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PREFACE

In this little volume, | shall present to the sciBatpublic the present form of some
new concepts concerning the relationship of mechanicsttosapat | have previously
developed in various papers and articles, and which | fiesepted in summary form in
my doctoral thesis.

For the reader who is engaged in the reading of thik,wiis convenient to first
point out what the points are that | have assumedowitiproof. In the first place, |
assume and suppose known the entire theory of relativitgther in its original form,
which is called “special” today, or in its general forin. particular, | have made constant
use of relativistic dynamics, and | suppose that its foeddal formulas are quite
familiar to the mind of the reader. | have often erpptbthe tensor calculus and the
summation convention for indices. Nevertheless,témsor calculus does not occupy a
significant place here, and | have intentionally avoided complicated formulas,
especially in the chapter on gravitational fields.

| must point out the very special manner by which | hawsoduced the famous
“wave equation” in the course of presentation. In th&t,ghat equation was deduced
from the properties of elastic media and extendedhé¢ohypothetical ether that one has
charged with the task of transmitting light vibratioaesd whose singular properties are
not, all things considered, much stranger than thoseiofrmdern atoms. Much later,
Maxwell come onto the scene, and the wave equatioone@ consequence of the
properties of electricity, condensed into a compact farwhich the name of that great
English scholar is attached. These days, now thatrdtieians have recognized the
fundamental importance of the “Lorentz group,” there basn a certain tendency to
consider the wave equation to be a more general posttiate the formulas of
electromagnetism. In particular, that viewpoint waglent in the way that M. v. Laue
introduced the Lorentz group at the beginning of his treatiserelativity. | have
sacrificed that new tendency, by introducing the equatigragagation, out of hand, in
the first chapter.

In the second part of the book, | assume the existehtight quanta, and | seek to
show that this idea is not as incompatible with the addcepts as one might believe.
Today, | admit that | like a great many experimentengeha tendency to believe that
light quanta constitute an experimental reality.

Finally, in the third part, | have rapidly reviewed dlktatistical thermodynamics and
followed the lead of Einstein and Planck by assuming,defiaition, that the entropy of
a state is proportional to the logarithm of the nundfetifferent ways that the state can
be realized.

Those are the main points that | assume without pwaafe borrowing them from
theories that have already become more or lessadds3 he reader who wishes to know
immediately the interpretation of quanta that | havwagbb to construct upon that basis
would do well to refer to the final chapter, in which thatire book is rapidly
summarized.

It is indeed a pleasant task for me to acknowledge spert and gratitude to Marcel
Brillouin for having accepted this book into the preseniectbn of mathematical
physics.

Paris, 20 February 1926
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WAVES AND MOTIONS

PART ONE
THE DYNAMICS OF QUANTA

CHAPTER |

THE MATERIAL POINT CONCEIVED AS
A STATIONARY WAVE

1. Atomicity of matter and energy. — 2. The quantum relatio. Interpretation in space-time. — 4.
Rectilinear motion and plane waves. — 5. The matpdait envisioned as a point-source. — 6. Summary.

1. Atomicity of matter and energy.— The progress of physics over the last half-
century has shown the atomic nature of matter aslglaea possible. At the present state
of our knowledge, hardly any physicist would contest de@ ithat matter is composed by
combining some primordial elements (probably just two adfnththe proton and
electron), and that the simple objects of chemistfferdfrom each other because their
atoms are different assemblages of those primordethesfits. The volume that is
occupied by those elementary quantities of matter (texbent that such a volume can
be defined with the aid of our usual conceptions) is ceytaxaty small with respect to
our scale of measurement, so it would seem justifiedidoio consider the electron and
the proton to be the physical realization of the ctadstoncept of a material point in
mechanics?.

On the other hand, the theory of relativity presemswith a notion of great
importance: Namely, that of the identity of mass andrgy, or if one prefers, since mass
is the essential characteristic of matter, the idertf matter and energy. That
identification implies the very seductive consequena the conservation of matter
coincides with the conservation of energy, but ib gileses a grave problem. Indeed, the
theory of electromagnetism has accustomed us to cenameslectric charge to be
surrounded by an electromagnetic field in which its eneegides. Besides those fields
that are coupled to the elements of matter and patcipatheir atomic character,
electromagnetism also predicts the existence of fledds with a continuous structure.

() See FRENKEL, Zeit. Phy82 (1925), pp. 518.



2 Part One — The dynamics of quanta

They constitute the various radiations of all frequesiciHowever, if matter and energy
are synonymous terms then radiation will be a contindmuns of matter, and that is why
it can possess a quantity of motion, as Henri Poinshowed. We will then have two
types of matter to distinguish: A discontinuous one, whith be matter in the usual
sense of the word, and another continuous one, whitheviiadiation. Is that distinction
truly justified? Would it not be simpler and moreisfging to the mind to assume that
all forms of matter have an atomic structure? We ktieat for some twenty years now,
the evolution of physics has been leading us towards thpusmrlar theory of light.
Furthermore, electromagnetic theory cannot be intggahserved, since that would
lead to the absurd conclusion that matter is unstadoléends to transform into radiation
completely.

Today, we believe that it is necessary to attrilautetomic structure to all forms of
energy and to assume that they are organized arounthcartgular points or material
points (proton, electron, light corpuscle).

Certainly, the concept of an isolated material pasnbnly an abstraction. It is
nonetheless legitimate and necessary to first stuatystimple case.

2. The quantum relation. — Consider an isolated material point then, which is an

element of matter in the usual sense or a quantum iaticad It will be characterized by

a quantitymy — namely, itsproper mass— which will be equal to the mass that is
measured by an observer that is coupled with it. Teeryhof relativity teaches us that
the total energy that is linked with the element and oredsby the aforementioned
observer ism, ¢, in whichc is the universal constant that is called the speeiguf |\We
suppose that our quantum of energy is found in a Eucligégiom of space-time and that

it is not accelerated. Under those conditions, it e either at rest or in uniform,
rectilinear motion for any Galilean system. In paftdcuimagine two Galilean systems,
one of which is linked with the moving body, and the otifevhich possesses a velocity

v = Bc. If the energy isn ¢ in the first system then it will beﬁ in the second

J1-p5°
one. The difference between those two expressuihbe the kinetic energy of the point
in the second system, anddis small then it will reduce to the classical walu

1 2
Ly ¢

Having said that, we shall seek to introduce aileeity into the constitution of our
element of energy that will prepare us for the sotuof the enigmas that are posed by
guantum theory. Now, the idea that first preseritisaif to the mind of Planck was the
intuition of genius that he had when he introdutkd notion of a “quantum” into
science, namely, that mechanical energy should rbpoptional to the frequency of
radiation. Indeed, one also recovers that ide&wutite hypothesis of a quantum of light
and in the photo-electric formula that one derifresn it. It is also contained in Bohr’s
law of frequencies in a more disguised form. If afribute a completely general
significance to that idea then we will take theldaing proposition to be a basic
postulate:
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Whenever a material element, in the most general sense, possessesgy W in a
reference system, there will exist a periodic phenomenon inytb&ns that possesses a
frequency v that is defined by the quantum relation W = hv, in whichFiaigk’'s
constant, which is equal ®@55x107%’ erg-sin CGS units.

Let us first apply that statement to the system ihdinked with the element. The
postulated frequency will b& = mo ¢?/ h, and it will belong to a periodic phenomenon
that prevails all around the material point, and whighstitutes a singularity, just as the
electron does for an electrostatic field. Since tleguency is unique and the material
point is in a permanent state, the periodic phenomenast be analogous to a stationary
wave, and we can represent it by an expression obthe f

f (Xo, Yo, Z0) Sin 27 1o,

in whichxo, Yo, 20, to are the space-time coordinates of the proper systendeoed, and
f (X0, Yo, o) is the amplitude of the phenomenon at each point.

How does that periodic phenomenon appear to a Galdbaarver that passes the
moving body with a velocity? ¢? With no loss of generality, we can suppose thakthe
andy axes of that observer are parallel toxhandy, , and that hig-axis coincides with
both thezy-axis and the direction of the relative velocity. dénthose conditions, the
periodic phenomenon will appear to have the followirmgnfeo him:

flx y’z——ut sin 2T Yo (t—’g—zj,
J1-/4 \ 1- B2 C
as a Lorentz transformation will show. Set:
VO

The preceding expression will become:

fLX, y,%z}sim(t_ﬂ.

It represents a wave of frequeneywhose amplitude and phase displace inzhe
direction with the velocities andV, respectively. On the other hand, since the enéfgy

of the moving body in thg, y, z system ism, ¢ /4/1- 5% , one will indeed have:

V= V=

w0
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The quantum relation is then preserved.

Before going further, we must point out the existenca fséquency; that one must
be careful not to confuse with It is the frequency by which the periodic phenomenon
appears to vary for the y, z observer when his eyes follow a well-defined point in the
proper system. Indeed, that point-location of a peripdeEnomenon is a “clock” that is
subject to Einstein’s dilatation, so its frequencytappears to the passing observer, will

be:
Vi = VO\/ 1—,32 .

If the clock passes the point 0 at timet = 0 then it will be found at the point= £ ct at
timet, and the phase will change by:

vit=v, 1—,32%.

Now, when one varies time from O t@and thez-coordinate from 0 tg3ct, the phase of
the wave whose frequencyMs&nd whose velocity ¥ will change by:

{o-2) gl )i

c [1-g2\Bc ¢ ;1

The clock will then remain in phase with the wawich explains the results that were
obtained above.

Two remarkable relations exist between the twoaigés v andV. The first of them
is deduced immediately from the preceding formultas;

vV =c

The other is obtained by considerio@ndV to be functions off. One will find them by
varying S slightly:

N 1
dv=—2723—-dB d|=|=dB
v o)
Form the combinatior——= = —+y——~=_. One will get:
dv \% dv

v
vV _£+ v, (1—ﬁ2)3/2:£+1—ﬁ2_ 1
c

dv C /1_32 Vo C

One will then have the relation:

pc C

[l I
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which is entirely analogous to the relationship between gvelgeity and phase velocity
that Lord Rayleigh introduced into the theory of drspae media.

We finally remark that none of the preceding consiimma depend upon the
numerical value of the mass in any way. We can take it be as small as we vgishye
can make it tend to zero. That is a point that wel shisduss again in the context of
radiation.

//’
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3. Space-time interpretation.— We would like to interpret all of those results upon
adopting the viewpoint of the geometric interpretationspéce-time. Here, we can
content ourselves with a plane interpretation wtengs of the abscissas corresponds to
the z-coordinate of the point in space, and whose axis ohates$ corresponds to time,
multiplied by the constant. Here, we shall postulate the absence of any gravitdtio
field, so the planet — zwill have a hyperbolic pseudo-Euclidian whai is equal tac?
d® —dZ. As we learn from the theory of relativity, the nbline of a moving body that
is animated with a velocitg c is a line that makes an anglemfvith the Ot axis (Fig. 1)
such that tamr = S < 1, and is thus less than®°45That world-line is also the “proper”
time axis of the moving body, and the locus of succegsiwets in space-time that are
simultaneous for the comoving observer, and which consdygwemstitute his “proper”
spaces, will be planes whose traces on the planesdigtre will the lines (parallel to
Oz) that make the angle with Ozthat was defined above, and are thus symmetf@ito
with respect to the bisector of the z @iaxes.

The space that surrounds the observer that is linked@thlement of energy is, we
have supposed, the site of a stationary periodic phemomof frequency, . At time
intervals that are equal @ = 1 /vp, the phase of the phenomenon will become the same
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again, as will the state of the proper space. Markaosgries of pointa', O, A, B, ...
alongOt, that are separated from each other by a distafice The lines parallel t®z
that are drawn through those points represent a sdregughase proper spaces. The
intersections of those lines wit@z represent planes in the spaxey, z that are
perpendicular t@®zand on which the phase of the periodic phenomenorbeithe same
at the instant, = O; those are the wave planes of the phenomenon.

As time evolves, the corresponding observer wil & moving body displace with
the velocitySc. The state of a point that is linked to the moving baaly appear to

become the same to him whenever a tifadas elapsed, such th&C, which is the

projection of OA onto thet-axis, will be equal t&T; . On the trianglAC, one will
have:

OA' =0C’ - AC = OC (1 -taf @) = OC (1 -5,

and as a resull; = T,/4/1- 5° . If one returns to frequencies then that williyéten:

Vi =V 1- 57,

which is a relation that was obtained before.
It is more important then to recover the frequen@nd velocityV. The frequency
is inverse to timd that it takes for the phase to reproduce itseH given point on the

Ozaxis — atO, for example. HenceT = OD. Now, the angleADC is obviously equal
to 77/ 2 —a, and one will have coADC = tana = 8= CD/ AC. Hence:

CD = BAC= B?0C,
and as a resulDD= OC-CD = (1 —-3%)OC. The periodr will then be equal to:
ocC
T=30D=(1 —ﬁZ)T: 1-B)Ti=T1-4,

or, in terms of frequencies:
I/0

J1-8°

It remains for us to calculai¢ That is the speed at which the phase advanoag al
Oz
Now, the world-lines of the various phases are,hae seen, the parallels @y, .

Those phases then progress in the saoeith a velocityS’ ¢ such thag’ = tangat =

cot a.
Hence,s” = 1/, and the velocity is equal to:

V=
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V= =

C2
U.

=0

Having thus verified all of our preceding results, wallstixamine the distribution of
phases in the space xfy, z at a given instant The moving body occupies a certain
point of its rectilinear trajectory at that momentidathe phases of the periodic
phenomenon that accompanies it will be the same & thbthe wave planes that are
perpendicular to that trajectory.

Upon considering Fig. 1, one will see that the phasehefvave planes that are
placedbefore the moving body will correspond to tlpast state of the moving body,
while the wave planes that are pladszhindthe moving body will correspond to the
future states of the moving body. As time evolves, the mobiody will displace along
Oz but less rapidly than the phases of its wave<(V). It will then be unceasingly
subjected to new phase states, which have been “yetrte,tap to now. One can say,
more picturesquelyThe moving body is preceded by its past, whichndstdrom it
without end, and is followed by its future, whictteasingly rejoins it.

4. Rectilinear motion and plane waves- A plane wave can be represented by the
formula:

f(x,y,z—ut) sin m(t—vzj,

in which thez-direction is normal to the wave planes, whulandV are the speeds of the
energy and phase, resp. The phase facter v z/ V is, by hypothesis, independent of
the reference system considered, and since it hasothe df a scalar product in the
pseudo-Euclidian space-tinz¢ we conclude thav/ c andv / V are the time and space
components of a certain world-vector. If one knove tiworld-wave” vector then the

frequency and phase velocity of the wave will be welirgel in all Galilean systems.

On the other hand, relativistic dynamics characterihe motion of a material point
by the four-dimensional “world-velocity” vector. Thegctor is a vector that is equal to
unity and points along the tangent to the world-line ircegane. Its component along
an arbitraryx'-axis will obviously be:

d_d%
dt
In the present case, the world-velocity is constantagmtude and direction. Its time
and space components are:

dct) _  d(cty _ 1
ds  Jc2dt-dZ2 J1-8°

u4:ut:
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w=u,=

__B iu=o

= s ,
respectively.

Upon multiplying the “world-velocity” vector by the sealquantitym, ¢, one will get
the world-impulse of the moving body. One confirms imiaesdy that this vector will
have the quantity of motion for its spatial componeuwt e energy, divided by for its
temporal component.

Letx}, >, x° be the spatial coordinatesy, z, and letX denote the coordinate.

Let O and| be the world-wave vector and the world-impulse vectespr, of the
plane wave and the moving body that is linked with it.e @il have:

uw=u, =0,

o_|o_
nIN

o'=0, 02=0, 0:=2 o“:%,

11=0, 12=0, 2= MHEC e Me

1-p2 J1-87

Well, welll All of the results that were obtaineg to now can be summarized in the
following vectorial formula:

l=hO (h = Planck’s constant).

When applied to the index 4, it will give:

m)CZ =hy,

Ji-5
which is the quantum relation.
When applied to the index 3, it will give:

mAc —hz, or m)cz :hvxi,

Ji-p2 Vv 1- B2 LV

which is a relation that is indeed verifiedvif= c / §, and which expresses the idea that
the quantity of motion of the moving body is eqt@h times the inverse of the wave
length v / V (or wave number) of the plane wave. That willegivs the following
expression for the wave length in question, moreove

PR

v o my
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As we remarked at the beginning of this paragraph, theepbasvariant. The same
thing will be true for its differentiafy:

d¢ =2 =2m[0*d (ct) —O>d4 = 2770, dX .

If we take the equatioln=h O into account then we will also have:
2
d¢:T(Wdt—G (0)4

in whichW andG are the energy and quantity of motion of the mateoant. Now, the
expression in parentheses is nothing but the elemeramiltdnian action of the moving
body with its sign changed. Indeed, we will have:

Wdt—G dz= S gp— MBS 4o @ 1o dt
J1-8° 1-p

and that is, in fact, the action for a free matgr@ant in Einstein’s dynamics (up to sign).

Of course, for small values @ the functionm, ¢4/ 1- % will differ from the kinetic

energy by only a sign, and that kinetic energy wdlincide with the Hamiltonian action
in this case. One will then have:

217
dg =——dA
¢ h

The variations that are experienced by the phds¢he® plane wave will be
proportional to the action of the material pointemione displaces in space-time.

It results from this very important consequencewhich we will return much later,
that the principle of least action, which fixes tieetilinear form of the trajectories here,
is not distinct from Fermat’s principle, which detgnes the form of the rays of the
wave. In particular, if we consider two poiftsandB on the trajectory of the material
point then the principle of least action, in its dédaupertuis form, will be

o) jf \/moiuzdz: 0 (when we take the variation of mass with vejoaito account) or
1-B

JLTG dz= 0. If we replac& with hv/V then we will find that:

o LT
AV

() Indeed, one will have the relations:
0 =-0, 0,=-0, 03=-0’, 04 = +0
between the covariant and contravariant componentvettar in a Cartesian systafg = ¢® dt? —dx¢ —

dy? —dZ.
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and according to Fermat’s principle, that will show et tine trajectory of the moving
body is necessarily a ray of the wave, which was pteda priori.

Although the considerations of the present paragraph applgnly the case of
uniform, rectilinear motion, thanks to their invariaatrh, they are susceptible to some
important generalizations that will be goal of thddwing chapters.

5. The material point envisioned as a point-source- In the description of the
periodic phenomena that we have attached to everyialatenter, up to now, we have
preoccupied with phase above all else. We have said lislyriuch on the subject of
amplitude: In the Galilean system that is coupled to rtaerial point, the periodic
phenomenon will have an amplitude(X, Yo, Z)) for which the origin, which is the
location of the material point, is a singular point.or€bver, it is obvious that when the
amplitude is envisioned in the y, z system, it will displacen massealong thez-axis
with a velocityv.

As an attempt to specify the form of the functipwe shall envision a material point
with spherical symmetyryin particular. In that way, we shall exclude thenatof
radiation — viz., the “light quantum” — from the presennhsiderations, because the
phenomenon of polarization shows that such an elemanhot possess spherical
symmetry, and we shall reserve the study of that pdaticase to the last chapter.

Everything leads us to believe that the electron (and uneldiybthe proton, as well)
possesses spherical symmetry. Therefore, whateNeill then apply to the electron.

If a material point possesses spherical symmetrytsinpioper system then the
amplitude at a point whose distance from the matpoiait isro will be:

Fo)=f (% + Y%+ %)

in that proper system, and the surfaces of equplitude will be concentric spheres. In
thex, y, z system, the amplitude will be given by the funatio

f [\/ X2+ Y +—(i:;t2)2 } :

as a Lorentz transformation will show, and the ae$s of equal amplitude will be
ellipsoids of revolutions that are flattened arotimeiz-axis and moven massalong that
axis with velocityv.

In order to determine the functidr{ro), we shall introduce a hypothesis here that is
strongly suggested by the classical theories anthéyrimordial role that is played by
the constant in all of those questions. We suppose that thetion ¢ (x, y, z t), which
is an expression for the periodic phenomena inrbtrary Galilean system, satisfies the

. _ 09 0%¢p 0% 19°
wave equatior\g ¥ + o + P

character of being the “propagation velocity oftpdrations in Euclidian space-time.”

. The constant also keeps its essential
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Since the wave equation is invariant under the Lorgmatzsformation, in order to
determind, it will suffice to write down the fact that the petic phenomena will satisfy
that equation in an arbitrary Galilean system. Chaolosesystenxo, Yo, Z that is coupled
with the moving body. The periodic phenomenon will theme the expression:

¢ (Xo, Yo, 2o, to) =f (I'o) sin 277'V0 (to - To),

in which 7y is a constant that depends upon the origin of time. v@lhthen have:

2
A = sin 27 v (to — 7o) AF = sin 27vo (to — ro){d_}ii} |
dry 1, dr,
79 _ —-4rvig
ot o

and as a result, the wave equation will give us:

d*f  2.df __4mvg

T Aar 2

> f.
dry, 1, dr, c

One will easily verify that the general integrdl that second-order differential
equation is:

f (ro) = ésin[%ﬁro +a]
C

f'o

in which A and a are integration constants. The periodic phenomesiti have the
complete expression in the systginyo, z:

@ (ro, to) = ésin[ ZITM+O’} sin 27, (to — 1),
r c

0

and
Py, 21
2
= h sin erﬁ\/x2+y2+w+a sin—2"%o (t—ro—ﬂj
I Al c 1-p 1-p° c
Y+ g

in thex, y, z-system.

When viewed in the proper system, the phenomehen appears to be spherical
stationary wave, and it can further be conceivetiddhe superposition of a converging
spherical wave and a diverging one, because one/Gemn
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@ (ro, to) = é{cos{ 2w, (t —hj +c1} - co% ﬂvo(t+hj + cz}} :
o c c

If only the first term exists in the preceding formthen one can say: The material
point can be compared to a source that unceasinglg amirturbation of frequeney =
mo ¢ / h into the surrounding medium. However, there is alsorverging wave whose
interpretation can indeed attract great interest, pbyhbically, and its intervention seems
to be necessary in order to assure the stability @fnthterial point, moreover. That
converging wave corresponds to the creation of a peatiarbin the medium by the
point-source that obeys, not the classical law o&rdetd potentials, but the law of
advanced potentials. In effect, the phase of a waveainais determined by the state of
the point-source at the future instant when the convergange will be absorbed by it.
The divergent wave unceasingly carries the past plidgds point-source in space with
the speed of light, while the converging wave seemsinceasingly bring its future
phases, and likewise with the speed

Without stopping here to discuss the philosophical consegqadhat the systematic
introduction of advanced potentials into physics wouldienta can state the following
conclusion (viz., the point-source theorem):

In a uniform, rectilinear motion of a material point with spherical syatry, the
periodic phenomenon whose existence we have devised can be calculaiesidgriag
the material point to be a source pfoper frequency y and superposing the advanced
and retarded actions that emanate from that source.

As a simple application of this principle, we calceléte periodic phenomenon at a
point on thez-axis in ourx, y, zsystem. The frequency of the point-source must atur

be taken to be equal ta = 1y /1- 5° .
The given general form (X, y, z, t) reduces to:

¢(0,0z1t)= zl—;szsm or— Y0 (z-ut)+ a} sinﬂ(t— Ty —Ej ,

cy1-p5° ¢ 1-5° c

here. We must now derive that formula.

o M1 M” M, P

Figure 2.

In order to do that (Fig. 2), we mark out the p&tralong thez-axis with coordinate
origin O whose abscissa i and which is where we would like to determine the
phenomenon, and finally the poikt whose abscissa i, which is the position of the
moving point at the instamt
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The pointP at the instant is the site of two waves: A diverging wave that istesdi
by the moving body at the poiM; and the instart— r; and a converging wave that will
be absorbed by it at the poiM, at the timet + » . Upon appealing to Liénard’'s
formulas, which are classical in the theory of etmtér one will see that those waves
have the values:

—— cos[Zm (t—n) +cC
gy oS e tmn) el
and
————— CoS [Zn (L + 1) +Cy),
2PM, (1+ ) [ 4 o) + el
respectively.
We calculatePM, , PM,,, 1, andr:

MP =OP-OM=z-ut=MP-MM=cn-uT,,

SO
r = z-ut | Ml:Clez_Ut.
c(1-pB) 1-B
One similarly finds that:
n= z-Ut : PMzzcn:Z_Ut.
cl+p) 1+

Upon superimposing these two waves, one will dedram this that:

| I.+T . I,—T
0,0,z t) = sin| 2y, +—2+qg |sin2w, | t———2-T
¢l( ) 7— vt I 1 2 } 1[ 2 o}
=2 sin 27 Vlz 270, o | sinar 12[t—’3—2—r0]
z— Vvt 1-5° ¢ 1-8 2

upon denoting the phase constantsrand .
Finally, upon replacings with v, (1 — 892 we will get the expected formula,

except that it will be lacking the factor qfl—ﬁz in the numerator of the amplitude. In

Chapter VII, we will see that this deviation is &iped by the tensorial character of the
guantity@, for which ¢, is only the time component, by definition.

A calculation that is a bit long, but still simplean be performed for a point that is
not situated on the trajectory, and it will leadtlhe same conclusions. It is important to
remark that the amplitudes of the converging arndrding perturbations are equal in any
case. That fact, which was proved here, will bstyglated in the following chapter in the
course of an analogous calculation.
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6. Summary.— In summary, the material point now appears to us @ Hestem of
stationary waves that surround a central point-sourééhen viewed in a Galilean
reference system that is in motion relative to hiattset of stationary waves will be
manifested by an inhomogeneous plane wave. By that,n m@ave whose surfaces of
equal phase are planes normal to the direction diivelanotion and whose surfaces of
equal amplitude displace with the same velocity asmbeing body. It will suffice to
direct one’s attention to the expression for the fioncp (x, y, z t) that was given above
in order to account for the following fact: The surfacé®qual amplitude are flattened
ellipsoids of revolution that are centered on the movwady, so they are, in summary,
spheres that have been subjected to the Lorentz cootracti is customary (at least,
among physicists) to consider only very simple solutmirthe wave equation. It is very
interesting to see that upon imagining a somewhat-nmomglicated solution that
presents a singularity, one will arrive at a represemtaf the material point that is, in
some sense, wave-like.

We have had to distinguish three velocities in thegueng study:

1. The velocity of propagatian)
2. The phase velocity,
3. The velocity of energy.

Those three quantities are coupled by a very simplearla
w =c".

If one confines oneself to imagining the displacen@&nthe phase then one can
represent this by saying that space presents an “indetkietavaves that are associated
with the moving body of velocitg c, which is defined by the relation:

n=

C _
v =B

If the moving body is characterized by a proper frequascyen each value gf will
correspond to a value of the frequencyf the associated wave that is given by:

— Yo

V= —

Ji-8°

One can then also say that the dispersion of theesvéhat are characterized by a
certain value of; will obey the equation:
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We shall recover some analogous viewpoints upon studyingumiferm, non-
rectilinear motions, for which we shall now seek to gelme the results that were
obtained up to now.



CHAPTER I

THE MATERIAL POINT IN
A CONSTANT GRAVITATIONAL FIELD

1. Nature of the gravitational field. — 2. The dynangt& material point in a gravitational field. — 3.
The wave associated with motion in a gravitationaldfie} 4. The point-source theorem. — 5. Phase
agreement between the moving body and its wave.

1. Nature of the gravitational field. — When the motion of a material point is not
uniform and rectilinear, one says that it is found io@d field. Einstein has shown us
the equivalence of the forces of inertia and the foadfegravitation, so one can say,
without prejudicing the future progress of science, thakmmv two and only two types
of force fields: The gravitational field and the electagnetic field. A fundamental
difference exists between these two field categoriesesthe trajectory of a material
point in a constant gravitational field is determined catgly by the position and
velocity (both its magnitude and direction) of the poihtaagiven instant. It does not
depend at all upon the nature of the material point —tsemassn, . As we shall see in
the following chapter, things are quite different for tlase of a constant electromagnetic
field, in which the trajectory of a moving point depends upon oy the initial
conditions of position and velocity, but also upomiggure, or more precisely, upon the
ratio of its charge to its mass.

The fact that the trajectory of a material pointairtonstant gravitational field does
not depend upon its mass permitted Einstein to formuigtenagnificent interpretation
of the gravitational force. For him, in a gravitatibheld, as in the absence of any field,
the motion of a material point is always represented ggodesic in space-time, which is
a geodesic that is determined completely when one kng@esaand the tangent at that
point. However, space-time is not Euclidian in a graweital field, so geodesics and the
trajectories, which are the spatial projections oséhgeodesics, will no longer be lines.

Today, it is well-known to physicists that the natafespace-time is characterized by
the expression for the square of the element of lengtiz., by itsds. The form of the
geodesic that passes through two poihendQ in space-time is fixed by the condition

of minimum length: The integraﬁds, which is taken along the curve, must be

stationary. Here, as in a Euclidian space-time, omeimi@oduce a “world-velocity”
vector that is tangent to the world-line considered ah @@int and has length unity. Its
contravariant components are defined by the relations:

bio &

ds’

and its covariant components by: _
Uc = Qi U,
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in which thegi are the quantities that are classical in the thebrglativity today and are
such thatds” = gy dx' dX. One verifies directly that the length of the tezas U' is
indeed equal to unity.

The geodesic equation is then written:

5'[Lli dx :5.[ gikc(lj—)zd)é =0.

In the preceding chapter, we saw that the product odiifferential formu; dX with
mp c is equal to the differential of the Hamiltonian actafrthe moving body, up to sign.
If we transpose that definition into the present ¢gseonsidering the quantities cu to
be the covariant components of the world-impulse ofntbeing body then we will see
that it amounts to the same thing to say that the masioepresented by a geodesic in
space-time or that it obeys Hamilton’s principle, eptcthat, in reality, the mass does
not enter into the determination of the motion at aomt.

In the case of a Euclidian space-time,decan be put into the form:

ds’ = de —dx¢ —dy? —dZ = & df® —dI?,

in whichdl is the unit of length in space. That being the caseetttdinear motion of
velocity will correspond to geodesics of null length. almon-Euclidian space-time, one
can define a velocityat each pointhat is analogous toand corresponds to an element
of a null-length geodesic traversing a neighborhood ofira.po

2. The dynamics of a material point in a gravitational field.— In any case that
physics can present, it must be possible to find a fordgosuch that it is possible to
separate time from space. We shall then envision oelyfatms fords’ that do not
contain rectangular terms in which time appeats.will then have the form:

ds’ = gus @X) +gue dX dX (i, k=1, 2, 3),

with dx* = d (ct), as in the Euclidian case. The fogmdx dX’, in which only the spatial
variables appear, is equal to the square of the spatialeat of length, when given a
sign. That is, in fact, the form thdg presents in the case of a gravitational field with
central symmetry (e.g., the Schwarzschild formula).

We have defined the spegwf light at a point in space-time above. With tharfor
for d<’ that was adopted here, it must be given by the ralatio

Qus 2 dé—dl? =0,

dl
azy: Cy Y4 -

If the gravitational field is assumed to be consthengass will be a function of, 3¢,
2, in general. The same thing will then be trueyfor
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With that value fory, one can writels’ = y? d? —dI?, which is an expression that is
analogous to the one in Euclidian space-time, exceptthist not forced to be Euclidian
here, andy will vary with the point in space, moreover. Althouglf cannot be
Euclidian, the velocity of a moving body will always tefined to be the quotient of the
distance covered by the time that it took to cover it:

As a result, if one sefB= v/ y; instead of5 = v/ c then one will have:

ds= ydty1- 5%,

and one will find the following familiar appearantoe the action of the material point of
massm :

dA=myc y4/1- 5 dt.

We have seen that the elemdsatan be writtem; dX. Now, one will have:

; dx* ax .
U dX = —— d¥+ g — dx
Q44 ds Ok ds
dt dl
=y —dt——dl,
yzds ds

here.
One will easily infer from the expression itself i’ that:

a1
ds % 1—182’
a__ B8
ds yJ1-p

S0
ds=u dX =

4 B
dt- dl.
J1-3 { 1- 52
If we multiply this bymy ¢ then we will obtain the element of action in tbenfi:

— My mpc
dA= dt- dl.
J1-8 1-p°
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cy mAc
and
1-p° N1-p°
the time and space (i.e., tangentdl) components of a quadri-dimensional vector,
namely, the world-impulse. We once more call the quantit

From the invariance of that expression, we conclude are

w=_Mmey - m )

Y15 Jeu1-p

theenergyand the vector that is tangentdicand equal to:

g=_msc _ m By _ m v
J1-82 9uJ1-8  9u1-5

the quantity of motion.
We remark that these expressions have the same dsrin the Euclidian case, in

which yplays the role of the speed of light and the nimdévided by./ g,, .
The equations of motion are deduced from the ¢mmdi

o[ ds= 5jdet =0,

in whichL = mg cy +/1- . As the calculus of variations teaches us, toaidition
implies that:

d( oL oL ) )
— — == i=1,2,3 Lagrange equation),
dt(@)‘(‘j ™ ( ) (Lagrange eq )

in which X =dx /dt. L depends upor and x', but not upon time explicitly, which will

permit one to verify the constancy of the functioE X a—l_'i— L in time by a classical
1,2,3

calculation.
Measure one of the coordinates along the trajgctbie corresponding Lagrange

equation will be:
_E(%j _d| _mpc | __oL
dtlal ) dt( [1-p2 al

The quantityp, = - L / dl is the quantity of motion, and we recover a funeatal
equation of dynamics. To bring things back todhse of classical mechanics, suppose
that the velocity is very small, so we can neg/@tin comparison to unity. We will get:
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mycdu _ du
_ = - C_,
y dt mo dt

or

%: - y%: - E _ng44
dt dl dl 2 )
The quantityy® / 2 =c? gas / 2 then pays the role of the gravitational potentiéich
is a classical result of Einstein’s theory.
Finally, the motion admits the first integral:

oL _ > myBc _ mycy
L-l—=ny 1- = .
3 cyy1-p +U\/1—,[>’2 \/1—,[)’2

That is the conservation of energy.

Having thus sketched out the broad features of the dysarhitie material point in a
constant gravitational field, we shall attempt to introdseme wave-like elements into
it.

3. The wave associated with motion in a gravitational field- As we did for
uniform, rectilinear motion, we shall now seek to asstecihe displacement of a material
point in a constant gravitational field with the propagabf a certain wave.

First, consider the set of trajectories that corredpo a certain given valué/ for
energy. One of those trajectories that is tangeatdwen direction passes through each
point in space, and for any direction considered, more®eethe speed of the moving
body when it passes through the given point on the toamjewill be the same, because
the speed is determined by the relation:

MY -y

and y depends upon only the spatial coordinates. Any pottx¢, x°) will then
correspond to a value (x}, x4, x°) of the speed on the trajectories of enéfgyWhen the
velocity is known, one can deduce the quantity of mdbpthe equation:

oo MAC

J1-8%"

which is also a function & andx’, >, x°.

The form of the trajectory of enerdy that connects two poin# andB is obtained
from de Maupertuis’s principle, which is deduced from tHatlamilton by a classical
argument, and is stated thus:
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The trajectory of energy W that goes from A to B is such that tiegtion of the
integral IjG dl shall be zero when one deforms it infinitesimally without displa¢iag t
extremities and without varying the value of the energy.

On the other hand, upon generalizing a result that waggrno Chapter |, one will
easily see that the propagation of a wave along a kliagiaan always be represented by
a “world-wave” vector that has frequency for its tengpg@momponent at each point and
whose spatial component is a vector whose length id egtlee wave number I/ = v/

V and is carried along the tangent to the line of propagatioay of the wave.

If we would like to associate the motion of a matlgpoint along a trajectory with the
displacement of a “phase” along that trajectory, wheaa considered to be a ray of a
wave, then we must establish a relationship betweendlue wf the world-impulse of
the moving body along that curve and that of the correpgrwave-vector.

We will then be led to the following statement by atunal generalization of the
results that were obtained for rectilinear motion:

When a material point describes a certain trajectory T of energy W donstant
gravitational field, the gravitating medium will be site of a periogdienomenon that
presents the form at each pooitthe trajectory of a wave whose frequency and speed of
propagation are defined by the relatibr= h O. In other words, the world-wave vector
will be proportional to the world-impulse vector along the trajectory.

The trajectoryT will then be a ray of the associated wave, and oner@aark that

. . .. B .
here, as in the case of rectilinear motion, the de M#uipeintegral IAGdI will be

proportional to the Fermat integrﬁladll)l :vadllv :
The two relation®V = hv, G =hv/V show us that:

V=

(=
IR

along the trajectory. One then concludes that the ptaditis equal toy? ; that is a
relation that is analogous to the one that was odtiaor rectilinear motion.V will then

be a function of the coordinates along the orbit. né gonsiders the various trajectories
through a point that have a given eneMyyand the propagation of waves that are
associated with the description of those trajectdoyethe moving body then one can say
that the gravitating medium presents an indexy/ V for that propagation that is defined

by the equation:
2 2 2
n:ﬁ:\/l_ﬁbczy :\/1_1/_02’

h?p? vV

upon settingh = mp ¢ y/ h. One sees that this dispersion formula has time sdaracter
as in the absence of a field, but the proper fraqueo will vary with the position of the
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moving body. The orbits of enerdy coincide with the rays of the waves of frequency
in a medium of index.

Figure 3.

4. The point-source theorem.— The preceding considerations rest upon some
inductions, and as a result, they will be more hypotaktican the ones in the first
chapter. It is tempting to once more adopt the viewgwene that allowed us to specify
the constitution of the wave that is associated witfoumi, rectilinear motion. One must
then consider the moving body to be a point-source advarfrequencys and suppose
that perturbations propagate in the gravitating medium atafidength geodesics. One
must recover the statements of the preceding paragraph syyoerimposing the
advanced and retarded actions, and at the same strokanidetéhe wave that is
associated with a given motion completely.

| shall not study the question in a general fashion) bah point out a few aspects of
an important special case: viz., uniform, circular moia field with central symmetry
(see Fig. 3).

Imagine a circular trajectory. LEtbe a point on that curve, and Mtbe the position
of the moving body at the instaht At that moment, the poir® will be the site of a
diverging wave that was emitted by the point-source whesms atM; at the instant —

r, and a converging wave that will be absorbed by the sddy@ the instant+ 7 . If
we assume (and this must be proved rigorously) that thplitade of the two
perturbations is the same then the perturbation tisatitseatP at the timet will be
proportional to:

+ —
sin 27wy (t - 1) + sin 27 (t -~ 71) = COS 24 r12r2 cos 2w, (t‘nzrzj.

At the instant + dt, the moving body will go t®1, such that:

MM' = uvdt= wR dt
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That point will be subject to the waves that aretemiby the pointM, , M., such

that:
in whichR is the radius of the trajectory. Consider the pBitttat is defined by:

PP =dl=MM".

That point will be subject to the waves that arettdiby the pointdM,, M,, such
that:

M'M,=ur;, M,M'=ur,.

However, by reason of the central symmetry, no mattat path is followed by the
perturbations, one must have:

! !

n=r, n=r,.

As a result, upon passing from the pdat timet to the pointP' at timet + dt, one
cannot vary the amplitude factor of the cosine, whetleagphase factor in the sine will
vary by:

27 dt= 2 (1 -8 dt = 2 (dt—ﬁ dlj.

R

That shows us that the amplitude and phase propageatestak trajectory with the
speedw andV = g/ S. Our inductions are then found to be verified.

However, we can go further and consider a circle ithabncentric to the trajectory
and has a radius @gf An argument that is analogous to the preceding alhehew that
the speeds of the amplitude and phase on that circlebwijk / S and )k o/ (OR),
respectively. It is easy to conclude from this thatqeici phenomenon that is coupled
with the moving body can be expressed in cylindrical cooteliya 6, z by the function:

$(p 6z1t)=f(pz 8- ) sinm(t_ﬁRg_Xj

R

if the circular trajectory of radiuR is situated in the plane= 0, and the phasg can
depend upow andz, moreover.

5. Phase agreement between the moving body and its wavelhe hypothesis that
the material point is the source of its associatedewaposes the continual agreement
between its phase and that of the wave. In the absgina general proof of the point-
source theorem, that will permit us to say:

If one assumes that the associated wave posségsesristant frequenay= vy / (1 —
[?) along the trajectory the phase velocity at any pMron that trajectory will be:
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- Wu
Vg = 2%,
Bu

Indeed, the hypothesis that was made for the assoeiaesl gives the value for its
phase factor at the points on the trajectory:

sin 2w [t —f(1)].
Now, the vibration of the point-source is proportiotaal

sin 277 j; v, (1) dt,

and we have seen thatis linked with by the relation:

nt) =v[1-B*®)

so letM; be the point whose curvilinear abscissh that is occupied at the time, and
suppose that phase matching exists. One will then have:

VIt —f (I)] = j; v,(t)dt.
At the timet; + dt; , the moving body has movedMy in such a way that:
Ml M2: d|1 = UMldtl'

In order for phase matching to persist, one must have:

V{dg—(%j d@ = vy (t) dy

df )
U —_— = .
" ( dtle A

Now, the derivativ{%j is obviously the inverse of the phase velocity of theavav
M

or

at the pointM; , and one will indeed get:

VM = UMl = yMl

1 2 '
Bu,  Bu,
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It is quite obvious that the argument can be pursued stgpepyand that the relation
V = y/ B must be valid for an arbitrary point of the orbit. alTlhvould again seem to
confirm the possibility of extending the results of finst chapter to the case of a static
gravitational field; nonetheless, a rigorous, generalfpwowald still be desirable.



CHAPTER IlI

THE CHARGED MATERIAL POINT
IN A CONSTANT ELECTROMAGNETIC FIELD

1. Nature of the electromagnetic field. — 2. Dynami€sth@ point-like charge. — 3. The wave
associated with motion in an electromagnetic field. Hve point-source theorem.

1. Nature of the electromagnetic field— In order to study the second type of field
that we have been led to distinguish, we envision a aohsflectromagnetic field that
prevails in a space in which no appreciable gravitatioal éxists. Up to now, we have
assumed that space-time is Euclidian in such a fieldydh a way thatls has the form
¢ dt? —dl % Meanwhile, a point-like charge that displaces ireftlfivill not describe a
line, and one can no longer say that the world-line o&ditrary material point is a
geodesic. The world-line of a moving body of magsand charge that passes through

two pointsP andQ in space-time will no longer be given by the condlitiﬁjfds: 0,
but, in fact, by a condition with the new form:

Q e _
], [1+m:¢sjds— 0,

in which ¢ is the projection onto the trajectory of the worlgeliof a certain four-
dimensional vector that defines the electromagnetld & each point in space-time —
viz., the world-potential vector. Since one obviously = ¢ U, one can write:

o[ (mey+ ep) dk=0,

upon multiplying the relation above by c, or rather, by a simple transformation (upon
settingu' =dxX /dtfori=1, 2, 3):

3], (M1~ + e, + @0'+ §u°+ $.07) (=0,

Later on, we shall see that this formula does indeedtbe dynamics of the electron,
and we shall deduce the components of the world-potémtralit.

The form that was given above for the principle ddsteaction shows that the
trajectory of a moving body will depend upon the rdtis e / mp, in addition to the
initial conditions of position and velocity. We shalall it the “electromagnetic
sensitivity of the moving body” because the actioranfelectromagnetic field on the
moving body will be an increasing function of that quantit
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Whereas the nature of gravitation has been at le@spreted, if not explained, by the
curvature of space-time, the nature of the electromagined remains more mysterious.
Indeed, Weyl's theory interpreted Maxwell's equations nnirggenious way. However,
along with the fact that the theory has been rejectendayy scholars (including Einstein
himself!), it cannot interpret either the mechanicaloacthat the field exerts upon a
charge or the role that is played by the electromagsetsibilitye / my , at least to my
knowledge.

In the absence of any field, the speed of propagatiarigin@es in the wave equation
will be defined, as we have seen, by the null-length gecslesid will be equal to. At
first glance, it seems that the same thing must behete, sincels has the same form.
Later on, we shall see that there can be other spdgu®pagation in electromagnetic
media than the speed

2. Dynamics of the point-like charge= In order to obtain the equations of motion in
a constant electromagnetic field, we start with Hemmis principle:

ijLds =0,
in which:

L=moc® J1-B +e[CPa+ U ¢+ U2 o+ U B3]

The Lagrange equations resolve the issue. Tley ar
i(ﬂj _ oL
dt\ av' ox
and two analogous ones. The Lagrange momertal / dv (i = 1, 2, 3) are:

m, U red.

pi=-
-7

The first Lagrange equation will become:

_E m)Ul % i = a¢4 la¢1 26¢2 3a¢3
dt{ /1_Igz}+eax v e[Caxl TV e Y 6)(1}

d| mot | _ [ 08, (38, 08, (08, 04,
dt{ /71_[;2} e{caxl U(axl a%j”(a)& 6)3}]

or
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Upon recalling that the electric force is the gradadra scalar potential (in a constant
field) and that the magnetic force is the rotationhef vector potential, one will see that
the right-hand side gives the Lorentz forteif(one sets:

¢4:¢4:£’ ¢1:—¢l:—

c

in which ¢ is the scalar potential, amd are the components of the vector potential. The
world-potential is thus found to be defined in that waye Ghantities:

1 2 3 3
v a
my my me L2

l-—_p = — == = — =—De =
s e T e e T s e

are the components of the quantity of motion, whiohtains an electromagnetic term
that depends upon the vector potential, along wighordinary mechanical term. We
remark that the quantity of motias no longer tangent to the trajectohere. The
Lagrange equation admits the first integral.

1 2

i oL

L=-0v— i=1,273),
ou
which is equal to the energy:
W=cpm=cp'= m, ¢ +ey

Here, as well, aside from the properly mechartieah, an electromagnetic term that
depends upon a scalar potential will appear. Toddampulse vectot will no longer
be tangent to the world-line of the moving bodghat is what essentially distinguishes
this type of motion from the ones that were stuglissl/iously.

The expressions for the components of the eneugyity of motion tensor show
that the action integral will always have the caoahform:

j(vvdt—c;do

here, in whichV andG have their usual meanings.

3. The wave associated with motion in an electromagnetic field We can repeat
what we said in paragrapB of the preceding chapter word-for-word here, bseau

() Recall that this form is given by the formula:

F=e (gradt/m% [v rotA ]j .
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knowing the world-potential (which does not vary in time)each point of space will
permit us to deduce the values of the velocitiendV from each valu§V of the energy.

We once more associate any motion of the moving boitly a propagation by
assuming inductively that the impulse vector and the wagmrare proportionalong
the trajectory[l =h O].

We will then be led to some conclusions that aretidainto the ones in the last
chapter. In particular, the trajectory of the movingywill always be one of the rays of
its wave. However, a new situation presents itselehSince the quantity of motion is
not tangent to the trajectory, in general, the phaseitglwill not be directed along the
ray. Along the orbit, the electromagnetic medium wien behave like aanisotropic
medium for the propagation of the wave that is astetmith the motion.

We seek to determine a dispersion formula for the ptesese that is analogous to
the one that was obtained before for the gravitatiomadia, and whose significance is
identical to it.

The propagation will be tangential to the amplitude abiat M of a trajectory of
energyE where the vector potentialas and one will have the relations:

for the determination of the phase.

The vectolG is the geometric sum of the vectpe

, Which is tangent to the

ray, and the vectoe( c) a (see Fig. 4).

m

g= v

Figure 4.

Let &denote the angle that the direction of propagatithe phase (i.e., the direction
of G) makes with the direction of the vector potenti@ne easily gets that:

G= e—acosé?+\/gz—ﬁ sifé.
c ¢

Now, with the aid of energy, one can elimin@&&om the expression fay, and one

will easily find that:
= S8cosg+ (hv— Qajz—mfcz—ﬁ‘ sirf @
c c ¢ '
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One will deduce the index from this by means of the dejinelation:

eG

c
n=—=
V  hv

That index is then a function of frequency, the pmsibf the pointM, and the angle
between the direction of propagation of the phase ladeéctor potential. In the simple
case of the electrostatic field (via = 0), one will get the simple formula:

_ |, e _mc
”‘\/(1 hvj v

It is easy to generalize an important result ef finst chapter. Indeed, consider the
passage of the moving body from a pdumton its trajectory, leG be the quantity of
motion at that point, and let denote the angle between that vector and the itgloof
the moving body. The phase propagates aengp its speed of propagatidhalong the
ray will be equal to/ / cosa, while the projectiors;, of G onto the tangent to the ray will
beG cosa. Hence, from the fact that:

G-
V
one will deduce that:
G ="V
V

Now, if one chooses the coordinates in such aidasthat one of them is measured
along the trajectory then the corresponding Hamiéquation will be:

_0W _  ov

=0
VI’

Once more, Rayleigh’s formula appears here as rergk consequence of the
canonical equations. The derivative of the rigémdh side is a partial derivative because
V; is a function of the coordinates, along with tregjtiency.

We shall now pose a question whose significanceskadl see later on. We have
found that in the absence of any field, such asasitgting field, the geometric mean of
the velocitiesv andV will be equal to the fundamental velocity of theopagation of
perturbations. Can that theorem be transposed tivethe theory of a constant
electromagnetic field? In order to see that it, care must calculate V; , which is the
product of the radial phase velocity with the vélpof the moving body:
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¢
T vey 103 1-°4
_W_ J1-p8 _ ¢ cG _, ¢G
V,=—= == , vVi=c -
Gf my +§ar v 1—£ _%
1-5 ¢ hv hv

The product of the velocities is not equal to siqeare of the velocitg then; it is
equal to the square of a velocitythat is given by the equation:

We shall recover that velocity in a moment.

4. The point-source theorem.— Here, we shall naturally recall the idea of
considering a moving body to be a source of advéraoed retarded actions whose
superposition constitutes an associated wave. Mewewe will find ourselves
confronted with a new difficulty whose importanseuindoubtedly quite great. In order
to understand it, recall the argument in the lastigraph of the preceding chapter by
which we showed that the permanence of the phasemmgnt between the point-source
and its wave seemed to imply the validity of thiatien| = h O along the orbit. We
shall assume that the associated wave is represafdag its trajectory (as far as its
phase is concerned) by sinr2 [t — f (I)]. On the other hand, for the observer that
coupled to a constant electromagnetic field, theation of the point-source will have a
variable frequency; (t), and can be written:

. t
sin jo 2nv, (t)dt

Having said that, the persistence of the phasseagent will imply the relation:

vi(t)=v (1—%0},

U
Vi=V|1l-——
' ( Vrj

at each instant, in whict is the radial phase velocity at the point thaidsupied by the
moving body. If we now introduce the velocttythat was defined above then we will
get:

and as a result, we will have:
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2
V1=V [1—%} .
c

The permanence of phase then demands that one mustheadgeantityc’ play the
role of the velocity of perturbations at the point véndre moving body is found, instead
of the constant.

An examination of circular motion will lead to an a@dus conclusion. We must
then recall the argument that was given for the casgrafitation. If the constant
velocity of the moving body ig then variation that the phase of the associated wélve
experience when one varies time dityand one simultaneously displaces the point of
observation through a lengthdt along the circle will be:

27Tvq dt.

If the hypothesi$ =h O is exact then that variation must be equal to:

27TV [dt—ﬂjz 27TV (1—£j dt,
VI’ VI’

and one must once again have:
2
Vi =V 1-2 |=v 1—% :
V, c

On first glance, the preceding results seem quite singri Since space-time was
assumed to be Euclidian, the form itselfdst invites one to take the constartp be the
velocity of propagation of perturbations. One will notderstand why one must
substitutec’ for c, especially since the quantityis a function of the nature of the moving
body, or more exactly, its electromagnetic sensytivi

Upon reflection, | believe that the significance bfst difficulty must be very
profound. Space-time is Euclidian in an electromagtietid, and meanwhile the motion
of a point-like charge is not described by a geodesic, bperdis upon both its
electromagnetic sensitivity and the world-potenti@hat is the essential difference that
separates electromagnetic dynamics from gravitatioy@dmics, and | believe that it is
basically that same difference that we must recavea different form when we are
obliged to replace by ¢’ in our formulas. Perhaps it is by reflecting upon #@gma
that we will begin to understand the true nature of tbet®magnetic field.

| shall add one last word for the sake of the followetgpter. The preceding
considerations and the analogy with the gravitationse caake the following conclusion
quite reasonable: In a central electromagnetic fidle,wave that is associated with the
motion of an electron on a circular trajectory afites R will be given by the function:

60 821)=f(p2 6 - d)sin ZITV('[—%RQ—XJ,
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in which G is the quantity of motion of the moving bod¥,is its total energy, angtis a
function of onlyp andz



CHAPTER IV
STABILITY OF PERIODIC MOTIONS

1. Uniform, circular motion. — 2. General case of #{rperiodic motions. — 3. Quasi-periodic
trajectories. — 4. Bohr’s correspondence theorem.

1. Uniform, circular motion. — In order to better understand the meaning of the
stability conditions that are introduced by the theorygoanta, we shall first imagine
uniform, circular motions in a centrally-symmetricldie We have seen that one can then
very probably represent the associated wave by the form:

Pz 6t)=f(pz - ) sin m[t—v% R&- x(p, z)} :

However, this expression will represent a statdesonly if the sine factor takes on
the same value again when one increasbyg a whole number times2while thet, z,
andp remain fixed. In other words, it is necessary tha wave must be in resonance on
all circles that are coaxial to the trajectory.affbondition gives us:

2mv E277R = 277E R2m=n2m (ninteger)
w h
or
G 2R =nh.

One can say that the moment of the quantity ofianodf the moving body with
respect to the attractive center must be an integsdtiple ofh / 27z That is in fact the
form that the condition for the stability of theatilar trajectories in the hydrogen atom
took on for Bohr in his initial research.

2. General case of strictly-periodic motions— Whenever the motion is strictly
periodic, the orbit will be a closed curve. Thesjutates that were assumed in the last
chapter show us that the phase of the associateel widl vary when one displaces it by

the quantity:
ZIT[wdt—& dl}
h h

by dl along the trajectory during a tinak, in whichW is the energy of motion ar@ is

the projection of the quantity of motion of a poinbnto the tangent to the trajectory.
Therefore, in order for there to be resonance atbegay here, it is necessary that one
must have:
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ZT]TJ.OG, dl =n2m (n integer)

or
[Gd=nh
which can be further written:

3 .
L;p,dx =nh

with the aid of the Lagrange momenta.

That is indeed the general condition for the stabdifythe closed trajectories that
would result from developing the theory of quanta. Of amuitsincludes the formula
that relates to circular trajectories as a spe@akc The success of our interpretation
rests essentially upon the identification of the de Meusan action integral, divided
by h, with a phase difference.

We cannot prove here that the resonance is found tedbeed in the entire inter-
atomic domain, as we did in the case of circular ¢tajges; nevertheless, that situation is
very probable).

3. Quasi-periodic trajectories. — One knows that the quantum conditions for
stability have been extended from periodic motions toigpexgodic motions. The work
of a great number of authors of the first rank, amorfgorw one must include
Sommerfeld and Bohr, have permitted us to specify thergéaf the stability conditions
and their number. The periodic motions then appebe ta degenerate case of the quasi-
periodic motions. Conversely, in my doctoral thekishowed how the case of quasi-
periodic motion can be reduced to the case of periodion®by considering the time
intervals to be infinite in number and mutually incommeabla, after which, the
moving body will have returned to a distance from itstisig. point that is less than a
very small quantity that has been chosen in advafecem that standpoint, the multiple
conditions of Sommerfeld-Bohr are consequences ositigde condition by which one
expresses the stability of closed orbits. | shallrepeat the proof that was given in my
thesis here, because it demands that some precautiohsenteken in regard to the
language, and as a result, it is very long. Furthermome, can ameliorate that by

(% Much has been said in recent times about the semi-qtreitare introduced into the theory of the
Zeeman Effect and into the theory of rotational speclrgdeems that in certain cases the condition fer th
stability of a periodic motion must be written as:

2n%l

3 )
[eXpdd =
i=1
In our way of thinking, the semi-quanta can be interprefteth icertain situations, one must add a
supplementary difference afirthat is analogous to the one that is produced when omsegasfocus in
Gouy's theory to the phase difference that is expdegehe de Maupertuis integral. One will then get the
resonance condition:

h (n integer).

2. 3
TJozp, dd £77=n277
i=1
from which, one will infer the formula for semi-quarimmediately.
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introducing the notion of angular variables and showing Heeadegree of degeneracy of
the motion limits the number of independent conditions.

None of that will introduce any essential difficudtiebut it would demand some
digressions that would go beyond the scope of this bookcdfiine ourselves to stating
the following conclusion:

The interpretation of the quantum condition for the stability of the cloagettories
as something that expresses the resonance of the wave that is assattiathe moving
body implies the existence of the Sommerfeld-Bohr multiple condmiotise stability of
guasi-periodic motions.

4. Bohr's correspondence theorem.— Bohr’s correspondence principle was
suggested to its author by the proof of an important theorethe frequencies that were
emitted by his model of the atom. | would like to considie simple case of circular
trajectories and show how one can interpret Bohesiam from our viewpoint.

Let C andC’be two circular trajectories in the atom that dable in the sense of the
theory of quanta and correspond to the whole numbeasd n'. From the law of
emission, when an electron passes from the stalgetvay C’ of energyW' to the stable
trajectoryC of energyWW < W', a quantum:

hy=0W=W"-W
will be radiated.

Imagine two electrong andE’, one of which describes a cirdleof lengthL = 277R,
while the other describes a cir€léof lengthL "= 27R. If G andG’denote the quantities
of motion then one must have:

GL =nh, G’L’=n"h.

On a circley of radiusp that is concentric to the preceding ones, the Higidn of
phases that are associated \tis represented by the function:

sin 2rr V—Vt—E—Rt )
h h p

and the distribution of phases that are associatedBfithgiven by the function:

sin 2rr Vlt—E—Rt .
h h p

Upon adding these phase factors, we will obtain a “beat”

2 cos 21 aﬂt——l(G’R'— GR | sin 27 (W+6—th——|(G'R+ GR|.
2h  2hp 2 2hp
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Examine the amplitude factor; upon setting:

nN—n=0on and2p=1L,
it can be written:
cos m[aﬂt——lan}.
2h 2L

Along the circley; there aren maxima that displace with the veIoci%Ir')]/%—W. The
n

frequency of rotationvof one of the maxima of the beat alogngill then be:

Hence, one has the following theorem:

The superposition of the phases that are associaiidthe motions of E and’Bives
rise to a beat that turns with a frequen@yon all of the circles that are concentric to C
and C'in such a way that the frequency of the radiatioat is emitted when an electron
passes from Qo C will be equal to the harmonic afof orderon.

In order to recover Bohr’s theorem, it will sutfito apply the preceding result to the
circle C"upon supposing that andn’ are very large and thah is small with respect to
them. Under those conditions, the frequen@sh andW’/ h will be very close, and by
reason of the general significance of Rayleighisriga, the beat o€’ will possess the
same velocity as the electré&i It will then have the same frequenayof mechanical
rotation as the beat, and as a result, one wiltlgefollowing statement by Bohr in this
limiting case:

The frequency of radiation when one passes from C'is the harmonic of ordein
of the frequency of mechanical rotation of the teteton C.

On first glance, it seems that one has thus eneoesha physical interpretation of the
role of harmonics in Bohr’s correspondence thebuy, there is an objection: In general,
the circlesC andC’ are not occupied simultaneously. Suppose@i& occupied, bu€C
is not. What does it mean to speak of the phaseiglassociated with an electrrthat
does not exist? Perhaps one might answer this With:electrorE does not exist at the
instant considered, but it has existed or it wilsein the sequence of successive states of
the atom, and by the effects of advanced and redaadtions, it will suffice for one to
continually have a phase of frequeMy h along the entire circlg:

Briefly, the preceding argument will probably opgma small fissure through which
one can penetrate the mysteries of the intra-atoagion.



CHAPTER V
THE DYNAMICS OF SYSTEMS OF MATERIAL POINTS

1. The energy of systems of material points. — 2. Unifa@inoular motion of two interacting material
points. — 3. Waves associated with the dynamics ofragste

1. The energy of systems of material points: Up to now, we have envisioned only
constant fields. In fact, a field is always producedhgydction of a certain number of
centers that are themselves material points and bjecsuio the reaction of the attracting
point. It is then only in the case where the attvac{ior repulsive) centers have an
extremely large mass that one can consider them fixé® and determine a constant
field. In all other cases, one will always be daghvith a set of material points that are
all in motion under the influence of their mutual actions.

Therefore, let a certain number of material poigylven that will be affected with
the indicesa, b, c, etc. Each of them is in motion under the influericgravitational or
electromagnetic forces that emanate from the othdisose forces obviously depend
upon the spatial coordinates only by way of combinations é¢xaress the mutual
distances between the various points. | shall saythieamotion of one of the moving
bodies — the moving body for example — is given by the following principle:

If pia denotes the Lagrange momentum of the moving body a with respect to the
spatial coordinate 'x and if W is its energy (i.e., the temporal component of its world-
impulse), expressed as a function of the coordinates of the moving botiynanthen
the world-line of the moving body a that passes through the points P ansp@ceftime

3
is such that the integrejif[wadt—z N, d)‘gj is stationary.

i=1
W, depends upon time, since it depends upon the coordinates athdr material points,
which are themselves in motion.

In other form, one can say: The motion of the movinglybes determined by
Hamilton’s principle, for which the Lagrangian funetiocludes time and is equal to:

3 .
La:Wa_ zpia d)él
i=1

Hamilton’s principle leads to the Lagrange equations:

dfoL) _aL L _dY
dt\ % |~ ox, % =gt

by a known method.
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For the other points, one will obtain some analogous mmsain whichL, is
replaced by, Lc, ..., inturn.

The motion of each material point then obeys Hami#topfinciple when one
supposes that the motion of all the other points is knoWwhe problem of the dynamics
of systems consists of finding the motions that althe points of the system must
possess in order to make the least-action principle aybdidco each of them. One will
solve that problem by looking for the solutions of tlagtange equations, when they are
considered to be a system of simultaneous differentiakiegsa

Classical mechanics then poses the following problem:ddanchoose a functidn
of the coordinates of all points of the systems awdt trelocities such that the Hamilton

Y . . . .
integral L Ldt is stationary for the collective motion of the teya?

Here is the manner by which that problem is solved byctassical methods: The
functionL must be such that:

dfoL, ) _dL,

dt Mj o
can be written:

d{oL) oL

Terms enter into the functidr, that depend upon only the velocity, along with terms
that also depend upon the coordinates by way of the indérngeof the distances from
the pointa to the other pointb, c, ... LetL, andL, be those two parts &f

Furthermore, the principle of action and reactiorchiea us that the term in] that
involves the distance fromto b, should be recovered i, . On the contraryl, and L,
have no term in common. The suE L, will then contain the terms that depend upon

a,b,...
only the velocities just one time, but the terms tegdend upon the distances twice. That
sum of the individual Lagrange functions cannot be takeneta lglobal Lagrange
functionL, because if one has:

o _oL
0%, 0%
then one will find, by contrast:
oL, 1021 oL 1dy
X, 2 ox ox, 20X

In order to preserve the form of the Lagrange g8guaone must obviously set:

L= L.+i>' L.,
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Thanks to this choice of functidn one will easily find that the equations of motion
admit the first integral:

a,b,c, i=1,2,3

The constant quantityt is the energy of the system, and the least-actimcipte will
become:

s Xl[H dt+ Y Z oLy d&j

abC|123

The dL /0%, plays the role of impulse, ard plays that of energy in the individual

Hamilton principles. However (and this is essenti&l!}s notthe sum of the individual
energies, because that function contains the muttedaction terms only once. It is,
perhaps, even regrettable that one employs the same evoztét to the functiohV and
the functionH.

That is the classical viewpoint. How does one acnodate the relativity principle?
There is no problem as far as the motion of a systérmoint-like charges in an
electromagnetic field is concerned: Here the individizgrange functions easily divided
into two parts, one of which depends upon only the vedsc(viz., properly-mechanical
terms) and the other of which contains the mutual disgfaz., electromagnetic terms
that depend upon the scalar vector potentials). Onesasily define the functiob and
the global energi by conforming to the usual notions.

The case of the motion of a system of points that subject to their mutual
gravitational action is much more delicate. As we hsa@n, the Lagrange function for
the pointa will then be:

La=moC ja 1= [[J’fﬁj-

Va

Ja is the speed of light at the point that is occdpl®y the moving body, and is
expressed as a function of the potentgal){ at that point by the relation:

=¢ \/ (94s)a -

Let 7z denote the gravitational potential (in the uswalse) to whicha is subjected.
One will have:

2
(944)a = lzTa (see Chap. II).

If 72/ ¢* is very small then the series developmeny/ifo,,), willbe 1 +7z/ ¢, and

the functionL, will decompose intoL, and L,. However, if that development is not
legitimate then one cannot see how to deffirrendH.
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At the end of the tale, it then seems proper thatriost general method for the
solution of the problems in the dynamics of systents igpply Hamilton’s principle to
each point, as we explained at the beginning of this paolagra

2. Uniform, circular motion of two interacting material points. — We shall begin
with a deeper study of a very simple case: viz., the cdstwo interacting material
centers — for example, two point-like charges with oppasgns that describe circular
orbits around their common center of gravity. That probleas great historical
importance, because it led Bohr to make some predsctizat were plainly confirmed by
comparing with the spectra of hydrogen and ionized heliunthdnparticular case, we
can study the motion of two moving bodies completetynglwith the propagation of the
associated waves, which will permit us to then entertime general case.

y? x 2
=y

Figure 5.

Therefore, leP andP' be two moving bodies of massels and M, resp., between

which are exerted, for example, electromagnetic astio®ne will easily see that the
equations of motion are verified if the poift@ndP’ rotate with a collective motion that
has a suitable angular velocity around a pointG on the linePP. The pointG

determines two segmentdG =RandM'G =R such that:

M+M’
R+ R

M _M_
R R

in whichM andM "are the masses of the moving bodies here, namely:

M: MO M/: M(’)

in which £ and 3’ are constants that are equaké® / c and wR / c, resp. (see Fig. 5).
Consider the system of axe’s x* that is linked with the poir: It is a Galilean system.
On the contrary, a system of parallel axes thanked withP is not Galilean. 1§, y?, y°
are the rectangular coordinates of the latter syshem they can be deduced from the
by the obvious formulas:
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y'=x'+Rcoswt, VY =xX+Rsinwt, y =X, yi=x'=ct
One will then deduce that:
ds = (dx)? - (dx")? - (dbE)? - (A,
= [1— “’i 52 j (dy")? = (dy})? - (dy)? - (dy’)? - 2%R sin wt dy* dy*

+ Z%R coswt dy? dy’.

In they system of axes, the electromagnetic field will bastant, and the trajectory
of P will be a circle of centeP’ and radiuRR + R'. That will conform to the results that
were obtained for the constant electrostatic fieldone supposes that the circular
trajectory is a ray of the wave that is associatett ®i, and that if one displaces along
that ray at constant time then the phase will vargiix' + p, dx.

The componentg; of the quantity of motion are given by the general fda® of
relativity:

p=Micu+ed =Micgu +egp (u‘zdd—)ij.

Thanks to those formulas and the obvious relations:

Ulz(z_{:—w(R+R) sin wt, UZ:z—f:w(R+R) coswit,

one will get:
oMy 4 R oMy & R
' 1-p2 dt R+ R’ ? 1-42 dt R+ R’
MW ay MM dF
M+M' dt’ “TM+M dt

by some easy calculations.

!

Everything happens as if the mass of the movindyd® were equal to—MM+MM,,

instead ofM”. That is a classical result of rational mechanlms here it has been
generalized somewhat by the substitution of theingpmasses for the proper masses.
Those valueg: and p, permit one to calculate the small variations of Rydberg
constant that were predicted by Bohr and confiropgite well by observation.

Nothing in what was just said will prevent us framaerting the roles of the material
pointsP andP'. The resonance of the wave that is associatddRvivill be expressed
by the relation:

MM’
M +M

sin 27rw(R +R)?=nh

!
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in the system that is linked # The resonance of the wave that is associatedRuwhl

be expressed in the same way in the system that is linkedPly by reason of the
symmetry in the formula that was obtained. The Bodmdition then expresses the
resonances of both the waves associated”vahdP'.

Phase line o
the pointP at
the instant

’/Trajectory of
the pointP

o ——

\\ P
Trajectory
of thepoint
Pl \\
Phase line of

the pointP’at
the instant

Figure 6.

It is instructive to trace out the rays at the instasit the two associated waves that
pass througl® andP' in the system of axes that is linked with the centgravity, along
with the trajectories that are described by the two movodjels in the course of time
(Fig. 6). One will then arrive at a representatiomadv each moving body describes its
trajectory with a velocity that is tangent at eag$tant to the ray of the associated wave
if one continues to call the envelopes of the phaseciteEs at a given instant “rays.”
However, it seems preferable to reserve the word “fagthe trajectories of the energy
and to give the name of “phase lines” to the envelgpe¢lse phase velocities. We then
perceive a fundamental fact that is true for nottiastmoving body itself, but all parts of
its wave: The rays do not coincide with phase linesdisplace in space. That recalls a
known conclusion in hydrodynamics by which the streamlindsch are envelopes of
the velocities, are the trajectories of the fluid jgées only when their form is invariable
— in other words, if the motion is permanent.

3. Associated waves in the dynamics of systemsWe just gave an account of the
nature of associated waves for a very special cassystam of two material points. We
need to generalize our results, but unfortunately that taldeg presents some grave
difficulties. In the general case where more them material points are present, it is not
possible to determine a reference system in which orfgeeahbving bodies displaces in
a constant field. The gimmick that was employed iragaph2 will break down, and
we will no longer see any way to determine the phase li@dwiously, one can appeal to
the point-source theorem for that determination, mupibof and application will again
be more difficult than it was in the case of constatdls. If the ideas that are presented
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in this book are correct then it will be necessary tenan those questions if one is to
know how to apply the quantum conditions in the genetabdy problem. As one
knows, that point is very important for the progress arpgerimental verification of
guantum theory, especially since the methods that aedhaon perturbation theory do
not seem to lead to exact resufis (

Nothing further can be said about those questions at theemipso | shall confine
myself to making a few general remarks whose corregtth@ss not seem to be in doubt.

First of all, the phase lines of the waves thatasmsociated with the various material
points generally move in space and do not coincide Wwelrays. In the case of circular
motion that was just studied, the trajectory is, atiastant, tangent to the phase line that
corresponds to the point at which the moving body is fodrttat is a general fact, as an
examination of the elliptic solutions of the two-body pewbl has already shown.
Moreover, the energy of each center will not renwinstant in the course of motion, in
general, and one can no longer attribute a well-defuzdde to the frequency of the
associated wave. Meanwhile, one thing seems certdira point where one of the
moving bodies is found, the propagation of the phase shasociated with that location
along its trajectory will conform to the lal=h O.

Of course, that reduction is valid here only at theamsiwvhen the moving body
passes the point considered. We have seen that thé-Weerlof a moving body that
passes through two poift and Q in space-time islways determined by Hamilton’s
principle:

o[ Wdt-G dy =0,

in whichW s the (variable) energy a@l is the projection of the quantity of motion onto
the tangent to the trajectory. Therefore, the rayhefassociated wave on which the
material point moves will be determined by the relation:

5jQ(vdt—¥ dlj -0,
p Vv

in which 'V, is the radial phase velocity. The preceding equatiqmesses the idea that
the variation of the phase along the world-ray isiaimum; that is a generalization of
Fermat’s principle to the case of variable frequenci®¥ge saw that de Maupertuis’s
principle coincided with the usual Fermat principle in tase of constant fields in the
same way that Hamilton’s principle coincides heréilite generalized form of that great
law of optics.

If one supposes that the poiftisand Q are extremely close, and if one varies

without deforming the elemer®Q then one will recover the Rayleigh relati%=

() Regarding that point, see the last part of the book by Bat was cited before.
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In summary, the determination of the associated wewése general case of time
body problem can be very difficult in practice, butddes not seem to encounter any
objections, in principle.



PART TWO
THE OPTICS OF QUANTA

CHAPTER VI
THE ATOM OF RADIATION

1. Hypothesis of a quantum of light. — 2. The quantumgbft land its rectilinear propagation. — 3.
Doppler effects. — 4. Radiation pressure.

1. Hypothesis of a quantum of light— The idea that light is composed of corpuscles
that displace with a large velocity is quite old; notablye can find it irDe natura rerum
by Lucréce. It has Newton to bolster its authorityd ane cannot deny that it expresses
the phenomena of rectilinear propagation and reflectioth \@ marvelous ease.
Similarly, it interprets the phenomenon of radiatiomgsure, which was discovered
around thirty years ago, in a striking manner. Nonethetbas theory was not in favor
throughout the Nineteenth Century. Indeed, Fresnel andidugples showed that if one
attributes the nature of a vibration — whether elastiglectromagnetic — to light then one
will succeed in explaining the phenomena of rectilinearpagation, reflection, and
radiation pressure, as well as the entire set of gghena of diffraction, interference,
diffusion, dispersion, and crystalline optics, which isewe the corpuscular theory had
run aground. Furthermore, in the year 1900, the physicistardddhat there could no
longer be any doubt as to the wave-like nature of ligtitation. They undoubtedly had
their reasons for that, but in their minds, the cdaness of wave theory would have to
imply the falsity of the corpuscular theory, and tatdr conclusion seems much more
doubtful today.

At the beginning of our century, the development of @@ty of quanta, which was
necessitated by the interpretation of the laws of lbadik radiation and study of
photoelectric phenomena, redirected attention to thpuscular theory, and in 1905,
Einstein proposed that light energy should be considirdst grains of valuév that
would be proportional to their frequency. He deduced hidogtectric equation from
that, which was first verified in the light domain, prdpespeaking, and was
subsequently confirmed more precisely in the domains of X-aagly rays. Einstein
also showed that fluctuations of energy in blackbodyatexh involved the quantuiny,
and Bohr (1912) made us aware that atoms always absodwainguanta. Nevertheless,
the new corpuscular theory encountered strong resistantee part of many physicists
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because, just like the old theory, it seemed incapaldeanfunting for the phenomena of
wave optics, which are quite numerous and quite precise.

The discovery by A. H. Compton of the change of wavgth by diffusion, which is
a phenomenon that was immediately contested, but whialow, | believe, beyond
guestion, and the quantitative interpretation of the Compikfect by the simultaneous
theories of Debye and Compton himself seemed to imgwgeone should adopt the
hypothesis of quanta of light without it also being palssto abandon the fundamental
idea of oscillations. Upon assuming, in line with thggestions of the present book, that
radiant energy, like all other forms of matter, @sses an atomic structure and that the
motion of any unit of energy is associated with the pgapan of a wave, we will
foresee the possibility of that synthesis becomingssary. We must now examine the
extent to which that synthesis is currently realizable.

2. The quantum of light and its rectilinear propagation.— In Chapter |, we were
led to associate the uniform, rectilinear motion witvedcity v = ¢ of a moving body
of massmy with the propagation of a wave in the same directiomsghamplitude
possesses the velocityof the moving body and whose phase possesses théywaioe
/.

Having recalled that, suppose that our moving body has @aoedinarily small
proper mass. Since its internal energy is very weakillipossess an appreciable total
energy that is due to its motion entirely only ifutdocity is very close to the valwe

That will become obvious if one remembers the fornida gives the total energy:

w= M C

J1-87

It will then seem quite natural to compare themjuen of light to a moving body of
very small massy . Obviously, the velocity of that moving body Wde a function of
its energy, but ifmp is very small then its energy will have a deteletatalue only if its
velocity is indiscernible from the velocity On the other hand, as we have seen many
times, the wave is associated with a frequdncguch that:

W=hy,

and we will then obtain a satisfactory represeotatif the quantum of light. We further
add that the quantity of motion:

U
Ji-p

will be very close tohv / ¢, and that is, in fact, the value that is attrilbute it by
Einstein’s theory, as well as the theory of the @tun effect. Meanwhile, an objection
persists that was first communicated to me orally&ngevin, and was then discussed in
a series of notes by W. Anderson (Phil. Mag., M&p4): The velocitySc of the

c=—10Y _py
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2 4

. C . . o
quantum is equal tQ/ 1- r;:g >-» and since one supposes thatis small, it will have a
vV

frequency, as above, that will make propagation imptesgibz., 5 will be imaginary).
In a different form, one can say that upon diminishirg flequency sufficiently, one
must conclude by discarding the predictions of the daktieory ¢ =c) and also in the
domain in which one must expect to find those predictiogst Ibealized (viz., the
correspondence principle). That objection is certaielyy \embarrassing, although it is
not, perhaps, definitive.

One can obviously escape it by taking a radical stezeiticg:

m =0, £=1,
but one must then imagine a very delicate passage tolirthie such that one

simultaneously makeas, tend to 0 angstend to 1, while the quotien’cM keeps the

J1-53
valuehv.

| shall leave open the delicate question of treper mass of the quantum of light,
and | shall content myself by saying: The dynampralperties of the atom of radiation
are deduced from the properties of the materiaitpafi finite mass by making the proper
mass tend to zero.

The two velocitie andV are then equal tg so the wave and the moving body will
be transported in unison.

3. Doppler effects— We have already pointed out that the phenomenhoeflection
can be interpreted immediately under the hypothafSight quanta. We shall show that
the same thing is true for the two main types oppler Effect.

a. Doppler Effect due to the relative motion of $murce and the observer
Consider a source of light in motion in the direntof an observer that is supposed to be
fixed. In a reference system that is coupled wite source, the atoms of emitted
radiation have an enerdy = hv and a quantity of motio& = hv/c. The transformation
formulas for a quadri-vector teach us that the gyner of a corpuscle is:

_ W+uG

for the observer, and sin®é’ = hv’, wherev’is the observed frequency, one will have:

=

, 1+ M
V—V\/?IBZ—V -3
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It is also quite simple to find the ratio of the dett intensities in the two reference
systems. In that of the source, a numbef atoms of light will be emitted per unit time
per unit area. The density of the sheaf will themlwe/ c, and its intensity will be =
nhv.

On the contrary, for the observer, thostoms are emitted during a time that is equal

1-B

V-5

to 1/4/1- 5%, and they fill up a volume For him, the density of the sheaf

will then ben—h/' ﬁ and the intensity will b&’= nh/' ﬁ
c \1-8 1-8
Hence:
I'_v [1+8 _(V'Y
Tv\N1-8 (vj

We have recovered the well-known formulas, and ¢hse in which the source
displaces in an arbitrary direction with respecttiie observer is also dealt with quite
simply.

b. Reflection by a moving mirro Once more, consider the reflection of light
corpuscles by a perfectly-reflecting planar mirtbat displaces with the velocitgc
normally to the surface.

For an observer that is coupled with the mirrois ifixed, and the light corpuscles
have the same enerylyand the same frequency before and after reflection

For the fixed observer, the incident corpusclegehanergyW, and frequency, ,
while the reflected corpuscles have energ§ and frequencyv,. The tensor
transformation formulas will give:

Wt G W,—uG
el =

hvy 1 +p) =hv, (1-P),

W

SO

_1+B
" 15

V’
14

If Bis small then one will revert to the classicahfoia:

—

2=1-2
Tl

olc

Let n denote the number of corpuscles that are refledtieidg a given time interval.



50 Part One — The dynamics of quanta

. . h, v, .
The total energy of the corpuscles after reflectiok, has a ratio ofnvz: —2 with
n 1 I/l

their total energy before reflectioR,. That formula can also be obtained by the old

theories, but here it is entirely self-evident.
If the n corpuscles occupy a volumé@ before reflection then they will occupy a

1- : : : : iy
volumeV,; = Vlﬁ after reflection, as a simple argument will shovhe intensities;
and |, before and after reflection, resp., will then héwe ratio:

I

l; nhy 1+ v,

1L nh,1-8 _ (ﬁjz
One can also treat the case of oblique incidenge qasily.

4. Radiation pressure.— The hypothesis of light corpuscles gives a atrre
explanation of radiation pressure, and it is evesbable that if Newton had known of
that phenomenon then he would have consideredlieta particularly striking proof of
the correctness of his concepts.

Consider a cylindrical sheaf of light of frequenethat falls upon a plane mirror with
an angle of incidencé. Letp =nhv be the energy density of that sheaf, anc&le¢ the
area of the mirror that is illuminated. During tivae dt, the mirror will receiven x S cos
@x c dtparticles and reflect them. Before and after otifber, each quantum will possess
the quantity of motiomv / ¢, but although the rebound from the mirror will moodify
the tangential component of that quantity of matignwill reverse the sense of the
normal component. The impulse that is exerted upemmirror by the reflection of the
corpuscles is then:

2n Scosdc dth—cvcosez F dt,

in whichF is the total force that is applied to the surf&ad the mirror. Hence:
F=2pSco< 4
The pressurp, or force per unit area, is found to be:
p = 2pcos &4
If one now changes the notation and jetdenote the energy density in the region in
which the incident and reflected sheaves are supesed then the ne@will be equal

to twice the old one, and one will have:

p=pcos 6,
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Instead of one sheaf, consider an infinitude of shealvédse same density such that
all of the angles of incidence are represented equallgne will then have:

p=pcosf =1ip,

in which p is the density of radiation in the vicinity of the mirr The formula thus-
obtained is exact, not only for monochromatic, isottapdiation, but also quite clearly
for arbitrary polychromatic radiation (for exampleadkbody radiation). The formulas
that we will then obtain are indeed those of theted@gagnetic theory.



CHAPTER VII

THE ASSOCIATED WAVE
FOR THE ATOM OF RADIATION

1. Return to some results of Chapter |. — 2. The a&dsodcwave for the atom of radiation.

1. Return to some results of Chapter I- In electromagnetic theory, one shows that
the quantities that are called the “scalar potentiadi hhe “vector potential,” from which,
the fields are deduced by derivation, propagate in space oldaleng the equations:

1 0%y
AYy- ——Z=-p,
d c® ot?
1 d%a
Na-——=-p—
c® ot? P

As before, ¢y and a continue to denote the two potentials, whilds the density of
electricity at a point in space, ands its velocity at the same point.
Kirchhoff showed that the equations that weretemitabove admit the solutions:

e = [[ 7Pl

= [[[ LoVl ey,

in whichr denotes the distance from the point at which @beutates the potential to the
elementdv. The quantities in brackets denote the valugsaidpov in the elementlv at
the instant —r / c. That instant is the one at which the action e@agted that is due to
the volume element and is felt by the point ofplogential at timé. The potentials thus-
determined are known by the names of “retardednpats.”

It is easy to obtain another solution. Indeeduffices to remark that the equations of
propagation contain the square of the velocignd that if one has obtained a solution
that containg then one can obtain another one by changimgo —c. One can then
describe the new solutions as:

wA = J.'Uﬁ[p]tﬂ/c dV’

an = .[.[.[4—7:-”['0\/]””0 dV’
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These are the “advanced potentials.” The indtant / v is the one at which the action
that is felt by the potential point at timevill be absorbed by the elemest. Classical
theory neglects the advanced solution in order to keeptbalyetarded solution. For the
moment, assume that this is wrong, and look for the fdrat the two solutions must
combine into. In order to do that, imagine an elecwbchargee at rest. From the
definition itself of the quantity of electricity and upo@marking that the units that are
employed here are those of Lorentz-Heaviside, webeilbbliged to attribute the value:

_ e
w_4nr

to the scalar potential at the distandeom the charge.

Since the charge of the electron is assumed to bstamdt, one will immediately
obtain that result upon considering only the retarded patentd settingy = ¢k ; that is
what the classical theory does. If one would like tetthe advanced potential into
account then one will have:

Y=ayn+ B YR,

in which a and 8 are constants. However, the symmetry of phenonretiane, or — if
one prefers — the equivalence of the past and the futemss® impose the conditian
= S upon us. Now, the formulas that were given abovevghat one hag = ¢s =€/
4 in all space. One must then set:

W=54n+ ysl.

Therefore, if electromagnetic theory wished to take #uvanced potential into
account then it would seem necessary for one to ehibessolution of the wave equation
to be one-half the sum of the advanced and retarded sslutio

Electromagnetic theory imposes the conservation exftretity, which is a fact that
experiment always confirms. Meanwhile, nothing would eréwus from imagining
functions ¢ anda that obey the equations of propagation for the potentidloout the
entity such thap represents its density andepresents its velocity being constrained to
be conserved. Indeed, the conservation of electnegylts, not from the equations of
propagation of the potentials, but from Maxwell's equatioms, from certain relations
between the derivatives gfanda.

Logically, nothing prevents us from supposing that thosgewdi equations are not
satisfied and that the charges, which are sources @btieatials, have oscillating values,
except that the functiong, a, e, and o would not longer represent the usual electric
guantities.

Hence, consider a charge with oscillating value:

e =& Sin 21V (to — o),

in which tp is the time in the system that is coupled to the chailgethat system, the
scalar potential at the distangefrom the charge will be:
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1
8,

: r : r
= 8% {sm ZTVO(tO—EO—TOJ+ sin mvo(to+zo—roﬂ,

7,

o= 3+ el = ——([6lre H &1 rc)

when one takes the advanced solution into accolNdturally, the vector potential is
zero.

In paragrapld of Chapter |, we found that the periodic phenometihat is associated
with a material point with spherical symmetry canrbpresented in the “proper” system
by the function:

@ (ro, to) = A{cos{ 21V, (to—i}cl} co% ero(to+r—°j+ cz}}.
2r, c c

The two expressions fag and ¢ can obviously be identified by making a convenient
choice of phase constants and setting:
e = 4iTA.

The periodic quantity that is coupled with a matepoint with spherical symmetry
can then be likened to a potential (viz., one-hiadf sum of the advanced and retarded
solutions) that will be produced around that of thmaterial point; it will carry an
oscillating charge of amplitudesZA and a frequency that is determined by the quantum
relation. Much later, we will have to examine wiertone must suppose that there exists
an arbitrary ratio between that oscillating chamgd the electric charge that is carried by
the material point.

Assume (and we shall return to this point) tha #mplitudeey of the oscillating
charge presents the same invariance charactee a&deittric charge in the usual sense of
the word. When one changes the Galilean coordisydem, the phase factors in the
expression for the potentials that are due to tallating charge will necessarily be
invariants, while the amplitude factors will tramsh like electromagnetic potentials —
i.e., like the components of a world-tensor.

If, as in Chapter I, we pass from the systeiyo, z, in which the material point is
are rest, to a systemy, z in which it moves along th®zaxis with velocityS c then the
expressiony (x, Yy, z t) that is obtained by replacing the quantitigandty in the ¢ (ro, to)
with their values as functions of y, z t will represent the magnitude of the tensor
potential, but not the scalar potential, whichn$yats temporal component. Conforming
to the transformation formulas of the tensorial poments, the scalar potential will then
be given by the formula:

Yy, 21 = ﬁ b (%Y. 2.1)

That is in fact the result that we obtained uppplyging Liénard’s formula to a point
on thez-axis. In order to complete it, we must then adebetor potential to that scalar
potential that is parallel to theaxis and defined by:
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B

—— 0 (X VY, Z1).

We will then be dealing with a longitudinal wave for tleetor potential.

axzo, ay:01 a-Z:

2. The associated wave for the atom of radiation- The solution that we studied in
Chapter | and that we just re-examined pertains to mhteomts with spherical
symmetry and associates their uniform, rectilinearionotvith a longitudinal wave. It
does not pertain to the quantum of light then, sincht lig necessarily a transverse
vibration, which has been proven by polarization phenoraspacially.

In order to avoid a very delicate passage to the Isuppose that the proper mass of
the quantum of light is extremely small, but nonetrsefeste. For a given value of its
energyhv, under the condition that this value of not extraordipathall, the quantum
will be animated with a velocity that is slightly tethanc.

The associated periodic phenomenon will then be septed by a vector that is
normal to the direction of propagation. If we pasgh®system that is coupled with the
moving body then that vectorial quantity will not sufferyanodification. In the proper
system, we will then have a periodic phenomenon ithag¢presented at every point in
space by a vector that has the same direction evergwhi¢ is entirely reasonable to
attribute the nature of a vector potential to it. @k get a picture for the creation of
that vector potential by equating the atom of radiativhen imagined in its proper
system, with a dipole of electromagnetic theory: Twe equal and opposite charges are
assumed to remain close enough to each other that necaipe scalar potential will be
produced in space, but they will cause only a vector pateotappear in all of space that
is parallel to the direction of their relative vibaatj which conforms to the vectorial
equation:

One must suppose that the charges are constatharitie vibration takes place with
a frequency, that is defined by the quantum relation:

Wo:hVo.

Perhaps we should be a bit wary of the simplicftthe preceding picture: Indeed, we
saw that in our theory, the electron cannot beesgrt in manner that conforms to
classical electromagnetic theory (viz., the impoiisy of an oscillating charge that is
implied by Maxwell's equations) and that in thissea the frequency, cannot be
compared to a simple mechanical frequency. Itasbtful that anything would be
different for the quantum of light, and it would tv®re prudent to say only that:

Whereas in the case of a material point with spgtarisymmetry, the periodic
phenomenon in the proper system is a scalar peatlethtat is excited by a tensor (viz., an
analogue of the world-current) whose spatial congmins zero, in the case of the atom
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of radiation, it is, on the contrary, a vector potential that is exiclig a tensor whose
temporal component is zero.

Let A denote the vector to which the tensor that produced tlfedtreduces and
always add the advanced and retarded solutions; we wdt hav

Al . r . r
a (Xo, Yo, 20, to) = — | sin2tv, | t, -7, -2 |+ sin 27V, | t,—T +—°j
(%o, Yo 0 ZF{ o(o 0 Cj o(o 0"

0

A . Vv
= —sin2v, ¢, —-1,)cos2r2r,.
A c

That is the most likely form for the function thapresents the periodic phenomenon
that is associated with the quantum of light.

For some unknown reason, the motion of the quaturays takes place normally to
the vectora and is therefore not affected by the value of thedtor. As a result, in a
systen, y, z, t for which the luminous atom displaces with velpgitc along thez-axis,
one will have:

a (Xo, Yo, 2o, to)
—R2
= A cosznvo\/x2+ Y2+ (z Utz) sin 21V, (t—’g—z—rj.
X2+ Y2+ (z-ut)? c 1-p 1- B c
1- 3

Sincevy = mp ¢ / h must be assumed to be extremely small, in ordevfo, 1- 5*

to have a finite value, it is necessary that must be close to. Then seff=1 —¢and
neglect the terms igf ; one will get:

axy zt

_ 2
A cosznvo\/x2+y2+(22—m) sin zrv(t—’g—z—rj.
£

\/X2+y2+(Z_Ut)2 c C
2¢€

The first two factors represent the amplitude, ated with the velocity = (1 —¢) c; the
last one gives the phase, whose velocityisc/ S = (1 +¢) c.

Let us examine the distribution of the amplitudeshe instant. At the pointM (X, v,
2) whose distance from the rectilinear trajectorytlid quantum iso =4/ x* + y* and

whose distance to the wave plane that containgihatum isd = z — ut, one will have
the amplitude:
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A 2y, |, d?
coSs +—.
2, d? c 2¢
p E—

2¢

If M is in the wave plane that contains the quantum de®, and the amplitude will

. . . A 2wy , : .
vary with the distance like —cos—o’o; the cosine term will be less noticeable at
P c

small distances, due to the smallnessygfmoreover.
On the contrary, iM is not in the immediate neighborhood of the plafehe
quantum the” will be negligible in comparison w? / 2¢, and the amplitude will vary

. . A2 . L
with d like q gcoszz/d. At equal distances from the atom of radiatiome t

amplitude will then be much larger in the wave plaimat contains it than it is outside of
it.

That seems to be the probable constitution of gbtential of the wave that is
associated with the quantum of light. One cartdrpass to the limit by setting, = O
and v = ¢, but we shall see that this passage is delicaténéopresent example.

One must first suppose that the limitigf/ \/ 2¢ is equal tov when, ande tend to

zero simultaneously. Having said that one wilt get

sin m[t—z—r}
c

ayzt) =2
1 /X2+y2

= ésin 2771/['[—5—2'}
P c

for the wave plane of the quantum, and:

A2
axyzt) = 500527(7:1/ (z—ct)sinzw[t——i—r}
y4

—-ct
A 2¢ .
= q coszzvd sin zzv[t—%—r}

outside of the plane= ct.
However, a difficulty presents itself here:Afhas a finite value then the potental

will be zero everywhere outside of the plave ct, whereas ifA,/ 2¢ has a finite non-

zero limit thena will be infinite in the planez = ct. Either alternative is difficult to
accept. It would then seem, at the very leastemonvenient to not perform the passage
to the limit in order to study the properties of tissociated wave.

Finally, we point out an interesting situationetlan ensemble of light quanta with
the same polarization displace with the same energlye same direction. Is it possible
that the associated waves can form a single Vitawve the standpoint of phases¥es,
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that will be produced if the quanta are all synchronoublérsystem in which they are at
relative rest. Indeed, in that system the periodic piaidrmas the same phase:

sin 271vo (to — o)

in space. As for the amplitude, at each point, it debend upon the distances from that
point to the various point-sources. Return to the feftrence system. The phase will
then be given by:

sin 277rv (t—z—rj
c

everywhere, and if that plane wave is transportemltyin an enormous number of quanta,
it will show a marked analogy with the homogeneous plaarees that are often studied
by the classical theories.

To conclude, we once more insist upon an essentiat. pdie just attempted to
determine the periodic quantities that are associatddthdt various kinds of material
points, and we have often referred to them as “potsritiaindeed, they have just the
tensorial character as the potentials of electromagriegory, and they propagate
according to the same law. However, they must notcdogfused with the latter
potentials. We shall seek to examine that point marsety by studying the Maxwell-
Lorentz equations.




CHAPTER VI

THE LINK WITH ELECTROMAGNETISM

1. The Maxwell-Lorentz equations. — 2. The value of ebachgnetic theory. — 3. Attitude of
electromagnetic theory toward the problem of radmatio

1. The Maxwell-Lorentz equations.— In our research, we have come to understand
that the equations of propagation for potentials are rgereeral than the group of
relations that are universally known by the name of Maksvequations. It would
therefore be interesting to invert the order of dedustibiat are generally followed in
classical works and look for the conditions under whieh Maxwell-Lorentz equations
can be derived from the equations of propagation.

Therefore, consider two quantitieg and a that define the temporal and spatial
components, resp., of a world-tensor, and suppose thatatberestricted to ones that
verify the relations:

1 0%y
AYy— — )
d c® ot? P
2
Aa—iza_? :—E,
c- ot c

in which the functiong andC are given in all space-time and are also the coepts of
a world-tensor.
Having said that, we define two vectors by thatieh:

1oa
h grady <ot
H = rota.
We effortlessly obtain:
0] divH =0,
()] EG_H = Erot(%j =-roth.
c ot C ot

These are two equations of Maxwellian form, whiagle aritten with the Lorentz-
Heaviside convention for the suppression of th&ofadrz

oy

In order to go further, we l&t (x, y, z t) denote the function%ﬁ +diva.
c

One will easily find that:
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divh=-Ay- Eg(div a),
cot

10L 1 0%
=-AY- ——+— ,
v cot ¢ ot
2
% :—grad(a_wj_ia_ﬁ'
ot ot c ot
. 10%a
=cgrad diva—c gradL - —.
g g c ot?

If we recall that grad dig = Aa + rot rota, and take the equations of propagation into
account then our point of departure will be:

: 1dL
1 divh=p-=——,
(1) P~ ot
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ot o

Finally, we form the combinatio%%(lll) —div (IV):
c
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If we suppose thdt is identically zero then equations (ll1) and (IW)ll become the
last two Lorentz equations upon setti6g= pv. Equation (V) will then express the
conservation of electricity.

Briefly, it is the hypothesis thdt = O that permits one to deduce the group of
Maxwell-Lorentz relations upon starting with theuatjons of propagation; that is what
imposes the conservation of electricity.

The deeper reason that we are prevented from iaguite potentials that were
studied in the last chapter with true electromaign@itentials is the non-zero value of the
functionL that corresponds to them. For example, in théesyshat is associated with
an electron, we found a zero vector potential apdradic scalar potential. The function
L that reduces ta¢ / ot will not be zero then, angy and will not be an electromagnetic
potential that satisfies the Maxwell equations.

To conclude this rapid review of electromagnetieary, recall that it is further based
upon a sixth relation that is independent of thexpding one.
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That would be the expression for the Lorentz forcet tisa exerted by an
electromagnetic field on a charge:

(V1) F= e(h+%[vH])

Upon combining that equation with the preceding, mme will obtain the energetics of
the electromagnetic field by a well-known calcudati One determines the energy
density p (w) and that of the quantity of motion (G), as well as the energy flux or
Poynting vectoP by the relations:

p W) = 4 (h* +H?),

p(G)=2[h H],
Cc

P=c[hH]=cp(G).

2. The value of electromagnetic theory- Electromagnetic theory, when completed
by the introduction of the atomic structure of éfetty, has known great successes and
can be legitimately considered to be the expressibneality itself. However, the
development of our knowledge of radiation and etationship to matter (emission,
absorption, diffusion, etc.) has undermined thanvedion and has shown that
electromagnetism is insufficient, at least for théerpretation of those phenomena.
Nevertheless, the predictions of the theory oftetes will be verified whenever one is
dealing with phenomena in which radiation is nabined. Hence, they will be true for
all of the usual electric phenomena, and in padicuhose of electrical engineering. In
the Bohr atom, forces are given quite correctly thg Lorentz relation, and that
verification is quite remarkable. It then seemescige for to say:

Electromagnetic theory is well-verified for the purely-mateghEnomena in which
radiation is not involved.

It seems that we can even liberate the theoryeztrens from one of the grievances
that has weighed upon it. That grievance is tleliption that energy will be emitted by
an electron in accelerated motion in the form dSpherical wave with a continuous
distribution. That conclusion is in absolute cadiction with the stability of atoms, and
furthermore, experiments never seem to revealredtmession by an accelerated electron
or the existence of waves with a continuous distidim of energy. However, it is easy to
make the acceleration wave disappear from the yhebelectrons. It will suffice to
introduce advanced potentials.

Indeed, recall the reaction force that is dueathation, as Lorentz calculated it in his
classical book on the theory of electrofjs If we take one-half the sum of the advanced
and retarded potentials instead of the retardeehpats, for reasons that were explained

() Theory of Electrons2™ English edition, pp. 252.
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before, then we will find a zero value for the radmiatreaction, and we will conclude that
the accelerated electron does not radiate. That afasadiation acceleration is very
instructive, moreover! Indeed, suppose that an electrom isccelerated motion.
Classical theory tells us that it will emit a wadkee to the “retardation” of the potential.
Suppose that the direction of time has been reversedigen moment. We shall review
the phases of motion of the electron as they procedteiropposite sense, and the
electronabsorbsthe wave that it has emitted. How is a physicist thabt aware of the
inversion of time to describe the phenomenon? He cathatoonly by neglecting the
retarded solutions and keeping only the advanced solutiaty, tkn can he interpret the
absorption of the wave by the electron. HowevergifaBsumes that only the retarded
solutions should be counted then our physicist will percthe¢ the sense of time has
been reversed. Time will then have a privileged dibectand | must say that this
conclusion seems rather shocking to me because iieenp sort of fundamental
irreversibility in natural phenomena. Naturally, if oftems one-half the sum of the
advanced and retarded solutions then reversibility will rbeestablished by the
suppression of the radiation that is due to acceleréfjon

3. Attitude of electromagnetic theory regarding the problen of radiation. — If the
ideas that we have developed are exact then the clagscay will be found in the
impossibility of interpreting radiation phenomena in detand that is because the
oscillating potentials that are necessary for thaie tdescription do not satisfy the
Lorentz conditionL = 0 and are, in turn, excluded from the framework of Malke/
equations. One will then be constrained to look fontgmis to Maxwell's equations that
represent waves whose speed of propagation has thecuhlateexperiments reveal, and
one will have then recovered the solutions of the ielaseory, and notably the plane
wave and spherical wave whose amplitudes are constaneach wave surface.
However, those solutions are, so to speak, fictitiand,the alleged electric and magnetic
field of the light wave are not true fields. In peutar, the action of light on a charge
cannot be calculated by the Lorentz formula upon staftog those pseudo-fields, and
that is indeed what experiments seem to verify. Hinafi those quantities are
electromagnetic fields then the energgh > + W ?) will be distributed in a continuous

fashion, and it will also be inexact.

Meanwhile, the concept of homogeneous waves, sucheagtzes in the classical
theory, has permitted the interpretation of phenoment hage been observed very
exactly and described in physics books under the rubri@eéwptics. That concept of
homogeneous waves is not without value, since it doessesgreomething, and the main
task of the optics of quanta is to establish a link betwkanhconcept of homogeneous
waves and the discontinuity in the structure of rackaetrgy.

(') PAGE, Phys. Re\24 (1925), pp. 296.



CHAPTER IX

HOMOGENEOUS WAVES AND RECTILINEAR MOTION.

1. Homogeneous waves and rectilinear motion. — 2. Homogsmveaves and curved trajectories. — 3.
Diffraction and interference. — 4. Motion of an igelhquantum. — 5. Interactions between quanta.

1. Homogeneous waves and rectilinear motior- In order to better understand how
homogeneous waves can play a role in the optics of guaetshall go back a bit. In the
study of uniform, rectilinear motion, we saw that sphebaves as if it possessed an
index of refractiom = S for the associated wave because the phase velocityAs That
index is a function of the frequency of the wave, amtenprecisely, in such a fashion
that speed of the energy is given by Rayleigh’s formula.

On the other hand, we showed at the end of Chaptethdtl a set of atoms of
radiation that displace with the same velocity dreldame direction and are synchronous
in their proper system will have associated waves wpbases coincide at every point,
which is a result that is exact for any type of movingyoTherefore, consider a set of
material points that are animated with the same uglogithe same direction and are
synchronous in the proper system. One can considertthbemassociated with the same
wave whose phase is given by an expression for the for

sin m(t—z—rj,
V

withV =c/ . As for the amplitude of the wave, it propagates withvelocityv = Sc.
However, at each instant, its value at any point wilesel upon the manner by which
the various material points are distributed throughcaiintave.

Now imagine a homogeneous plane wave:

A sin m(t—z—rj,
V

in which the constant quantit% is such that its square is proportional to the mean
number of atoms per unit volume, or if one prefers,déesity of energy in the wave.
The propagation of that wave in the medium of indethat constitutes the space will
give us a statistical picture of the motion of oureenble of material points because we
know that energy will displace with the Rayleigh \atlg in such a wave.

In the case where our material points are light guahéavelocitiesy andV are both
indiscernible front, and the homogeneous wave that represents the mddloaily is:
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A sin m(t—z—rj.
V

We can then recognize the statistical significance efltbmogeneous plane wave in
classical theories.

2. Homogeneous waves and curved trajectories. In Chapters Il and IlI, while
studying fields of constant force, we further defined an imofepefraction whose value
we calculated at each point. Furthermore, we hawe sden that the velocity of the
moving body can be calculated by Rayleigh’s formula.

Having recalled that, consider the constant force fielde a medium of index that
is defined by the formulas in Chapters Il and Ill. Im&gihat a wave propagates in that
medium that has no singularity of the classical kind possesses the frequency The
rays of that wave will be certain trajectories oeyy W = hv in the field of constant
force; that will result from the identity of Fermatand de Maupertuis’'s principles.
Furthermore, it is easy to see that the propagationghatagined represents the motion
of an ensemble of a large number of material pointsateaffected by the field, bdb
not interact with each othewmith the reservation that the following two condigoare
realized:

1. The amplitudeA of the wave must be proportional to the square root of the
density of the moving body at each point of the field.dnn denotes the number of
material points that occupy a volumein space then one must have:

dn= K A*dr,

in which A; is the amplitude of the continuous wave in the elerdentlf that condition
is verified everywhere at the initial instant therwill always be verified because the
trajectory tubes coincide with the ray tubes and heed of the moving body is the
Rayleigh speed.

2. The moving bodies must present a certain coherezteeeén them because each
of them must be found to be in phase with the continm@u® when it is envisioned as a
vibrating source.

The reader must reflect upon the fundamental differethat exists between the
continuous wave, the statistical representation of rim¢ion of numerous, coherent,
material points, and the wave phenomena that areiatsd with each of the material
points, whose character of involving a singularity isasal.

3. Diffraction and interference. — Let an ensemble of coherent light quanta have the
same frequency. Their propagation in free space carepresented globally by the
homogeneous wave:
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A sin m(t—z—rj.
c

If that plane wave penetrates a region of spadeigisiudded witlixed obstacles then it
will produce diffraction and interference phenomenaontnumerous extremely precise
experiments, we have learned since the end of the Eigght€entury that thstatistical
distribution of light energy in the regions of intrénce is predicted very accurately by
the wave theory when one supposes that the incident iwdwamogeneous. Therefore,
the calculation of the wave:

A sin m(t—z—rj
c

in the region that is studded with obstacles by the ickssterference methods will
always give an exact statistical image of the disptant of quanta in that domain. In
particular, the trajectories of the atoms of radiatmust coincide with the rays of the
classical theory, the square of the amplitude at each paist give the density of the
guanta, and the phases of the wave along each ray musspmnd with those of the
wave that is associated with the quantum that follibws

If one assumes those ideas then all of the phermmkdiffraction and interference
can be interpreted by the theory of quanta of light. Sdree thing will then be true for
the experiments, like those of Taylor in which interfexe was obtained with
extraordinarily weak light intensities as a resultled extremely long time intervals that
were used. Indeed, the quanta of the same wave did amantvith each other, so the
form of the possible trajectories in a given intenfieee experiment could not depend
upon the intensity, and as a result, the distributiothefimpressions on a photographic
plate did not depend upon the time interval of the expetimé the plate received the
energy that was necessary for its impression verillsaps a result of a very intense
irradiation (that is, it is subject to a burst of qugnthen it will, if I may say, exhibit
spatial statistics. On the contrary, if it receitlee same amount of energy very slowly
then it will exhibit temporal statistics. HowevergetHistribution of quanta between the
various incident rays is supposed to be ruled by chanchesedults must necessarily be
the same.

In Maxwell's theory, the energy density of a wavél Wwave the mean value of

%(ﬁ +?) at each point. It seems that this expression ipeistonsidered to represent

the density of the quanta. Moreover, we learn fleoynting’s theorem that the vector
c[h H] represents the energy flux per unit time and amemagnitude and direction. In
the interference phenomena that are due to fixesaoles, the direction of the radiant
vector is constant at each point and its envelopgh will be the rays, are likewise
fixed.

By contrast, the magnitude of the vector is vdeialand it seems that one must
consider a mean value in order to obtain the velazi energy. In order to do that,
imagine a very thin tube whose walls are compodaays (i.e., a tube of trajectories),
and letdo be a cross-section to which the quantitieendH are referred. Finally, lef
denote a time interval that is very small, butl $ihg with respect to the period of the
wave, and leYr be the small cylindrical volume that is composéthe segment of the
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tube with bas&o and heightv ot. The energy flux acros® during the time is equal
to the energy that is contained in the voludme One will then have the equality:

c[hH] dod = 3[h° + H? v du &.
Finally, the speed of the energy at any point rhediaken to be:

2[h H]
U=C=——.
h2+H2

We first adopt the electromagnetic viewpoint.wk displace all of the points @i
along the corresponding rays byt then we will pass from the volunae at the instant
t to the volumedr” at the instant + dt, and conservation of energy will give:

[ 40 +H)dr=[ 1(h*+H?)dr.

From the corpuscular viewpoint, we say thatrilggianta that occupyr at the instant
t will occupy dr’ at the instant + dt. One easily deduces from this that if the density

guanta is originally proportional t@[h2 +H? at any point of the wave then that will be

continually true. That is the necessary condifimnour statistical representation to be
acceptable.

4. Motion of an isolated quantum.— For the sake of dynamics, the study of the
motion of a material point in a constant field slsowg that it is possible to represent the
various motions of a given energy globally by cdesing homogeneous waves. In other
words, we start from the study of the motions @& ihdividual moving bodies, and we
are then led to a statistical representation. Jihetion is the opposite for radiation:
Experiments have taught us that the motion of quatrepresented statistically quite
well by the theory of continuous waves. We musntleturn to the individual viewpoint
and study the motion of the isolated quantum aedptiopagation of its associated wave
in the region of interference.

Figure 7.
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One should find that the quantum always follows on&é®ftays of the classical wave
with undoubtedly the speadthat was defined above.

| will try to make the problem more precise in a pattc case. Consider a screen
that is pierced with a hole (Fig. 7). Classical tggeaches us how a homogeneous plane
wave that falls on the screen normally will be didted when it crosses the opening. If
one imagines the ra)XO, which falls normally on a poin© in the opening, then
Poynting’s theorem will permit us to prolong that taythe left of the screen, at least, in
principle. It goes without saying that this prolongatiwiti be a curved line, in general,
because that is precisely what diffraction consists Mow, here is how that problem
must be solved: Consider a quantum that advances al@dgwith its train of
inhomogeneous waves. The oscillating (non-electrontayne&ector potentiala
propagates according to the wave equation:

1 d%a
NAa—— =0.
c? ot?

When the quantum is far to the right of the screle@,wave that surrounds it will be the
one that is associated with a uniform, rectiline@tion:

42
a= ! COSZWO\/XZ+y2+% sinzw(t— zﬁ—rj,

— )2 c
s, 2, (270D
JX YT

in which vy is very small angZis close to 1.

Can one use continuity and Kirchhoff's theorenptedict how that inhomogeneous
wave will be diffracted when it crossed the openiagd what will the trajectory of the
moving singularity be beyond the poil@® One should be able to show that (no matter
what the position of the poir® in the opening) the trajectory will coincide withe
prolongation of the ra)O that is predicted by the classical theory. It witleed give
the trajectory of each isolated quantum and wpresent the collective motion of a large
number of quanta statistically.

That is what one must prove in order to substentiae postulate that was assumed.
That proof seems difficult to me (I certainly dotraow how to do it), but | have no
doubt in my mind that a proof of that type mightguessible.

We can make a few interesting remarks. Firstllpftee motion of the quantum does
not generally take place along a straight linethgoprinciple of inertia is no longer valid
and the world-line is not a space-time geodesic.

Everything happens then as if the screen exerfecta on the moving body, and that
remark was already shocking to Newton. Howeveat fbrce has a very special nature,
since it is generated by the diffraction of the watgelf. If the screen is kept fixed then
the diffraction cannot modify the frequency. Thera of radiation will then conserve
energy. Is the quantity of motion also conservédt?, because once the quantum leaves
the region of interference its quantity of motioill\mdeed be equal in magnitude to its
initial value onXQO, but the direction of motion will not generally tiee same, and there
will be no *“vectorial” conservation. In classicdlynamics, when a moving body
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describes a motion around a fixed attractive centerquemntity of motion will not
generally remain constant, and from that fact, an isgowlill be transmitted by the
intermediary of the force field of the attractiventar; now, it is the force of that fixed
center that equilibrates that impulse. By analogwoaitild seem probable that when the
isolated quantum of light crosses the region of diffoag it will transmit a certain
impulse to the screen by the intermediary of its @ased wave, and that will put it into
motion if it is maintained by a foreign force. Of ceeyif a sheaf of very many quanta
arrives at the opening of the screen then the part@llsas will cancel in the mean, and
the screen will not be subject to any resultant force

If a homogeneous plane wave falls upon a fixed, perfeetlgcting mirror at a
certain angle of incidence then classical theory tesaaokehat the incident wave and the
reflected wave will interfere, and a simple calculatwill show that the light rays will
break before they arrive at the mirror and recombirgnideit without having touched the
surface. We must then suppose that the incident quantatdeatly “bump into” the
mirror, but that their path will turn back without havirgithed it.

That in no way invalidates the argument that perdhitie to obtain the radiation
pressure because the variation in the quantity of modibrthe quantum must be
transmitted to the mirror by the wave in the formropulse.

5. Interactions of quanta.— What we just studied was, in summary, the effdas t
are exerted upon a quantum of light by the presence ofrcettatacles, but the quanta
that are associated with the same wave, which arerlyekind that we have considered
up to now, exerted no influence on each other; each e tipursued its route
independently of the other ones. Things are surelyrdiffefor the quanta that are
associated with different waves.

We shall always proceed by analogy with the theoryarhogeneous waves. If two
homogeneous plane waves meet then they will interéee the paths of the energy will
be modified by the action of the interference. TWeawes of quanta that are associated
with two different waves must then undoubtedly react th @ther in such a way that the
modified trajectories will coincide with those of thiassical theory. Nevertheless, that
conclusion can be precise here only if every wavaesaa very large number of quanta.
Indeed, it can no longer be a question of assuming tiepéndence of the motions of a
guantum in regard to the presence of the other quanta, besausre dealing with
mutual interactions, now.

That sort of mutual interaction can hardly arisehm wisual optical experiments, since
one always employs coherent sheaves in them, bytdb play an important role in the
theory of blackbody radiation and the energy fluctuatiam that kind of radiation.
Furthermore, no matter what the nature of the interastbetween atoms of radiation
might be, they will certainly be accompanied by cond@wmaof energy and conservation
of quantity of motion. Even when one takes that attoount, the proof that we gave for
radiation pressure will still persist for blackbody iedin.




CHAPTER X

DIFFUSION AND DISPERSION

1. Diffusion of charged particles. — 2. Diffusion of raidiat — 3. Dispersion. — 4. Motion of a quantum
in a refringent medium.

1. Diffusion of charged particles.— If an electrified particle whose trajectory is
initially rectilinear passes close to a cha@ewhich is assumed to be fixed, then it will
be subjected to an attractive or repulsive action, asmdmiotion will experience a
deviation. If one knows the distance from the cefitéo the initial direction in which
the particle moves then one can predict the total dewidhat the particle experiences.
The calculation is very simple due to the form of Collamaw (at least, if one neglects
relativistic corrections). If one considers an entinsemble of particles that appro&h
along parallel rectilinear trajectories then one wfitain a sheaf of trajectories, such as in
Fig. 8 (in which, the force is assumed to be repulsivome simple statistical
considerations will give the angular distribution of tHeviated trajectories. The
formulas thus-obtained have been verified by Sir. Eh&tord and his collaborators in
their beautiful experiments on the passage rdys through matter.

Figure 8.

We can envision that problem from a different angle ftben standpoint that is of
interest to us. Indeed, we saw that the trajectafe=nergyW for a charge of value
and massn, will coincide with the rays of a homogeneous wave lassical type that
propagates in a medium whose index is defined at eachlpoihe law:

nz:( _%jz_m?&
hv HV
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in which ¢ is the electrostatic potential amds the frequencyV / h. If the potential is
created by a charge then it will be inversely proportional to the distariican C at any
point. In order to obtain the scattering of a shefaklectrified particles under the
influence of a charg€, it will be necessary to study the deformation obanbgeneous
wave that is initially planar when it propagates in adimm whose index varies
according to the law above. The rays of that wavkbeithe trajectories of the deviated
particles. If the moving particles are “associated Withsame wave” originally, with the
meaning that we gave to that expression, then the teftacave will provide us with the
distribution of the phases of the associated wavegdlwe various rays.

The deviation of particles is produced in a small spaceogndingC, while the
trajectories at a great distance will appear to begsiréines that pas€. The diffusing
charge will then appear to be the center of the metit rays, and the classical wave that
represents the distribution of the particles at aade# will be very approximately a
spherical wave. The distribution of the amplitudes dkerspherical wave will depend
upon the statistical law that Rutherford studied, sincestjuare of that amplitude will
represent the mean density of the deviated particlesurimary, if one confines oneself
to imagining the homogeneous wave that represents thenmmstatistically, and if one
attaches it to only the description of phenomenadhatdistant from the center then one
can say: Under the action of the incident wave ctr@er will emit a secondary spherical
wave, over which, the amplitude is not distributed im#onm fashion, moreover. That
statement reveals to us a deep relationship betweeniffbsiah of rays ¢ or g, for
example) and the diffusion of light, as it is conegiaccording to classical ideas.

2. Diffusion of radiation. — If we adopt the corpuscular hypothesis then the diffusi
phenomena that have such great importance in opticshendomain of X-rays will
oblige us to assume that when a quantum of radiatioegaksse to an electric charge or
a set of such charges (e.g., an atom or molecule)ll ibevsubjected to a certain action
whose result will be a curving of the trajectory. K wnagine a sheaf of quanta of the
same frequency whose initial velocities are parallel whath are associated with the
same wave then that sheaf will be scattered —di#used — when it passes close to the
charge center. The homogeneous wave that statistieghgsents the motion of the
guanta will propagate as if there existed an index of radracround the diffusing
center. However, that homogeneous wave is nothing butdte of the classical theory,
and from the very nature of the validity that we hatteibuted to those theories, we can
think that they will once more give us an exact glolepresentation of that diffusion
here.

One knows what the image of the phenomena would diethle theory of electrons
would provide us with. If a light wave is assumed t@lamar and homogeneous, and if
the light variable is identified with an electric lelhen a particle that is placed in that
wave must be subjected to a periodic force and ertervibration. The amplitude and
phase of that vibration will depend upon the incident wawe,charge and mass of the
particle, the frequency, and finally, the proper frequercyilmation that is determined
by the constraint forces. The calculation is simptel too well-known for it to be
necessary to reproduce it here. Thanks to the usearstiee potentials, one can then
predict the emission of a spherical wave by the vibgatharge, and the energy that is
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necessary to sustain it will be drawn from the incideave. A scattering of the radiant
energy will result, and that will represent the phenoeneof diffusion.

The fact that this description of the phenomenon isaiciewill seem almost certain.
First of all, the granular structure that we are aliorced to attribute to light nowadays
will not permit us to suppose that real light waves lavenogeneous, nor, it seems, to
consider the oscillating magnitude of those waves ta toee electric field that is capable
of exerting the Lorentz force on an electric chargée Tadiation from an accelerating
charge might seem very problematic then, since suaHiation process would involve a
very strange irreversibility, as | have remarked befoFenally, the quantities that the
theory of electrons introduces in order to explain diia and dispersion as if they were
the mechanical resonant frequencies for the vibratingctestindeed seem to have a
more complex character. Now, the dispersion formthas have been verified in not
only the optical domain, but also in the Rontgen domain gt frequencies (Siegbahn,
Bergen Davis, etc.) have shown that those alleged nelsieguencies are determined by
the intra-atomic energy levels, and from that pointvard, it will be difficult to
assimilate them to true mechanical frequencies that aréodeenstraint forces with no
further assumptions.

Nevertheless, the classical theory of diffusion tahieved some admirable
successes. To cite only two examples, recall the eapéa for the blue color of the sky
by Rayleigh and J.-J. Thomson'’s formula for the @ifftn of X-rays. It will then seem
certain that the emission of a secondary wave utigeaction of the primary wave will
represent the statistics of the motion of the diffusgianta in a fashion that is less
approximate. However, one must pass from that statistiewpoint to the individual
dynamics of each quantum. When applied to a sheaf of ajulaat are in phase with
each other, those dynamics must recover the conclusfathe theory of electrons from
the viewpoint of the number of diffused quanta, theitrthgtion in space, and the phases
that are associated along the trajectories. Therathat is exerted by a diffusing center
on an atom of radiation belongs to a very differepetfrom the one that we encountered
in the dynamics of material points. Indeed, it will depempon the energy of motion
(i.e., itshv) and the “resonant” frequencies that belong to thawgliiy center. The study
of that kind of dynamics will undoubtedly open up new paspes. Charges that are
subject to radiation will not be put into motion underiitfluence, so they will not radiate
in the classical way, and ydtpm the statistical viewpoineverything happens as if they
do. That is a very mysterious problem, and we seng&inihip with the correspondence
principle and the “virtual oscillators” of Bohr, Kranseiand their collaborators. Without
speaking of the phenomena of emission and absorptidmeimtbm, which raise some
very considerable difficulties in their own right, & still in the realm of diffusion and
dispersion that the theories that are presented Wwidfeagree with those of the
Copenhagen school.

Right now, one thing is certain: The global represigon that is provided by the
theory of electrons is valid only if the center offusion can be supposed to be
immobile. In order for that to be true, except for thase in which an exterior force is
maintained fixed, its mass must be much greater than #sstm/ c¢® of the moving
guantum. Otherwise, the principle of action and reactihose validity seems
essentially absolute, would teach us that the center warildubjected to an impulse
under each individual diffusion, and at the end of thatess, the quantum would have
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lost a fraction of its energy. The relationship betwéee frequency and the energy
would then lead us to predict a reduction of the frequendifbysion. That is precisely
the beautiful phenomenon whose existence now seenmndbeyuestion and which is
associated with the name of A.-H. Compton. We sledllrn to the Compton effect in
the next chapter, but we shall insist upon this point: sEime relationship exists between
diffusion without a change in wave length and Comptorusliéin as the one that exists
between the motion of an electron around a fixed nu@adshe motion of that electron
with “dragging of the nucleus.” The two phenomena malst fplace within the scope of
one and the same theory.

3. Dispersion — As one knows, the classical theory of disperssodeduced from
that of diffusion. A homogeneous dispersive mediuncassidered to contain an
enormous number of diffusing particles. If a wave propegyat the medium then the
particles will emit secondary waves and the superposdfoall the wavelets from the
primary wave will explain the manner by which the result@ae will propagate and the
existence of an index that varies with frequency. Witledbubt, one can deduce the
macroscopic phenomena of dispersion in the same mannevhloh one gets an
interpretation for the microscopic phenomenon ofdifieision of quanta by a center.

For the moment, | will confine myself to the macrqscoviewpoint. In a medium of
indexn that is a function of frequency, the classical tlgeenvisions the propagation of
homogeneous waves with a phase velocity efc/ n. Moreover, Rayleigh’s profound
insights have taught us that energy propagates (at legsitjeoof absorption zones) with
a velocity ofu =dv/d (v/V). In line with our guiding ideas, we must attribute the
following significance to the waves of the classidaddry: Their phases will give the
phases of the waves that are associated with the quantatae trajectories, and their
amplitudes will be proportional to the square root of treamdensity of the quanta at
each point. The quantum relation, in its quadri-dimensitomed:

| =hO,

will then permit us to deduce the energy and quantity ofomdor the light quantum
from the classical wave. When it enters the refrihgeedium, its energhv will not
naturally experience any variation, while its quantityrmition will vary fromhv/ c to hv
/'V =hnv/c. As for the velocity that equatsin vacug from Hamilton’s equations, it
must equat dv/d (nv), in agreement with the theory of group velocity.

The adherents of Fresnel's ideas believe that tmeye demolished Newton’s
corpuscular theory by showing experimentally that liglapaigates less quickly in water
than it does in air. Here is their argument:

Consider a light trajectory that goes between a pothiat is situated in a medium of
uniform indexn; and a poinB that is situated in a medium of uniform index. That
trajectory is composed of two lines that agree at at wirthe separation surface, where
they make angles a@f; anda. with the normal. In the wave conception, one mupte&ss

. B . . . . .
Fermat’s prmmpleJIA ndt= 0, which will lead to Descartes’s equationsin a; = n; sin

a, . On the contrary, in the corpuscular theory, onestnamploy de Maupertuis’s
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principle JIABg dt= 0. Now, the quantity of motiogis the product of the constant mass
of the corpuscle of light with its velocity = ¢ / n. One infers from the condition
5[ di/n =0 that:

nisSina =n,Sina.

If medium 1 is a vacuum or air, with index unity, and medi@ is water then
experiments will show that, > o> .

Therefore,n, > 1 for the wave theory, and light propagates slowewater than it
does in air; the opposite is true for the corpusculeomh Now, as we have said,
experiments favor the former situation.

The flaw in the argument seems obvious. First ofralprinciple, it isV that is equal
toc/n, and notu. It is true that one can consider water to be s déspersive medium
for which v =V, approximately, in the visible spectrum. However, ther@nother
objection: We have no reason to assume that the guahtnotion of the light corpuscle
is the product of the same constant by its velocity it be¢dia. Indeed, in vacuo, it has
the valueW v / ¢, with v equal or close t@. From our fundamental postulates, in a
medium of index, it can preserve the same value only if one has:

V\Zl :W dv :D(nv), W=hy,
C cd(ny ¢c

which implies the form:

for the dispersion equation.

The integration constait must be negative, moreover, in order for the viglog to
be less thamr, and as a result, that dispersion law will implplaase velocity that is
greater thanc. In general, it is not applicable under the uscahditions, and in
particular, it is not applicable to water in theillle spectrum, because the index will then
be greater than unity.

In summary, the only correct general form for daeudertuis’s principle seems to be:

B
o oa=o.
A C
That cannot be in conflict with wave optics, sificie identical to Fermat’s principle.

4. Motion of a quantum in a refringent medium. — Suppose that a refringent
medium is homogeneous and isotropic, and its imdearies as a function of frequency
according to a known law. The motion of a quanafright in that medium is rectilinear
and uniform. From our hypothesis, the energy, ttyaof motion, and velocity are given
by the three relations:
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W = hy, g:m/, v==C dv :
c d(nv)

As we just saw in the preceding paragraph, onenatilhave:

_ W
9—?Va

in general, which would be true vacuo

One can compare the motion of the quantum in e¢frengent medium to that of an
electron along the axis of an electrically-chargpedlow cylinder. Indeed, in that case,
the electron will possess a uniform rectilinear ionat by reason of symmetry, but its
energy and quantity of motion, rather than beirlgteel by the relation:

_ W
g= ?V ,
as they arén vacuq will now be related by the relation:

_W-P
g_ 2 v,
C

in which P represents the potential of the action that thergsh of the cylinder exerts
upon the electron. If that charge is positive themill attract the electron, and will be
negative; otherwisd? will be positive.

Return to the quantum in the refringent mediutnwill be subjected to actions of an
unknown nature as a result of the material pagidéthe medium, which will be in
equilibrium, in the mean, due to the homogeneityhef medium. The motion must then
be uniform and rectilinear, but the moving body mhe subject to a sort of mean
potential P that is due to the action of material particl&ne might then be tempted to
write:

wW-P
CZ

g= v,
which amounts to defining® by the relation:

2
p=w-9
U

Now, the magnitude¥/, g, andv are defined as functions of the wave quantitied, @ne

will get:
2
5:h{kﬁqzh{kgq
W v



Chapter X. — Diffusion and dispersion. 75

= hv(l— nmj = hv[l— d(nzvz)j :
dv dv?

Suppose that the dispersion of the medium obeykdhentz relation:

= vavz+1,

in which thea are constants, and the are the resonant frequencies of the material
elements. One will easily find that:

A7) _ 8y
ae "I

and as a result:

so P will be proportional tohv (which is quite natural) and essentially negative.
Furthermore, that potential will grow considerabkhen v approaches the critical
frequenciesy;, although one cannot nonetheless say that itb@tbme infinite when =

Vi , because the Lorentz formula, in the form thas waitten above, would no longer be
exact then.

One can then say that, in a certain sense, th@wuas subject to an attractive action
that is due to the material particles and whoseauevak especially large in the
neighborhood of the absorption zones. That is\@g interesting way of envisioning
the question of refringent medi¥.(

() On that subject, see also, L. BRILLOUIN, “Les temsi de radiations, leur interprétation en
Mécanique classique et en Relativité,” J. de Phys. (1925330p.



CHAPTER XI

THE COMPTON EFFECT

1. Collision of an electron with a quantum of light. -C2llisions between atoms of radiation.

1. The collision of an electron with a quantum of light— We have seen how the
Compton Effect can be attached to diffusion with no changeave length. When the
diffusing center responds to the reaction that it tsxgjpon the quantum, one can say that
the two dynamical elements collide, in the broadesseof the word. We do not also
know the manner by which we can represent the mutuabetten of those elements in
detail, but we do have a guide that has, in short, @wwagved itself: viz., the principles
of conservation of energy and quantity of motion.

In order to obtain a formula that is more generahtkthe one that H. A. Compton
originally found, | will consider the collision of a quam with a moving electron. Take
the x-axis to be the original direction of motion of a quantwhose initial frequency is
V1, and let they andz axes be perpendicular to each other in a planeghairmal toOx
and passes through the point at which the collision occling direction of the velocity
[ ¢ of the electron before the collision is defined by tlirection cosinesa;, by, ¢, and
we let 6 denote the angle that it makes w@k in such a way that; = cosé, . After the
collision, the quantum of diffused radiation of frequeneypropagates in a direction
whose direction cosineg, g, r make an angle o with the initial velocity of the
electron:

(cosg=a;p+tbiq+cyr),

and the anglé with Ox (p = cosé). Finally, the electron will possess a final velogiky
¢ with direction cosinesay, by, C; .
The conservation principle gives us four equations, hame
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mAc, v, mBec,

J1-5 c  Ji-g°

Eliminateay, by, c;, andb; ; with Compton, seth—v(l:zz a. One will get:
m

_ 1- B cosf,
=V, 0
1-B cosp+ 2y /7 sir‘iE

If the electron is found to be at rest at the manedrollision then one will get the usual
Compton formula:

1
V=r———p
1+ 2o sian

which was confirmed by experiment brilliantly. Hewver, the general formula presents a
special interest because it contains both the Comgffect and the Doppler Effect. In
order to see that, set= 0, which amounts to neglecting the Compton Effaathat will
remain is:
Uy = Vll—ﬁl cos, .

1- 5 cosp

It is easy to verify that the change of frequeti@t is given by the formula is indeed
the one that is predicted by the classical thegryctnsidering the electron to be a
moving resonator with a constant veloc®yc. We could have expected that because if
the Compton Effect is neglected then the diffusiah take place in a system that is
linked with the electron under the action dfxed center, and as a result, with no change
in wave length.

One can pose the following question:

Can there be a collision between a quantum andlactren such that there will be
no diffused quantum after the collision, sincedtsmn of radiation has been absorbed by
the electron in some way?

The preceding formulas show directly that thismpossible. Indeed, in the contrary
case, one would have to be able to verify the awasien equations after setting = O.
Now, from the formula that was obtained, that wauaigly the condition thaf3 cosé, =
1, which is an unrealizable condition, singds necessarily less than unity.

The same conclusion can be reached along a diffeegh. Indeed, we can write the
conservation relations in an arbitrary Galileartesys We choose a system in which the
electron will be at rest after the collision, andtevdown that there is conservation of
energy:
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Now, that relation cannot be satisfied for any eabfiv and S, since the left-hand side us
necessarily larger than the right-hand side.

Experiments have shown that for a given excitnegjdiency, the Compton Effect will
be less noticeable as the diffusing element becdmeasier. That raises the difficult
guestion of knowing the moment at which the bindéngrgy of an intra-atomic electron
is small enough in comparison to that of the incidguantum that one can regard the
electron as free. Our knowledge of the naturenwhiatomic coupling does permit us to
answer that question.

Along the same line of ideas, one finds an expglandahat H. A. Compton gave for
an auxiliary phenomenon that was pointed out byrniguend his collaborators (who have
rejected the existence itself of the Compton Effecta long time); that explanation has
no place here, since the Duane effect remainsyhabtful.

2. Collisions between atoms of radiation—- Let us examine another very curious
guestion: Can two quanta of light exchange energleua collision; in other words, can
their frequencies change as a result of a collsioExperiments have shown nothing
similar to that, and such a phenomenon is entfoglgign to classical theories. In the last
part of this book, | will show that as a resulttieé work of Bose and Einstein, as well as
my own, it is legitimate to consider radiation te & gas composed of atoms of light.
Some statistical arguments, when applied to oureweancepts, will lead us to Planck’s
law, but they will not show us how the mechanisnmiych that distribution of quanta
over the various values of energy is found to ladized and maintained. It seems very
tempting to suppose that equilibrium results frdra éxchanges of energy and quantity
of motion between quanta due to their mutual irtgwa, viz., their collisions, in the
most general sense of the word.

Perhaps it would be interesting to study that typeollision a little.

It will be easy to solve the general problem @& tollision of two quanta of different
frequencies as we did for the Compton Effect.
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Figure 9.

In order to not increase the number of formulaghdll content myself to envisioning
a very simple case. Suppose that one makes tw@choomatic sheaves of the same
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frequency cross at a right angle with the aid ofimators, although there is not
requirement that they should be coherent. Let usesept those two sheaves
schematically by straight linesB andA'B’ (Fig. 9) that cross &.

Observe the diffused light at the pofdtin the directionOM that bisects the angle

B/O\B, if it exists. If one quantum is diffused alo@d/ as a result of a collision then the
other quantum will be diffused alo@M". Let v be the initial frequency, while; and 1,

are the frequencies of the quanta that are diffused towdrdsd M’, resp. The
conservations equations are written:

hyy + hy, = 2hy,
w,_tv, = chos 48 :
C C C

hence:
vu=v(1+cos48 =17y,
wn=0.3.

If the wave length of the sheaf of light that is éogpd isA = 0.68 i then the
observed radiation @ will correspond tod; = 0.68 / 1.7 = 0.4« Upon viewing the
point at which two red sheaves cross, one will seetviiglet. That would be a beautiful
phenomenon! | do not know if it exists or if it is obs#le in this case, but if is detected
someday then its place in the set of new theoretiealpoints on radiation will be quite
distinguished.



PART THREE
QUANTUM STATISTICS

CHAPTER XIlI

KINETIC THEORY OF GASES

1. Some formulas from statistical thermodynamics. M&xwell’s law. — 3. Free energy and entropy
of a perfect gas. — 4. The light gas.

1. Some formulas from statistical thermodynamics— Boltzmann was the first to
show that the entropy of a gas in a well-defined statba product of the logarithm of
the probability of that state with a constdnt- namely, Boltzmann's constant — that
depends upon the choice of temperature scale. As oneskmmme will arrive at that
conclusion by analyzing the collisions of atoms underhyyeothesis of a completely-
disorganized state of agitation. Today, as a resuhieofvork of Planck and Einstein, one
prefers to consider the relati@ k log P to be the definition itself of the entropy in the
system. However, one must make the meaninB ofore precise. The mathematical
probability of a given macroscopic state for a systgnby definition, the quotient of the
number of different microscopic states that corresponthdt macroscopic state by the
total number of possible states. It will then be atiomal number, and one cannot
identify it with P, since entropy is an essentially positive quantitye @grees to identify
P with the numerator of the preceding fraction, and diedihition of the “thermodynamic
probability,” which still contains some degree of arbitrass, is justified by the
exactness of these consequences. We adopt it andthef@nalytical expressions for
some thermodynamics quantities by a proof that has tentate of being just as valid
when the sequence of possible states is discontinuous &s in the opposite case.
Statistical thermodynamics, for which we shall give tformula, corresponds to the
classical viewpoint, moreover, and we shall have to devahother one in the following
chapter that is more general.

Consider N objects that one can distribute arbitrarily amang“cells,” whose

probabilities are assumed to be all eqaigriori. A certain macroscopic state of the
system is realized by placimg objects in cell number Iy objects in cell number 2, etc.

If one permutes a certain number of objects that belofferent cells then one will get

a macroscopic state that is identical to the previaes but microscopically different. It

will then result that the thermodynamic probabilifytiee global state that is defined by
the numbersy, ny, ... Is:
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N

If A" andn; are large numbers then Stirling’s formula will githe entropy as:
S=klogP =kANlogN~k> nlogn.
i=1

Each cell corresponds to a value of a certaintione that we will call theenergyof
an object that is placed in that cell. Imagineadification of the distribution of objects
among the cells that is restricted by the conditit it must leave the sum of the energy
invariant. That modification will vary the entropy:

5S:—k5{zm:r\ log r;} :—kcfzm:r] - kzm:log non,
i=1

i=1 i=1

with the adjoint conditions:

Zm:(yni:o and Zm:sidnzo.
i=1

i=1

The conditiondS= 0 will be verified when the entropy is a maximuiBy reason of
the conditions to which thén; are subject, one must then have:

m

> llogn +n+B&1on =0,

i=1

for anydn; . The coefficientgy and are undetermined coefficients.
The most probable distribution, which is the oohe that is observable in practice, is
then governed by the law:

n=ae”.

The entropy of the system that corresponds tortiet-probable distribution, which
coincides with its thermodynamic entropy, is gi\®n

S=kNlogN - i[kae’ﬂﬁ (logn-pB¢)l.

or, since:

m

Zm:r; =N, ) &n =total energ)E.
i=1

i=1

S=kNlog N, k BE=kNlog > e +kBE.
a

i=1
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In order to identifyS with a thermodynamic quantity, we will employ the slaal

relationizﬁ. Hence:
T OE

mg Wi
1_0Sdp Z dg dg
—= 2P - kN ——+KE—=+kB=Kg,
T 0BOE n g dE d
el
1
A= KT

It is interesting to also calculate the free egergrhich is a function whose
importance is well-known. One will find that:

F=E-TS=-kNTlog Y e .

i=1

The mean value of the free energy per object is then:
F=-kTlog > e”.
i=1

Now that we are endowed with these general formwascan study some special
cases.

2. Maxwell's law. — Let us study the case of a perfect gas that is esttlaghin a
container with fixed walls that is removed from altezxal influences. Th& molecules

of the gas will play the role of the objects in thexgral theory, and one must examine
the most probable distribution of them over cells of éguabability. But, how does one
choose those cells?

The dynamical state of each molecule is determinedsbgoordinates, y, z and
Lagrange momentg, g, r. Upon choosing the six preceding quantities to be reckangu
coordinates, one will construct a space that has beem ghe name oéxtension-in-
phase ever since Gibbs. Liouville’s theorem, which is deducezimfrHamilton’s
equations in relativistic mechanics, as in classical mecbawill permit one to take the
elements of the extension-in-phase that are equi{ @y, dz dp, dg, dr to be the cells of
equal probability, with the aid of the ergodic hypothesdige further remark that these
equal elements must not be considered to be infinitelllam the strict sense, since
otherwise than; would not be very large, and Stirling’s formula wouttt be applicable.
Those elements are then very small in comparison tguhatities that are accessible to
measurement, but nonetheless contain a very consideratiber of molecules.
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Consider one of the cells that is determined in that. wiaet w denote thekinetic
energy of a molecule of the cell, lat= 43 c be its velocity, and leg; be its quantity of
motion. One will have:

m,C myv

V15 J1-8*

Let V denote the total volume that is occupied by theayad look for the number of

cells for which the kinetic energy is found betwéen very close limitsv andw + dw.
That will obviously be:

&= =mpc’+w, g=

V.fvvvwwdp dgdr= V.[Vvvv+dw4ngzdg = Varny c(l+a )/ a (@ + 2) dw

up to a constant factor, when one setsw/ my ¢
The general formula for the canonical distributil then show that the number of
molecules that are contained in these cells is:

nw dw= const4rny c(1+a ) a @+ 2)V dwe"' ",

In all of the usual cases, that formula will sifhplsince the kinetic energy of the
molecules will always be small with respect to ihernal energym, ¢, and one can
neglecta in comparison to unity. What will then remain Maé:

nw dw= constdrng’?,/ 2w €TV dw.

The constant is determined upon writing down thattotal number of molecules is
N. One will then get Maxwell's celebrated law:

anW: % e_W/kT«/ 2w dw.

3. Free energy and entropy of a perfect gas. The general formula:
F=-kNTlog) e
i=1

will, in principle, permit one to calculate thedrenergy when the energy and entropy are
deduced from the classical relations:

_oF

s=-,
oT

E=F-TS
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However, the calculation of the sulndemands certain precautions that would be
pointless in the deduction of Maxwell's law. Firstalf, one must introduce the finite
value wof the elementary domains in the extension-in-pbggaking the expression:

X.[w+dwdp dq dr
ww

for the number of energy cells that are found betweandw + dw.
However, that will not suffice. One will be temptedset:

v SCTLUN e —s/kTX
;e Loe wdpdqdr.

Now, as Planck has shown, that result would not betexi order to arrive at the
correct formulas, one must appeal to an argument Hhatsince been criticized by
Ehrenfest. Here are the broad points of that argument:

ImagineN exemplars of the same gas, and represent the state @ff the exemplars

by a point in a 8~dimensional space. The thermodynamic free energheperfect

must be the mean value of the free energies of\tlgases — i.e., it is given by the
formula:

F=-kTlog > e,

i=1

when applied to the set bifgases.
The integral ofe™@’*", when it is extended over all of\édimensional space, will be

equal to the product 0¥ sextuples of integrals in six-dimensional space.né confines
oneself to writing:

N
Z e/ = [— _je’””dxdydzdpdqd}

then one will get back to the imprecise formula. Hesve(and this is a very delicate
point in Planck’s argument), if one exchanges the coatesy, vy, z p, g, r of the two gas

molecules then one will get a new representativatpoi6V-dimensional space, whereas

by reason of the absolute identity of the molecules,ttvo states will be indiscernible,
even from the microscopic viewpoint. Since the nundigrossible permutations of the

molecules isV, the result that is obtained upon extending the integratver the entire
6\ -dimensional space must be dividedMy and Planck thus obtained:

z e /T = D_*‘” o el dxdydzdpdq d]N

=1 w
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- [3 = enr dxdydzdpdg d]”
N o w '

Planck’s argument is not entirely convincing, but thelltas surely exact. We shall
adopt that result for the moment, although in the valg chapter we shall demand to
know whether a simpler interpretation does not exise effortlessly obtain:

N
F=—K\V'Tlog [i " et dxdydz dpdq d]

N I w
4 3/2
= - —— (2, kT
N & k/\/’TIog[N (27, KT) }

e5/2V
Nw

S:—a—F :k/\/log{

3T (27mmyKT) } )

E:F+TS:/\/rrbcz+g/\/kT.

These expressions contain no undetermined cosstartept for the quantity
whose dimensions are those of the cube of an actalopting the simplest hypothesis,
Planck setw= h®. The formulas that are obtained in that way Hasen confirmed by
measuring the constants that enter into the equitibof a gas in its condensed phase
(i.e., chemically constant).

4. The gas of light— The corpuscular theory of radiation will neceggdead one to
consider blackbody radiation in equilibrium at enperaturerl to be a true gas of atoms
of light. We have already seen that this hypothegplains the radiation pressure that
the enclosure experiences quantitatively.

According to our usual custom, we attribute arraddinarily small proper mass to
the quantum of light, since the atoms of blackboatyiation will have speeds that are
extremely close ta. Nevertheless, the interval of speedseto ¢ will correspond to all
values of energy from zero to essentially infinitijp order to obtain the distribution of
energies, we take the general formula that giyedw and neglect unity in comparison to
a, which is very large. Finally, we remark that tkieetic energyw of an atom of
radiation is approximately equal to its total eryeng. Therefore, one will have:

nydw=n, dv = const.4—2Th2v2e‘h”’kTV h dv.
C

The quantity of energy per unit volume that cqyoesls to the interval of frequencies
v, v +dv will then be:
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n,dv= r\,Tdv hy = const.él—?h“l/ge"‘”’kT a .
c

One will recognize immediately that we have arrivetVéen’s law of radiation here,
which has been verified by experiment for large valuds/dkT.

The calculation of the free energy will provide ushwihe exact value of the
numerical coefficient. But that brings with it awn minor complication! Unlike the ideal
molecule in the theory of gases, the atom of radiaBonot isotropic; one must take its
polarization into account. The oscillating vector tigatoupled with the quantum is
always normal to its velocity, but its orientatioroand the direction of motion is
arbitrary. We can draw a vertical plamethrough the position of each quantum that
contains its velocity and another oreéthat also contain it and is normal o If we
suppose that each &f atoms of light is polarized in the plamethen we will establish a
particular property that favors the vertical directiomsich is incompatible with the
isotropy of blackbody radiation, whereas we will gettatistically exact representation

upon supposing that'/ 2 are polarized in theirplane, while\/'/ 2 are polarized in their
r-plane. That device, whose meaning will become clearghe next chapter, will
permit us to treat each of the two groups\bf 2 atoms as if they were molecules with

spherical symmetry, because the dynamical state of eéctheir constituents is
determined uniquely by its coordinates and momenta. Sireeehergies are additive
guantities, one will get:

F =-2k Tlog De‘f’” dxdy dzdpdqdf™ "
(N12)! w
[2e; . dxdydzdpdqd}
=—NkTlog |— e
g N o
=-NkTlog %Ie_hw”]/vzdv}
K:22%
=-NkTlo 2k3T3 .
g_/\/a)c3 }

Now, it will suffice to cast one’s eyes on the eegsion fom,, dw in order to see that
Nis necessarily proportional ©°. Then set:

N=ART?
On the other hand, one will also see that the éntargy:

E=|Vu,dv =NKT=3AKT"
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One will then find the Stefan-Boltzmann law, which oae writeE = o T*V, upon
settingo = 3A k*/ V. A purely-classical thermodynamic argument leads tontbk:

known formulas:
167y
lo K’T3| =1
g L\fwc” }

or
1677

wc®

N= T3

That determines the constant in the expressionfdinv. One will easily find that:

8rh’y

nw dW: . e—hvlkTVZd/ ,
C
and as a result, one will find:
8rmh*
n,dv=——e™"* 2y
cCw

for the energy density.

It suffices to setw=h® to get Wien’s law in its entirety.

We have arrived at some interesting results byelpudynamical methods then.
However, if we wish to explain the properties adiggion as we would in the theory of
gases, properly speaking, then Planck’s hypothesidd be justified only by its success.
On the other hand, we have only been able to pvdiem’s law, and not Planck’s law in
its entirely. The introduction of wave conceptdl wiake those difficulties disappear.




CHAPTER Xl

THE NEW THEORY OF GASES

1. Introduction of waves associated with atoms. — 2. N@tistical formulas. — 3. Passing from
Wien’s law to Rayleigh’s law.

1. Introduction of waves associated with atoms- We shall seek to complete the
theory of gases by introducing our fundamental notion tiatmotion of any atom is
associated with the propagation of a wave. If that wemieethen the vessel that contains
the gas could be considered to be traversed in evergtidmeby plane waves of all
frequencies, and those plane waves can even badeogdito be homogeneous because
we have seen that if one confines oneself to studyingngemble of material points
without being preoccupied with the structure of the wakatare associated with each of
them then it will suffice to keep the phase factor. ddéerboth a material gas and
blackbody radiation can be imagined to be ensemblescospuscles in totally
uncoordinated motion or ensembles of waves of all fregjaenwith an isotropic
distribution. However, upon choosing the wave pictwe,shall be able to specify and
complete the results that the corpuscular picture peovids with in the preceding
chapter.

First of all, as in the Jeans theory of radiatias® will be led quite naturally to
consider the waves that are in resonance with therdiimns of the container to be the
only stable ones, and therefore, the only physicallyodadble ones. We will recover an
idea here that is completely analogous to the one fiwinich we inferred an
interpretation for the stability conditions. Here, iasthe Bohr atom, there is a
discontinuous sequence of possible motions, while the oties were eliminated by a
mechanism that is impossible to specify. In the tllie@nsional extension-in-momenta,
not all positions are therefore possible as represeatgoints for the molecules.
Furthermore, the possible positions form a very deesefssolated points.

Thanks to that “arithmeticization” of the extensiorphase, the problem of
determining the cells can be solved immediately: ThEesentative points must be
distributed among the various permissible positions. therovords, the Jeans stationary
waves play the role of the cells among which the atara distributed.

As in the usual kinetic theory, we must above all ptapg ourselves with the
number of cells that correspond to the values of engatyare found betweenand¢ +
de, which represents a very small quantity — i.e., a phlysnmitesimal. The total
energye of an atom is related to the frequency of the assatiatave by the quantum
relation, and the energy interval considered will cspond to the frequency interval
h, e/h+de/h. A well-known argument, which Jeans was the firgirtmpose, gives the
following value for the numbes, dv of stationary waves that are found betweeand v

+ dv and are in resonance with a container of volline
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4T
uv?

z,dv=y v2dv.

yis equal to 1 if the waves are longitudinal and 2 if they transverse. As alwayg,
andV are the group and phase velocities, resp. For the pfab&toformula, the reader
would do well to refer to pages 38 seq.of the book on quantum theory by Léon
Brillouin.

Let us see what the Jeans formula will give when apgies it to the motion of
atoms. For an atom in rectilinear motion with aoegly £ c, one will have:

U=gc, V= —, e=hv=my+w=myc?(l +a) [azlj
m,¢

SO
z.de=z,dw=z,dv= yi—?nﬁ cl+a)a(@+2) dw .

Now, in the last chapter, when we calculated theigombf the extension-in-phase
that corresponded to the interdal, we found:

Vamy c(l+a )/ a @+ 2) dw.

We conclude the following relation from that:
y w+dw
7. de =z, dw= Fjw dxdy dz dpdqd.

For the spherically-symmetric atoms of an ideal ghas, @ssociated wave will be
longitudinal, andy must be equal to 1. One will then see that upon asguthe Gibbs
viewpoint, everything will happen as if the extensiondage were divided into cells of
magnituden®. That is Planck’s postulate, and it has now beeifigdst

2. New statistical formulas.— In my doctoral thesis, | showed how my ideas would
lead one to recover Planck’s law for a gas of lightmddt simultaneously, as a result of
the work of Bose ¥ and Einstein %), a new statistics has been founded that is in
profound agreement with my concepts. | would like toofslithe path that Einstein
indicated.

When we previously evaluated the probability of a distidm of objects among
cells, we assumed that the number of objects tha¢ wentained in any of those cells
could be considered to be very large. That is whatvatious to use Stirling’s formula.

() S.N.BOSE, Zeit. Phy&7 (1924), pp. 384.
(*% A. EINSTEIN, Berl. Acad. (1924), pp. 26ibjd. (1925), 3.
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Now, nothing justifies that hypothesis. In realityleldds to some difficulties, and
because of them, Planck had to support his calculatio®edfde energy — which were
exact, moreover — with a fragile argument.

Here, we shall confine ourselves to supposing that thédewszn de andn, de of cells
and atoms that correspond to a very small intedlresp., are very large, without
assuming in the process that the number of atoms pas gely large.

Before all else, one must calculate the number s$ipte distributions o, ds atoms
amongz. de¢ cells. It is given by a formula that was employedPtgnck in his original
theory of blackbody radiation and is equal to:

(n.de+ z ck)!
(n.de)!(z k)t

The total numbeP of microscopic states of the gas such that there.als atoms in
the intervalg, €+ dewill then be:
|
P=n (n.de+ z dk)! .
(n.de)!(z do)!

By definition, the entropy of the correspondinglegl state is:

S=klogP = k[ “[(n, + z)log(n + z)- plog p- zlog 2] c

The most probable distribution is always obtaibgdnriting &5 = 0 and taking into
account the two conditions:

(A I:o nde=N, .fomengde =E,

in which V is the total number of atoms in the gas &nis its total energy, which are

guantities that must remain constant. One finas difinition of the most probable
distribution by the usual methods:
z
Ne = ea+b§_1’

in whicha andb are constants that are determined by the conditAn
When that distribution is realized, the usual m@dynamic entropy will be
consequently equal to:

S =k[ "(n.+2)log(n ™)~ plog p- zlog 2]
= k[ [(a+bj p- zlog(1- &) d
= k[/\/’a+ bE—J'OMo zlog (1- &) d]
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It is easy for us to relate the consthmbd the temperature. It always suffices to write:

1_05db,0S_\-db kdbjm Zf£+b e g =kb,
T o0bdE 9E dE dEJo 1- g@*?
or
b= .
KT

The main applications of our formulas must be,eonwre, the case of the perfect
gas, in the usual sense, and that of the gastdf lig
For the usual gas, the total energy of the moteesi my ¢ + w is always very large
with respect tk T. The number of atoms whose kinetic energy is dobetweenv and
w + dwis then:
nw dw= constz, e " dw,

and one will easily recover Maxwell's law upon @phgz, with its value.
In order to get the free energy, start with itGrdon:

F=E-TS=-aNkT+KT [ "7 log[l-€“"™)] ce.

We have a quantity that is very close to unityemihe log sign, which will give us
the authority to develop it into a series. Thdt give:

F=- aNkT-kT jo*‘” 2,6 @™ ge=— N'KT(a+ 1),
Now, the constard satisfies the condition:

N=["ze &,
SO
1 +oo —be
a:Iog[ﬁjo ze ds}
and
- - _ i +oo —be
F=-NkT(l+a)= /\/kﬂog[/\/jo z,6 df}

€ [+ _y, dxdydzdpdqd}
=—NkTlog|—| € :
N g[/\/ - n?

The expression for the free energy that was goyeRlanck is also obtained with no
difficulty.

If remains for us to apply the general formuldhe gas of light. However, radiation
in equilibrium with matter can be compared to a gashe presence of its condensed
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phase, and the numbgdr of atoms present is not presenpriori. That results in the

necessity of suppressing the first equatidngnd setting = 0.
The number of atoms of radiation whose frequencgusd betweemw andv + dv is:

8 vidv

? gv/kt _1V’

n,dv= xz,dv=

Vi _q

because the waves are transverse hereyaril
The density of the radiant energy then obeys taledR law:

8h V3

@

u,dv=

and the synthesis of the theory of blackbody razhatith the theory of gases is found to
have been realized completely.

It would be easy to calculate some thermodynanguantities for blackbody
radiation, but it would pointless to increase thenber of formulas.

3. Passing from Wien'’s law to Rayleigh’s law~ Planck’s general formula is, as one
knows, capable of taking on two particularly inttneg degenerate forms. If the quotient
hv /KT is very large then one will get the law that wasposed by Wien, which will then
be valid in a certain domain:

8rhv?
3

u, dv= e T dy.

On the contrary, v/ kT is very small then one will revert to the formtitat Lord
Rayleigh deduced from classical concepts:

8k V2T

dv
CS

u,dv=

Now, Wien’s law is nothing but another form of Maediis law, as well as Rayleigh’s,
when one appeals to the notion of homogeneous waké&sck’s formula then implies
both the corpuscular and wave nature of radiatiimce the day when it was discovered,
a synthesis of dynamics and optics has become sages

Statistical equilibrium of the gas of light is liegad by the interaction of atoms of
radiation. When the number of atoms that is cdrlbg each stationary wave is small
(ie., hv | kT is large), the theory of homogeneous waves caming an exact
representation of those interactions; the oldeetienviewpoint will, however, and one
will have Wien’s law. On the contrary, if one hasery large number of atoms on each
stationary wave in the mean then the theory of lggmeous waves will indeed represent
the interactions, and one will get Rayleigh’s law.
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The study of energy fluctuations leads to the samelesinos. Consider a small
element of volumer in the vessel that is filled with radiation. Thean value of the
energy that is contained inand corresponds to the frequency intehalis obviously
ru,dv. However, at each instant, the real value of thatggnes subtracted from the

mean value of that variable quantiéy A very general thermodynamic argument will
show that the mean-squarea#ill be equal to:

2=k TZaiT(u., rd).

In the domain of validity of Wien’s law, one will ge

&= hv (u, Tdv).

Now, that formula can be recovered by assuming thesmal kinetic viewpoint
uniquely. Indeed, if an ensemble of points is distributadlomly in a volume that is
divided into small elements that are equalrtim such a way that the mean number of
points per element is then the calculus of probabilities will show that¢ thean value of
the square of the deviatian will be:

on“=n.
Here, one has:
q=l dv

. 2= (hv)?
hv

and as a result: o
2= dn*h*V2 =hv (u, Tdv).

If one passes to the other limiting case, namely, Rgtykilaw then one will find
that:

¢ (ru, dv)?
8mwidv 1

Calculating the interference between the homogenetectromagnetic waves of the
old theory will likewise lead to that formula.

Those results confirm our conclusions and cleahgw the following result: As a
result of the interactions of quanta, the hypothesithe incoherence of atomic motions
that one assumes to be the basis for the old kitle¢iory will cease to be exact when
several quanta are associated with the same wawas that viewpoint that | developed
in the presentation of my thesis.



CHAPTER XIV

COLLISION PROBABILITIES IN A GAS

1. Einstein’s proof of Planck’s law. — 2. Collision prbligies.

1. Einstein’s proof of Planck’s law(1917) ¢%). — The work that | summarized in the
last chapter is all attached to a fundamental paper stetn in which one finds a proof
of Planck’s law that is founded upon only some generaisstal considerations,
combined with Bohr’s frequency relations.

| shall first recall the principle of that proof. Atsmare systems that are capable of
taking on a discontinuous sequence of energetic statéspamsing from one state to
another always happens by way of the absorption or emie§radiation. Naturally, the
energy emitted or absorbed will be difference betwherenergy that is contained in the
atom before and after that transformation, and theesponding frequency of that
radiation is equal to that energy divided hy In other words, any radiation that is
emitted or absorbed is equaliiz as a quantity of energy, which is indeed consistent with
our current corpuscular theories. With Einstein, consiateensemble of atoms of the
same type that is found in a container that is maiathat a uniform temperatufe and
as a result, it is full of blackbody radiation thatconsistent with that temperature.
Among those atoms, at each instant, there existsyadargie numbeRN; that are found in
a state of total energg , and another very large numiérthat are found in a state of
total energys .

During each unit of time, a certain number of atonssea from the statg to the
stateg and conversely. One can say that there is a cqutalmability for the passage
from the statda to the statg per unit time, and the problem is now to evaluate those
probabilities.

Suppose that < &§ . The passage- j can be produced only with the absorption of
the frequencyy = (§ — &) / h, so it is natural to make the corresponding probability
proportional to the density (V) of surrounding blackbody radiation. By contrast, the
passagg — i can be produced spontaneously, and the corresponding pitgbadum
reduce to a constant that is characteristic of tbenatself: Einstein added a term that
was proportional tg (V) to that constant, which is a term that he descrilsedegative
absorption, and we shall see how that term can bepirted later on.

In order to obtain Planck’s law, it will suffice to & down that the number of
transitions - ] is equal to that of the transitiops- i, which will give:

N BLo (1) =N [A+B p (V)] .

If one assumes the law of the canonical distributiem one must have:

() Phys. Zeit18 (1917), pp. 121.
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Now, that exponential will coincide with unity forvary large value of, and on the
other hand, the term o (V) will become much more important thAn The condition of
equilibrium itself then demands the equality of the canistd andB; . Hence, one has
the relation:

_ A/B
,O(V) - vkt _q°
. . L . v3
In order to obtain the desired result, it will suéfio setgz 8”2 )
C

It is important to make a remark at this point: $e&veral authors have pointed out —
and notably Lewis — the way that one has writtewmddhe equation of equilibrium
implies a new sort of principle. Indeed, the usuation of thermodynamic equilibrium
does not demand that the transitions. j during any unit of time must be equal in
number to the transitiorjs— i. It demands only that the numbeéisandN; should be
constant, and thanks to a cyclic process that uagbther states than the statesdj,
one can satisfy the second condition without satigfthe first one. One can materialize
that idea by means of a concrete example. Letemtrigal conductor be traversed by an
electric current, and attribute the phenomenorhefaurrent to the displacement of free
electrons with respect to the atoms, which areragduo be fixed. Two portions of the
conductor will exchange electrons, with preferegoseen to the exchange in a certain
direction (since there is a current), and meanwthie number of electrons in each
portion will remain constant since the conductanas electrostatically charged.

For my own part, | am tempted to believe, with iwhat there is good reason to
adopt this new equilibrium principle for every resible process, in particular, and to
then specify the notion of thermodynamic equilibmiu | do not see the one objection to
Einstein’s argument.

The term “negative absorption” has been interpreiethe correspondence principle.

When one studies the motion of a Planck resorthttris embedded in blackbody

radiation in a classical fashion, one will find thzertain waves of that radiation will
accelerate the motion of the resonator (i.e., pasébsorption), while others will retard it
(i.e., negative absorption). The sign of the amson depends upon the phase difference
between the motion of the resonator and the wavssidered. In total, the positive
absorption will prevail over the negative, and éheiill be a small resultant absorption
that equilibrates the radiation by accelerationcdya That will justify not only the
introduction of the term irB p(v), but also the valu&zzhv?® / c® that one attributes ta/
B. Those results, which have been extended in waneays, are very interesting, and
must not be lost from view. Nevertheless, sinaggythre not further attached to the
concepts of the present study, and the true meanifinitpe correspondence principle
seems even more obscure to me, moreover, | shatsist upon them.
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2. Collision probabilities. — After the discovery of the Compton Effect, Pauli,(:f)
posed the following question: If one imagines a vessa#l ighfilled with electrons and
blackbody radiation then what must the probability oflision between quanta and
electrons be in order that those collisions should natuge the thermodynamic
equilibrium?

He arrived at a very unpredicted result: The probghilita Compton collision must
depend, to a certain degree, upon the result of thasioollior more precisely, it must
depend upon the density of quanta whose energy is eqtiattof the quantum once it
has been diffused. Einstein and Ehrenfé$tshowed the provenance of that statement
with the argument that was analyzed above that le®lanck’'s law. Finally, quite
recently, Jordan'f) generalized the result of Pauli, Jr., by attachirg ihe new statistics
of Einstein and the author.

Without following the methods of the preceding work inadel shall only make a
summary presentation that will allow one to rapidhglerstand the nature of the question.

Suppose one has two gases in the most general sensevadridy whether they are
material gases or blackbody radiation is of no impoganEach gas corresponds to a
three-dimensional extension-in-momenta, and the pesgdsitions of the representative
points of an atom will define a network of isolated pointsach of those extensions.

Let Py, Qu, ... denote the point-cells of the first gas, andnigt n, , ... and¢;, &, ,

... denote the numbers of atoms and the values of thegspmnding energies, resp. Use
similar notations for the second gas, but substitutenthex 2 for the index 1.

We saycollisions of the direct kintb mean the ones that make a representative point
of the first gas pass from the cd# to the cellQ;, and simultaneously make a
representative point of the second gas pass from thePgdb the cellQ, . Since
collisions conserve total energy, one must have:

Eq +Ep = Eq HE -

The number of collisions between thg atoms in the celP, and then,, atoms in the
cell P, that are produced per unit time is proportional to the ptodya, , and among
them, a certain proportion of themn, n, will belong to the direct kind. Similarly, the
number of collisions of the opposite kind per secondais, n, . With the same
reservations as in paragraphequilibrium will be expressed by the relation:

angn, =a'n,n, .

The older statistics sets:

_ " Ep /KT _ = &p, /KT
n,= Ce : n,=C,e :

(*3 W. PAULI, Jr., Zeit. Physl8 (1923), pp. 272bid. 22 (1924), pp. 261.
(*) A. EINSTEIN and P. EHRENFEST, Zeit. Phy€ (1923), pp. 301.
4 P.

%) P. JORDAN, Zeit. Phy83 (1925), pp. 649.
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Furthermore, due to the conservation of energy, équin will be realized whemr
= a’. That is precisely the result of Boltzmann’s cladsacelysis of collisions in kinetic
theory.

Things will no longer be like that when one adopts Eingestatistics. One must
then set:

1 _ 1

Np

n. = - -
R ) a,+ &p, | KT !
e’ —1

Y T _ayteq KT !
et -1

The equation of equilibrium will then imply the cotdn:

Mg Ny _ @+ Ny ) (1+ npz)

Ny Mo, (1+an)(1+nQ2)'

a
a

It is easy to account for the fact that the onlyeptable way to satisfy that relation is
to write:

a=C(l+ny,)(1+ny), a’=C (1+ny)(A+ng).

That is Jordan’s general result for the case of tvge@gjaand its extension to the case
of more than two gases is immediate.

We shall show the expression that was obtained ®rctilision probability will
account for the earlier results of Einstein and Rauli

In the case of a material gas, the numipevall be small compared to unity, which
must say that the number of cells that are occupiedgaten instant is small (at least,
under the usual conditions). Therefore, if gas 1 is tenah gas of atoms or electrons
and gas 2 is blackbody radiation then the equilibriurhretdluce to:

M (L 1 )= g, (L4 1),
Now, for blackbody radiation one will have:

1 1

nP2: th/kT_l’ anzth'/kT_l’ e

if vandv’denote the frequencies of the quantum before and h#ewotlision of the first
kind, resp. Upon multiplying the two sides of the equilibr equation by the same
factor, one will recover the expression for the dir@llision probability:

2
const.n, p(v)r”:;/ + p(v')}.

That is the formula of Pauli, Jr.
If one assumes that the quantum is absorbed during theiocothen a slight
modification of the preceding argument will easily give:
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NNy =N, (1+ng),
or, upon multiplying this by &7v 3/ c*:

Ny p(V) = %{SHEV +p(v)}.

That is the equilibrium formula that Einstein wrotat,owhen one uses our present
notations.

Now that we have obtained these results, what meamingve attribute to them?
That is still quite mysterious.

Pauli has remarked that his probability formula hasthssical theory as its limit.

However, the agreement between the classical thaodythe new theory in one
particular case is not sufficient to explain the meamih¢he general formulas. When
one can neglect thg in comparison to unity (i.e., the case of material gasel Wien
radiation), one will recover the probability of thedalorpuscular doctrines, but in the
general case, the collision probability will depend ugennumber of atoms that belong
to the kind that results from the collision. Certgitilat is very difficult to imagine. Is
the question perhaps ill-posed? Is it perhaps a facotiastonishment comes from our
habitual refusal to consider the influence of the futurenughe present, which is an
influence that is implied already in the use of thevaaded potentials? We shall
undoubtedly focus upon that point in the very near future.




SUMMARY AND OVERVIEW

We shall attempt to summarize the main stages thatemethrough in the book.

From my previous work on quanta, | assumed that athdoof energy had an atomic
structure, and | sought to link each atom with a periodeapmenon whose frequency is
determined by the quantum relation.

Here, | can make that idea more precise by considerengndterial point to be the
center of a system of stationary waves. From tathematical standpoint, that amounts
to the same thing as envisioning the material point as @hatag source of retarded
and advanced actions whose superposition will givat@osary state. When studied by
an observer in uniform, rectilinear motion with reggecthe atom-source, the stationary
wave will take on a different aspect: Its amplitudel wikplace with the velocity of
motion, and always with the same value on the sur@Hca flattened ellipsoid of
revolution that is centered on the moving body, whickxislained simply by the Lorentz
contraction.

The distribution of phases is much more curious arekpegcted: They form wave
planes that displace with a speed that is greater tlzrothight and becomes larger as
the speed of the moving body becomes smaller. Thahéscould say, the main point of
my theory. It is derived directly from the Lorentzrtséormation and the relativity of
time. The study of the wave in motion leads one teegdize the quantum relation by
giving it a tensorial form that couples the energy-qtnaoti motion tensor of the moving
body to the two fundamental quantities of the wawemaly, its frequency and phase
velocity. As | emphasized in the Preface, one camark that in all of this theory, the
wave equation takes the form of a sort of postulate.

Since the case of rectilinear motion of a moving bodylea studied completely, one
must attack the variation of its motion in a forcedjednd one agrees to commence with
the simplest case: viz., that of the constant fidkbw, two kinds of fields are known
today: gravitational fields and electromagnetic ones.

The essential character of the gravitational fielthet the form of the trajectories
does not depend upon the nature of the moving body —s.ena#s. That is why Einstein
was able to interpret the force of gravitation by medrkeocurvature of space-time, that
is, by means of a non-Euclidian form fie’.

On the contrary, in an electromagnetic field, theiomoof the charged point depends
upon the nature of that point, or more precisely, the cdtits charge to its mass. To my
knowledge, there exists no satisfactory explanatiothi®electromagnetic force in terms
of the Lorentz formula, and its nature remains mystexi Be that as it may, my ideas
lead naturally to the association of the varied nmotad the moving body with the
propagation of a wave whose frequency is given by the quamtabton. It would also
be quite natural to try to make that propagation more ggday extending the tensorial
relation that was discovered for uniform motion. d that already in my thesis, but here
| attempted to go a bit further. Upon recalling the ithes the material point is a source,
one can look for a solution of the wave equation thataiid in the medium that would
correspond to the solution that was employed in the alasztilinear motion.

That mathematical search is hampered in the catdee aflectromagnetic field by our
ignorance of the true nature of that field. Howewethe gravitational case, things seem
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much easier in theory, and although | have not solvegrblelem in full generality, |
hope that more talented geometers might arrive asthiation.

| sensed the possibility of finding a solution that wouldapelicable to the simple
case of uniform, circular motion with no difficultyl.believe it to be exact, and it gives a
concise idea as to what the general solution mightitboeeems quite probable to me that
one will arrive at a proof of the tensorial quantunatieh for the points of the trajectory
along that route. An examination of the manner by wbis maintains phase agreement
between the moving body and its wave will support that @fdooking at things, and it
is also confirmed by the simple interpretation that awesluces for the stability
conditions, which | shall recall.

Indeed, the development of atomic theories has prowadathong the motions that
are predicted for the material point by classical dyranmsome of them possess a very
special stability character, whereas the others artahbiasenough that they can be
considered to be physically unrealizable. For closedogiertrajectories, the stability
condition is obtained by equating the cyclic integradef Maupertuisian action to an
integer multiple of Planck’s constant, and the multipéenditions that relate to quasi-
periodic motions are deduced from the single conditibpesiodic motion; it will then
suffice to interpret them. Now, the tensorial quantetation that is supposed to be valid
at all points along a trajectory shows that the deipédatuisian action is proportional to
the phase difference in the wave that is associatddtiagt motion, and that difference is
taken along the trajectory. It then results diredtym this that one can equate the
stability condition to a resonance conditions. Tiesult already appears in my thesis,
but here | was able to make it more precise in the cdseircular motion the
mathematical form that | spoke of above as an expmedsr the associated wave. One
will then see that resonance does not take placeysdtelg the trajectory, but also in the
entire force field. | think that the same thing willtoge in the general case.

All of the preceding was solely concerned with cortstiatds. If one would like to
extend the same consideration to variable fields andyhamics of systems of material
points then one would first encounter a difficultyatttwas studied in the beginning of
Chapter V. It deserved extra special mention becauss toncerned with the
development of the dynamics of relativity, independentlgliony ideas on quanta. That
difficulty, which is usually tacitly ignored, is thelfowing one: What one calls the total
energy of a system of material points is not the sfithe energies of each point when
one defines them to be the temporal components ofriige-quantity of motion tensor
at each point, and that is due to the intervention oéri@l energies. Hamilton's
principle seems to be, in essence, a property of themofieach material point, and it
was only by a gimmick that classical mechanics was abéxtend to systems of points.
That defines an essential, delicate distinction otimepry that deserves more attention.

The study of waves that are associated with theomstof a set of material points
would be very interesting and would perhaps bring withoines clarifications on the
subject of the obstacles that quantum theory meets tp Wihave been able to indicate
the form of such waves only in the simple case tlsaidied in my thesis.

Upon passing from the dynamics of quanta to the optigsiafta, one will see some
difficulties being created. For my own part, | seer@@son to attribute only a statistical
value to the energy principle. It seems to me that ghotoelectric effect and the
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Compton Effect bring with them some very strong expenital justifications in favor of
the existence of the quanta that Einstein imagined wallp Newton.

That hypothesis of granular radiation easily accouatsréflection, the Doppler
Effect, and radiation pressure. But then, how does@smncile that with wave optics —
i.e., how does one explain interference, diffractemd diffusion? | have no pretensions
of having solved that enigma, but | have been able todat® a new idea that does not
figure explicitly in my thesis and now seems essentttdre is its basic principle: Upon
studying the waves that are associated with motions amstant field, one will perceive
the following fact: One can attribute an index of refiacto each point of the medium
such that the Fermat paths that are deduced from thax icoincide with the possible
dynamical trajectories. When the moving body describee of those possible
trajectories, the motion of the phase that is aasediwith it will take place along the
orbit with a velocity that corresponds to that phasew, if one imagines an infinitude of
moving bodies that simultaneously describe all of the plesdrajectories without
exerting any influence on each other then one will Baethe phase distribution can be
represented by propagation according to the indicated ldtwthe index of a continuous
wave with no singularity of the classical type. Wadl when arrive at the following
conclusion, which seems fundamental: Whereas the pla@eomenon that is associated
with the material point involves an essential singtylathe motion of an ensemble of
material points can be represented statistically byrtiremous wave. | have indicated
how one can appeal to that idea in order to reconcileophies of quanta with that of
homogeneous waves. My attempt was hardly satisfacboty] do believe that it has
pointed to an interesting avenue to pursue.

The theory of associated waves that explains tlevantion of quanta in dynamics
must also explain their intervention in statistical hedcs. That point was verified in
my thesis, but | had to employ the classical staaiktitethod and assume a formula that
was due to Planck and whose correctness | sensedngebeltile doubting the argument
that he appealed to. Here, | made use of a new stdtisethod that was inaugurated by
Einstein, as a result of the work of Bose. That pechime to make the arguments more
rigorous and to arrive at a Planck’s formula without afipg to his argument. The
essential result of that study was the following one: ifk®duction of quanta into the
theory of gases that leads to an exact predictidhethemical constant is justified by
the particular character of the stability of atomiatimns whose associated waves are in
resonance with the dimensions of the vessel. Theclaapter related to collisions
between units of energy and their probabilities; abdlyé &as the goal of showing how
everything else could be understood in that context.

To summarize, we add some general considerations.

In the course of this book, we have glimpsed a nevamtyes in which the notion of
waves plays an important role, but that theory of dyoamannot by any means be
regarded as having been defined completely. For examplieircase of periodic
motions, it will suffice for me to say: There isability when a certain resonance
condition is realized. One must also explain whyadtheer motions are not stable.

It seems that the various portions of the associatage véuperimpose upon the
moving body exert a perturbing action that disturbs theiomathat is predicted by
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ordinary dynamics. That action will be cancelled If@rtions of the wave have the
same phase.

The introduction of that new element that is digtinom the forces in the classical
sense must undoubtedly lead to a theory of mechanicssthateditarily discontinuous
and is analogous to the one that Marcel Brillouin gied some years ago. When a
guantum of light follows a curved trajectory in a fieldddfraction or interference, it will
not be subject to a force of classical type, but if woeld like to continue to attribute the
curvature of the trajectory to a certain action ikagxerted upon the moving body, and
that action undoubtedly belongs to the type that wes hiast imagined. One will then
perceive the possibility of a general doctrine thatdsiabout the synthesis of the laws of
dynamics and optics, which is a doctrine in which t&sl of dynamics appear to be
properties of waves with moving singularities.

We now turn to the subatomic domain and envision thpleshcase of an atom with
one electron, while neglecting the motion of the eusl

If we abstract from the internal state of the nuclies it will first seem that the state
of the atom is defined entirely by the motion of thecalbon. The manner by which we
interpreted Bohr’'s correspondence theorem (Chap. IVéinsdo indicate the contrary
conclusion: The wave state of the atom does not depeledy upon the wave that is
associated with th@resentmotion of the moving body, but its expression willoals
contain oscillating terms of all emission frequencdhed are defined by Bohr’'s rule. That
idea seems to conform quite well to the present developwieatomic theory and
notably presents a certain analogy with the startingitp@r the recent work of
Heisenberg, Born, and Jordan. Indeed, according to tlobséass, the state of a system
that is quantified with one degree of freedom cannot Ipeesged with the aid of two
coordinates, namely, a position and a velocity. In otdalefine it, one must envision
matrices or arrays of oscillating quantities whoseguecies are the emission
frequencies of the system.

Experiments provide us with a monotonically-increasingnimer of facts about the
subatomic world, and yet it still remains mysterious.is lonly by means of very bold
ideas that can perhaps see them clearly, and that extiuse for the audacious attempts
that were contained in this book. Today, as befor@gviiig Newton’s beautiful simile,
we are like children playing on the beach while the oa#atmuth extends before us
completely unexplored.




NOTE
ON

THE RECENT WORK OF SCHRODINGER ().

Since the time when the present work was composec seny interesting articles
by Schrodinger *f) in Zirich have appeared, and | shall attempt to summanize
essential idea in them.

Conforming to the general notions that were developee, I8chrodinger assumed
that the study of the trajectories of a material paind constant field must be deduced
from the study of the sinusoidal solutions of the equati
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in whichn is the index of refraction that was introducedCimapters | , Il, and Ill. We

ignore the case in which a magnetic field is presmmd expressing as a function of the
spatial coordinates and eneiMyy We easily find that:
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in which the functiorF (x, y, 2) is the potential energy of the material pointha field at
the pointx, y, z, andmy is its proper mass. If one is content with thpragimation that is
realized in classical Newtonian mechanics then gauéd) will take the simplest form:
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Here,E denotes the energy in the classical mechanicakseme., the surdmg V2 +F of

the kinetic and potential energy.

The study of sinusoidal solutions of equatioAs dnd A”) can be carried out in all
cases that are envisioned by the usual mechanitseeastial mechanics by employing
the approximation procedures of geometrical oiod one will then arrive at the least-
action principle and the Lagrange equations. Tdwsiderations of Part | in the present
book will then be valid, and the quantum stabitipndition for closed orbits will present

itself in the formj p. dd = nh.

%) Note added in proof.

)
(*®) Ann. Phys. (Leipzigy9 (1926), pp. 361 and pp. 489.
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However, for motions at the atomic scale (which precisely the only ones for
which the quantum conditions are actually interestiigg, use of the procedures of
geometrical optics for the study of the solutions Af &nd @A’ ) will no longer seem
justified, and the equations of mechanics must no longemal® moreover. That was
the essential remark that Schrodinger made. In oadeplve the dynamical problem,
one must then study the solutions) @nd A”) directly. In particular, the quantum
conditions must be deduced from that direct study, andbmger from the condition

jpi dd = nh. Schrédinger, with the aid of some delicate mathexalationsiderations,

showed that one will thus be led to some results #natin good agreement with
experiments. We must confine ourselves to referringeder to the original papers for
more details.

Therefore, a new theory of mechanics seems to hase benstructed for which
dynamical phenomena have an essentially wave-like natRredicting them by means
of the Lagrange-Hamilton equations is an approximate psoitet has exactly the same
value and limits as the prediction of optical phenont@naneans of Fermat’s principle.
The new mechanics is to the old mechanics (includingtEin’s) what wave optics is to
geometrical optics.




