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INTRODUCTION 
_____ 

 

 

 Hamilton’s canonical equations have been generalized in several very different ways. Volterra 

(*), while studying hyperspace functions, found a new generalization of those equations and their 

principal properties, as well as the theorem of Jacobi that relates to them. The results that were 

obtained by that profound analyst often supposed that the number of dependent variables x was 

three, and that of the independent variables t was two. I propose to call those equations the 

canonical Hamilton-Volterra equations. 

 Fréchet (**) extended most of Volterra’s results to the case in which the number of variables, 

whether dependent or independent, was arbitrary. He used the parametric form systematically. 

Above all, what Fréchet had in mind was a generalization of Jacobi’s theorem, so his contributions 

are more important. 

 It seems useful to me to make a complete presentation of the theory of the Hamilton-Volterra 

canonical equations and to establish the relationships that exist between Volterra’s beautiful 

research and that of Lie and Poincaré that related to invariants. Please permit me to point out some 

of the new parts in this treatise. The generalized Lagrange equations, as well as the Hamilton-

Volterra canonical equations, have been obtained by starting from the very simple relation (d) 

(nos. 1 and 2): 

1

r dj

dt



 =

  = W . 

 

 Thanks to the theory of integral invariants (***), one can one can immediately deduce a 

generalized relative invariant of the proposed equations from that (no. 6), as well as the property 

that is pointed out in no. 7. In order to make its statement precise and prove the fifth and sixth 

properties (nos. 11 and 12), I have considered a system of equations that I have called the special 

Volterra equations. The seventh property (no. 13) has been added to that group of properties. I 

have indicated (in no. 15) a generalization of the (finite) invariant, a covariant, and a theorem that 

has been used frequently by S. Lie. That generalized theorem shows its utility in the proof of the 

direct Jacobi theorem (no. 19). I have extended the converse of Jacobi’s theorem, which was 

generalized by Volterra and Fréchet (no. 21). 

 A glance at the Table of Contents will clearly indicate the plan of this treatise. 

 

____________ 

 
 (*) V. VOLTERRA, “Sopra una estensione della Jacobi-Hamilton del calcolo delle variazione,” Atti della R. 

Acc. Lincei, Roma, Rendiconti, (4) 6, 1st semester (1890), pp. 127. See also the complete bibliography of Volterra’s 

works on hyperspace functions or Volterra functions in my paper, “Sur les fonctions de Volterra et les invariants 

intégraux,” Bull. de l’Acad. royale de Belgique, Classe des sciences, no. 6, 1906. 

 (**) M. FRÉCHET, “Sur une extension de la méthode de Jacobi-Hamilton, Annali di mat. (3) 11 (1905). 

 (***) TH. DE DONDER, “Étude sur les invariants intégraux (deuxième mémoire),” Rendiconti del Circ. mat. 

Palermo 16 (1902), See no. 60 in that study. 



CHAPTER ONE 
 

Establishing the canonical Hamilton-Volterra equations. 

 

 

 1. Generalized Lagrange equations. – Consider n functions x1, …, xn of r  n independent 

variables t1, …, tr and several arbitrary parameters. The infinitely-small increases that are given to 

the independent variables t1, …, tr will be denoted by dt1, …, dtr , resp., and the increases in the x1, 

…, xn that result will be denoted by: 

  idx
dt

dt




  
ix dt

    
1, ,

1, , .

i n

r

=

=
 

 

 The infinitesimal variations of x1, …, xn that are due to the variations of one of the arbitrary 

parameters will be denoted by x1, …, xn . 

 Consider the functions 
iN  and W of t , xi , ix , and set: 

 

  j  
1

n

i i

i

N x 
=

 ,    = 1, …, r. 

 

 Look for the necessary and sufficient conditions for one to have the identity: 

 

1

r dj

dt



 =

  = W .  

 

 Upon noting that t = 0, we will find that: 

 

1 1

r n
i

i i i

i

dN
x N x

dt


 

 

 
= =

 
+ 

 
  = 

1 1 1

n n r

i i

i ii i

W W
x x

x x






 
= = =

 
+

 
  . 

 

 Upon identifying, we will obtain the necessary and sufficient conditions: 

 

1

,

.

r
i

i

i

i

dNW

x dt

W
N

x



 





=

 
=




 =
 


 

 We will then have: 

j  
1

n

i

i i

W
x

x


=




 , 
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and we say that those r linear forms in x1, …, xn constitute a (generalized) relative invariant (*) 

of the equations: 

1

,

0.

i
i

r

i i

dx
x

dt

W d W

x dt x






 =


=




   − =    


 

 

 Now suppose, with Volterra (**), that W depends upon the 
ix  only by way of the determinants 

of order r, such as: 

1 1

1

1

r r

r

i i

r

i i

x x

x x

  1

1

( , , )

( , , )

ri i

r

d x x

d t t
  

1, , ri i , 

 

in which i1, …, ir represent any combination of the first n whole numbers taken r at a time. That 

number of combinations will be denoted by r

nC  in what follows. 

 Now calculate the / iW x   ; one will have: 

 

i

W

x




 = 1

1 1
, ,

r

r r

k k

k k k k i

W

x







 
  = 

1 1

1 1 1 1

( )

, ,
r

r r

k k

k k k k i

W W

x






 −

− −

 

 
 , 

in which 

1 1

( )

rk k


−

  

1 1 1 1

1 1 1

1 1 1

1 1 1

r r r r

r

k k k k

r

k k k i

x x x x

x x x x

 

 

− − −

− +

− +

  1 1

1 1 1

( , , )

( , , , , , )

rk k

r

d x x

d t t t t 

−

− +

, 

 

and in which 
1 , , rk k

  denotes a summation over all combinations of the n indices 1, …, n taken r 

at a time. 

 The relative invariant can then be written: 

 

j  
1 1

1 1 1 1

1 ( )

1

( 1)
r

r r

n

k k

i k k i k k

W 
 −

− −

+

=


−


  = 0 . 

 

 However, one easily verifies the two identities: 

 

 
 (*) See no. 60 in cited paper: “Étude sur les invariants intégraux.” 

 (**) See the cited paper by Volterra: “Sopra una estensione…” 
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1 1

1 1 1 1

1 ( )

1

( 1)
r

r r

r

k k

k k i k k

d W

dt

 

 


−

− −

+

=

 
−  

  
    

1 1

1 1 1 11

, , ,
( , , ) r

r r

k k

k k r i k k

d W
x x

d t t  −

− −

 
 
  

  , 

 
1 1

1 ( )

1

( 1)
r

r

k k

d

dt

 

 


−

+

=

−   0 . 

 

 The equations that correspond to the invariant j can then be put into the form: 

 

1

1 1

1 1

1 1 1 1

1

1

( , , )
,

( , , )

, , , .
( , , )

r

r

r

r r

k k

k k

r

k k

k ki r i k k

d x x

d t t

W d W
x x

x d t t





−

−

− −


=




   =  
    



 

 

 Those are the generalized Lagrange equations. 

 One will get the classical Lagrange equation upon setting r = 1. Those generalized equations 

were obtained by Volterra and Fréchet in succession, upon starting from a problem in the calculus 

of variations. Fréchet reduced it to the case in which W is a homogeneous function of degree one 

in 
1 1rk k

−
(see below, no. 22). 

 

 

 2. Canonical Hamilton-Volterra equations. – Set: 

 

1 1rk k

W


−




  

1 1rk kp
−

, 

 

and with Volterra we suppose, first of all, that we can solve those r

nC  equations for the 
1 1rk k

−
, 

when they are considered to be r

nC  distinct variables (*). After that change of variables, W will 

become a function of t , xi , and 
1 rk kp ; we let W1 represent that function. We will then have: 

 

1

r dj

dt



 =

  = W1 , 

or 

 

 
 (*) Those 

1 1rk k
−

 satisfy the identities: 

1 1 1 1 1 1

1

1

( 1)
r r

r

i i i i i k i  





 
− + + −

+

=

−   0 . 
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1 1 1 1

1 1

1 ( )

, , , ,

1 1 , ,

( 1)
r r

r

n r

ik k k k i

i k k

d
p x

dt

 

 

 
− −

−

+

= =

 
− 

 
    + 

1 1 1 1

1 1

1 ( )

, , , ,

1 1 , ,

( 1)
r r

r

r n

i k k k k i

i k k

p x  



 
− −

−

+

= =

−    = W1 . 

 

 Now, from the calculation that was performed at the end of no. 1 on an entirely-analogous 

expression, the expression in brackets can be written: 

 

1 1 1 1

1 1

, ,

, , 1

( , , , )

( , , )

r r

r

i k k k k

k k r

d p x x

d t t

− −

−

  . 

 One then concludes that (*): 

 

1 1 1 1

1 1

1 1 11 , , , ,1

( , , , )

( , , )

r r

r r

r r

n
ik k k k

i i k k k k

i k k k kr

d p x x
x p

d t t
 − −

−=

+   = W1 , 

or finally: 

 

1 1 1 1

1 1

1 1 11 , , , ,1

( , , , )

( , , )

r r

r r

r r

n
ik k k k

i k k i k k

i k k k kr

d p x x
x p

d t t
  − −

−=

−    = 
1 1

1

1

, ,
r r

r

i k k k k

k k

W p 
 

− 
 

 . 

 

 Set: 

H  W1 − 
1 1

1 , ,
r r

r

i k k k k

k k

p  , 

so 

1 1 1 1

1 1

1 1

1

, , 1

1

( , , , )
,

( , , )

( , , )
.

( , , )

r r

r

r

i k k k k

k k r i

k k

r k k

d p x x H

d t t x

d x x H

d t t p

− −

−

 
=




 = −
 


 

 

 Those are the canonical Hamilton-Volterra equations. 

 The function H depends upon t1, …, tr, the x1, …, xn , and the r

nC  variables
1 rk kp . It should be 

pointed out that if one would like to give the k1, …, kr all of the values from 1, …, n, respectively, 

then one must set: 

1 rk kp   
1 rk kp    

 

according to whether k1, …, kr and 1k , …, rk  differ by an even or odd number of inversions; here, 

I shall represent the same combination by k1, …, kr and 1k , …, rk . 

 If r = 1 then one will get the canonical Hamilton equations. 

 
 (*) The same verification will be presented again in no. 7 of this treatise. 
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 They were generalized by Volterra for r = 2. Fréchet deduced the parametric form for them for 

an arbitrary r (see no. 22). 

 

 Scholia. – Once more, consider the function: 

 

H  W − 
1 1

1 , ,
r r

r

i k k k k

k k

p  . 

 Upon utilizing the relations: 

1 rk k

W






 = 

1 rk kp , 

one will immediately find that: 

 

H  
1 1

11 , ,
r r

r

n

i k k i k k

i k ki

W
x p

x
  

=


−


  . 

 One will then have: 

1

1

,

.
r

r

i i

k k

k k

H W

x x

H

p


 
=  


 − =

 

 

 

 Upon referring to the generalized Lagrange equations, those equations will take the form of 

the canonical Hamilton-Volterra equations. 

 

 

 3. Another generalization. – Volterra (*) gave another generalization of Hamilton’s canonical 

equations that presents a certain analogy with the preceding one. That is why I will pause for a 

moment to discuss it. 

 Once more, consider the relative invariant: 

 

j  
1

n

i

i i

W
x

x


=




    = 1, …, r . 

of the equations: 

1

,

0.

i
i

r

i i

dx
x

dt

W d W

x dt x






 =


=




   − =    


 

 Now set: 

 
 (*) V. VOLTERRA, “Sulle equazioni differentiali che provengono da questioni di calcolo delle variazione,” 

Rendiconti Acc. R. Lincei, Roma (4), 6, 1st semester (1890), pp. 43. 
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i

W

x




  

ip , 

and suppose, with Volterra, that those equations can be solved for the 
ix . W will then become a 

function of the t , xi , and 
ip ; let W2 denote that function. One will then have: 

 

1 1

r n

i i

i

d
p x

dt



 


= =

   =  W2  

or 

1 1 1

r n r
i

i i i

i

dxd
p x p

dt dt

 

  

 
= = =

−    = 
2

1

r

i iW p x 




=

 
− 

 
 . 

 Set: 

  W2 − 
1

r

i ip x 

=

 , 

so one will have the equations: 

1

,

.

r
i

i

i

i

dp

dt x

dx

dt p



 





=

 
=




 = −
 


 

 

 Volterra found some interesting properties of those equations. 

 

 

 4. Attempt at a further generalization. – One can generalize the equations that were obtained 

in nos. 1 and 2 by starting from the relative invariant: 

 

1

r dj

dt



 =

  = W , 

in which: 

  j  
1 1 1

n r n

i i i i

i i

N x p x  



 
= = =

+  , 

  
ix   idx

dt

, 

 

and one supposes that W is a function of the functional determinants of the xi and 
ix  (of order r) 

with respect to t1, …, tr . However, the canonical equations thus-obtained do not seem to enjoy any 

remarkable properties. 
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 5. Problem of the calculus of variations. – I have shown (*) that any relative invariant will 

correspond to a problem in the calculus of variations. Therefore, recall the relative invariant of 

nos. 1 and 2: 

  j  
1 1 1 1

1 1

1 ( )

1 , ,

( 1)
r r

r

n

ik k k k i

i k k

p x  
− −

−

+

=

−      = 1, …, r, 

with 

1

r dj

dt



 =

  = W1 = 
1 1

1 1 1
, ,

r

r r

k k

k k k k

H
H p

p


−

−

 
− 

  
  . 

 

 One immediately deduces that on any r-dimensional multiplicity Mr that satisfies the canonical 

Hamilton-Volterra equations, one will have: 

 
fold

1 1

r

r

r

M

W dt dt
−

  = 

fold

1

1
r

r r

r

M

dj
dt dt

dt



 

−

=

 
 
 
 . 

 

 Let Tr be the r-dimensional domain (or multiplicity, and taken in the space of t) in which we 

vary the t. Let Tr−1 be the complete boundary. That boundary will not be subject to any variation 

under the variation  that just calculated. The t are all zero, by hypothesis, so it will result that 

the points 
1

( , )
ri k kx p  and 

1 1
( , )

r ri i k k k kx x p p + +  correspond to the same values of t1, …, tr in 

Mr . 

 Let Mr−1 denote the complete boundary of Mr . From the fact that: 

 
fold

1

1
r

r r

r

M

dj
dt dt

dt



 

−

=

 
 
 
  

 

is an r-fold exact differential (in the Poincaré sense), one can transform it into an (r – 1)-fold 

integral (*): 

 1

1
r

r

r

M

dj
dt dt

dt



 =

 
 
 
  

 = 

1

1

1 1 1

1

( 1)

r

r

r

M

j dt dt dt dt

  


−

+

− +

=

−  

 = 
1 1 1

1 11

( )

1 1 1

1 1
r r

rr

n r

i k k i k k r

i k kM

p x dt dt dt dt

 


 
−

−−

− +

= =

    

 
 (*) No. 60 of my cited paper: “Étude sur les invariants intégraux.” 

 (*) Since the x and p are expressed as functions of the t, those integrals will become (r – 1)-fold integrals that are 

extended over Tr−1 . 
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 = 1 1

1 1

1 11

1 1 1

1 1 1 1 1

( , , )

( , , , , )r

rr

n r
k k

i k k i r

i k k rM

d x x
p x dt dt dt dt

d t t t t
 

  


−

−−

− +

= = − +

    

 = 
1 1 1 1

1 11

1

1

, ,
r r

rr

n

ik k k k

i k kM

x p dx dx
− −

−−
=

  . 

 

 If the xi are zero on Mr−1 (in other words, if the boundary Mr−1 is fixed) then one will have: 

 

1 1

r

r

M

W dt dt    0 , 

 

so Mr will be an r-dimensional extremal that is provided by the canonical Hamilton-Volterra 

equations. 

 If the 
1 rk kp  can be determined as functions of x then we can replace Mr and Mr−1 with a 

multiplicity X r and its complete boundary X r−1 , which is taken in the space of the x, and no longer 

in the space of the x and p . It is obvious that Xr will again be an extremal of the problem that 

consists of finding the manifolds on which one will have: 

 

1 1

r

r

M

W dt dt    0 , 

 

when the boundary of that manifold is supposed to be fixed. That is the problem that was the 

starting point for the research of Volterra and the generalizations of Fréchet. We shall return to 

that important problem again (nos. 7, 20, and 21). 

 

 

____________ 

 

 



CHAPTER II 

 

Properties of the canonical Hamilton-Volterra equations. 

 

 6. First property. – The canonical Hamilton-Volterra equations: 

 

( )

( )

A

B

    

1 1 1 1

1 1

1

1 1

, ,

, , 1

1 , ,

( , , , )
,

( , , )

( , , )

( , , )

r r

r

r

r

k k k k

k k r i

k k

r k k

d p x x H

d t t x

d x x H

d t t p

− −

−

−

 
=




 = −
 


 

possess the relative invariant: 

 

j  1

1 1

1 1

1

1 , , 1 1 1

( , , )
( 1)

( , , , , , )

r

r

r

n
k k

i k k i

i k k r

d x x
p x

d t t t t



 


−

−

+

= − +

−   , 

and one will have: 

1

r dj

dt



 =

  = 
1

1 1

, ,

, , , ,
r

r r

k k

k k k k

H
H p

p


 
− 

  
  . 

 

 Conversely, any system of equations that possesses a relative invariant j can be put into the 

form of the canonical Hamilton-Volterra equations. 

 

 The proof of that first property results immediately from nos. 1 and 2. 

 

 

 7. Second property. – Any solution to the canonical Hamilton-Volterra equations will produce 

an r-dimensional extremal to the problem of the calculus of variations that consists of annulling 

the variation: 

1

1 1

, , 1

, , , ,
r

r r

k k r

k k k k

H
H p dt dt

p


 
− 

  
  = 0 . 

 

 Conversely, any extremal of the problem in the calculus of variations that consists of annulling 

the variation: 

1

1

1

, , 1

, , 1

( , , )

( , , )

r

r

r

k k

k k r

k k r

d x x
H p dt dt

d t t


 
+ 

 
  = 0 

 

will be a solution to the canonical Hamilton-Volterra equations. 

 

 The direct property was proved in no. 5. One can verify it as follows: Since the boundary is 

supposed to be fixed and the t are zero, one will have: 
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1

1 1

, , 1

, , , ,
r

r r

k k r

k k k k

H
H p dt dt

p


 
− 

  
  

 = 1

1

1

, , 1

1 , , 1

( , , )

( , , )

r

r

r

n
k k

i k k r

i k ki r

d x xH
x p dt dt

x d t t
 

=

 
+ 

 
   

 = 1 1 1 1 1

1

1 1

, ,

, , 1

1 , , , ,1 1

( , , , ) ( , , )

( , , ) ( , , )

r r r

r

r r

n
ik k k k k k

i k k r

i k k k kr r

d p x x d x x
x p dt dt

d t t d t t
 − −

=

 
+ 

 
    . 

 

 One verifies that the last integral can be written: 

 

  1

1

r

r

dj
dt dt

dt



 =

 
 
 
  , 

 

in which j has the same significance as in no. 6. In order to do that, one verifies the identity: 

 

1

1

1

, ,

, , 1

( , , )

( , , )

r

r

r

k k

k k

k k r

d x x
p

d t t
   1 1

1 1

1 1

1

, ,

1 1 , , 1 1 1

( , , )
( 1)

( , , , , , )

r

r

r

r n
k k i

i k k

i k k r

d x x d x
p

d t t t t dt



   


−

−

−

+

= = − +

−    . 

 

 Since the boundary is fixed, one will have (see no. 5): 

 

  1

1

r

r

dj
dt dt

dt



 =

 
 
 
  = 0 .    Q. E. D. 

 

 Let us move on to the converse property; it was proved in nos. 2 and 5. When we continue the 

verification, we will have: 

 

 1

1

1

, , 1

, , 1

( , , )

( , , )

r

r

r

k k

k k r

k k r

d x x
H p dt dt

d t t


 
+ 

 
  

 

= 1 1 1

1 1 1

1 1

, , , , , , 1

1 , , , , 1 1

( , , ) ( , , )

( , , ) ( , , )

r r

r r r

r r

n
k k k k

i k k k k k k r

i k ki k k r r

d x x d x xH H
x p p p dt dt

x p d t t d t t
   −

=

   
+ + +  

     
   

 

in succession. 

 In the verification that we just carried out, we saw that this integral is: 

 

= 1 1 1 1 1 1

1

1 11

, , ,

, , 1

1 , , 1 , ,, , 1 1

( , , ) ( , , , )

( , , ) ( , , )

r r r

r

r rr

n n
k k i k k k k

i k k i r

i k k i k ki k k r r

d x x d p x xH H
x p x dt dt

x p d t t d t t
  − − −

= =

   
+ + −  

     
    . 
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 One will obtain the canonical Hamilton-Volterra equations upon annulling the coefficients of 

xi and 
1 , , rk kp .       Q. E. D. 

 

 

 8. Third property. – If the function H is independent of t1, …, tr then any solution 
1 , ,( , )

ri k kx p

of the canonical Hamilton-Volterra equations (A) and (B) (no. 6) will give a constant as a result 

when it is substituted in H. 

 

 We must show that the derivative of H with respect to t1 (for example) will be zero when one 

replaces the x and p in H with the solution considered: 

 

 
i

dH

dt
   1

1

, ,

1 , ,1 1

r

r

n
k ki

i k ki i i

dpdxH H H

t x dt x dt=

  
+ +

  
   

 

  1 1 1 1

1 1

, , , ,

1 , , , ,1 1 1 1

( , , , ) ( , , )

( , , ) ( , , )

r r r r

r r

n
k k k k k k k ki

i k k k ki r r

d p x x dp d x xdxH

t dt d t t dt d t t=


+ −


   . 

 

 On the right-hand side, one first looks for the coefficient of 1 , ,

1

rk kdp

dt
, and one sees that it is 

zero. One then seeks the coefficients of 1 , , rk kdp

dt

 ( > 1), and one will again find zero. 

 Therefore: 

  
dH

dt

 = 
H

t




   = 1, …, r . 

 

If the function H is independent of t1, …, tr then one will have: 

 

  
dH

dt

 = 0 .  Q. E. D. 

 

 

 9. Fourth property. – If there exist r

nC  functions 
1 , , ri ip  of t1, …, tr , x1, …, xn that satisfy: 

 

H (t, x, p) = 0 , 

along with the conditions (*): 

 
 (*) These are the necessary and sufficient conditions for: 

   
1 1

1

, ,

, ,
r r

r

i i i i

i i

p x x    i1, …, ir = 1, …, n 

to be an r-fold exact differential (in the Poincaré sense). 
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1 1 1 1

1
, , , , ,

1

( 1) r

r
i i i i

i

p

x

 







− + +

+

=


−


  = 0 , 

 

and if, in addition, there exist n functions x1, …, xn of t1, …, tr that satisfy equations (B) then I say 

that the 
1 , , ri ip  will satisfy equations (A) when one has replaced the x with that solution to (B). 

 

 We shall suppose that r = 2 for simplicity of notation. We then substitute the pik (i, k = 1, …, 

n) in H . By hypothesis, we will have an identity in t and x : 

 

H  0 , 

so 

  
,

lk

l ki lk i

pH H

x p x

 
+

  
   0   i, l, k = 1, …, n . 

 

 However, by hypothesis, the pik satisfy the conditions: 

 

ik il kl

l k i

p p p

x x x

  
− +

  
 0 , 

and since: 

pki  − pik , 

one will deduce that: 

,

ik il

l ki lk l k

p pH H

x p x x

   
+ − 

    
   0 . 

 One has: 

lk

H

p




 − 

kl

H

p




, 

so 

,

ik

l ki lk l

pH H

x p x

 
+

  
   0 . 

 

 Replace the xi with a solution of equations (B) for t1, t2 : 

 

1 1 1 2

( , )

( , )

n n
i k ik

i ki l

d x x pH

x d t t x= =


−

 
   0 , 

which can be written: 

  
1 1 2

( , )

( , )

n
ik k

ki

d p xH

x d t t=


−


   0 .   Q. E. D. 
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 10. Special Volterra equations. – Suppose that H is independent of t1, …, tr and that the 
1 , , ri ip  

are functions of x1, …, xn . The system (A), (B) can be written: 

 

1 2 1

1

, , , ,

1 , ,

( ) ,

( , , )
( ) .

( , , )

r r

r r

r

i i i i i i

i i

r i i

H H
A

p x

d x x H
B

d t t p

 
 − =  


 = −

 

 
 

 

 Let us make a third hypothesis: Suppose that the 
1 , , ri ip  satisfy equations (A) before replacing 

the xi with a solution of equations (B) in terms of t . When those three conditions are fulfilled, I 

will say that the system (A), (B) is a system of special Volterra equations. 

 In the following section, we will see that equations (A) can be put into a form that is more 

advantageous for discovering certain properties of those special equations. 

 

 

 11. Fifth property. – If r = n – 1 and there exist n functions 
1 1, , ni ip

−
 of x1, …, xn , as well as n 

functions xi of t1, …, tr and two arbitrary constants that satisfy the special Volterra equations (A), 

(B), then I say that the n functions 
1 , , ri ip  of x1, …, xn satisfy the condition (*): 

 

1 1 1, , , , ,

1

( 1) n

n
i i i i

i

p

x

 







− +

=


−


  = 0 . 

 

 We once more suppose that r = 2, to simplify the notation. Equations (A) can be written: 

 

, ,

lk ik kl li

l k l ki lk i lk l i k

p p p pH H H

x p x p x x x

      
+ + + + 

       
   = 0 . 

 

 The solution (xi) has the form: 

  xi = xi (t1, t2, C1, C2)   i = 1, 2, 3, 

so 

pik = pik (t1, t2, C1, C2) . 

 

 By virtue of the third property, one will have: 

 

H (x, p)   (C1, C2)  h , 

 
 (*) In other words: The 

1 1, , ni ip
−

 are the coefficients of the (n – 1)-fold exact differential: 

1 1 1 1

1 1

, ,

, ,
n n

n

i i i i

i i

p x x 
− −

−

 . 
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so 

C2 =  (h, C1) . 

 

 Eliminate C2 in order to introduce the constant h : 

 

1 2 1

1 2 1

( , , , ) ,

( , , , ).

i i

ik ik

x x t t C h

p p t t C h

=


=
 

 Suppose that 1 2 3

1 1 2

( , , )

( , , )

x x x

C t t




 0 and solve the first three equations for C1, t1, t2 ; thus: 

1 2 3

1 2 3

( , , , ) ,

( , , , ).

ik ikp p x x x h

H H x x x h

=


 
 

 

 If we replace the xi in H with their values as functions of t1, t2, C1, h then we will have: 

 

H  h , 

 

so the result obtained will be independent of t1, t2, C1 ; hence: 

 
3

1 1

i

i i

xH

x t=

 

 
   0 , 

3

1 2

i

i i

xH

x t=

 

 
   0 , 

3

1 1

i

i i

xH

x C=

 

 
   0 . 

 

 Those three equations, which are homogeneous in 
i

H

x




 (i = 1, 2, 3), imply that: 

i

H

x




  0 , 

 

so H is independent of the xi, i.e., the x will disappear when one replaces the pik in H as functions 

of x. Therefore, before one replaces the x with a solution of equations (B) in terms of t, one will 

have: 

,

lk

l ki lk i

pH H

x p x

 
+

  
   0 . 

 

 The special equations (A) will then become: 
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  ik kl li

l i k

p p p

x x x

  
+ +

  
  0 .  Q. E. D. 

 

 Remark I. – An exact differential 2-form appears under the integral sign of 12 1 2p x x   + 

13 1 3 23 2 3p x x p x x   +  . One can then transform that integral 2-form into a curvilinear integral. 

Set: 

V  1 1 2 2 3 3p x p x p x  + +  , 

so 

  pik  i k

k i

p p

x x

 
−

 
   i, k = 1, 2, 3. 

 Volterra wrote: 

pik  
( , )i k

V

x x




 , 

 

in which V is a Volterra function, of the first degree of simplicity. The pik are then generalized 

partial derivatives. 

 Due to the fact that: 

H  h , 

one will have: 

1 2 3

1 2 1 3 2 3

, , , , ,
( , ) ( , ) ( , )

V V V
H x x x

x x x x x x

   
 

   
 = h . 

 

 Remark II. – It would be pointless to consider the special Volterra equations if one is content 

to prove that one has the identities: 

1 1 1, , , , .

1

( 1) n

n
i i i i

i

p

x

 







− +

=


−


  = 0 

 

in t1, …, tn−1 , i.e., after having replaced the x with functions of t. 

 

 Remark III. – The fifth property easily extends to the case of r = n . One then supposes that the 

solution xi depends upon only one arbitrary constant. Remarks I and II also extend to that case. 

 

 

 12. Sixth property. – If r = n – 1 and there exist n functions 
1 1, , ni ip

−
 of x1, …, xn that satisfy: 

 

H (x, p) = 0 , 
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along with n functions xi of t1, …, tn−1 that satisfy the special Volterra equations (A), (B), then I 

say that the n functions 
1 1, , ni ip

−
 satisfy the condition: 

 

1 1 1, , , , ,

1

( 1) n

n
i i i i

i

p

x

 







− +

=


−


  = 0 . 

 

 That property is closely-related to the previous one. One will again have the identities in x : 

 

, ,

lk ik kl li

l k l ki lk i lk l i k

p p p pH H H

x p x p x x x

      
+ + + + 

       
    0 . 

 

 However, the hypothesis: 

H (x, p) = 0 

implies the identities in x : 

,

lk

l ki lk i

pH H

x p x

 
+

  
   0 . 

 

 One immediately deduces the condition to be proved from the three identities in x : 

 

,

ik kl li

l k lk l i k

p p pH

p x x x

   
+ + 

    
   0 . 

 

 

 13. Seventh property. – If r = n – 1 and if there exist n functions 
1 1, , ni ip

−
 of x1, …, xn that 

satisfy: 

H (x, p) = 0 , 

along with the condition: 

1 1 1, , , , ,

1

( 1) n

n
i i i i

i

p

x

 







− +

=


−


  = 0 , 

 

and if, in addition, there exist n functions xi of t1, …, tn−1 that will yield a solution to equations (A) 

when they are substituted in the 
1 1, , ni ip

−
 then I say that those functions xi are a solution of (B). 

 

 Once more, suppose that r = 2. Substitute the pik in H. We have an identity in x : 

 

H  0 , 

so 

,

lk

l ki lk i

pH H

x p x

 
+

  
   0 . 
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 Upon arguing as in no. 9, one will then deduce that: 

 

ik

l ki lk l

pH H

x p x

 
+

  
  0 . 

 

Replace xi with a solution of equations (A): 

 

, 1 2

( , )

( , )

l k kl

l k lk i

d x x pH

d t t p x

  
+ 

  
  0 . 

It will then result that: 

  
1 2

( , )

( , )

l kd x x

d t t
 = − 

lk

H

p




.    Q. E. D. 

 

 Remark. – If r = n then the preceding property will be modified as follows: If there exists a 

function p of x1, …, xn that satisfies: 

H (x, p) = 0 , 

 

and if, in addition there exist n functions x1, …, xn of t1, …, tn that yield a solution to (A) when they 

are substituted in the p then I will say that those n functions x1, …, xn yield a solution to (B). 

 

 

____________ 



CHAPTER III 

 

Generalization of Jacobi’s theorem. 

 

 14. Review of Jacobi’s theorem. – If V (t, x1, …, xn, a1, …, an) + an+1 is a complete integral 

(*) of the partial differential equation: 

 

1

1

, , , , , ,n

n

V V V
H t x x

t x x

   
−  

   
 = 0 

then: 

  

,

,

i

i

i

i

V
p

x

V
b

a


= 


 =

 

   i = 1, …, n , 

 

in which ai, bi are 2n arbitrary constants, will define a general integral of Hamilton’s canonical 

system: 

( , , )
,

( , , )
.

i

i

i

i

dx H t x p

dt p

dp H t x p

dt x


= − 


 =

 

 

 Conversely, if: 

 
0 0 0 0 0

1 1

0 0 0 0 0

1 1

( , , , , , , , ) ,

( , , , , , , , ) ,

i i n n

i i n n

x x t t x x p p

p p t t x x p p

 =


=
 with 

0 0 0 0 0 0 0

1 1 1

0 0 0 0 0 0 0

1 1 1

( , , , , , , , ) ,

( , , , , , , , ) ,

i n n

i n n

x x t t x x p p

p p t t x x p p

 



 

 

is the general integral of Hamilton’s canonical system that was written above then (**): 

 

0 0( , , , )V t t x x   
1

0
1

( , , )
t n

i

i it

H t x p
H p dt a

p=

 
− + 

 
  

 

will be a complete integral to the partial differential equation: 

 

 

 (*) One supposes that 1

1

, ,

( , , )

n

n

V V

x x

a a

  
  

  


 is non-zero. 

 (**) The expression in brackets was first expressed as a function of t, 0t , 0x , 0p , and then one integrates over t 

from 0t  to t. The additive constant is represented by a here. 
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1

1

, , , , , ,n

n

V V V
H t x x

t x x

   
−  

   
 = 0 . 

 

 The proof of that converse theorem results essentially from the fact that: 

 

  
V

t




 = H (t, x, p) , 

  
V

x




= p . 

 

 One should point out that in view of what one will learn in no. 21, one will also have: 

 

  − 
0

V

t




 = 0 0 0( , , )H t x p , 

  
0

V

x




= 

0p , 

and consequently: 

− 
0 0

0 0
, ,

V V
H t x

t x

  
− − 

  
 = 0 . 

 

 The role of arbitrary constants is played by t, x1, …, xn , here. 

 If one considers a point P in the space of t and x that has the coordinates (t, xi) and a point 0P  

that has the coordinates 0 0

1( , )t x  then one can say that the function V of the point P satisfies the first 

partial differential equation (viz., the Jacobi equation) and that the function V of 0P  satisfies the 

second partial differential equation. 

 Those two equations will become identical in form when one sets: 

 

[ ]
,

[ ]
,

V V P

t t

V V P

x x

 
  


  

  

 

0

0 0

0

0 0

[ ]
,

[ ]
.

V V P

t t

V V P

x x

  
−   


  − 

  

 

 

 That is how one must interpret the generalized derivatives and the generalized Jacobi equation 

in no. 21. 

 

 

 15. Generalized invariant. – Consider an (r – 1)-fold integral: 

 

Ur−1  
1 1 1 1

1 1

fold

, ,

, ,
r r

r

r

i i i i

i i

M x x 
− −

−

−

  
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in which: 

1
( , , )

ri i

U

x x




  1 1 1, , , , ,

1

( 1) r

r
i i i i

i

M

x

 







− +

=


−


 . 

 

 I will say that the 1r

nC −  functions 
1 1, , ri iM

−
 form a generalized invariant of the equations: 

 

1

1

( , , )

( , , )

ri i

r

d x x

d t t
 = 

1 , , ri iX , 

if one has the identities in x : 

1

1 1

, ,

, , ( , , ) r

r r

i i

i i i i

U
X

x x




   0 . 

 

 The 
1 , , ri iX  are functions of x1, …, xn . 

 When r = 1, that definition will coincide with that of (finite) invariant of a system of differential 

equations in one independent variable. We might have supposed that the 
1 , , ri iX  include t1, …, tr . 

However, here we must suppose that the 

1
( , , )

ri i

U

x x




 are independent of t1, …, tr if r > 1. 

 What advantage can one derive from a generalized invariant? Suppose that one knows a 

solution (xi) of the equations: 

1

1

( , , )

( , , )

ri i

r

d x x

d t t
 = 

1 , , ri iX . 

Denote it by: 

  xi = i (t1, …, tr)   i = 1, …, n . 

 

 Those equations define an r-dimensional multiplicity in the space of x. Let Xr−1 and 1rX −
  be 

the complete boundary of Xr . Extend the r-fold integral: 

 

1

1 1
, , ( , , ) r

r rr

i i

i i i iX

U
dx dx

x x




  

 

over that multiplicity Xr . The result obtained will be zero, since that integral can be written: 

 

1

1 1

1

, , 1

( , , )

( , , ) ( , , )

r

r r

i i

r

i i i i r

d x xU
dt dt

x x d t t




 , 

or 

1

1 1

, , 1

, , ( , , ) r

r r

i i r

i i i i

U
X dt dt

x x




 . 
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 Now, the expression under the radical sign is zero by virtue of the definition of a generalized 

invariant. (That expression is zero before replacing the x with the solution considered.) 

 The r-fold integral that we just studied is the symbolic differential d of an (r – 1)-fold integral. 

One will then have: 

 

1

1 1
, , ( , , ) r

r rr

i i

i i i iX

U
dx dx

x x




  = 

1 1 1 1 1 1 1 1

1 1 1 11 1

, , , ,

, , , ,
r r r r

r rr r

i i i i i i i i

i i i iX X

M dx dx M dx dx
− − − −

− −− −

−   = 0 . 

 

 One then has the remarkable equality: 

 

(C)    
1 1 1 1

1 1

, ,

, ,
r r

r

i i i i

i i

M dx dx
− −

−

  = 
1 1 1 1

1 11

, ,

, ,
r r

rr

i i i i

i iX

M dx dx
− −

−−

 . 

 

 Those (r – 1)-fold integrals are taken in one sense or one direction such that the equality will 

be valid, from the standpoint of its sign. The sense or direction of a hyperspace was neatly defined 

by Volterra (*). 

 The equality (C) expresses the generalization of a theorem that is frequently employed in the 

theories of S. Lie. Indeed, if r = 1 and if xi = i (t) represents a solution of: 

 

idx

dt
 = Xi (x1, …, xn)  i = 1, …, n 

 

then any invariant U (x1, …, xn) of those equations will lead to the remarkable equality: 

 

U (x1, …, xn) = 0 0

1( , , )nU x x  , 

 

in which 0

ix  = 0( )i t . Here, the complete boundary that was in question above is composed of the 

two points X and 0X  that have the coordinates (xi) and 0( )ix  in the space of x. 

 One can go even further. Suppose that one has: 

 

1

1 1

, ,

, , ( , , ) r

r r

i i

i i i i

U
X

x x




 =  , 

 

in which  is a non-zero constant. I say that: 

 

Ur−1 = 
1 1 1 1

1 1

, ,

, ,
r r

r

i i i i

i i

M x x 
− −

−

  

 

 
 (*) V.VOLTERRA, “Delle variabili complesse negli iperspazii,” Rendicont Acc. R. Lincei, Roma, 1889. See page 

158. See also no. 25 of the present treatise. 
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is a generalized covariant of the equations: 

 

1

1

( , , )

( , , )

ri i

r

d x x

d t t
 = 

1 , , ri iX . 

 

 Upon reasoning as before and preserving the same notations, we will find that: 

 

(D)   
1 1 1 1 1 1 1 1

1 1 1 11 1

, , , ,

, , , ,
r r r r

r rr r

i i i i i i i i

i i i iX X

M dx dx M dx dx
− − − −

− −− −

−   = 1

r

r

T

dt dt  , 

 

in which Tr represents the r-dimensional multiplicity in the space of t, which is a multiplicity that 

corresponds to the multiplicity Xr in the space of x, thanks to the equations: 

 

xi = i (t1, …, tr) . 

 

 

 16. Lemma. – If the 

1
( , , )

ri i

U

x x




 that are deduced from (*): 

 

Ur−1  
1 1 1 1

1 1

, ,

, ,
r r

r

i i i i

i i

M x x 
− −

−

  

 

depend upon an arbitrary constant a and verify the generalized partial differential equation: 

 

1

, , , , ,
( , , )

r

i

i i

U
H x

x x

 
 
  

 = 0 

 

for any a then the Ur−1 / a , i.e., the 1r

nC −  functions 
1 1, , /

ri iM a
−

  , will form a generalized 

invariant of the equations: 

1

1

( , , )

( , , )

ri i

r

d x x

d t t
= 

1 , ,

( , )

ri i

H x p

p




, 

 

which are equations in which one has replaced the 
1 , , ri ip  with the 

1
( , , )

ri i

U

x x




. 

 

 Proof. – Substitute the known solution that depends upon the arbitrary constant a in the 

equation: 

 
 (*) One knows that any hyperspace function of the first degree of simplicity can be put into the form a multiple 

integral. 
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1

, , , , ,
( , , )

r

i

i i

U
H x

x x

 
 
  

 = 0 . 

 

One will obtain an identity in x1, …, xn, and a. Differentiate it with respect to a : 

 

1 1 1
, , , ,

( , )

( , , )
r r r

i i i i i i

H x p U

p a x x

   
 
    

   0 , 

 

in which 
1 , , ri ip is substituted for 

1
( , , )

ri i

U

x x




. However, that identity can be written: 

   
1 1 1
, , , ,

( , )

( , , )
r r r

i i i i i i

U

aH x p

p x x

 
  

  

 
   0 .   Q. E. D. 

 

 Corollary. – Upon preserving the notations of the preceding section, one will have: 

 

1 1

1 1

1 11

, ,

, ,

r

r

rr

i i

i i

i iX

dM
dx dx

da

−

−

−−

 = 1 1

1 1

1 11

, ,

, ,

r

r

rr

i i

i i

i iX

M
dx dx

a

−

−

−−




 . 

 

 

 17. Lemma. – If the 

1
( , , )

ri i

U

x x




 that are deduced from: 

 

Ur−1  
1 1 1 1

1 1

, ,

, ,
r r

r

i i i i

i i

M x x 
− −

−

  

 

and depend upon the arbitrary constant h verify the generalized partial differential equation: 

 

1

, , , , ,
( , , )

r

i

i i

U
H x

x x

 
 
  

 − h = 0 

 

then the Ur−1 / h , i.e., the 1r

nC −  functions 
1 1, , /

ri iM h
−

  , will form a generalized covariant of the 

equations: 

1

1

( , , )

( , , )

ri i

r

d x x

d t t
= 

1 , ,

( , )

ri i

H x p

p




, 



De Donder – On the canonical Hamilton-Volterra equations. 25 

 

which are equations in which one has replaced the 
1 , , ri ip  with the 

1
( , , )

ri i

U

x x




. 

 

 Proof. – Upon proceeding as in the previous proof, one will find that: 

 

   
1 1 1
, , , ,

( , )

( , , )
r r r

i i i i i i

U

hH x p

p x x

 
  

  

 
   0 .   Q. E. D. 

 

 Corollary. – Upon always preserving the same notation, one will have: 

 

1 1 1 1 1 1 1 1

1 1 1 11 1

, , , ,

, , , ,
r r r r

r rr r

i i i i i i i i

i i i iX X

M dx dx M dx dx
− − − −

− −− −

−   = 1

r

r

T

dt dt , 

 

by virtue of (D) in no. 15. 

 

 

 18. Complete integral. – We say that: 

 

Ur−1  
1 1 1 1

1 1

fold

, ,

, ,
r r

r

r

i i i i

i i

M x x 
− −

−

−

  

is a complete integral of: 

1

, , , , ,
( , , )

r

i

i i

U
H x

x x

 
 
  

 = 0 

 

if the functions 
1 1, , ri iM

−
 depend upon the r

nC  arbitrary constants 
1 1, , ri ia

−
, and the functional 

determinant of the r

nC  functions 

1
( , , )

ri i

U

x x




 with respect to the arbitrary constants is zero, 

whereas one of the minors of order at least r

nC  – 1 is non-zero. 

 

 

 19. Generalization of Jacobi’s direct theorem for Volterra functions of the first degree of 

simplicity. – If: 

Ur−1  
1 1 1 1

1 1

, ,

, ,
r r

r

i i i i

i i

M x x 
− −

−

  

 

is a complete integral of the partial differential equation: 
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1

, , , , ,
( , , )

r

i

i i

U
H x

x x

 
 
  

 = 0 

then: 

  

1

1

, ,

1

,
( , , )

,

r

r

i i

i i

r

U
p

x x

U
b

a




−


= 


 =

 

   = 1, …, r

nC , 

 

in which a, b are arbitrary constants that define a system of integrals to the canonical Hamilton-

Volterra equations (A), (B). 

 

 The significance of Ur−1 / a = b was given in the lemma in no. 16. 

 

 Proof. – Consider two multiplicities Xr−1 and 1rX −
  that have the parametric equations: 

 

xi = i (1, …, r−1 , r) , 

 

in which r represents an arbitrary constant that will have the values r or r   according to whether 

one generates Xr−1 or 1rX −
  , resp. 

 Those multiplicities Xr−1 and 1rX −
  have been chosen (*) in such a manner that: 

 

1rU

a

−


 = b , 

i.e., such that: 

1 1

1 1

1 11

, ,

, ,

r

r

rr

i i

i i

i iX

dM
dx dx

da

−

−

−−

 = 1 1

1 1

1 11

, ,

, ,

r

r

rr

i i

i i

i iX

M
dx dx

a

−

−

−−




 . 

 

 Now suppose that r or r   differ by an infinitely-small quantity dr . The multiplicities Xr−1 

and 1rX −
  are infinitely close, and upon repeating that operation an infinitude of times, we will 

generate a finite r-dimensional multiplicity. 

 I say that this multiplicity satisfies equations (B) (after a change of parameters 1 , …, r). 

Indeed, if r   = r + dr then the preceding r

nC  conditions: 

 

1 1r rX X− −

−  = 0 

 
 (*) We shall not seek to find how one can determine the Xr−1 and 

1rX −
  that satisfy those conditions here. The lemma 

in no. 16 shows us that those multiplicities exist, and that will suffice. 
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can be written (*): 

1

1 1
, , 1

( , , )

( , , ) ( , , )

r

r r

i i

i i i i r

d x xU

a x x d  

  
 

   
  = 0 . 

 

Now, from the lemma of no. 16, one will have the r

nC  identities: 

  

1 1 1
, , , ,

( , )

( , , )
r r r

i i i i i i

U H x p

a x x p

   
 

    
  = 0 . 

 

 Therefore, by virtue of the definition of the complete integral (no. 18), one will have: 

 

1

1

( , , )

( , , )

ri i

r

d x x

d  
   (1 , …, r) 

1 , ,

( , )

ri i

H x p

p




. 

 

 Perform a change of parameters 1 , …, r such that one will have: 

 

1

1

( , , )

( , , )

r

r

d t t

d  
 = −  (1 , …, r) , 

so 

(B)  1

1

( , , )

( , , )

ri i

r

d x x

d t t
  − 

1 , ,

( , )

ri i

H x p

p




, 

with 

1 , , ri ip  = 

1
( , , )

ri i

U

x x




 . 

 

 The latter functions will satisfy the conditions that were imposed upon the 
1 , , ri ip  in the fourth 

property (no. 9). Therefore, the 
1 , , ri ip  in which one has replaced the xi with the solution of (B), 

will satisfy the equations (A). Q. E. D. 

 

 

 20. Hypotheses. – Suppose, with Volterra, that the canonical equations (A), (B) are such that 

a solution 
1, ,( , )

ri i ix p  are defined when one is given the values of the xi on the complete boundary 

Tr−1 of the domain Tr in which one varies the variables t1, …, tr arbitrarily. The values of t1, …, tr 

that are taken on Tr−1 correspond to values (x1, …, xn) that belong to the space of x and give a 

boundary-multiplicity Xr−1 to an r-dimensional multiplicity Xr . Since they belong to the spaces of 

 
 (*) One considers the r-fold integral that is extended over the r-dimensional infinitesimal multiplicity that is found 

between Xr−1 and 
1rX −

  or is generated by the infinitesimal displacement of Xr−1 . 
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t and x, the multiplicities Tr and Xr , resp. will give a multiplicity that we denote by r , and Tr−1 

and Xr−1 will give the boundary r−1 of r . Any solutions 
1, ,( , )

ri i ix p  to the equations (A), (B) can 

be considered to be functions of t1, …, tr and r−1 . If we substitute those functions in: 

 

1

1 1

, , 1

, , , ,
r

r rr

i i r

i i i iT

H
H p dt dt

p

 
− 

  
  

 

then we will obtain a function of r−1 , which is a function that we shall denote by V [r−1] . That 

Volterra function V [r−1] is not, in general, of the first degree of simplicity. Therefore, it should 

not be confused with an r-fold integral that acts upon known or well-defined functions of points. 

 

 

 21. Generalization of the converse to Jacobi’s theorem. – The function that we just defined 

(no. 20): 

V [r−1]  
1

1 1

, , 1

, , , ,
r

r rr

i i r

i i i iT

H
H p dt dt

p

 
− 

  
  

 

satisfies the generalized Jacobi equation: 

 

1

1 1
1

1

[ ] [ ]
, , , , , , ,

( , , ) ( , , )
r

r r
i r

r i i

V V
H x t t

t t x x

 − −
  

−  
   

 = 0 . 

 

 The generalized partial derivatives that appear in the that equation will be defined in the course 

of the proof. In no. 14, we already explained the sense that one can give to them for r = 1. We 

suppose that H is not a homogeneous function of degree one with respect to the 
1 , , ri ip (*). 

 

 Proof. – We have made the multiplicities Xr and Xr−1 correspond to the multiplicities Tr and 

Tr−1 . By hypothesis, we must make Tr and Tr−1 correspond to other multiplicities Xr +  (Xr) and 

Xr−1 +  (Xr−1), which are infinitely-close to the preceding ones. Therefore, the multiple integral: 

 

1

1 1

, , 1

, , , ,
r

r rr

i i r

i i i iT

H
H p dt dt

p

 
− 

  
  

 

will be subjected to a variation  that we calculated in no. 5. We will have: 

 

 
 (*) If r = 1 and if H is a homogeneous function of degree one with respect to pi then see no. 230 of Leçons sur 

calcul des variations, which was based upon lectures that were taught by J. Hadamard and collected by Fréchet. (Tome 

I, which is the only one that appeared, 1910, Paris, Hermann et fils.) 
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1

 or r r

r

T X

H
H p dt dt

p


 
− 

 
  = 

1 1 1 1

1 11
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1 , ,
r r

rr

n

i i i i i i

i i iX

x p dx dx
− −

−−
=

   

 

= 1

1 1

1 1

, , 1

, , 1( )

( , , )

( , , )

r

r

rr

i i

i i i r

i i rX

x x
p d d



 
 −

−




 , 

 

in which the multiplicity  (Xr) that is generated by the variation or displacement of Xr−1 is 

supposed to be expressed as a function of the parameters 1 , …, r . 

 By hypothesis, we must consider the multiplicities Tr + d (Tr) and T r−1 + d (T r−1), which are 

infinitely close to Tr and T r−1, resp. We could make those new multiplicities correspond to Xr and 

Xr−1 , respectively. In that way, the multiple integral: 

 

1

r

r

T

H
H p dt dt

p

 
− 

 
  

 

will be subject to an increment d that is given by: 

 

 1

1

1

, , 1
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( , ,

( , , )

r

r

rr

i i

i i r

i i rT

d x x
d H p dt dt

d t t

 
− 

 
  

 

  = 
1 1

1

1 , ,

, ,
r r

rr r

r i i i i

i iT X

d H dt dt d p dx dx−    

  = 1

r

r

T

d H dt dt  

  = 1

( )r

r

d T

H dt dt . 

 

 By hypothesis, we can perform the two operations simultaneously. It will then result that we 

also have: 

1

1

1

1

1
, ,

[ ]
,

( , , )

[ ]

( , , ) r

r

r

r

r
i i

i i

V
H

t t

V
p

x x





−

−


= 


 =

 

 

in the space of x and t. 

 The partial derivatives of V [r−1], thus-interpreted, then satisfy the generalized Jacobi 

equation: 

1

1 1
1

1

[ ] [ ]
, , , , , , ,

( , , ) ( , , )
r

r r
i r

r i i

V V
H x t t

t t x x

 − −
  

−  
   

 = 0 . 
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 Remark. – Volterra gave a very beautiful proof of the converse to Jacobi’s theorem in the case 

where r = n – 1 = 2. (loc. cit., pp. 129). Fréchet generalized that theorem by using the notion of a 

transverse extremal (*), when extended to hyperspace. The Jacobi equation that he obtained has 

the form: 

1

1[ ]
, , , ,

( , , )
r

r
i

i i

V
H x

x x

 −
 
 
  

 = 0 . 

 

 In addition, Fréchet remarked that the generalized derivatives of V [r−1] satisfy some other 

equations. A first system of those equations is deduced immediately from (B), from 

1

1[ ]

( , , )
r

r

i i

V

x x

 −



= 
1 , , ri ip , and from the identities that were written out in the footnote in no. 2. Hence: 

 

1 1 1 1 1 1

1

1 , , , , , , , ,

( , ) ( , )
( 1)

r r

r

i i i i i k k

H x p H x p

p p
  




− + + −

+

=

 
−

 
  = 0 . 

 

 A second system of equations that are satisfied by the generalized derivatives of V [r−1] is 

obtained by eliminating 2

1

dx

dx
, …, 

1

ndx

dx
 from equations (B) and the values of the direction cosines 

(see below, no. 25) of an element that is taken on X r−1 . 

 In all of those proofs of the generalized Jacobi theorem, the role of the variables xi is 

paramount. That return to the variables that Jacobi himself used is worthy of note. 

 

____________ 

 
 (*) Fréchet’s proof is the generalization of the one that is found in no. 145 in Hadamard’s treatise that we just cited. 



CHAPTER IV 

 

Parametric form. 

 

 

 22. Parametric form. – If one expresses the x1, …, xn in the r-fold integral: 

 

I  
fold

1
1 1 1

1

, , , , , , , ,
r

nr
r n r r

r

xx
f x x x x dx dx

x x

−
+

+

 
 

  
  

 

as functions of r distinct parameters t1, …, tr  then one will have: 

 

r k

i

x

x

+


= 1 1 1 1

1 1

( , , , , , , ) ( , , )
:

( , , ) ( , , )

i r k i r r

r r

d x x x x x d x x

d t t d t t

− + + . 

 

 Upon substituting that in: 

W  1

1

( , , )

( , , )

r

r

d x x
f

d t t
, 

 

one will obtain a function W that will be homogeneous of degree one with respect to the 

determinants 1

1

( , , )

( , , )

r

r

d x x

d t t
, in which i1, …, ir is any of the combinations of the first n numbers 

taken r at a time. 

 Then set: 

1, , ri i   1

1

( , , )

( , , )

r

r

d x x

d t t
. 

 The r-fold integral I will become: 

 

I  
1

fold

1 , , 1( , , , , , )
r

r

n i i rW x x dt dt
−

  . 

 

 The new form of I, which is equivalent to the given integral, is the analogue of the parametric 

form that Weierstrass employed in the case where r = 1. The extension to the case of a multiple 

integral was realized (*) in a more practical form by Hadamard in his course on the calculus of 

variations that was taught at Collège de France. (The first part of that course appeared recently and 

was cited in no. 21.) 

 

 

 
 (*) See page 190 of the cited paper by Fréchet. 
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 23. On the condition H = 0. – It results from the fact that W is a homogeneous function of 

degree one in 
1, , ri i  that the Hessian of W with respect to those 

1, , ri i  (when considered to be 

independent variables) is identically zero. Now suppose that an initial minor (of order r

nC  – 1) is 

non-zero. It will then result that we can once more write: 

 

1 , , ri i

W






 = 

1 , , ri ip , 

so there will exist only one relation: 

 

H (x1, …, xn ,
1 , , ri ip , …) = 0 

 

between the 
1 , , ri ip . The hypothesis that was made at the beginning of no. 2 has then been 

abandoned, since the relations: 

1 , , ri i

W






 = 

1 , , ri ip  

 

cannot be solved for the 
1, , ri i , in general. 

 Euler’s theorem for homogeneous functions gives us: 

 

W − 
1

1 1

, ,

, , , ,
r

r r

i i

i i i i

W







  = 0 . 

 

 The single relation between the 
1 , , ri ip  can be deduced from: 

 

W − 
1 1

1

, , , ,

, ,
r r

r

i i i i

i i

p   = 0 . 

 

One can then proceed as follows: First, calculate the r

nC  – 1 ratios (*) of the 
1, , ri i  to each other, 

and then substitute them in the preceding relation. 

 Upon referring to no. 2 and preserving the same symbols, one will see that it is necessary and 

sufficient that one must have: 

 

1 1 1 1

1 1

1 1 1 1
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with 

H = 0 , 

 

 (*) The 
1, ,/

ri iW    are homogeneous functions of degree zero with respect to the 
1, , ri i . 
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in which H = 0 represents the result of eliminating the 
1, , ri i  (or the unique relation between the 

1 , , ri ip ) and in which r is an arbitrary function of the xi and the 
1 , , ri ip . 

 The generalized Lagrange equations will then be equivalent to the canonical Hamilton-Volterra 

equations: 

1 1 1 1

1 1
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, , ,

, , 1

1 , ,

( , , , )
,

( , , )
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

 = −
 


 

 

to which one must add the condition that: 

 

H (xi, …, 
1 , , ri ip , …) = 0 . 

 

 Since the function H is independent of the t1, …, tr , one can, by a change of variables, make  

equal to 1 in some way. We shall suppose that  has that value in what follows. 

 The equation H = 0 is that of the figuratrix (*). In order to satisfy it, it will suffice to consider 

a system of (initial) values 0

ix , 
1

0

, , ri ip  that correspond to 0

1t , …, 0

rt , and which satisfy H (…, 0

ix , 

…, 
1

0

, , ri ip ) = 0 . That will result immediately from the fact that H is an invariant of the canonical 

Hamilton-Volterra equations (no. 8). 

 The integral I can now be written: 

 

I = 
1

1 1

fold

, , 1

, , , ,
r

r r

r

i i r

i i i i

H
p dt dt

p

− 


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 24. Example: minimal surfaces. – One knows that in order to find the minimal surfaces z = z 

(x, y), one must annul the first variation of: 

 

22

1
z z

dx dy
x y

   
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 If one replaces the rectangular coordinates of x, y, z with: 

 

1 2
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1 2

( , ) ,

( , ) ,

( , )

x x t t

y y t t

z z t t
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

=
 =

 

 
 (*) See no. 140, et seq., of the cited treatise by Hadamard (case in which r = 1). 
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then one will find the parametric form: 

 

2 2 2

12 13 23 1 2dt dt  + +  . 

 

 One will then immediately deduce (no. 1) the generalized Lagrange equations that the minimal 

surfaces must satisfy. 

 In addition, one will have: 

W  2 2 2 1/2

12 13 23( )  + + , 

so 

p12 = 12

2 2 2 1/2

12 13 23( )



  + +
, 

 

and one will have analogous expressions for p13 and p23 . 

 The elimination of 12 , 13 , 23 will lead to the single relation: 

 
2 2 2

12 13 23p p p+ +  − 1 = 0 . 

One can then set: 

H  2 2 2

12 13 23p p p+ +  − 1 . 

 

 Before going further, we must interpret an r-fold integral that was obtained in no. 21 

geometrically. 

 

 

 25. Geometric interpretation. – Consider the integral: 

 

1

1

1

, , 1

, , 1

( , , )

( , , )

r

r

r

i i

i i r

i i rX

x x
p  

 


 


 , 

 

which is extended over the r-dimensional multiplicity X. The x1, …., xn are expressed as functions 

of the r distinct parameters 1, …., r . Let 2 represent the square of the matrix: 
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1 1
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 One makes a choice of sign for  at an arbitrary point of X and preserves the sign when the 

point (xi) is displaced continuously over X. When one chooses the sign of , one says that the 

direction or sense of that multiplicity X is given. 

 Define an element d that is taken on the multiplicity X by the relation: 

 

d   1 … r . 

 

 Finally, we say that the direction cosines of d are given by: 
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Those 
1

cos( , , )
ri ix x  satisfy the following identities: 
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 Now recall no. 21: 
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 26. Minimal surfaces (cont.). – Here, that formula will become: 

 

2

12 1 2 13 1 3 23 2 3

( )

[ cos( , ) cos( , ) cos( , )]
X

p x x p x x p x x d


+ +  . 

 

The p12 , … are the direction cosines of the normal to the minimal surface. The cos (x1, x2), … are 

the direction cosines of the normal to the surface that is described by the contour (X1). If that 

boundary curve (X1) is unknown, but subject to being found on a given surface then the condition 

p12 cos (x1, x2) + … = 0 will signify that the surface must be intersected normally by the desired 

minimum surface. (Gauss’s theorem) 



De Donder – On the canonical Hamilton-Volterra equations. 36 

 

  Volterra deduced the following theorem, which is due to Ernesto Padova (*), from the fifth 

property (no. 11 and Remarks): The orthogonal trajectories to a system of minimal surfaces form 

a system of filaments with constant orthogonal section. (A filament is a tube that is composed of 

the lines that start from the points of the contour of an infinitesimal area.) Volterra deduced the 

following converse to that theorem from the fourth property (no. 9): If a system of filaments with 

constant orthogonal section admits orthogonal surfaces then they will be minimal surfaces. 

 

 December 1909. 

______________ 

 

  

 
 (*) Rendiconti Acc. Lincei, Roma, (4) 4, 2nd semester (1888), pps. 369 and 454, especially pp. 373. 


