Generalization of Poisson's theorem

By Th. DE DONDER
Presented by H. Poincaré
Translated by D. H. Delphenich

Consider a generalized canonical system:

$$
\begin{equation*}
\frac{d x_{i}}{\sum_{k} \frac{v_{k i}}{v} \frac{\partial H}{\partial x_{k}}}=d t \quad(i, k=1, \ldots, 2 m) \tag{1}
\end{equation*}
$$

in which $v_{k i}$ is the minor of $N_{k i} \equiv \frac{\partial N_{k}}{\partial x_{i}}-\frac{\partial N_{i}}{\partial x_{k}}$ in the skew-symmetric determinant v that is formed from the $N_{i k}$. That determinant will be supposed to be non-zero. The N_{k} and H are functions of $2 m$ variables $x_{1}, \ldots, x_{2 m}$.

The system (1) enjoys the following remarkable properties:
I. It admits the relative integral invariant:

$$
J_{1} \equiv \int \sum_{i=1}^{2 m} N_{i} \delta x_{i}
$$

By virtue of (1), one will have:

$$
\frac{d}{d t} \sum_{i=1}^{2 m} N_{i} \delta x_{i}=\delta\left(H+\sum_{i=1}^{2 m} \sum_{k=1}^{2 m} \frac{v_{k i}}{v} \frac{\partial H}{\partial x_{k}} N_{i}\right)
$$

The expression $\sum_{i=1}^{2 m} N_{i} \delta x_{i}$ is a Pfaff form of class 2^{m}.
II. The square root of v is a Jacobi multiplier of (1).
III. Knowing that a relative integral invariant of class two belongs to a system of $2 m$ equations will permit one to write it in the generalized canonical form.
IV. The characteristic function H is an invariant of the system (1).
V. An arbitrary change of variables $x_{1}, \ldots, x_{2 m}$ preserves the generalized canonical form of equations (1). If $x_{1}^{\prime}, \ldots, x_{2 m}^{\prime}$ are new variables then one will have:

$$
\frac{d x_{i}^{\prime}}{\sum_{k} \frac{v_{k i}^{\prime}}{v^{\prime}} \frac{\partial H^{\prime}}{\partial x_{k}^{\prime}}}=d t \quad(i, k=1, \ldots, 2 m)
$$

in which:

$$
\begin{aligned}
\frac{v_{k i}^{\prime}}{v^{\prime}} & =\sum_{\alpha=1}^{2 m} \sum_{\beta=1}^{2 m} \frac{\partial x_{k}^{\prime}}{\partial x_{\alpha}} \frac{\partial x_{i}^{\prime}}{\partial x_{\beta}} \frac{v_{\alpha \beta}}{v}, \\
H^{\prime} & =H .
\end{aligned}
$$

VI. Poincaré showed $\left.{ }^{(}{ }^{1}\right)$ that any relative integral invariant of order p can be considered to be the sum of an absolute invariant of order p and an exact differential form of order p. Here, $p=1$. One will then find the generalized Jacobi function:

$$
V=V_{0}+\int_{t_{0}}^{t}\left(H+\sum_{i=1}^{2 m} \sum_{k=1}^{2 m} \frac{v_{k i}}{v} \frac{\partial H}{\partial x_{k}} N_{i}\right) d t .
$$

One cannot deduce the general form of the Jacobi equation from it.
VII. By generalizing the process that Poincaré indicated, one can deduce an absolute invariant of order two I_{2}, a relative invariant of order three J_{3}, etc., from J_{1}. They are particularly interesting in context of the Pfaff problem when J_{1} is an absolute invariant.
VIII. Generalization of Poisson's theorem. - If ρ_{1} and ρ_{2} are two invariants of the system (1) then:

$$
\begin{equation*}
\left\{\rho_{1}, \rho_{2}\right\}=\sum_{i=1}^{2 m} \sum_{k=1}^{2 m} \frac{v_{k i}}{v} \frac{\partial \rho_{1}}{\partial x_{i}} \frac{\partial \rho_{2}}{\partial x_{k}} \tag{2}
\end{equation*}
$$

will also be an invariant of (1).
If one replaces the parentheses $\left(\rho_{1}, \rho_{2}\right)$ in the left-hand side of the Poisson identity with the expressions $\left\{\rho_{1}, \rho_{2}\right\}$ then one will no longer get a result that is identically zero. On the contrary, Poincare's new proof $\left({ }^{2}\right)$ extends perfectly to the generalized Poisson theorem.

[^0]IX. The expression (2) is identical to the first mixed differential parameter of the bilinear form:
$$
\sum_{i} \sum_{k} N_{i k} \delta_{1} x_{i} \delta_{2} x_{k}
$$

The second differential parameter $\Delta_{2}(f)$ of that same bilinear form and an arbitrary function f is zero.

[^0]: ${ }^{(1)}$ Poincaré, Les méthodes Nouvelles de la Mécanique céleste, t. III, pp. 14.
 $\left(^{2}\right)$ Loc. cit., t. I, pp. 169.

