
whereV is the classical potential energy ahgdis the kinetic energy——=— — My ¢?,

J1-5?
which reduces ta; my V2 in the Newtonian approximation, being the velocity that is

defined by the guidance formula. LEbe the external work done — i.e., the energy that
is given to the external medium by the particlewe set, by definition:

(21) U=E+V

then conservation of energy imposes that we mugt:wr

(22) d=-MWN=-JU +Q),
and if we adopt:
(23) F=U-TS

as our definition of free energy then we will have:
(24) A=-JU+Q) =-AdU-T9 =- .

We thus recover the classical formufa = — J&; this entails that the most stable state

corresponds to the minimum valueFof

However, we must remark that the definition (28ttwe adopted for free energy is
not identical to the one that is adopted in thealshiermodynamics. Indeed, in that
definition, one considers a body that contairtetal mechanical and thermal energy
and which can exchange heat and work with the enmient. One is then led to write:
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(25) A =3Q -dI,

oQ being the heat that receivedby the bodyfrom the environment here, arfl” being

the work that the bodgoes orthe environment.
Upon setting:

(26) F=U-TS
one obtains:
(27) a=-JU-Tg =-oF

for a reversible transformation. However, thingsdifferent in the problem that we are
studying. We have a particle whose energy is given bydta (20). That particle is in
contact with the external medium, but it can recawerovide only work with it — i.e.,
ordinary mechanical energy. It is likewise found to ibecontact with the hidden
thermostat, with which it can receive or provide onlythegh a corresponding variation
in its proper mass. Conservation of energy must bel yali the exchanges of energy
between the particle and the external medium, whschni abstraction made from the
presence of the hidden thermostat. Its presence will belymanifested in our
calculations by the necessity of taking the mean ovepai#ion of the particle.

It was these circumstances that led us to take thaeitawf (21) for U, which is
different from the usual definition of thermodynamitstt we just recalled, since our
qguantity U does not represent the totality of the energy in theteay considered.
Moreover, when we sdé¢t = U — TS we obtained a definition of free energy that dgfe
from the one in classical thermodynamics, firstlbfleecauseJ is defined the same way
in the two theories, and also beca&ses no longer the entropy of the system considered
(the particle does not contain heat in the form ebdlered calorific energy), but that of
the hidden thermostat, which is a heat reservoir for it

Briefly, the essential reason for the differencat thxists between formulas (24) and
(27), which appear to be the same, is that a particletisamrmacroscopic body that
contains heat in the form of internal molecular agpin.

5. Examples of applications of the preceding formulas: We shall now give some
applications of our definition of free energy.

a) Electron in a hydrogen atom- As an example of the application to a quantum
system, we consider the simple case of an electrenhydrogen atom, while limiting
ourselves to the completely stationary case, in wthehguiding velocity is zero. One
then has:

2
v=-2.
r

Now, | have proved in my book on the theory of meafiéie pp. 76-77) that in the

theory of the double solution the virial theorem takesfolnm:
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(28) 2(E +Q)—(rLgradv ) =0,
which gives:
(29) V+2Q =0

here, withEx = 0 and-(r [gradv ) = V. The means are taken witH|[%; i.e., over the

Bohm-Vigier perturbations.
As in the quantum stat&s+ Q = const., no matter what the fluctuating position ef th
particle is in its wave, we will have:

(30) AV+Q) = oV +Q) =1V =-3Q =T J5.

One easily sees that for the transitions with tméssion of energy, one ha®/ < 0
and 5Q > 0. Hence, for these transitions:

(31) ST=-3(V +Q) =-1V = Q.

The reduction of the potential energy thus simultangozminpensates for the production

of external work and the augmentatid@ of the proper mass energy. One sees that here

the conservation of energy obligates the enti®py diminish. The stability of the states

will thus be determined by the reduction of the free gnétgas we have defined it, and

not by the augmentation of the entrd@pwvhich is in accord with the concepts of Lochak.
Of course, if there is a supply of external enedy< 0) thenV + Q augments, where

the augmentation df simultaneously accounts for the supply of externatggnand the
reduction of mass ener@ythat accompanies an augmentation in ent®py

b) Case of a linear harmonic oscillator. In the case of stationary states of a linear
harmonic oscillator, the phageof the wave can depend upon only time, and the guiding
velocityv = - 1/mgrad¢ is always zero. As for the potential energy, & tiae formv =
1Kx?. One thus had =V =1Kx’. Now, the virial theorem (28) gives us:

(32) Q=V

here. One can thus write:

(33) U+Q=V+Q=V+Q =2V =2Q

and

(34) T=-JV+Q)=-AqU-T9 =- 20V =-240Q.

When the oscillator emits energy into the envirentmthe two potential¥ and Q
diminish in mean by the same quantity. Contraryvwat happens in the case of the
hydrogen atom, the reduction \dfis accompanied by an augmentatiorSobut there is
always a reduction F =U -TS
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c) Case of a particle that does not exchange energy with the environm#afetshall
study the case of a particle that is placed outsidengffeld (Vv = 0), and which
exchanges no energy with the environment. Its variatiesergy can then come only
from variations in the proper mass that are due to thethaiais absorbed or provided by
the hidden thermostat, and here, as we have seen, wexpest to see that stable states
correspond to maxima of the entrdfy

We shall again compare two states of the particla i same energy: The one is
the statam, for which the wavé¥ can be assimilated into a monochromatic plane wave,
while the other is the statg for which the wavéb is a superposition of monochromatic
plane waves of the same frequency. In the stat® is zero andF, reduces to the
kinetic energy. In the sta® Q is non-zero, and one can prove ti@at> 0. Since the

energyEy + Q remains constant, we have:
F=E+Q=E+Q>0

in both cases. However, since, by hypothesis, extenndk 7'is zero, we have:

(35) Ok = GnEx + AR = 0,

for the transitiors - m, so:

(36) 3,Q =-T4,,S=-Q, >0,
and, in turn:

(37) 0,.S>0, J,E >0.

Therefore, during the transitioh— m there is a simultaneous augmentation of the
entropy S and kinetic energy. For a particle that exchangesemergy with the
environment, the “monochromatic states’are more probable than the superposition
states and correspond to a maximum of entropy, as wealr@agly seen in paragraph 3.

6. Conclusions.— We can summarize the preceding by saying: “In the case of
particle or system of particles that do not exchanggggnwith the environment, the
stability of a state corresponds to a maximum of entrdpythe case of a system that can
give or absorb mechanical energy from the environmeich(as a quantum atom, which
can emit or absorb a photon, as well as exchanggenath an external particle under a
collision), the stability of a state corresponds tmiaimum of a suitably-definefree
energyfunction.”

One can further envision other cases: For exampé#d, af a quantum system in
contact with an external macroscopic thermostat wathperatured. One knows that
under these conditions, from the Boltzmann-Gibbs caabmigstribution law, the
quantum energy staf, has a probability of being realized that is proportidoa =’ .
Since, to our way of thinking, any particle is found toifbenergetic contact with the
hidden thermostat, one is led to conceive of two kindsthefrmodynamics that
simultaneously come into play: An “external” thermodynics that is due to exchanges
of heat between the system and the macroscopic tsatmand an “internal”
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thermodynamics that is due to exchanges of heat hatthidden thermostat. In the note
that was cited in paragraph 4, Lochak has insisted upon tlmé pbp making an
interesting remark on the subject, but the problem obviodesigands to be examined
more closely.

In conclusion, we would like to draw attention to thesel link that exists between,
on the one hand, our hidden thermodynamics of partaelsthe conclusions that we
have inferred, and on the other hand, the notion oftquapotential and variable proper
mass that are characteristic of the dynamics of guidandethe theory of the double
solution. It seems probable to us that the theorhefdouble solution, when completed
with the thermodynamics that we sketched out in this voluwiebe called upon to play
an important role in the future developments of quantursipfy




APPENDIX

On the instability of superposition states in the case ohé Dirac electron

On page 200 of the work cited in numb&] pf the bibliography, I gave an
expression for the variable proper mass of the Directreln, namely:

(1) Mo = —0_ [-j j#,

wherej, is the “current-density” quadri-vector of the Dirac theoNow, one hag, = o
Uy, with u, U = - ¢, which permits one to write:

®) Mo= 3o 0.

If one defines the two well-known invariants of thedgitheory by:
(3) Q =W'Y=yyy, Qo =WY s s 4

then one of the classical Pauli-Koffink relationsegyv

(4) P =-juff =Q2+Q2.
From (2), (3), (4), one thus has:

2
(5) Mo =My 1+& .

2
1

However, in Dirac’s theory, the invaria@ is zero for monochromatic plane wave,
while it is non-zero for a superposition. Since #ntropy of the hidden thermostat was
defined in a general fashion by the form8la S — Mo / my , one quickly sees that one
has:

(6) S <Sn.

Here again, one arrives at the result that therpasition state is less stable than the
monochromatic state, and one sees the simplicitytugh this conclusion was deduced
from formula (5).
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