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INTRODUCTION

In the present pamphlet, we would like to summarize tiieenpts that we have been
pursuing for some time with an eye towards constructingva theory of the photon and
the electromagnetic field of the light. Even if @égempt will be shown to be insufficient
at the end of this account, we believe that the ideststteuggests and the analogies that
it suggests are very interesting in themselves, to ttenethat they would merit some
attention.

It seems useful to us to first point out the geneleds that have guided us in that
attempt, which will lead us naturally to establish thenglathe present article.

*

* *

The development of our knowledge of light, notably i kst century, has permitted
us to establish a certain number of facts, even thoughamea longer abstract to any
general theory of luminous phenomena from them. Ifisrte interpret interference and
diffraction, then one must first confront the necegssitrepresenting the propagation of
light by the propagation of waves. One must then atithe character of transversality
to these waves in order to account for polarization.redeer, the admirable synthesis
that was realized by Maxwell obliges us to attribute antedmagnetic nature to light.

Aside from these essential characteristics of Jighperiments during the last thirty
or so years has revealed some other things that aldigereturn to the older corpuscular
concept, at least to some degree. Above all, iteagptiotoelectric effect and the Compton
effect that have given us the experimental proof dfgh@nular aspect of light.

Today, one is then forced to assume that light possesd the same time, a
corpuscular aspect and a wave-like aspect, and one mustfdo@ theory that can
represent the coexistence of these two aspects. Eomtment, believe that this
synthesis has been realized completely in wave mechalmdsed, this new mechanics
has its point of departure in the idea that there mdg®ason to construct a general
theory that intimately associates the notions ofevand corpuscle for matter, as well as
for light. The successes that have been enjoyed bydda insofar as the elements of
matter are concerned — electrons, in particular — I@esn marvelous, as one knows.
Notably, it has acquired a splendid direct experimerdafienation by the discovery of
electron diffraction in crystals (by Davisson and Getni@omson, et al.); it has allowed
us to revive and extend considerably all of our theoriesatomic and molecular
phenomena.

However, aside from light, the success has been mes$f ¢omplete. Wave
mechanics has even been able to establish some meldape between wave quantities
and corpuscular quantities that are classical today, rendadid for the photon as much
as for material corpuscles, but the edification of thasis for a complete theory of light
has encountered great difficulties. In the presenchesktdifficulties, certain physicists
even seem inclined to doubt the existence of a true symretween light and matter
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insofar as the nature of their duality is concerneql.ti@t point, we have a completely
opposite opinion. The symmetry between matter and tigtitserves as the basis for the
development of wave mechanics is so mentally satisfihat) it seems to us to be the
profound reason for the success of the new theoriesteathas we see things, one will
now derive no benefit from abandoning them.

Nevertheless, there is one undeniable fact: The ddigatheory of light, although it
has served as the model for the dualistic theory ofemast presently lagging behind its
younger sister. What will explain this paradoxical Pact

One of its causes is certainly the form in which weechanics has made its rapid
expansion. Indeed, that form is not relativistic. Amesult, it can be applied only to
corpuscles whose velocities are very small comparegddad will thus be inappropriate
to photons. Moreover, it contains no element thatpeasmit one to define a polarization.

Another cause of the same fact is that the photonepsss certain properties that
neatly distinguish it from the electron. First, ph&owhen they are numerous, obey
Bose-Einstein statistics, and not Fermi-Dirac stasstike electrons. As a result, in the
photoelectric effect, the photon disappeathat is, it seems to be annihilatednd there
exists no analogous property for material corpuscles. the® senses that in order to
construct a theory of the photon, one must, in trst filace, employ a relativistic form
for wave mechanics that involves symmetry elementsplikarization, and in the second
place, introducesomething elsan order to differentiate the photon from the other
corpuscles.

The first part of this program is realized immediatétyne replaces the original form
of wave mechanics with the more elaborate form theddDgave it in his theory of the
magnetic electron. Dirac’s theory is indeed relativisat least, in the sense that it is
applicable to corpuscles that possess any velocity umediriting value ofc. In
addition, it introduces some symmetry elements thateptea distinct lineage with those
of the polarization of light, and permit one to defs@me electromagnetic quantities
(proper magnetic moment and proper electric moment)atieaattached to the corpuscle.
Nevertheless, it does not suffice to assume that th&ophs a corpuscle of negligible
mass that obeys the equations of Dirac’s theory bedhesmodel for the photon thus
obtained will have — so to speak — only one-half the symymet a real photon;
moreover, it must obey Fermi statistics, and it banannihilated in the photoelectric
effect. Something more is then needed.

One can try to introduce this “something else” in thdowahg fashion: One can
assume that the photon is composed, not of one Bagumiscle, but two of them. One
can account for the fact that these two corpuselesr semi-photons— must be
complementary to each other in the same way tlegpadisitive electron is complementary
to the negative electron in the Dirac theory of ®31(). Such a pair of complementary
corpuscles is capable of being annihilated upon contact vattemand giving up all of
its energy, and that accounts for the characterisfitee photoelectric effect perfectly.
Moreover, the photon is then composed of two elemgmarpuscles, so it must obey
Bose-Einstein statistics, which conforms to experimeiat,(Planck’s law). Finally, this
model for the photon permits one to define an electroetagfield that is linked to the

() The word “complementary” is therefore employed heredorapletely different sense from the one
that Bohr defined in his theory of complementarity.
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probability of annihilation of a photon, which is a fidlsat has all of the character of
Maxwell’s light waves.

This new conception of the photon implies the existeot a type of elementary
particle (viz., semi-photons) with charge and mass edoakero — or at least,
considerably smaller than that of the electrothat obeys the Dirac equations, and as a
result, will be endowed with spin. We shall have tareixe the possibility of identifying
the semi-photon with the “neutrino” that theoretigdrequently speak of today.

It is true that an important difficulty exists in thew theory that is due to the fact that
the principle of superposition is not generally satisfiy the electromagnetic fields that
it defines. That difficulty is linked to the very asyratric form in which the theory is
first presented to us, and we shall point out a more ®tnonconception that might
possibly eliminate it.

Having thus summarized the main aspects of our attemptjliygesent it according
to the following plan: We first recall the princiglef Dirac’s theory that will serve as the
basis for our research. Conforming to the spirit ofntua theories, we are then forced
to find operatorsthat correspond to the potentials and electromagfietds that are
attached to a Dirac corpuscle, and we examine the conssgueh these definitions.
Then, in order to give the fields the necessary physeade of numerical quantities that
measure the probabilities of interaction between maiter radiation, we shall call the
densities of matrix elementisat are defined with the aid of the corresponding opesato
and represent a certain “transition” of the Dirac cocfgugom an initial energetic state
to a conveniently-chosen final energetic state, tlwanfmonents of the electromagnetic
field that is attached to the Dirac corpuscle”. Upon mafy interpreting the formulas
that are obtained, we will then arrive at the conoapdf the photon that we suggested
above. We will then note that there are certafiicdities — or anomalies — in our theory,
and show that they pertain to the asymmetric charawftéhe presentation that was
adopted, and we point out a more satisfying symmetric yhediinally, after having
touched upon the main problem of the interaction of mattdrlight, we shall make the
physical significance of our hypotheses more precisegiardeto certain aspects.



SUMMARY OF DIRAC’S THEORY

We would not like to present the entirety of Diratheory that one finds in other
books {), but only recall some essential points that we kéle to use later on.

Dirac developed his theory for the electron. Welsigdpt a more general viewpoint
by calling any corpuscle whose wa¥eobeys the Dirac equation, with arbitrary values
for the two constants “electric charge” and “proper miassDirac corpuscle.”

If we take the case in which no external field actshencorpuscle then the equation
of propagation of the waw of a Dirac corpuscle will then be:

10¥ 0 0 0
—— :_aquk+a_ya2qu+a_Za3qu+Kluoca4qua

1
@ c ot 0x

where the indeX takes the values 1, 2, 3, 4. Theare the well-known Hermitian
matrices of the Dirac theory that satisfy the madquations:

(2) aa+aa=4,

whered; represents the matrix with Oiif j and 1 ifi =j, here. The matrices operate
on the indices of the functidfy according to the rule:

(3) aWy = i(a‘)ki W, .

We specify the values of theby setting:

0001 00O0i
0010 0 0-i
0'1 = ] az = . ]
0100 0i 0
1000 - 00
4)
0010 -10 0
000- 0-10
a; = 1 a,=
1000 001
0-10 0 000

in all of what follows ).

() For example, see the author’s boblélectron magnétiqueHermann, Paris, 1934.
() As a result of the manner in which we wrote the eqnatif propagation here, the matis will
have the opposite sign to the one that is employed in ourdyotile magnetic electron.
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Finally, recall that in equation (1) represents the proper mass of the corpuscle, and
that one has:

5) K= —.

The states of uniform, rectilinear motion with postienergy for a Dirac corpuscle
that correspond to monochromatic, plane wave solutbesjuation (1) are given by the
formulas:

(6) Wi =g W-Hx Al (=12, 3, 4),

wherea, S, yare the direction cosines of the direction of progagaand the constaiV
and p (viz., the energy and quantity of motion, resp.) areptad by the relativistic
relation:

(7)

2
— 12
&z p°+ pC®,
where the constaiW is assumed to be positive here.
In the formulas (6), theyx are four complex constants, only two of which are

arbitrary. For example, if we arbitrarily givag andas the complex value8 andB then
we will have:

(8) a=-UAT@rBBlp -, __[a-iHA-YElp

: a=A a=B.
W/ c+y,c W/ c+ y,c

Equation (1) makes theaxis play a privileged role. That is related e fact that
knowing of the functio¥ will permit one to answer questions in which gaxis plays
a special role, such as this one: What is the meare of the component of the proper
magnetic moment of the corpuscle alongztais?

Dirac proved that if one makes a change of ref@remystem by a Lorentz
transformation then the equation of propagatiotha new system will keep the same
form as in the old one; i.e., the form (1) with the samalues for thex; . The wave
function Wy will be subjected to a transformation that is esgsed by the linear formula:

4
9) W, = z/\quJI ,
=1

where the coefficienté\y depends naturally upon the change of coordindtas was
performed. The transformation (9) that the f&y are subjected to is not that of the
components of a space-time vector. In order to fire quantities that transform like the
components of a tensor, it is necessary to forraicebilinear combinations of tHéy, to
which we shall return later on. All of this is egpsed easily with the aid of the theory of

spinors, which we can present here.
*

* %
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The Dirac equations present a very remarkable peculithét first seemed to
constitute a grave objection against the theory, but wéeelms to have turned into an
advantage since the discovery of the positive electt@drits the existence of states of
motion with negative energy. Indeed, the relation éfjveenW andp does not cease to
be realized if one changes the sign/bf p. In particular, it results from this that any
solution of type (6), wher®/ is assumed to be positive, will correspond to an “irefers
solution of the form:

(10) W, = b er Mot Al k=1,2,3,4),

with the same value oV andp. Formula (10) represents a wave that propagates in the
direction a, £, yand corresponds to a motion with negative enerdly and a negative
guantity of motion . Since the corpuscular velocilymust be defined to be equal to
the group velocity in wave mechanics, one will have:

(12) u=

op
and, as a result, the velocity of a corpuscle thinmked to the inverse wave (10) must be
regarded as the same in magnitude and direction as thaoopuscle that is linked to the
wave (6).

Of the four complex constanbg in formula (10), only two of them are independent,
and if we giveb; andb, two arbitrary, complex valugs andD then we will have:

(12) b =C, by=D, by=-La*iAD+KClp \ __[@-ipC-yDlp
W/cty,c W/ c+ gy C

In particular, if one knows the constants (8) dsolution of type (6) then one will
obtains the inverse solution by setting:

. 0_ _pno - - - :_[(a'*'i,g)AD_yBD]p
h=-ai=-) b=d= A b= g=- (AR BID
b4:_aE:[yAD+(a—iﬁ)BD]p,

W/c+u,c

(13)

where the asterisk marks the passage to the complgugate quantity. This is easily
verified by settingC = - B' andD = A" in formulas (12). In other words, knowing a
positive-energy solutiotV;, W7, W;, W;, one can deduce the inverse solution from the
formulas:

(14) Wy =-(¥)" W, =-(¥3)", Wy =-(¥))", W, =-(¥))".

It is then easy to see that the four quantities:
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(15) ¢1=(W))"=-W,, @=(¥;) =], @=(¥;) =¥], g=(¥,)=-V¥
will obey the equations:

109,

(16) < ot

:—( 1¢k)— (a2¢k)+ o) -kucag) k=123, 4),

which we shall call the “complementary equatiortséguations (1).

If one is given the values (4) and (5) of theand «, resp., then (16) will be nothing
but the conjugate equation to (1). One can algdls#t one obtains (16) by starting with
(1) and changing the sign of the proper mass teant reversing the sense of haxis
with respect to that of theandz axes (i.e., passing from left-handed axes to 4tiginded
ones).

The existence of negative-energy solutions, siscti@), first seemed to be a serious
difficulty for Dirac’s theory, in that it was impe#le to exclude the associated motions.
Indeed, these motions will correspond to propertied are completely foreign to the
corpuscles that are thus animated. For exampleditnnishing their energy, one
increases their velocity; in other words, they &mete upon braking. Nothing like that
has been observed.

Dirac found an ingenious way of eliminating thdfidulty that is defined by the
existence of negative-energy states. He remarkat] ccording the Pauli exclusion
principle, one can have no more than one electeorsfate, so he imagined that all of the
possible negative-energy states are occupied imdhmal state of the universe. It then
results that there will be a uniform density of age-energy electrons in the universe,
and Dirac assumed that this uniform density wo@dibobservable. However, there are
more electrons than would be necessary to filbalihe negative-energy states, and the
surplus will occupy positive-energy states and titute the electrons that are manifested
in experiments. In the exceptional cases, a negatergy electron can pass into a
positive-energy state by a stimulated transitidhere will then simultaneously appear an
experimental electron and a “hole” — or “gap” —tlre distribution of negative-energy
electrons. Now, Dirac showed that such a gap mposed like a corpuscle that has the
mass of the electron and an electric charge theusl and opposite to t)( It will be a
corpuscle that is, in some way, complementary & ubsual electron, namely, an anti-
electron or positive electron. The theory of hdiiest left many physicists skeptical,
because no one had ever observed positive electfins Thanks to the beautiful
experimental work of Anderson and Blackett, as vasllOcchialini, we now know that
under exceptional circumstances, one can now sseivgoelectrons (i.e., positrons)
manifest themselves that indeed seem to corresponDirac’s predictions. These
positive electrons are studied in laboratories atmeverywhere today notably, by
Thibaud and Joliot in France. They are, in a semsstable, because if a gap encounters
a negative electron then they can combine. Theust rthen be the simultaneous

() See, notably, P. A. M. DIRAQ,es principes de la Mécanique quantigiesses Universitaires,
Paris, 1931, pp. 298t seq.

() It is appropriate to observe that DIRAC first soughidentify the complementary corpuscle with
the proton.
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disappearance of two electrons with opposite signstendrhission of radiation, and that
fact has indeed been indicated by the recent expesmoé¢ithibaud and Joliot.

Generalizing the Dirac concepts, we say that any corptisateobeys the Dirac
equations (with an arbitrary mass and charge) must coné@sfm a complementary
corpuscle that is to the former what the positivetedecis to the negative one. In the
case of the absence of a field, the wave equation ofotimplementary corpuscle will be
precisely equation (16). A comparison of equations (1) 46J \vill permit one to
perceive the relation that exists between complemegntapuscles. It is just that subject
that deserves to be elaborated upon.

Wave mechanics, in its original form with just one wawaction, makes observable,
physical quantities correspond to operators that belongheoclass of linear and
Hermitian operators. A denotes such an operator then the general principles\ad
mechanics will permit one prove that the mean valugnobbservable, physical quantity
that corresponds ta will be equal to:

(17) A= ijAw dr (dr=dx dy d

for a corpuscle whose state is defined by the wave funétion
One can also define the “mean density”:

(18) a =YAY.

On the other hand, one can form some very impogaantities with the aid of the
operatorA that were first introduced by Heisenberg that are theneais of a matrix.
Indeed, let¥, W,, ..., ¥, ... be the sequence of wave functions that correspotitkto
well-defined, stable energy states that the corpusclagsume (i.e., proper functions of
the energy operator). One calls the quantities:

(19) A= [WiAw, dr

the matrix elements that corresponds to the opefator

These elements are divided into two categories. Hneste will be diagonal elements
for whichi =j. They will be attached to a well-defined dynamicalestd the corpuscle,
and from (17), they will give the mean value of the qugmiwhen the corpuscle is in
that state. There will then be non-diagonal eleméntsj) that involve two different
states and correspond to the “transition” from theegti the state.

In the case of the absence of a field, the dyndrsiates of the corpuscle are defined
by monochromatic, plane waves:

(20) W = g W-Hax+ A+l
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and these are the functions that must figure in thendtion of the matrix elements.
Here, there are some difficulties that relate toftee that the waves define a continuous
sequence and occupy all of space. However, one camuient these difficulties by the
use of some mathematical tricks (such as the considemaftiproper differentials), upon
which we shall not insist.

Naturally, instead of considering the matrix elemehy,(one can also consider the
corresponding densities:

(21) ajj = HJFA\P]. :

All of these considerations can be easily transpagedhe Dirac theory, where one
employs four functionsW, instead of just one. Here again, one will make any
measurable, physical quantity correspond to a linear anchitieen operatord, but with
the essential extension that the operator can opewattgust on the variables y, z, but
also on the indek of the wave functions. The mean value of the physjaantity that
corresponds to the operatarfor a corpuscle whose wave functions g W,, W3, W,
will be:

_ 4
(22) A=Y WAy dr.
k=1
One can also define the density of the mean value:
4
(23) a=>yYAY,.
k=1

One can further define the matrix elements with ideo&the operatoA. LetW; 1,
Wi, Wis Wisa be the wave functions that correspond to a certaihdeéhed energy
state of the corpuscle that is characterized by the inaex set:

4
(24) A= [P WA dr.
k=1

We will again have to distinguish the diagonal eleméntsj) that are attached to a
stable state and give the mean value of the quakfity a corpuscle that is found in that
state, and then the non-diagonal eleme#t|f that is attached to the transition from one
state to another. Finally, in place of the matrixvedats (24), one can envision the
corresponding densities:

4
(25) aj = Zwﬁkij,k .

k=1

For the case of the absence of a field, the welhddfistable energy states are
represented by monochromatic, plane waves (6) or (10),hwihedine a continuous
sequence. One encounters the same difficulties tiatdoes in wave mechanics with
one function¥, and one eliminates them by the same tricks.
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The densities of the mean values of the matrix etémthat are defined by formulas
(23) and (25) have great importance in the Dirac theagalse they permit one to
introduce quantities that transform as tensors.

As a first example, we point out the quadri-vector deffkity that is associated with
a corpuscle whose waW is known. This quadri-vector has the components:

4
(26) p=D W, w==c Y Waw,,
k=1

in whicha denotes the matrix-vector whose componentsigres, as, a, .
One will have the relation:

op . _
(27) 5t div(ov) =0

between the quantities (26), which expresses the pernmanétize corpuscle.
Now, set:
(28) gL = i0'20'3, 0> = i0'30'1, g3 = ialaz, Oy = i a3,

Then form the quantities:

h & h &
SX:4—§ WoW, §:4—§ Wo,w,,
(29) ﬂk:l ﬂkzl
h & h &
S, =—> WoWw, =—> Yo W
z 47Tk:1 k3 " k S 477k:1 kU4 k

with the aid of these Hermitian operators.

They define the components of a space-time quexdtier (or, more precisely, a
completely antisymmetric third-rank tensor). Tilrstfthree components are the mean
densities of the moment of proper rotation for toepuscle in the stat¢). One then
obtains the components of the moment of propetiootdi.e., spin) by integrating the
quantitiesS,, S, andS, over space. Consider a monochromatic, planeisolof the type
(6). One easily confirms that if one Has O then the component of the spin alongzhe
axis will be equal tdn / 47z while if one ha#\ = 0 then that same component will become
—h/ 4 In the former case, one will havelextrogyrousvave, while in the latter case,
it will be levogyrous In the general case whekeandB are both different from zero, the
waveW will be a superposition of a dextrogyrous wave anevogyrous one.

For a complementary corpuscle that obeys equéti®) everything happens asaf
were changed to & , which will change the sign @k . Moreover, it is easy to verify,
with the aid of formulas (15), that the complementaorpuscle to a dextrogyrous
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corpuscle is dextrogyrous, while the complementary corpusch levogyrous corpuscle
is levogyrous.

Now, consider the six operators that are the comper&aa, andoa, . We form
the six components of a second-order, antisymmetriotevigh them:

4 4 h
30) p=>Wa,w, B, n=S Yaa,w, B B=_—°" |
(30) n kZ:; KOU L kZ:; KA Uy [ A7y, c

These are the mean densities of the “proper magnetroemd and the “proper
electric moment” of the corpuscle in the stdte Their integrals over space give the
mean values of these momenBis the Bohr magneton.

We finally note that the quantities:

4 4
(31) 1= Wa,¥,, =Y Waaaa W,
k=1 k=1

are invariants, the first of which undoubtedly relatethe proper mass)(
We conclude with an important remark. If an oper#&tas such that the density of

4
the mean valuez W /AW, possesses a certain tensorial character then the thamg
k=1

4
will be true for all of the densities of matrix elernt®of the formz WL AW, . Indeed,
k=1

the tensorial character will depend solely upon the mabpexhich theWy transform

4
under a change of space-time coordinates. For exathpleu,uantitiesz Wﬁ(w ;x and
k=1

4
z Wfka W, define the components of a space-time quadri-vector fovang ofi and
k=1

j.

() SeeElectron Magnétiquepp. 223.



FIRST VIEWPOINT

Electromagnetic operators that are attached to a Dirac corpuse

With the goal of constructing a theory of the photae shall now try to attach
potentials and electromagnetic fields to a corpuscle theysoequation (1). In order to
do this, in this paragraph we shall first of all place elwes at &first viewpointby
seeking to define operators that correspond to these mdgsait We commence by
defining the operators that correspond to the componentanofelectromagnetic
potential” quadri-vector by setting:

(32) A=-Ka, V=K L

A is the vector potential and is the scalar potentialk is a constant that we leave

indeterminate.
By symmetry, we introduce the operators that corresponthe components of a
“potential of the second kind” by the formulas:

(33) A =-K g, V=K’ .

In order to define the operators that correspond to tlus fizve proceed by analogy,
if we remember the formulas that couple the fieldsh® potentials in the classical
theory, and we take the six operators that are defined by

E= —gradV—}% = (— gradl]}—la—oj K,
(34) c ot c ot

H =rotA=-K rota .

By symmetry, we introduce an electromagnetic fieldtled second kind by the
formulas:

10A4' 100
H' =-grady' -———=K'| - grab, +— | ,
(35) g c ot ( grad, catj

E =rotA'=-K' roto.

The definitions (32) and (35) raise some difficultieat thve must examine. A first
difficulty is due to the presence of the operatdiot in these definitions, which is not an
operator that possesses a well-defined Hermitian ctearen wave mechanics. A second
difficulty consists in the fact that if the const#hts real then the potential operators (32)
will be Hermitian, while the field operators (32) wilbt) and the opposite will be true if
K is pure imaginary. The same difficulty arises Kérand the operators of the second
kind. We do not consider these objections to be very ghmeause we would not like to
attribute the character of operators that correspon@biervable quantities to the
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operators that we defined above, but simply the charatteperators that permit us to
define electromagnetic potentials and fields as dengifi@satrix elements that will be
attached to certain transitions when we pass to andegewpoint later on. Indeed, one
knows that the obligation for an operator to be Hermitighen it corresponds to an
observable, physical quantity in wave mechanics implles following fact: The
measurable values and the mean values of the observaht@yjoaist all be real (this is
physically obvious), but they will only be so if the ca@pending operator is Hermitian.
The hermiticity of the operator is thus coupled to et that quantity is measurable. It
is therefore possible to consider non-Hermitian opesatorwave mechanics, on the
condition that one not make them correspond to measugaéaldities.

We now establish some relations that are interedtmign the standpoint of their
correspondence with classical theory. Two obviou$ fektions that are analogous to
the first group of Maxwell equations are the operator itlest

(36) divH =0, rote = - 10H :
c ot

They signify that forany function ¥ with four components (which is or is not a
solution (1)), one has:

(387 divH W=0 (roté’ +%%—7ﬂ W=0.

In order to obtain relations that have the formtled second group of Maxwell's

equations, we apply the operators dand E%—f — rot ‘H to a functionW¥ that is a

o

solution to equation (1). We then obtain two catexs of terms, one of which contains
the derivative® / 0t, 0 / 9%, 0 / dy, 0 / 9z, and the other one, in which the proper mass
appears explicitly; we call the former “purely kileterms” and the latter, “mass terms”
(). Suppose that the purely kinetic terms outwelyh mass terms by a considerable
margin. This will always be realized if the propeassw is zero, but it will also be true
approximately fong # O if the motion of the corpuscle is sufficientipid, as one easily
confirms for. With that hypothesis, one will find:

(38) divE€ =0, G%—f— rot?—tj W =0.

These equations are valid only for functidisthat are solutions of equation (1), and
no longer identities that are valid for arbitr&y. One has already found an analogous
situation in the different attempts to do thise€&n article by Dirac, Fock, and Podolsky
in the Physikalische Zeitschrift der Sowjetuniond 2, 1932, pp. 458.)

Under the same hypothesis (viz., the predominafdie purely kinetic terms over
the mass terms), one will also find the relation:

() The proper masg, does appear explicitly in the purely kinetic terms. Nnaess, these terms can
depend upony if the constanK that figures in them depends upon it.
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(39) (1 %

——+diVAj Y, =0,
c ot

which is valid for¥ that are solutions of (1). This is the analogtithe Lorentz relation
between the potentials, which is a relation thapeaps here as something that is
equivalent to the Dirac equation (1) (when one naglect the mass term), which is
remarkable.

We could develop relations that are analogoushw relations (37-39) for the
potentials and the fields of the second kind, utes these relations have no classical
analogues, we believe that they are useless, stopdhere.

*

* %

We would like to conclude these considerationshvéh interesting analogy that
relates to energy. In Dirac’s theory, the Hamilbonoperator that corresponds to energy
has the expression:

(40) H=2 ali+azi+a3i + o Ca
K\ ~ox ay 0z
whose square is written:
C2
(41) H? = ,u§c4+FA,

whereA is the Laplacian operator. As is well-known, feoconsiders motions that are
slow enough that the kinetic term Anis small with respect to the massive termyif
then one can set, approximately:

A.

(42) H=poc +

2
0

This is the Newtonian approximation, upon whicé did rational mechanics rests, as
well as wave mechanics with one functi¢h Indeed, the term / & is the quantum
analogue of the squapg of the quantity of motion, and in turn, (1 £20) A is the
analogue of the classical expression (g ®* of kinetic energy.

Now, one easily sees:

(43) EW =K (—grad+(—1:%—?j Wy = K(= rot2 W+ k e o auWy).
|

One then sees that upon setting:

(44) &;:—Krotig, En=—K K iC O a,
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one can decompose the “electric field” operator iptoely kinetic field€; and a massive

field &, . As for the “magnetic field” operator, from its detion (34), it is entirely of
the purely kinetic type. One thus has:

(45) |H*|=|H| =K*(rota)® = K74, &2

2
= K2 (rot_gj = 2K2A = |1,
|

It then results that:
(46) (1€ |+ |H? |) = KA.

Since, from (42), the purely kinetic term bif is equal to (1 / ) A in the
Newtonian approximation, it is easy to identify it wittetexpression (46) by a suitable
choice of the constait ().

Without wanting to attribute too much importance to ttatement, it seems to us
that it might suggest the following conclusion: The sieel expression for the
electromagnetic energy density by one-half the sfithe squares of the fields can be
only a “Newtonian approximation” that is valid only whehet velocity of the
electromagnetic energy is weak with respeat, tan approximation that is, consequently,
unacceptable for the radiant energy.

() The constark is then found to depend uppg.



SECOND VIEWPOINT

Electromagnetic potentials that are attached to a Dirac corpscle

We now assume a second viewpoint. In the precedingnagta we sought to attach
operatorsto a Dirac corpuscle that would have electromagnémfgcance. From now
on, we shall seek to attach numerical quantities tb aumorpuscle that can be identified
with the electromagnetic potentials and fields.

From the physical viewpoint, the electromagnetic fi@tiight can be considered to
be quantities that govern the exchange of energy betmatier and radiation. To speak
the probabilistic language of quantum mechanics, one gathaathese fields determine
the probabilities of the transitions that the corputud takes the form of the “photon” is
subject to, which are transitions that correspond teekotanges of energy between the
photon and material elements. We must then seek to d#fsmeelectromagnetic
guantities that are attached to the photon as quantiies are coupled to the
“photoelectric” transitions that the photon exper&sjcsuch that these transitions must
have, as we explained in the introduction, the very apecharacter of being
accompanied by a sort of annihilation of the photon.

Guided by these general ideas, we will try to definestbetromagnetic fields of light
as densities of matrix elements that are attachea ¢ertain transition that the Dirac
corpuscle experiences, with the aid of which, we wilksteconstruct the photon. We
must employ the densities and not the matrix elentéetmselves, in such a fashion that
the fields will depend upon the coordinaxey, z.

In this paragraph, we suppose essentially that thelistdde of the photort) is a
uniform, rectilinear motion with positive energy. Thatitial state is therefore
represented with a wave of type (6) whose constantefted by the relations (7) and
(8).

But how do we choose the final state? Two remarkguate us:

1. The waveV of the final state must obviously be a solution of (1).

2. The final state must be determined when one is diweninitial state, since
otherwise there would be an ambiguity in the definitiotheffields.

We defer an examination of the physical sense of thmothesis until later, and
choose the final state to be the state that is repted by the inverse wave of the given
initial wave W™; i.e., the waveV™ that is defined by formulas (14) when one starts with
W,

Having assumed that, we define the electromagnetic paiertnd fields that are
attached to the corpuscle in the initial stéfeas the densities of matrix elements that are

generated by the operators V, & H of the preceding paragraph and relate to the
transition®* - W~ . In other words, we set:

() Or, more precisely, the DIRAC corpuscle that speak of.
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4 4
a=y (W)AW, v=Y (Y)Y,

(47) k:l k:l
e=) (W)EW,, h=) (W) HY,,

k=1 k=1

wherea, v, e, andh denote the electromagnetic quantities that weirdreducing. By
virtue of the remark that was made at the end cdgraph 2, the quantities thus defined
indeed have the desired relativistic invariancéiese are complex quantities, moreover.
That should not be too astonishing, because tkagead reason to think that in quantum
theory one must employ complex expressions fortmlemgnetic quantities’), The
only transition probabilities that have any phykiceeaning will be proportional to the
squares of the field moduli, moreover.

One can write formulas (47) in another way byadtrcing the functiongy that are
defined by formulas (15).

One then finds that by henceforth writitg, instead of¥; , for ease of notation, one
will get:

4 4
(48) a=>y gAY, ey h=)dHWY,,
k=1 k=1

which are formulas in which there are no longer astgrisks.
Upon taking the expressions (15) for #heas functions of th&y into account, one
will easily find that:

4
z¢ka4q)k :O’ z¢kalaza3a4q)k: 0,
k=1

(49) k=1
4 4
> ¢0%, =0, > po¥,=0.
k=1 k=1

Upon then introducing the explicit expressions) (&4 the operator€ and? into

the definitions (48) of the fields, and taking tbquation of propagation (1) that is
satisfied by the¥y into account, as well as the relations (2), (284 (49), one will find
some new expressions for the fields, namely:

4 4
o
(50) e=K ke Y paa,W,, h=Kkuc z¢kTa4qu’

k=1 k=1

which, when combined with the first two of relateo(®8), will give us the expressions
that define the potentials and fields in our préesiesory.

() Notably, see E. NECULCEASur la théorie du rayonnement, d’apres M. C. G. Daywictualités
scientifiquesno. 56, Hermann, Paris, 1933.
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It would be easy to define the potentials and fields efsgtond kind with the aid of
the operatorsd’, ..., |H' |, of the preceding paragraph. However, by virtue of (48%et
potentials and these fields would all be zero.

We perform the complete calculation of the potentadld fields upon assuming, to
simplify the formulas, that one has taken the diogctf propagation of the initial wave
W to be thez-axis, which does not restrict the generality. Wedfwee makea = =0, y
=1 in formulas (6) and (8).

By then expressing thg« as functions of th&, using relations (15), one will then
find the following table by calculations that present néiatifties:

8, = KW +Wi-wi-w] =2k HE(B7- AR
a = Ki[W2 +¥2 -2 -7 =2K’UT°Ci(BZ+A2) P,
W
a, = 2K[W,W, - W,W,] = 2K = [2ABLP,
V=2K[W,W, - YW ] =2KKpE2ABEP,

W
8 = Kigpd(Wi +W3) —(Wi+W) =2 Kkt~ ( B*~ A)OR

€, = Kigol(W: + W) + (W3 + W] = -2K gty (B + A9 P
LAC?
€= KiC2[WW, +W W ] =2 Kk o2 AR

h, = —Kiu,C2I[W W, - W W ] = -2 KK,LJOCZp i(B2 + A%)CP,

_ _ Pre_
(51) h, = KigtoCL2IW, W+ W,W ] =2 Ko (B = A)OR

h, = Kky,c2i[W,W,+W W ] =0,

a table in which we have set:
(52) A:W+,uoc, p = g2M-27
c

An examination of table (51) will lead to someeir@sting observations. First of all,
the fields (51) are related to the potentials lyfdrmulas:

(53) e= E(—gradv—ia—aj , h= 1 rota.
2 c ot 2
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The factor 1/2 might be surprising. Here is its origin- Idenotes an operator that
contains the differentiation symbads/ dx, ..., @ / dt linearly then one will obviously
have:

(54) z¢quJk :_Fz¢kwk’

becausegc and Wy depend upon the space and time coordinates thrthghsame
exponential factor. We therefore already suspkat the present theory is not very
satisfying, because it does not treat the functignand Wy in the same way, one of

which is placed to the left of the operatods ... in formulas (48), while the other one is

placed on the right. What follows will show us gr@fundity of that remark.

If the proper masgp is small- or, more precisely, if one has ¢ < W - then the
componente, will be negligible, and the fields (51) will be the same position as the
electromagnetic fields in Maxwell's theory of thght wave for a light wave whose
frequency and wave length have the values:

ﬂ, A:L
h 2p

(55) V=

Here again, we find a factor of 2 that can sugous, but one explains its presence
easily by remarking that in the transitis® — W7, the Dirac corpuscle that we are
considering will pass from the positive energy\to the negative energy W. Its
change in energy is themM\2 and the frequency that is associated with it rbes2V / h,
from the quantum relation. Nonetheless, here agamore symmetric conception will
permit us to render the relations (55) quite natlager on.

For a negligiblee, we then obtain a plane electromagnetic wave tisat
monochromatic and transversal, and its directiopropagation will coincide with that of
the waveW from which it is defined. For that wave, the tfields will be equal ),
perpendicular to each other, and perpendiculdrgairection of propagation. Moreover,
according to the values of the complex constatsand B of the wave, the
electromagnetic wave can possess all of the claraof physically-realizable
polarization. Indeed, if one of the constaAtsand B is zero then one will have an
electromagnetic wave that is circularly-polarize aight in one case, but left, in the
other. If the constant®n and B have the same modulus then one will have an
electromagnetic wave with rectilinear polarizatiarmere the azimuth of the polarization
will be determined by the difference between trguarents of the complex constawts
andB. Finally, in the general case whé&eandB are arbitrary, the electromagnetic wave
will possess an elliptical polarization. We leahe verification of these results to the
reader.

*

* %

() Because theW = cp, roughly.



A new conception of light 21

It is interesting to see whether our electromagnetagnitudes (48) verify the
classical relations. Starting with the definitionsjeoeasily proves the following
relations:

—%g—h =rote, divh= 0,
56
( ) 16 2,,2.2
—azroth—ZK,uOca, dive= *u’c’v.
c

We indicate the proof of one of these relations; #s bne, for example. We start
with the equation of propagation:

10% _ 9 qw )+ (aWQ+ (@) rruga P (k=1,2,3,4).
c ot 0X

(57)

Multiply this by a4 on the left. By taking (2) into account, one wititain:

1 Jd¥,
58 —a
(°8) c * ot

waw)+ Wﬂ4o+—WyW)—mmW

Multiply (58) by ¢« on the left and sum over the indkx The first term that is
obtained in the left-hand side will be zero, bywerof (49). What remains is then:

(59) Z¢k|: (aa,¥ k)+ (0’20’4 k)+ (0’30’4 k):| = K,UOCZ¢k

Multiply this by the constari{« (4 ¢ and take (54) into account. We will indeed find
the last relation in (56). The other relationg56) are proved in an analogous fashion.

From (56), we conclude that if the terms/f are negligible (i.e., if one again has

1S < W) then Maxwell equations will be verified.
Moreover, it will result from the last two equai®in (56) that the Lorentz relation
between the potentials:

(60) 1ov +diva=0
c ot

will be verified. It can, moreover, be deducednir¢s7) directly upon multiplying by

4
K@ and summing ovek, since2¢ka4lv4 IS zero.
k=1



PHYSICAL INTERPRETATION OF
THE PRECEDING RESULTS

HYPOTHESIS ON THE NATURE OF THE PHOTON

We must now reflect a bit on the physical significaribat the preceding
considerations might have.

We have implicitly assumed that a Dirac corpuscle tietys equation (1) exists in
the photon. The photoelectric interaction betweeliateon and matter corresponds to a
transitionW® - W7, to which one attaches electromagnetic quantities (4®)se role
must be that of measuring the probability of that intewac But what does the waW
represent? It represents a negative energy stdte @fitac corpuscle, and that state must
be considered to be unoccupied before the transi#ion. W™, since that transition is
possible. We are then led to consider the photoniag bemposed of the set of a Dirac
corpuscle and a “hole” whose motions are coupled, becdney are animated with the
same corpuscular velocity in the same direction (reéfe the considerations that
accompanied equation (11)).

The transitionW® - W~ corresponds to the annihilation of the photon, so the
corpuscle with energW and quantity of motiop must fill in the energy gap W and the
guantity of motion -p, while giving up matter with energy2and quantity of motionf®
which would correspond to values of frequer@nd wave lengtid that are given by the
relations (55). If the constaBtin W* is zero thet?™ will be a monogyrous wave, and
the corpuscle in the initial state will have spi 47z Under the transitiod™ - W7, its
spin will pass fronh / 47rto —h / 47z and it will, in turn, give up a moment of rotatibn
27Tto the matter. On the contrary, if the constaig zero thed?” will be a monogyrous
wave with the opposite sense to the one n the prexedise, and the corpuscle in its
initial state will have spin equal toh+ 47z Under the transitionf™ — W, its spin will
pass from -h/ 4rtoh/ 47z and in turn, it will give up a moment of rotation ol £ 277to
the matter. Now, in the two special cases that wkeguavisioned (viz.A =0 orB = 0),
the electromagnetic wave that is associated withrévesition®™ — W~ will have, as we
have seen from our definitions, a circular polarizgtwwhich will be right in one case and
left in the other one. One then sees that the twoular polarizations of the
electromagnetic waves will correspond to the transefea moment of rotation that is
equal toh / 2ror —h / 27z respectively, from the light to the matter. Thesult is in
accord with the analyses that were presented by stimee authors'),

*

* %

One can present our hypothesis on the nature of the pimodomore symmetric form
whose importance we will understand better later omdnstorming the preceding image
in a manner that will correspond to the passage fromutars (47) to formulas (48),

() See DARWINloc. cit.
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precisely. Dirac’s argument has indeed shown usthieadbsence of the corpuscle from
the waveW™ of energy -W and quantity of motion p is equivalent to the existence of a
complementary of energlf/ and quantity of motiop whose wave is given by (15). We
can thus say that under our hypotheses the photon wilbbmpased of a set of two
complementary corpuscles wawsand ¢ are linked by the relations (15) that satisfy the
equations of propagation (15) and (16), respectively. That manner of presenting
things, which corresponds to the expression (48) for elmetgnetic quantities, allows us
to express the situation that was pointed out aboeewvery different fashion. The two
complementary constituents of the photon have the sm@eyW, the same quantity of
motionp, and the same proper masgs so the photon will collectively have an energy of
2W, a quantity of motion|2 and a proper masg@that are coupled by the formula:

@ = 20 + (20 &

(61) =
c

The photon is capable of passing from that inisi@te to a final state where the
energy, quantity of motion, proper mass, and spizaro (state of annihilation); that
photoelectric transition will correspond to the oaltannihilation of two complementary
constituents. The photon then gives up all oéntergy 2V and quantity of motion2to
the matter, which makes the relations (55) entinalyural.

As far as spin is concerned, first suppose Brat0 in the expression féP. One then
easily accounts for the fact that the two completamgncorpuscles each have spih 4
in the initial state. The collective photon wilen have spim / 277 and upon passing
through the photoelectric transition to the stdteeyo spin, it will give up a moment of
rotationh / 27rto the matter. One will likewise findk-/ 277in the case wher& = 0.

We finally note that the fact that we are consigithe photon to be composed of
two corpuscles of spih / 4rrraises difficulties that relate to statistics,waes pointed out
in the introduction. Indeed, photons certainly pB®se-Einstein statistics, which only
leads to Planck’s law of black-body radiation. Name knows that these statistics must
be followed by physical entities that are compos#dan even number of Dirac
corpuscles, since any entity that is composed obdoh number such corpuscles must
follow Fermi statistics. There is then a very sgoobjection against any attempt to
assimilate the photon to a Dirac corpuscle; it wahish at the moment when we regard
the photon as a set of two complementary Diracusuies.



NECESSITY OF A MORE SYMMETRIC THEORY
SKETCH OF THAT THEORY

We now arrive at some remarks that are of paramountrianpee. If we assume the
idea of a photon that is composed of two complemergarguscles, and if we reflect
upon all of the theory that was developed in the precemhnagraphs then we will arrive
at the conclusion that there is something inexact e ghesentation of that theory.
Indeed, we regard the photon as a set of two complamyetrpuscles whose wavis
and ¢ are coupled by the relation 15. It then results thatirtiial state of the photon
must be characterized by the set of two wave functired @. Now, cast your eyes
upon the definitions (48) of the electromagnetic quastitidVe see that the function
@ figureson the leftof the operator there, as if it were characterizirgfitral state of the
photon. It then seems obvious to us that the funafianust beto the right of the
operator, since, in reality, it belongs to the inigtdte of the photon, and the place to the
left of the operator must be reserved for the wavetion that characterizes the finial
state of the photon that is “annihilated” after the phetdsc effect.

It is easy to account for the fact that this defedhe theory is closely linked to the
abnormal factors of 1/2 in formula (53). Indeed, thesefadirise from the fact that the
electromagnetic operators in definitions (48) operate oy the function, and not
on the functiong. That is already one important reason for us tengit to ameliorate
the theory in the sense that was indicated above.

However, there is another reason that obliges us i@ et attempt that is much
more important. That main reason is the followinghe Ttheory of fields that we
developed in the last paragraph does not satisfy the sup@mpgsinciple. In order to
be able to recover the interpretation of classic&rfarence and diffraction phenomena,
it is indeed necessary that the following superposition pmde satisfied: “If the wave
W is the superposition of several monochromatic, plaaees then the electromagnetic
fields that are attached to the waWe must be obtained by the superposition of the
electromagnetic fields that correspond to each maooatic component o® taken
separately.” Now, it is easy to see that this istng with our present definitions. (This
is also the reason for limiting ourselves to the acakereW is monochromatic, up to
now.) For example, consider the simple case of eewa that is composed of the
superposition of two monochromatic, plane wavesand¥, . These wave¥; andW¥,
correspond to the waveg and ¢, under formulas (15), and if we then construct the
expressions for the electromagnetic quantities withattieof definition (48) then we will
obtain, in addition to terms of the form:

4 4
z¢l,quJl,k and z¢2,quJ2,k 1
k=1 k=1

some “rectangular” terms such as:



A new conception of light 25

4
z ¢1,k FY 2k
k=1

It is these rectangular terms that prevent the supé@gvoprinciple from being valid
for the fields, and we even see that the difficaitynes from the fact that the functions
@ andW¥ are separate from each other in the definition (48).

It is then necessary for us to develop a more synumiteory that will eliminate
these difficulties. We shall try to sketch out ttieory here.

*

* %

We start with the fact that the functiotsand ¢ of two complementary corpuscles
obey equations (1) and (16), which we transcribe explibgle in the form:

L0 S @+ 23 e L3 Y a3 a8
(62)
%%__xz( )i P~ Z( 2imPmt - 2(03) m? _K'uocz(a“) o o

where the indicesandk can take the values 1, 2, 3, 4.
Multiply the first equation in (62) by and the second one Ky, and the add them,
while remarking that th&’ and theg both have derivatives iy, z One then gets:

(63) 22 we) =3 [Z(al).. id +2(a1)kmw b }
10
+ Ea_y_;(GZ)” qJ|¢k _mzﬂ(az)kmwi¢m:|
10 4
+ EE_;(as)il l'IJI¢k +mz:1(a3)kmq)i¢m:|

+ KUC 2(04)” W 4 _2(04)kmwi¢m:|'

Now, we obviously have:

4 4
P = Za_km¢m and Wi = Zd| W
m1 m1

We then set:
(64) Dy =W o,

and define four matrices with 16 rows and 16 columns by timeufas:
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(A im :%[(0'1) i Om T(Q9) 04l
(Aiim = %[(az)n O — (@) (Oil,
(65) 1

(A&)ik,lm = E[(a3)il 5km +(0'3) km5il]’

(A =510 8 (@D B

where the alternation of signs in the right-hardesis essential. One can then write
equation (63) in the form:

100, 9 ) & 9
(66) EW - &Imz:l(pl)ik ,Imq)lm +a/ lmz:l( Az)ik ,Imq) Im + aZL;l( A‘s) ik,Imq) Im
K@) Y (A Py

or also in the symbolic form:
67) 9% - { 0

0 0 .
— A+— A +— A+2ku.cA | ibk=1,2, 3, 4).
c ot OXA ayA2 azpS Ho A‘} * ( )

To our eyes, equation (67), which represents tesysf 16 simultaneous equations
that relate to 16 components of the wave func@igrconstitutes the true wave equation
of the photon. From now on, we must study it fsrawn sake, with no concern for the
manner in which it was obtained. Indeed, we haason to again considgt and ¢
separately, while we must now consider these tweewanctions as both being based
upon the functiorb.

The matrice®\ are Hermitian, but it is essential to note tha¢ does not have:

(68) AA+AN=2];

i.e., the relations (2) are not valid for tAe This complicates the study of equation (67)
somewhat.

We immediately note a fact that seems to be dateBtquation (67) admits a
solution @° that is capable of representing the state of thaihdated photon. That
solution is the following one:

(69) ) = .

In order to see this, it will suffice to remarkathihe derivatives of the constaisare
all zero, so the only thing to be verified is that:
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(70) A4(Di(|)( = i [(24) e Omn — (A2)km Qe] Cem= (Aa)km— (Aa)xi

e nFl

is zero for all values afandk. Now, this is obvious, sinag, is a diagonal matrix.

That remarkable solutio®® obviously corresponds to a state of zero energy an
quantity of motion Y). It is thus appropriate for the representatiérihe annihilation
state of the photon.

Starting from that last remark, we shall quite unally seek to define the
electromagnetic quantities that are attached t@hiadon as being linked to the transition
® - ®° We take the following operators to be the etmuiagnetic operators, which are
an obvious transposition of the ones that we preshomade use of:

A=-KA, V=KI0O,
(71) 5=—gradV—Ea—A= K(— gra&}a—Aj
c ot c ot

H =rot A =-K rotA,

where A is the vector-operator with componerg, A;, As . We then define the
electromagnetic quantities by the formulas:

4 4
a= ) OAD,, v=) VD,
(72) i,k4:1 i ,k4:1
e=> O ED,, h=> OPHD,.
ik=1 ik=1

Upon appealing to (67) and (65), one shows bymaesdhat detailed calculation that
one can also write:

4
e=Kk(24, )cz DCAAD,,

i k=1

4
S
h= KK(ZIU())CZ U T AP, ,

i k=1

(73)

whereS is the vector-operator whose componentsAsé, iAz A1, iIA1 Az, which is then
analogous to the vector-operatom formula (28).

We can verify that formulas (73) are the geneasitins of formulas (50). For
example, one first has:

(74) (A1A4)ik,|m = i (Al)ik,np(Ah)np,lm

n, p=1

() 1t will result from what follows that the spin of tipaoton is likewise zero in that state.
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1
= 2 [(a1aa)i, m — (@108)km, A + (Q1)kel Qa)it — (1)1 (A)km] -
Hence, upon taking into account the Hermitian charadtdrea, along with their reality,
one will get:

(75) S OLAAC =T D Al0a), 8, ~(@@).d 10 = ¥ aa), S,

If one then refers to formula (64) then one wdkghat the definition (73) o is
indeed the prolongation of the definition (50), aode will easily make that same
statement for the other components of the fieldewever, our new definitions have the
great advantage over the old ones of combiningirthi@l solitary states of the two
complementary constituents of the photon into qust functiond®, and thus escaping the
objection of non-superposition. Indeed, it is o that our new definitions (72-73) will
satisfy the superposition principle, because if thitial state of the photon is the
superposition of two states whose wave functioashd? and®® then we will have:

4
(76) & =Kk2m) ¢ 3 BLAA(RL +O?)

ik=1

4 4
=Kk(2Lp) C Z ) AADY +Z D2 AAD? |, etc.

ik=1 ik=1

and there is indeed the superposition of fields.
On the other hand, since the functions that depgwh space and time coordinates
here are all on the right of the operator in thiniten (72), we are certain to have:

(77) e=-gradv - E%, h =rota,
c ot

with the abnormal factor of 1/2 in formulas (53).

*

* %

We would not like to develop the theory of equat{67) for the photon completely
here; we would only like to point out the broadk#s.

We have four wave functions in the Dirac equattarg of which — viz¥; andW; —
correspond to the spm/ 4/rand the other two — viz¥, andW¥, — correspond to spink-
[ 4t Hence, for any monochromatic solution there exlist two constanta andB that
indicate the proportions in which the dextrogyravsve and the levogyrous waves are
superposed in order to define the wave in questidare, we have 16 functior, and
we can see that they are divided into three groEpst, there are the eight functions
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whose indices are 11, 22, 33, 44, 13, 24, 31, and 42 (i.e., inditke same parity),
which correspond to spin 0. Then, there are four funstwhose indices are 21, 43, 23,
and 41 (i.e., indices with different parity, the fiegtwhich is even), which correspond to
spinh / 27z In generalthree constants will enter into a monochromatic solution of
equation (67) that will indicate the proportions with whiblat monochromatic wave is
composed of the superposition of the three “pure casastthrespond to the valuestD,
[ 2t and -h / 2rrof spin.

For example, envision a wadethat is plane and monochromatic and propagates in a
direction that we shall take to be thaxis. Set:

(78) A:w + 21 C, p = gfWt-p?
Cc

We easily obtain the following expressions for ¢he(}):

(79) D, =-ClP, ®,=+

One then easily finds the electromagnetic quantitiasate attached to the corpuscle
in the state (79) from the definitions (72-73):

() The constantsVandp are coupled by the relatiom? / ¢ = p> + (2u)? ¢%.
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a = A G-
=4K”° i(C,+C,) P
A
aZ_MCOEP
4KpC0EP
e, = - (- ¢)p
6 =- 4KK”° (G+G) [P
e =- 16KK,u 1OKALC ¢
= 4K'Z’°Cp C+CP,
0 h =P G-o)P
h, =0,

It is useful to compare table (80) with table (5&hd one confirms that they
correspond to each other by replaciig C1, C, with AB, A —B? A? + B respectively.
However, here we have three independent constastead of two. Moreover, the total
mass 2, of the photon replaces the mags of the unique Dirac corpuscle that we
considered previously. Relations (77) are obvipgatisfied by the expressions (80).

The components of the spin zero corpuscle thahagacterized by the constabd
give rise to a longitudinal electric wave, whichrisoreover, negligible ifoc> «<W. The
components of the spin k / 277 corpuscle give rise to a transverse wave, and the
polarization character of that wave will depend mploe values of the constars and
C, . If Cy is zero then one will have circular polarizatiom, the contrary, ifC; is zero
then one will have circular polarization with thpposite sense. I€; andC; have the
same modulus then one will find rectilinear polatian whose azimuth is determined by
the difference between the complex const&itandC, . Finally, for arbitraryC, and
C,, one will have the general case of elliptic paation.

From these few glimpses, one sees that the newdbthe theory preserves all of the
character of the old theory that is satisfying &fdinates the things that are not. A
more complete study of equation (67) would be vetgresting.



SOME FINAL REMARKS

We cannot conclude this pamphlet without saying a fewdsvabout the manner by
which the question of the interaction between mattdrradiation presents itself from the
standpoint of our theory. Indeed, that question is es$ebecause radiation is
manifested only by its action on matter, in such a vay the touchstone of a theory of
radiation is, by definition, the way that it permitsecto predict the exchanges of energy
between the material elements and radiation. Unfatélyy up to the present no one has
made a sufficient study of that problem, so here we cwdine ourselves to some very
brief observations.

In classical theory, as well as in quantum theory, wiscmodeled on the classical
theory by “correspondence,” the problem of the interadbetween matter and radiation
is, in some way, decomposed: On the one hand, thereadncterms in the equations
that are utilized for the prediction of the motionnodterial elements that translate into
the existence of the Lorentz force, which are termas plermit one to find out how that
motion is modified by the presence of radiation. @ dther hand, the right-hand sides
of the Maxwell-Lorentz equations, in which the quargigeand pov appear, translate into
the action of the presence and motion of electricggson the electromagnetic field and
permit one to calculate how a charged, material corpusctapable of giving rise to
radiation by its motion. That decomposition of thebpem of interaction is seen very
neatly, for example, in the classical interpretatdulispersion and diffusion, where one
begins by calculating the motion that an electron takegnder the influence of incident
radiation, and the radiation that is created by théanof that electron. If one reflects
on this then such a decomposition will seem artificiihe interaction between matter
and radiation must be described with the aid of just omeolgenous system of equations
that permits one to just as well predict the actiomagdiation on matter as the opposite
action of matter on radiation. In particular, ie ttase of elementary phenomena, it must
be possible to write an equation that will expressitiberaction of a photon with an
electron. That equation will be a wave equation thablves the functior of the
photon-electron system, and in which interaction temfisappear that translate into the
Lorentz force. Thanks to that equation, one can taEuhe probability for that photon
to give up its energy to the electron by its annihilafion, the photoelectric effect), and
one must find that probability to be proportional to sigegiare of a matrix element that
contains the previously-defined electromagnetic quantitiéswever, thesameequation
must further serve to calculate the probability of theerse process, in which an electron
gives up a fraction of its energy to an annihilated photonmbaking it leave the
annihilation state, which is a process that constitiltesemission of radiation by matter.
One must also be able to treat all of the questionsattgaconcerned with dispersion,
diffusion, the Compton effect, etc., with the aidlwdt very equation.

Here, we will content ourselves with some obseovatithat are entirely perfunctory,
without making any attempt to write the photon-electrgoation, since we are not
certain that we have found a satisfactory form for it

*

* %
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Our new conception of the photon implies the exisgtayfca new kind of elementary
corpuscle (viz., the semi-photon), whose charge and m@ugsenormously smaller than
that of the electron, which is a corpuscle that is amabwith spin and obeys the Dirac
equation (1). Now, certain physicists — such as PadliFeemmi — have already been led
to postulate the existence of corpuscles of that kirdder to interpret the apparent non-
conservation of energy during the emission of a continspestrum off rays from
certain radioactive bodies. These hypothetical corpsdthve been called “neutrinos”
by Fermi. Frances Perrif) (has shown that the neutrino — if it exists — must leamess
that is negligible with respect to that of the alect but nonetheless, it is not identifiable
with the photon, because one does not have thatl¢éseromagnetic field is capable of
acting on matter. This would be explained quite wethé photon were composed of a
neutrino and a complementary corpuscle (i.e., an @uoiirimo), in such a way that the
neutrino will be the semi-photon. Indeed, the isalateutrino obviously cannot be
annihilated, and in turn, will not possess an electromt@gfield. On the contrary, when
it is associated with an anti-neutrino, it will fomphoton that is capable of annihilation,
and will consequently have an electromagnetic field.

Once again, the neutrino exists only in the imaginatdntheoreticians. If
experimental research someday succeeds in exhibiting evidérecearpuscle of that
nature then there will be good reason to examine whehiege are not situations in
which two of these corpuscles are capable of forminigoiom, as well as other situations
in which a photon can disassociate into two of tleespuscles.

If the neutrino truly has no electric charge then oae hardly see how one can
distinguish it from the anti-neutrino.  The distinctiopetween corpuscle and
complementary corpuscle becomes rather theoretical Heowever, one cannot exclude
the possibility that the semi-photon can have a snchlirge & because the
complementary corpuscle would then have a chargese the photon would indeed be
neutral, which seems to be required by the impossibilitgediiecting light by even the
most powerful electric fields. In that case, it woblel possible to distinguish the two
constituents of the photonat least, in principle.

*

* %

Let us add one more word on the proper mass of the phdtoour theory, it seems
difficult to suppose that the mags of the semi-photon is rigorously zero. It is
important to remark that gy were not zero thethat would be one of the most important
constants in physicsThe non-vanishing of the proper mass of the photanwie have
already envisioned in previous wor {mplies certain difficulties. In particular, ther
will exist a critical frequency, above which, the étemagnetic field can no longer
propagate, and in the neighborhood of which, its velocikiybe roughly less than. We
do not see this as an insurmountable objection, but as veerbaently shown?, it
would imply the existence of an upper limit fag on the order of 18* grams, which is
10'° times smaller than the mass of the electron.

() Comptes Rendu97(1933), 1625.
(®) Doctoral thesis, Masson, 1924.
¢) loc. cit.



