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PREFACE 
 

 In this little volume, I shall present to the scientific public the present form of some 
new concepts concerning the relationship of mechanics to optics that I have previously 
developed in various papers and articles, and which I first presented in summary form in 
my doctoral thesis. 
 For the reader who is engaged in the reading of this work, it is convenient to first 
point out what the points are that I have assumed without proof.  In the first place, I 
assume and suppose known the entire theory of relativity, whether in its original form, 
which is called “special” today, or in its general form.  In particular, I have made constant 
use of relativistic dynamics, and I suppose that its fundamental formulas are quite 
familiar to the mind of the reader.  I have often employed the tensor calculus and the 
summation convention for indices.  Nevertheless, the tensor calculus does not occupy a 
significant place here, and I have intentionally avoided the complicated formulas, 
especially in the chapter on gravitational fields. 
 I must point out the very special manner by which I have introduced the famous 
“wave equation” in the course of presentation.  In the past, that equation was deduced 
from the properties of elastic media and extended to the hypothetical ether that one has 
charged with the task of transmitting light vibrations, and whose singular properties are 
not, all things considered, much stranger than those of our modern atoms.  Much later, 
Maxwell come onto the scene, and the wave equation become a consequence of the 
properties of electricity, condensed into a compact form to which the name of that great 
English scholar is attached.  These days, now that theoreticians have recognized the 
fundamental importance of the “Lorentz group,” there has been a certain tendency to 
consider the wave equation to be a more general postulate than the formulas of 
electromagnetism.  In particular, that viewpoint was evident in the way that M. v. Laue 
introduced the Lorentz group at the beginning of his treatise on relativity.  I have 
sacrificed that new tendency, by introducing the equation of propagation, out of hand, in 
the first chapter. 
 In the second part of the book, I assume the existence of light quanta, and I seek to 
show that this idea is not as incompatible with the old concepts as one might believe.  
Today, I admit that I like a great many experimenters have a tendency to believe that 
light quanta constitute an experimental reality. 
 Finally, in the third part, I have rapidly reviewed all of statistical thermodynamics and 
followed the lead of Einstein and Planck by assuming, as a definition, that the entropy of 
a state is proportional to the logarithm of the number of different ways that the state can 
be realized. 
 Those are the main points that I assume without proof, while borrowing them from 
theories that have already become more or less classical.  The reader who wishes to know 
immediately the interpretation of quanta that I have sought to construct upon that basis 
would do well to refer to the final chapter, in which the entire book is rapidly 
summarized. 
 It is indeed a pleasant task for me to acknowledge my respect and gratitude to Marcel 
Brillouin for having accepted this book into the present collection of mathematical 
physics. 
  Paris, 20 February 1926
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WAVES AND MOTIONS 
________________________________________________________________________ 

 
 

PART ONE 

THE DYNAMICS OF QUANTA  
_____________ 

 

 

CHAPTER I 

THE MATERIAL POINT CONCEIVED AS  
A STATIONARY WAVE  

__________ 
 
 

 1. Atomicity of matter and energy. – 2. The quantum relation. – 3. Interpretation in space-time. – 4. 
Rectilinear motion and plane waves. – 5. The material point envisioned as a point-source. – 6. Summary. 
 
 
 1. Atomicity of matter and energy. – The progress of physics over the last half-
century has shown the atomic nature of matter as clearly as possible.  At the present state 
of our knowledge, hardly any physicist would contest the idea that matter is composed by 
combining some primordial elements (probably just two of them: the proton and 
electron), and that the simple objects of chemistry differ from each other because their 
atoms are different assemblages of those primordial elements.  The volume that is 
occupied by those elementary quantities of matter (to the extent that such a volume can 
be defined with the aid of our usual conceptions) is certainly very small with respect to 
our scale of measurement, so it would seem justified for us to consider the electron and 
the proton to be the physical realization of the classical concept of a material point in 
mechanics (1). 
 On the other hand, the theory of relativity presents us with a notion of great 
importance: Namely, that of the identity of mass and energy, or if one prefers, since mass 
is the essential characteristic of matter, the identity of matter and energy.  That 
identification implies the very seductive consequence that the conservation of matter 
coincides with the conservation of energy, but it also poses a grave problem.  Indeed, the 
theory of electromagnetism has accustomed us to consider an electric charge to be 
surrounded by an electromagnetic field in which its energy resides.  Besides those fields 
that are coupled to the elements of matter and participate in their atomic character, 
electromagnetism also predicts the existence of free fields with a continuous structure.  

                                                
 (1) See FRENKEL, Zeit. Phys. 32 (1925), pp. 518.  
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They constitute the various radiations of all frequencies.  However, if matter and energy 
are synonymous terms then radiation will be a continuous form of matter, and that is why 
it can possess a quantity of motion, as Henri Poincaré showed.  We will then have two 
types of matter to distinguish: A discontinuous one, which will be matter in the usual 
sense of the word, and another continuous one, which will be radiation.  Is that distinction 
truly justified?  Would it not be simpler and more satisfying to the mind to assume that 
all forms of matter have an atomic structure?  We know that for some twenty years now, 
the evolution of physics has been leading us towards the corpuscular theory of light.  
Furthermore, electromagnetic theory cannot be integrally conserved, since that would 
lead to the absurd conclusion that matter is unstable and tends to transform into radiation 
completely. 
 Today, we believe that it is necessary to attribute an atomic structure to all forms of 
energy and to assume that they are organized around certain singular points or material 
points (proton, electron, light corpuscle). 
 Certainly, the concept of an isolated material point is only an abstraction.  It is 
nonetheless legitimate and necessary to first study that simple case. 
 
 
 2. The quantum relation. – Consider an isolated material point then, which is an 
element of matter in the usual sense or a quantum of radiation.  It will be characterized by 
a quantity m0 – namely, its proper mass – which will be equal to the mass that is 
measured by an observer that is coupled with it.  The theory of relativity teaches us that 
the total energy that is linked with the element and measured by the aforementioned 
observer is m0 c

2, in which c is the universal constant that is called the speed of light.  We 
suppose that our quantum of energy is found in a Euclidian region of space-time and that 
it is not accelerated.  Under those conditions, it will be either at rest or in uniform, 
rectilinear motion for any Galilean system.  In particular, imagine two Galilean systems, 
one of which is linked with the moving body, and the other of which possesses a velocity 

υ = β c.  If the energy is m0 c
2 in the first system then it will be 

2
0

21

m c

β−
 in the second 

one.  The difference between those two expressions will be the kinetic energy of the point 
in the second system, and if β is small then it will reduce to the classical value: 
 

1
2 m0 c

2. 

 
 Having said that, we shall seek to introduce a peculiarity into the constitution of our 
element of energy that will prepare us for the solution of the enigmas that are posed by 
quantum theory.  Now, the idea that first presented itself to the mind of Planck was the 
intuition of genius that he had when he introduced the notion of a “quantum” into 
science, namely, that mechanical energy should be proportional to the frequency of 
radiation.  Indeed, one also recovers that idea under the hypothesis of a quantum of light 
and in the photo-electric formula that one derives from it.  It is also contained in Bohr’s 
law of frequencies in a more disguised form.  If we attribute a completely general 
significance to that idea then we will take the following proposition to be a basic 
postulate: 
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 Whenever a material element, in the most general sense, possesses an energy W in a 
reference system, there will exist a periodic phenomenon in that system that possesses a 
frequency v that is defined by the quantum relation W = hv, in which h is Planck’s 
constant, which is equal to 6.55 ×10−27 erg-s in CGS units. 
 
 Let us first apply that statement to the system that is linked with the element.  The 
postulated frequency will be v0 = m0 c

2 / h, and it will belong to a periodic phenomenon 
that prevails all around the material point, and which constitutes a singularity, just as the 
electron does for an electrostatic field.  Since the frequency is unique and the material 
point is in a permanent state, the periodic phenomenon must be analogous to a stationary 
wave, and we can represent it by an expression of the form: 
 

f (x0, y0, z0) sin 2πv0 t0 , 
 
in which x0 , y0 , z0 , t0 are the space-time coordinates of the proper system considered, and 
f (x0, y0, z0) is the amplitude of the phenomenon at each point. 
 How does that periodic phenomenon appear to a Galilean observer that passes the 
moving body with a velocity β c?  With no loss of generality, we can suppose that the x 
and y axes of that observer are parallel to the x0 and y0 , and that his z-axis coincides with 
both the z0-axis and the direction of the relative velocity.  Under those conditions, the 
periodic phenomenon will appear to have the following form to him: 
 

0

2 2
, , sin 2

1 1

vz t z
f x y t

c

υ βπ
β β

 −  
  −    − − 

, 

 
as a Lorentz transformation will show.  Set: 
 

v = 0

21

v

β−
, V = 

c

β
. 

 
 The preceding expression will become: 
 

2
, , sin 2

1

z t z
f x y t

V

υ πν
β

 −  
  −    − 

. 

 
 It represents a wave of frequency v whose amplitude and phase displace in the z-
direction with the velocities v and V, respectively.  On the other hand, since the energy W 

of the moving body in the x, y, z system is 2 2
0 / 1m c β− , one will indeed have: 

 

W = 0

21

hv

β−
= hv. 
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The quantum relation is then preserved. 
 Before going further, we must point out the existence of a frequency v1 that one must 
be careful not to confuse with v.  It is the frequency by which the periodic phenomenon 
appears to vary for the x, y, z observer when his eyes follow a well-defined point in the 
proper system.  Indeed, that point-location of a periodic phenomenon is a “clock” that is 
subject to Einstein’s dilatation, so its frequency, as it appears to the passing observer, will 
be: 

v1 = 2
0 1ν β− . 

 
If the clock passes the point z = 0 at time t = 0 then it will be found at the point z = β ct at 
time t, and the phase will change by: 
 

v1 t = 2
0 1

z

c
ν β

β
− . 

 
Now, when one varies time from 0 to t and the z-coordinate from 0 to β ct, the phase of 
the wave whose frequency is v and whose velocity is V will change by: 
 

z
t

c

βν  − 
 

 = 0

21

z z

c c

ν β
ββ

 − 
−  

 = 2
0 1

z

c
ν β

β
− . 

 
The clock will then remain in phase with the wave, which explains the results that were 
obtained above. 
 Two remarkable relations exist between the two velocities υ and V.  The first of them 
is deduced immediately from the preceding formulas; it is: 
 

υ V = c2. 
 

The other is obtained by considering υ and V to be functions of β.  One will find them by 
varying β slightly: 

dv = 0
2 3/2(1 )

ν β
β−

dβ, 
1

d
V
 
 
 

= dβ. 

 

 Form the combination 
d

V
d

ν

ν

 
 
   = 

1
1

d
V

V d
ν

ν

 
 
 + .  One will get: 

 

d
V

d

ν

ν

 
 
  = 

2 3/2
0

2
0

(1 )

1c c

νβ β
ν ββ
−+

−
= 

21

c c

β β
β
−+ = 

1

cβ
= 

1

υ
. 

 
One will then have the relation: 
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1

υ
= 

d
V

d

ν

ν

 
 
  , 

 
which is entirely analogous to the relationship between group velocity and phase velocity 
that Lord Rayleigh introduced into the theory of dispersive media. 
 We finally remark that none of the preceding considerations depend upon the 
numerical value of the mass m0 in any way.  We can take it be as small as we wish, so we 
can make it tend to zero.  That is a point that we shall discuss again in the context of 
radiation. 

 
t 

t0 

z0 

z 
α 

O 

B 
C 

D 

A′ 

A α 

 
Figure 1. 

 
 3. Space-time interpretation. – We would like to interpret all of those results upon 
adopting the viewpoint of the geometric interpretation of space-time.  Here, we can 
content ourselves with a plane interpretation whose axis of the abscissas corresponds to 
the z-coordinate of the point in space, and whose axis of ordinates corresponds to time, 
multiplied by the constant c.  Here, we shall postulate the absence of any gravitational 
field, so the plane ct – z will have a hyperbolic pseudo-Euclidian whose ds2 is equal to c2 
dt2 – dz2.  As we learn from the theory of relativity, the world-line of a moving body that 
is animated with a velocity β c is a line that makes an angle of α with the Ot axis (Fig. 1) 
such that tan α = β < 1, and is thus less than 45o.  That world-line is also the “proper” 
time axis of the moving body, and the locus of successive points in space-time that are 
simultaneous for the comoving observer, and which consequently constitute his “proper” 
spaces, will be planes whose traces on the plane of the figure will the lines (parallel to 
Oz0) that make the angle α with Oz that was defined above, and are thus symmetric to Ot0 
with respect to the bisector of the z and Ot axes. 
 The space that surrounds the observer that is linked with the element of energy is, we 
have supposed, the site of a stationary periodic phenomenon of frequency v0 .  At time 
intervals that are equal to T0 = 1 / v0 , the phase of the phenomenon will become the same 
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again, as will the state of the proper space.  Mark out a series of points A′, O, A, B, … 
along Ot0 that are separated from each other by a distance cT0 .  The lines parallel to Oz0 
that are drawn through those points represent a series of equiphase proper spaces.  The 
intersections of those lines with Oz represent planes in the space x, y, z that are 
perpendicular to Oz and on which the phase of the periodic phenomenon will be the same 
at the instant t0 = 0; those are the wave planes of the phenomenon. 
 As time evolves, the corresponding observer will see the moving body displace with 
the velocity β c.  The state of a point that is linked to the moving body will appear to 

become the same to him whenever a time T1 has elapsed, such that OC , which is the 

projection of OA onto the t-axis, will be equal to cT1 .  On the triangle OAC, one will 
have: 

2
OA  = 

2 2
OC AC−  = 

2
OC (1 – tan2 α) =  

2
OC (1 – β 2), 

 

and as a result, T1 = 2
0 / 1T β− .  If one returns to frequencies then that will be written: 

 

v1 = 2
0 1ν β− , 

 
which is a relation that was obtained before. 
 It is more important then to recover the frequency ν and velocity V.  The frequency v 
is inverse to time T that it takes for the phase to reproduce itself at a given point on the 

Oz-axis – at O, for example.  Hence, cT = OD .  Now, the angle �ADC is obviously equal 

to π / 2 – α, and one will have cot �ADC = tan α = β = /CD AC.  Hence: 
 

CD  = ACβ = 2 OCβ , 
 

and as a result, OD= OC CD−  = (1 – β 2)OC .  The period T will then be equal to: 
 

T = 1
2 OD  = (1 – β 2) OC

c
= (1 – β 2) T1 = 2

0 1T β− , 

 
or, in terms of frequencies: 

v = 0

21

ν
β−

. 

 
 It remains for us to calculate V.  That is the speed at which the phase advances along 
Oz. 
 Now, the world-lines of the various phases are, we have seen, the parallels to Oz0 .  

Those phases then progress in the space Oz with a velocity β′ c such that β′ = tan�0z Ot  = 

cot α. 
 Hence, β′  = 1 / β, and the velocity V is equal to: 
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V = 
c

β
 = 

2c

υ
. 

 
 Having thus verified all of our preceding results, we shall examine the distribution of 
phases in the space of x, y, z at a given instant t.  The moving body occupies a certain 
point of its rectilinear trajectory at that moment, and the phases of the periodic 
phenomenon that accompanies it will be the same as those of the wave planes that are 
perpendicular to that trajectory. 
 Upon considering Fig. 1, one will see that the phases of the wave planes that are 
placed before the moving body will correspond to the past state of the moving body, 
while the wave planes that are placed behind the moving body will correspond to the 
future states of the moving body.  As time evolves, the moving body will displace along 
Oz, but less rapidly than the phases of its wave (υ < V).  It will then be unceasingly 
subjected to new phase states, which have been “yet to come,” up to now.  One can say, 
more picturesquely: The moving body is preceded by its past, which extends from it 
without end, and is followed by its future, which unceasingly rejoins it. 
 
 
 4. Rectilinear motion and plane waves. – A plane wave can be represented by the 
formula: 

f (x¸ y, z – υ t) sin 2πν 
z

t
V

 − 
 

, 

 
in which the z-direction is normal to the wave planes, while υ and V are the speeds of the 
energy and phase, resp.  The phase factor ν t – ν z / V is, by hypothesis, independent of 
the reference system considered, and since it has the form of a scalar product in the 
pseudo-Euclidian space-time zt, we conclude that ν / c and ν / V are the time and space 
components of a certain world-vector.  If one knows that “world-wave” vector then the 
frequency and phase velocity of the wave will be well-defined in all Galilean systems. 
 On the other hand, relativistic dynamics characterizes the motion of a material point 
by the four-dimensional “world-velocity” vector.  That vector is a vector that is equal to 
unity and points along the tangent to the world-line in space-time.  Its component along 
an arbitrary xi-axis will obviously be: 

ui = 
idx

dt
. 

 
In the present case, the world-velocity is constant in magnitude and direction.  Its time 
and space components are: 
 

u4 = ut = 
( )d ct

ds
 = 

2 2 2

( )d ct

c dt dz−
 = 

2

1

1 β−
, 
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u3 = uz = 
dz

ds
 = 

21

β
β−

, u1 = ux = 0, u2 = uy = 0, 

respectively. 
 Upon multiplying the “world-velocity” vector by the scalar quantity m0 c, one will get 
the world-impulse of the moving body.  One confirms immediately that this vector will 
have the quantity of motion for its spatial component and the energy, divided by c, for its 
temporal component. 
 Let x1, x2, x3 be the spatial coordinates x, y, z, and let x4 denote the coordinate ct. 
 Let O and I  be the world-wave vector and the world-impulse vector, resp., of the 
plane wave and the moving body that is linked with it.  One will have: 
 

 O1 = 0, O 2 = 0, O 3 = 
V

ν
, O 4 = 

c

ν
, 

 

 I 1 = 0, I 2 = 0, I 3 = 0

21

m cβ
β−

, I 4 = 0

21

m c

β−
. 

 
 Well, well! All of the results that were obtained up to now can be summarized in the 
following vectorial formula: 
 

I  = h O  (h = Planck’s constant). 
 
 When applied to the index 4, it will give: 
 

2
0

21

m c

β−
= hν, 

which is the quantum relation. 
 When applied to the index 3, it will give: 
 

0

21

m cβ
β−

= h
V

ν
, or 

2
0

21

m c

β−
= hν × c

Vβ
, 

 
which is a relation that is indeed verified if V = c / β, and which expresses the idea that 
the quantity of motion of the moving body is equal to h times the inverse of the wave 
length ν / V (or wave number) of the plane wave.  That will give us the following 
expression for the wave length in question, moreover: 
 

λ =
V

ν
= 2

0

1
h

m
β

ν
− . 

 



Chapter I – The material point conceived as a stationary wave. 9 

 As we remarked at the beginning of this paragraph, the phase is invariant.  The same 
thing will be true for its differential (2): 
 

dϕ = 2πν = 2π [O 4 d (ct) – O 3 dz] = 2π Oi dxi . 
 
 If we take the equation I  = h O into account then we will also have: 
 

dϕ = 
2

h

π
(W dt – G dz), 

 
in which W and G are the energy and quantity of motion of the material point.  Now, the 
expression in parentheses is nothing but the element of Hamiltonian action of the moving 
body with its sign changed.  Indeed, we will have: 
 

W dt – G dz = 
2

0

21

m c

β−
dt − 0

21

m cβ
β−

dz = m0 c
2 21 β− dt, 

 
and that is, in fact, the action for a free material point in Einstein’s dynamics (up to sign).  

Of course, for small values of β, the function m0 c
2 21 β−  will differ from the kinetic 

energy by only a sign, and that kinetic energy will coincide with the Hamiltonian action 
in this case.  One will then have: 

dϕ = − 2

h

π
dA. 

 
 The variations that are experienced by the phase of the plane wave will be 
proportional to the action of the material point when one displaces in space-time. 
 It results from this very important consequence, to which we will return much later, 
that the principle of least action, which fixes the rectilinear form of the trajectories here, 
is not distinct from Fermat’s principle, which determines the form of the rays of the 
wave.  In particular, if we consider two points A and B on the trajectory of the material 
point then the principle of least action, in its de Maupertuis form, will be  

0

21

B

A

m
dz

υδ
β−∫ = 0 (when we take the variation of mass with velocity into account) or 

B

A
G dzδ ∫ = 0.  If we replace G with hv / V then we will find that: 

 
B

A

hv
dz

V
δ ∫ = 0, 

 

                                                
 (2) Indeed, one will have the relations: 

o1 = − o1, o2 = − o2, o3 = − o3, o4 = + o4 
between the covariant and contravariant components of a vector in a Cartesian system ds2 = c2 dt 2 – dx2 – 
dy2 – dz2. 
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and according to Fermat’s principle, that will show us that the trajectory of the moving 
body is necessarily a ray of the wave, which was predicted a priori. 
 Although the considerations of the present paragraph apply to only the case of 
uniform, rectilinear motion, thanks to their invariant form, they are susceptible to some 
important generalizations that will be goal of the following chapters. 
 

 5. The material point envisioned as a point-source. – In the description of the 
periodic phenomena that we have attached to every material center, up to now, we have 
preoccupied with phase above all else.  We have said only this much on the subject of 
amplitude: In the Galilean system that is coupled to the material point, the periodic 
phenomenon will have an amplitude f (x0, y0, z0) for which the origin, which is the 
location of the material point, is a singular point.  Moreover, it is obvious that when the 
amplitude is envisioned in the x, y, z system, it will displace en masse along the z-axis 
with a velocity v. 
 As an attempt to specify the form of the function f, we shall envision a material point 
with spherical symmetry, in particular.  In that way, we shall exclude the atom of 
radiation – viz., the “light quantum” – from the present considerations, because the 
phenomenon of polarization shows that such an element cannot possess spherical 
symmetry, and we shall reserve the study of that particular case to the last chapter. 
 Everything leads us to believe that the electron (and undoubtedly, the proton, as well) 
possesses spherical symmetry.  Therefore, what follows will then apply to the electron. 
 If a material point possesses spherical symmetry in its proper system then the 
amplitude at a point whose distance from the material point is r0 will be: 
 

f (r0) = f 2 2 2
0 0 0( )x y z+ +  

 
in that proper system, and the surfaces of equal amplitude will be concentric spheres.  In 
the x, y, z system, the amplitude will be given by the function: 
 

2
2 2

2

( )

1

z vt
f x y

β
 −+ + 
 − 

, 

 
as a Lorentz transformation will show, and the surfaces of equal amplitude will be 
ellipsoids of revolutions that are flattened around the z-axis and move en masse along that 
axis with velocity v. 
 In order to determine the function f (r0), we shall introduce a hypothesis here that is 
strongly suggested by the classical theories and by the primordial role that is played by 
the constant c in all of those questions.  We suppose that the function ϕ (x, y, z, t), which 
is an expression for the periodic phenomena in an arbitrary Galilean system, satisfies the 

wave equation ∆ϕ = 
2 2 2

2 2 2x y z

ϕ ϕ ϕ∂ ∂ ∂+ +
∂ ∂ ∂

= 
2

2 2

1

c t

ϕ∂
∂

.  The constant c also keeps its essential 

character of being the “propagation velocity of perturbations in Euclidian space-time.” 
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 Since the wave equation is invariant under the Lorentz transformation, in order to 
determine f, it will suffice to write down the fact that the periodic phenomena will satisfy 
that equation in an arbitrary Galilean system.  Choose the system x0, y0, z0 that is coupled 
with the moving body.  The periodic phenomenon will then have the expression: 
 

ϕ (x0, y0, z0, t0) = f (r0) sin 2π ν0 (t0 – τ0), 
 

in which τ0 is a constant that depends upon the origin of time.  One will then have: 
 

 ∆ϕ = sin 2π ν0 (t0 – τ0) ∆f = sin 2π ν0 (t0 – τ0)
2

2
0 0 0

2d f df

dr r dr

 
+ 

 
, 

 

 
2

2
0t

ϕ∂
∂

 = − 2 2
04π ν ϕ , 

 
and as a result, the wave equation will give us: 
 

2

2
0 0 0

2d f df

dr r dr
+ = −

2 2
0

2

4
f

c

π ν
. 

 
 One will easily verify that the general integral of that second-order differential 
equation is: 

f (r0) = 0
0

0

sin 2
A

r
r c

νπ α + 
 

, 

 
in which A and α are integration constants.  The periodic phenomenon will have the 
complete expression in the system x0, y0, z0 : 
 

ϕ (r0, t0) = 0 0

0

sin 2
rA

r c

νπ α + 
 

sin 2πν0 (t0 – τ0), 

and 
 ϕ (x, y, z, t) 
 

= 
2

2 2
2

( )
1

h

z t
x y

υ
β

−+ +
−

2
2 20

2

( )
sin 2

1

z t
x y

c

ν υπ α
β

 −+ + + 
−  

 0
02

2
sin

1

z
t

c

πν βτ
β

 − − 
 −

 

 
in the x, y, z-system. 
 When viewed in the proper system, the phenomenon then appears to be spherical 
stationary wave, and it can further be conceived to be the superposition of a converging 
spherical wave and a diverging one, because one can write: 
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ϕ (r0, t0) = 0 0
0 1 0 2

0

cos 2 cos 2
r rA

t c t c
r c c

πν πν
       − + − + +       

       
. 

 
 If only the first term exists in the preceding formula then one can say: The material 
point can be compared to a source that unceasingly emits a perturbation of frequency v0 = 
m0 c

2 / h into the surrounding medium.  However, there is also a converging wave whose 
interpretation can indeed attract great interest, philosophically, and its intervention seems 
to be necessary in order to assure the stability of the material point, moreover.  That 
converging wave corresponds to the creation of a perturbation in the medium by the 
point-source that obeys, not the classical law of retarded potentials, but the law of 
advanced potentials.  In effect, the phase of a wave at a point is determined by the state of 
the point-source at the future instant when the converging wave will be absorbed by it.  
The divergent wave unceasingly carries the past phases of the point-source in space with 
the speed of light, while the converging wave seems to unceasingly bring its future 
phases, and likewise with the speed c. 
 Without stopping here to discuss the philosophical consequences that the systematic 
introduction of advanced potentials into physics would entail, we can state the following 
conclusion (viz., the point-source theorem): 
 
 In a uniform, rectilinear motion of a material point with spherical symmetry, the 
periodic phenomenon whose existence we have devised can be calculated by considering 
the material point to be a source of proper frequency v0 and superposing the advanced 
and retarded actions that emanate from that source. 
 
 As a simple application of this principle, we calculate the periodic phenomenon at a 
point on the z-axis in our x, y, z system.  The frequency of the point-source must naturally 

be taken to be equal to ν1 = ν0 
21 β− . 

 The given general form ϕ (x, y, z, t) reduces to: 
 

ϕ (0, 0, z, t) = 
2

0 0
02 2

1 2
sin 2 ( ) sin

1 1

z
A z t t

z t cc c

β ν πν βπ υ α τ
υ β β

 −  − + − −   −   − − 

, 

 
here.  We must now derive that formula. 
 

 
O M1 M2 M″ P 

 
Figure 2. 

 
 In order to do that (Fig. 2), we mark out the point P along the z-axis with coordinate 
origin O whose abscissa is z and which is where we would like to determine the 
phenomenon, and finally the point M whose abscissa is vt, which is the position of the 
moving point at the instant t. 
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 The point P at the instant t is the site of two waves: A diverging wave that is emitted 
by the moving body at the point M1 and the instant t – τ1 and a converging wave that will 
be absorbed by it at the point M2 at the time t + τ2 .  Upon appealing to Liénard’s 
formulas, which are classical in the theory of electrons, one will see that those waves 
have the values: 

12 (1 )

A

PM β−
 cos [2πν0 (t – τ1) + c1] 

and 

22 (1 )

A

PM β+
 cos [2πν1 (t + τ2) + c2], 

respectively. 

 We calculate 1PM , 2PM , τ1, and τ2 : 

 

MP  = OP OM− = z – υ t = 1 1M P M M− = c τ1 – υ τ2 , 

so 

τ1 = 
(1 )

z t

c

υ
β

−
−

,  1PM = cτ1 =
1

z tυ
β

−
−

. 

One similarly finds that: 

τ2 = 
(1 )

z t

c

υ
β

−
+

,  2PM = cτ1 =
1

z tυ
β

−
+

. 

 
 Upon superimposing these two waves, one will deduce from this that: 
 

 ϕ1 (0, 0, z, t) = 1 2 1 2
1 1 0sin 2 sin 2

2 2

A
t

z vt

τ τ τ τπν α πν τ+ −   + − −   −    
 

 

  = 1 1
02 2sin 2 sin 2

1 1 2

A z t z
t

z vt c

ν νυ βπ α π τ
β β

 −  + − −   − − −   
. 

 
upon denoting the phase constants by α and τ0 . 
 Finally, upon replacing ν1 with ν0 (1 – β 2)1/2, we will get the expected formula, 

except that it will be lacking the factor of 21 β−  in the numerator of the amplitude.  In 

Chapter VII, we will see that this deviation is explained by the tensorial character of the 
quantity ϕ, for which ϕ1 is only the time component, by definition. 
 A calculation that is a bit long, but still simple, can be performed for a point that is 
not situated on the trajectory, and it will lead to the same conclusions.  It is important to 
remark that the amplitudes of the converging and diverging perturbations are equal in any 
case.  That fact, which was proved here, will be postulated in the following chapter in the 
course of an analogous calculation. 
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 6. Summary. – In summary, the material point now appears to us to be a system of 
stationary waves that surround a central point-source.  When viewed in a Galilean 
reference system that is in motion relative to it, that set of stationary waves will be 
manifested by an inhomogeneous plane wave.  By that, I mean a wave whose surfaces of 
equal phase are planes normal to the direction of relative motion and whose surfaces of 
equal amplitude displace with the same velocity as the moving body.  It will suffice to 
direct one’s attention to the expression for the function ϕ (x, y, z, t) that was given above 
in order to account for the following fact: The surfaces of equal amplitude are flattened 
ellipsoids of revolution that are centered on the moving body, so they are, in summary, 
spheres that have been subjected to the Lorentz contraction.  It is customary (at least, 
among physicists) to consider only very simple solutions of the wave equation.  It is very 
interesting to see that upon imagining a somewhat-more-complicated solution that 
presents a singularity, one will arrive at a representation of the material point that is, in 
some sense, wave-like. 
 We have had to distinguish three velocities in the preceding study: 
 
 1. The velocity of propagation c, 
 2. The phase velocity V, 
 3. The velocity of energy υ. 
 
 Those three quantities are coupled by a very simple relation: 
 

υV = c2. 
 
 If one confines oneself to imagining the displacement of the phase then one can 
represent this by saying that space presents an “index” to the waves that are associated 
with the moving body of velocity β c, which is defined by the relation: 
 

n = 
c

V
 = β. 

 
If the moving body is characterized by a proper frequency ν0 then each value of β will 
correspond to a value of the frequency ν of the associated wave that is given by: 
 

ν = 0

21

ν
β−

. 

 
 One can then also say that the dispersion of the waves that are characterized by a 
certain value of ν0 will obey the equation: 
 

n2 = 1 − 
2
0
2

ν
ν

. 
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 We shall recover some analogous viewpoints upon studying the uniform, non-
rectilinear motions, for which we shall now seek to generalize the results that were 
obtained up to now. 
 

_________ 



CHAPTER II 
 

THE MATERIAL POINT IN  
A CONSTANT GRAVITATIONAL FIELD 

_________ 
 
 

 1. Nature of the gravitational field. – 2. The dynamics of a material point in a gravitational field. – 3. 
The wave associated with motion in a gravitational field. – 4. The point-source theorem. – 5. Phase 
agreement between the moving body and its wave. 
 
 
 1. Nature of the gravitational field. – When the motion of a material point is not 
uniform and rectilinear, one says that it is found in a force field.  Einstein has shown us 
the equivalence of the forces of inertia and the forces of gravitation, so one can say, 
without prejudicing the future progress of science, that we know two and only two types 
of force fields: The gravitational field and the electromagnetic field.  A fundamental 
difference exists between these two field categories, since the trajectory of a material 
point in a constant gravitational field is determined completely by the position and 
velocity (both its magnitude and direction) of the point at a given instant.  It does not 
depend at all upon the nature of the material point – i.e., its mass m0 .  As we shall see in 
the following chapter, things are quite different for the case of a constant electromagnetic 
field, in which the trajectory of a moving point depends upon not only the initial 
conditions of position and velocity, but also upon its nature, or more precisely, upon the 
ratio of its charge to its mass. 
 The fact that the trajectory of a material point in a constant gravitational field does 
not depend upon its mass permitted Einstein to formulate his magnificent interpretation 
of the gravitational force.  For him, in a gravitational field, as in the absence of any field, 
the motion of a material point is always represented by a geodesic in space-time, which is 
a geodesic that is determined completely when one knows a point and the tangent at that 
point.  However, space-time is not Euclidian in a gravitational field, so geodesics and the 
trajectories, which are the spatial projections of those geodesics, will no longer be lines. 
 Today, it is well-known to physicists that the nature of space-time is characterized by 
the expression for the square of the element of length – viz., by its ds2.  The form of the 
geodesic that passes through two points P and Q in space-time is fixed by the condition 

of minimum length: The integral 
Q

P
ds∫ , which is taken along the curve, must be 

stationary.  Here, as in a Euclidian space-time, one can introduce a “world-velocity” 
vector that is tangent to the world-line considered at each point and has length unity.  Its 
contravariant components are defined by the relations: 
 

u i = 
idx

ds
, 

and its covariant components by: 
uk = gik u

i , 
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in which the gik are the quantities that are classical in the theory of relativity today and are 
such that ds2 = gik dx i dxk .  One verifies directly that the length of the vector ui u

i is 
indeed equal to unity. 
 The geodesic equation is then written: 
 

i
iu dxδ ∫ = ik

ik

dx
g dx

ds
δ ∫ = 0. 

 
 In the preceding chapter, we saw that the product of the differential form ui dxi with 
m0 c is equal to the differential of the Hamiltonian action of the moving body, up to sign.  
If we transpose that definition into the present case by considering the quantities m0 cui to 
be the covariant components of the world-impulse of the moving body then we will see 
that it amounts to the same thing to say that the motion is represented by a geodesic in 
space-time or that it obeys Hamilton’s principle, except that, in reality, the mass m0 does 
not enter into the determination of the motion at any point. 
   In the case of a Euclidian space-time, the ds2 can be put into the form: 
 

ds2 = c2 dt2 – dx2 – dy2 – dz2 = c2 dt2 – dl2, 
 
in which dl is the unit of length in space.  That being the case, the rectilinear motion of 
velocity will correspond to geodesics of null length.  In a non-Euclidian space-time, one 
can define a velocity γ at each point that is analogous to c and corresponds to an element 
of a null-length geodesic traversing a neighborhood of a point. 
 
 
 2. The dynamics of a material point in a gravitational field. – In any case that 
physics can present, it must be possible to find a form of ds2 such that it is possible to 
separate time from space.  We shall then envision only the forms for ds2 that do not 
contain rectangular terms in which time appears.  ds2 will then have the form: 
 

ds2 = g44 (dx4)2 + gik dxi dxk (i, k = 1, 2, 3), 
 
with dx4 = d (ct), as in the Euclidian case.  The form gik dxi dxk, in which only the spatial 
variables appear, is equal to the square of the spatial element of length, when given a 
sign.  That is, in fact, the form that ds2 presents in the case of a gravitational field with 
central symmetry (e.g., the Schwarzschild formula). 
 We have defined the speed γ of light at a point in space-time above.  With the form 
for ds2 that was adopted here, it must be given by the relation: 
 

g44 c
2 dt2 – dl2 = 0, 

dl

dt
≡ γ = 44c g . 

 
 If the gravitational field is assumed to be constant then g44 will be a function of x1, x2, 
x3, in general.  The same thing will then be true for γ. 
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 With that value for γ, one can write ds2 = γ 2 dt2 – dl2, which is an expression that is 
analogous to the one in Euclidian space-time, except that dl2 is not forced to be Euclidian 
here, and γ will vary with the point in space, moreover.  Although dl2 cannot be 
Euclidian, the velocity of a moving body will always be defined to be the quotient of the 
distance covered by the time that it took to cover it: 
 

υ = 
dl

dt
. 

 
 As a result, if one sets β = υ / γ, instead of β = υ / c then one will have: 
 

ds = 21dtγ β− , 
 
and one will find the following familiar appearance for the action of the material point of 
mass m0 : 

dA = m0 c γ 21 β− dt. 
 
 We have seen that the element ds can be written ui dxi.  Now, one will have: 
 

 ui dxi = 
4

4
44

k
i

ik

dx dx
g dx g dx

ds ds
+  

  = 2 dt dl
dt dl

ds ds
γ − , 

here. 
 One will easily infer from the expression itself for ds2 that: 
 

 
dt

ds
= 

2

1

1γ β−
, 

 
dl

ds
= 

21

β
γ β−

, 

so 

ds = ui dxi = 
2 21 1

dt dl
γ β

β β
−

− −
. 

 
 If we multiply this by m0 c then we will obtain the element of action in the form: 
 

dA = 0 0

2 21 1

m c m c
dt dl

γ β
β β

−
− −

. 
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 From the invariance of that expression, we conclude that 0

21

m cγ
β−

 and 0

21

m cβ
β−

 are 

the time and space (i.e., tangent to dl) components of a quadri-dimensional vector, 
namely, the world-impulse.  We once more call the quantity: 
 

W = 0

21

m cγ
β−

= 
2

0

2
44 1

m

g

γ
β−

 

 
the energy and the vector that is tangent to dl and equal to: 
 

G = 0

21

m cβ
β−

= 0

2
44 1

m

g

β γ
β−

 = 0

2
44 1

m

g

υ
β−

 

 
the quantity of motion. 
 We remark that these expressions have the same form as in the Euclidian case, in 

which γ plays the role of the speed of light and the mass is divided by 44g . 

 The equations of motion are deduced from the condition: 
 

dsδ ∫ = 
1

0

t

t
L dtδ ∫  = 0, 

 

in which L = m0 cγ 21 β− .  As the calculus of variations teaches us, that condition 

implies that: 

i

d L

dt x

∂ 
 ∂ ɺ

= 
i

L

x

∂
∂ɺ

 (i = 1, 2, 3) (Lagrange equation), 

 
in which ixɺ  = dxi / dt.  L depends upon xi and ixɺ , but not upon time explicitly, which will 

permit one to verify the constancy of the function  
1,2,3

i
i

L
x

x

∂
∂∑ ɺ
ɺ

– L in time by a classical 

calculation. 
 Measure one of the coordinates along the trajectory: The corresponding Lagrange 
equation will be: 

− d L

dt l

∂ 
 ∂ ɺ

 = 0

21

m cd

dt

β
β

 
 
 − 

 = − L

l

∂
∂

. 

 

 The quantity pl = − ∂L / l∂ɺ  is the quantity of motion, and we recover a fundamental 
equation of dynamics.  To bring things back to the case of classical mechanics, suppose 
that the velocity is very small, so we can neglect β 2 in comparison to unity.  We will get: 
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0m c d

dt

υ
γ

= − m0 c 
d

dt

υ
, 

or 

d

dt

υ
= − 

d

dl

υγ = − 
2

44

2

c gd

dl

 
 
 

. 

 
 The quantity γ 2 / 2 = c2 g44 / 2 then pays the role of the gravitational potential, which 
is a classical result of Einstein’s theory. 
 Finally, the motion admits the first integral: 
 

L − 
L

l
l

∂
∂
ɺ
ɺ

= m0 cγ 2 0

2
1

1

m cββ υ
β

− +
−

 = 0

21

m cγ
β−

. 

 
 That is the conservation of energy. 
 Having thus sketched out the broad features of the dynamics of the material point in a 
constant gravitational field, we shall attempt to introduce some wave-like elements into 
it. 
 
 
 3. The wave associated with motion in a gravitational field. – As we did for 
uniform, rectilinear motion, we shall now seek to associate the displacement of a material 
point in a constant gravitational field with the propagation of a certain wave. 
 First, consider the set of trajectories that correspond to a certain given value W for 
energy.  One of those trajectories that is tangent to a given direction passes through each 
point in space, and for any direction considered, moreover, so the speed of the moving 
body when it passes through the given point on the trajectory will be the same, because 
the speed is determined by the relation: 
 

0

21

m cγ
β−

= W, 

 
and γ depends upon only the spatial coordinates.  Any point (x1, x2, x3) will then 
correspond to a value υ (x1, x2, x3) of the speed on the trajectories of energy W.  When the 
velocity is known, one can deduce the quantity of motion by the equation: 
 

G = 0

21

m cβ
β−

, 

 
which is also a function of W and x1, x2, x3. 
 The form of the trajectory of energy W that connects two points A and B is obtained 
from de Maupertuis’s principle, which is deduced from that of Hamilton by a classical 
argument, and is stated thus: 
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 The trajectory of energy W that goes from A to B is such that the variation of the 

integral 
B

A
G dl∫  shall be zero when one deforms it infinitesimally without displacing the 

extremities and without varying the value of the energy. 
 
 On the other hand, upon generalizing a result that was proved in Chapter I, one will 
easily see that the propagation of a wave along a spatial line can always be represented by 
a “world-wave” vector that has frequency for its temporal component at each point and 
whose spatial component is a vector whose length is equal to the wave number 1 / λ = ν / 
V and is carried along the tangent to the line of propagation or ray of the wave. 
 If we would like to associate the motion of a material point along a trajectory with the 
displacement of a “phase” along that trajectory, when it is considered to be a ray of a 
wave, then we must establish a relationship between the value of the world-impulse of 
the moving body along that curve and that of the corresponding wave-vector. 
 We will then be led to the following statement by a natural generalization of the 
results that were obtained for rectilinear motion: 
 
 When a material point describes a certain trajectory T of energy W in a constant 
gravitational field, the gravitating medium will be site of a periodic phenomenon that 
presents the form at each point of the trajectory of a wave whose frequency and speed of 
propagation are defined by the relation I  = h O.  In other words, the world-wave vector 
will be proportional to the world-impulse vector along the trajectory. 
 
 The trajectory T will then be a ray of the associated wave, and one can remark that 

here, as in the case of rectilinear motion, the de Maupertuis integral 
B

A
G dl∫  will be 

proportional to the Fermat integral /
B

A
dl λ∫ = /

B

A
dl Vν∫ . 

 The two relations W = hν, G = hν / V show us that: 
 

V =
W

G
= 

γ
β

 

 
along the trajectory.  One then concludes that the product υ V is equal to γ 2 ; that is a 
relation that is analogous to the one that was obtained for rectilinear motion.  V will then 
be a function of the coordinates along the orbit.  If one considers the various trajectories 
through a point that have a given energy W and the propagation of waves that are 
associated with the description of those trajectories by the moving body then one can say 
that the gravitating medium presents an index n = γ / V for that propagation that is defined 
by the equation: 

n = β = 
2 2 2
0

2 2
1

m c

h

γ
ν

−  = 
2
0
2

1
ν
ν

− , 

 
upon setting ν0 = m0 c γ / h.  One sees that this dispersion formula has the same character 
as in the absence of a field, but the proper frequency ν0 will vary with the position of the 



22 Part One – The dynamics of quanta 

moving body.  The orbits of energy W coincide with the rays of the waves of frequency ν 
in a medium of index n. 

 

O 
P 

P′ 

M1 
M M2 

 
1M ′  

M′ 
2M ′  

 
Figure 3. 

 
 

 4. The point-source theorem. – The preceding considerations rest upon some 
inductions, and as a result, they will be more hypothetical than the ones in the first 
chapter.  It is tempting to once more adopt the viewpoint here that allowed us to specify 
the constitution of the wave that is associated with uniform, rectilinear motion.  One must 
then consider the moving body to be a point-source of variable frequency ν1 and suppose 
that perturbations propagate in the gravitating medium along null-length geodesics.  One 
must recover the statements of the preceding paragraph upon superimposing the 
advanced and retarded actions, and at the same stroke, determine the wave that is 
associated with a given motion completely. 
 I shall not study the question in a general fashion, but I can point out a few aspects of 
an important special case: viz., uniform, circular motion in a field with central symmetry 
(see Fig. 3). 
 Imagine a circular trajectory.  Let P be a point on that curve, and let M be the position 
of the moving body at the instant t.  At that moment, the point P will be the site of a 
diverging wave that was emitted by the point-source when it was at M1 at the instant t – 
τ1 and a converging wave that will be absorbed by the source M2 at the instant t + τ2 .  If 
we assume (and this must be proved rigorously) that the amplitude of the two 
perturbations is the same then the perturbation that results at P at the time t will be 
proportional to: 
 

sin 2πν1 (t – τ1) + sin 2πν1 (t – τ1) = cos 2πν1 1 2

2

τ τ+
cos 2πν1 1 2

2
t

τ τ− − 
 

. 

 
 At the instant t + dt, the moving body will go to M′, such that: 
 

MM ′  = υ dt = ω R dt, 
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 That point will be subject to the waves that are emitted by the points 1M ′ , 2M ′ , such 

that: 
in which R is the radius of the trajectory.  Consider the point P that is defined by: 
 

PP′ = dl = MM ′ . 
 
 That point will be subject to the waves that are emitted by the points 1M ′ , 2M ′ , such 

that: 

1M M′ ′ = 1υτ ′ ,  2M M′ ′= 2υτ ′ . 

 
 However, by reason of the central symmetry, no matter what path is followed by the 
perturbations, one must have: 

τ1 = 1τ ′ ,  τ2 = 2τ ′ . 

 
 As a result, upon passing from the point P at time t to the point P′ at time t + dt, one 
cannot vary the amplitude factor of the cosine, whereas the phase factor in the sine will 
vary by: 

2πν1 dt = 2πν (1 – β 2) dt = 2πν 
R

dt dl
β
γ

 
− 

 
. 

 
 That shows us that the amplitude and phase propagates along the trajectory with the 
speeds υ and V = γR / β.  Our inductions are then found to be verified. 
 However, we can go further and consider a circle that is concentric to the trajectory 
and has a radius of ρ.  An argument that is analogous to the preceding one will show that 
the speeds of the amplitude and phase on that circle will be γR / β and γR ρ / (βR), 
respectively.  It is easy to conclude from this that periodic phenomenon that is coupled 
with the moving body can be expressed in cylindrical coordinates ρ, θ, z by the function: 
 

ϕ (ρ, θ, z, t) = f (ρ, z, θ − ωt) sin 2πν 
R

t R
β θ χ
γ

 
− − 

 
 

 
if the circular trajectory of radius R is situated in the plane z = 0, and the phase χ can 
depend upon ρ and z, moreover. 
 
 
 5. Phase agreement between the moving body and its wave. – The hypothesis that 
the material point is the source of its associated wave imposes the continual agreement 
between its phase and that of the wave.  In the absence of a general proof of the point-
source theorem, that will permit us to say: 
 
 If one assumes that the associated wave possesses the constant frequency ν = ν1 / (1 – 
β 2) along the trajectory the phase velocity at any point M on that trajectory will be: 
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VR = M

M

γ
β

. 

 
 Indeed, the hypothesis that was made for the associated wave gives the value for its 
phase factor at the points on the trajectory: 
 

sin 2πν [t – f (l)]. 
 
 Now, the vibration of the point-source is proportional to: 
 

sin 2π 10
( )

t
t dtν∫ , 

 
and we have seen that ν1 is linked with β by the relation: 
 

ν1 (t) = ν [1 – β 2 (t)], 
 
so let M1 be the point whose curvilinear abscissa is l1 that is occupied at the time t1 , and 
suppose that phase matching exists.  One will then have: 
 

ν [t1 – f (l1)] = 
1

10
( )

t
t dtν∫ . 

 
 At the time t1 + dt1 , the moving body has moved to M2 in such a way that: 
 

1 2M M = dl1 = 
1 1M dtυ . 

 
 In order for phase matching to persist, one must have: 
 

1

1 1
M

df
dt dl

dt
ν
  −  

   
 = ν1 (t) dt1 

or 

1

1

M
M

df

dt
υ  

 
 

= 
1

2
Mβ . 

 

 Now, the derivative 
1M

df

dt
 
 
 

is obviously the inverse of the phase velocity of the wave 

at the point M1 , and one will indeed get: 
 

1MV = 1

1

2

M

M

υ
β

= 1

1

M

M

γ
β

. 
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 It is quite obvious that the argument can be pursued step-by-step, and that the relation 
V = γ / β must be valid for an arbitrary point of the orbit.  That would again seem to 
confirm the possibility of extending the results of the first chapter to the case of a static 
gravitational field; nonetheless, a rigorous, general proof would still be desirable. 
 

__________ 
 



CHAPTER III 
 

THE CHARGED MATERIAL POINT 
IN A CONSTANT ELECTROMAGNETIC FIELD  

 
_________ 

 
 

 1. Nature of the electromagnetic field. – 2. Dynamics of the point-like charge. – 3. The wave 
associated with motion in an electromagnetic field. – 4. The point-source theorem. 
 
 
 1. Nature of the electromagnetic field. – In order to study the second type of field 
that we have been led to distinguish, we envision a constant electromagnetic field that 
prevails in a space in which no appreciable gravitational field exists.  Up to now, we have 
assumed that space-time is Euclidian in such a field, in such a way that ds2 has the form 
c2 dt 2 – dl 2.  Meanwhile, a point-like charge that displaces in a field will not describe a 
line, and one can no longer say that the world-line of an arbitrary material point is a 
geodesic.  The world-line of a moving body of mass m0 and charge e that passes through 

two points P and Q in space-time will no longer be given by the condition 
Q

P
dsδ ∫ = 0, 

but, in fact, by a condition with the new form: 
 

0

1
Q

sP

e
ds

m c
δ ϕ

 
+ 

 
∫ = 0, 

 
in which ϕs is the projection onto the trajectory of the world-line of a certain four-
dimensional vector that defines the electromagnetic field at each point in space-time – 
viz., the world-potential vector.  Since one obviously has ϕs = ϕi u

i, one can write: 
 

0( )
Q i

i iP
m cu e dxδ ϕ+∫ = 0, 

 
upon multiplying the relation above by m0 c, or rather, by a simple transformation (upon 
setting υ i = dxi / dt for i = 1, 2, 3): 
 

2 2 1 2 3
0 4 1 2 3( 1 )

Q

P
m c ec e e e dtδ β ϕ ϕ υ ϕ υ ϕ υ− + + + +∫  = 0. 

 
 Later on, we shall see that this formula does indeed give the dynamics of the electron, 
and we shall deduce the components of the world-potential from it. 
 The form that was given above for the principle of least action shows that the 
trajectory of a moving body will depend upon the ratio k = e / m0 , in addition to the 
initial conditions of position and velocity.  We shall call it the “electromagnetic 
sensitivity of the moving body” because the action of an electromagnetic field on the 
moving body will be an increasing function of that quantity. 
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 Whereas the nature of gravitation has been at least interpreted, if not explained, by the 
curvature of space-time, the nature of the electromagnetic field remains more mysterious.  
Indeed, Weyl’s theory interpreted Maxwell’s equations in an ingenious way.  However, 
along with the fact that the theory has been rejected by many scholars (including Einstein 
himself!), it cannot interpret either the mechanical action that the field exerts upon a 
charge or the role that is played by the electromagnetic sensibility e / m0 , at least to my 
knowledge. 
 In the absence of any field, the speed of propagation that figures in the wave equation 
will be defined, as we have seen, by the null-length geodesics and will be equal to c.  At 
first glance, it seems that the same thing must be true here, since ds2 has the same form.  
Later on, we shall see that there can be other speeds of propagation in electromagnetic 
media than the speed c. 
 
 
 2. Dynamics of the point-like charge. – In order to obtain the equations of motion in 
a constant electromagnetic field, we start with Hamilton’s principle: 
 

Q

P
L dsδ ∫  = 0, 

in which: 

L = m0c
2 21 β− + e [c ϕ4 + υ1 ϕ1 + υ 2 ϕ2 + υ 3 ϕ3]. 

 The Lagrange equations resolve the issue.  They are: 
 

i

d L

dt υ
∂ 

 ∂ 
 = 

i

L

x

∂
∂

, 

 
and two analogous ones.  The Lagrange momenta pi = ∂L / ∂υi (i = 1, 2, 3) are: 
 

pi = − 0

21

im υ
β−

+ e ϕi . 

 
 The first Lagrange equation will become: 
 

− 
1

0 1

21

i
i

md
e

dt x

υ ϕ υ
β

  ∂
  +
  ∂− 

 = 1 2 3 34 1 2
1 1 1 1e c

x x x x

ϕϕ ϕ ϕυ υ υ ∂∂ ∂ ∂ + + + ∂ ∂ ∂ ∂ 
 

or 
1

0

21

md

dt

υ
β

 
 
 − 

 = 2 3 34 2 1 1
1 1 2 3 1e c

x x x x x

ϕϕ ϕ ϕ ϕυ υ ∂ ∂ ∂ ∂ ∂  − − + −    ∂ ∂ ∂ ∂ ∂    
. 
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 Upon recalling that the electric force is the gradient of a scalar potential (in a constant 
field) and that the magnetic force is the rotation of the vector potential, one will see that 
the right-hand side gives the Lorentz force (3) if one sets: 
 

ϕ4 = ϕ 4 = 
c

ψ
,      ϕ1 = − ϕ 1 = −

1a

c
,      ϕ2 = − ϕ 2 = −

2a

c
,      ϕ3 = − ϕ 3 = −

3a

c
, 

 
in which ψ is the scalar potential, and a i are the components of the vector potential.  The 
world-potential is thus found to be defined in that way.  The quantities: 
 

p1 = − p1 = 
1 1

0

21

m a
e

c

υ
β

+
−

, p2 = − p2 = 
2 2

0

21

m a
e

c

υ
β

+
−

, p3 = − p3 = 
3 3

0

21

m a
e

c

υ
β

+
−

 

 
are the components of the quantity of motion, which contains an electromagnetic term 
that depends upon the vector potential, along with the ordinary mechanical term.  We 
remark that the quantity of motion is no longer tangent to the trajectory here.  The 
Lagrange equation admits the first integral. 
 

L = − i
i

Lυ
υ

∂
∂

   (i = 1, 2, 3), 

 
which is equal to the energy: 
 

W = c p4 = c p4 = 
2

0

21

m c

β−
+ e ψ. 

 
 Here, as well, aside from the properly mechanical term, an electromagnetic term that 
depends upon a scalar potential will appear.  The world-impulse vector I  will no longer 
be tangent to the world-line of the moving body.  That is what essentially distinguishes 
this type of motion from the ones that were studied previously. 
 The expressions for the components of the energy-quantity of motion tensor show 
that the action integral will always have the canonical form: 
 

( )W dt G dt−∫  

 
here, in which W and G have their usual meanings. 
 
 
 3. The wave associated with motion in an electromagnetic field. – We can repeat 
what we said in paragraph 3 of the preceding chapter word-for-word here, because 

                                                
 (3) Recall that this form is given by the formula: 

F = e 1
grad [ rot ]

c
ψ + 

 
v A . 
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knowing the world-potential (which does not vary in time) at each point of space will 
permit us to deduce the values of the velocities υ and V from each value W of the energy. 
 We once more associate any motion of the moving body with a propagation by 
assuming inductively that the impulse vector and the wave vector are proportional along 
the trajectory [I  = h O]. 
 We will then be led to some conclusions that are identical to the ones in the last 
chapter.  In particular, the trajectory of the moving body will always be one of the rays of 
its wave.  However, a new situation presents itself here: Since the quantity of motion is 
not tangent to the trajectory, in general, the phase velocity will not be directed along the 
ray.  Along the orbit, the electromagnetic medium will then behave like an anisotropic 
medium for the propagation of the wave that is associated with the motion. 
 We seek to determine a dispersion formula for the present case that is analogous to 
the one that was obtained before for the gravitational media, and whose significance is 
identical to it. 
 The propagation will be tangential to the amplitude at a point M of a trajectory of 
energy E where the vector potential is a, and one will have the relations: 
 

hv = W = 
2

0

21

m c

β−
+ e ψ, 

h

V
v  = G 

 
for the determination of the phase. 

 The vector G is the geometric sum of the vector g = 
2

0

21

m c

β−
, which is tangent to the 

ray, and the vector (e / c) a (see Fig. 4). 
 

G 
θ 

M 

e

c
a  

g = 0

21

m

β−
v  

 
Figure 4. 

 
 Let θ denote the angle that the direction of propagation of the phase (i.e., the direction 
of G) makes with the direction of the vector potential.  One easily gets that: 
 

G = 
2 2

2 2
2

cos sin
ea e a

g
c c

θ θ+ − . 

 
 Now, with the aid of energy, one can eliminate β from the expression for g, and one 
will easily find that: 

G = 
2 2 2

2 2 2
0 2

cos sin
ea hv e e a

m c
c c c

ψθ θ− + − − 
 

. 
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 One will deduce the index from this by means of the defining relation: 
 

n = 
c

V
= 

eG

hv
. 

 
 That index is then a function of frequency, the position of the point M, and the angle 
between the direction of propagation of the phase and the vector potential.  In the simple 
case of the electrostatic field (viz., a = 0), one will get the simple formula: 
 

n = 
2 2 4

0
2 2

1
m ce

hv h v

ψ − − 
 

. 

 
 It is easy to generalize an important result of the first chapter.  Indeed, consider the 
passage of the moving body from a point M on its trajectory, let G be the quantity of 
motion at that point, and let α denote the angle between that vector and the velocity v of 
the moving body.  The phase propagates along G, so its speed of propagation Vr along the 
ray will be equal to V / cos α, while the projection Gr of G onto the tangent to the ray will 
be G cos α.  Hence, from the fact that: 

G = 
hv

V
, 

one will deduce that: 

Gr = 
r

hv

V
. 

 
 Now, if one chooses the coordinates in such a fashion that one of them is measured 
along the trajectory then the corresponding Hamilton equation will be: 
 

υ = 
r

W

G

∂
∂

= 

r

v

v

V

∂
 

∂  
 

. 

 
 Once more, Rayleigh’s formula appears here as a general consequence of the 
canonical equations.  The derivative of the right-hand side is a partial derivative because 
Vr is a function of the coordinates, along with the frequency. 
 We shall now pose a question whose significance we shall see later on.  We have 
found that in the absence of any field, such as a gravitating field, the geometric mean of 
the velocities υ and V will be equal to the fundamental velocity of the propagation of 
perturbations.  Can that theorem be transposed over to the theory of a constant 
electromagnetic field?  In order to see that it can, one must calculate υ Vr , which is the 
product of the radial phase velocity with the velocity of the moving body: 
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Vr =
r

W

G
= 

2
0

2

0

2

1

1
r

m c
e

m e
a

c

ψ
β

υ
β

+
−

+
−

= 
2 1

1

r

r

ea

cGc
e

hv

ψυ

−

−
, υ Vr = 2

1

1

r

r

ea

cG
c

e

hv

ψ

−

−
. 

 
 The product of the velocities is not equal to the square of the velocity c then; it is 
equal to the square of a velocity c′ that is given by the equation: 
 

c′ = 

1

1

r

r

ea

cG
c

e

hv

ψ

−

−
. 

 
 We shall recover that velocity c′ in a moment. 
 
 
 4. The point-source theorem. – Here, we shall naturally recall the idea of 
considering a moving body to be a source of advanced and retarded actions whose 
superposition constitutes an associated wave.  However, we will find ourselves 
confronted with a new difficulty whose importance is undoubtedly quite great.  In order 
to understand it, recall the argument in the last paragraph of the preceding chapter by 
which we showed that the permanence of the phase agreement between the point-source 
and its wave seemed to imply the validity of the relation I  = h O along the orbit.  We 
shall assume that the associated wave is represented along its trajectory (as far as its 
phase is concerned) by sin 2π v [t – f (l)].  On the other hand, for the observer that 
coupled to a constant electromagnetic field, the vibration of the point-source will have a 
variable frequency v1 (t), and can be written: 
 

sin 10
2 ( )

t
tπν∫ dt. 

 
 Having said that, the persistence of the phase agreement will imply the relation: 
 

v1 (t) = v 1
df

dt
υ − 

 
, 

and as a result, we will have: 

v1 = v 1
rV

υ 
− 

 
 

 
at each instant, in which Vr is the radial phase velocity at the point that is occupied by the 
moving body.  If we now introduce the velocity c′ that was defined above then we will 
get: 
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v1 = v 
2

21
c

υ 
− ′ 

. 

 
 The permanence of phase then demands that one must make the quantity c′ play the 
role of the velocity of perturbations at the point where the moving body is found, instead 
of the constant c. 
 An examination of circular motion will lead to an analogous conclusion.  We must 
then recall the argument that was given for the case of gravitation.  If the constant 
velocity of the moving body is υ then variation that the phase of the associated wave will 
experience when one varies time by dt and one simultaneously displaces the point of 
observation through a length υ dt along the circle will be: 
 

2π v1 dt. 
 
If the hypothesis I  = h O is exact then that variation must be equal to: 
 

2π v 
r

dl
dt

V

 
− 

 
= 2π v 1

rV

υ 
− 

 
 dt, 

 
and one must once again have: 

v1 = v 1
rV

υ 
− 

 
= v 

2

21
c

υ 
− ′ 

. 

 
 On first glance, the preceding results seem quite surprising.  Since space-time was 
assumed to be Euclidian, the form itself of ds2 invites one to take the constant c to be the 
velocity of propagation of perturbations.  One will not understand why one must 
substitute c′ for c, especially since the quantity c′ is a function of the nature of the moving 
body, or more exactly, its electromagnetic sensitivity. 
 Upon reflection, I believe that the significance of this difficulty must be very 
profound.  Space-time is Euclidian in an electromagnetic field, and meanwhile the motion 
of a point-like charge is not described by a geodesic, but depends upon both its 
electromagnetic sensitivity and the world-potential.  That is the essential difference that 
separates electromagnetic dynamics from gravitational dynamics, and I believe that it is 
basically that same difference that we must recover in a different form when we are 
obliged to replace c by c′ in our formulas.  Perhaps it is by reflecting upon that enigma 
that we will begin to understand the true nature of the electromagnetic field. 
 I shall add one last word for the sake of the following chapter.  The preceding 
considerations and the analogy with the gravitational case make the following conclusion 
quite reasonable: In a central electromagnetic field, the wave that is associated with the 
motion of an electron on a circular trajectory of radius R will be given by the function: 
 

ϕ (ρ, θ, z, t) = f (ρ, z, θ, − ωt) sin 2π v 
G

t R
W

θ χ − − 
 

, 
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in which G is the quantity of motion of the moving body, W is its total energy, and χ is a 
function of only ρ and z. 
 

__________ 
 



CHAPTER IV 

STABILITY OF PERIODIC MOTIONS  

_________ 
 
 

 1. Uniform, circular motion. – 2. General case of strictly-periodic motions. – 3. Quasi-periodic 
trajectories. – 4. Bohr’s correspondence theorem. 
 
 
 1. Uniform, circular motion.  – In order to better understand the meaning of the 
stability conditions that are introduced by the theory of quanta, we shall first imagine 
uniform, circular motions in a centrally-symmetric field.  We have seen that one can then 
very probably represent the associated wave by the form: 
 

ϕ (ρ, z, θ, t) = f (ρ, z, θ − ωt) sin 2πν ( , )
G

t R z
W

θ χ ρ − −  
. 

 
 However, this expression will represent a stable state only if the sine factor takes on 
the same value again when one increases θ by a whole number times 2π, while the t, z, 
and ρ remain fixed.  In other words, it is necessary that the wave must be in resonance on 
all circles that are coaxial to the trajectory.  That condition gives us: 
 

2πν 
G

W
2π R = 2π 

G

h
R 2π = n 2π (n integer) 

or 
G 2π R = nh. 

 
 One can say that the moment of the quantity of motion of the moving body with 
respect to the attractive center must be an integer multiple of h / 2π.  That is in fact the 
form that the condition for the stability of the circular trajectories in the hydrogen atom 
took on for Bohr in his initial research. 
  
 
 2. General case of strictly-periodic motions. – Whenever the motion is strictly 
periodic, the orbit will be a closed curve.  The postulates that were assumed in the last 
chapter show us that the phase of the associated wave will vary when one displaces it by 
the quantity: 

2π lGW
dt dl

h h
 − 
 

 

 
 by dl along the trajectory during a time dt, in which W is the energy of motion and Gl is 
the projection of the quantity of motion of a point l onto the tangent to the trajectory.  
Therefore, in order for there to be resonance along the ray here, it is necessary that one 
must have: 
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0

2
lG dl

h

π
∫  = n 2π  (n integer) 

or 

0 lG dl∫ = n h, 

which can be further written: 
3

0
1

i
i

i

p dx
=
∑∫  = n h 

 
with the aid of the Lagrange momenta. 
 That is indeed the general condition for the stability of the closed trajectories that 
would result from developing the theory of quanta.  Of course, it includes the formula 
that relates to circular trajectories as a special case.  The success of our interpretation 
rests essentially upon the identification of the de Maupertuisian action integral, divided 
by h, with a phase difference. 
 We cannot prove here that the resonance is found to be realized in the entire inter-
atomic domain, as we did in the case of circular trajectories; nevertheless, that situation is 
very probable (4). 
 
 
 3. Quasi-periodic trajectories. – One knows that the quantum conditions for 
stability have been extended from periodic motions to quasi-periodic motions.  The work 
of a great number of authors of the first rank, among whom one must include 
Sommerfeld and Bohr, have permitted us to specify the general of the stability conditions 
and their number.  The periodic motions then appear to be a degenerate case of the quasi-
periodic motions.  Conversely, in my doctoral thesis, I showed how the case of quasi-
periodic motion can be reduced to the case of periodic motions by considering the time 
intervals to be infinite in number and mutually incommensurable, after which, the 
moving body will have returned to a distance from its starting point that is less than a 
very small quantity that has been chosen in advance.  From that standpoint, the multiple 
conditions of Sommerfeld-Bohr are consequences of the single condition by which one 
expresses the stability of closed orbits.  I shall not repeat the proof that was given in my 
thesis here, because it demands that some precautions must be taken in regard to the 
language, and as a result, it is very long.  Furthermore, one can ameliorate that by 

                                                
 (4) Much has been said in recent times about the semi-quanta that are introduced into the theory of the 
Zeeman Effect and into the theory of rotational spectra.  It seems that in certain cases the condition for the 
stability of a periodic motion must be written as: 

3

0
1

i
i

i

p dq
=
∑∫ = 

2 1
2
n

h
±

 (n integer). 

 In our way of thinking, the semi-quanta can be interpreted if, in certain situations, one must add a 
supplementary difference of ±π that is analogous to the one that is produced when one passes a focus in 
Gouy’s theory to the phase difference that is expressed by the de Maupertuis integral.  One will then get the 
resonance condition: 

3

0
1

2 i
i

i

p dq
h

π

=
∑∫ ±π = n 2π, 

from which, one will infer the formula for semi-quanta immediately. 
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introducing the notion of angular variables and showing how the degree of degeneracy of 
the motion limits the number of independent conditions. 
 None of that will introduce any essential difficulties, but it would demand some 
digressions that would go beyond the scope of this book.  We confine ourselves to stating 
the following conclusion: 
 
 The interpretation of the quantum condition for the stability of the closed trajectories 
as something that expresses the resonance of the wave that is associated with the moving 
body implies the existence of the Sommerfeld-Bohr multiple conditions for the stability of 
quasi-periodic motions. 
 
 
 4. Bohr’s correspondence theorem. – Bohr’s correspondence principle was 
suggested to its author by the proof of an important theorem on the frequencies that were 
emitted by his model of the atom.  I would like to consider the simple case of circular 
trajectories and show how one can interpret Bohr’s theorem from our viewpoint. 
 Let C and C′ be two circular trajectories in the atom that are stable in the sense of the 
theory of quanta and correspond to the whole numbers n and n′.  From the law of 
emission, when an electron passes from the stable trajectory C′ of energy W′ to the stable 
trajectory C of energy W < W′, a quantum: 
 

hν = ∂W = W′ – W 
will be radiated. 
 Imagine two electrons E and E′, one of which describes a circle C of length L = 2π R, 
while the other describes a circle C′ of length L′ = 2π R.  If G and G′ denote the quantities 
of motion then one must have: 

GL = nh, G′ L′ = n′ h. 
 
 On a circle γ of radius ρ that is concentric to the preceding ones, the distribution of 
phases that are associated with E is represented by the function: 
 

sin 2π 
W G R

t t
h h ρ

 − 
 

, 

 
and the distribution of phases that are associated with E′ is given by the function: 
 

sin 2π 
W G R

t t
h h ρ

′ ′ ′ − 
 

. 

 
 Upon adding these phase factors, we will obtain a “beat”: 
 

2 cos 2π ( )
2 2

W l
t G R GR

h hρ
 ∂ ′ ′− − 
 

 sin 2π ( )
2 2

W l
W t G R GR

hρ
 ∂  ′ ′+ − +  
  

. 
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 Examine the amplitude factor; upon setting: 
 

n′ – n = ∂n and 2πρ = L, 
it can be written: 

cos 2π 
2 2

W l
t n

h L

∂ − ∂  
. 

 

 Along the circle γ, there are ∂n maxima that displace with the velocity 
L W

h n

∂
∂

.  The 

frequency of rotation ω of one of the maxima of the beat along γ will then be: 
 

ω = 
W

h n

∂
∂

= 
n

ν
∂

. 

 
 Hence, one has the following theorem: 
 
 The superposition of the phases that are associated with the motions of E and E′ gives 
rise to a beat that turns with a frequency ω on all of the circles that are concentric to C 
and C′ in such a way that the frequency of the radiation that is emitted when an electron 
passes from C′ to C will be equal to the harmonic of ω of order ∂n. 
 
 In order to recover Bohr’s theorem, it will suffice to apply the preceding result to the 
circle C′ upon supposing that n and n′ are very large and that ∂n is small with respect to 
them.  Under those conditions, the frequencies W / h and W′ / h will be very close, and by 
reason of the general significance of Rayleigh’s formula, the beat on C′ will possess the 
same velocity as the electron E′.  It will then have the same frequency ω of mechanical 
rotation as the beat, and as a result, one will get the following statement by Bohr in this 
limiting case: 
 
 The frequency of radiation when one passes from C to C′ is the harmonic of order ∂n 
of the frequency of mechanical rotation of the electron on C′. 
 
 On first glance, it seems that one has thus encountered a physical interpretation of the 
role of harmonics in Bohr’s correspondence theory, but there is an objection: In general, 
the circles C and C′ are not occupied simultaneously.  Suppose that C′ is occupied, but C 
is not.  What does it mean to speak of the phase that is associated with an electron E that 
does not exist? Perhaps one might answer this with: The electron E does not exist at the 
instant considered, but it has existed or it will exist in the sequence of successive states of 
the atom, and by the effects of advanced and retarded actions, it will suffice for one to 
continually have a phase of frequency W / h along the entire circle γ. 
 Briefly, the preceding argument will probably open up a small fissure through which 
one can penetrate the mysteries of the intra-atomic region. 
 

__________ 



CHAPTER V 

THE DYNAMICS OF SYSTEMS OF MATERIAL POINTS 

_______ 
 
 

 1. The energy of systems of material points. – 2. Uniform, circular motion of two interacting material 
points. – 3. Waves associated with the dynamics of systems. 
 
 
 1. The energy of systems of material points. – Up to now, we have envisioned only 
constant fields.  In fact, a field is always produced by the action of a certain number of 
centers that are themselves material points and are subject to the reaction of the attracting 
point.  It is then only in the case where the attractive (or repulsive) centers have an 
extremely large mass that one can consider them to be fixed and determine a constant 
field.  In all other cases, one will always be dealing with a set of material points that are 
all in motion under the influence of their mutual actions. 
 Therefore, let a certain number of material points be given that will be affected with 
the indices a, b, c, etc.  Each of them is in motion under the influence of gravitational or 
electromagnetic forces that emanate from the others.  Those forces obviously depend 
upon the spatial coordinates only by way of combinations that express the mutual 
distances between the various points.  I shall say that the motion of one of the moving 
bodies – the moving body a, for example – is given by the following principle: 
 
 If pia denotes the Lagrange momentum of the moving body a with respect to the 
spatial coordinate xi, and if Wa is its energy (i.e., the temporal component of its world-
impulse), expressed as a function of the coordinates of the moving body and time, then 
the world-line of the moving body a that passes through the points P and Q of space-time 

is such that the integral 
3

1

Q i
a ia aP

i

W dt p dx
=

 − 
 

∑∫  is stationary. 

 
Wa depends upon time, since it depends upon the coordinates of the other material points, 
which are themselves in motion. 
 In other form, one can say: The motion of the moving body is determined by 
Hamilton’s principle, for which the Lagrangian function includes time and is equal to: 
 

La = Wa − 
3

1

i
ia a

i

p dx
=
∑ . 

 
 Hamilton’s principle leads to the Lagrange equations: 
 

a
i
a

Ld

dt x

 ∂
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 = a
i
a

L

x

∂
∂

 
i

i a
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dx
x

dt

 
= 

 
ɺ  

by a known method. 
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 For the other points, one will obtain some analogous equations in which La is 
replaced by Lb , Lc , …, in turn. 
 The motion of each material point then obeys Hamilton’s principle when one 
supposes that the motion of all the other points is known.  The problem of the dynamics 
of systems consists of finding the motions that all of the points of the system must 
possess in order to make the least-action principle applicable to each of them.  One will 
solve that problem by looking for the solutions of the Lagrange equations, when they are 
considered to be a system of simultaneous differential equations. 
 Classical mechanics then poses the following problem: Can one choose a function L 
of the coordinates of all points of the systems and their velocities such that the Hamilton 

integral 
1

0

t

t
L dt∫  is stationary for the collective motion of the system? 

  Here is the manner by which that problem is solved by the classical methods: The 
function L must be such that: 

a
i
a

Ld

dt x

 ∂
 ∂ ɺ

 = a
i
a

L

x

∂
∂

 

can be written: 

i
a

d L

dt x

 ∂
 ∂ ɺ

 = 
i
a

L

x

∂
∂

. 

 
 Terms enter into the function La that depend upon only the velocity, along with terms 
that also depend upon the coordinates by way of the intermediary of the distances from 
the point a to the other points b, c, …  Let aL′  and aL′′  be those two parts of L. 

 Furthermore, the principle of action and reaction teaches us that the term in aL′′  that 

involves the distance from a to b, should be recovered in bL′′ .  On the contrary, aL′  and bL′  

have no term in common.  The sum 
, ,

a
a b

L∑
…

 will then contain the terms that depend upon 

only the velocities just one time, but the terms that depend upon the distances twice.  That 
sum of the individual Lagrange functions cannot be taken to be a global Lagrange 
function L, because if one has: 

a
i
a

L

x

′∂
∂ɺ

= a

i
a

L

x
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then one will find, by contrast: 
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 In order to preserve the form of the Lagrange equation, one must obviously set: 
 

L = 1
2a aL L′ ′′+∑ ∑ . 
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 Thanks to this choice of function L, one will easily find that the equations of motion 
admit the first integral: 

H = L −
, , , 1,2,3

i a
a i

a b c i a

L
x

x=

∂
∂∑ ∑ ɺ
ɺ

. 

 
 The constant quantity H is the energy of the system, and the least-action principle will 
become: 

0 1

0 0

,

,
, , , 1,2,3

i

i

t x ia
ait x

a b c i a

L
H dt dx

x
δ

=

 ∂+ ∂ 
∑ ∑∫ ɺ

ɺ
 = 0. 

 
 The / i

aL x∂ ∂ɺ  plays the role of impulse, and H plays that of energy in the individual 

Hamilton principles.  However (and this is essential!), H is not the sum of the individual 
energies, because that function contains the mutual interaction terms only once.  It is, 
perhaps, even regrettable that one employs the same word to refer to the function W and 
the function H. 
 That is the classical viewpoint.  How does one accommodate the relativity principle?  
There is no problem as far as the motion of a system of point-like charges in an 
electromagnetic field is concerned: Here the individual Lagrange functions easily divided 
into two parts, one of which depends upon only the velocities (viz., properly-mechanical 
terms) and the other of which contains the mutual distances (viz., electromagnetic terms 
that depend upon the scalar vector potentials).  One will easily define the function L and 
the global energy H by conforming to the usual notions. 
 The case of the motion of a system of points that are subject to their mutual 
gravitational action is much more delicate.  As we have seen, the Lagrange function for 
the point a will then be: 

La = m0 c γa 
21 β−   a

a
a

vβ
γ

 
= 

 
. 

 
γa is the speed of light at the point that is occupied by the moving body a, and is 
expressed as a function of the potential (g44)a at that point by the relation: 
 

γa = c 44( )ag . 

 
 Let πa denote the gravitational potential (in the usual sense) to which a is subjected.  
One will have: 

(g44)a = 1 + 
2

2 a

c

π
 (see Chap. II). 

 

 If πa / c
2 is very small then the series development in 44( )ag  will be 1 + πa / c

2, and 

the function La will decompose into aL′  and aL′′ .  However, if that development is not 
legitimate then one cannot see how to define L and H. 
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 At the end of the tale, it then seems proper that the most general method for the 
solution of the problems in the dynamics of systems is to apply Hamilton’s principle to 
each point, as we explained at the beginning of this paragraph. 
 
 
 2. Uniform, circular motion of two interacting material point s. – We shall begin 
with a deeper study of a very simple case: viz., the case of two interacting material 
centers – for example, two point-like charges with opposite signs that describe circular 
orbits around their common center of gravity.  That problem has great historical 
importance, because it led Bohr to make some predictions that were plainly confirmed by 
comparing with the spectra of hydrogen and ionized helium.  In that particular case, we 
can study the motion of two moving bodies completely, along with the propagation of the 
associated waves, which will permit us to then enter into the general case. 

 
y 2 x 2 

P 

x′ 
y′ 

P′ 

R′ 

G R 

 
Figure 5. 

 
 Therefore, let P and P′ be two moving bodies of masses M0 and 0M ′ , resp., between 

which are exerted, for example, electromagnetic actions.  One will easily see that the 
equations of motion are verified if the points P and P′ rotate with a collective motion that 
has a suitable angular velocity ω around a point G on the line PP′.  The point G 

determines two segments MG  = R and M G′ = R′ such that: 
 

M

R′
 =

M

R

′
= 

M M

R R

′+
′+

, 

 
in which M and M′ are the masses of the moving bodies here, namely: 
 

M = 0

21

M

β−
,  M′ = 0

21

M

β
′

′−
, 

 
in which β and β′ are constants that are equal to ω R / c and ω R′ / c, resp. (see Fig. 5).  
Consider the system of axes x1, x2 that is linked with the point G: It is a Galilean system.  
On the contrary, a system of parallel axes that is linked with P is not Galilean.  If y1, y2, y3 
are the rectangular coordinates of the latter system then they can be deduced from the xi 
by the obvious formulas: 
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y1 = x1 + R cos ω t,  y2 = x2 + R sin ω t, y3 = x3,  y4 = x4 = c t. 
 

One will then deduce that: 
 
 ds2 = (dx4)2 − (dx1)2 − (dx2)2 − (dx3)2, 

 = 
2 2

21
R

c

ω 
− 

 
(dy4)2 − (dy1)2 − (dy2)2 − (dy3)2 – 2

R

c

ω
sin ω t dy1 dy4  

  + 2
R

c

ω
cos ω t dy2 dy4. 

 
 In the yi system of axes, the electromagnetic field will be constant, and the trajectory 
of P will be a circle of center P′ and radius R + R′.  That will conform to the results that 
were obtained for the constant electrostatic field if one supposes that the circular 
trajectory is a ray of the wave that is associated with P′, and that if one displaces along 
that ray at constant time then the phase will vary by p1 dx1 + p2 dx2. 
 The components pi of the quantity of motion are given by the general formulas of 
relativity: 

pi = 0M ′ c ui + e ϕi = 0M ′ c gij u j + e ϕi  
i

i dx
u

ds

 
= 

 
. 

Thanks to those formulas and the obvious relations: 
 

υ1 = 
1dy

dt
= − ω (R + R′) sin ω t, υ 2 = 

2dy

dt
= ω (R + R′) cos ω t, 

one will get: 
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by some easy calculations. 

 Everything happens as if the mass of the moving body P′ were equal to 
M M

M M

′
′+
, 

instead of M′.  That is a classical result of rational mechanics, but here it has been 
generalized somewhat by the substitution of the moving masses for the proper masses.  
Those values p1 and p2 permit one to calculate the small variations of the Rydberg 
constant that were predicted by Bohr and confirmed quite well by observation. 
 Nothing in what was just said will prevent us from inverting the roles of the material 
points P and P′.  The resonance of the wave that is associated with P′ will be expressed 
by the relation: 

M M

M M

′
′+
sin 2π ω (R + R′)2 = nh 

 



Chapter V. – The dynamics of systems of material points. 43 

in the system that is linked to P.  The resonance of the wave that is associated with P will 
be expressed in the same way in the system that is linked with P′, by reason of the 
symmetry in the formula that was obtained.  The Bohr condition then expresses the 
resonances of both the waves associated with P and P′. 

 

Phase line of 
the point P′ at 
the instant t 

Phase line of 
the point P at 
the instant t 
 

Trajectory 
of the point 
P′ 

P 
G 

P′ Trajectory of 
the point P 
 

 
Figure 6. 

 
 It is instructive to trace out the rays at the instant t of the two associated waves that 
pass through P and P′ in the system of axes that is linked with the center of gravity, along 
with the trajectories that are described by the two moving bodies in the course of time 
(Fig. 6).  One will then arrive at a representation of how each moving body describes its 
trajectory with a velocity that is tangent at each instant to the ray of the associated wave 
if one continues to call the envelopes of the phase velocities at a given instant “rays.”  
However, it seems preferable to reserve the word “ray” for the trajectories of the energy 
and to give the name of “phase lines” to the envelopes of the phase velocities.  We then 
perceive a fundamental fact that is true for not just the moving body itself, but all parts of 
its wave: The rays do not coincide with phase lines that displace in space.  That recalls a 
known conclusion in hydrodynamics by which the streamlines, which are envelopes of 
the velocities, are the trajectories of the fluid particles only when their form is invariable 
– in other words, if the motion is permanent. 
 
 
 3. Associated waves in the dynamics of systems. – We just gave an account of the 
nature of associated waves for a very special case of a system of two material points.  We 
need to generalize our results, but unfortunately that undertaking presents some grave 
difficulties.  In the general case where more than two material points are present, it is not 
possible to determine a reference system in which one of the moving bodies displaces in 
a constant field.  The gimmick that was employed in paragraph 2 will break down, and 
we will no longer see any way to determine the phase lines.  Obviously, one can appeal to 
the point-source theorem for that determination, but its proof and application will again 
be more difficult than it was in the case of constant fields.  If the ideas that are presented 
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in this book are correct then it will be necessary to answer those questions if one is to 
know how to apply the quantum conditions in the general n-body problem.  As one 
knows, that point is very important for the progress and experimental verification of 
quantum theory, especially since the methods that are based upon perturbation theory do 
not seem to lead to exact results (5). 
 Nothing further can be said about those questions at the moment, so I shall confine 
myself to making a few general remarks whose correctness does not seem to be in doubt. 
 First of all, the phase lines of the waves that are associated with the various material 
points generally move in space and do not coincide with the rays.  In the case of circular 
motion that was just studied, the trajectory is, at any instant, tangent to the phase line that 
corresponds to the point at which the moving body is found.  That is a general fact, as an 
examination of the elliptic solutions of the two-body problem has already shown.  
Moreover, the energy of each center will not remain constant in the course of motion, in 
general, and one can no longer attribute a well-defined value to the frequency ν of the 
associated wave.  Meanwhile, one thing seems certain: At a point where one of the 
moving bodies is found, the propagation of the phase that is associated with that location 
along its trajectory will conform to the law I  = h O. 
 Of course, that reduction is valid here only at the instant when the moving body 
passes the point considered.  We have seen that the world-line of a moving body that 
passes through two point P and Q in space-time is always determined by Hamilton’s 
principle: 

( )
Q

lP
W dt G dlδ −∫  = 0, 

 
in which W is the (variable) energy and Gl is the projection of the quantity of motion onto 
the tangent to the trajectory.  Therefore, the ray of the associated wave on which the 
material point moves will be determined by the relation: 
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P

v
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V
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 
∫  = 0, 

 
in which Vl is the radial phase velocity.  The preceding equation expresses the idea that 
the variation of the phase along the world-ray is a minimum; that is a generalization of 
Fermat’s principle to the case of variable frequencies.  We saw that de Maupertuis’s 
principle coincided with the usual Fermat principle in the case of constant fields in the 
same way that Hamilton’s principle coincides here with the generalized form of that great 
law of optics. 
 If one supposes that the points P and Q are extremely close, and if one varies υ 

without deforming the element PQ then one will recover the Rayleigh relation 
dl

dt
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V

∂
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∂  
 

. 

                                                
 (5) Regarding that point, see the last part of the book by Born that was cited before. 
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 In summary, the determination of the associated waves in the general case of the n-
body problem can be very difficult in practice, but it does not seem to encounter any 
objections, in principle. 
 

__________ 
 



________________________________________________________________________ 

 

PART TWO 

THE OPTICS OF QUANTA 

_________ 
 

CHAPTER VI 

THE ATOM OF RADIATION  

__________ 
 
 

 1. Hypothesis of a quantum of light. – 2. The quantum of light and its rectilinear propagation. – 3. 
Doppler effects. – 4. Radiation pressure. 
 
 
 1. Hypothesis of a quantum of light. – The idea that light is composed of corpuscles 
that displace with a large velocity is quite old; notably, one can find it in De natura rerum 
by Lucrèce.  It has Newton to bolster its authority, and one cannot deny that it expresses 
the phenomena of rectilinear propagation and reflection with a marvelous ease.  
Similarly, it interprets the phenomenon of radiation pressure, which was discovered 
around thirty years ago, in a striking manner.  Nonetheless, that theory was not in favor 
throughout the Nineteenth Century.  Indeed, Fresnel and his disciples showed that if one 
attributes the nature of a vibration – whether elastic or electromagnetic – to light then one 
will succeed in explaining the phenomena of rectilinear propagation, reflection, and 
radiation pressure, as well as the entire set of phenomena of diffraction, interference, 
diffusion, dispersion, and crystalline optics, which is where the corpuscular theory had 
run aground.  Furthermore, in the year 1900, the physicists declared that there could no 
longer be any doubt as to the wave-like nature of light radiation.  They undoubtedly had 
their reasons for that, but in their minds, the correctness of wave theory would have to 
imply the falsity of the corpuscular theory, and the latter conclusion seems much more 
doubtful today. 
 At the beginning of our century, the development of the theory of quanta, which was 
necessitated by the interpretation of the laws of blackbody radiation and study of 
photoelectric phenomena, redirected attention to the corpuscular theory, and in 1905, 
Einstein proposed that light energy should be considered to be grains of value hν that 
would be proportional to their frequency.  He deduced his photoelectric equation from 
that, which was first verified in the light domain, properly speaking, and was 
subsequently confirmed more precisely in the domains of X-rays and γ rays.  Einstein 
also showed that fluctuations of energy in blackbody radiation involved the quantum hν, 
and Bohr (1912) made us aware that atoms always absorb and emit quanta.  Nevertheless, 
the new corpuscular theory encountered strong resistance on the part of many physicists 
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because, just like the old theory, it seemed incapable of accounting for the phenomena of 
wave optics, which are quite numerous and quite precise. 
 The discovery by A. H. Compton of the change of wave length by diffusion, which is 
a phenomenon that was immediately contested, but which is now, I believe, beyond 
question, and the quantitative interpretation of the Compton Effect by the simultaneous 
theories of Debye and Compton himself seemed to impose that one should adopt the 
hypothesis of quanta of light without it also being possible to abandon the fundamental 
idea of oscillations.  Upon assuming, in line with the suggestions of the present book, that 
radiant energy, like all other forms of matter, possesses an atomic structure and that the 
motion of any unit of energy is associated with the propagation of a wave, we will 
foresee the possibility of that synthesis becoming necessary.  We must now examine the 
extent to which that synthesis is currently realizable. 
 
 
 2. The quantum of light and its rectilinear propagation. – In Chapter I, we were 
led to associate the uniform, rectilinear motion with a velocity υ = β c of a moving body 
of mass m0 with the propagation of a wave in the same direction whose amplitude 
possesses the velocity υ of the moving body and whose phase possesses the velocity V = 
c2 / υ. 
 Having recalled that, suppose that our moving body has an extraordinarily small 
proper mass.  Since its internal energy is very weak, it will possess an appreciable total 
energy that is due to its motion entirely only if its velocity is very close to the value c. 
 That will become obvious if one remembers the formula that gives the total energy: 
 

W = 
2

0

21

m c

β−
. 

 
 It will then seem quite natural to compare the quantum of light to a moving body of 
very small mass m0 .  Obviously, the velocity of that moving body will be a function of 
its energy, but if m0 is very small then its energy will have a detectable value only if its 
velocity is indiscernible from the velocity c.  On the other hand, as we have seen many 
times, the wave is associated with a frequency hν such that: 
 

W = hν, 
 
and we will then obtain a satisfactory representation of the quantum of light.  We further 
add that the quantity of motion: 

G = 0

21

m υ
β−

= hν 
2c

υ
 

 
will be very close to hv / c, and that is, in fact, the value that is attributed to it by 
Einstein’s theory, as well as the theory of the Compton effect.  Meanwhile, an objection 
persists that was first communicated to me orally by Langevin, and was then discussed in 
a series of notes by W. Anderson (Phil. Mag., May 1924): The velocity βc of the 



48 Part One – The dynamics of quanta 

quantum is equal to 
2 4
0
2 2

1
m c

h ν
− , and since one supposes that m0 is small, it will have a 

frequency, as above, that will make propagation impossible (viz., β will be imaginary).  
In a different form, one can say that upon diminishing the frequency ν sufficiently, one 
must conclude by discarding the predictions of the classical theory (υ = c) and also in the 
domain in which one must expect to find those predictions best realized (viz., the 
correspondence principle).  That objection is certainly very embarrassing, although it is 
not, perhaps, definitive. 
 One can obviously escape it by taking a radical step and setting: 
 

m0 = 0,  β = 1, 
 

but one must then imagine a very delicate passage to the limit such that one 

simultaneously makes m0 tend to 0 and β tend to 1, while the quotient 
2

0

21

m c

β−
 keeps the 

value hν. 
 I shall leave open the delicate question of the proper mass of the quantum of light, 
and I shall content myself by saying: The dynamical properties of the atom of radiation 
are deduced from the properties of the material point of finite mass by making the proper 
mass tend to zero. 
 The two velocities υ and V are then equal to c, so the wave and the moving body will 
be transported in unison. 
 
 
 3. Doppler effects. – We have already pointed out that the phenomenon of reflection 
can be interpreted immediately under the hypothesis of light quanta.  We shall show that 
the same thing is true for the two main types of Doppler Effect. 
 
 a. Doppler Effect due to the relative motion of the source and the observer. – 
Consider a source of light in motion in the direction of an observer that is supposed to be 
fixed.  In a reference system that is coupled with the source, the atoms of emitted 
radiation have an energy W = hν and a quantity of motion G = hν / c.  The transformation 
formulas for a quadri-vector teach us that the energy W of a corpuscle is: 
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21
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β

+
−

 

 
for the observer, and since W′ = hν′, where ν′ is the observed frequency, one will have: 
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 It is also quite simple to find the ratio of the emitted intensities in the two reference 
systems.  In that of the source, a number n of atoms of light will be emitted per unit time 
per unit area.  The density of the sheaf will then be nhν / c, and its intensity will be I = 
nhν. 
 On the contrary, for the observer, those n atoms are emitted during a time that is equal 

to 21/ 1 β− , and they fill up a volume 
2

1

1
c

β
β

−
−

.  For him, the density of the sheaf 

will then be 
1

1

nh

c

ν β
β

′ +
−

, and the intensity will be I′ = 
1

1
nh

βν
β

+′
−

. 

 Hence: 

I

I

′
= 

1

1

ν β
ν β

′ +
−

 = 
2ν

ν
′ 

 
 

. 

 
 We have recovered the well-known formulas, and the case in which the source 
displaces in an arbitrary direction with respect to the observer is also dealt with quite 
simply. 
 
 b. Reflection by a moving mirror. – Once more, consider the reflection of light 
corpuscles by a perfectly-reflecting planar mirror that displaces with the velocity βc 
normally to the surface. 
 For an observer that is coupled with the mirror, it is fixed, and the light corpuscles 
have the same energy W and the same frequency before and after reflection. 
 For the fixed observer, the incident corpuscles have energy 1W′  and frequency 1ν ′ , 

while the reflected corpuscles have energy 2W′  and frequency 2ν ′ .  The tensor 
transformation formulas will give: 
 

W = 1 1

21

W Gυ
β

′ ′+
−

, W = 2 2

21

W Gυ
β

′ ′−
−

, 

so 

1hν ′  (1 + β) = 2hν ′  (1 – β), 
 

ν
ν

′
= 

1

1

β
β

+
−

. 

 
 If β is small then one will revert to the classical formula: 
 

2

1

T

T
= 1 − 2

c

υ
. 

 
 Let n denote the number of corpuscles that are reflected during a given time interval. 
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 The total energy of the n corpuscles after reflection 2E′  has a ratio of 2

1

nh

nh

ν
ν

′
= 2

1

ν
ν

′
 with 

their total energy before reflection 1E′ .  That formula can also be obtained by the old 

theories, but here it is entirely self-evident. 
 If the n corpuscles occupy a volume V1 before reflection then they will occupy a 

volume V2 = 1

1

1
V

β
β

−
+

 after reflection, as a simple argument will show.  The intensities 1I ′  

and 2I ′  before and after reflection, resp., will then have the ratio: 
 

2

1

I

I

′
′
= 2

1

1

1

nh

nh

ν β
ν β

′ −
′ +

 = 
2

2

1

ν
ν
 ′
 ′ 

. 

 
 One can also treat the case of oblique incidence quite easily. 
 
 
 4. Radiation pressure. – The hypothesis of light corpuscles gives a correct 
explanation of radiation pressure, and it is even probable that if Newton had known of 
that phenomenon then he would have considered it to be a particularly striking proof of 
the correctness of his concepts. 
 Consider a cylindrical sheaf of light of frequency ν that falls upon a plane mirror with 
an angle of incidence θ.  Let ρ = nhν be the energy density of that sheaf, and let S be the 
area of the mirror that is illuminated.  During the time dt, the mirror will receive n × S cos 
θ × c dt particles and reflect them.  Before and after reflection, each quantum will possess 
the quantity of motion hν / c, but although the rebound from the mirror will not modify 
the tangential component of that quantity of motion, it will reverse the sense of the 
normal component.  The impulse that is exerted upon the mirror by the reflection of the n 
corpuscles is then: 

2n S cos θ c dt 
h

c

ν
cos θ = F dt, 

 
in which F is the total force that is applied to the surface S of the mirror.  Hence: 
 

F = 2ρ S cos2 θ. 
 
 The pressure p, or force per unit area, is found to be: 
 

p = 2ρ cos2 θ. 
 
 If one now changes the notation and lets ρ denote the energy density in the region in 
which the incident and reflected sheaves are superimposed then the new ρ will be equal 
to twice the old one, and one will have: 
 

p = ρ cos2 θ. 



Chapter VI. – The atom of radiation. 51 

 Instead of one sheaf, consider an infinitude of sheaves of the same density such that 
all of the angles of incidence are represented equally, so one will then have: 
 

p = 2cosρ θ  = 1
3 ρ , 

 
in which ρ is the density of radiation in the vicinity of the mirror.  The formula thus-
obtained is exact, not only for monochromatic, isotropic radiation, but also quite clearly 
for arbitrary polychromatic radiation (for example, blackbody radiation).  The formulas 
that we will then obtain are indeed those of the electromagnetic theory. 
 

__________ 
 



CHAPTER VII 
 

THE ASSOCIATED WAVE 
FOR THE ATOM OF RADIATION 

________ 
 
 

 1. Return to some results of Chapter I. – 2. The associated wave for the atom of radiation. 
 
 
 1. Return to some results of Chapter I. – In electromagnetic theory, one shows that 
the quantities that are called the “scalar potential” and the “vector potential,” from which, 
the fields are deduced by derivation, propagate in space while obeying the equations: 

 ∆ψ − 
2

2 2

1

c t

ψ∂
∂

= − ρ, 

 

 ∆a − 
2

2 2

1

c t

∂
∂

a
= − ρ 

c

v
. 

  
As before, ψ and a continue to denote the two potentials, while ρ is the density of 
electricity at a point in space, and v is its velocity at the same point. 
 Kirchhoff showed that the equations that were written above admit the solutions: 
 

 ψR = /

1
[ ]

4 t r c dv
r

ρ
π −∫∫∫ , 

 

 aR = /

1
[ ]

4 t r c dv
cr

ρ
π −∫∫∫ v , 

 
in which r denotes the distance from the point at which one calculates the potential to the 
element dv.  The quantities in brackets denote the values of ρ and ρ v in the element dv at 
the instant t – r / c.  That instant is the one at which the action was emitted that is due to 
the volume element and is felt by the point of the potential at time t.  The potentials thus-
determined are known by the names of “retarded potentials.” 
 It is easy to obtain another solution.  Indeed, it suffices to remark that the equations of 
propagation contain the square of the velocity c and that if one has obtained a solution 
that contains c then one can obtain another one by changing c into – c.  One can then 
describe the new solutions as: 

 ψA = /

1
[ ]

4 t r c dv
r

ρ
π +∫∫∫ , 

 

 aA = /

1
[ ]

4 t r c dv
cr

ρ
π +∫∫∫ v , 
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These are the “advanced potentials.”  The instant t + r / v is the one at which the action 
that is felt by the potential point at time t will be absorbed by the element dv.  Classical 
theory neglects the advanced solution in order to keep only the retarded solution.  For the 
moment, assume that this is wrong, and look for the form that the two solutions must 
combine into.  In order to do that, imagine an electron of charge e at rest.  From the 
definition itself of the quantity of electricity and upon remarking that the units that are 
employed here are those of Lorentz-Heaviside, we will be obliged to attribute the value: 
 

ψ = 
4

e

rπ
 

 
to the scalar potential at the distance r from the charge. 
 Since the charge of the electron is assumed to be constant, one will immediately 
obtain that result upon considering only the retarded potential and setting ψ = ψR ; that is 
what the classical theory does.  If one would like to take the advanced potential into 
account then one will have: 

ψ = α ψA + β ψR , 
 
in which α and β are constants.  However, the symmetry of phenomena in time, or – if 
one prefers – the equivalence of the past and the future, seems to impose the condition α 
= β upon us.  Now, the formulas that were given above show that one has ψA = ψB = e / 
4πr in all space.  One must then set: 
 

ψ = 1
2 [ψA + ψB]. 

 
 Therefore, if electromagnetic theory wished to take the advanced potential into 
account then it would seem necessary for one to choose the solution of the wave equation 
to be one-half the sum of the advanced and retarded solutions. 
 Electromagnetic theory imposes the conservation of electricity, which is a fact that 
experiment always confirms.  Meanwhile, nothing would prevent us from imagining 
functions ψ and a that obey the equations of propagation for the potentials without the 
entity such that ρ represents its density and v represents its velocity being constrained to 
be conserved.  Indeed, the conservation of electricity results, not from the equations of 
propagation of the potentials, but from Maxwell’s equations; i.e., from certain relations 
between the derivatives of ψ and a. 
 Logically, nothing prevents us from supposing that those Maxwell equations are not 
satisfied and that the charges, which are sources of the potentials, have oscillating values, 
except that the functions ψ, a, e, and ρ would not longer represent the usual electric 
quantities. 
 Hence, consider a charge with oscillating value: 
 

e = e0 sin 2π v0 (t0 – τ0), 
 
in which t0 is the time in the system that is coupled to the charge.  In that system, the 
scalar potential at the distance r0 from the charge will be: 
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 ψ0 = 1
2 [ψA + ψB] = ( )

0 0 0 0/ /
0

1
[ ] [ ]

8 t r c t r ce e
rπ + −+  

 = 0 0 0
0 0 0 0 0 0

0

sin 2 sin 2
8

e r r
t t

r c c
π ν τ π ν τ

π
    − − + + −    

    
, 

 
when one takes the advanced solution into account.  Naturally, the vector potential is 
zero. 
 In paragraph 5 of Chapter I, we found that the periodic phenomenon that is associated 
with a material point with spherical symmetry can be represented in the “proper” system 
by the function: 

ϕ (r0, t0)  = 0 0
0 0 1 0 0 2

0

cos 2 cos 2
2

r rA
t c t c

r c c
π ν πν

       − + − + +       
       

. 

 
 The two expressions for ψ and ϕ can obviously be identified by making a convenient 
choice of phase constants and setting: 

e0 = 4π A. 
 
 The periodic quantity that is coupled with a material point with spherical symmetry 
can then be likened to a potential (viz., one-half the sum of the advanced and retarded 
solutions) that will be produced around that of the material point; it will carry an 
oscillating charge of amplitude 4π A and a frequency that is determined by the quantum 
relation.  Much later, we will have to examine whether one must suppose that there exists 
an arbitrary ratio between that oscillating charge and the electric charge that is carried by 
the material point. 
 Assume (and we shall return to this point) that the amplitude e0 of the oscillating 
charge presents the same invariance character as the electric charge in the usual sense of 
the word.  When one changes the Galilean coordinate system, the phase factors in the 
expression for the potentials that are due to the oscillating charge will necessarily be 
invariants, while the amplitude factors will transform like electromagnetic potentials – 
i.e., like the components of a world-tensor. 

 If, as in Chapter I, we pass from the system x0, y0, z0, in which the material point is 
are rest, to a system x, y, z in which it moves along the Oz-axis with velocity β c then the 
expression ϕ (x, y, z, t) that is obtained by replacing the quantities r0 and t0 in the ϕ (r0, t0) 
with their values as functions of x, y, z, t will represent the magnitude of the tensor 
potential, but not the scalar potential, which is only its temporal component.  Conforming 
to the transformation formulas of the tensorial components, the scalar potential will then 
be given by the formula: 

ψ (x, y, z, t) = 
2

1

1 β−
ϕ (x, y, z, t). 

 
 That is in fact the result that we obtained upon applying Liénard’s formula to a point 
on the z-axis.  In order to complete it, we must then add a vector potential to that scalar 
potential that is parallel to the z-axis and defined by: 
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ax = 0,  ay = 0,  az =
21

β
β−

ϕ (x, y, z, t). 

 
 We will then be dealing with a longitudinal wave for the vector potential. 
 
 
 2. The associated wave for the atom of radiation. – The solution that we studied in 
Chapter I and that we just re-examined pertains to material points with spherical 
symmetry and associates their uniform, rectilinear motion with a longitudinal wave.  It 
does not pertain to the quantum of light then, since light is necessarily a transverse 
vibration, which has been proven by polarization phenomena especially. 
 In order to avoid a very delicate passage to the limit, suppose that the proper mass of 
the quantum of light is extremely small, but nonetheless finite.  For a given value of its 
energy hν, under the condition that this value of not extraordinarily small, the quantum 
will be animated with a velocity that is slightly less than c. 
 The associated periodic phenomenon will then be represented by a vector that is 
normal to the direction of propagation.  If we pass to the system that is coupled with the 
moving body then that vectorial quantity will not suffer any modification.  In the proper 
system, we will then have a periodic phenomenon that is represented at every point in 
space by a vector that has the same direction everywhere.  It is entirely reasonable to 
attribute the nature of a vector potential to it.  One will get a picture for the creation of 
that vector potential by equating the atom of radiation, when imagined in its proper 
system, with a dipole of electromagnetic theory: The two equal and opposite charges are 
assumed to remain close enough to each other that no appreciable scalar potential will be 
produced in space, but they will cause only a vector potential to appear in all of space that 
is parallel to the direction of their relative vibration, which conforms to the vectorial 
equation: 

∆a − 
2

2 2

1

c t

∂
∂

a
= − 

c
ρ v

. 

 
 One must suppose that the charges are constant and that the vibration takes place with 
a frequency ν0 that is defined by the quantum relation: 
 

W0 = hν0 . 
 
 Perhaps we should be a bit wary of the simplicity of the preceding picture: Indeed, we 
saw that in our theory, the electron cannot be represent in manner that conforms to 
classical electromagnetic theory (viz., the impossibility of an oscillating charge that is 
implied by Maxwell’s equations) and that in this case, the frequency ν0 cannot be 
compared to a simple mechanical frequency.  It is doubtful that anything would be 
different for the quantum of light, and it would be more prudent to say only that: 
 
 Whereas in the case of a material point with spherical symmetry, the periodic 
phenomenon in the proper system is a scalar potential that is excited by a tensor (viz., an 
analogue of the world-current) whose spatial component is zero, in the case of the atom 
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of radiation, it is, on the contrary, a vector potential that is excited by a tensor whose 
temporal component is zero. 
 
 Let A denote the vector to which the tensor that produced the potential reduces and 
always add the advanced and retarded solutions; we will have: 
 

 a (x0, y0, z0, t0) = 0 0
0 0 0 0 0 0

0

sin 2 sin 2
2

r r
t t

r c c
π ν τ π ν τ    − − + − +    

    

A
 

  = 0
0 0 0 0

0

sin 2 ( )cos2t r
r c

νπ ν τ π−A
. 

 
 That is the most likely form for the function that represents the periodic phenomenon 
that is associated with the quantum of light. 
 For some unknown reason, the motion of the quantum always takes place normally to 
the vector a and is therefore not affected by the value of that vector.  As a result, in a 
system x, y, z, t for which the luminous atom displaces with velocity β c along the z-axis, 
one will have: 
 
 a (x0, y0, z0, t0) 
 

= 
2

2 20 0
22 2

2 2
2

2 2( )
cos sin

1( ) 1
1

z t z
x y t

c cz t
x y

πν πνυ β τ
βυ β

β

−  + + − − −  − −+ +
−

A
. 

 

 Since ν0 = m0 c
2 / h must be assumed to be extremely small, in order for 2

0 / 1ν β−  

to have a finite value ν, it is necessary that υ must be close to c.  Then set β = 1 – ε and 
neglect the terms in ε2 ; one will get: 
 
 a (x, y, z, t) 
 

= 
2

2 20

2
2 2

2 ( )
cos sin 2

2( )
2

z t z
x y t

c cz t
x y

πν υ βπ ν τ
ευ

ε

−  + + − − 
 −+ +

A
. 

 
The first two factors represent the amplitude, animated with the velocity υ = (1 – ε) c; the 
last one gives the phase, whose velocity is V = c / β  = (1 + ε) c. 
 Let us examine the distribution of the amplitudes at the instant t.  At the point M (x, y, 

z) whose distance from the rectilinear trajectory of the quantum is ρ = 2 2x y+ and 

whose distance to the wave plane that contains the quantum is d = z – υt, one will have 
the amplitude: 
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2
20

2
2

2
cos

2

2

d

cd

πν ρ
ε

ρ
ε

+
+

A
. 

 
 If M is in the wave plane that contains the quantum then d = 0, and the amplitude will 

vary with the distance ρ like 02
cos

A

c

πν ρ
ρ

; the cosine term will be less noticeable at 

small distances, due to the smallness of ν0 , moreover. 
 On the contrary, if M is not in the immediate neighborhood of the plane of the 
quantum then ρ2 will be negligible in comparison to d 2 / 2ε, and the amplitude will vary 

with d like 
2 2

cos
A d

d c

ε πν
.  At equal distances from the atom of radiation, the 

amplitude will then be much larger in the wave plane that contains it than it is outside of 
it. 
 That seems to be the probable constitution of the potential of the wave that is 
associated with the quantum of light.  One can try to pass to the limit by setting ν0 = 0 
and υ = c, but we shall see that this passage is delicate for the present example. 

 One must first suppose that the limit of 0 / 2ν ε  is equal to ν when ν0 and ε tend to 

zero simultaneously.  Having said that one will get: 
 

 a (x, y, z, t) =
2 2

sin 2
z

t
cx y

πν τ − −  +
A

 

  = sin 2
z

t
c

πν τ
ρ

 − −  

A
 

 
for the wave plane of the quantum, and: 
 

 a (x, y, z, t) = 
2 2

cos ( )sin 2
z

z ct t
z ct c c

ε πν πν τ − − − −  

A
 

  = 
2 2

cos sin 2
z

d t
d c c

ε πν πν τ − −  

A
 

outside of the plane z = ct. 
 However, a difficulty presents itself here: If A has a finite value then the potential a 

will be zero everywhere outside of the plane z = ct, whereas if 2εA  has a finite non-

zero limit then a will be infinite in the plane z = ct.  Either alternative is difficult to 
accept.  It would then seem, at the very least, more convenient to not perform the passage 
to the limit in order to study the properties of the associated wave. 
 Finally, we point out an interesting situation.  Let an ensemble of light quanta with 
the same polarization displace with the same energy in the same direction.  Is it possible 
that the associated waves can form a single wave from the standpoint of phases?  Yes, 



58 Part Two– The optics of quanta 

that will be produced if the quanta are all synchronous in the system in which they are at 
relative rest.  Indeed, in that system the periodic potential has the same phase: 
 

sin 2π v0 (t0 – τ0) 
 

in space.  As for the amplitude, at each point, it will depend upon the distances from that 
point to the various point-sources.  Return to the first reference system.  The phase will 
then be given by: 

sin 2π v 
z

t
c

τ − − 
 

 

 
everywhere, and if that plane wave is transported through an enormous number of quanta, 
it will show a marked analogy with the homogeneous plane waves that are often studied 
by the classical theories. 
 To conclude, we once more insist upon an essential point.  We just attempted to 
determine the periodic quantities that are associated with the various kinds of material 
points, and we have often referred to them as “potentials.”  Indeed, they have just the 
tensorial character as the potentials of electromagnetic theory, and they propagate 
according to the same law.  However, they must not be confused with the latter 
potentials.  We shall seek to examine that point more closely by studying the Maxwell-
Lorentz equations. 
 

___________ 



CHAPTER VIII 
 

THE LINK WITH ELECTROMAGNETISM  
_________ 

 
 

 1. The Maxwell-Lorentz equations. – 2. The value of electromagnetic theory. – 3. Attitude of 
electromagnetic theory toward the problem of radiation. 
 
 
 1. The Maxwell-Lorentz equations. – In our research, we have come to understand 
that the equations of propagation for potentials are more general than the group of 
relations that are universally known by the name of Maxwell’s equations.  It would 
therefore be interesting to invert the order of deductions that are generally followed in 
classical works and look for the conditions under which the Maxwell-Lorentz equations 
can be derived from the equations of propagation. 
 Therefore, consider two quantities ψ and a that define the temporal and spatial 
components, resp., of a world-tensor, and suppose that they are restricted to ones that 
verify the relations: 

 ∆ψ − 
2

2 2

1

c t

ψ∂
∂

 = − ρ, 

 

 ∆a − 
2

2 2

1

c t

∂
∂

a
 = − 

c

C
, 

 
in which the functions ρ and C are given in all space-time and are also the components of 
a world-tensor. 
 Having said that, we define two vectors by the relation: 
 

 h = − grad ψ − 
1

c t

∂
∂
a

, 

 H = rot a. 
 We effortlessly obtain: 
(I)  div H = 0, 
 

(II)  
1

c t

∂
∂
H

 = 
1

rot
c t

∂ 
 ∂ 

a
 = − rot h. 

 
These are two equations of Maxwellian form, which are written with the Lorentz-
Heaviside convention for the suppression of the factor 4π. 

 In order to go further, we let L (x, y, z, t) denote the function 
1

c t

ψ∂
∂

+ div a . 

 One will easily find that: 
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 If we recall that grad div a = ∆a + rot rot a, and take the equations of propagation into 
account then our point of departure will be: 
 

(III) div h = ρ − 1 L

c t

∂
∂

, 

 

(IV)  
t

∂
∂
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= rot H − 
c

C  − grad L. 

 

 Finally, we form the combination 
1

c t

∂
∂

(III) – div (IV): 
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1 1
div
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c t c t c

ρ∂ ∂− +
∂ ∂

C
+ ∆L 

or 
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t

ρ∂
∂

+ div C = − 
2

2 2

1 L
c L

c t

 ∂∆ − ∂ 
 = −c L□ . 

 
 If we suppose that L is identically zero then equations (III) and (IV) will become the 
last two Lorentz equations upon setting C = ρ v.  Equation (V) will then express the 
conservation of electricity. 
 Briefly, it is the hypothesis that L = 0 that permits one to deduce the group of 
Maxwell-Lorentz relations upon starting with the equations of propagation; that is what 
imposes the conservation of electricity. 
 The deeper reason that we are prevented from equating the potentials that were 
studied in the last chapter with true electromagnetic potentials is the non-zero value of the 
function L that corresponds to them.  For example, in the system that is associated with 
an electron, we found a zero vector potential and a periodic scalar potential.  The function 
L that reduces to ∂ψ / ∂t will not be zero then, and ψ and will not be an electromagnetic 
potential that satisfies the Maxwell equations. 
 To conclude this rapid review of electromagnetic theory, recall that it is further based 
upon a sixth relation that is independent of the preceding one. 
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 That would be the expression for the Lorentz force that is exerted by an 
electromagnetic field on a charge: 

(VI)     F = 
1

[ ]e
c

 + 
 
h v H . 

 
Upon combining that equation with the preceding one, one will obtain the energetics of 
the electromagnetic field by a well-known calculation.  One determines the energy 
density ρ (w) and that of the quantity of motion ρ (G), as well as the energy flux or 
Poynting vector P by the relations: 

ρ (w) = 1
2 (h2 + H2), 

 

ρ (G) =
1

c
[h H], 

 
P = c [h H] = c2 ρ (G). 

 
 

 2. The value of electromagnetic theory. – Electromagnetic theory, when completed 
by the introduction of the atomic structure of electricity, has known great successes and 
can be legitimately considered to be the expression of reality itself.  However, the 
development of our knowledge of radiation and its relationship to matter (emission, 
absorption, diffusion, etc.) has undermined that conviction and has shown that 
electromagnetism is insufficient, at least for the interpretation of those phenomena.  
Nevertheless, the predictions of the theory of electrons will be verified whenever one is 
dealing with phenomena in which radiation is not involved.  Hence, they will be true for 
all of the usual electric phenomena, and in particular, those of electrical engineering.  In 
the Bohr atom, forces are given quite correctly by the Lorentz relation, and that 
verification is quite remarkable.  It then seems precise for to say: 
 
 Electromagnetic theory is well-verified for the purely-material phenomena in which 
radiation is not involved. 
 
 It seems that we can even liberate the theory of electrons from one of the grievances 
that has weighed upon it.  That grievance is the prediction that energy will be emitted by 
an electron in accelerated motion in the form of a spherical wave with a continuous 
distribution.  That conclusion is in absolute contradiction with the stability of atoms, and 
furthermore, experiments never seem to reveal either emission by an accelerated electron 
or the existence of waves with a continuous distribution of energy.  However, it is easy to 
make the acceleration wave disappear from the theory of electrons.  It will suffice to 
introduce advanced potentials. 
 Indeed, recall the reaction force that is due to radiation, as Lorentz calculated it in his 
classical book on the theory of electrons (6): If we take one-half the sum of the advanced 
and retarded potentials instead of the retarded potentials, for reasons that were explained 

                                                
 (6) Theory of Electrons, 2nd English edition, pp. 252.  
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before, then we will find a zero value for the radiation reaction, and we will conclude that 
the accelerated electron does not radiate.  That case of radiation acceleration is very 
instructive, moreover! Indeed, suppose that an electron is in accelerated motion.  
Classical theory tells us that it will emit a wave due to the “retardation” of the potential.  
Suppose that the direction of time has been reversed at a given moment.  We shall review 
the phases of motion of the electron as they proceed in the opposite sense, and the 
electron absorbs the wave that it has emitted.  How is a physicist that is not aware of the 
inversion of time to describe the phenomenon?  He can do that only by neglecting the 
retarded solutions and keeping only the advanced solution.  Only then can he interpret the 
absorption of the wave by the electron.  However, if he assumes that only the retarded 
solutions should be counted then our physicist will perceive that the sense of time has 
been reversed.  Time will then have a privileged direction, and I must say that this 
conclusion seems rather shocking to me because it implies a sort of fundamental 
irreversibility in natural phenomena.  Naturally, if one forms one-half the sum of the 
advanced and retarded solutions then reversibility will be re-established by the 
suppression of the radiation that is due to acceleration (7). 
 
 
 3. Attitude of electromagnetic theory regarding the problem of radiation. – If the 
ideas that we have developed are exact then the classical theory will be found in the 
impossibility of interpreting radiation phenomena in detail, and that is because the 
oscillating potentials that are necessary for their true description do not satisfy the 
Lorentz condition L = 0 and are, in turn, excluded from the framework of Maxwell’s 
equations.  One will then be constrained to look for solutions to Maxwell’s equations that 
represent waves whose speed of propagation has the value c that experiments reveal, and 
one will have then recovered the solutions of the elastic theory, and notably the plane 
wave and spherical wave whose amplitudes are constant on each wave surface.  
However, those solutions are, so to speak, fictitious, and the alleged electric and magnetic 
field of the light wave are not true fields.  In particular, the action of light on a charge 
cannot be calculated by the Lorentz formula upon starting from those pseudo-fields, and 
that is indeed what experiments seem to verify.  Finally, if those quantities are 
electromagnetic fields then the energy 1

2 (h 2 + W 2) will be distributed in a continuous 

fashion, and it will also be inexact. 
 Meanwhile, the concept of homogeneous waves, such as one utilizes in the classical 
theory, has permitted the interpretation of phenomena that have been observed very 
exactly and described in physics books under the rubric of wave optics.  That concept of 
homogeneous waves is not without value, since it does represent something, and the main 
task of the optics of quanta is to establish a link between that concept of homogeneous 
waves and the discontinuity in the structure of radiant energy. 
 
 

____________ 

                                                
 (7) PAGE, Phys. Rev. 24 (1925), pp. 296.  
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HOMOGENEOUS WAVES AND RECTILINEAR MOTION. 
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 1. Homogeneous waves and rectilinear motion. – 2. Homogeneous waves and curved trajectories. – 3. 
Diffraction and interference. – 4. Motion of an isolated quantum. – 5. Interactions between quanta. 
 
 
 1. Homogeneous waves and rectilinear motion. – In order to better understand how 
homogeneous waves can play a role in the optics of quanta, we shall go back a bit.  In the 
study of uniform, rectilinear motion, we saw that space behaves as if it possessed an 
index of refraction n = β for the associated wave because the phase velocity is c / β.  That 
index is a function of the frequency of the wave, and more precisely, in such a fashion 
that speed of the energy is given by Rayleigh’s formula. 
 On the other hand, we showed at the end of Chapter VII that a set of atoms of 
radiation that displace with the same velocity and the same direction and are synchronous 
in their proper system will have associated waves whose phases coincide at every point, 
which is a result that is exact for any type of moving body.  Therefore, consider a set of 
material points that are animated with the same velocity in the same direction and are 
synchronous in the proper system.  One can consider them to be associated with the same 
wave whose phase is given by an expression for the form: 
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with V = c / β.  As for the amplitude of the wave, it propagates with the velocity υ = β c.  
However, at each instant, its value at any point will depend upon the manner by which 
the various material points are distributed throughout the wave. 
 Now imagine a homogeneous plane wave: 
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in which the constant quantity A is such that its square is proportional to the mean 
number of atoms per unit volume, or if one prefers, the density of energy in the wave.  
The propagation of that wave in the medium of index n that constitutes the space will 
give us a statistical picture of the motion of our ensemble of material points because we 
know that energy will displace with the Rayleigh velocity in such a wave. 
 In the case where our material points are light quanta, the velocities υ and V are both 
indiscernible from c, and the homogeneous wave that represents the motion globally is: 
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We can then recognize the statistical significance of the homogeneous plane wave in 
classical theories. 
 
 
 2. Homogeneous waves and curved trajectories. – In Chapters II and III, while 
studying fields of constant force, we further defined an index of refraction whose value 
we calculated at each point.  Furthermore, we have also seen that the velocity of the 
moving body can be calculated by Rayleigh’s formula. 
 Having recalled that, consider the constant force field to be a medium of index n that 
is defined by the formulas in Chapters II and III.  Imagine that a wave propagates in that 
medium that has no singularity of the classical kind and possesses the frequency ν.  The 
rays of that wave will be certain trajectories of energy W = hν in the field of constant 
force; that will result from the identity of Fermat’s and de Maupertuis’s principles.  
Furthermore, it is easy to see that the propagation that is imagined represents the motion 
of an ensemble of a large number of material points that are affected by the field, but do 
not interact with each other, with the reservation that the following two conditions are 
realized: 
 
 1. The amplitude A of the wave must be proportional to the square root of the 
density of the moving body at each point of the field.  If dn denotes the number of 
material points that occupy a volume dτ in space then one must have: 
 

dn = 2K A dτ τ , 

 
in which Aτ is the amplitude of the continuous wave in the element dτ.  If that condition 
is verified everywhere at the initial instant then it will always be verified because the 
trajectory tubes coincide with the ray tubes and the speed of the moving body is the 
Rayleigh speed. 
 
 2. The moving bodies must present a certain coherence between them because each 
of them must be found to be in phase with the continuous wave when it is envisioned as a 
vibrating source. 
 
 The reader must reflect upon the fundamental difference that exists between the 
continuous wave, the statistical representation of the motion of numerous, coherent, 
material points, and the wave phenomena that are associated with each of the material 
points, whose character of involving a singularity is essential. 
 
 
 3. Diffraction and interference. – Let an ensemble of coherent light quanta have the 
same frequency.  Their propagation in free space can be represented globally by the 
homogeneous wave: 
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If that plane wave penetrates a region of space that is studded with fixed obstacles then it 
will produce diffraction and interference phenomena.  From numerous extremely precise 
experiments, we have learned since the end of the Eighteenth Century that the statistical 
distribution of light energy in the regions of interference is predicted very accurately by 
the wave theory when one supposes that the incident wave is homogeneous.  Therefore, 
the calculation of the wave: 
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in the region that is studded with obstacles by the classical interference methods will 
always give an exact statistical image of the displacement of quanta in that domain.  In 
particular, the trajectories of the atoms of radiation must coincide with the rays of the 
classical theory, the square of the amplitude at each point must give the density of the 
quanta, and the phases of the wave along each ray must correspond with those of the 
wave that is associated with the quantum that follows it. 
 If one assumes those ideas then all of the phenomena of diffraction and interference 
can be interpreted by the theory of quanta of light.  The same thing will then be true for 
the experiments, like those of Taylor in which interference was obtained with 
extraordinarily weak light intensities as a result of the extremely long time intervals that 
were used.  Indeed, the quanta of the same wave did not interact with each other, so the 
form of the possible trajectories in a given interference experiment could not depend 
upon the intensity, and as a result, the distribution of the impressions on a photographic 
plate did not depend upon the time interval of the experiment.  If the plate received the 
energy that was necessary for its impression very rapidly as a result of a very intense 
irradiation (that is, it is subject to a burst of quanta) then it will, if I may say, exhibit 
spatial statistics.  On the contrary, if it receives the same amount of energy very slowly 
then it will exhibit temporal statistics.  However, the distribution of quanta between the 
various incident rays is supposed to be ruled by chance, so the results must necessarily be 
the same. 
 In Maxwell’s theory, the energy density of a wave will have the mean value of 

2 21
2 ( )h H+  at each point.  It seems that this expression must be considered to represent 
the density of the quanta.  Moreover, we learn from Poynting’s theorem that the vector 
c[h H] represents the energy flux per unit time and area in magnitude and direction.  In 
the interference phenomena that are due to fixed obstacles, the direction of the radiant 
vector is constant at each point and its envelopes, which will be the rays, are likewise 
fixed. 
 By contrast, the magnitude of the vector is variable, and it seems that one must 
consider a mean value in order to obtain the velocity of energy.  In order to do that, 
imagine a very thin tube whose walls are composed of rays (i.e., a tube of trajectories), 
and let δσ be a cross-section to which the quantities h and H are referred.  Finally, let δt 
denote a time interval that is very small, but still long with respect to the period of the 
wave, and let δτ be the small cylindrical volume that is composed of the segment of the 
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tube with base δσ and height υ δ t.  The energy flux across δσ during the time δt is equal 
to the energy that is contained in the volume δτ.  One will then have the equality: 
 

[ ]c h H δσ δt = 2 21
2 [ ]h H+ υ δσ δt. 

 
 Finally, the speed of the energy at any point must be taken to be: 
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. 

 
 We first adopt the electromagnetic viewpoint.  If we displace all of the points of δτ 
along the corresponding rays by υ δ t then we will pass from the volume δτ at the instant 
t to the volume δτ′ at the instant t + δ t, and conservation of energy will give: 
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 From the corpuscular viewpoint, we say that the n quanta that occupy δτ at the instant 
t will occupy δτ′ at the instant t + δ t.  One easily deduces from this that if the density of 

quanta is originally proportional to 2 21
2 [ ]h H+  at any point of the wave then that will be 

continually true.  That is the necessary condition for our statistical representation to be 
acceptable. 
 
 
 4. Motion of an isolated quantum. – For the sake of dynamics, the study of the 
motion of a material point in a constant field shows us that it is possible to represent the 
various motions of a given energy globally by considering homogeneous waves.  In other 
words, we start from the study of the motions of the individual moving bodies, and we 
are then led to a statistical representation.  The situation is the opposite for radiation: 
Experiments have taught us that the motion of quanta is represented statistically quite 
well by the theory of continuous waves.  We must then return to the individual viewpoint 
and study the motion of the isolated quantum and the propagation of its associated wave 
in the region of interference. 

 

x O 
X 

 
Figure 7. 
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 One should find that the quantum always follows one of the rays of the classical wave 
with undoubtedly the speed υ that was defined above. 
 I will try to make the problem more precise in a particular case.  Consider a screen 
that is pierced with a hole (Fig. 7).  Classical theory teaches us how a homogeneous plane 
wave that falls on the screen normally will be diffracted when it crosses the opening.  If 
one imagines the ray XO, which falls normally on a point O in the opening, then 
Poynting’s theorem will permit us to prolong that ray to the left of the screen, at least, in 
principle.  It goes without saying that this prolongation will be a curved line, in general, 
because that is precisely what diffraction consists of.  Now, here is how that problem 
must be solved: Consider a quantum that advances along XO with its train of 
inhomogeneous waves.  The oscillating (non-electromagnetic) vector potential a 
propagates according to the wave equation: 
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When the quantum is far to the right of the screen, the wave that surrounds it will be the 
one that is associated with a uniform, rectilinear motion: 
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in which ν0 is very small and β is close to 1. 
 Can one use continuity and Kirchhoff’s theorem to predict how that inhomogeneous 
wave will be diffracted when it crossed the opening, and what will the trajectory of the 
moving singularity be beyond the point O?  One should be able to show that (no matter 
what the position of the point O in the opening) the trajectory will coincide with the 
prolongation of the ray XO that is predicted by the classical theory.  It will indeed give 
the trajectory of each isolated quantum and will represent the collective motion of a large 
number of quanta statistically. 
 That is what one must prove in order to substantiate the postulate that was assumed.  
That proof seems difficult to me (I certainly do not know how to do it), but I have no 
doubt in my mind that a proof of that type might be possible. 
 We can make a few interesting remarks.  First of all, the motion of the quantum does 
not generally take place along a straight line, so the principle of inertia is no longer valid 
and the world-line is not a space-time geodesic. 
 Everything happens then as if the screen exerted a force on the moving body, and that 
remark was already shocking to Newton.  However, that force has a very special nature, 
since it is generated by the diffraction of the wave itself.  If the screen is kept fixed then 
the diffraction cannot modify the frequency.  The atom of radiation will then conserve 
energy.  Is the quantity of motion also conserved?  No, because once the quantum leaves 
the region of interference its quantity of motion will indeed be equal in magnitude to its 
initial value on XO, but the direction of motion will not generally be the same, and there 
will be no “vectorial” conservation.  In classical dynamics, when a moving body 



68 Part Two – The optics of quanta. 

describes a motion around a fixed attractive center, its quantity of motion will not 
generally remain constant, and from that fact, an impulse will be transmitted by the 
intermediary of the force field of the attractive center; now, it is the force of that fixed 
center that equilibrates that impulse.  By analogy, it would seem probable that when the 
isolated quantum of light crosses the region of diffraction, it will transmit a certain 
impulse to the screen by the intermediary of its associated wave, and that will put it into 
motion if it is maintained by a foreign force.  Of course, if a sheaf of very many quanta 
arrives at the opening of the screen then the partial impulses will cancel in the mean, and 
the screen will not be subject to any resultant force. 
 If a homogeneous plane wave falls upon a fixed, perfectly-reflecting mirror at a 
certain angle of incidence then classical theory teaches us that the incident wave and the 
reflected wave will interfere, and a simple calculation will show that the light rays will 
break before they arrive at the mirror and recombine behind it without having touched the 
surface.  We must then suppose that the incident quanta do not really “bump into” the 
mirror, but that their path will turn back without having touched it. 
 That in no way invalidates the argument that permitted us to obtain the radiation 
pressure because the variation in the quantity of motion of the quantum must be 
transmitted to the mirror by the wave in the form of impulse. 
 
 
 5. Interactions of quanta. – What we just studied was, in summary, the effects that 
are exerted upon a quantum of light by the presence of certain obstacles, but the quanta 
that are associated with the same wave, which are the only kind that we have considered 
up to now, exerted no influence on each other; each of them pursued its route 
independently of the other ones.  Things are surely different for the quanta that are 
associated with different waves. 
 We shall always proceed by analogy with the theory of homogeneous waves.  If two 
homogeneous plane waves meet then they will interfere, and the paths of the energy will 
be modified by the action of the interference.  Two sheaves of quanta that are associated 
with two different waves must then undoubtedly react to each other in such a way that the 
modified trajectories will coincide with those of the classical theory.  Nevertheless, that 
conclusion can be precise here only if every wave carries a very large number of quanta.  
Indeed, it can no longer be a question of assuming the independence of the motions of a 
quantum in regard to the presence of the other quanta, because we are dealing with 
mutual interactions, now. 
 That sort of mutual interaction can hardly arise in the usual optical experiments, since 
one always employs coherent sheaves in them, but they do play an important role in the 
theory of blackbody radiation and the energy fluctuations in that kind of radiation.  
Furthermore, no matter what the nature of the interactions between atoms of radiation 
might be, they will certainly be accompanied by conservation of energy and conservation 
of quantity of motion.  Even when one takes that into account, the proof that we gave for 
radiation pressure will still persist for blackbody radiation. 
 

___________ 
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DIFFUSION AND DISPERSION 
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 1. Diffusion of charged particles. – 2. Diffusion of radiation. – 3. Dispersion. – 4. Motion of a quantum 
in a refringent medium. 
 
 
 1. Diffusion of charged particles. – If an electrified particle whose trajectory is 
initially rectilinear passes close to a charge C, which is assumed to be fixed, then it will 
be subjected to an attractive or repulsive action, and its motion will experience a 
deviation.  If one knows the distance from the center C to the initial direction in which 
the particle moves then one can predict the total deviation that the particle experiences.  
The calculation is very simple due to the form of Coulomb’s law (at least, if one neglects 
relativistic corrections).  If one considers an entire ensemble of particles that approach C 
along parallel rectilinear trajectories then one will obtain a sheaf of trajectories, such as in 
Fig. 8 (in which, the force is assumed to be repulsive).  Some simple statistical 
considerations will give the angular distribution of the deviated trajectories.  The 
formulas thus-obtained have been verified by Sir. E. Rutherford and his collaborators in 
their beautiful experiments on the passage of α rays through matter. 

 

*  

 
Figure 8. 

 
 We can envision that problem from a different angle from the standpoint that is of 
interest to us.  Indeed, we saw that the trajectories of energy W for a charge of value e 
and mass m0 will coincide with the rays of a homogeneous wave of classical type that 
propagates in a medium whose index is defined at each point by the law: 
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in which ψ is the electrostatic potential and v is the frequency W / h.  If the potential is 
created by a charge C then it will be inversely proportional to the distance from C at any 
point.  In order to obtain the scattering of a sheaf of electrified particles under the 
influence of a charge C, it will be necessary to study the deformation of a homogeneous 
wave that is initially planar when it propagates in a medium whose index varies 
according to the law above.  The rays of that wave will be the trajectories of the deviated 
particles.  If the moving particles are “associated with the same wave” originally, with the 
meaning that we gave to that expression, then the refracted wave will provide us with the 
distribution of the phases of the associated waves along the various rays. 
 The deviation of particles is produced in a small space surrounding C, while the 
trajectories at a great distance will appear to be straight lines that pass C.  The diffusing 
charge will then appear to be the center of the rectilinear rays, and the classical wave that 
represents the distribution of the particles at a distance will be very approximately a 
spherical wave.  The distribution of the amplitudes over the spherical wave will depend 
upon the statistical law that Rutherford studied, since the square of that amplitude will 
represent the mean density of the deviated particles.  In summary, if one confines oneself 
to imagining the homogeneous wave that represents the motion statistically, and if one 
attaches it to only the description of phenomena that are distant from the center then one 
can say: Under the action of the incident wave, the center will emit a secondary spherical 
wave, over which, the amplitude is not distributed in a uniform fashion, moreover.  That 
statement reveals to us a deep relationship between the diffusion of rays (α or β, for 
example) and the diffusion of light, as it is conceived according to classical ideas. 
 
 
 2. Diffusion of radiation. – If we adopt the corpuscular hypothesis then the diffusion 
phenomena that have such great importance in optics and the domain of X-rays will 
oblige us to assume that when a quantum of radiation passes close to an electric charge or 
a set of such charges (e.g., an atom or molecule), it will be subjected to a certain action 
whose result will be a curving of the trajectory.  If we imagine a sheaf of quanta of the 
same frequency whose initial velocities are parallel and which are associated with the 
same wave then that sheaf will be scattered – i.e., diffused – when it passes close to the 
charge center.  The homogeneous wave that statistically represents the motion of the 
quanta will propagate as if there existed an index of refraction around the diffusing 
center.  However, that homogeneous wave is nothing but the wave of the classical theory, 
and from the very nature of the validity that we have attributed to those theories, we can 
think that they will once more give us an exact global representation of that diffusion 
here. 
 One knows what the image of the phenomena would be that the theory of electrons 
would provide us with.  If a light wave is assumed to be planar and homogeneous, and if 
the light variable is identified with an electric field then a particle that is placed in that 
wave must be subjected to a periodic force and enter into vibration.  The amplitude and 
phase of that vibration will depend upon the incident wave, the charge and mass of the 
particle, the frequency, and finally, the proper frequency of vibration that is determined 
by the constraint forces.  The calculation is simple and too well-known for it to be 
necessary to reproduce it here.  Thanks to the use of retarded potentials, one can then 
predict the emission of a spherical wave by the vibrating charge, and the energy that is 
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necessary to sustain it will be drawn from the incident wave.  A scattering of the radiant 
energy will result, and that will represent the phenomenon of diffusion. 
 The fact that this description of the phenomenon is inexact will seem almost certain.  
First of all, the granular structure that we are almost forced to attribute to light nowadays 
will not permit us to suppose that real light waves are homogeneous, nor, it seems, to 
consider the oscillating magnitude of those waves to be a true electric field that is capable 
of exerting the Lorentz force on an electric charge.  The radiation from an accelerating 
charge might seem very problematic then, since such a radiation process would involve a 
very strange irreversibility, as I have remarked before.  Finally, the quantities that the 
theory of electrons introduces in order to explain diffusion and dispersion as if they were 
the mechanical resonant frequencies for the vibrating particles indeed seem to have a 
more complex character.  Now, the dispersion formulas that have been verified in not 
only the optical domain, but also in the Röntgen domain of high frequencies (Siegbahn, 
Bergen Davis, etc.) have shown that those alleged resonant frequencies are determined by 
the intra-atomic energy levels, and from that point onward, it will be difficult to 
assimilate them to true mechanical frequencies that are due to constraint forces with no 
further assumptions. 
 Nevertheless, the classical theory of diffusion has achieved some admirable 
successes.  To cite only two examples, recall the explanation for the blue color of the sky 
by Rayleigh and J.-J. Thomson’s formula for the diffusion of X-rays.  It will then seem 
certain that the emission of a secondary wave under the action of the primary wave will 
represent the statistics of the motion of the diffused quanta in a fashion that is less 
approximate.  However, one must pass from that statistical viewpoint to the individual 
dynamics of each quantum.  When applied to a sheaf of quanta that are in phase with 
each other, those dynamics must recover the conclusions of the theory of electrons from 
the viewpoint of the number of diffused quanta, their distribution in space, and the phases 
that are associated along the trajectories.  The action that is exerted by a diffusing center 
on an atom of radiation belongs to a very different type from the one that we encountered 
in the dynamics of material points.  Indeed, it will depend upon the energy of motion 
(i.e., its hv) and the “resonant” frequencies that belong to that diffusing center.  The study 
of that kind of dynamics will undoubtedly open up new perspectives.  Charges that are 
subject to radiation will not be put into motion under its influence, so they will not radiate 
in the classical way, and yet, from the statistical viewpoint, everything happens as if they 
do.  That is a very mysterious problem, and we sense its kinship with the correspondence 
principle and the “virtual oscillators” of Bohr, Kramers, and their collaborators.  Without 
speaking of the phenomena of emission and absorption in the atom, which raise some 
very considerable difficulties in their own right, it is still in the realm of diffusion and 
dispersion that the theories that are presented here will agree with those of the 
Copenhagen school. 
 Right now, one thing is certain: The global representation that is provided by the 
theory of electrons is valid only if the center of diffusion can be supposed to be 
immobile.  In order for that to be true, except for the case in which an exterior force is 
maintained fixed, its mass must be much greater than the mass hv / c2 of the moving 
quantum.  Otherwise, the principle of action and reaction, whose validity seems 
essentially absolute, would teach us that the center would be subjected to an impulse 
under each individual diffusion, and at the end of that process, the quantum would have 
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lost a fraction of its energy.  The relationship between the frequency and the energy 
would then lead us to predict a reduction of the frequency by diffusion.  That is precisely 
the beautiful phenomenon whose existence now seems beyond question and which is 
associated with the name of A.-H. Compton.  We shall return to the Compton effect in 
the next chapter, but we shall insist upon this point: The same relationship exists between 
diffusion without a change in wave length and Compton diffusion as the one that exists 
between the motion of an electron around a fixed nucleus and the motion of that electron 
with “dragging of the nucleus.”  The two phenomena must take place within the scope of 
one and the same theory. 
 
 
 3. Dispersion. – As one knows, the classical theory of dispersion is deduced from 
that of diffusion.  A homogeneous dispersive medium is considered to contain an 
enormous number of diffusing particles.  If a wave propagates in the medium then the 
particles will emit secondary waves and the superposition of all the wavelets from the 
primary wave will explain the manner by which the resultant wave will propagate and the 
existence of an index that varies with frequency.  Without a doubt, one can deduce the 
macroscopic phenomena of dispersion in the same manner by which one gets an 
interpretation for the microscopic phenomenon of the diffusion of quanta by a center. 
 For the moment, I will confine myself to the macroscopic viewpoint.  In a medium of 
index n that is a function of frequency, the classical theory envisions the propagation of 
homogeneous waves with a phase velocity of V = c / n.  Moreover, Rayleigh’s profound 
insights have taught us that energy propagates (at least, outside of absorption zones) with 
a velocity of υ = dv / d (v / V).  In line with our guiding ideas, we must attribute the 
following significance to the waves of the classical theory: Their phases will give the 
phases of the waves that are associated with the quanta along the trajectories, and their 
amplitudes will be proportional to the square root of the mean density of the quanta at 
each point.  The quantum relation, in its quadri-dimensional form: 
 

I  = h O, 
 
will then permit us to deduce the energy and quantity of motion for the light quantum 
from the classical wave.  When it enters the refringent medium, its energy hv will not 
naturally experience any variation, while its quantity of motion will vary from hv / c to hv 
/ V = hnv / c.  As for the velocity that equals c in vacuo, from Hamilton’s equations, it 
must equal c dv / d (nv), in agreement with the theory of group velocity. 
 The adherents of Fresnel’s ideas believe that they have demolished Newton’s 
corpuscular theory by showing experimentally that light propagates less quickly in water 
than it does in air.  Here is their argument: 
 Consider a light trajectory that goes between a point A that is situated in a medium of 
uniform index n1 and a point B that is situated in a medium of uniform index n2 .  That 
trajectory is composed of two lines that agree at a point on the separation surface, where 
they make angles of α1 and α2 with the normal. In the wave conception, one must express 

Fermat’s principle 
B

A
n dtδ ∫ = 0, which will lead to Descartes’s equation n1 sin α1 = n2 sin 

α2 .  On the contrary, in the corpuscular theory, one must employ de Maupertuis’s 
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principle 
B

A
g dtδ ∫ = 0.  Now, the quantity of motion g is the product of the constant mass 

of the corpuscle of light with its velocity υ = c / n.  One infers from the condition 

/
B

A
dl nδ ∫  = 0 that: 

n1 sin α1 = n2 sin α2 . 
 
If medium 1 is a vacuum or air, with index unity, and medium 2 is water then 
experiments will show that α1 > α2 . 
 Therefore, n2 > 1 for the wave theory, and light propagates slower in water than it 
does in air; the opposite is true for the corpuscular theory. Now, as we have said, 
experiments favor the former situation. 
 The flaw in the argument seems obvious.  First of all, in principle, it is V that is equal 
to c / n, and not υ.  It is true that one can consider water to be a less dispersive medium 
for which υ = V, approximately, in the visible spectrum.  However, there is another 
objection: We have no reason to assume that the quantity of motion of the light corpuscle 
is the product of the same constant by its velocity in both media.  Indeed, in vacuo, it has 
the value W υ / c2, with υ equal or close to c. From our fundamental postulates, in a 
medium of index n, it can preserve the same value only if one has: 
 

2

W

c
υ  = 

( )

W dv

c d nv
 = ( )

h
nv

c
,  W = hv, 

 
which implies the form: 

n2 = 1 + 
2

A

v
 

for the dispersion equation. 
 The integration constant A must be negative, moreover, in order for the velocity υ to 
be less than c, and as a result, that dispersion law will imply a phase velocity that is 
greater than c.  In general, it is not applicable under the usual conditions, and in 
particular, it is not applicable to water in the visible spectrum, because the index will then 
be greater than unity. 
 In summary, the only correct general form for de Maupertuis’s principle seems to be: 
 

B

A

hv
n dl

c
δ ∫  = 0. 

 
That cannot be in conflict with wave optics, since it is identical to Fermat’s principle. 
 
 
 4. Motion of a quantum in a refringent medium. – Suppose that a refringent 
medium is homogeneous and isotropic, and its index n varies as a function of frequency 
according to a known law.  The motion of a quantum of light in that medium is rectilinear 
and uniform.  From our hypothesis, the energy, quantity of motion, and velocity are given 
by the three relations: 
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W = hv, g = 
hv

c
, υ = 

( )

dv
c

d nv
. 

 
As we just saw in the preceding paragraph, one will not have: 
 

g = 
2

W

c
v , 

 
in general, which would be true in vacuo. 
 One can compare the motion of the quantum in the refringent medium to that of an 
electron along the axis of an electrically-charged hollow cylinder.  Indeed, in that case, 
the electron will possess a uniform rectilinear motion, by reason of symmetry, but its 
energy and quantity of motion, rather than being related by the relation: 
 

g = 
2

W

c
v , 

 
as they are in vacuo, will now be related by the relation: 
 

g =
2

W P

c

−
v , 

 
in which P represents the potential of the action that the charge of the cylinder exerts 
upon the electron.  If that charge is positive then it will attract the electron, and P will be 
negative; otherwise, P will be positive. 
 Return to the quantum in the refringent medium.  It will be subjected to actions of an 
unknown nature as a result of the material particles of the medium, which will be in 
equilibrium, in the mean, due to the homogeneity of the medium.  The motion must then 
be uniform and rectilinear, but the moving body must be subject to a sort of mean 
potential P  that is due to the action of material particles.  One might then be tempted to 
write: 

g = 
2

W P

c

−
v , 

 
which amounts to defining P  by the relation: 
 

P = W − 
2c g

υ
. 

 
Now, the magnitudes W, g, and υ are defined as functions of the wave quantities, and one 
will get: 

 P  = 
2

1
c

hv
Vυ

 
− 

 
 = 1

cn
hv

υ
 − 
 
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  = 
( )

1
d nv

hv n
dv

 − 
 

= 
2 2

2

( )
1

d n v
hv

dv

 
− 

 
. 

 
 Suppose that the dispersion of the medium obeys the Lorentz relation: 
 

n2 = 
2 2

i

i i

a

v v−∑ + 1, 

 
in which the ai are constants, and the vi are the resonant frequencies of the material 
elements.  One will easily find that: 
 

2 2

2

( )d n v

dv
 = 1 + 

2

2 2 2( )
i i

i i

a v

v v−∑ , 

and as a result: 

P  = − 
2

2 2 2( )
i i

i i

a v
hv

v v−∑ , 

 
so P  will be proportional to hv (which is quite natural) and essentially negative.  
Furthermore, that potential will grow considerably when v approaches the critical 
frequencies vi , although one cannot nonetheless say that it will become infinite when v = 
vi , because the Lorentz formula, in the form that was written above, would no longer be 
exact then. 
 One can then say that, in a certain sense, the quantum is subject to an attractive action 
that is due to the material particles and whose value is especially large in the 
neighborhood of the absorption zones.  That is one very interesting way of envisioning 
the question of refringent media (8). 
 

__________ 
 

                                                
 (8) On that subject, see also, L. BRILLOUIN, “Les tensions de radiations, leur interprétation en 
Mécanique classique et en Relativité,” J. de Phys. (1925), pp. 337. 



 
CHAPTER XI 

 
THE COMPTON EFFECT  

 
__________ 

 
 

 1. Collision of an electron with a quantum of light. – 2. Collisions between atoms of radiation. 
 
 
 1. The collision of an electron with a quantum of light. – We have seen how the 
Compton Effect can be attached to diffusion with no change in wave length.  When the 
diffusing center responds to the reaction that it exerts upon the quantum, one can say that 
the two dynamical elements collide, in the broader sense of the word.  We do not also 
know the manner by which we can represent the mutual interaction of those elements in 
detail, but we do have a guide that has, in short, always proved itself: viz., the principles 
of conservation of energy and quantity of motion. 
 In order to obtain a formula that is more general than the one that H. A. Compton 
originally found, I will consider the collision of a quantum with a moving electron.  Take 
the x-axis to be the original direction of motion of a quantum whose initial frequency is 
ν1 , and let the y and z axes be perpendicular to each other in a plane that is normal to Ox 
and passes through the point at which the collision occurs.  The direction of the velocity 
β1 c of the electron before the collision is defined by the direction cosines a1, b1, c1, and 
we let θ1 denote the angle that it makes with Ox in such a way that a1 = cos θ1 .  After the 
collision, the quantum of diffused radiation of frequency ν2 propagates in a direction 
whose direction cosines p, q, r make an angle of ϕ with the initial velocity of the 
electron: 

(cos ϕ = a1 p + b1 q + c1 r), 
 
and the angle θ with Ox (p = cos θ).  Finally, the electron will possess a final velocity β2 
c with direction cosines a2 , b2 , c2 . 
 The conservation principle gives us four equations, namely: 
 

 hν1 +
2

0

2
11

m c

β−
 = hν2 +

2
0

2
21

m c

β−
, 

 

 0 11
12

11

m ch
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c

βν
β

+
−
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m ch
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c

βν
β

+
−

, 

 

 0 1
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m c
b

β
β−
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βν
β

+
−
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 0 1
12

11

m c
c

β
β−

 = 0 22
22

21

m ch
r c

c

βν
β

+
−

. 

 

 Eliminate a2 , b2 , c2 , and b1 ; with Compton, set 1
2

0

h

m c

ν
= α.  One will get: 

 

ν2 = 1 1
1

2 2
1 1

1 cos

1 cos 2 1 sin
2

β θν θβ ϕ α β

−

− + −
. 

 
If the electron is found to be at rest at the moment of collision then one will get the usual 
Compton formula: 

ν2 = 1
2

1

1 2 sin
2

ν θα+
, 

 
which was confirmed by experiment brilliantly.  However, the general formula presents a 
special interest because it contains both the Compton Effect and the Doppler Effect.  In 
order to see that, set α = 0, which amounts to neglecting the Compton Effect.  What will 
remain is: 

ν2 = 1 1
1

1

1 cos

1 cos

β θν
β ϕ

−
−

. 

 
 It is easy to verify that the change of frequency that is given by the formula is indeed 
the one that is predicted by the classical theory by considering the electron to be a 
moving resonator with a constant velocity β1 c.  We could have expected that because if 
the Compton Effect is neglected then the diffusion will take place in a system that is 
linked with the electron under the action of a fixed center, and as a result, with no change 
in wave length. 
 One can pose the following question: 
 
 Can there be a collision between a quantum and an electron such that there will be 
no diffused quantum after the collision, since the atom of radiation has been absorbed by 
the electron in some way? 
 
 The preceding formulas show directly that this is impossible.  Indeed, in the contrary 
case, one would have to be able to verify the conservation equations after setting ν2 = 0.  
Now, from the formula that was obtained, that would imply the condition that β1 cos θ1 = 
1, which is an unrealizable condition, since β1 is necessarily less than unity. 
 The same conclusion can be reached along a different path.  Indeed, we can write the 
conservation relations in an arbitrary Galilean system.  We choose a system in which the 
electron will be at rest after the collision, and write down that there is conservation of 
energy: 
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hν +
2

0

21

m c

β−
= m0 c

2. 

 
Now, that relation cannot be satisfied for any value of ν and β, since the left-hand side us 
necessarily larger than the right-hand side. 
 Experiments have shown that for a given exciting frequency, the Compton Effect will 
be less noticeable as the diffusing element becomes heavier.  That raises the difficult 
question of knowing the moment at which the binding energy of an intra-atomic electron 
is small enough in comparison to that of the incident quantum that one can regard the 
electron as free.  Our knowledge of the nature of intra-atomic coupling does permit us to 
answer that question. 
 Along the same line of ideas, one finds an explanation that H. A. Compton gave for 
an auxiliary phenomenon that was pointed out by Duane and his collaborators (who have 
rejected the existence itself of the Compton Effect for a long time); that explanation has 
no place here, since the Duane effect remains highly doubtful. 
 
 
 2. Collisions between atoms of radiation. – Let us examine another very curious 
question: Can two quanta of light exchange energy under a collision; in other words, can 
their frequencies change as a result of a collision?  Experiments have shown nothing 
similar to that, and such a phenomenon is entirely foreign to classical theories.  In the last 
part of this book, I will show that as a result of the work of Bose and Einstein, as well as 
my own, it is legitimate to consider radiation to be a gas composed of atoms of light.  
Some statistical arguments, when applied to our wave concepts, will lead us to Planck’s 
law, but they will not show us how the mechanism by which that distribution of quanta 
over the various values of energy is found to be realized and maintained.  It seems very 
tempting to suppose that equilibrium results from the exchanges of energy and quantity 
of motion between quanta due to their mutual interaction, viz., their collisions, in the 
most general sense of the word. 
 Perhaps it would be interesting to study that type of collision a little. 
 It will be easy to solve the general problem of the collision of two quanta of different 
frequencies as we did for the Compton Effect. 

 
A′ M′ 

B′ 

A 

M 

B O 

 
Figure 9. 

 
 In order to not increase the number of formulas, I shall content myself to envisioning 
a very simple case.  Suppose that one makes two monochromatic sheaves of the same 
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frequency cross at a right angle with the aid of collimators, although there is not 
requirement that they should be coherent.  Let us represent those two sheaves 
schematically by straight lines AB and A′B′ (Fig. 9) that cross at O. 
 Observe the diffused light at the point O in the direction OM that bisects the angle 
�BOB′ , if it exists.  If one quantum is diffused along OM as a result of a collision then the 
other quantum will be diffused along OM′.  Let ν be the initial frequency, while ν1 and ν2 
are the frequencies of the quanta that are diffused towards M and M′, resp.  The 
conservations equations are written: 
 
 hν1 + hν2  = 2hν, 
 

 1 2h h

c c

ν ν−  = 2
h

c

ν
cos 45o ; 

hence: 
 ν1 = ν (1 + cos 45o) = 1.7 ν, 
  ν2 = 0.3 ν. 
 
 If the wave length of the sheaf of light that is employed is λ = 0.68 µ then the 
observed radiation at M will correspond to λ1 = 0.68 / 1.7 = 0.4 µ.  Upon viewing the 
point at which two red sheaves cross, one will see violet light.  That would be a beautiful 
phenomenon!  I do not know if it exists or if it is observable in this case, but if is detected 
someday then its place in the set of new theoretical viewpoints on radiation will be quite 
distinguished. 
 

__________ 
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CHAPTER XII 
 

KINETIC THEORY OF GASES  
________ 

 
 

 1. Some formulas from statistical thermodynamics. – 2. Maxwell’s law. – 3. Free energy and entropy 
of a perfect gas. – 4. The light gas. 
 
 
 1. Some formulas from statistical thermodynamics. – Boltzmann was the first to 
show that the entropy of a gas in a well-defined state is the product of the logarithm of 
the probability of that state with a constant k – namely, Boltzmann’s constant – that 
depends upon the choice of temperature scale.  As one knows, one will arrive at that 
conclusion by analyzing the collisions of atoms under the hypothesis of a completely-
disorganized state of agitation.  Today, as a result of the work of Planck and Einstein, one 
prefers to consider the relation S = k log P to be the definition itself of the entropy in the 
system.  However, one must make the meaning of P more precise.  The mathematical 
probability of a given macroscopic state for a system is, by definition, the quotient of the 
number of different microscopic states that correspond to that macroscopic state by the 
total number of possible states.  It will then be a fractional number, and one cannot 
identify it with P, since entropy is an essentially positive quantity.  One agrees to identify 
P with the numerator of the preceding fraction, and that definition of the “thermodynamic 
probability,” which still contains some degree of arbitrariness, is justified by the 
exactness of these consequences.  We adopt it and infer the analytical expressions for 
some thermodynamics quantities by a proof that has the advantage of being just as valid 
when the sequence of possible states is discontinuous as its is in the opposite case.  
Statistical thermodynamics, for which we shall give the formula, corresponds to the 
classical viewpoint, moreover, and we shall have to develop another one in the following 
chapter that is more general. 
 Consider N objects that one can distribute arbitrarily among m “cells,” whose 

probabilities are assumed to be all equal a priori.  A certain macroscopic state of the 
system is realized by placing n1 objects in cell number 1, n2 objects in cell number 2, etc.  
If one permutes a certain number of objects that belong to different cells then one will get 
a macroscopic state that is identical to the previous one, but microscopically different.  It 
will then result that the thermodynamic probability of the global state that is defined by 
the numbers n1, n2, … is: 
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P = 
1 2! !n n ⋯

N
. 

 
 If N and ni are large numbers then Stirling’s formula will give the entropy as: 

 

S = k log P = k N log N − 
1

log
m

i i
i

k n n
=
∑ . 

 
 Each cell corresponds to a value of a certain function ε that we will call the energy of 
an object that is placed in that cell.  Imagine a modification of the distribution of objects 
among the cells that is restricted by the condition that it must leave the sum of the energy 
invariant.  That modification will vary the entropy by: 
 

δS = −
1

log
m

i i
i

k n nδ
=

 
 
 
∑  = −

1 1

log
m m

i i i
i i

k n k n nδ δ
= =

−∑ ∑ , 

 
with the adjoint conditions: 

1

m

i
i

nδ
=
∑ = 0 and 

1

m

i i
i

nε δ
=
∑ = 0. 

 
 The condition δS = 0 will be verified when the entropy is a maximum.  By reason of 
the conditions to which the δni are subject, one must then have: 
 

1

[log ]
m

i i i
i

n nη β ε δ
=

+ +∑ = 0, 

 
for any δni .  The coefficients η and β are undetermined coefficients. 
 The most probable distribution, which is the only one that is observable in practice, is 
then governed by the law: 

ni = ie βεα − . 
 
 The entropy of the system that corresponds to that most-probable distribution, which 
coincides with its thermodynamic entropy, is given by: 
 

S = k N log N − 
1

[ (log )]i

m

i i
i

k e nβεα β ε−

=
−∑ , 

or, since: 

1

m

i
i

n
=
∑ = N, 

1

m

i i
i

nε
=
∑ = total energy E. 

 

S = k N log 
α
N

+ k β E = k N log 
1

i

m

i

e βε−

=
∑ + k β E. 
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 In order to identify β with a thermodynamic quantity, we will employ the classical 

relation 
1

T
= 

S

E

∂
∂

.  Hence: 

1

T
= 

S

E

β
β

∂ ∂
∂ ∂

= − 1

1

i

i

m

i
i

m

i

e
d d

k kE
dE dE

e

βε

βε

ε
β β

−

=

−

=

+
∑

∑
N + kβ = kβ, 

 

β = 
1

kT
. 

 
 It is interesting to also calculate the free energy, which is a function whose 
importance is well-known.  One will find that: 
 

F = E – TS = − kN T log 
1

i

m

i

e βε−

=
∑ . 

 
 The mean value of the free energy per object is then: 
 

F = − k T log 
1

i

m

i

e βε−

=
∑ . 

 
 Now that we are endowed with these general formulas, we can study some special 
cases. 
 
 
 2. Maxwell’s law. – Let us study the case of a perfect gas that is enclosed within a 
container with fixed walls that is removed from all external influences.  The N molecules 

of the gas will play the role of the objects in the general theory, and one must examine 
the most probable distribution of them over cells of equal probability.  But, how does one 
choose those cells? 
 The dynamical state of each molecule is determined by its coordinates x, y, z and 
Lagrange momenta p, q, r.  Upon choosing the six preceding quantities to be rectangular 
coordinates, one will construct a space that has been given the name of extension-in-
phase ever since Gibbs.  Liouville’s theorem, which is deduced from Hamilton’s 
equations in relativistic mechanics, as in classical mechanics, will permit one to take the 
elements of the extension-in-phase that are equal to dx, dy, dz, dp, dq, dr to be the cells of 
equal probability, with the aid of the ergodic hypothesis.  We further remark that these 
equal elements must not be considered to be infinitely small in the strict sense, since 
otherwise the ni would not be very large, and Stirling’s formula would not be applicable.  
Those elements are then very small in comparison to the quantities that are accessible to 
measurement, but nonetheless contain a very considerable number of molecules. 
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 Consider one of the cells that is determined in that way.  Let w denote the kinetic 
energy of a molecule of the cell, let vi = βi c be its velocity, and let gi be its quantity of 
motion.  One will have: 

εi = 
2

0

21 i

m c

β−
≡ m0 c

2 + w, gi = 0

21
i

i

m v

β−
. 

 
 Let V denote the total volume that is occupied by the gas and look for the number of 

cells for which the kinetic energy is found between two very close limits w and w + dw.  
That will obviously be: 
 

w dw

w
dp dq dr

+

∫V = 24
w dw

w
g dgπ

+

∫V  = 2
04 (1 ) ( 2)m c dwπ α α α+ +V  

 
up to a constant factor, when one sets α = w / m0 c

2. 
 The general formula for the canonical distribution will then show that the number of 
molecules that are contained in these cells is: 
 

nw dw = const. 2 /
04 (1 ) ( 2) w kTm c dweπ α α α −+ + V . 

 
 In all of the usual cases, that formula will simplify, since the kinetic energy of the 
molecules will always be small with respect to the internal energy m0 c

2, and one can 
neglect a in comparison to unity.  What will then remain will be: 
 

nw dw = const. 3/ 2 /
04 2 w kTm w e dwπ −

V . 

 
 The constant is determined upon writing down that the total number of molecules is 
N.  One will then get Maxwell’s celebrated law: 

 

nw dw = /
3/ 2

4
2

(2 )
w kTe w dw

kT

π
π

−N
. 

 
 
 3. Free energy and entropy of a perfect gas. – The general formula: 
 

F = − k N T log /

1

i

m
kT

i

e ε−

=
∑  

 
will, in principle, permit one to calculate the free energy when the energy and entropy are 
deduced from the classical relations: 
 

S = − 
F

T

∂
∂

,  E = F – TS. 
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 However, the calculation of the sum Σ demands certain precautions that would be 
pointless in the deduction of Maxwell’s law.  First of all, one must introduce the finite 
value ω of the elementary domains in the extension-in-phase by taking the expression: 
 

w dw

w
dp dq dr

ω
+

∫
V

 

 
for the number of energy cells that are found between w and w + dw. 
 However, that will not suffice.  One will be tempted to set: 
 

/

1

i

m
kT

i

e ε−

=
∑ = / kTe dp dq drε

ω
+∞ −

−∞∫
V

. 

 
 Now, as Planck has shown, that result would not be exact.  In order to arrive at the 
correct formulas, one must appeal to an argument that has since been criticized by 
Ehrenfest.  Here are the broad points of that argument: 
 Imagine N exemplars of the same gas, and represent the state of one of the exemplars 
by a point in a 6N-dimensional space.  The thermodynamic free energy of the perfect 

must be the mean value of the free energies of the N gases – i.e., it is given by the 
formula: 

F = − k T log /

1

i

m
kT

i

e ε−

=
∑ , 

 
when applied to the set of N gases. 
 The integral of /i kTe ε− , when it is extended over all of 6N-dimensional space, will be 

equal to the product of N sextuples of integrals in six-dimensional space.  If one confines 

oneself to writing: 

/

1

i

m
kT

i

e ε−

=
∑ = /1 kTe dx dy dz dp dq drε

ω
+∞ −

−∞

 
  
∫

N

 

 
then one will get back to the imprecise formula.  However (and this is a very delicate 
point in Planck’s argument), if one exchanges the coordinates x, y, z, p, q, r of the two gas 
molecules then one will get a new representative point in 6N-dimensional space, whereas 

by reason of the absolute identity of the molecules, the two states will be indiscernible, 
even from the microscopic viewpoint.  Since the number of possible permutations of the 
molecules is N!, the result that is obtained upon extending the integration over the entire 

6N -dimensional space must be divided by N!, and Planck thus obtained: 

 

 /

1

i

m
kT

i
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  = / kTe dx dy dz dp dq dr
e ε

ω
+∞ −

−∞

 
  

∫
N

N
. 

 
 Planck’s argument is not entirely convincing, but the result is surely exact.  We shall 
adopt that result for the moment, although in the following chapter we shall demand to 
know whether a simpler interpretation does not exist.  We effortlessly obtain: 
 

F = − kN T log / kTe dx dy dz dp dq dr
e ε

ω
+∞ −

−∞

 
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∫
N
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ω
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N
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E = F + TS = N m0 c
2 + 

3

2
N kT. 

 
 These expressions contain no undetermined constants, except for the quantity ω, 
whose dimensions are those of the cube of an action.  Adopting the simplest hypothesis, 
Planck set ω = h3.  The formulas that are obtained in that way have been confirmed by 
measuring the constants that enter into the equilibrium of a gas in its condensed phase 
(i.e., chemically constant). 
 
 
 4. The gas of light. – The corpuscular theory of radiation will necessarily lead one to 
consider blackbody radiation in equilibrium at a temperature T to be a true gas of atoms 
of light.  We have already seen that this hypothesis explains the radiation pressure that 
the enclosure experiences quantitatively. 
 According to our usual custom, we attribute an extraordinarily small proper mass to 
the quantum of light, since the atoms of blackbody radiation will have speeds that are 
extremely close to c.  Nevertheless, the interval of speeds c – ε to c will correspond to all 
values of energy from zero to essentially infinity.  In order to obtain the distribution of 
energies, we take the general formula that gives nw dw and neglect unity in comparison to 
α, which is very large.  Finally, we remark that the kinetic energy w of an atom of 
radiation is approximately equal to its total energy hν.  Therefore, one will have: 
 

nw dw = nν dν = const. 2 2 /
3

4 h kTh e
c

νπ ν −
V h dν. 

 
 The quantity of energy per unit volume that corresponds to the interval of frequencies 
ν, ν + dν will then be: 
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nν dν = 
n dν ν
V

hν = const. 4 3 /
2

4 h kTh e d
c

νπ ν ν− . 

 
 One will recognize immediately that we have arrived at Wien’s law of radiation here, 
which has been verified by experiment for large values of hν / kT. 
 The calculation of the free energy will provide us with the exact value of the 
numerical coefficient.  But that brings with it a new minor complication!  Unlike the ideal 
molecule in the theory of gases, the atom of radiation is not isotropic; one must take its 
polarization into account.  The oscillating vector that is coupled with the quantum is 
always normal to its velocity, but its orientation around the direction of motion is 
arbitrary.  We can draw a vertical plane π through the position of each quantum that 
contains its velocity and another one π′ that also contain it and is normal to π.  If we 
suppose that each of N atoms of light is polarized in the plane π then we will establish a 

particular property that favors the vertical directions, which is incompatible with the 
isotropy of blackbody radiation, whereas we will get a statistically exact representation 
upon supposing that N / 2 are polarized in their π-plane, while N / 2 are polarized in their 

π′-plane.  That device, whose meaning will become clearer in the next chapter, will 
permit us to treat each of the two groups of N / 2 atoms as if they were molecules with 

spherical symmetry, because the dynamical state of each of their constituents is 
determined uniquely by its coordinates and momenta.  Since free energies are additive 
quantities, one will get: 
 

 F  = − 2k T log 
/ 2

/1

( / 2)!
kT dx dy dz dp dq dr

e ε

ω
− 

  
∫

N

N
 

  = − N k T log /2 kTe dxdy dz dp dqdr
e ε

ω
− 

  
∫

N
 

  = − N k T log 
3

/ 2
3

8 h kTeh
e d

c
νπ ν ν

ω
− 

 
 

∫ V
N

 

  = − N k T log 3 3
3

8
2

e
k T

c

π
ω

 
 
 

V

N
. 

 
 Now, it will suffice to cast one’s eyes on the expression for nw dw in order to see that 
N is necessarily proportional to T 3.  Then set: 

 
N = A k3 T 3. 

 
 On the other hand, one will also see that the total energy: 
 

E = 
0

u dν ν
+∞

∫ V  = N 3kT = 3A k4 T 4. 
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 One will then find the Stefan-Boltzmann law, which one can write E = σ T 4 V, upon 

setting σ = 3A k 4 / V.  A purely-classical thermodynamic argument leads to the well-

known formulas: 

log 3 3
3

16 e
k T

c

π
ω

 
 
 

V

N
 = 1 

or 

N = 
3

16

c

π
ω

k3 T 3 V. 

 
 That determines the constant in the expression for nw dw.  One will easily find that: 
 

nw dw = 
3

/ 2
3

8 h kTh
e d

c
νπ ν ν

ω
−V

, 

and as a result, one will find: 

nν dν = 
4

/ 2
3

8 h kTh
e d

c
νπ ν ν

ω
−  

for the energy density. 
 It suffices to set ω = h3 to get Wien’s law in its entirety. 
 We have arrived at some interesting results by purely dynamical methods then.  
However, if we wish to explain the properties of radiation as we would in the theory of 
gases, properly speaking, then Planck’s hypothesis would be justified only by its success.  
On the other hand, we have only been able to prove Wien’s law, and not Planck’s law in 
its entirely.  The introduction of wave concepts will make those difficulties disappear. 
 

____________ 
 



CHAPTER XIII 
 

THE NEW THEORY OF GASES 
________ 

 
 

 1. Introduction of waves associated with atoms. – 2. New statistical formulas. – 3. Passing from 
Wien’s law to Rayleigh’s law. 
 
 
 1. Introduction of waves associated with atoms. – We shall seek to complete the 
theory of gases by introducing our fundamental notion that the motion of any atom is 
associated with the propagation of a wave.  If that were true then the vessel that contains 
the gas could be considered to be traversed in every direction by plane waves of all 
frequencies, and those plane waves can even be considered to be homogeneous because 
we have seen that if one confines oneself to studying an ensemble of material points 
without being preoccupied with the structure of the waves that are associated with each of 
them then it will suffice to keep the phase factor.  Hence, both a material gas and 
blackbody radiation can be imagined to be ensembles of corpuscles in totally 
uncoordinated motion or ensembles of waves of all frequencies with an isotropic 
distribution.  However, upon choosing the wave picture, we shall be able to specify and 
complete the results that the corpuscular picture provided us with in the preceding 
chapter. 
 First of all, as in the Jeans theory of radiation, we will be led quite naturally to 
consider the waves that are in resonance with the dimensions of the container to be the 
only stable ones, and therefore, the only physically-observable ones.  We will recover an 
idea here that is completely analogous to the one from which we inferred an 
interpretation for the stability conditions.  Here, as in the Bohr atom, there is a 
discontinuous sequence of possible motions, while the other ones were eliminated by a 
mechanism that is impossible to specify.  In the three-dimensional extension-in-momenta, 
not all positions are therefore possible as representative points for the molecules.  
Furthermore, the possible positions form a very dense set of isolated points. 
 Thanks to that “arithmeticization” of the extension-in-phase, the problem of 
determining the cells can be solved immediately: The representative points must be 
distributed among the various permissible positions.  In other words, the Jeans stationary 
waves play the role of the cells among which the atoms are distributed. 
 As in the usual kinetic theory, we must above all preoccupy ourselves with the 
number of cells that correspond to the values of energy that are found between ε and ε + 
dε, which represents a very small quantity – i.e., a physical infinitesimal.  The total 
energy ε of an atom is related to the frequency of the associated wave by the quantum 
relation, and the energy interval considered will correspond to the frequency interval ε / 
h, ε / h + dε / h.  A well-known argument, which Jeans was the first to propose, gives the 
following value for the number εν dν of stationary waves that are found between ν and ν 
+ dν and are in resonance with a container of volume V: 
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zν dν =
2

4

UV

πγ ν 2 dν V. 

 
γ is equal to 1 if the waves are longitudinal and 2 if they are transverse.  As always, U 
and V are the group and phase velocities, resp.  For the proof of that formula, the reader 
would do well to refer to pages 33 et seq. of the book on quantum theory by Léon 
Brillouin. 
 Let us see what the Jeans formula will give when one applies it to the motion of 
atoms.  For an atom in rectilinear motion with a velocity β c, one will have: 
 

U = β c, V= 
c

β
,  ε = hν = m0 c

2 + w = m0 c
2 (1 + α)  

2
0

w

m c
α
 

= 
 

 

so 

zε dε = zw dw = zν dν = 2
03

4
(1 ) ( 2)m c dw

h

πγ α α α+ + V . 

 
 Now, in the last chapter, when we calculated the portion of the extension-in-phase 
that corresponded to the interval dw, we found: 
 

2
04 (1 ) ( 2)m c dwπ α α α+ +V . 

 
We conclude the following relation from that: 
 

zε dε = zw dw = 
3

w dw

w
dxdy dz dp dq dr

h

γ +

∫ . 

 
 For the spherically-symmetric atoms of an ideal gas, the associated wave will be 
longitudinal, and γ must be equal to 1. One will then see that upon assuming the Gibbs 
viewpoint, everything will happen as if the extension-in-phase were divided into cells of 
magnitude h3.  That is Planck’s postulate, and it has now been justified. 
 
 
 2. New statistical formulas. – In my doctoral thesis, I showed how my ideas would 
lead one to recover Planck’s law for a gas of light.  Almost simultaneously, as a result of 
the work of Bose (9) and Einstein (10), a new statistics has been founded that is in 
profound agreement with my concepts.  I would like to follow the path that Einstein 
indicated. 
 When we previously evaluated the probability of a distribution of objects among 
cells, we assumed that the number of objects that were contained in any of those cells 
could be considered to be very large.  That is what allowed us to use Stirling’s formula. 

                                                
 (9) S. N. BOSE, Zeit. Phys. 27 (1924), pp. 384.  
 (10) A. EINSTEIN, Berl. Acad. (1924), pp. 261; ibid. (1925), 3.  
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 Now, nothing justifies that hypothesis.  In reality, it leads to some difficulties, and 
because of them, Planck had to support his calculations of the free energy – which were 
exact, moreover – with a fragile argument. 
 Here, we shall confine ourselves to supposing that the numbers zε dε and nε dε of cells 
and atoms that correspond to a very small interval dε, resp., are very large, without 
assuming in the process that the number of atoms per cell is very large. 
 Before all else, one must calculate the number of possible distributions of nε dε atoms 
among zε dε cells.  It is given by a formula that was employed by Planck in his original 
theory of blackbody radiation and is equal to: 
 

( )!

( )!( )!

n d z d

n d z d
ε ε

ε ε

ε ε
ε ε

+
. 

 
 The total number P of microscopic states of the gas such that there are nε dε atoms in 
the interval ε, ε + dε will then be: 

P = 
( )!

( )!( )!

n d z d

n d z d
ε ε

ε ε

ε ε
ε ε

+Π . 

 
 By definition, the entropy of the corresponding global state is: 
 

S = k log P = 
0

[( ) log( ) log log )]k n z n z n n z z dzε ε ε ε ε ε ε ε

+∞
+ + − −∫ . 

 
 The most probable distribution is always obtained by writing δS = 0 and taking into 
account the two conditions: 

(A)     
0

n dε ε
+∞

∫ = N,  
0

n dεε ε
+∞

∫  = E, 

 
in which N is the total number of atoms in the gas and E is its total energy, which are 

quantities that must remain constant.  One finds the definition of the most probable 
distribution by the usual methods: 

nε = 
1a bz

z

e
ε

+ −
, 

 
in which a and b are constants that are determined by the conditions (A). 
 When that distribution is realized, the usual thermodynamic entropy will be 
consequently equal to: 
 

 S  = 
0

[( ) log ( ) log log )]a bzk n z n e n n z z dzε ε ε ε ε ε ε

+∞ ++ − −∫  

  = ( )

0
[( ) log (1 )]a bzk a bz n z e dzε ε

+∞ − ++ − −∫  

  = ( )

0
log (1 )]a bzk a bE z e dε ε

+∞ − + + − −
  ∫N . 
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 It is easy for us to relate the constant b to the temperature.  It always suffices to write: 
 

1

T
= 

S db S

b dE E

∂ ∂+
∂ ∂

= ( )
( )0 1

a bz
a bz

zdb db
kE kb k e d

dE dE e
εε ε

+∞ − +
− ++ −

−∫ = kb, 

or 

b = 
1

kT
. 

 
 The main applications of our formulas must be, once more, the case of the perfect 
gas, in the usual sense, and that of the gas of light. 
 For the usual gas, the total energy of the molecule ε = m0 c

2 + w is always very large 
with respect to k T.  The number of atoms whose kinetic energy is found between w and 
w + dw is then: 

nw dw = const. zw /w kTe− dw, 
 
and one will easily recover Maxwell’s law upon replacing zw with its value. 
 In order to get the free energy, start with its definition: 
 

F = E – TS = − a N kT + kT ( )

0
log[1 ]a bz e dε

ε ε
+∞ − +−∫ . 

 
 We have a quantity that is very close to unity under the log sign, which will give us 
the authority to develop it into a series.  That will give: 
 

F = −  a N kT − kT ( )

0

a bz e dε
ε ε

+∞ − +
∫ = − N kT (a + 1). 

 
 Now, the constant a satisfies the condition: 
 

N = ( )

0

a bz e dε
ε ε

+∞ − +
∫ , 

so 

a = log 
0

1 bz e dε
ε ε

+∞ − 
  
∫

N
 

and 

 F = − N k T (1 + a) = − N k T log 
0

be
z e dε

ε ε
+∞ − 

  
∫

N
 

  = − N k T log 3
be dxdy dz dp dq dr

e
h

ε+∞ −

−∞

 
  
∫

N
. 

 
 The expression for the free energy that was given by Planck is also obtained with no 
difficulty. 
 If remains for us to apply the general formula to the gas of light.  However, radiation 
in equilibrium with matter can be compared to a gas in the presence of its condensed 
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phase, and the number N of atoms present is not present a priori.  That results in the 

necessity of suppressing the first equation (A) and setting a = 0. 
 The number of atoms of radiation whose frequency is found between ν and ν + dν is: 
 

nν dν = 
/

1

1h kTe ν −
× zν dν = 

2

3 /

8

1h kT

d

c eν
π ν ν

−
V, 

 
because the waves are transverse here, and γ = 2. 
 The density of the radiant energy then obeys the Planck law: 
 

uν dν = 
3

3 /

8

1h kT

h

c eν
π ν

−
dν, 

 
and the synthesis of the theory of blackbody radiation with the theory of gases is found to 
have been realized completely. 
 It would be easy to calculate some thermodynamics quantities for blackbody 
radiation, but it would pointless to increase the number of formulas. 
 
 
 3. Passing from Wien’s law to Rayleigh’s law. – Planck’s general formula is, as one 
knows, capable of taking on two particularly interesting degenerate forms.  If the quotient 
hν / kT is very large then one will get the law that was proposed by Wien, which will then 
be valid in a certain domain: 

uν dν = 
3

/
3

8 h kTh
e

c
νπ ν − dν . 

 
 On the contrary, if hν / kT is very small then one will revert to the formula that Lord 
Rayleigh deduced from classical concepts: 
 

uν dν = 
2

3

8 k T

c

π ν
dν . 

 
Now, Wien’s law is nothing but another form of Maxwell’s law, as well as Rayleigh’s, 
when one appeals to the notion of homogeneous waves.  Planck’s formula then implies 
both the corpuscular and wave nature of radiation.  Since the day when it was discovered, 
a synthesis of dynamics and optics has become necessary. 
 Statistical equilibrium of the gas of light is realized by the interaction of atoms of 
radiation.  When the number of atoms that is carried by each stationary wave is small 
(i.e., hν / kT is large), the theory of homogeneous waves cannot give an exact 
representation of those interactions; the older kinetic viewpoint will, however, and one 
will have Wien’s law.  On the contrary, if one has a very large number of atoms on each 
stationary wave in the mean then the theory of homogeneous waves will indeed represent 
the interactions, and one will get Rayleigh’s law. 
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 The study of energy fluctuations leads to the same conclusions.  Consider a small 
element of volume τ in the vessel that is filled with radiation.  The mean value of the 
energy that is contained in τ and corresponds to the frequency interval dν is obviously 

u dντ ν .  However, at each instant, the real value of that energy is subtracted from the 

mean value of that variable quantity ε.  A very general thermodynamic argument will 
show that the mean-square of ε will be equal to: 
 

2ε = k T 2
T

∂
∂

(uν τ dν). 

 
 In the domain of validity of Wien’s law, one will get: 
 

2ε = hν (uν τ dν). 
 

 Now, that formula can be recovered by assuming the classical kinetic viewpoint 
uniquely.  Indeed, if an ensemble of points is distributed randomly in a volume that is 
divided into small elements that are equal to τ in such a way that the mean number of 
points per element is n then the calculus of probabilities will show that the mean value of 
the square of the deviation δn will be: 

2nδ = n. 
 Here, one has: 

n =
u d

h
ντ ν
ν

, ε 2 = δn2 (h ν)2, 

and as a result: 
2ε = 2nδ h2ν2 = hν (uν τ dν). 

 
 If one passes to the other limiting case, namely, Rayleigh’s law then one will find 
that: 

2ε = 
2

3

8 k

c

π ν 2 T 2τ dν =
23

2

( )

8

u dc

d
ντ ν

πν ν τ
. 

 
 Calculating the interference between the homogeneous electromagnetic waves of the 
old theory will likewise lead to that formula. 
 Those results confirm our conclusions and clearly show the following result: As a 
result of the interactions of quanta, the hypothesis of the incoherence of atomic motions 
that one assumes to be the basis for the old kinetic theory will cease to be exact when 
several quanta are associated with the same wave.  It was that viewpoint that I developed 
in the presentation of my thesis. 
 

__________ 
 



CHAPTER XIV 
 

COLLISION PROBABILITIES IN A GAS 
_______ 

 
 

 1. Einstein’s proof of Planck’s law. – 2. Collision probabilities. 
 
 
 1. Einstein’s proof of Planck’s law (1917) (11). – The work that I summarized in the 
last chapter is all attached to a fundamental paper by Einstein in which one finds a proof 
of Planck’s law that is founded upon only some general statistical considerations, 
combined with Bohr’s frequency relations. 
 I shall first recall the principle of that proof.  Atoms are systems that are capable of 
taking on a discontinuous sequence of energetic states, and passing from one state to 
another always happens by way of the absorption or emission of radiation.  Naturally, the 
energy emitted or absorbed will be difference between the energy that is contained in the 
atom before and after that transformation, and the corresponding frequency of that 
radiation is equal to that energy divided by h.  In other words, any radiation that is 
emitted or absorbed is equal to hν as a quantity of energy, which is indeed consistent with 
our current corpuscular theories.  With Einstein, consider an ensemble of atoms of the 
same type that is found in a container that is maintained at a uniform temperature T, and 
as a result, it is full of blackbody radiation that is consistent with that temperature.  
Among those atoms, at each instant, there exists a very large number Ni that are found in 
a state of total energy εi , and another very large number Nj that are found in a state of 
total energy εj . 
 During each unit of time, a certain number of atoms passes from the state εi to the 
state εj and conversely.  One can say that there is a certain probability for the passage 
from the state i to the state j per unit time, and the problem is now to evaluate those 
probabilities. 
 Suppose that εi < εj .  The passage i → j can be produced only with the absorption of 
the frequency ν = (εj − εi) / h, so it is natural to make the corresponding probability 
proportional to the density ρ (ν) of surrounding blackbody radiation.  By contrast, the 
passage j → i can be produced spontaneously, and the corresponding probability can 
reduce to a constant that is characteristic of the atom itself: Einstein added a term that 
was proportional to ρ (ν) to that constant, which is a term that he described as negative 
absorption, and we shall see how that term can be interpreted later on. 
 In order to obtain Planck’s law, it will suffice to write down that the number of 
transitions i → j is equal to that of the transitions j → i, which will give: 
 

Ni B1 ρ (ν) = Nj [A + B ρ (ν)] . 
 
 If one assumes the law of the canonical distribution then one must have: 
 
                                                
 (11) Phys. Zeit. 18 (1917), pp. 121.  
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i
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kT

kT

e

e

ε

ε

−

− = /h kTe ν . 

 
 Now, that exponential will coincide with unity for a very large value of T, and on the 
other hand, the term B ρ (ν) will become much more important than A.  The condition of 
equilibrium itself then demands the equality of the constants B and Bi .  Hence, one has 
the relation: 

ρ (ν) = 
/

/

1h kT

A B

e ν −
. 

 

 In order to obtain the desired result, it will suffice to set 
A

B
= 

3

3

8 h

c

π ν
. 

 It is important to make a remark at this point: As several authors have pointed out – 
and notably Lewis – the way that one has written down the equation of equilibrium 
implies a new sort of principle.  Indeed, the usual notion of thermodynamic equilibrium 
does not demand that the transitions i → j during any unit of time must be equal in 
number to the transitions j → i.  It demands only that the numbers Ni and Nj should be 
constant, and thanks to a cyclic process that involves other states than the states i and j, 
one can satisfy the second condition without satisfying the first one.  One can materialize 
that idea by means of a concrete example.  Let an electrical conductor be traversed by an 
electric current, and attribute the phenomenon of the current to the displacement of free 
electrons with respect to the atoms, which are assumed to be fixed.  Two portions of the 
conductor will exchange electrons, with preference given to the exchange in a certain 
direction (since there is a current), and meanwhile the number of electrons in each 
portion will remain constant since the conductor is not electrostatically charged. 
 For my own part, I am tempted to believe, with Lewis, that there is good reason to 
adopt this new equilibrium principle for every reversible process, in particular, and to 
then specify the notion of thermodynamic equilibrium.  I do not see the one objection to 
Einstein’s argument. 
 The term “negative absorption” has been interpreted by the correspondence principle. 
 When one studies the motion of a Planck resonator that is embedded in blackbody 
radiation in a classical fashion, one will find that certain waves of that radiation will 
accelerate the motion of the resonator (i.e., positive absorption), while others will retard it 
(i.e., negative absorption).  The sign of the absorption depends upon the phase difference 
between the motion of the resonator and the wave considered.  In total, the positive 
absorption will prevail over the negative, and there will be a small resultant absorption 
that equilibrates the radiation by acceleration exactly.  That will justify not only the 
introduction of the term in ( )Bρ ν , but also the value 3 38 /h cπ ν  that one attributes to A / 
B.  Those results, which have been extended in various ways, are very interesting, and 
must not be lost from view.  Nevertheless, since they are not further attached to the 
concepts of the present study, and the true meaning of the correspondence principle 
seems even more obscure to me, moreover, I shall not insist upon them. 
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 2. Collision probabilities. – After the discovery of the Compton Effect, Pauli, Jr. (12) 
posed the following question: If one imagines a vessel that is filled with electrons and 
blackbody radiation then what must the probability of collision between quanta and 
electrons be in order that those collisions should not perturb the thermodynamic 
equilibrium? 
 He arrived at a very unpredicted result: The probability of a Compton collision must 
depend, to a certain degree, upon the result of that collision, or more precisely, it must 
depend upon the density of quanta whose energy is equal to that of the quantum once it 
has been diffused.  Einstein and Ehrenfest (13) showed the provenance of that statement 
with the argument that was analyzed above that led to Planck’s law.  Finally, quite 
recently, Jordan (14) generalized the result of Pauli, Jr., by attaching it to the new statistics 
of Einstein and the author. 
 Without following the methods of the preceding work in detail, I shall only make a 
summary presentation that will allow one to rapidly understand the nature of the question. 
 Suppose one has two gases in the most general sense of the word; whether they are 
material gases or blackbody radiation is of no importance.  Each gas corresponds to a 
three-dimensional extension-in-momenta, and the possible positions of the representative 
points of an atom will define a network of isolated points in each of those extensions. 
 Let P1, Q1, … denote the point-cells of the first gas, and let 

1P
n , 

1Qn , … and 
1P

ε , 
1Qε , 

… denote the numbers of atoms and the values of their corresponding energies, resp.  Use 
similar notations for the second gas, but substitute the index 2 for the index 1. 
 We say collisions of the direct kind to mean the ones that make a representative point 
of the first gas pass from the cell P1 to the cell Q1, and simultaneously make a 
representative point of the second gas pass from the cell P2 to the cell Q2 .  Since 
collisions conserve total energy, one must have: 
 

1 2P Pε ε+ = 
1 2Q Qε ε+ . 

 
 The number of collisions between the 

1P
n  atoms in the cell P1 and the 

2Pn  atoms in the 

cell P2 that are produced per unit time is proportional to the product 
1 2P Pn n , and among 

them, a certain proportion of them 
1 2P Pn nα  will belong to the direct kind.  Similarly, the 

number of collisions of the opposite kind per second is 
1 2Q Qn nα ′ .  With the same 

reservations as in paragraph 1, equilibrium will be expressed by the relation: 
 

1 2P Pn nα = 
1 2Q Qn nα ′ . 

 The older statistics sets: 
 

1P
n = 1

/

1
P kT

C e
ε−

, 
2Pn = 2

/

2
P kT

C e
ε−

, … 

 

                                                
 (12) W. PAULI, Jr., Zeit. Phys. 18 (1923), pp. 272; ibid. 22 (1924), pp. 261.  
 (13) A. EINSTEIN and P. EHRENFEST, Zeit. Phys. 19 (1923), pp. 301.  
 (14) P. JORDAN, Zeit. Phys. 33 (1925), pp. 649.  
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 Furthermore, due to the conservation of energy, equilibrium will be realized when α 
= α′.  That is precisely the result of Boltzmann’s classical analysis of collisions in kinetic 
theory. 
 Things will no longer be like that when one adopts Einstein’s statistics.  One must 
then set: 

1P
n = 

1 1
/

1

1P kT
e

α ε+ −
, 

2Pn =
2 2

/

1

1P kT
e

α ε+ −
, … 

 
 The equation of equilibrium will then imply the condition: 
 

α
α

′
= 1 2

1 2

P P

Q Q

n n

n n
= 1 2

1 2

(1 )(1 )

(1 )(1 )
P P

Q Q

n n

n n

+ +
+ +

. 

 
 It is easy to account for the fact that the only acceptable way to satisfy that relation is 
to write: 

α = C
1 2

(1 ) (1 )Q Qn n+ + , α′ = C 
1 2

(1 ) (1 )P Pn n+ + . 

 
 That is Jordan’s general result for the case of two gases, and its extension to the case 
of more than two gases is immediate. 
 We shall show the expression that was obtained for the collision probability will 
account for the earlier results of Einstein and Pauli, Jr. 
 In the case of a material gas, the numbers n will be small compared to unity, which 
must say that the number of cells that are occupied at a given instant is small (at least, 
under the usual conditions).  Therefore, if gas 1 is a material gas of atoms or electrons 
and gas 2 is blackbody radiation then the equilibrium will reduce to: 
 

1 2 2
(1 )P P Qn n n+ = 

1 2 2
(1 )Q Q Pn n n+ . 

 
 Now, for blackbody radiation one will have: 
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if ν and ν′ denote the frequencies of the quantum before and after the collision of the first 
kind, resp.  Upon multiplying the two sides of the equilibrium equation by the same 
factor, one will recover the expression for the direct collision probability: 
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That is the formula of Pauli, Jr. 
 If one assumes that the quantum is absorbed during the collision then a slight 
modification of the preceding argument will easily give: 
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1 2P Pn n = 
1 2
(1 )Q Pn n+ , 

 
or, upon multiplying this by 8πην 3 / c3: 
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That is the equilibrium formula that Einstein wrote out, when one uses our present 
notations. 
 Now that we have obtained these results, what meaning can we attribute to them?  
That is still quite mysterious. 
 Pauli has remarked that his probability formula has the classical theory as its limit. 
 However, the agreement between the classical theory and the new theory in one 
particular case is not sufficient to explain the meaning of the general formulas.  When 
one can neglect the ni in comparison to unity (i.e., the case of material gases and Wien 
radiation), one will recover the probability of the old corpuscular doctrines, but in the 
general case, the collision probability will depend upon the number of atoms that belong 
to the kind that results from the collision.  Certainly that is very difficult to imagine.  Is 
the question perhaps ill-posed?  Is it perhaps a fact that our astonishment comes from our 
habitual refusal to consider the influence of the future upon the present, which is an 
influence that is implied already in the use of the advanced potentials?  We shall 
undoubtedly focus upon that point in the very near future. 
 
 

___________ 
 



SUMMARY AND OVERVIEW  
 
 

 We shall attempt to summarize the main stages that we went through in the book. 
 From my previous work on quanta, I assumed that all forms of energy had an atomic 
structure, and I sought to link each atom with a periodic phenomenon whose frequency is 
determined by the quantum relation. 
 Here, I can make that idea more precise by considering the material point to be the 
center of a system of stationary waves.  From the mathematical standpoint, that amounts 
to the same thing as envisioning the material point as an oscillating source of retarded 
and advanced actions whose superposition will give a stationary state.  When studied by 
an observer in uniform, rectilinear motion with respect to the atom-source, the stationary 
wave will take on a different aspect: Its amplitude will displace with the velocity of 
motion, and always with the same value on the surface of a flattened ellipsoid of 
revolution that is centered on the moving body, which is explained simply by the Lorentz 
contraction. 
 The distribution of phases is much more curious and unexpected: They form wave 
planes that displace with a speed that is greater than that of light and becomes larger as 
the speed of the moving body becomes smaller.  That is, one could say, the main point of 
my theory.  It is derived directly from the Lorentz transformation and the relativity of 
time.  The study of the wave in motion leads one to generalize the quantum relation by 
giving it a tensorial form that couples the energy-quantity of motion tensor of the moving 
body to the two fundamental quantities of the wave: namely, its frequency and phase 
velocity.  As I emphasized in the Preface, one can remark that in all of this theory, the 
wave equation takes the form of a sort of postulate. 
 Since the case of rectilinear motion of a moving body can be studied completely, one 
must attack the variation of its motion in a force field, and one agrees to commence with 
the simplest case: viz., that of the constant field.  Now, two kinds of fields are known 
today: gravitational fields and electromagnetic ones. 
 The essential character of the gravitational field is that the form of the trajectories 
does not depend upon the nature of the moving body – i.e., its mass.  That is why Einstein 
was able to interpret the force of gravitation by means of the curvature of space-time, that 
is, by means of a non-Euclidian form for ds2. 
 On the contrary, in an electromagnetic field, the motion of the charged point depends 
upon the nature of that point, or more precisely, the ratio of its charge to its mass.  To my 
knowledge, there exists no satisfactory explanation for the electromagnetic force in terms 
of the Lorentz formula, and its nature remains mysterious.  Be that as it may, my ideas 
lead naturally to the association of the varied motion of the moving body with the 
propagation of a wave whose frequency is given by the quantum relation.  It would also 
be quite natural to try to make that propagation more precise by extending the tensorial 
relation that was discovered for uniform motion.  I did that already in my thesis, but here 
I attempted to go a bit further.  Upon recalling the idea that the material point is a source, 
one can look for a solution of the wave equation that is valid in the medium that would 
correspond to the solution that was employed in the case of rectilinear motion. 
 That mathematical search is hampered in the case of the electromagnetic field by our 
ignorance of the true nature of that field.  However, in the gravitational case, things seem 
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much easier in theory, and although I have not solved the problem in full generality, I 
hope that more talented geometers might arrive at that solution. 
 I sensed the possibility of finding a solution that would be applicable to the simple 
case of uniform, circular motion with no difficulty.  I believe it to be exact, and it gives a 
concise idea as to what the general solution might be.  It seems quite probable to me that 
one will arrive at a proof of the tensorial quantum relation for the points of the trajectory 
along that route.  An examination of the manner by which one maintains phase agreement 
between the moving body and its wave will support that way of looking at things, and it 
is also confirmed by the simple interpretation that one deduces for the stability 
conditions, which I shall recall. 
 Indeed, the development of atomic theories has proved that among the motions that 
are predicted for the material point by classical dynamics, some of them possess a very 
special stability character, whereas the others are unstable enough that they can be 
considered to be physically unrealizable.  For closed, periodic trajectories, the stability 
condition is obtained by equating the cyclic integral of de Maupertuisian action to an 
integer multiple of Planck’s constant, and the multiple conditions that relate to quasi-
periodic motions are deduced from the single condition of periodic motion; it will then 
suffice to interpret them.  Now, the tensorial quantum relation that is supposed to be valid 
at all points along a trajectory shows that the de Maupertuisian action is proportional to 
the phase difference in the wave that is associated with the motion, and that difference is 
taken along the trajectory.  It then results directly from this that one can equate the 
stability condition to a resonance conditions.  That result already appears in my thesis, 
but here I was able to make it more precise in the case of circular motion the 
mathematical form that I spoke of above as an expression for the associated wave.  One 
will then see that resonance does not take place solely along the trajectory, but also in the 
entire force field.  I think that the same thing will be true in the general case. 
 All of the preceding was solely concerned with constant fields.  If one would like to 
extend the same consideration to variable fields and the dynamics of systems of material 
points then one would first encounter a difficulty that was studied in the beginning of 
Chapter V.  It deserved extra special mention because it is concerned with the 
development of the dynamics of relativity, independently of all my ideas on quanta.  That 
difficulty, which is usually tacitly ignored, is the following one: What one calls the total 
energy of a system of material points is not the sum of the energies of each point when 
one defines them to be the temporal components of the energy-quantity of motion tensor 
at each point, and that is due to the intervention of potential energies.  Hamilton’s 
principle seems to be, in essence, a property of the motion of each material point, and it 
was only by a gimmick that classical mechanics was able to extend to systems of points.  
That defines an essential, delicate distinction of my theory that deserves more attention. 
 The study of waves that are associated with the motions of a set of material points 
would be very interesting and would perhaps bring with it some clarifications on the 
subject of the obstacles that quantum theory meets up with.  I have been able to indicate 
the form of such waves only in the simple case that I studied in my thesis. 
 Upon passing from the dynamics of quanta to the optics of quanta, one will see some 
difficulties being created.  For my own part, I see no reason to attribute only a statistical 
value to the energy principle.   It seems to me that the photoelectric effect and the 
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Compton Effect bring with them some very strong experimental justifications in favor of 
the existence of the quanta that Einstein imagined, following Newton. 
 That hypothesis of granular radiation easily accounts for reflection, the Doppler 
Effect, and radiation pressure.  But then, how does one reconcile that with wave optics – 
i.e., how does one explain interference, diffraction, and diffusion?  I have no pretensions 
of having solved that enigma, but I have been able to introduce a new idea that does not 
figure explicitly in my thesis and now seems essential.  Here is its basic principle: Upon 
studying the waves that are associated with motions in a constant field, one will perceive 
the following fact: One can attribute an index of refraction to each point of the medium 
such that the Fermat paths that are deduced from that index coincide with the possible 
dynamical trajectories.  When the moving body describes one of those possible 
trajectories, the motion of the phase that is associated with it will take place along the 
orbit with a velocity that corresponds to that phase.  Now, if one imagines an infinitude of 
moving bodies that simultaneously describe all of the possible trajectories without 
exerting any influence on each other then one will see that the phase distribution can be 
represented by propagation according to the indicated law with the index of a continuous 
wave with no singularity of the classical type.  We will then arrive at the following 
conclusion, which seems fundamental: Whereas the wave phenomenon that is associated 
with the material point involves an essential singularity, the motion of an ensemble of 
material points can be represented statistically by a continuous wave.  I have indicated 
how one can appeal to that idea in order to reconcile the optics of quanta with that of 
homogeneous waves.  My attempt was hardly satisfactory, but I do believe that it has 
pointed to an interesting avenue to pursue. 
 The theory of associated waves that explains the intervention of quanta in dynamics 
must also explain their intervention in statistical mechanics.  That point was verified in 
my thesis, but I had to employ the classical statistical method and assume a formula that 
was due to Planck and whose correctness I sensed to be true while doubting the argument 
that he appealed to.  Here, I made use of a new statistical method that was inaugurated by 
Einstein, as a result of the work of Bose.  That permitted me to make the arguments more 
rigorous and to arrive at a Planck’s formula without appealing to his argument.  The 
essential result of that study was the following one: The introduction of quanta into the 
theory of gases that leads to an exact prediction of the chemical constant is justified by 
the particular character of the stability of atomic motions whose associated waves are in 
resonance with the dimensions of the vessel.  The last chapter related to collisions 
between units of energy and their probabilities; above all, it has the goal of showing how 
everything else could be understood in that context. 
 
 To summarize, we add some general considerations. 
 In the course of this book, we have glimpsed a new dynamics in which the notion of 
waves plays an important role, but that theory of dynamics cannot by any means be 
regarded as having been defined completely.  For example, in the case of periodic 
motions, it will suffice for me to say: There is stability when a certain resonance 
condition is realized.  One must also explain why the other motions are not stable. 
 It seems that the various portions of the associated wave superimpose upon the 
moving body exert a perturbing action that disturbs the motion that is predicted by 
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ordinary dynamics.  That action will be cancelled if all portions of the wave have the 
same phase. 
 The introduction of that new element that is distinct from the forces in the classical 
sense must undoubtedly lead to a theory of mechanics that is hereditarily discontinuous 
and is analogous to the one that Marcel Brillouin glimpsed some years ago.  When a 
quantum of light follows a curved trajectory in a field of diffraction or interference, it will 
not be subject to a force of classical type, but if one would like to continue to attribute the 
curvature of the trajectory to a certain action that is exerted upon the moving body, and 
that action undoubtedly belongs to the type that we have just imagined.  One will then 
perceive the possibility of a general doctrine that brings about the synthesis of the laws of 
dynamics and optics, which is a doctrine in which the laws of dynamics appear to be 
properties of waves with moving singularities. 
 We now turn to the subatomic domain and envision the simplest case of an atom with 
one electron, while neglecting the motion of the nucleus. 
 If we abstract from the internal state of the nucleus then it will first seem that the state 
of the atom is defined entirely by the motion of the electron.  The manner by which we 
interpreted Bohr’s correspondence theorem (Chap. IV.4) seems to indicate the contrary 
conclusion: The wave state of the atom does not depend solely upon the wave that is 
associated with the present motion of the moving body, but its expression will also 
contain oscillating terms of all emission frequencies that are defined by Bohr’s rule.  That 
idea seems to conform quite well to the present development of atomic theory and 
notably presents a certain analogy with the starting point for the recent work of 
Heisenberg, Born, and Jordan.  Indeed, according to those scholars, the state of a system 
that is quantified with one degree of freedom cannot be expressed with the aid of two 
coordinates, namely, a position and a velocity.  In order to define it, one must envision 
matrices or arrays of oscillating quantities whose frequencies are the emission 
frequencies of the system. 
 Experiments provide us with a monotonically-increasing number of facts about the 
subatomic world, and yet it still remains mysterious.  It is only by means of very bold 
ideas that can perhaps see them clearly, and that is the excuse for the audacious attempts 
that were contained in this book.  Today, as before, following Newton’s beautiful simile, 
we are like children playing on the beach while the ocean of truth extends before us 
completely unexplored. 
 
 

___________ 
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ON 
 

THE RECENT WORK OF SCHRÖDINGER (15). 
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 Since the time when the present work was composed, some very interesting articles 
by Schrödinger (16) in Zürich have appeared, and I shall attempt to summarize the 
essential idea in them. 
 Conforming to the general notions that were developed here, Schrödinger assumed 
that the study of the trajectories of a material point in a constant field must be deduced 
from the study of the sinusoidal solutions of the equation: 
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in which n is the index of refraction that was introduced in Chapters I , II, and III.  We 
ignore the case in which a magnetic field is present, and expressing n as a function of the 
spatial coordinates and energy W.  We easily find that: 
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in which the function F (x, y, z) is the potential energy of the material point in the field at 
the point x, y, z, and m0 is its proper mass.  If one is content with the approximation that is 
realized in classical Newtonian mechanics then equation (A) will take the simplest form: 
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Here, E denotes the energy in the classical mechanical sense – i.e., the sum 1

2 m0 v
2 + F of 

the kinetic and potential energy. 
 The study of sinusoidal solutions of equations (A) and (A′ ) can be carried out in all 
cases that are envisioned by the usual mechanics and celestial mechanics by employing 
the approximation procedures of geometrical optics and one will then arrive at the least-
action principle and the Lagrange equations.  The considerations of Part I in the present 
book will then be valid, and the quantum stability condition for closed orbits will present 

itself in the form i
ip dq∫ = nh. 

                                                
 (15) Note added in proof.  
 (16) Ann. Phys. (Leipzig) 79 (1926), pp. 361 and pp. 489.  
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 However, for motions at the atomic scale (which are precisely the only ones for 
which the quantum conditions are actually interesting), the use of the procedures of 
geometrical optics for the study of the solutions of (A) and (A′ ) will no longer seem 
justified, and the equations of mechanics must no longer be valid, moreover.  That was 
the essential remark that Schrödinger made.  In order to solve the dynamical problem, 
one must then study the solutions (A) and (A′ ) directly.  In particular, the quantum 
conditions must be deduced from that direct study, and no longer from the condition 

i
ip dq∫ = nh.  Schrödinger, with the aid of some delicate mathematical considerations, 

showed that one will thus be led to some results that are in good agreement with 
experiments.  We must confine ourselves to referring the reader to the original papers for 
more details. 
 Therefore, a new theory of mechanics seems to have been constructed for which 
dynamical phenomena have an essentially wave-like nature.  Predicting them by means 
of the Lagrange-Hamilton equations is an approximate process that has exactly the same 
value and limits as the prediction of optical phenomena by means of Fermat’s principle.  
The new mechanics is to the old mechanics (including Einstein’s) what wave optics is to 
geometrical optics. 
 

___________ 
 

 
 
 


