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 In the theory of the spinning, magnetic electron that is due to Dirac, the electron 
possesses a kinetic moment (moment of quantity of motion) that is provided by its proper 
moment of rotation.  The kinetic moment – or “spin” – is represented mathematically by 
a vector density σσσσ : The spatial integral of that vector density gives the kinetic moment in 
question.  One shows that when one performs a Lorentz transformation, the three 
rectangular components of the vector σσσσ transform like the three spatial components of 
whose fourth component – viz., the temporal component – is zero in the proper system of 
the electron.  That result can seem strange at first because one is accustomed (and, in a 
sense, with good reason, as we shall see) to consider the three components of a kinetic 
moment as defining the components yz, zx, and xy of an antisymmetric space-time tensor 
of rank two, which seems to disagree with the variance that is found for the spin density.  
In order to try to shed some light on that question here, we shall study the relativistic 
variance of the kinetic moment of a rotating body. 
 

* 
*  * 

 
 Consider a body in which a point O′ describes a line in uniform motion.  Take that 
line to be the z-axis.  If the body is rotating then it will possess a kinetic moment about 
O′. 
 First of all, we can define an antisymmetric tensor of rank two M

�

�

 such that its 
components yz, zx, and xy are the three rectangular components of the total kinetic 
moment of the body in motion with respect to the origin O.  The non-zero components of 
that tensor will be: 
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in which the ∑ sign indicates summation over all the molecules that comprise the body, 
and px, py, pz, and W / c are the components of the world-impulse quadri-vector of a 
molecule.  How must one take these ∑?  Each molecule of a body has its world-line, and 
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one can take a point on each world-line that corresponds to the eight quantities x, y, z, t, 
px¸ py¸ pz̧  and W.  However, the observer that is linked to a reference system will always 
naturally perform the summation over the states of molecules that are simultaneous for 
him; i.e., ones that correspond to the same value of his proper time. 
 Suppose, to simplify (and this will change nothing in the results), that the body in 
motion is homogeneous, that its molecules are all similar, and that they all have the same 
proper mass m0 .  The observer that is linked with the system Oxyz attributes a certain 
velocity v to each molecule that varies from one molecule to the other, and he sees a 
number of molecules ρ dτ in the volume element dτ.  He then sets: 
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The integrals are extended over the entire volume V of the body in motion. 
 We would now wish that the Mik thus-defined should transform like the components 
of an antisymmetric tensor of rank two.  In order to do that, we consider a “proper 
observer” that is linked to the point O′ of the body in motion.  He employs the 
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coordinates x0, y0, z0 , and a time t0 .  If V = βc denotes the velocity of O′ with respect to 
the system Oxyz, and if we suppose that the axes O′x0 y0 z0 are parallel to the axes Oxyz 
then we will have the following formulas for the simple Lorentz transformation between 
the coordinates of the two systems: 
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 It is well-known that upon passing from the system Oxyz to the system O′x0 y0 z0 , the 
four quantities ρ vx , ρ vy , ρ vz , and ρ transform like the components of a space-time 
vector, namely, the current-density quadri-vector.  One will then have: 
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 Naturally, the observer properly defines the components of the tensor M
�

�

 by the 
formulas: 
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in which v0 is the velocity in the proper system of the molecule that occupies the position 
x0, y0, z0 at the instant t0, and ρ0 is the number of molecules in the element dτ0 . 
 If one wishes to express the quantities 0xyM , … with the aid of the variables x, y, z, t 

then one must make use of the following relations: 
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 The relation (6) is proved by taking into account the fact that the states of the 
molecules that occupy the volume element dτ0 at the instant t0 for the proper observer are 
not simultaneous for the observer that is linked to the axes Oxyz, in such a way that one 

cannot apply the usual formula dτ0 = 2/ 1dτ β−  here. 

 The relation (7) results from the relativistic formulas for the transformation of 
velocities, namely: 
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Upon taking (3), (6), and (7) into account, one will easily find that: 
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 Upon comparing this with (2), we will then find: 
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 These formulas indeed show that the components of the kinetic moment with respect 
to the coordinate origin transform like the components yz, zx, and xy of an antisymmetric 
tensor of rank two, but we shall see that they are not the quantities Myz , Mzx, and Mxy that 
represent the proper moment of rotation of the comoving body in the system Oxyz. 
 Indeed, if the observer that is linked to the axes xyz wishes to describe the rotational 
motion of the body in motion around the point O′ then he must imagine axes that are 
linked to O′ − for example, ones that are parallel to O′x0 y0 z0 .  Those axes coincide with 
Oxyz, but I shall now call then O′ξηζ.  The coordinates ξ, η, ζ of a point of the body for 
an observer that is linked to O are obviously: 
 
(11)    ξ = x, η = y, ζ = z – ct. 
 
 Moreover, the components of the quantity of motion of a molecule of the body –  to 
the extent that it is due to a proper rotational motion around O – will be related to the 
quantities px, py, and pz by the relations: 
 

(11, cont.) 0

2

2

, ,

translational quantity of motion ,

1

x y

z z

p p p p

m c
p p p

v

c

ξ η

ζ
β

= =

 = − = −
 −


 



De Broglie – The relativistic variance of the kinetic moment of a rotating body. 5 

since the molecule considered has a “mass of motion” that is equal to 2 2
0 / 1 /m v c−  

and its velocity of convection is βc in the Oz direction. 
 Now, the observer that is linked to O quite naturally defines the components of the 
proper kinetic moment of the body in motion by the formulas: 
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which leads to the values: 
 

(13)  

0 2 2

2 2

0 2 2

2 2

0 2 2

2 2

( )
( ) ,

1 1

( )
( ) ,

1 1

.

1 1

y z
x V

y x
y V

yx
z V

v v c
S m z ct y d

v v

c c

v c v
S m x z ct d

v v

c c

vv
S m y x d

v v

c c

ρ ρ ββ τ

ρ β ρβ τ

ρρ τ

  
  −  = − −
  

− −  
 

  
  −  = − −

  − −   


 
 
  = −
 

− − 
 

∫

∫

∫

 

 
Upon comparing this with equations (10), one will find that: 
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 For β = 0, one will get the results: 
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which are obvious a priori. 
 One then deduces that: 
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which are formulas that show us how the components of the moment of proper rotation S 
transform when one performs a Lorentz transformation.  If the velocity of O′ tends to the 
limiting velocity c then β will tend to unity, and the vector S will lie along the direction 
of motion. 
 In order to now recover the result of Dirac’s theory that we pointed out to begin with, 
we suppose that in any Galilean system we can define a vector density σσσσ such that one 
has: 
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 In the proper system of the body in motion, we will then have: 
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 If one would like to perform the integrations in the xyz system then one must replace 

dτ0 with 2/ 1dτ β−  this time.  Upon taking (16) into account, one will then find: 
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 The definition (17) then gives: 
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 The quantities σx , σy , and σz then transform like the three spatial rectangular 
components of a space-time quadri-vector whose fourth component is zero in the proper 
system of the rotating body.  That is in fact the result that was obtained for the spin 
density in Dirac’s theory.  When β tends to 1, the spatial vector σσσσ will lie along the 
direction of motion, which is a fact that plays an important role in the new theory of light 
that was proposed by the author. 
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